WO2020175366A1 - Chimeric antigen receptor - Google Patents

Chimeric antigen receptor Download PDF

Info

Publication number
WO2020175366A1
WO2020175366A1 PCT/JP2020/007038 JP2020007038W WO2020175366A1 WO 2020175366 A1 WO2020175366 A1 WO 2020175366A1 JP 2020007038 W JP2020007038 W JP 2020007038W WO 2020175366 A1 WO2020175366 A1 WO 2020175366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
car
antigen
vector
Prior art date
Application number
PCT/JP2020/007038
Other languages
French (fr)
Japanese (ja)
Inventor
紀彦 川又
慧 青山
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Priority to JP2021502186A priority Critical patent/JPWO2020175366A1/ja
Publication of WO2020175366A1 publication Critical patent/WO2020175366A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • A61K39/464412CD19 or B4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464403Receptors for growth factors
    • A61K39/464406Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/27Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by targeting or presenting multiple antigens
    • A61K2239/28Expressing multiple CARs, TCRs or antigens

Definitions

  • the present invention relates to a chimeric antigen receptor, a nucleotide encoding the chimeric antigen receptor, a vector containing the nucleotide, a cell expressing the chimeric antigen receptor, and a pharmaceutical composition containing the cell.
  • C CAR chimeric antigen receptor
  • CAR used in clinical practice has a single-chain antigen receptor (single-chain antibody, single chain F vfragment: sc F v) that serves as an antigen-binding site in the extracellular region. It has a structure in which a costimulatory molecule for activating T cells (CD 28, 4-1 BB, etc.) and a molecule that constitutes the T cell receptor signal, CD3 zeta (CD3 H intracellular domain, are linked.
  • CD3 zeta CD3 H intracellular domain
  • CAR-T cells recognize only a single antigen, and thus the target diseases are limited from the viewpoint of specificity.
  • the single antigen is also expressed in normal cells, CAR-T cells cause cytotoxicity and cause side effects.
  • attack on normal tissues cannot be suppressed, which may cause serious organ damage.
  • Non-Patent Document 1 attempts have been made to develop CAR-T cells that recognize multiple antigens, such as a system in which the intracellular structure of CAR is divided and linked to multiple ScFVs. ..
  • CAR-T cell system has not yet been put to practical use.
  • Non-Patent Document 1 K l os s s CC. et al., B i o t e c h n o l ., Jan. 2013, Vol.
  • the present invention has been made in view of the above problems of the prior art, and expresses a chimeric antigen receptor (CAR) that recognizes a plurality of antigens and exerts cell damage and the like specifically in target cells.
  • the purpose is to provide cells. It is also an object to provide a CAR-expressing cell capable of controlling the activity such as cytotoxicity.
  • cleavage CAR a chimeric antigen receptor
  • activating CAR a chimeric antigen receptor
  • a system using a free signal transduction factor that functions when released from the cell membrane as the signal transduction molecule shown in Fig. 1 was envisioned.
  • the activated protease causes It is assumed that the activation activation is cleaved and the signal transduction factor functions by being released from the cell membrane. Then, it is considered that these 0-expressing cells are activated and it is possible to bring about cytotoxicity or the like to the target cells.
  • the cell expressing the cleavage 0 and the activation 0 is not activated, and therefore the cell is not activated. It is also assumed that the cell damage will not be caused.
  • a system using a membrane-localized signal transduction factor that functions when present inside the cell membrane as the signal transduction molecule was also envisioned.
  • the signal transduction factor is activated by the activated protease. It is assumed that the cells are inactivated by being released from the cell membrane by cleavage of the activating circle, and that normal cells will not be damaged.
  • the target cells when the antigen recognized by cleavage 0 is not expressed and the antigen recognized by activation 0 is expressed, the protease is not activated and the activity is the same as in conventional 0.
  • the signal transduction molecule functions inside the cell membrane, and cells expressing these O are activated, and it becomes possible to bring about cytotoxicity or the like in the target cell. ⁇ 02020/175366 4 (:171? 2020 /007038
  • the present inventors have proposed an antigen-binding region corresponding to activation [08] as an antigen-binding region.
  • ⁇ 1 — 001 9 — 01 also referred to as “3116” “SO8 [3 ⁇ 4”
  • 293 cells were co-expressed with cells expressing the target antigen, 001 9.
  • the localization of the so signal has changed. That is, as shown on the left side of FIG. 2, it was suggested that the target antigen, 019, was recognized, and that the 0 could be assembled on the cell membrane.
  • the present invention relates to a chimeric antigen receptor, a nucleotide encoding the chimeric antigen receptor, a vector containing the nucleotide, a cell expressing the chimeric antigen receptor, and a pharmaceutical composition containing the cell, More specifically, it is as follows. ⁇ 02020/175366 6 ⁇ (: 171-1? 2020 /007038
  • a chimeric antigen receptor comprising a region that binds to a first antigen, a transmembrane region, and a protease, and does not include a site that is cleaved by the protease.
  • a chimeric antigen receptor comprising a second antigen-binding region, a transmembrane region, a site cleaved by the protease according to ⁇ 1>, and a signal transduction factor.
  • ⁇ 3> The chimeric antigen receptor according to ⁇ 2>, which is a membrane-localized signal transduction factor, which functions when the signal transduction factor is present inside the cell membrane.
  • ⁇ 4> The chimeric antigen according to ⁇ 2>, wherein the signal transduction factor is a free signal transduction factor that functions when the site is cleaved by the protease described in ⁇ 1> and is released from the cell membrane. Receptor.
  • ⁇ 5> A nucleotide encoding the chimeric antigen receptor according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> A vector containing the nucleotide according to ⁇ 5>.
  • ⁇ 7> A cell expressing the chimeric antigen receptor described in ⁇ 1> and the chimeric antigen receptor described in any one of ⁇ 2> to ⁇ 4>.
  • ⁇ 8> The cell according to ⁇ 7>, which is a Ding cell or a natural killer cell.
  • ⁇ 9> A pharmaceutical composition comprising the cell according to ⁇ 7> or ⁇ 8>.
  • two antigens expressed in target cells or normal cells are provided.
  • Fig. 1 is a schematic view showing an embodiment (positive system) of the chimeric antigen receptor (08 [3 ⁇ 4]) of the present invention.
  • a single-chain antibody (30) that recognizes antigen 8 is connected to a signal transduction factor (free signal transduction factor) that is active in the cytoplasm with a protease cleavage sequence sandwiched between them [08 (3 ⁇ 4 (3 ⁇ 4
  • the activation [08] and the expression [8] (cleavage 08 [3 ⁇ 4), which is obtained by connecting the protease to 30 V that recognizes the antigen, are expressed in Ding cells.
  • the protease When both the antigen and the antigen are expressed in the target cell (for example, tumor cell), the protease is activated and activated when each of the 30 V recognizes each of the antigens in the D cell.
  • the sequence in the chemical formula will be cleaved. Then, due to the cleavage, the T cell activation factor is released from the cell membrane and released into the cytoplasm, thereby activating the T cell.
  • FIG. 2 is a schematic diagram showing one embodiment (negative system) of the chimeric antigen receptor (08 [3 ⁇ 4]) of the present invention.
  • a signal transduction factor membrane-localized signal transduction factor
  • the 30 V that recognizes the target antigen 8 with a protease cleavage sequence sandwiched between them.
  • cleavage 08 [3 ⁇ 4] which is obtained by connecting the protease to 30 V that recognizes the target antigen, are expressed in Ding cells.
  • the D cell has a signal by recognizing the antigen by the 30 V of 0 for activation. The transfer factor is activated, and the Ding cell is activated.
  • the non-target cell normal cell
  • the 30 V possessed by cleavage 08 recognizes the antigen and activates the protease and activates it. The sequence inside will be truncated. Then, due to the cleavage, the signal transduction factor is released from the cell membrane, thereby suppressing the activation of Ding cells relative to non-target cells.
  • Fig. 3 is a schematic view showing the outline of 0 for verification of the present invention.
  • the upper part shows the structure of a typical publicly known second generation ⁇
  • the lower part shows the structure for demonstrating the present invention ⁇ [3 ⁇ 4 (an I ⁇ - ⁇ 0 1 9- ⁇ 0 2 8- ⁇ 3- ⁇ 1 ⁇ 6 1 ⁇ "Shows the structure of So'08. ⁇ 02020/175366 8 ⁇ (: 171? 2020 /007038
  • the ⁇ [3 ⁇ 4 has a structure of the second generation 0 based, sandwich ⁇ 028 downstream anchor sequence comprising the transmembrane region (Ding IV!) (9 4 1), in place of Rei_03 ⁇ 6 3, 1 to 1 V protease cleavage site consisting of 8 amino acids (amino acid sequence set forth in SEQ ID NO: 9) and fluorescent protein ( ⁇
  • 2 is a fluorescence micrograph showing the results of observing 293 cells.
  • the vector encoding the gene was introduced into the gene and observed 24 hours later. “The results of the detection of Seo alone are shown, and the overlay image with nuclear staining is shown on the right. The observation was performed with an all-in-one fluorescence microscope 67-81 00 (60 times), and the sensitivity of 30 was set to 200. 01 (3116 ““The exposure time of the camera was taken at 3.5 seconds (observation and shooting conditions are the same in FIGS. 5 and 6).”
  • FIG. 8 is a fluorescence micrograph showing the results of observing the co-culture of 293 cells expressing E.coli and ⁇ 562 cells or [3 ⁇ 4 3 ]cells. After transfecting the vector encoding the XVIII gene into 293 cells, 24 hours later, 562 cells or 3 ” ⁇ cells are added,
  • the black arrowhead is the total length of 31 ⁇ 1: * Indicates the band derived from Eighteen (about 701 ⁇ 03).
  • the white arrowhead is a band (1) that was cut and released by 1 to 1 IV (3 6 "" a band derived from simple substance (about 301 ⁇ 0 ⁇ ):.
  • FIG. 9 is a schematic view showing an outline of a 08[3 ⁇ 4 (cutting 08[3 ⁇ 4]) of the present invention. On the top ⁇ 02020/175366 10 ⁇ (: 171? 2020 /007038
  • the white line (scale bar) at the bottom right represents 20.
  • the vertical axis represents the intensity of the signal
  • the horizontal axis represents the position on the line from the left to the right in the red line (under the color display) of the photograph.
  • FIG. 14 3 1-001 9- ⁇ 1 ⁇ 6 ““Shows the results of observing 293 cells that co-expressed So 008 and ⁇ 028 ⁇ I ⁇ 0 _1 ⁇ 1 ⁇ y P RA4 808. It is a fluorescence micrograph. 293 cells are treated with ant ⁇ 1 010 9- ⁇ 11 & rr ⁇ ⁇ 8 and ⁇ 028 ⁇ I ⁇ 0-1 to 1 IV [3 ⁇ 4 8 4 0 8 [3 ⁇ 4, respectively. — Transfecting vector was introduced at a weight ratio of 10: 1 (molar ratio of 9.34: 1), and observed 24 hours later. 20 times) and the sensitivity was set to 200. The exposure time was 1.1 seconds.
  • So cells and Established cells. 1 to 1 on the cell surface The expression levels of 2 and 00109 were analyzed by a flow cytometer.
  • FIG. 3 is a micrograph showing the result of co-culture of 293 cells that overexpressed both [3 ⁇ 4] and 3 ⁇ __ [3 ⁇ 4_3 cells by fluorescent immunostaining.
  • 293 cells 0 0 8 3-3 ⁇ 1 -1 to 1 [[2 (405-3)- ⁇ 028 — ⁇ I 63 V 6 3 II ⁇ 1 01 ⁇ 116 ""So ⁇ 8 [ 3 ⁇ 4 vector and ⁇ I -001 9-0028 ( ⁇ ! ⁇ 0) -1 ⁇ 1 1?
  • [3 (8) vector was introduced into the vector at a weight ratio of 5:1, and coculture was started 24 hours later.
  • the co-culture was performed on 100 dishes in 2 XI 0 5 cells, 293 cells and 3 ⁇ _, respectively. _ 3 cells. After 4 days of co-culture The cells were observed. These observations were made with BZ-81 00 at a magnification of 60, and the IS sensitivity was set to 200. The exposure time of mC herry was 3.5 seconds.
  • Fig. 18 is a schematic diagram showing the outline of the coding region in the vector expressing annt i -CD 19 E f f e c t o r CAR-T 2A-Y F P.
  • the intracellular domain of CD3-zeta was connected to the H VPR recognition sequence downstream of CD28.
  • the Y F P gene was connected via the T 2 A sequence.
  • FIG. 19 Expression of CD 69 and YFP in J urkat cells co-cultured with K 562 cells or Raji cells and transfected with anti-CD 19 E ffector CAR-T 2A-YFP expression vector was analyzed by flow cytometry. It is a dot plot diagram showing the results of analysis in a tree.
  • pc DNA3— anti-CD 19 Effector CAR_T 2 A— YFP was introduced into J urkat cells and coculture was started 24 hours later. With 96 we I ⁇ bottom plates were seeded by 1 X 1 ⁇ 5 cells per well. After 24 hours of co-culture, cells were collected and analyzed using FACS ari all.
  • CD69 is a CD19-positive Raji cell-specific T cell activation marker.
  • YFP reflects the expression of anti-CD 19 Effector CAR, which is expressed cistronicly via the T 2 A sequence.
  • FIG. 20 IL-2 mRNA expression level in J urkat cells co-cultured with K562 cells or Raji cells and introduced with anti-CD 19 Effector CAR-T 2A-YFP expression vector. It is a graph. In addition, the gate shown in Fig. 19 was installed, and Positive .069_?mi-positive cells were isolated and evaluated for L-2 gene expression by qRT-PCR. Analysis was performed by the AACt method using GAPDH as the internal control. Taking the K562 co-culture group as 1, the relative L-2 mRN A expression level was shown.
  • FIG. 4 is a dot plot diagram showing the results of flow cytometric analysis of the expression of CD69 and YFP in r CAR/J urkat).
  • Jurkat cells transduced with pc DNA 3-anti -CD 19 E ffector CAR-T2A-YFP were cultured in the presence of 1 000 ⁇ g/mL G418, and anti -CD 19 E ffector CAR/J urkat cells were established.
  • K562 cells Raji cells, SK-BR-3/empty cells or SK_BR-3/CD19 cells at a cell number of 1:1 for 24 hours, the cells are harvested, It was analyzed using FACS Ca libur.
  • FIG. 22 anti — CD 19 E ffector CAR/J urkat cells and anti -HER 2 (4 D 5-3) -S cissor s-CAR-T2 A — mC herry expression vector or anti — HE R2 ( 4 D5-8) — S cissors- CAR- T2A- mC herry expression vector
  • the expression of YFP and m C herry in the Jurkat cells introduced with the vector is shown by the results of the site-cytometry analysis. It is a dot plot diagram.
  • FIG. 23 anti-CD 19 E ffector CAR + empty/J urkat cells or anti — CD 19 E ffector CAR + anti — co-cultured with Raji cells or SK_BR ⁇ 3/CD 19 cells It is a histogram which shows the result of having analyzed CD69 expression in HER2(4D5-3)Scissors/Jurkat cell.
  • the gray histogram shows the analysis results of anti — CD 19 E ffector CAR + empty/J urkat cells
  • the histogram represented by the solid line shows anti — CD 19 E ffector CAR + anti -HER 2 (4 D 5 -3) Shows the analysis results of S cissors/J urkat cells.
  • the cells were collected, and the expression of CD69 in YFP-positive cells was analyzed by using FACS Caliburr.
  • FIG. 24 anti-CD 19 Effector CAR + empty/Jurkat cells, anti-CD co-cultured with Raji cells, SK-BR-3 cells or SKB R-3/CD 19 cells 1 9 E ffector CAR + anti — HER 2 (4 D 5 — 3) S cissors/J urkat cells, or anti — CD 1 9 E ffector CAR + anti — HER 2 (4 D 5 — 8) S cissors/J It is a histogram showing the results of analysis of CD69 expression in urkat cells.
  • the gray histogram shows the result of co-culturing with SK_BR ⁇ 3 cells (below the color display), the histogram represented by the solid red line (second from the left). Histogram) shows the result of co-culture with SK_BR — 3/CD 19 cells, and the black solid histogram (third histogram from the left) is R a
  • the results of co-culturing with ji cells are shown. The cells were collected after co-cultivation at a cell number of 1:1 for 24 hours, and the expression of CD69 in YFP positive cells was analyzed using FACS Calilibur.
  • T cells expressing the following two types of chimeric antigen receptors are recognized by recognizing the two types of antigens through the respective chimeric antigen receptors. It is possible to cause cell damage and the like to target cells such as cancer cells without causing cell damage and the like to normal cells.
  • a chimeric antigen receptor (hereinafter also referred to as "cleavage CAR") containing a region that binds to a first antigen, a transmembrane region, and a protease, and does not include a site that is cleaved by the protease.
  • a chimeric antigen receptor (hereinafter, also referred to as "activating CAR") containing a region that binds to a second antigen, a transmembrane region, a site that is cleaved by the protease, and a signal transduction factor.
  • the present invention provides these chimeric antigen receptors, and combinations thereof.
  • the “chimeric antigen receptor (Chimeric Antigen Receptor: CAR)” is an extracellular region that binds to an antigen, a transmembrane region, and an intracellular region in that order. Means a chimeric protein that is arranged from the N-terminal side and is directly or indirectly linked.
  • a region that binds to an antigen means a region that specifically binds to an epitope of an antigen, and an antibody or a functional fragment thereof can be used.
  • the “functional fragment” of an antibody may be a part of an antibody as long as it can specifically bind to an antigen, for example, a single chain antibody (s c F v)
  • Single domain antibody (sd Ab, VH H, VNAR), sc (F v) 2, F ab, F ab', F (ab') 2, variable region fragment (F v), disulfide-bonded F v, Diabodies and multispecific antibodies are usually used for CAR.
  • rs c F v is a structure in which a light chain variable region (VL) and a heavy chain variable region (VH) of a monoclonal antibody (immunoglobulin) are linked via a linker, and binds to an antigen. Holds Noh.
  • a linker for example, a peptide linker can be used.
  • the length of the linker is not particularly limited.
  • a linker having 5 to 25 amino acids can be used.
  • the length of the linker is preferably 8 to 25 amino acids, more preferably 15 to 20 amino acids.
  • Preferable examples of peptide linkers include linkers composed of glycine and serine (GGS linker, GS linker, etc.).
  • the amino acids that compose the GGS linker and GS linker, glycine and serine have the advantage that their size is small and that higher-order structures are less likely to be formed in the linker.
  • the monoclonal antibody serving as the basis of scFV is not particularly limited, and examples thereof include antibodies derived from non-human animals (rodents such as mouse, rat, and rabbit).
  • rodents such as mouse, rat, and rabbit.
  • a method for producing such a monoclonal antibody a method using a hybridoma, a method in which a host is transformed with an expression vector containing an antibody gene by a genetic engineering technique, or a transgenic animal is desired. The method of producing by immunizing with the antigen of.
  • the monoclonal antibody according to the present invention may be a human antibody, a humanized antibody or the like.
  • a humanized antibody is an antibody in which the structure of a monoclonal antibody of another animal species (for example, mouse or rat) is similar to the structure of human antibody, and only the constant region of the antibody is replaced with that of human antibody.
  • the "antigen", the first antigen and the second antigen are not particularly limited and, for example, are specifically expressed in cancer cells or their precursor cells (cancer stem cells etc.).
  • Biomolecules tumor-specific antigens, Tumor-specificantigens: TSA
  • biomolecules whose expression is increased in cancer cells compared to normal cells tumor-associated antigens, Tumor-associatedantigens: TAA
  • Cancer antigens such as
  • cancer antigens include CD 19 and H ER 2 (ER B B 2, N EU)
  • the antigen according to the present invention also includes an antigen specific to an infectious disease.
  • an antigen may be any substance that is specifically expressed in viruses or bacteria that cause infectious diseases, for example, 1 to 1 V V-specific antigen (1 to 1 V V 9 1 20 etc.), 1 to 1 specific antigen, Minami V specific antigen, 0 IV! V specific antigen, 1 to 1 specific antigen, Lassa virus specific antigen, influenza virus specific antigen, fungal specific antigen To be ⁇ 02020/175366 20 ⁇ (: 171? 2020 /007038
  • the antigen according to the present invention also includes an antigen specific to an inflammatory disease.
  • antigens include, for example, 803 (8? 1 1 ), 808 1 ⁇ /1-30 01, ⁇ 1_ 1 1, 001 25, 001 47 % 001 54 ( ⁇ 040 !_),
  • those skilled in the art can express not only in myeloma but also in normal cells suitable for each disease, based on publicly known information on the difference in expression between target cells such as cancer cells and normal cells.
  • the antigen to be selected can be selected.
  • the first antigen and the second antigen are usually different antigens.
  • the "transmembrane region” is not particularly limited as long as it is a polypeptide that has a function of penetrating the cell membrane and can retain 0.8% in the cell membrane.
  • proteins that are the origin of the polypeptide that carries the transmembrane region include, for example, 0028, 0 03 ⁇ , 003 £, 0045, 004, 005, 008/3, 00
  • the ⁇ chain and / 3 chain of the receptor are included.
  • the "intracellular region” has different modes of 0 for cleavage and 0 for activation.
  • the "intracellular region" in Cleavage 08 [3 ⁇ 4 has at least a protease.
  • protease As a “protease”, when cleavage 08 and activation 08 bind to their corresponding antigens and assemble at the cell membrane, they are activated in close proximity to the transmembrane domain and signal.
  • protease that can be cleaved with a transfer factor
  • examples thereof include aspartate protease (1 to 1 V V protease (1 to 1 [3 ⁇ 4), secretase, etc.), cysteine protease (Caspase, Tobacco Etch Virus (Chomi) Protease, etc.), Serine Protease (Factor X3, Fuulin, etc.), and Metalloprotease (8881 ⁇ /1 protein, Matrix metalloprotease, etc.).
  • protease according to the present invention from the viewpoint that cleavage for activation [8] easily occurs depending on the antigen binding of cleavage for activation, activation occurs when the antigen-binding region binds to an antigen.
  • Protease is preferred. Examples of such a protease include a protease that exhibits protease activity by multimerization, and more specifically, 1 to 1 V protease and caspase 9 are mentioned.
  • the protease according to the present invention is derived from an organism (including a virus) different from the origin of the cell in which the present invention 88 is expressed. Proteases are preferred. When the cell is derived from human, a non-human-derived protease is preferable, and more specifically, Examples include V-protease and Domi-V protease.
  • protease inhibition Agent-controllable proteases are preferred.
  • protease include saquinavir, ⁇ 0 2020/175 366 22 ⁇ (: 171? 2020 /007038
  • protease corresponding to protease inhibitors such as nelfinavir, atazanavir, fosamprenavir, lopinavir, darunavir, ritonavir, tipranavir, amprenavir and indinavir.
  • a secretase corresponding to protease inhibitors such as
  • 1 to 1 V V protease is particularly preferable as the protease according to the present invention, and further, as shown in Examples described later, multimerization (dimerization Necessary for "1 to 1 V V protease in which the sequence is excluded is more preferable.
  • the "intracellular region" in Activator 08 [3 ⁇ 4 has at least a site cleaved by a protease and a signal transduction factor.
  • the "site that is cleaved by a protease” is located between the above-mentioned transmembrane region and the signal transduction factor in the activation gene.
  • Those skilled in the art can appropriately understand the sequences recognized and cleaved by the above-mentioned protease based on known information, and can arrange the sequences between the region factors.
  • the ⁇ 0 2 8 intracellular domain used in conventional ⁇ eight cleavage sites of aspartic proteases, such as 1 ⁇ 1 IV protease is present. In such a case, it can be suitably used as the activation reagent of the present invention without newly inserting the protease cleavage site.
  • Ordinary 0 [3 ⁇ 4 means existing 0, and generally, as an intracellular region, the activation signal transduction of the Ding cell receptor (Ding [[]] and 0 0 3 complex is performed. Having only domain (1st generation 08 [3 ⁇ 4), in addition to activation signaling domain, costimulatory signaling domain derived from costimulatory molecule (eg, 0 0 2 8 or 4 _ _ _ _ _ _ _ _ _ intracellular Domain (2nd generation ⁇ [3 ⁇ 4), and multiple costimulatory signaling domains in addition to the activation signaling domain (for example, the intracellular domains of ⁇ 0 28 and 4 _ ⁇ ) Things (3rd generation There are eight [3 ⁇ 4).
  • the "signal transduction factor” means a factor capable of transducing a signal necessary for exerting an effector function in a cell when the above-mentioned antigen-binding region binds to an antigen.
  • the number of signal transduction factors contained in the activation CAR is not limited to one, and may include multiple signal transduction factors (for example, 1 to 5,
  • the plurality of signal transducing factors contained in the activating C AR may be the same or different.
  • the "signal transduction factor” includes a membrane-localized signal transduction factor and a free signal transduction factor.
  • Membrane-localized signal transduction factor means a membrane-localized signal transduction factor that functions when it is present inside the cell membrane, and is a primary signal used in normal CAR.
  • the activation signaling domain of the protein involved can be used. It is known that the immunoreceptor-activating tyrosine morphology (ITAM) is involved in primary signal transduction.
  • the proteins with ⁇ T AM for example, CD3 F c R r, F c R / S, CD 3 T s CD35, CD3 s, CD 5, CD 22, CD 79 a, CD 79 b, CD 66 d, Examples include DA P 10 and DAP 12.
  • Free signal transduction factor means a signal transduction factor that functions when it is released from the cell membrane, and includes, for example, mutant RHOA (p. Gly 17 V al variant etc.) and mutant VAV. (1 -67 amino acid deletion type, p. Asp 797 A sn mutant, etc.), mutant ZA P-70, RAS, NI CD (Noteh intracellular domain), NF AT (contributes to TCR signaling Transcription factor).
  • mutant RH0A S akata— Y anagi mo to M. et al., N at Ge net. 201 February 2014, Volume 46, No. 2, pp. 171-175, 9 S Y. et al. , Blood, 201 Aug.
  • the CAR of the present invention can contain other domains in addition to the above-mentioned antigen-binding region, transmembrane region, and protease or protease cleavage site and signal transduction factor.
  • other domains include, but are not limited to, costimulatory transduction domains, spacer sequences, signal peptides and the like.
  • the costimulatory molecule expressed on T cells transmits a costimulatory signal intracellularly by binding with a ligand specific to each costimulatory molecule expressed on antigen-presenting cells,
  • the “costimulatory signal transduction domain” means an intracellular domain involved in costimulatory signal transduction of the costimulatory molecule as described above.
  • costimulatory molecules include CD 28, 4-1 BB (CD 1 37), 0X040 (CD 1 34), I COS, CD 2, CD4, CD 5, CD8a, CD8/S, CD 1 54, etc.
  • the CAR of the present invention can include costimulatory signal transduction domains of these costimulatory molecules.
  • the number of costimulatory signaling domains that the CAR of the present invention may include is not limited to one and may be multiple.
  • the CAR of the present invention can contain, for example, 1 to 5, 1 to 3, or 1 or 2 costimulatory signaling domains.
  • the domains may be the same or different.
  • the "spacer sequence” means a sequence that connects regions or the like.
  • the number of amino acids in the spacer sequence is not particularly limited, but it is usually 2 to 300 amino acids, preferably 5 to 200 amino acids, and more preferably 7 to 100 amino acids. Connects the antigen binding region and transmembrane region
  • the sequence to be used is not particularly limited as long as it does not inhibit the antigen-binding ability of the antigen-binding region. For example, 9 amino acids derived from human rhodopsin (C 9 sequence),
  • Extracellular hinge domains such as IgG, IgA, IgD, CD8a, CD8/S, CD28, and CD4, and a linker composed of the above-mentioned glycine and serine are listed.
  • the sequence connecting the transmembrane region or costimulatory signal transduction domain and the protease or the site cleaved by the proteinase does not inhibit the activity of protease, signal transduction factor or costimulatory signal transduction domain.
  • an anchor sequence of HIV gp 41, and a linker composed of the above-mentioned glycine and serine though not particularly limited as long as it does not inhibit the berthing by the protease.
  • the "signal peptide” means a peptide for promoting the secretion of CAR or directing the localization to the cell membrane, and is also called a leader sequence.
  • the signal peptide will usually be attached directly or indirectly to the N-terminus of the antigen binding region.
  • the signal peptide may be cleaved from the antigen binding region during cell processing and localization of CAR to the cell membrane. Examples of such signal peptides include a chain and /S chain of T cell receptor, CD8a, CD8/S, CD3f, CD28, CD3s, CD45, CD4, CD5, CD9, CD1. 6.
  • Signal peptides such as CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, ICOS, CD154, GITR, and human GM-CSF receptor a can be mentioned.
  • the CAR of the present invention may have other functional proteins in addition to the above-mentioned costimulatory transduction domain, spacer sequence and signal peptide.
  • the other functional protein is not particularly limited and may be appropriately selected depending on the function to be imparted to C A R of the present invention.
  • functional proteins used for the purpose of facilitating the purification and detection of CAR include My c tag, His tag, HA tag, FLAG tag (registered trademark, Sigma—Aldrich), and fluorescent protein. Quality tags á G FP, etc.) and the like.
  • the "cleaving CAR" of the present invention is, as long as it comprises, in order from the N-terminal side, at least an antigen-binding region, a transmembrane region and a protease, which are directly or indirectly linked.
  • the signal peptide, the antigen binding region, the spacer sequence, the transmembrane region, the spacer sequence and the protease are linked in this order from the N-terminal side.
  • the "cleavage CAR" of the present invention Does not include a site cleaved by the protease. If the CAR does not include the relevant part, those skilled in the art can search for peptide databases (ME RO PS, https: //ww w. ebi .ac .uk/me rops / etc.), for example. By doing so, we can confirm.
  • the "activating CAR" of the present invention comprises, in order from the N-terminal side, at least an antigen-binding region, a transmembrane region, a site cleaved by a protease and a signal transduction factor, which are directly or indirectly linked. Anything can be used, but from the N-terminal side, the signal peptide, the antigen-binding region, the spacer sequence, the transmembrane region, the costimulatory transduction domain, the spacer sequence, and the part cleaved by the protease. ⁇ 0 2020/175 366 27 ⁇ (: 171? 2020 /007038
  • the position and the signal transduction factor are directly or indirectly linked.
  • the present invention provides a polynucleotide encoding the XVIII of the present invention.
  • a monoclonal antibody that recognizes a target antigen is prepared, and the amino acid sequence of such a monoclonal antibody is determined by a known method such as Edman method. It can also be obtained based on the amino acid sequence determined by the method. It can also be obtained by analyzing the nucleotide sequence of a hybridoma producing the monoclonal antibody.
  • nucleotide sequences encoding each region and the like of the present invention including the antigen-binding region can be known to those skilled in the art by publicly known literature or 1 ⁇ 1 ⁇ (
  • nucleotide sequence encoding the above regions and the like is not limited to known ones, and any nucleotide sequence that encodes the above regions or the like can be used. Due to the degeneracy of the genetic code, there are multiple codons for an amino acid. Therefore, there are many nucleotide sequences that encode the same amino acid sequence.
  • the nucleotide sequence of the polynucleotide of the present invention may be any of a plurality of nucleotide sequences generated by the degeneracy of the genetic code, as long as it encodes the eighteenth of the present invention.
  • the selected codon for encoding the amino acid may be modified. Good.
  • the polynucleotide encoding XVIII of the present invention can be obtained.
  • the ligation of polynucleotides encoding each region can be carried out, for example, as described in the Examples below, by means of the burlap extension ⁇ [3 ⁇ 4 method ( ⁇ 0 ”1 3 6 father 6 ⁇ 3 I ⁇ n ⁇ [3 ⁇ 4). It can be performed using a known method such as.
  • the present invention provides a vector containing the above-mentioned polynucleotide.
  • the vector of the present invention may be linear or circular, and examples thereof include viral vectors, plasmid vectors, episomal vectors, artificial chromosome vectors, and transposon vectors.
  • viral vectors examples include retrovirus vectors such as lentivirus, Sendai virus vector, adenovirus vector, adeno-associated virus vector, herpes virus vector, vaccinia virus vector, box virus vector, polio. Viral vectors, Sylvis virus vectors, rhabdovirus vectors, paramyxovirus vectors, and rhusomyxovirus vectors.
  • the plasmid vector for example, 1, eight 1 _ 1 1
  • Episomal vector is a vector that is capable of autonomous replication outside the chromosome.
  • the specific means of using an episomal vector is known (see ⁇ Ri et al., 30 I 6 ⁇ 6, 2009, 324, 797 -801, page).
  • Examples of the episomal vector include a vector containing, as a vector element, a sequence required for autonomous replication, which is derived from £6V, 340 and the like.
  • the vector elements required for autonomous replication are, specifically, a replication origin and a gene encoding a protein that regulates replication by binding to the replication origin. In the case of /, the origin of replication is ⁇ “ ⁇ ?
  • Examples of artificial chromosome vectors include YAC (Ye astartificia I chr omo s ome) vector, BAC (B acteria I artificial chr omo s ome) vector, and PAC (P 1 — derivedartificial chr omo s ome) vector. Is mentioned.
  • a retrovirus vector is preferable, and a lentivirus is more preferable because it is easy to introduce a gene with high efficiency even in cells with slow growth and a stable expression strain can be easily established. preferable.
  • the vector of the present invention binds to an expression control sequence such as a promoter, an enhancer, a poly A addition signal, and an expression terminator, an origin of replication or an origin of replication. It may contain a nucleotide sequence encoding a protein that regulates replication, a nucleotide encoding another protein, and the like.
  • a polynucleotide encoding the above-mentioned CAR and a nucleotide encoding another protein described below can be efficiently transcribed by arranging the polynucleotide operably downstream of the promoter. ..
  • promoters include CMV (cytomegalovirus) promoter _, S Ra promoter, SV40 early promoter, retrovirus LTR, RSV (Rous sarcoma virus) promoter, HSV-TK (simple helix). Pesvirus thymidine kinase) promoter, EF 1 a promoter, metallothionein promoter, heat shock promoter, etc.
  • nucleotides encoding other proteins include, for example, fluorescent protein genes, reporter genes, marker genes such as drug resistance genes, and genes encoding molecules involved in T cell activation such as cytokines. Etc. can be mentioned.
  • 2 A peptide sequence for example, T hoseaasigna-derived 2A peptide (T 2A)
  • T 2A T hoseaasigna-derived 2A peptide
  • the suicide gene is defined as "nucleotides encoding other proteins".
  • the vector of the present invention may include: Examples of the suicide gene include thymidine kinase (H S V-T K) of herpes simplex virus and inducible caspase 9 (in d u c i b l e c a s p a s e 9 :i C a s p 9).
  • AP1 903 which is a ganciclovir for HSV-TK, and a dimer induction compound (CID) for iCasp9, etc.
  • CID dimer induction compound
  • the polynucleotide encoding the cleavage CAR and the polynucleotide encoding the activation CAR may be incorporated into a single vector or may be incorporated into separate vectors. However, it is preferable to incorporate them in separate vectors from the viewpoint of facilitating suppression of the antigen recognition-independent activation of T cells transformed with such a vector and expressing a cleavage CAR and an activation CAR. desirable.
  • IR ES, DN A encoding the 2 A peptide sequence, etc. are inserted into the vector to allow polycistronic cleavage CAR and activation. It becomes possible to express CAR. ⁇ 0 2020/175 366 31 ⁇ (: 171? 2020 /007038
  • the present invention provides a cell expressing O of the present invention.
  • the cell of the present invention can be obtained by introducing the polynucleotide or vector encoding the above-mentioned XVIII of the present invention into the cell.
  • the "cell” into which the polynucleotide or the vector of the present invention is introduced is preferably a cell derived from a mammal, for example, a cell derived from human, or a rodent (mouse, rat, etc.). Cells derived from non-human mammals such as cow, sheep, horse, dog, pig and monkey can be used.
  • the type of cells is not particularly limited, and it is possible to use body fluids such as blood and bone marrow fluid, tissues such as spleen, thymus, lymph nodes, cells collected from tumors and cancerous ascites, and the like.
  • Preferred examples include immune cells, and peripheral blood mononuclear cells isolated from peripheral blood can be preferably used.
  • Ding cells are Ding cells, Cells, and their progenitor cells.
  • the type of Ding cells is not particularly limited, and is ⁇ /3 Ding cells, 5 d cells, 08 positive D cells, 04 positive D cells, cytotoxic D cells ( ⁇ 3 1_), tumor invasion. It may be any type of Ding cell such as Ding cell, F-Ector memory Ding cell (Ding 1 ⁇ /1), Central memory Ding cell (Ding, Natural killer Ding cell, etc.
  • the cell according to the present invention may be a cell in which the function of a protein (such as an immune checkpoint substance) that suppresses an excessive immune reaction is suppressed. Such an evening
  • the cells according to the present invention contain endogenous cells to facilitate polymorphic transplantation.
  • [3 ⁇ 4,! ! !_ It may be a cell in which the functions of proteins such as Yachi are suppressed. ⁇ 0 2020/175 366 32 ⁇ (: 171? 2020 /007038
  • a knockout method targeting a gene encoding the protein, 3 complementary to the transcription product of the gene double-stranded [3 ⁇ 4, for example, 3 ⁇ [3 ⁇ 4]
  • Method of using, method of using antisense 8 complementary to the transcript, having ribozyme activity of specifically cleaving the transcript The method using eight is mentioned.
  • site-specific nucleases eg, zinc finger nuclease (1 ⁇ 1), transcription activation-like effector nuclease (Chohachi 1_Mi 1 ⁇ 1),
  • a genome editing method which is a method of modifying a target gene using a double-strand cleaving enzyme), is also suitably used for suppressing the function of the substance.
  • Examples include the 0-Hachimi-dextran method, the electroboration method, and the particle gun method.
  • the vector of the present invention is a retroviral vector
  • an appropriate packaging cell is selected based on the 1_c sequence and the packaging signal sequence of the vector, and this is used to select a retrovirus. Particles may be prepared.
  • packaging cells for example, ⁇ 13 ,8 3 17 , ⁇ + Michi 8 6 , ⁇ ?+ 6 880 1-1 2, 9 3 I
  • 293 cells and 293 cells with high transfection efficiency can also be used as packaging cells.
  • the ratio of vectors to be introduced is not limited to those skilled in the art. If so, it can be appropriately adjusted in consideration of the type of vector and the strength of the promoter used for expression of each 0, the type of protease, and the like. For example, from the viewpoint that the antigen recognition-independent activation of Ding cells transformed with these vectors and expressing Cleavage 08 [3 ⁇ 4 and Activation O is more easily suppressed, they are introduced into the cells.
  • Weight ratio or molar ratio of these vectors (weight or molar amount of vector coding for cleavage 0: activation
  • the weight or molar amount of the vector coding the CAR for use in the present invention is preferably 5:1 to 100:1, and more preferably 10:1 to 50:1.
  • the expression of CAR in the cells can be measured by flow cytometry, RT-PCR, Northern blotting, Western blotting, ELISA, fluorescent immunostaining, etc. It can be confirmed by a known method.
  • T cells that express the cleavage and activation CARs recognize normal cells by recognizing two types of antigens through each CAR. It is possible to cause cell damage or the like to the target cell without causing damage or the like.
  • the protease When the antigen recognized by the activation antigen is expressed, the protease is not activated, and the activation antigen is the target antigen of the activation ⁇ [8]
  • the signal transduction molecule functions inside the cell membrane, and the cells expressing O are activated, resulting in cytotoxicity or the like in the target cells.
  • the present invention provides a pharmaceutical composition comprising the cell of the present invention for treating or preventing a disease involving a target cell.
  • cancer
  • ⁇ infectious diseases'' include infectious diseases such as 1 to 1 V, 1 to 1, Minami, ⁇ 1 ⁇ /1, 1 to 1?, Lassa virus, influenza virus, and fungi.
  • infectious diseases include systemic lupus erythematosus (3!_M), diabetes, rheumatoid arthritis ([3 ⁇ 48), reactive arthritis, multiple sclerosis). , Pemphigus vulgaris, celiac disease, Crohn's disease, inflammatory bowel disease, ulcerative colitis, autoimmune thyroid disease, X-linked agammaglobulinemia.
  • the pharmaceutical composition of the present invention may contain other components such as a pharmaceutically acceptable carrier in addition to the cells of the present invention.
  • a pharmaceutically acceptable carrier include cell culture medium, physiological saline, phosphate buffer and citrate buffer. Also ⁇ 0 2020/175 366 35 ⁇ (: 171? 2020 /007038
  • Ding cell activating factor such as cytokine, immunostimulant, immune checkpoint inhibitor, other cells expressing O, anticancer agent, anti-inflammatory agent, etc., It is not limited to these.
  • the use of the cells of the present invention makes it possible to treat or prevent a disease involving target cells. Therefore, the present invention may also provide the following treatment or prevention method.
  • a disease involving a target cell that expresses at least the second antigen which comprises the step of administering to the subject a cell that expresses 0 for cleavage and 0 for activation, or a pharmaceutical composition containing the cell.
  • the administration of the cell or the pharmaceutical composition of the present invention to a subject is not particularly limited, and can be performed, for example, by injection (intravenous administration etc.) or infusion. Alternatively, it may be administered by direct injection or the like into the site where the target cells are present (for example, in a tumor).
  • the dose of the cell or the pharmaceutical composition of the present invention may be any amount that is therapeutically effective, and those skilled in the art will know the age, sex, weight, etc. of the administration subject, the type of disease, the degree of progression, and
  • the dose and administration interval can be appropriately adjusted depending on the symptoms and the administration method.
  • the dose is 1 ⁇ 10 3 to 1 ⁇ 10 10 cells/9 (body weight), preferably 1 ⁇ 10 4 to 1 ⁇ 10 1 as the number of cells to be administered per administration. 9/9 (weight), more preferably, to 1 X 1 ⁇ 5 ⁇ 1 X 1 ⁇ 8 (body weight).
  • the administration interval can be, for example, weekly, every 10 to 30 days, every month, every 3 to 6 months, every year, etc.
  • the cells of the present invention can autonomously proliferate in the body of the subject to be administered, and thus can be administered only once.
  • the number of cells of the present invention in the body may be monitored after administration, and the administration time may be determined according to the result.
  • the cells of the present invention that express a cleavage reagent having a protease that can be controlled by a protease inhibitor are used, excessive activation of the cells may cause adverse effects such as hypercytokineemia.
  • the subject's activity is inhibited by administering an inhibitor of protease to the subject. It can be suppressed.
  • 293 T cells and SKB R-3 cells were Dulbecco's modified Eagles supplemented with 10% fetal bovine serum (FBS; Sigma Aldrich, St Louis, M ⁇ , I ot # 14 M 0 67). It culture
  • K562 cells, Raji cells and Jurkat cells were cultured in RPMI-1640 (FUJIFI LM Wako Pure Chemical, Osaka, Japan) supplemented with 10% FBS. did.
  • HIV Protease (H ⁇ VPR) Inhibitor Saquinavir and Nelfinavir (NIHAIDSR esearchand R eterence Reagent P rogr am) were donated by the Department of Virus Control, Tokyo Medical and Dental University It was
  • the anti-RFP rabbit polyclonal antibody (PM005, ⁇ ⁇ t # 045) was used as an anti-My c T ag rabbit polyclonal antibody (06-549, lot) from Medical and Biological Laboratories (N agoya, Japan). #24 1 65) is from U pstate B iotechnology (Lake Placid, NY), and anti-Syntaxin 4 mouse monoclonal antibody (QQ- 1, 7, lot # F 2 1 1 8) is S anta C ruz B iotechnology.
  • PE-labeled anti-human CD 69 antibody (3 1 09 05, lot # B 258745) and Per CP/C y 5.5 labeled anti-human HER 2 antibody (3244 1 5, lot # B 236448) were labeled with B iolegend (S purchased from an Diego, CA).
  • APC mouse anti-human CD 19 antibody (5554 1 5, lot # 7 1 086 1 2) was purchased from BD P harmingen (S an Diego, CA).
  • p HRPGK anti CD 1 9 1 syn N otch 1 T et RV P 64 was prepared to construct a plasmid vector encoding each chimeric antigen receptor (CAR) shown in FIGS. 3, 9 and 18.
  • CAR chimeric antigen receptor
  • Fluorescent protein mC herry -C DNA plasmid was distributed by N athan CS haner (N athan CS haner et al., N at Biotechno 1., Jan. 2004, Vol. 22, No. 12, 1 567-1 572). See page).
  • p HRPGK anti CD 19 syn-Notch T et RVP 64 PCR is performed by using the plasmid as a hook and anti-CD 19 outer F primer and anti-CD 19-CD 28 inner R primer. It was In addition, pc DNA 3.1-PS 11-sc F v F c-CD 28- gp 4 1 (706- 7 1 3) plasmid was made into a claw shape, and anti-CD 1 9 — CD 28 inner F primer and PCR was performed using the CD 28- outer R primer.
  • PCR was carried out using the cDNA as a claw type, an anti-CD 19 outer F primer, and a CD 28-CV 1 inner R primer into which an H H VPR recognition sequence was incorporated. Further, PCR was carried out by using pCry2PHR-mCh-RhoA plasmid as a claw type and using CV1-mC heeryinner F primer and mC herryouter R primer. Then, the two types of amplification products obtained by these PC Rs were made into a claw type, and PCR using the anti-CD 19 outer F primer and the mC herryouter R primer was performed to detect the H ⁇ VPR recognition sequence.
  • the mC herry gene was ligated to the 3'end of the cDNA encoding the anti-CD19 scFv and CD28 intracellular domains with the encoding cDNA interposed.
  • overlap extension PCR using a primer containing a 15 mer overlapping sequence was used.
  • the 5'end of the cDNA encoding the obtained CD19 sc Fv, CD28 intracellular domain, HIVPR recognition sequence and mC herry was Eco RI, and the 3'end was X ho. Carry out restriction enzyme treatment on pc DNA 3.
  • the vector is referred to as “pc DNA3— anti — CD 19 — E ffector — CAR — T 2A — YFP vector” or “anti -CD 19 E ffector CAR R-T 2 A- YFP expression vector”. Also called.
  • the activation CAR coded by the vector is also referred to as rantti-CD19_Effector-CAR".
  • HIVPR To further delete the C-terminus of the intracellular domain of CD28, HIVPR In order to delete the N-terminal of the vector, the target sequence was removed by PCR based on pc DNA3-a nti -CD 19-CD 28 -HIVPR vector, and anti -CD 19-CD 28-HIVPRA 4 CAR and Vectors (pc DNA3-a nti -CD 1 9-CD 28-HIVPR (A4) vector and pc DNA3 that code anti -CD 19 -CD 28 AI CD-H IVPRA 4 CAR (see Figure 9 for both). -a nti -CD 19_CD 28 ( ⁇ I CD) -HIVPR (A4) vector) was prepared.
  • pc DNA3-a nti -CD 19-CD 28-HIVPR vector pc DNA3-a nti -CD 19-CD 28-HIVPR (A 4) vector
  • pc DNA3-a nti -CD 19-CD 28-HIVPR (A 4) vector pc DNA3-a nti -CD 19-.
  • A4 vector a vector was also prepared in which the YFP gene was inserted so as to connect to the 3'end of each cleavage CAR gene.
  • pc DNA3-anti-HER 2 (4 D 5-3) -CD 28-CS- mC herry vector and pc DNA3-anti-CD 19-CD 28 (AICD) -HIVPR (A4) vector.
  • pcDNA3— anti — HER 2 (4 D 5 — 3) — S cissors — CAR — T 2A — mC herry vector — was created using overlap extension PCR.
  • anti-HER 2 (4 D 5 -3) -S cissors -CAR-T 2A-mC herry gene fragment was prepared by restriction enzyme treatment with N he and X h ⁇ ⁇ , and pc DN A3 (-) -H ygr ⁇ By inserting into vector (T her mo Fisher Scientific), ⁇ 02020/175366 41 ⁇ (: 171? 2020 /007038
  • the gene was cloned and the 1 to 2 expression vector was prepared by inserting into the 088 (3)- 11 So 9" vector.
  • each CAR The prepared DNA sequences encoding each CAR are shown in SEQ ID NOs: 1, 3, 5, 7, 45, 47, 49 and 51.
  • the amino acid sequences of the respective C ARs are shown in SEQ ID NOs: 2.4.6, 8, 46, 48, 50 and 52.
  • the sequence consisting of amino acids 1 to 21 indicates the leader sequence, and the sequence consisting of amino acids 22 to 31 indicates IV!
  • the sequence consisting of amino acids from position 273 to 3 shows I 1 -001 9 _ 3 0, the sequence consisting of amino acids from 274 to 282 shows 9 sequence, and the sequence consisting of amino acids from 283 to 348 represents 0028. It shows the transmembrane region, and the sequence consisting of amino acids 349 to 36 1 represents the 028 intracellular domain, the sequence consisting of amino acids 362 to 369 represents the 9 41 sequence, and the sequence consisting of 3 0 7 to 377.
  • the sequence consisting of amino acids indicates the 1 to 1 V cleavage site, and the sequence consisting of amino acids at positions 378 to 61 3 is
  • amino acid sequence of "3 ⁇ 1 -001 9- ⁇ 028-1 to 1 ⁇ ? [3 ⁇ 4 ⁇ 8 [3 ⁇ 4]" shown in SEQ ID NO: 4 the amino acid sequence up to the 369th position is SEQ ID NO: 2 Same as those in.
  • amino acid sequence of SEQ ID NO: 4 the sequence consisting of amino acids 370 to 468 shows 1 to 1 V.
  • amino acid sequence of "3 ⁇ 1 -001 9-0028 ⁇ ⁇ 0-1 to 1 IV 8 4 808 [3 ⁇ 4] shown in SEQ ID NO: 8 the amino acid sequence up to the 348th position is SEQ ID NO: Same as those in 2.
  • sequence consisting of amino acids 349 to 356 shows 941 sequence, and the sequence consisting of amino acids 357 to 451 lacks 1 amino acid at the 1 ⁇ ! end. Have lost Indicates.
  • SEQ ID NO: 46 “3 ⁇ 1 ⁇ 1 ⁇ [3 ⁇ 4 2 (405-3) -0028- In the amino acid sequence of ⁇ 8[3 ⁇ 4], the sequence consisting of amino acids at positions 1 to 21 indicates the leader sequence, and the sequence consisting of amino acids at positions 22 to 31 indicates IV! Sequence consisting of amino acid at position 277 is 3 n ti-HER 2 (4 D 5-3) sc F v, the sequence consisting of amino acids 278 to 286 represents the C 9 sequence, and the sequence consisting of amino acids 287 to 352 represents the CD 28 transmembrane region.
  • sequence consisting of amino acids 353 to 365 represents the CD28 intracellular domain
  • sequence consisting of amino acids 366 to 373 represents the gP41 sequence
  • sequence consisting of amino acids 374 to 381 represents The sequence showing the HIVPR cleavage site and consisting of amino acids 382 to 617 is mC herry: ⁇
  • amino acid sequence of "ranti-CD 1 9-CD 28-CS-CD3 zeta (I CD) -T 2A-YFP" shown in SEQ ID NO: 48 the amino acid sequence up to position 377 is SEQ ID NO: 2 Same as those in.
  • amino acid sequence of SEQ ID NO: 48 the sequence consisting of amino acids 378 to 489 represents CD 3 zeta (I CD), and the sequence consisting of amino acids 490 to 5 10 represents T 2 A sequence.
  • the sequence consisting of amino acids 511 to 747 is YFP.
  • the sequence consisting of amino acids 1 to 21 is the leader sequence, and the sequence consisting of amino acids 22 to 31 is M It shows the yc tag, the sequence consisting of amino acids at positions 32 to 277 shows anti-HER 2 (4 D 5 -3) sc F v, and the sequence consisting of amino acids from 278 to 286 shows C 9 sequence,
  • the sequence consisting of amino acids 287 to 352 represents the CD28 transmembrane region, the sequence consisting of amino acids 353 to 360 represents the gP41 sequence, and the sequence consisting of amino acids 361 to 455 represents the N-terminal region. It shows the H H VPR cleavage site in which 4 amino acids are deleted, the sequence consisting of amino acids 456 to 476 represents the T 2 A sequence, and the sequence consisting of amino acids 477 to 71 12 represents m C herry. Show.
  • amino acid sequence of “ ⁇ CD-H IVPRA 4 T 2 A-m C herry” the sequence consisting of amino acids 32 to 277 is the anti-HER 2 (4 D 5 -8) sc F v, and other sequences are the same as those in SEQ ID NO: 50.
  • N u c I e o f e c t o r k i t V (L o n z a, B a se l, Sw i t z e r l a n d) was used, and each was carried out according to the attached protocol.
  • pc DNA3(-)-anti-HER2(4D5-8)-Scissors-CAR-T2A-mCherry-Hygro vector was introduced into the gene. Twenty-four hours after gene transfer, YFP and mCherry-positive cells were selected using FACS aria II and the final concentration of 1 mg/mL G4 18 and 200 g/mL Hygr om ycin were added to the medium.
  • a protein lysate of whole cells, cell membrane or cytoplasm was prepared.
  • the whole cell lysate was added to the collected cells by lysis buffer _ (1% T r i t o n -X, 50 mM T r i s -H C I ,0.5 M N aC I ,.
  • Each of the protein lysates was mixed with an equal amount of 2XL ae mm li sample buffer and reacted at 100 ° C for 5 minutes to prepare a sample for Western blot.
  • As the gel for electrophoresis 12.5% PAGE L (ATTO, Tokyo, Japan) was used. Blocking after blotting was performed using 5% skim milk (Meiji, Tokyo, Japan).
  • Western lightning plus ECL Perkin E ⁇ 02020/175 366 48 ⁇ (: 17 2020 /007038
  • the fluorescence microscope observation was performed using an all-in-one fluorescence microscope BZ-8100 or BZ-X800 (both are KEYE NCE, Osak a, Jap a n). Nuclear staining was performed using Ho e c h st 33258 (D o j i n d o, K u ma mo t o, J apa n).
  • TRI zolreagent (T her mo Fisher Scientific) was used for mRNA extraction from cells, and Super S cript IIR everse T ranscriptase (T her mo Fisher Scientific) was used for c DN A synthesis. I did it.
  • the reverse transcription reaction was performed using 250 ng of t o t a l RNA.
  • this vector was introduced into 293 cells, and a n t i _CD 19_C
  • saquinavir or nelfinavir which are 1 to 1 V inhibitors, are 1 to 1 V inhibitors.
  • Target domain here 01 (3116 ““so”) ⁇ 02020/175366 51 ⁇ (: 171? 2020 /007038
  • 1 ⁇ 1 V is a dimeric protease, It has been reported that the four amino acids at its 1 ⁇ 1 end, called the sequence (" ⁇ - ⁇ 1 ⁇ 1 16 6-chome" contributes to the self-dimerization. " ..
  • each of the vectors thus prepared was introduced into 293 cells, and ⁇ 028-1 ⁇ 1 ⁇ ? [3 ⁇ 4 0 8 1 0 028-1 ⁇ 1 ⁇ ? [3 ⁇ 44808 [3 ⁇ 4 and 02828 88 ⁇ ⁇ 0 to 1 to 1 ⁇ y P RA4 08] were each overexpressed and analyzed by a western blot.
  • the full-length band was detected only in the sample overexpressing 028888 I 0-1 to 1 ⁇ ZP RA4 08.
  • each cleavage 0 was expressed in 2 93 3 cells in a mode in which a cage was fused at the 0 end. Observed and analyzed with a fluorescence microscope. As a result, as shown in Figure 11, No localization to the cell membrane was observed in cells that expressed the fusion protein of Eight and eight. On the other hand, as shown in Figure 12, In the cells expressing the fusion protein of Eight and eight, although a signal was partially observed in the cytoplasm, it tended to be localized in the cell membrane. Furthermore, as shown in FIG. 13, no fluorescence signal derived from the cytoplasm was detected in cells expressing the fusion protein of ⁇ 0 2 8 8 ⁇ ⁇ 0-1 to 10 8 [3 ⁇ 4 and ⁇ , Localization to the complete cell membrane was observed.
  • the gnoll was detected.
  • the activated protease is cleaved to activate 0, so that the signal transduction factor (corresponding to 01 ⁇ 6““;/ above) may be released into the cytoplasm. It was revealed.
  • Example 3 in the 1-antigen recognition system (single arm system), which uses only 001 9 as the target antigen, the cleavage of the activation 08 by the cleavage 08 causes the antigen to be recognized in the target cells. Recognized to occur
  • Routing cells were prepared.
  • the activation O according to the present invention can induce the activation of Ding cells specific to a target cell.
  • a recognition sequence which is a costimulatory molecule, was interposed as an activation expression vector.
  • I -0 We created an expression vector (see Figure 18).
  • it is also used in actual clinical trials such as Chisagen Lecle (Kimria (registered trademark), manufactured by Novartis) 003 6
  • Chisagen Lecle Karlia (registered trademark), manufactured by Novartis) 003 6
  • the T_A sequence was mediated downstream of anti_CD19Effect ⁇ r CAR and YFP was inserted. The gene is integrated.
  • the P-expressing vector was gene-transfected into Jurkat cells and cocultured with K562 cells (CD19 negative cells) or Raji cells (CD19 positive cells).
  • K562 cells CD19 negative cells
  • Raji cells CD19 positive cells
  • inducing expression of CD69 which is a T cell activation marker specifically in CD19-positive Raji cells
  • FIG. 20 when CAR positive J u r k at cells were isolated and gene expression analysis was performed, induction of L _ 2 m R N A expression was confirmed by co-culture with R a j i.
  • anti-CD 19 Effector/Jurkat cells anti-CD 19 Jurkat cells stably expressing Effector CAR -T 2A-YFP (hereinafter also referred to as "anti-CD 19 Effector/Jurkat cells") were established. Then, also in this cell, as shown in Fig. 21, by co-culture with Raji cells or the modified SK_BR_3 cells into which the CD19 gene had been introduced, the cells of CD69 expression, It was confirmed that activation was induced
  • target cell-specific T cell activation can also be induced by activation C A R mediated by the H V VP recognition sequence.
  • Example 5 An anti-HER2(4D5-3)-Scissors-CAR-T2A-mCherry expression vector was introduced into r/J urkat cells.
  • anti -HER 2 (4 D 5 -3) -S cissors -CAR-T 2A-mC herry expression vector
  • anti -HER 2 (4 D 5-8) — S cissors— CAR— T 2A — MC herry expression vector was introduced into anti — CD 19 E ffector/J urkat cells
  • anti — CD 19 E ffector CAR and anti — HER 2 (4 D 5-8) -S cissors -Established J urkat cells that stably express both CAR (hereinafter also referred to as ranti — CD 19 Effector CAR + anti — HER 2 (4 D 5-8 )S cissors/J urkat cells) (See Figure 22).
  • the cells were co-cultured with R_3 cells or the modified SK-BR__3 cells, and T cell activation was analyzed using the expression level of CD69, which is a marker for early activation, as an index.
  • cleaving 08 [3 ⁇ 4 can regulate the activation of Ding cells by the activation 08 depending on the expression pattern of the surface antigen of the target cell. It was also demonstrated that cleavage 0, which has a high affinity for surface antigens, can more efficiently attenuate the activation 08 activation.
  • the present invention [08] treats diseases such as cancer while controlling side effects and controlling adverse events (such as hypercytokineemia) caused by excessively activated Ding cells. Or, it can be prevented, and is useful in cancer immunotherapy and the like.

Abstract

In the present invention, a cell expresses: a chimeric antigen receptor including a region that binds to a first antigen, a transmembrane domain, and a protease, but not including a cleavage site of the protease; and a chimeric antigen receptor including a region that binds to a second antigen, a transmembrane domain, a cleavage site of the protease, and a signaling factor. The cell thereby recognizes the two types of antigens expressed on target cells and the like, to cause damage and the like specifically to the target cells, or to control activities such as cell-damaging activities.

Description

明 細 書 Specification
発明の名称 : キメラ抗原受容体 Title of invention: Chimeric antigen receptor
技術分野 Technical field
[0001] 本発明は、 キメラ抗原受容体、 当該キメラ抗原受容体をコードするヌクレ オチド、 該ヌクレオチドを含むベクター、 前記キメラ抗原受容体を発現する 細胞、 及び該細胞を含む医薬組成物に関する。 The present invention relates to a chimeric antigen receptor, a nucleotide encoding the chimeric antigen receptor, a vector containing the nucleotide, a cell expressing the chimeric antigen receptor, and a pharmaceutical composition containing the cell.
背景技術 Background technology
[0002] 近年、 がん等に対する治療法として、 キメラ抗原受容体 (C h i me r i c A n t i g e n R e c e p t o r : CAR) を発現する免疫細胞 (主 に、 CAR-T細胞) による免疫治療が開発され、 注目されている。 特に C D 1 9を標的抗原とする CAR—T細胞を用いた血液悪性腫瘍に対する免疫 治療は、 実臨床でも優れた治療効果を している。 [0002] In recent years, immunotherapy with immune cells (mainly CAR-T cells) expressing a chimeric antigen receptor (C CAR) has been developed as a treatment method for cancer and the like. Attention has been paid. In particular, immunotherapy for hematological malignancies using CAR-T cells with CD19 as a target antigen has an excellent therapeutic effect in clinical practice.
[0003] 現在、 実臨床で使用されている CARは、 細胞外領域に抗原結合部位とな る単鎖型抗原受容体 (一本鎖抗体、 s i n g l e c h a i n F v f r a g me n t : s c F v) を持ち、 T細胞を活性化するための共刺激分子 ( CD 28、 4— 1 B B等) と、 T細胞受容体シグナルを構成する分子である CD3 z e t a (CD3 H 細胞内ドメインを連結した構造を有している。 CARを遺伝子導入した T細胞等では、 s c F Vが特異的に認識する標的細 胞と接触することで、 C D 3 z e t aのリン酸化を介し、 T細胞による細胞 障害が誘導される。 現在、 固形がんを含めて C A R_T細胞療法の標的疾患 を拡大する試みが続けられている。 [0003] Currently, CAR used in clinical practice has a single-chain antigen receptor (single-chain antibody, single chain F vfragment: sc F v) that serves as an antigen-binding site in the extracellular region. It has a structure in which a costimulatory molecule for activating T cells (CD 28, 4-1 BB, etc.) and a molecule that constitutes the T cell receptor signal, CD3 zeta (CD3 H intracellular domain, are linked. In CAR-transfected T cells, etc., contact with target cells specifically recognized by sc FV induces cytotoxicity by T cells through phosphorylation of CD 3 zeta. There are ongoing attempts to expand the target diseases of CAR R T cell therapy, including solid cancer.
[0004] しかしながら、 現在の CAR— T細胞は、 単一抗原のみを認識するため、 特異性の観点から対象とする疾患に制限がある。 例えば、 当該単一抗原が正 常細胞においても発現していれば、 C A R-T細胞により細胞障害がもたら され、 副作用が生じてしまう。 特に固形がんのモデルでは正常組織への攻撃 を抑制できず、 重篤な臓器障害をきたし得る。 [0004] However, current CAR-T cells recognize only a single antigen, and thus the target diseases are limited from the viewpoint of specificity. For example, if the single antigen is also expressed in normal cells, CAR-T cells cause cytotoxicity and cause side effects. Especially in the solid cancer model, attack on normal tissues cannot be suppressed, which may cause serious organ damage.
[0005] そこで、 がん細胞等の標的細胞特異的に細胞障害をもたらすために、 例え ば、 非特許文献 1 に記載のとおり、 CARの細胞内構造を分割して複数の S c F Vに連結してなるシステム等、 複数の抗原を認識する C A R— T細胞の 開発が試みられている。 しかしながら、 未だにそのような C A R— T細胞の システムは実用化されていない。 [0005] Therefore, in order to cause cell damage specifically to target cells such as cancer cells, for example, For example, as described in Non-Patent Document 1, attempts have been made to develop CAR-T cells that recognize multiple antigens, such as a system in which the intracellular structure of CAR is divided and linked to multiple ScFVs. .. However, such a CAR-T cell system has not yet been put to practical use.
[0006] また、 実臨床において、 過剰に活性化した C A R— T細胞による高サイ ト カイン血症 (C y t o k i n e R e I e a s e S y n d r ome : CR S) に伴う有害事象が、 報告されている。 抗丨 L— 6抗体 (t o c i I i t u m a b) 等を用いた治療が行われるものの、 時に致命的な経過を迪り得る ことが示されており、 CAR _ T細胞の活性制御は実臨床での課題となって いる。 [0006] In addition, in clinical practice, adverse events associated with hypercytokine (C y t o k i n e R e I e a s e S y n d r ome: CRS) due to over-activated C A R -T cells have been reported. Although treatment with anti-L-6 antibody (toci I itumab) etc. is performed, it has been shown that a fatal course can sometimes be overlooked, and regulation of CAR _ T cell activity is an issue in actual clinical practice. Has become.
先行技術文献 Prior art documents
非特許文献 Non-patent literature
[0007] 非特許文献 1 : K l o s s CC. ら、 B i o t e c h n o l . 、 201 3 年 1月、 3 1巻、 1号、 7 1〜 75ぺージ [0007] Non-Patent Document 1: K l os s s CC. et al., B i o t e c h n o l ., Jan. 2013, Vol.
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0008] 本発明は、 前記従来技術の有する課題に鑑みてなされたものであり、 複数 の抗原を認識し、 標的細胞特異的に細胞障害等を奏する、 キメラ抗原受容体 (CAR) を発現する細胞を、 提供することを目的とする。 また、 細胞障害 等の活性を制御することが可能な C A R発現細胞を提供することも目的とす る。 [0008] The present invention has been made in view of the above problems of the prior art, and expresses a chimeric antigen receptor (CAR) that recognizes a plurality of antigens and exerts cell damage and the like specifically in target cells. The purpose is to provide cells. It is also an object to provide a CAR-expressing cell capable of controlling the activity such as cytotoxicity.
課題を解決するための手段 Means for solving the problem
[0009] 本発明者らは、 前記目的を達成すべく鋭意研究を重ねた結果、 標的抗原に 結合する領域及びプロテアーゼを含む、 キメラ抗原受容体 (以下、 「切断用 CAR」 とも称する) と、 標的抗原に結合する領域、 前記プロテアーゼによ って切断される部位及びシグナル伝達分子を含む、 キメラ抗原受容体 (以下 、 「活性化用 CAR」 とも称する) とを、 発現する細胞システムを、 構想し \¥0 2020/175366 3 卩(:171? 2020 /007038 [0009] The present inventors have conducted extensive studies to achieve the above-mentioned object, and as a result, a chimeric antigen receptor (hereinafter, also referred to as "cleavage CAR") containing a region that binds to a target antigen and a protease, A cell system expressing a chimeric antigen receptor (hereinafter, also referred to as “activating CAR”) containing a region that binds to a target antigen, a site cleaved by the protease and a signal transduction molecule, Shi \\0 2020/175 366 3 卩 (: 171? 2020 /007038
た。 It was
[0010] 具体的には、 図 1 に示す、 前記シグナル伝達分子として、 細胞膜より遊離 した場合に機能する遊離性シグナル伝達因子を用いる系 (ポジティブシステ ム) を構想した。 当該系においては、 がん細胞等の標的細胞において発現す る 2つの標的抗原を、 切断用 0 及び活性化用 0 が各々抗原結合領域 を介して認識した際に、 活性化された前記プロテアーゼによる活性化用〇八 の切断が生じ、 前記シグナル伝達因子は、 細胞膜より遊離することにより 機能することが想定される。 そして、 これら 0 を発現する細胞は活性化 され、 標的細胞に細胞障害等をもたらすことが可能となると考えられる。 ま た、 正常細胞が、 前記 2つの標的抗原のうちのいずれか一方の抗原しか発現 していない場合には、 切断用 0 及び活性化用 0 を発現する細胞は活 性化されないため、 当該細胞に細胞障害等はもたらされないことも想定され る。 [0010] Specifically, a system (positive system) using a free signal transduction factor that functions when released from the cell membrane as the signal transduction molecule shown in Fig. 1 was envisioned. In this system, when the cleavage 0 and the activation 0 recognize two target antigens expressed in target cells such as cancer cells through the antigen-binding regions, the activated protease causes It is assumed that the activation activation is cleaved and the signal transduction factor functions by being released from the cell membrane. Then, it is considered that these 0-expressing cells are activated and it is possible to bring about cytotoxicity or the like to the target cells. In addition, when the normal cell expresses only one of the two target antigens, the cell expressing the cleavage 0 and the activation 0 is not activated, and therefore the cell is not activated. It is also assumed that the cell damage will not be caused.
[001 1 ] さらに、 前述のポジティブシステムにおいて、 前記プロテアーゼに対する 阻害剤を用い、 前記活性化用〇 [¾の切断を抑制することによって、 前記〇 八 を発現する細胞の活性を抑制できることが想定される。 [001 1] Furthermore, in the above-mentioned positive system, it is expected that the activity of the cells expressing the X8 can be suppressed by using the inhibitor for the protease and suppressing the cleavage of the activation X. It
[0012] また、 図 2に示す、 前記シグナル伝達分子として、 細胞膜の内側に存在し ている場合に機能する、 膜局在型シグナル伝達因子を用いる系 (ネガティブ システム) も構想した。 当該系においては、 正常細胞において発現する 2つ の抗原を、 切断用〇 及び活性化用 0 が各々抗原結合領域を介して認 識した際には、 当該シグナル伝達因子は、 活性化されたプロテアーゼによる 活性化用〇 の切断によって細胞膜から遊離することにより不活化され、 正常細胞には細胞障害等を及ぼされないことが想定される。 一方、 標的細胞 において、 切断用 0 が認識する抗原は発現せず、 活性化用 0 が認識 する抗原が発現する場合には、 前記プロテアーゼは活性化されることなく、 従来の 0 同様に、 活性化用 0 の標的抗原認識に応じ、 前記シグナル 伝達分子は細胞膜内側にて機能し、 これら〇 を発現する細胞は活性化さ れ、 標的細胞に細胞障害等をもたらすことが可能となる。 \¥02020/175366 4 卩(:171? 2020 /007038 [0012] In addition, as shown in Fig. 2, a system using a membrane-localized signal transduction factor (negative system) that functions when present inside the cell membrane as the signal transduction molecule was also envisioned. In this system, when two antigens expressed in normal cells are recognized by the cleavage 0 and the activation 0 via the antigen binding region, the signal transduction factor is activated by the activated protease. It is assumed that the cells are inactivated by being released from the cell membrane by cleavage of the activating circle, and that normal cells will not be damaged. On the other hand, in the target cells, when the antigen recognized by cleavage 0 is not expressed and the antigen recognized by activation 0 is expressed, the protease is not activated and the activity is the same as in conventional 0. In response to the recognition of the target antigen for chemical use 0, the signal transduction molecule functions inside the cell membrane, and cells expressing these O are activated, and it becomes possible to bring about cytotoxicity or the like in the target cell. \¥02020/175366 4 (:171? 2020 /007038
[0013] そこで、 本発明者らは、 活性化用〇八[¾に相当する、 抗原結合領域として [0013] Therefore, the present inventors have proposed an antigen-binding region corresponding to activation [08] as an antigen-binding region.
1 -〇01 9- 3〇 、 膜貫通領域を含む〇 028、 1~1 I Vプロテ アーゼ (1~1 I V [¾) によって切断される部位 (〇 1 63 396 3 I I1-〇 01 9- 3 〇, including transmembrane region 〇 028, 1 to 1 IV Protease (1 to 1 IV [¾) cleavage site (〇 1 63 396 3 II
㊀ : 03) 及び蛍光タンパク質
Figure imgf000005_0001
「ソが連結されてなる 0八[¾ (
Figure imgf000005_0002
㊀: 03) and fluorescent protein
Figure imgf000005_0001
"Seo is connected to each other [8 (¾ (
Figure imgf000005_0002
照) を設計した。 また、 切断用
Figure imgf000005_0003
に相当する、 抗原結合領域として 3 n I 丨 一〇01 9— 3〇 、 膜貫通領域を含む〇 028及び 1~1 丨 V が連 結されてなる〇八[¾ (a n I 1 -001 9-〇028-1~1 1 [¾ 〇八[¾ 、 図 9 参照) を設計した。 そして、 これら〇八 を 293丁細胞において 発現させた。
Teru) was designed. Also for cutting
Figure imgf000005_0003
Corresponding to 3 n I as an antigen-binding region, and a combination of 0 028 and 1 to 1 V containing the transmembrane region 〇 028 [¾ (an I 1 -001 9 -〇 028-1 to 1 1 [¾ 08 [¾, see Fig. 9) was designed. Then, these 08 were expressed in 293 cells.
[0014] その結果、
Figure imgf000005_0004
1 -001 9-〇028-〇3-〇1〇 6 「 「ソ 〇八
[0014] As a result,
Figure imgf000005_0004
1 -001 9- 〇 028- 〇 3-〇 1 〇 6 ``
^ (以下 「 门 1 —001 9— 01(3116 「 「ソ 〇八[¾」 とも称する) の みを発現させた 293丁細胞は、 標的抗原である 001 9が発現している細 胞と共培養することによって、
Figure imgf000005_0005
「ソシグナルの局在は変化した。 すなわち、 図 2の左側に示すように、 標的抗原である〇01 9を認識し、 当 該〇 は、 細胞膜に集合し得ることが示唆された。
^ (Hereinafter referred to as “门 1 — 001 9 — 01 (also referred to as “3116” “SO8 [¾”)), 293 cells were co-expressed with cells expressing the target antigen, 001 9. By culturing
Figure imgf000005_0005
“The localization of the so signal has changed. That is, as shown on the left side of FIG. 2, it was suggested that the target antigen, 019, was recognized, and that the 0 could be assembled on the cell membrane.
[0015] しかしながら、 31^ 1:
Figure imgf000005_0006
〇八[¾を、 a n I
[0015] However, 31^1:
Figure imgf000005_0006
〇8 [¾, an I
1 -〇01 9-〇028-1~1 1 ?[¾ 〇八[¾ (以下 「〇028-1~1 I V 9 〇八[¾」 とも称する) と共発現させた場合には、 図 1 に示したコンセプ 卜とは異なり、 標的細胞非存在下でも、 a n t 丨 一〇01 9-〇1〇 6 「 「 V 〇八[¾は切断され、
Figure imgf000005_0007
Vの細胞質への遊離が生じてしまった
1-〇 01 9-〇 028-1 ~ 1 1? When co-expressed with [¾ 〇8 [¾ (hereinafter also referred to as “〇028-1 to 1 IV 908 [¾]]], in the absence of target cells, unlike the concept shown in FIG. But, ant 丨10 01 9- 〇 10 6 ”“ V 〇 8 [¾ is disconnected,
Figure imgf000005_0007
Release of V into the cytoplasm has occurred
[0016] 本発明者らは、 この抗原認識非依存的な 8
Figure imgf000005_0008
丨 _〇01 9_〇1〇 116 「
Figure imgf000005_0009
[0016] The present inventors have found that this antigen recognition-independent 8
Figure imgf000005_0008
_ _ 〇 01 9_ 〇 1 〇 116 ``
Figure imgf000005_0009
が活性化することによって生じていると想定した。 より具体的には、 〇 028の細胞内ドメインにおいて 1~1 丨 V による自己切断が生じることに よって 1~1 丨
Figure imgf000005_0010
が遊離し、 その遊離した 1~1 丨 V が更に二量体化するこ とによって活性化し、
Figure imgf000005_0011
〇八[¾の切断 \¥02020/175366 5 卩(:171? 2020 /007038
Was assumed to be caused by activation. More specifically, 〇 028 1 to the intracellular domain 1丨V Therefore 1 that self-cleavage is caused by the 1丨
Figure imgf000005_0010
Is liberated, and the liberated 1 to 1 V is further dimerized and activated,
Figure imgf000005_0011
〇8[¾ cutting \¥02020/175366 5 卩 (: 171? 2020 /007038
が生じたものと想定した。 It was assumed that there was a problem.
[0017] そこで、
Figure imgf000006_0001
の二量体化に必 要な配列及び 0028の細胞内ドメイン内に想定される 1~1 丨 V 切断部位 を除外した〇八
Figure imgf000006_0002
(a n I 1 -〇01 9-〇028八 1 〇0-1~1 1 ?[¾八 4 〇八 ^ 図 9 参照) を設計し、 31^ 1:
Figure imgf000006_0003
[0017] Then,
Figure imgf000006_0001
The sequence required for dimerization of 1 and the 1 to 1 V cleavage site within the intracellular domain of 0028 was excluded.
Figure imgf000006_0002
(An I 1-〇 01 9- 〇 028 8 1 〇 0-1 ~ 1 1? [¾8 4 08 ↑ ^ See Fig. 9) and designed 31^1:
Figure imgf000006_0003
〇八 と共に 293丁細胞において発現させた。 It was expressed in 293 cells together with X8.
[0018] その結果、 標的細胞非存在下では、 a n t 丨 一〇口 1 9— 〇 ㊀ 「 「ソ 〇八 中のプロテアーゼ認識配列は切断されることなく、 01〇 6 「 「ソ が細胞膜に局在することが認められた。 すなわち、 上述のような抗原認識非 依存的な切断は生じていないことが明らかになった。 一方、 標的細胞存在と の共培養では、
Figure imgf000006_0004
1 -〇01 9-〇1〇 6 「 「 7 〇八 から遊離した 〇!〇 11㊀ 「 「ソを検出することができた。
[0018] As a result, in the absence of target cells, ant 丨 10 mouth 19 — 〇 ㊀ “” The protease recognition sequence in the solute was not cleaved, and 01 〇 6 ”“ was localized to the cell membrane. That is, it was revealed that the above-mentioned cleavage independent of antigen recognition did not occur.On the other hand, in the co-culture with the presence of target cells,
Figure imgf000006_0004
1-〇 01 9-〇 10 6 "" 〇!〇 11 ㊀ released from 7 08 "" was detected.
[0019] したがって、 図 1及び 2に示したコンセプトとおり、 切断用〇八[¾ (上述
Figure imgf000006_0005
〇八[¾に相当
[0019] Therefore, according to the concept shown in FIGS. 1 and 2, for cutting [8] (see above
Figure imgf000006_0005
〇8 [equivalent to ¾
) がその標的抗原を認識した場合のみ、 当該〇八 中のプロテアーゼ (上述 の!· I I
Figure imgf000006_0006
に相当) が活性化される。 そして、 当該活性化されたプロ テアーゼにより活性化用〇八 が切断されることにより、 シグナル伝達因子 (上述の 01(3 6 「 「;/に相当) が細胞質中に遊離されることを明らかにし た。
) Recognizes its target antigen, the protease in the box (see! II above).
Figure imgf000006_0006
Equivalent to) is activated. Then, it was clarified that the signal transduction factor (corresponding to 01 (36 "";/corresponding to the above) was released into the cytoplasm by cleavage of the activation protein by the activated protease. It was
[0020] また、 標的抗原を 2種類とした場合においても、 標的細胞依存的な切断用 〇八 による切断が生じることを確認し、 さらに、 図 2に示したコンセプト とおり、 切断用〇 [¾は、 標的細胞の表面抗原の発現パターン依存的に活性 化用 0 による丁細胞の活性化を調節できることも確認し、 本発明を完成 するに至った。 [0020] Furthermore, it was confirmed that target cell-dependent cleavage for cleavage occurs even when two types of target antigens were used. Furthermore, according to the concept shown in FIG. It was also confirmed that the activation of Ding cells by activation 0 can be regulated depending on the expression pattern of the surface antigen of the target cells, and the present invention was completed.
[0021] すなわち、 本発明は、 キメラ抗原受容体、 当該キメラ抗原受容体をコード するヌクレオチド、 該ヌクレオチドを含むベクター、 前記キメラ抗原受容体 を発現する細胞、 及び該細胞を含む医薬組成物に関し、 より具体的には、 以 下のとおりである。 \¥02020/175366 6 卩(:171? 2020 /007038 That is, the present invention relates to a chimeric antigen receptor, a nucleotide encoding the chimeric antigen receptor, a vector containing the nucleotide, a cell expressing the chimeric antigen receptor, and a pharmaceutical composition containing the cell, More specifically, it is as follows. \¥02020/175366 6 卩 (: 171-1? 2020 /007038
<1 > 第 1の抗原に結合する領域と、 膜貫通領域と、 プロテアーゼとを含 み、 かつ、 前記プロテアーゼによって切断される部位を含まない、 キメラ抗 原受容体。 <1> A chimeric antigen receptor comprising a region that binds to a first antigen, a transmembrane region, and a protease, and does not include a site that is cleaved by the protease.
<2> 第 2の抗原に結合する領域と、 膜貫通領域と、 <1 >に記載のプロ テアーゼによって切断される部位と、 シグナル伝達因子とを含む、 キメラ抗 原受容体。 <2> A chimeric antigen receptor comprising a second antigen-binding region, a transmembrane region, a site cleaved by the protease according to <1>, and a signal transduction factor.
<3> 前記シグナル伝達因子が、 細胞膜の内側に存在している場合に機能 する、 膜局在型シグナル伝達因子である、 < 2 >に記載のキメラ抗原受容体 <3> The chimeric antigen receptor according to <2>, which is a membrane-localized signal transduction factor, which functions when the signal transduction factor is present inside the cell membrane.
<4> 前記シグナル伝達因子が、 < 1 >に記載のプロテアーゼによって前 記部位が切断され、 細胞膜より遊離した場合に機能する、 遊離性シグナル伝 達因子である、 < 2 >に記載のキメラ抗原受容体。 <4> The chimeric antigen according to <2>, wherein the signal transduction factor is a free signal transduction factor that functions when the site is cleaved by the protease described in <1> and is released from the cell membrane. Receptor.
<5> <1 >〜<4>のうちのいずれか一項に記載のキメラ抗原受容体を コードするヌクレオチド。 <5> A nucleotide encoding the chimeric antigen receptor according to any one of <1> to <4>.
<6> <5>に記載のヌクレオチドを含むベクター。 <6> A vector containing the nucleotide according to <5>.
<7> < 1 >に記載のキメラ抗原受容体と、 <2>〜<4>のうちのいず れか一項に記載のキメラ抗原受容体とを発現する細胞。 <7> A cell expressing the chimeric antigen receptor described in <1> and the chimeric antigen receptor described in any one of <2> to <4>.
<8> 丁細胞又はナチュラルキラー細胞である、 < 7 >に記載の細胞。 <9> < 7 >又は <8 >に記載の細胞を含む、 医薬組成物。 <8> The cell according to <7>, which is a Ding cell or a natural killer cell. <9> A pharmaceutical composition comprising the cell according to <7> or <8>.
発明の効果 Effect of the invention
[0022] 本発明によれば、 標的細胞又は正常細胞において発現する 2つの抗原を、 [0022] According to the present invention, two antigens expressed in target cells or normal cells are
2種類の〇
Figure imgf000007_0001
(切断用 0 及び活性化用 0 [¾) が各々認識することに より、 これら 0 を発現する細胞によって、 正常細胞への細胞障害等を抑 えつつ、 標的細胞に細胞障害等をもたらすことが可能となる。
Two kinds of 〇
Figure imgf000007_0001
By recognizing each of (0 for cleavage and 0 for activation), a cell expressing these 0 can bring about cytotoxicity or the like to target cells while suppressing cytotoxicity or the like to normal cells. It will be possible.
[0023] さらに、 上述のとおり、 切断用〇八 が有するプロテアーゼに対する阻害 剤を用い、 活性化用〇八 の活性化を抑制することによって、 前記〇八[¾を 発現する細胞の活性の強さ、 その持続性を制御することも可能となる。 図面の簡単な説明 \¥0 2020/175366 7 卩(:171? 2020 /007038 [0023] Furthermore, as described above, by using an inhibitor for the protease possessed by the cleaving cucumber, and suppressing the activation of the cleaving cucumber, the strength of the activity of the cells expressing the cucumber cleaving [08] is increased. , It is also possible to control its persistence. Brief description of the drawings \\0 2020/175 366 7 卩 (: 171? 2020 /007038
[0024] [図 1]本発明のキメラ抗原受容体 (〇八[¾) の一実施態様 (ポジティブシステ ム) を示す模式図である。 ポジティブシステムでは、 抗原八を認識する一本 鎖抗体 (3 0 ) にプロテアーゼ切断配列を挟んで細胞質内で活性を持つ シグナル伝達因子 (遊離性シグナル伝達因子) を接続してなる〇八[¾ (活性 化用〇八[¾) と、 抗原巳を認識する 3〇 Vに前記プロテアーゼを接続して なる〇八[¾ (切断用〇八[¾) とを、 丁細胞において発現させる。 標的細胞 ( 例えば、 腫瘍細胞) において抗原 及び巳双方が発現している場合、 当該丁 細胞において、 前記各 3〇 Vが前記各抗原を各々認識した際に、 プロテア —ゼが活性化され、 活性化用〇 中の前記配列が切断されることになる。 そして、 当該切断によって、 丁細胞活性化因子が細胞膜から解放され、 細胞 質に遊離することにより、 丁細胞は活性化することとなる。 [0024] [Fig. 1] Fig. 1 is a schematic view showing an embodiment (positive system) of the chimeric antigen receptor (08 [¾]) of the present invention. In the positive system, a single-chain antibody (30) that recognizes antigen 8 is connected to a signal transduction factor (free signal transduction factor) that is active in the cytoplasm with a protease cleavage sequence sandwiched between them [08 (¾ (¾ The activation [08] and the expression [8] (cleavage 08 [¾), which is obtained by connecting the protease to 30 V that recognizes the antigen, are expressed in Ding cells. When both the antigen and the antigen are expressed in the target cell (for example, tumor cell), the protease is activated and activated when each of the 30 V recognizes each of the antigens in the D cell. The sequence in the chemical formula will be cleaved. Then, due to the cleavage, the T cell activation factor is released from the cell membrane and released into the cytoplasm, thereby activating the T cell.
[図 2]本発明のキメラ抗原受容体 (〇八[¾) の一実施態様 (ネガティブシステ ム) を示す模式図である。 ネガティブシステムでは、 標的抗原八を認識する 3 〇 Vにプロテアーゼ切断配列を挟んで細胞膜で活性を持つシグナル伝達 因子 (膜局在型シグナル伝達因子) を接続してなる〇八[¾ (活性化用〇八[¾ FIG. 2 is a schematic diagram showing one embodiment (negative system) of the chimeric antigen receptor (08 [¾]) of the present invention. In the negative system, a signal transduction factor (membrane-localized signal transduction factor) that is active at the cell membrane is connected to the 30 V that recognizes the target antigen 8 with a protease cleavage sequence sandwiched between them. 〇8 [¾
) と、 標的抗原巳を認識する 3〇 Vに前記プロテアーゼを接続してなる〇 八[¾ (切断用〇八[¾) とを、 丁細胞において発現させる。 標的細胞 (例えば 、 腫瘍細胞) において抗原 が発現しているが、 抗原巳が発現していない場 合、 当該丁細胞において、 活性化用 0 が有する 3〇 Vが抗原 を認識 することにより、 シグナル伝達因子が活性化され、 丁細胞は活性化すること となる。 一方、 非標的細胞 (正常細胞) が抗原 及び巳双方を発現している 場合、 切断用 0八 が有する 3〇 Vが抗原巳を認識することにより、 プロ テアーゼが活性化され、 活性化用 0 中の前記配列が切断されることにな る。 そして、 当該切断によって、 シグナル伝達因子が細胞膜から解放される ことにより、 非標的細胞に対する丁細胞の活性化が抑制される。 ) And 0.8 [¾ (cleavage 08 [¾]), which is obtained by connecting the protease to 30 V that recognizes the target antigen, are expressed in Ding cells. When the antigen is expressed in the target cells (for example, tumor cells) but the antigen expression is not expressed, the D cell has a signal by recognizing the antigen by the 30 V of 0 for activation. The transfer factor is activated, and the Ding cell is activated. On the other hand, when the non-target cell (normal cell) expresses both the antigen and the antigen, the 30 V possessed by cleavage 08 recognizes the antigen and activates the protease and activates it. The sequence inside will be truncated. Then, due to the cleavage, the signal transduction factor is released from the cell membrane, thereby suppressing the activation of Ding cells relative to non-target cells.
[図 3]本発明検証用 0 の概略を示す、 模式図である。 上段に、 代表的な公 知の第 2世代〇 の構造を示し、 下段に、 本発明検証用〇 [¾ (a n I \ -〇0 1 9 -〇0 2 8 -〇3 -〇1〇 6 1^ 「ソ 〇八[¾) の構造を示す。 当 \¥02020/175366 8 卩(:171? 2020 /007038 [Fig. 3] Fig. 3 is a schematic view showing the outline of 0 for verification of the present invention. The upper part shows the structure of a typical publicly known second generation 〇, and the lower part shows the structure for demonstrating the present invention 〇 [¾ (an I \-〇 0 1 9-〇 0 2 8-〇 3-〇 1 〇 6 1^ "Shows the structure of So'08. \¥02020/175366 8 卩 (: 171? 2020 /007038
該〇 [¾は、 第二世代 0 の構造を基にし、 膜貫通領域 (丁 IV!) を含む〇 028下流にアンカー配列 (9 4 1) を挟んで、 〇03 å 6 3の代わり に、 8アミノ酸からなる 1~1 丨 Vプロテアーゼ切断部位 (配列番号: 9に記載 のアミノ酸配列) と、 局在変化等を検出するため、 蛍光タンパク質 ( 〇 The 〇 [¾ has a structure of the second generation 0 based, sandwich 〇 028 downstream anchor sequence comprising the transmembrane region (Ding IV!) (9 4 1), in place of Rei_03 Å 6 3, 1 to 1 V protease cleavage site consisting of 8 amino acids (amino acid sequence set forth in SEQ ID NO: 9) and fluorescent protein (○
Figure imgf000009_0006
Figure imgf000009_0006
た 293丁細胞を観察した結果を示す、 蛍光顕微鏡写真である。 293丁細 胞に、
Figure imgf000009_0001
をコードするべクターを遺伝子導入し、 24時間後に観察 した。
Figure imgf000009_0002
「ソのみを検出した結果を示し、 右に核染色との重層 イメージを示す。 観察は、 オールインワン蛍光顕微鏡 67-81 00 (6 〇倍) にて行い、 丨 3〇感度は 200に設定した。 01(3116 「 「ソの露光時 間は 3. 5秒にて撮影した (観察及び撮影条件については、 図 5及び 6にお いて同様である) 。
2 is a fluorescence micrograph showing the results of observing 293 cells. In 293 cells,
Figure imgf000009_0001
The vector encoding the gene was introduced into the gene and observed 24 hours later.
Figure imgf000009_0002
“The results of the detection of Seo alone are shown, and the overlay image with nuclear staining is shown on the right. The observation was performed with an all-in-one fluorescence microscope 67-81 00 (60 times), and the sensitivity of 30 was set to 200. 01 (3116 ““The exposure time of the camera was taken at 3.5 seconds (observation and shooting conditions are the same in FIGS. 5 and 6).”
Figure imgf000009_0003
〇八 を発現させた 293丁細 胞と、 < 562細胞又は[¾ 3」 丨細胞との共培養を、 観察した結果を示す、 蛍光顕微鏡写真である。 293丁細胞に、 当該〇八 をコードするべクター を遺伝子導入し、 24時間後に、
Figure imgf000009_0004
562細胞又は 3」 丨細胞を添加し、
Figure imgf000009_0003
8 is a fluorescence micrograph showing the results of observing the co-culture of 293 cells expressing E.coli and <562 cells or [¾ 3 ]cells. After transfecting the vector encoding the XVIII gene into 293 cells, 24 hours later,
Figure imgf000009_0004
562 cells or 3 ” 丨 cells are added,
6時間の共培養を行った。 図中、 矢頭にて〇1〇 11 e V Vソの集積スポッ トを 示す。 Co-culture was performed for 6 hours. In the figure, the arrowhead indicates the integrated spot of 0 11 11 eV VSO.
[図 6] a〇 t 1 —001 9— 01(3116 「 「 ソ 〇八[¾及び a〇 t \ — 001 9 -〇028-1~1 1 ?[¾ 〇八[¾ (以下 「〇028-1~1 1 ?[¾ 〇八[¾」 とも称する) を共発現させた 293丁細胞を観察した結果を示す、 蛍光顕微 鏡写真である。 293丁細胞に、 各〇八 をコードするべクターを等量にて 遺伝子導入し、 24時間後に観察した。 a n t 丨 一〇01 9-〇028-1~1 1 [¾ 〇八[¾については、 図 9を参照のほど。[Figure 6] a 〇 t 1 — 001 9 — 01 (3116 ““So 〇 8 [¾ and a 〇 t \ — 001 9-〇 028-1 ~ 1 1? [¾ 〇8 [¾ (hereinafter “〇 028 This is a fluorescence micrograph showing the results of observing 293 cells co-expressing -1 to 1 1? [¾ 08 [also called ¾]). The same amount of the gene was introduced into the vector and observed 24 hours later ant 丨 10 9 9- 028 -1 to 1 1 [¾ 08 [For ¾, see Fig. 9].
Figure imgf000009_0005
〇八 を発現させた 293丁細 胞をウェスタンプロッ トにて解析した結果を示す、 写真である。 図中、 「1~1 \¥02020/175366 9 卩(:171? 2020 /007038
Figure imgf000009_0005
It is a photograph showing the result of analysis of 293 cells expressing octopus by Western blot. In the figure, ``1 ~ 1 \¥02020/175366 9 卩 (: 171? 2020 /007038
1 \/ [¾ (―) 」 は、 a 〇 t 1 —001 9— 01(3116 「 「ソ 〇八[¾のみを 発現させた細胞の結果を示し、 「1~1 丨 V [¾ ( +) 」 は、 3 n 1: 丨 一〇 01
Figure imgf000010_0001
1 \/ [¾ (―) ”is the result of cells expressing only a 〇 t 1 — 001 9— 01 (3116 ”“So VIII [¾, and ‘1 ~ 1 丨 V [¾ (+ )” is 3 n 1: 丨10 01
Figure imgf000010_0001
せた細胞の結果を示す。 「丁(31_」 、 「〇巳」 及び 「 1\/1」 は、 細胞の全夕 ンパク質抽出画分、 細胞質タンパク質画分及び細胞膜タンパク質画分を各々 解析した結果を示す。 また図中、 黒矢頭は、 全長の 81^ 1 1 -001 9-111 〇 1"16 「 「ソ 〇八[¾に由来するバンド (約 701<口 8) を示す。
Figure imgf000010_0002
I _ 8 抗体 ( 〇 II 6 「ソを認識する抗体) にて検出した結果を示す写 真において、 白矢頭は、 1~1 I V によって切断され細胞質中に遊離された —
Figure imgf000010_0003
The results of the seeded cells are shown. "Cho (31_)", "○mi" and "1\/1" show the results of analysis of the whole protein extract fraction, the cytoplasmic protein fraction and the cell membrane protein fraction, respectively. The black arrowhead indicates a band of 81^ 1 1 -001 9-111 0 1" 16 "" of the total length (about 701< mouth 8) derived from Soha [¾.
Figure imgf000010_0002
In a photograph showing the results of detection with the I _ 8 antibody (○ II 6 "antibody that recognizes So"), the white arrowhead was cleaved by 1 to 1 IV and released into the cytoplasm.
Figure imgf000010_0003
39を認識する抗体) にて検出した結果を示す写真において、 アスタリス クは、 1~1 丨 V によって切断され
Figure imgf000010_0004
6 「 「ソが除去された、 細胞外〜 膜貫通領域に由来するバンド (約 401<口 3) を示す。
Figure imgf000010_0005
丨 11」 は、 細胞質のマーカーとして当該タンパク質を検出した結果を示し、 「3ソ 门一4」 は、 細胞膜のマーカーとして当該タンパク質
Figure imgf000010_0006
11 - 4) を検出した結果を示す。
In the photograph showing the result of detection with (antibody that recognizes 39), the asterisk is cleaved by 1 to 1 V.
Figure imgf000010_0004
6 "" shows a band derived from the extracellular region to the transmembrane region (about 401 <mouth 3) in which "So" was removed.
Figure imgf000010_0005
“11” shows the result of detection of the protein as a cytoplasmic marker, and “3 Solu 4” shows the protein as a marker of the cell membrane.
Figure imgf000010_0006
11-4) shows the results of detection.
Figure imgf000010_0007
1 -〇01 9-〇1〇 6 1^ 「ソ 〇八 を発現させた 293丁細 胞を、 1~1 丨 V 阻害剤を添加した後に、 ウェスタンプロッ トにて解析した
Figure imgf000010_0008
Figure imgf000010_0007
1-〇 01 9-〇 1 0 6 1 ^ ``Sodium-expressing 293 cells were analyzed by Western blot after adding 1 to 1 V V inhibitor.
Figure imgf000010_0008
コードするべクターを等量にて遺伝子導入し、 8時間後に!· I I
Figure imgf000010_0009
阻害剤 を添加した。 添加後 24時間で細胞を回収し、 ウェスタンプロッ トの解析に 供した。 図中、 黒矢頭は、 全長の 31^ 1:
Figure imgf000010_0010
〇 八 に由来するバンド (約 701< 03) を示す。 白矢頭は、 1~1 I V によ って切断され遊離された〇1(3 6 「 「ソ単体に由来するバンド (約 301< 0 ^ ) : す。
Equal amount of vector to be coded was introduced, and 8 hours later! II
Figure imgf000010_0009
Inhibitor was added. The cells were collected 24 hours after the addition and used for Western blot analysis. In the figure, the black arrowhead is the total length of 31^1:
Figure imgf000010_0010
* Indicates the band derived from Eighteen (about 701<03). The white arrowhead is a band (1) that was cut and released by 1 to 1 IV (3 6 "" a band derived from simple substance (about 301< 0 ^ ):.
[図 9]本発明の〇八[¾ (切断用〇八[¾) の概略を示す、 模式図である。 上段に \¥02020/175366 10 卩(:171? 2020 /007038 [Fig. 9] Fig. 9 is a schematic view showing an outline of a 08[¾ (cutting 08[¾]) of the present invention. On the top \¥02020/175366 10 卩 (: 171? 2020 /007038
図 6〜 8に示す実験にて用いた〇〇 28-1~1 1 [¾ 〇八[¾ (3门 1: 1 -Used in the experiments shown in Figs. 6 to 8 〇 28-1 to 1 1 [¾ 〇8 [¾ (3 门 1: 1-
〇01 9-〇028-1~1 1 ?[¾ 〇八[¾) の構造を示す。 中段に、 002〇 01 9- 〇 028-1 ~ 1 1? The structure of [¾08[¾) is shown. In the middle, 002
8-1~1 1 ?[¾ 〇八[¾から、 1~1 1 ?[¾の1\!末端 4アミノ酸 ( I 31< 6 「配列) を除去したもの (3门 11
Figure imgf000011_0001
8-1 ~ 1 1? [¾ 08 [From ¾, 1 ~ 1 1? [¾ of the 1\! terminal 4 amino acids (I 31< 6 “sequence” removed) (3
Figure imgf000011_0001
4 〇八[¾、 以下 「〇028— 1~1 1 ?[¾八4 〇八[¾」 とも称する) の構 造を示す。 下段に、 更に〇〇 28細胞内ドメインを除去したもの (a n t I -〇01 9-〇028八 1 〇0-1~1 1 ?[¾八4 〇八[¾、 以下 「〇 028 门 1 -001 9 - 3〇 I 3
Figure imgf000011_0008
変異体を発現させた 293丁 細胞を、 ウェスタンプロッ トにて解析した結果を示す、 写真である。 図 9に 示した〇
Figure imgf000011_0002
〇八 等をコードするべクターを、 293丁 細胞に遺伝子導入し、 24時間後に細胞を回収し、 ウェスタンプロッ トに供
Figure imgf000011_0003
The structure of 408 [¾, hereinafter "〇028 1 to 11? [also called 408 808 [¾]] is shown. In the lower section, the one in which the intracellular domain was further removed (ant I-〇 01 9- 〇 028 8 1 〇 0-1 ~ 1 1? [¾ 8 4 0 8 [¾, hereafter 〇 028 门 1- 001 9-3 ○ I 3
Figure imgf000011_0008
It is a photograph showing the results of Western blot analysis of 293 cells expressing the mutants. Shown in Figure 9
Figure imgf000011_0002
The vector coding for Escherichia coli was introduced into 293 cells, and the cells were collected 24 hours later and subjected to Western blot.
Figure imgf000011_0003
、 〇028-1~1 1 ?[¾ 〇八1 〇028-1~1 1 ?[¾八4 〇八[¾及び 〇028八 丨 〇0— 1~1 丨 \Z P RA4 〇八 を各々発現させた細胞を解析し た結果を示す。 黒矢頭は、 全長の〇〇 28八 丨 〇〇— 1~1 1 ?[¾八4 〇八 約 501< 03) を示す。 アスタリスクは、 1~1 丨 V
Figure imgf000011_0004
Figure imgf000011_0005
II 6 「 「ソが除去された、 細胞外〜膜貫通領域に由来 するバンド (約 401<〇 3) を示す。
, 〇028-1 ~ 1 1? [¾ 0 8 1 0 028-1 ~ 1 1? The results obtained by analyzing the cells expressing each of [¾8408[¾ and 〇0288丨 〇 0 to 1 to 1 \ZP RA4 08] are shown. The black arrowhead is the total length of 〇 28 8 丨 〇 〇 1 ~ 11? [¾8408 about 501<03). Asterisk is 1 to 1 V
Figure imgf000011_0004
Figure imgf000011_0005
II 6 "" Shows a band derived from the extracellular to transmembrane region (about 401 <03) in which Seo was removed.
Figure imgf000011_0006
〇八 を発現させた 29 3丁細胞を、 蛍光顕微鏡にて観察した結果と、 丫 シグナルを検出した結 果とを示す、 図である。 丫 を融合させた〇〇 28-1~1 丨
Figure imgf000011_0007
〇八[¾ をコードするべクターを 293丁細胞に遺伝子導入し、 24時間後に蛍光顕 微鏡 (巳 一乂800) を用いて 600倍にて観察し、 丫 の露光時間を 1 /2. 3秒として撮影した (図中の上部写真を参照) 。 また、 当該写真に おいて、 (カラーでの表示下) 赤線上の丫 のシグナル強度を解析した ( \¥02020/175366 11 卩(:171? 2020 /007038
Figure imgf000011_0006
It is a figure which shows the result of having observed the 293 cells which expressed the octopus with a fluorescence microscope, and the result of having detected the false signal. A fusion of 〇〇 28-1 ~ 1 丨
Figure imgf000011_0007
Transfection of 293 cells with the vector encoding VIII (¾) was observed 24 hours later using a fluorescence microscope (Mitsumi 800) at 600 times, and the exposure time was 1/2. Taken for 3 seconds (see top photo in the figure). Moreover, in the photograph, the signal intensity of the bird on the red line (under the color display) was analyzed ( \¥02020/175366 11 11 (:171? 2020 /007038
図中の下部ヒストグラムを参照) 。 図中の写真において、 右下の白線 (スケ —ルバー) は 20 を表す。 図中のヒストグラムにおいて、 縦軸は丫 シグナルの強度を示し、 横軸は当該写真の (カラーでの表示下の) 赤線にお いて、 左方向から右方向への線上の位置を示す。 (See the lower histogram in the figure). In the photograph in the figure, the white line (scale bar) at the bottom right represents 20. In the histogram in the figure, the vertical axis represents the intensity of the signal, and the horizontal axis represents the position on the line from the left to the right in the red line (under the color display) of the photograph.
[図 12]丫 を融合させた〇〇 28— 1~1 丨 \Z P RA4 〇八[¾を発現させた[Fig. 12] Fusion of 〇〇 28 1 ~ 1 丨 \ZP RA4 〇8 [Expressed ¾
293丁細胞を、 蛍光顕微鏡にて観察した結果と、 丫 シグナルを検出し た結果とを示す、 図である。 実験方法及び図中の表記等については、 図 1 1 と同様である。It is a figure which shows the result of observing 293 cells with a fluorescence microscope, and the result of having detected a false signal. The experimental method and notation in the figure are the same as in Fig. 11.
Figure imgf000012_0001
Figure imgf000012_0001
現させた 293丁細胞を、 蛍光顕微鏡にて観察した結果と、 丫 シグナル を検出した結果とを示す、 図である。 実験方法及び図中の表記等については 、 図 1 1 と同様である。 It is a figure which shows the result of observing the revealed 293 cells with a fluorescence microscope, and the result of having detected a false signal. The experimental method and the notation in the figure are the same as in Fig. 11.
[図 14]3门 1 -001 9-〇1〇 6 「 「ソ 〇八 及び〇 028△ I 〇 0 _1~1 丨 y P RA4 〇八 を共発現させた 293丁細胞を観察した結果を示 す、 蛍光顕微鏡写真である。 293丁細胞に、 a n t 丨 一〇01 9- 〇 11 & r r ^ 〇八 及び〇 028△ I 〇 0 - 1~1 I V [¾八4 〇八[¾を各々コ —ドするべクターを、 1 0 : 1の重量比 (9. 34 : 1のモル比) になるよ う遺伝子導入し、 24時間後に観察した。 観察は、 オールインワン蛍光顕微 鏡 巳 一81 00 (20倍) にて観察し、 丨 3〇感度は 200に設定した 。 露光時間は 1. 1秒にて撮影した。 [Fig. 14] 3 1-001 9- 〇 1 〇 6 ““Shows the results of observing 293 cells that co-expressed So 008 and 〇 028 △ I 〇 0 _1 ~ 1 亨 y P RA4 808. It is a fluorescence micrograph. 293 cells are treated with ant 丨 1 010 9- 〇 11 & rr ^ 〇 8 and 〇 028 △ I 〇 0-1 to 1 IV [¾ 8 4 0 8 [¾, respectively. — Transfecting vector was introduced at a weight ratio of 10: 1 (molar ratio of 9.34: 1), and observed 24 hours later. 20 times) and the sensitivity was set to 200. The exposure time was 1.1 seconds.
[図 15]3门 1 -001 9-〇1〇 6 「 「ソ 〇八 及び〇 028△ I 〇 0 〇八 を共発現させた 293丁細胞を、 [¾ 3」 丨細胞と ンプロッ トにて解析した結果を示す、 写真である。 29
Figure imgf000012_0002
Figure imgf000012_0003
0八[¾及び 0口 28△
Figure imgf000012_0004
〇八 を各々コードするべクターを、 図中に示す 重量比 (1 0 : 0、 1 0 : 1又は 1 0 : 2、 モル比に換算すると、 各々 1 0 : 0、 9. 34 : 1又は 9. 34 : 2) にて遺伝子導入し、 24時間後から 共培養を実施した。 そして、 48時間の共培養後、 細胞を回収し、 ウェスタ \¥02020/175366 12 卩(:171? 2020 /007038
[Fig.15] 3 1-001 9-〇 10 6 ““ 293 cells co-expressing So 08 and 〇 028 △ I 0 0 08 were co-expressed with [¾ 3] 丨 cells It is a photograph showing the analysis result. 29
Figure imgf000012_0002
Figure imgf000012_0003
0 8 [¾ and 0 mouth 28 △
Figure imgf000012_0004
The weight ratios (10: 0, 10: 1 or 10: 2) shown in the figure for the vectors that code ∘ 8 respectively are 10: 0, 9. 34: 1 or 9.34:2) and the co-culture was carried out 24 hours later. Then, after co-culturing for 48 hours, the cells are collected and \¥02020/175366 12 卩 (: 171? 2020 /007038
ンブロッ トに供した。 なお、 293丁細胞は、 6\/\/6 丨 丨 プレートに 3 X I 〇 5細胞/ 6 I 丨 になるよう播種して遺伝子導入を実施し、 共培養には 1 6 I 丨あたり
Figure imgf000013_0001
丨細胞を用いた。 図中、 「[¾ 3」 丨細胞 との共培養 (_) 」 は、 前記 293丁細胞のみを培養した結果を示し、 「[¾
It was served on the blot. 293 cells were seeded on 6\/\/6 丨丨 plate to give 3 XI 〇 5 cells/ 6 I 丨 for gene transfer, and for co-culture, about 16 I 丨
Figure imgf000013_0001
Resident cells were used. In the figure, “[¾ 3” co-culture with 丨 cells (_) ”indicates the result of culturing only the 293 cells, and “[¾
3] 丨細胞との共培養 (+) 」 は、
Figure imgf000013_0002
丨細胞とを共 培養した結果を示す。 図中、 黒矢頭は、 全長の
Figure imgf000013_0003
丨 _〇口 1 9— 01(311 〇八 に由来するバンド (約 701< 03) を示す。 白矢頭は、 1~1 I V 9 によって切断され遊離された 0 6 「 「ソ単体に由来するバンド
Figure imgf000013_0004
001 9発現べ クターを導入した
Figure imgf000013_0005
とにおける、
Figure imgf000013_0006
3] The co-culture (+) with 丨 cells is
Figure imgf000013_0002
The result of co-culturing with a pendulum cell is shown. In the figure, the black arrowhead is the
Figure imgf000013_0003
_ _ 0 mouth 1 9 — 01 (311 0 8 derived band (approx. 701< 03). The white arrowhead shows 0 6 ``The band derived from sole substance cut and released by 1 to 1 IV 9.
Figure imgf000013_0004
001 9 Expression vector was introduced
Figure imgf000013_0005
And in
Figure imgf000013_0006
発現をフローサイ トメ トリーにて解析した結果を示す、 ドッ トプロッ ト図で A dot-plot diagram showing the results of expression analysis by flow cytometry.
Figure imgf000013_0013
Figure imgf000013_0013
し、
Figure imgf000013_0008
ソ細胞及び
Figure imgf000013_0007
細胞を 樹立した。 細胞表面における 1~1巳
Figure imgf000013_0009
2及び 001 9の発現量をフローサイ ト メーターにて解析した。
Then
Figure imgf000013_0008
So cells and
Figure imgf000013_0007
Established cells. 1 to 1 on the cell surface
Figure imgf000013_0009
The expression levels of 2 and 00109 were analyzed by a flow cytometer.
[図 17]3门 1 -1~1巳[¾ 2-〇1〇 6 「 「ソ 〇八 及び 3门 1 -001
Figure imgf000013_0010
[Fig. 17] 3 门 1 -1 ~ 1 跳 [¾ 2- 〇 1 〇 6 ""
Figure imgf000013_0010
[¾) の双方を過剰発現した 293丁細胞と、 3 <_巳[¾_3細胞とを共培養 した結果を、 蛍光免疫染色にて解析した結果を示す、 顕微鏡写真である。 な お、 293丁細胞に 〇 0 八 3 - 3门 1 -1~1巳[¾ 2 (405-3) -〇 028—〇 I 63 V 6 3 I I ㊀一 01〇 116 「 「ソー〇八[¾ベクターと 〇
Figure imgf000013_0011
I -001 9-0028 (△ ! 〇0) -1~1 1 ?[¾ (八4 ) ベクターを重量比 5 : 1 にて遺伝子導入し、 24時間後から共培養を開始 した。 共培養は 1 〇〇 ディッシュ上にて、 それぞれ 2 X I 05細胞の 293 丁細胞及び 3 < _巳
Figure imgf000013_0012
_ 3細胞を用いて行なった。 4日間の共培養ののちに 細胞を観察した。 これらの観察は B Z-81 00にて 60倍にて観察し、 I S〇感度は 200に設定した。 mC h e r r yの露光時間は 3. 5秒にて撮 影した。
FIG. 3 is a micrograph showing the result of co-culture of 293 cells that overexpressed both [¾] and 3 <__ [¾_3 cells by fluorescent immunostaining. In 293 cells, 0 0 8 3-3 闳 1 -1 to 1 [[2 (405-3)-〇 028 — 〇 I 63 V 6 3 II ㊀ 1 01 〇 116 ""So 〇 8 [ ¾ vector and 〇
Figure imgf000013_0011
I -001 9-0028 (△! 〇 0) -1 ~ 1 1? [3 (8) vector was introduced into the vector at a weight ratio of 5:1, and coculture was started 24 hours later. The co-culture was performed on 100 dishes in 2 XI 0 5 cells, 293 cells and 3 <_, respectively.
Figure imgf000013_0012
_ 3 cells. After 4 days of co-culture The cells were observed. These observations were made with BZ-81 00 at a magnification of 60, and the IS sensitivity was set to 200. The exposure time of mC herry was 3.5 seconds.
[図 18] a n t i -C D 1 9 E f f e c t o r CAR-T 2A-Y F P発 現べクターにおけるコーディング領域の概略を示す模式図である。 なお、 C D 28下流の H 丨 V P R認識配列に C D 3- z e t a細胞内ドメインを接続 した。 E f f e c t 〇 r C A R発現細胞を追跡評価するため、 T 2 A配列 を介在し Y F P遺伝子を接続した。 [Fig. 18] Fig. 18 is a schematic diagram showing the outline of the coding region in the vector expressing annt i -CD 19 E f f e c t o r CAR-T 2A-Y F P. The intracellular domain of CD3-zeta was connected to the H VPR recognition sequence downstream of CD28. In order to evaluate E f f e c t o r C A R expressing cells, the Y F P gene was connected via the T 2 A sequence.
[図 19]K 562細胞又は R a j i細胞と共培養した、 a n t i — C D 1 9 E f f e c t o r CAR-T 2A-Y F P発現べクターを導入した J u r k a t細胞における、 C D 69及び Y F Pの発現を、 フローサイ トメ トリー にて解析した結果を示す、 ドッ トプロッ ト図である。 なお、 J u r k a t細 胞に対して p c DNA3— a n t i — CD 1 9 E f f e c t o r CAR _T 2 A— Y F Pを遺伝子導入し、 24時間後から共培養を開始した。 96 we I 丨丸底プレートを用い、 1 ウエルごとに 1 X 1 〇5細胞ずつ播種した。 24時間の共培養ののちに細胞を回収し、 FACS A r i allを用いて解 析した。 C D 69は、 CD 1 9陽性の R a j i細胞特異的な T細胞活性化マ —力一である。 Y F Pは、 T 2 A配列を介してシストロニックに発現する a n t i — CD 1 9 E f f e c t o r CARの発現を反映する。 [Fig. 19] Expression of CD 69 and YFP in J urkat cells co-cultured with K 562 cells or Raji cells and transfected with anti-CD 19 E ffector CAR-T 2A-YFP expression vector was analyzed by flow cytometry. It is a dot plot diagram showing the results of analysis in a tree. In addition, pc DNA3— anti-CD 19 Effector CAR_T 2 A— YFP was introduced into J urkat cells and coculture was started 24 hours later. With 96 we I丨丸bottom plates were seeded by 1 X 1 〇 5 cells per well. After 24 hours of co-culture, cells were collected and analyzed using FACS ari all. CD69 is a CD19-positive Raji cell-specific T cell activation marker. YFP reflects the expression of anti-CD 19 Effector CAR, which is expressed cistronicly via the T 2 A sequence.
[図 20]K 562細胞又は R a j i細胞と共培養した、 a n t i — C D 1 9 E f f e c t o r CAR-T 2A-Y F P発現べクターを導入した J u r k a t細胞における、 I L-2 mRN A発現量を示すグラフである。 なお 、 図 1 9に示すゲートを設け、 丫 ?陽性 . 〇069_?巳陽性細胞を単離 し、 q RT— PCR法にて 丨 L— 2遺伝子発現を評価した。 内在コントロー ルとして G A P D Hを用い、 AAC t法にて解析した。 K 562共培養群を 1 として、 相対的な丨 L— 2 mRN A発現量を示した。 [Fig. 20] IL-2 mRNA expression level in J urkat cells co-cultured with K562 cells or Raji cells and introduced with anti-CD 19 Effector CAR-T 2A-YFP expression vector. It is a graph. In addition, the gate shown in Fig. 19 was installed, and Positive .069_?mi-positive cells were isolated and evaluated for L-2 gene expression by qRT-PCR. Analysis was performed by the AACt method using GAPDH as the internal control. Taking the K562 co-culture group as 1, the relative L-2 mRN A expression level was shown.
[図 21]各種標的細胞との共培養後の、 a n t i -CD 1 9 E f f e c t o r CARを安定的に発現する細胞 (a n t i — CD 1 9 E f f e c t o r CAR/J u r k a t) における、 CD69及び Y F Pの発現を、 フロ —サイ トメ トリーにて解析した結果を示す、 ドッ トプロッ ト図である。 なお 、 p c D N A 3 - a n t i -C D 1 9 E f f e c t o r CAR-T2A - Y F Pを遺伝子導入した J u r k a t細胞を 1 000 ^g/mL G41 8存在下に培養し、 a n t i -C D 1 9 E f f e c t o r CAR/J u r k a t細胞を樹立した。 K 562細胞、 R a j i細胞、 SK— BR— 3/ e m p t y細胞又は S K_B R— 3/CD 1 9細胞と 1 : 1の細胞数にて 2 4時間の共培養したのちに細胞を回収し、 FACS Ca l i b u rを用い て解析した。 [Fig. 21] Cells that stably express anti-CD 19 E ffector CAR after co-culture with various target cells (anti — CD 19 E ffecto FIG. 4 is a dot plot diagram showing the results of flow cytometric analysis of the expression of CD69 and YFP in r CAR/J urkat). Incidentally, Jurkat cells transduced with pc DNA 3-anti -CD 19 E ffector CAR-T2A-YFP were cultured in the presence of 1 000 ^g/mL G418, and anti -CD 19 E ffector CAR/J urkat cells were established. After co-culturing with K562 cells, Raji cells, SK-BR-3/empty cells or SK_BR-3/CD19 cells at a cell number of 1:1 for 24 hours, the cells are harvested, It was analyzed using FACS Ca libur.
[図 22] a n t i — C D 1 9 E f f e c t o r CAR/J u r k a t細胞 と、 a n t i - H E R 2 (4 D 5 - 3) -S c i s s o r s-CAR-T2 A— mC h e r r y発現べクター又は a n t i — H E R2 (4 D5— 8) — S c i s s o r s— CAR— T2A— mC h e r r y発現べクターを導入し た前記 J u r k a t細胞とにおける、 Y F P及び m C h e r r yの発現をフ 口ーサイ トメ トリーにて解析した結果を示す、 ドッ トプロッ ト図である。 な お、 a n t i — CD 1 9 E f f e c t o r CAR/J u r k a t細胞 ( 図 21参照) に対して p c DNA3. 1 (― ) — H y g r o Em p t yベ クター、 p c D N A 3 (-) -a n t i - H E R 2 (4 D 5 - 3) S c i s s o r s CAR— T2A— mC h e r r y— H y g r oベクター又は p c D N A 3 (-) -a n t i - H E R 2 (4 D 5 - 8) S c i s s o r s CAR— T2A— mC h e r r y— H y g r oベクターを遺伝子導入した 。 遺伝子導入後 24時間後より、 1 000 M9/mL G41 8及び 200 g/mL H y g r omy c i n存在下に培養し、 a n t i — CD 1 9 E f f e c t o r CAR + em p t y/J u r k a t細胞、 a n t i — C D 1 9 E f f e c t o r CAR + a n t i -H E R2 (4 D5-3) [Fig. 22] anti — CD 19 E ffector CAR/J urkat cells and anti -HER 2 (4 D 5-3) -S cissor s-CAR-T2 A — mC herry expression vector or anti — HE R2 ( 4 D5-8) — S cissors- CAR- T2A- mC herry expression vector The expression of YFP and m C herry in the Jurkat cells introduced with the vector is shown by the results of the site-cytometry analysis. It is a dot plot diagram. For anti-CD 19 E ffector CAR/J urkat cells (see Figure 21), pc DNA3.1 (―) — Hygro Em pty vector, pc DNA 3 (-) -anti-HER 2 ( 4 D 5-3) S cissors CAR— T2A— mC herry — Hygro vector or pc DNA 3 (-) -anti-HER 2 (4 D 5-8) S cissors CAR— T2A — mC herry — Hygro vector The gene was introduced. 24 hours after gene transfer, culture in the presence of 1 000 M9/mL G418 and 200 g/mL Hygromy cin, anti — CD 1 9 E ffector CAR + em pty/J urkat cells, anti — CD 1 9 E ffector CAR + anti -HE R2 (4 D5-3)
S c i s s o r s/J u r k a t細胞、 及び a n t i — CD 1 9 E f f e c t o r CAR + a n t i — H E R2 (4 D5— 3) S c i s s o r s /J u r k a t細胞を樹立した。 FACS A r i allを用いて YF P及び mC h e r r yの発現を解析した。 Y F Pは、 T 2 A配列を介してシストロ ニックに発現する a n t i — C D 1 9 E f f e c t o r CARの発現を 反映する。 mC h e r r yは、 T 2 A配列を介してシストロニックに発現す る a n t i — H E R 2 (4 D 5— 3) — S c i s s o r s— CARの発現を 反映する。 図中、 紫で示したゲートに含まれる細胞を選別し、 図 23及び 2 4に示す共培養実験に供した。 S cissors/J urkat cells and anti-CD 19 E ffector CAR + anti-HER2 (4 D5-3) S cissors /J urkat cells were established. Using FACS Ari all, YF P and The expression of mC herry was analyzed. YFP reflects the expression of anti-CD 19 Effector CAR, which is expressed cistronicly via the T 2 A sequence. mC herry reflects the expression of anti-HER2 (4D5-3)-Scissors-CAR, which is expressed cistronicly via the T2A sequence. In the figure, cells contained in the gate shown in purple were selected and subjected to the co-culture experiment shown in FIGS. 23 and 24.
[図 23]R a j i細胞又は S K_B R— 3/CD 1 9細胞と共培養した、 a n t i — CD 1 9 E f f e c t o r CAR + e m p t y/J u r k a t細 胞又は a n t i — C D 1 9 E f f e c t o r CAR + a n t i — H E R 2 ( 4 D 5— 3 ) S c i s s o r s/J u r k a t細胞における、 C D 6 9発現を解析した結果を示す、 ヒストグラムである。 図中、 灰色のヒストグ ラムは a n t i — C D 1 9 E f f e c t o r CAR + e m p t y/J u r k a t細胞の解析結果を示し、 実線で表すヒストグラムで a n t i — CD 1 9 E f f e c t o r CAR + a n t i -H E R 2 (4 D 5-3) S c i s s o r s/J u r k a t細胞の解析結果を示す。 なお、 細胞数 1 : 1 にて 24時間の共培養を行った後に細胞を回収し、 FACS C a l i b u rを用いて Y F P陽性細胞における CD 69の発現を解析した。 [Fig. 23] anti-CD 19 E ffector CAR + empty/J urkat cells or anti — CD 19 E ffector CAR + anti — co-cultured with Raji cells or SK_BR − 3/CD 19 cells It is a histogram which shows the result of having analyzed CD69 expression in HER2(4D5-3)Scissors/Jurkat cell. In the figure, the gray histogram shows the analysis results of anti — CD 19 E ffector CAR + empty/J urkat cells, and the histogram represented by the solid line shows anti — CD 19 E ffector CAR + anti -HER 2 (4 D 5 -3) Shows the analysis results of S cissors/J urkat cells. In addition, after co-culturing at a cell number of 1:1 for 24 hours, the cells were collected, and the expression of CD69 in YFP-positive cells was analyzed by using FACS Caliburr.
[図 24]R a j i細胞、 S K- B R— 3細胞又は S K-B R-3/CD 1 9細 胞と共培養した、 a n t i — CD 1 9 E f f e c t o r CAR + e m p t y/J u r k a t細胞、 a n t i — CD 1 9 E f f e c t o r CAR + a n t i — H E R 2 (4 D 5— 3) S c i s s o r s/J u r k a t細 胞、 又は a n t i — C D 1 9 E f f e c t o r CAR + a n t i — H E R 2 ( 4 D 5— 8 ) S c i s s o r s/J u r k a t細胞における、 CD 69発現を解析した結果を示す、 ヒストグラムである。 図中、 灰色のヒスト グラム (一番左側のヒストグラム) は S K_B R— 3細胞との共培養の結果 を示し、 (カラーでの表示下) 赤色の実線で表すヒストグラム (左から 2番 目のヒストグラム) は S K_B R— 3/CD 1 9細胞との共培養の結果を示 し、 黒色の実線で表すヒストグラム (左から 3番目のヒストグラム) は R a j i細胞との共培養の結果を示す。 なお、 細胞数 1 : 1 にて 24時間の共培 養を行った後に細胞を回収し、 FACS C a l i b u rを用いて Y F P陽 性細胞における C D 69の発現を解析した。 [Fig. 24] anti-CD 19 Effector CAR + empty/Jurkat cells, anti-CD co-cultured with Raji cells, SK-BR-3 cells or SKB R-3/CD 19 cells 1 9 E ffector CAR + anti — HER 2 (4 D 5 — 3) S cissors/J urkat cells, or anti — CD 1 9 E ffector CAR + anti — HER 2 (4 D 5 — 8) S cissors/J It is a histogram showing the results of analysis of CD69 expression in urkat cells. In the figure, the gray histogram (leftmost histogram) shows the result of co-culturing with SK_BR − 3 cells (below the color display), the histogram represented by the solid red line (second from the left). Histogram) shows the result of co-culture with SK_BR — 3/CD 19 cells, and the black solid histogram (third histogram from the left) is R a The results of co-culturing with ji cells are shown. The cells were collected after co-cultivation at a cell number of 1:1 for 24 hours, and the expression of CD69 in YFP positive cells was analyzed using FACS Calilibur.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0025] 後述の実施例、 並びに図 1及び 2において示すとおり、 下記 2種のキメラ 抗原受容体を発現させた T細胞は、 各キメラ抗原受容体を介して 2種の抗原 を認識することにより、 正常細胞には細胞障害等をもたらすことなく、 がん 細胞等の標的細胞に対しては細胞障害等を奏することが可能となる。 [0025] As shown in Examples described later and in Figs. 1 and 2, T cells expressing the following two types of chimeric antigen receptors are recognized by recognizing the two types of antigens through the respective chimeric antigen receptors. It is possible to cause cell damage and the like to target cells such as cancer cells without causing cell damage and the like to normal cells.
[0026] 第 1の抗原に結合する領域と、 膜貫通領域と、 プロテアーゼとを含み、 か つ、 前記プロテアーゼによって切断される部位を含まない、 キメラ抗原受容 体 (以下、 「切断用 CAR」 とも称する) [0026] A chimeric antigen receptor (hereinafter also referred to as "cleavage CAR") containing a region that binds to a first antigen, a transmembrane region, and a protease, and does not include a site that is cleaved by the protease. Refer to)
第 2の抗原に結合する領域と、 膜貫通領域と、 前記プロテアーゼによって 切断される部位と、 シグナル伝達因子とを含む、 キメラ抗原受容体 (以下、 「活性化用 CAR」 とも称する) 。 A chimeric antigen receptor (hereinafter, also referred to as "activating CAR") containing a region that binds to a second antigen, a transmembrane region, a site that is cleaved by the protease, and a signal transduction factor.
[0027] したがって、 本発明はこれらキメラ抗原受容体、 及びそれらの組み合わせ を提供するものである。 [0027] Therefore, the present invention provides these chimeric antigen receptors, and combinations thereof.
[0028] <キメラ抗原受容体 > [0028] <Chimeric antigen receptor>
本発明において、 「キメラ抗原受容体 (C h i me r i c A n t i g e n R e c e p t o r : CAR) 」 は、 細胞外領域となる、 抗原に結合する 領域と、 膜貫通領域と、 細胞内領域とが、 その順にて N末端側から配置され 、 直接又は間接的に連結されてなる、 キメラタンパク質を意味する。 In the present invention, the “chimeric antigen receptor (Chimeric Antigen Receptor: CAR)” is an extracellular region that binds to an antigen, a transmembrane region, and an intracellular region in that order. Means a chimeric protein that is arranged from the N-terminal side and is directly or indirectly linked.
[0029] 本発明において、 「抗原に結合する領域 (抗原結合領域) 」 は、 抗原のエ ピトープに特異的に結合する領域を意味し、 抗体又はその機能的断片を用い ることができる。 抗体の 「機能的断片」 とは、 抗体の一部分であって、 抗原 に特異的に結合し得るものであればよく、 例えば、 一本鎖抗体 (s c F v) [0029] In the present invention, "a region that binds to an antigen (antigen-binding region)" means a region that specifically binds to an epitope of an antigen, and an antibody or a functional fragment thereof can be used. The “functional fragment” of an antibody may be a part of an antibody as long as it can specifically bind to an antigen, for example, a single chain antibody (s c F v)
、 シングルドメイン抗体 (s d A b、 VH H、 VNAR) 、 s c (F v) 2 、 F a b、 F a b’ 、 F (a b’ ) 2、 可変領域断片 (F v) 、 ジスルフィ ド結合 F v、 ダイアボディー、 多特異性抗体が挙げられるが、 通常 CARに は、 s c F vが用いられる。 , Single domain antibody (sd Ab, VH H, VNAR), sc (F v) 2, F ab, F ab', F (ab') 2, variable region fragment (F v), disulfide-bonded F v, Diabodies and multispecific antibodies are usually used for CAR. Uses sc F v.
[0030] rs c F v」 は、 モノクローナル抗体 (免疫グロブリン) の軽鎖可変領域 (VL) と重鎖可変領域 (VH) がリンカーを介して連結された構造体であ り、 抗原との結合能を保持している。 リンカーとしては、 例えばペプチドリ ンカーを用いることができる。 リンカーの長さは特に限定されない。 例えば 、 アミノ酸数が 5〜 25個のリンカーを用いることができる。 リンカーの長 さは好ましくは 8〜 25アミノ酸、 さらに好ましくは 1 5〜 20アミノ酸で ある。 ペプチドリンカーの好適な例として、 グリシン及びセリンから構成さ れるリンカー (GGSリンカー、 GSリンカー等) が挙げられる。 GGSリ ンカー及び GSリンカーを構成するアミノ酸であるグリシンとセリンは、 そ れ自体のサイズが小さく、 リンカー内で高次構造が形成されにくいという利 点を有する。 [0030] "rs c F v" is a structure in which a light chain variable region (VL) and a heavy chain variable region (VH) of a monoclonal antibody (immunoglobulin) are linked via a linker, and binds to an antigen. Holds Noh. As the linker, for example, a peptide linker can be used. The length of the linker is not particularly limited. For example, a linker having 5 to 25 amino acids can be used. The length of the linker is preferably 8 to 25 amino acids, more preferably 15 to 20 amino acids. Preferable examples of peptide linkers include linkers composed of glycine and serine (GGS linker, GS linker, etc.). The amino acids that compose the GGS linker and GS linker, glycine and serine, have the advantage that their size is small and that higher-order structures are less likely to be formed in the linker.
[0031] s c F Vの基となるモノクローナル抗体としては、 特に制限はないが、 例 えば、 非ヒト動物 (マウス、 ラッ ト、 ウサギ等の齧歯類) 由来のの抗体が挙 げられる。 かかるモノクローナル抗体の作製方法としては、 ハイプリ ドーマ を用いて作製する方法や、 遺伝子工学的手法により抗体遺伝子を含む発現べ クターで宿主を形質転換して作製する方法や、 トランスジエニック動物を所 望の抗原で免疫することで作製する方法が挙げられる。 [0031] The monoclonal antibody serving as the basis of scFV is not particularly limited, and examples thereof include antibodies derived from non-human animals (rodents such as mouse, rat, and rabbit). As a method for producing such a monoclonal antibody, a method using a hybridoma, a method in which a host is transformed with an expression vector containing an antibody gene by a genetic engineering technique, or a transgenic animal is desired. The method of producing by immunizing with the antigen of.
[0032] また、 本発明に係るモノクローナル抗体は、 ヒト抗体、 ヒト化抗体等であ つてもよい。 ヒト化抗体は、 他の動物種 (例えばマウスやラッ ト) のモノク 口ーナル抗体の構造をヒトの抗体の構造に類似させた抗体であり、 抗体の定 常領域のみをヒト抗体のものに置換したヒト型キメラ抗体、 及び定常領域及 び可変領域に存在する CD R (相補性決定領域) 以外の部分をヒト抗体のも のに置換したヒト型 C D R移植 (C D R - g r a f t e d) 抗体 (P. T. J o h o n sら、 N a t u r e 32 1 , 522 (1 986) 参照) を含 む。 ヒト型 CD R移植抗体の抗原結合活性を高めるため、 マウス抗体と相同 性の高いヒト抗体フレームワーク (F R) を選択する方法、 相同性の高いヒ 卜型化抗体を作製する方法、 ヒト抗体にマウス C D Rを移植した後さらに F R領域のアミノ酸を置換する方法の改良技術もすでに開発され (米国特許第 5585089号、 米国特許第 569376 1号、 米国特許第 569376 2号、 米国特許第 6 1 80370号、 欧州特許第 45 1 2 1 6号、 欧州特許 第 682040号、 特許第 2828340号 参照) 、 ヒト化抗体の作製に 利用することもできる。 [0032] The monoclonal antibody according to the present invention may be a human antibody, a humanized antibody or the like. A humanized antibody is an antibody in which the structure of a monoclonal antibody of another animal species (for example, mouse or rat) is similar to the structure of human antibody, and only the constant region of the antibody is replaced with that of human antibody. Human chimeric antibody, and human CDR-grafted antibody (PT J ohons) in which parts other than CDR (complementarity determining region) present in the constant region and variable region are replaced with those of human antibody. Et al., Nature 32 1, 522 (1 986)). To enhance the antigen-binding activity of human CDR-grafted antibody, a method of selecting a human antibody framework (FR) that has high homology with a mouse antibody, a method of producing a humanized antibody with high homology, and a method for producing a human antibody F after transplantation of mouse CDR An improved technique for substituting amino acids in the R region has already been developed (US Pat. No. 5585089, US Pat. No. 5693761, US Pat. No. 5693762, US Pat. No. 6 1 80370, European Patent 45 1 2 No. 16, European Patent No. 682040, Patent No. 2828340), and can also be used for production of humanized antibodies.
[0033] 本発明において、 「抗原」 、 第 1の抗原及び第 2の抗原としては、 特に制 限はなく、 例えば、 がん細胞又はその前駆細胞 (がん幹細胞等) に特異的に 発現する生体分子 (腫瘍特異抗原、 T u mo r— s p e c i f i c a n t i g e n s : TSA) 、 がん細胞等において正常細胞と比して発現が亢進し ている生体分子 (腫瘍関連抗原、 T u mo r— a s s o c i a t e d a n t i g e n s : T A A) 等のがん抗原が挙げられる。 [0033] In the present invention, the "antigen", the first antigen and the second antigen are not particularly limited and, for example, are specifically expressed in cancer cells or their precursor cells (cancer stem cells etc.). Biomolecules (tumor-specific antigens, Tumor-specificantigens: TSA), biomolecules whose expression is increased in cancer cells compared to normal cells (Tumor-associated antigens, Tumor-associatedantigens: TAA) Cancer antigens such as
[0034] がん抗原としては、 例えば、 CD 1 9、 H E R 2 (E R B B 2、 N E U) [0034] Examples of cancer antigens include CD 19 and H ER 2 (ER B B 2, N EU)
、 BCMA、 CD 5、 CD 7、 CD 1 0、 CD 1 3、 CD 20、 CD 22、 CD 24、 CD30、 CD33、 CD34、 CD38、 CD4 1、 CD44 、 CD44 v 6、 CD 52、 CD 74、 CD 1 23、 CD 1 33、 CD 1 3 8, CD 1 60, CD 1 7 1、 CS- 1、 CL L- 1、 CA 1 9-9、 C A 72-4、 C A 1 25, C AM 1 7. 1、 C A 1 5-3, C A 1 95, C A 242、 CA-50、 CAM43、 c-Me t、 A33、 EG F R、 EG F R v l 丨 I、 VEG F R 2、 F〇 L R、 GD 2、 GD3、 PSCA、 P S M A、 R〇R 1、 F LT3、 FA P、 TAG 72、 C E A、 E PCAM、 B 7 H 3、 K I T、 I L - 1 3 R a 2、 メソテリン、 ビメンチン、 I L - 1 1 R a、 P RSS 2 1、 L ew i s Y、 CD 24、 CD 68、 CD 79 a、 CD 79 b、 CD 72、 CD 97、 CD 1 79 a、 C〇-〇 29、 FG F-5、, BCMA, CD 5, CD 7, CD 10, CD 13, CD 20, CD 22, CD 24, CD 30, CD 33, CD 34, CD 38, CD 41, CD 44, CD 44 v 6, CD 52, CD 74, CD 1 23, CD 1 33, CD 1 3 8, CD 1 60, CD 1 71, CS-1, CL L-1, CA 1 9-9, CA 72-4, CA 1 25, C AM 1 7. 1, CA 15-3, CA 1 95, CA 242, CA-50, CAM43, c-Met, A33, EG FR, EG FR vl 丨 I, VEG FR 2, F○ LR, GD 2, GD3, PSCA, PSMA, R ○ R 1, F LT3, FA P, TAG 72, CEA, E PCAM, B 7 H 3, KIT, IL-13 R a 2, Mesothelin, Vimentin, IL-1 1 R a, P RSS 21, L is is Y, CD 24, CD 68, CD 79 a, CD 79 b, CD 72, CD 97, CD 1 79 a, C 〇-〇 29, FG F-5,
G 250、 T EM 1 /CD 248、 CD 300 L F、 P DG F R-/S、 S S EA-4、 葉酸受容体 a、 葉酸受容体/ 3、 MUC 1、 MUC 1 6、 NCAM 、 プロスターゼ、 PA P、 E L F 2M、 エフリン B 2、 I G F— I R、 C A I X、 LMP 2、 g p 1 00、 BCR-AB L、 E 2A-P R L、 H 4 - R ET、 I GH— I GK、 MYL— RAR、 チロシナーゼ、 E p h A2、 フコ \¥02020/175366 19 卩(:171? 2020 /007038 G 250, T EM 1 /CD 248, CD 300 LF, P DG F R-/S, SS EA-4, Folate Receptor a, Folate Receptor/3, MUC 1, MUC 16, NCAM, Prostase, PA P, ELF 2M, Ephrin B 2, IGF— IR, CAIX, LMP 2, gp 100, BCR-AB L, E 2A-PRL, H 4 -R ET, I GH— I GK, MYL— RAR, tyrosinase, E ph A2, Fuco \¥02020/175366 19 卩(: 171? 2020/007038
Figure imgf000020_0006
Figure imgf000020_0006
、 1\/1八〇巳一3、 1\/1八〇巳一八 1、 1\/1八〇巳一4、 1\/1八〇巳一5、 1\/1八〇巳 -6、 巳八〇巳、 〇八〇巳一 1、 GAGE-2S RAGES 1 5、 1 6 、 レグマイン、 巳巳 八、 l·\ Py º 6, º 7% 巳丁 6-八1\/11_、 乂八〇 巳 1、
Figure imgf000020_0001
1\/1八0-〇丁一 1、 1\/1八0-〇丁一2、 〇 3関連抗原 1
, 1\/1 880 Miichi 3, 1\/1 880 Miho 1, 1, 1\/1 880 Miichi 4, 1\/1 880 Miichi 5, 1\/1 880 Mi- 6, Mimi 80, Mitsui 1, GAGE-2 S RAGE S 1 5, 1 6, Legumain, Mimi Mimi, l·\Py º 6, º 7 % Mine 6-81 1// 11_, Samurai 1,
Figure imgf000020_0001
1\/1 8 0-〇 1 1, 1 \/1 8 0-〇 1 2, 0 3 Related antigen 1
、 53、 53変異体、
Figure imgf000020_0002
変異体、 プロステイ ン、
Figure imgf000020_0004
テロメラーゼ、 丁巳[¾丁、
Figure imgf000020_0003
, 53, 53 mutant,
Figure imgf000020_0002
Mutant, protein,
Figure imgf000020_0004
Telomerase, Ding [[
Figure imgf000020_0003
/ガレクチン 8、 メラン八/1\/1八[¾丁 1、 1\/1!_- 1 八?、
Figure imgf000020_0005
(丁 1\/1 [¾ 332 巳丁3融合遺伝子) 、 八 1 7、 八乂3、 アンドロゲン受容体、 サイクリン巳 1、 1\/1丫〇1\1、 [¾ 〇〇、 丁[¾ 一 1、 T R P-2S 0^ 9 ^ 巳 1、 巳〇[¾ 丨 3、 3八[¾丁3、 八乂5、 〇丫_丁巳31、 LCKS 八< A P-4S 33X2, 】、 R\J 2S 〇1リ 1^ 3 70-2、 1_八 丨 [¾ 1 、 〇八1 1_ 丨 1_[¾八2、 〇1_巳〇 1 2八、 巳3丁 2、 EMR 2S LY 7 5、 〇 〇3、 〇 5、 丨 〇1_ 1_ 1、 丁3 一 1 80、 -231~11 、 1\1リ1\/13、 1\/1 一 1、 43-9 、 5丁4、 79 1 丁 9 72、 1~1丁 9 一 1 75、 1\/1八一50、 1\/1〇 7 -八 9、 1\/1〇 1 8、 /70<、 丫 -00- 1 , [¾〇八31、 30〇〇八〇 1 6、 丁八一90、 丁八八!_ 6、 7 !_ 、 丁 3が挙げられる。
/ Galectin 8, Melan 8/1\/1 8 [¾ 1、1\/1!_- 18? ,
Figure imgf000020_0005
(Ding 1\/1 [¾ 332 Ming 3 fusion gene), eight 17, eight 3, androgen receptor, cyclin 1, 1, 1\/1丫 〇 1\1, [¾ 〇 〇, Ding [¾ I 1, TR P-2 S 0^ 9 ^ M 1, M 〇 [¾ 丨 3,3 8 [¾ 3, 3, 8 5, 5, _ _ Ding 31, LCK S 8 <A P-4 S 33X2 , 】, R\J 2 S 〇 1 ri 1^ 3 70-2, 1_ 8 丨 [¾ 1, 〇8 1 1_ 丨 1_ [¾ 8 2, 〇 1_ 跳 〇 1 2 8 , 巳 3 丁 2 , EMR 2 S LY 7 5, 〇 〇3, 〇5, 丨 〇1_1_1, Ding3 1 180, -231 ~ 11, 1\1 ri 1\/13, 1\/1 1 1, 43- 9, 5 4, 7, 79 1 9 72, 1 ~ 1 9 1 1 75, 1\/1 8 1 50, 1\/1 〇 7 -8 9, 1\/1 〇 18 ,/70< , 丫 -00-1 ,[¾08 31, 30 〇 880 016, D 818 90, D 888 _ !_ 6, 7 !_, D _ 3 are listed.
[0035] また、 本発明に係る抗原としては、 感染症に特異的な抗原も含まれる。 か かる抗原としては、 感染症の原因となるウイルス、 細菌において特異的に発 現する物質であればよく、 例えば、 1~1 丨 V特異的抗原 (1~1 丨 V 9 1 20 等) 、 1~1巳 特異的抗原、 巳巳 V特異的抗原、 0 IV! V特異的抗原、 1~1 ? 特 異的抗原、 ラッサウイルス特異的抗原、 インフルエンザウイルス特異的抗原 、 真菌特異的抗原が挙げられる。 \¥02020/175366 20 卩(:171? 2020 /007038 [0035] The antigen according to the present invention also includes an antigen specific to an infectious disease. Such an antigen may be any substance that is specifically expressed in viruses or bacteria that cause infectious diseases, for example, 1 to 1 V V-specific antigen (1 to 1 V V 9 1 20 etc.), 1 to 1 specific antigen, Minami V specific antigen, 0 IV! V specific antigen, 1 to 1 specific antigen, Lassa virus specific antigen, influenza virus specific antigen, fungal specific antigen To be \¥02020/175366 20 卩 (: 171? 2020 /007038
[0036] さらに、 本発明に係る抗原としては、 炎症性疾患に特異的な抗原も含まれ る。 かかる抗原としては、 例えば、 八〇〇3 ( 八?一 1 ) 、 〇八1\/1-30 01、 〇〇1_ 1 1、 001 25, 001 47% 001 54 (〇040 !_) 、[0036] Furthermore, the antigen according to the present invention also includes an antigen specific to an inflammatory disease. Such antigens include, for example, 803 (8? 1 1 ), 808 1\/1-30 01, 〇 1_ 1 1, 001 25, 001 47 % 001 54 (〇 040 !_),
002% 0020, 0023, 0025, 003, 004% 005, 丨 «、 1 1\1ァ、 1 9巳、 1 9巳 〇領域、 1 1-- 1、 1 1_- 1 2、 1 !__ 23、 丨 1_- 1 3、 丨 1_- 1 7、 丨 1_- 1 7八、 丨 !_-22、 丨 !_-4、 I !_-5、 I !_-5、 I !_-6、
Figure imgf000021_0001
受容体、 インテグリン 34、 インテ グリン《4 /37、 ラマ · グラマ (1- 31113 9 I 31113) 、 !_ 八一 1 (〇
002% 0020, 0023, 0025, 003, 004% 005,丨«, 1 1 \ 1 §, 1 9 snake, 1 9 snake 〇 area, 1 1-- 1, 1 1_- 1 2, 1! __ 23,丨1_- 1 3, 丨 1_- 1 7, 丨 1_- 1 7 8、 丨! _-22, 丨! _-4, I !_-5, I !_-5, I !_-6,
Figure imgf000021_0001
Receptor, integrin 34, integrin <<4/37, llama grammar (1- 31113 9 I 31113),! _ 81 1 (〇
01 1 3) 、 1\/1巳 0 1 _528、 ミオスタチン、 〇乂_40、 「 リ1\/1八 b (31 % スクレロスシン (3。
Figure imgf000021_0002
7 G F (3 1、 丁 ー3、 V巳◦ ー八が挙げられる。
01 1 3), 1\/1, 0 1 _528, myostatin, 〇乂_40, "Li 1\/1 8b (31 % sclerostin (3.
Figure imgf000021_0002
7 GF (3, 1, 3 , V V).
[0037] さらにまた、 本発明においては、 図 2に示すように、 上述の疾患等に関す る抗原のみならず、 正常細胞において発現する抗原も、 本発明の〇八[¾の対 象となる。 例えば、 骨髄腫に関し、 典型的な骨髄腫細胞では〇〇 1 9 (_) 001 38 ( + ) であるのに対し、 正常形質細胞は〇 01 9 ( + ) 001 3 8 ( + ) である。 そのため、 かかる場合、 001 9が、 本発明に係る正常細 胞において発現する抗原として好適に用いられ得る。 また、 このように、 当 業者であれば、 がん細胞等の標的細胞と正常細胞との発現の相違に関する公 知の情報に基づき、 骨髄腫に限らず、 各疾患に適した正常細胞において発現 する抗原を選択することができる。 [0037] Furthermore, in the present invention, as shown in Fig. 2, not only the antigens related to the above-mentioned diseases and the like, but also the antigens expressed in normal cells are the targets of the present invention [8]. .. For example, for myeloma, typical myeloma cells have 〇 〇 19 (_) 001 38 (+) whereas normal plasma cells have 〇 019 (+) 001 38 (+ ). Therefore, in such a case, 0019 can be preferably used as the antigen expressed in the normal cell of the present invention. In addition, as described above, those skilled in the art can express not only in myeloma but also in normal cells suitable for each disease, based on publicly known information on the difference in expression between target cells such as cancer cells and normal cells. The antigen to be selected can be selected.
[0038] また、 本発明において、 図 1及び 2に示すように、 第 1の抗原と第 2の抗 原とは、 通常異なる抗原となる。 [0038] In the present invention, as shown in Figs. 1 and 2, the first antigen and the second antigen are usually different antigens.
[0039] 本発明において 「膜貫通領域」 は、 細胞膜を貫通する機能を有し、 0八[¾ を細胞膜に繫留し得るポリべプチドであれば特に制限はない。 膜貫通領域を 担うポリペプチドの由来となるタンパク質としては、 例えば、 0028, 0 03 ^, 003 £, 0045, 004, 005,
Figure imgf000021_0003
008/3, 00
[0039] In the present invention, the "transmembrane region" is not particularly limited as long as it is a polypeptide that has a function of penetrating the cell membrane and can retain 0.8% in the cell membrane. Examples of proteins that are the origin of the polypeptide that carries the transmembrane region include, for example, 0028, 0 03 ^, 003 £, 0045, 004, 005,
Figure imgf000021_0003
008/3, 00
9、 001 6, 0022, 0033, 0037, 0064, 0080, 00 86、 001 34% 001 37% 1 003, 001 54% ◦ I 丁[¾、 丁細胞 \¥0 2020/175366 21 卩(:171? 2020 /007038 9, 001 6, 0022, 0033, 0037, 0064, 0080, 00 86, 001 34 % 001 37 % 1 003, 001 54 % ◦ I Ding [¾, Ding Cell \¥0 2020/175366 21 21 (: 171? 2020 /007038
受容体の《鎖及び/ 3鎖が挙げられる。 The << chain and / 3 chain of the receptor are included.
[0040] 本発明において 「細胞内領域」 は、 切断用 0 と活性化用 0 とで異 なる態様をとる。 [0040] In the present invention, the "intracellular region" has different modes of 0 for cleavage and 0 for activation.
[0041] 切断用〇八[¾における 「細胞内領域」 は、 プロテアーゼを少なくとも有す る。 「プロテアーゼ」 としては、 切断用 0八 及び活性化用 0八 が、 対応 する各々の抗原に結合し、 細胞膜において集合した際に、 近接した活性化用 〇八[¾を、 膜貫通領域とシグナル伝達因子との間で切断できる、 エンド型の プロテアーゼであれば特に制限はなく、 例えば、 アスパラギン酸プロテアー ゼ (1~1 丨 Vプロテアーゼ (1~1 丨 [¾) 、 アセクレターゼ等) 、 システイン プロテアーゼ (カスパーゼ、 タバコエッチウイルス (丁巳 ) プロテアーゼ 等) 、 セリンプロテアーゼ (第 X 3因子、 フユーリン等) 、 金属プロテアー ゼ (八 0八1\/1タンパク質、 マトリックスメタロプロテアーゼ等) が挙げられ る。 [0041] The "intracellular region" in Cleavage 08 [¾ has at least a protease. As a “protease”, when cleavage 08 and activation 08 bind to their corresponding antigens and assemble at the cell membrane, they are activated in close proximity to the transmembrane domain and signal. There is no particular limitation as long as it is an endo-type protease that can be cleaved with a transfer factor, and examples thereof include aspartate protease (1 to 1 V V protease (1 to 1 [¾), secretase, etc.), cysteine protease (Caspase, Tobacco Etch Virus (Chomi) Protease, etc.), Serine Protease (Factor X3, Fuulin, etc.), and Metalloprotease (8881\/1 protein, Matrix metalloprotease, etc.).
[0042] 本発明に係るプロテアーゼとしては、 活性化用〇八[¾の切断が、 切断用〇 八 の抗原結合依存的により生じ易いという観点から、 抗原結合領域が抗原 に結合した際に活性化するプロテアーゼが好ましい。 このようなプロテアー ゼとしては、 多量体化することによってプロテアーゼ活性を奏するプロテア —ゼが挙げられ、 より具体的には、 1~1 丨 Vプロテアーゼ、 カスパーゼ 9が挙 げられる。 [0042] As the protease according to the present invention, from the viewpoint that cleavage for activation [8] easily occurs depending on the antigen binding of cleavage for activation, activation occurs when the antigen-binding region binds to an antigen. Protease is preferred. Examples of such a protease include a protease that exhibits protease activity by multimerization, and more specifically, 1 to 1 V protease and caspase 9 are mentioned.
[0043] また、 基質特異性に優れ、 内在タンパク質を分解しないという観点からは 、 本発明に係るプロテアーゼとして、 本発明の〇八 が発現する細胞の由来 とは異なる生物 (ウイルスを含む) 由来のプロテアーゼが好ましい。 当該細 胞の由来がヒトである場合には、 非ヒト由来のプロテアーゼが好ましく、 よ り具体的には、
Figure imgf000022_0001
丨 Vプロテアーゼ、 丁巳 Vプロテアーゼが挙げられる。
[0043] Further, from the viewpoint of excellent substrate specificity and not degrading the endogenous protein, the protease according to the present invention is derived from an organism (including a virus) different from the origin of the cell in which the present invention 88 is expressed. Proteases are preferred. When the cell is derived from human, a non-human-derived protease is preferable, and more specifically,
Figure imgf000022_0001
Examples include V-protease and Domi-V protease.
[0044] また、 プロテアーゼ活性を低分子化合物によって抑制することにより、 活 性化用 0 の切断を制御し、 ひいては本発明の 0 が発現する細胞の活 性も制御し得るという観点から、 プロテアーゼ阻害剤による制御可能なプロ テアーゼが好ましい。 かかるプロテアーゼとしては、 例えば、 サキナビル、 \¥0 2020/175366 22 卩(:171? 2020 /007038 [0044] Moreover, from the viewpoint that the cleavage of activation 0 can be controlled by suppressing the protease activity with a low-molecular compound, and thus the activity of cells expressing 0 of the present invention can also be controlled, protease inhibition Agent-controllable proteases are preferred. Examples of such protease include saquinavir, \¥0 2020/175 366 22 卩 (: 171? 2020 /007038
ネルフィナビル、 アタザナビル、 ホスアンプレナビル、 ロピナビル、 ダルナ ビル、 リ トナビル、 チプラナビル、 アンプレナビル、 インジナビル等のプロ テアーゼ阻害剤に対応する、 1~1 丨 Vプロテアーゼ、 !_— 6 8 5 , 4 5 8 , 0 巳 、 !_丫 4 5 0 1 3 9 (セマガセスタツ ト) 、 0 3 1 - 9 5 3 , 0 3 1 5 フルルビプロフェン (タレンフルルビル) 、 ◦
Figure imgf000023_0001
等のプロテアーゼ阻害剤に対応する、 ァセクレタ —ゼが挙げられる。
1 to 1 V protease, corresponding to protease inhibitors such as nelfinavir, atazanavir, fosamprenavir, lopinavir, darunavir, ritonavir, tipranavir, amprenavir and indinavir. _— 6 8 5 ,4 5 8 ,0 Mimi,! _ 丫 4 5 0 1 3 9 (Semagastat), 0 3 1-9 5 3, 0 3 1 5 Flurbiprofen (talenflurviril), ◦
Figure imgf000023_0001
A secretase corresponding to protease inhibitors such as
[0045] さらに、 以上全ての特徴を満たすという観点から、 本発明に係るプロテア —ゼとして、 1~1 丨 Vプロテアーゼが特に好ましく、 さらに、 後述の実施例に 示すとおり、 多量体化 (二量体化) に必要な
Figure imgf000023_0002
「配列が除外され ている 1~1 丨 Vプロテアーゼが、 より好ましい。
[0045] Further, from the viewpoint of satisfying all of the above characteristics, 1 to 1 V V protease is particularly preferable as the protease according to the present invention, and further, as shown in Examples described later, multimerization (dimerization Necessary for
Figure imgf000023_0002
"1 to 1 V V protease in which the sequence is excluded is more preferable.
[0046] —方、 活性化用〇八[¾における 「細胞内領域」 は、 プロテアーゼによって 切断される部位と、 シグナル伝達因子とを少なくとも有する。 [0046] On the other hand, the "intracellular region" in Activator 08 [¾ has at least a site cleaved by a protease and a signal transduction factor.
[0047] 「プロテアーゼによって切断される部位」 は、 活性化用〇八 において、 前述の膜貫通領域とシグナル伝達因子との間に配置される。 当業者であれば 、 公知の情報に基づき、 上述のプロテアーゼが認識し切断する配列を、 適宜 理解し、 前記領域因子間に配置することができる。 しかしながら、 後述の実 施例に示すとおり、 通常の〇八 において用いられる〇 0 2 8細胞内ドメイ ンには、 1~1 I Vプロテアーゼ等のアスパラギン酸プロテアーゼの切断部位が 存在する。 そのような場合には、 前記プロテアーゼ切断部位を新たに揷入し なくとも、 本発明の活性化用〇八 として好適に用いることができる。[0047] The "site that is cleaved by a protease" is located between the above-mentioned transmembrane region and the signal transduction factor in the activation gene. Those skilled in the art can appropriately understand the sequences recognized and cleaved by the above-mentioned protease based on known information, and can arrange the sequences between the region factors. However, as shown in the actual施例below, the 〇 0 2 8 intracellular domain used in conventional 〇 eight cleavage sites of aspartic proteases, such as 1 ~ 1 IV protease is present. In such a case, it can be suitably used as the activation reagent of the present invention without newly inserting the protease cleavage site.
[0048] なお、 通常の〇 [¾とは、 既存の 0 を意味し、 一般的に、 細胞内領域 として、 丁細胞受容体 (丁〇[¾) 及び 0 0 3複合体の活性化シグナル伝達ド メインのみを有するもの (第 1世代〇八[¾) 、 活性化シグナル伝達ドメイン に加えて共刺激分子由来の共刺激シグナル伝達ドメイン (例えば、 0 0 2 8 又は 4 _ 丨 巳巳の細胞内ドメイン) を有するもの (第 2世代〇 [¾) 、 活性 化シグナル伝達ドメインに加えて複数の共刺激シグナル伝達ドメイン (例え ば、 〇0 2 8及び4 _ 丨 巳巳の細胞内ドメイン) を有するもの (第 3世代〇 八[¾) がある。 [0048] Ordinary 0 [¾ means existing 0, and generally, as an intracellular region, the activation signal transduction of the Ding cell receptor (Ding [[]] and 0 0 3 complex is performed. Having only domain (1st generation 08 [¾), in addition to activation signaling domain, costimulatory signaling domain derived from costimulatory molecule (eg, 0 0 2 8 or 4 _ _ _ _ _ _ _ intracellular Domain (2nd generation 〇 [¾), and multiple costimulatory signaling domains in addition to the activation signaling domain (for example, the intracellular domains of 〇 0 28 and 4 _ 丳巳) Things (3rd generation There are eight [¾).
[0049] 「シグナル伝達因子」 は、 前述の抗原結合領域が抗原に結合した際に、 細 胞内にエフェクター機能の発揮に必要なシグナルを伝達することが可能な因 子を意味する。 活性化用 C A Rが含むシグナル伝達因子の数は、 1つに限定 されず、 複数のシグナル伝達因子を含むこともできる (例えば、 1〜 5個、 [0049] The "signal transduction factor" means a factor capable of transducing a signal necessary for exerting an effector function in a cell when the above-mentioned antigen-binding region binds to an antigen. The number of signal transduction factors contained in the activation CAR is not limited to one, and may include multiple signal transduction factors (for example, 1 to 5,
1〜 3個、 又は 1個若しくは 2個のシグナル伝達因子を含むこともできる)It may contain 1 to 3 or 1 or 2 signaling factors)
。 この場合、 活性化用 C A Rが含む複数のシグナル伝達因子は、 同じもので あってもよいし、 異なるものであってもよい。 .. In this case, the plurality of signal transducing factors contained in the activating C AR may be the same or different.
[0050] また、 本発明に係る 「シグナル伝達因子」 には、 膜局在型シグナル伝達因 子、 遊離性シグナル伝達因子がある。 [0050] The "signal transduction factor" according to the present invention includes a membrane-localized signal transduction factor and a free signal transduction factor.
[0051] 「膜局在型シグナル伝達因子」 は、 細胞膜の内側に存在している場合に機 能する、 膜局在型シグナル伝達因子を意味し、 通常の C A Rにおいて用いら れる、 一次シグナルに関与するタンパク質の活性化シグナル伝達ドメインを 用いることができる。 一次シグナル伝達には、 免疫受容体活性化チロシンモ う—フ ( i mm u n o r e c e p t o r t y r o s i n e— b a s e d a c t i v a t i o n mo t i f : I T A M) が関与することが知られて いる。 丨 T AMを有するタンパク質としては、 例えば、 CD3 F c R r 、 F c R/S、 C D 3 Ts CD35、 CD3 s、 CD 5、 CD 22、 C D 79 a、 CD 79 b、 CD 66 d、 DA P 1 0、 D A P 1 2が挙げられる。 [0051] "Membrane-localized signal transduction factor" means a membrane-localized signal transduction factor that functions when it is present inside the cell membrane, and is a primary signal used in normal CAR. The activation signaling domain of the protein involved can be used. It is known that the immunoreceptor-activating tyrosine morphology (ITAM) is involved in primary signal transduction. The proteins with丨T AM, for example, CD3 F c R r, F c R / S, CD 3 T s CD35, CD3 s, CD 5, CD 22, CD 79 a, CD 79 b, CD 66 d, Examples include DA P 10 and DAP 12.
[0052] 「遊離性シグナル伝達因子」 は、 細胞膜より遊離した場合に機能するシグ ナル伝達因子を意味し、 例えば、 変異型 RHOA (p. G l y 1 7 V a l変 異型等) 、 変異型 V A V (1 -67アミノ酸欠損型、 p. A s p 797 A s n変異型等) 、 変異型 ZA P— 70、 R AS, N I CD (N o t e h細胞内 ドメイン) 、 N F AT (TC Rシグナル伝達に寄与する転写因子) が挙げら れる。 なお、 変異型 RH0Aについては、 S a k a t a— Y a n a g i mo t o M. ら、 N a t Ge n e t . 201 4年 2月、 46巻、 2号、 1 7 1 ~ 1 75ぺージ、 9 S Y. ら、 B l o o d. 201 8年 8月 30日、 1 32巻、 9号、 935〜 947ぺージ 参照のほど。 変異型 VAVについ ては、 K a t a o k a K. ら、 N a t Ge n e t . 、 201 5年 1 1月 、 47巻、 1 1号、 1 304〜 1 3 1 5ページ、 A b a t e F . ら、 P r o c N a t l Ac a d S c i USA. 、 201 7年 1月 24日、 1 1 4巻、 4号、 764〜 769ぺージ 参照のほど。 [0052] "Free signal transduction factor" means a signal transduction factor that functions when it is released from the cell membrane, and includes, for example, mutant RHOA (p. Gly 17 V al variant etc.) and mutant VAV. (1 -67 amino acid deletion type, p. Asp 797 A sn mutant, etc.), mutant ZA P-70, RAS, NI CD (Noteh intracellular domain), NF AT (contributes to TCR signaling Transcription factor). Regarding the mutant RH0A, S akata— Y anagi mo to M. et al., N at Ge net. 201 February 2014, Volume 46, No. 2, pp. 171-175, 9 S Y. et al. , Blood, 201 Aug. 30, 1988, Volume 1 32, Issue 9, pages 935-947. About mutant VAV , K ataoka K. et al., N at Ge net., Jan. 2015, Vol.47, No.11, 1 304 to 1 3 1 5 pages, Abate F. et al., P roc N atl Ac ad. Sci USA., Jan 24, 2017, Vol. 11, Vol. 4, No. 7, pages 764-769.
[0053] 本発明の CARは、 上述の抗原結合領域、 膜貫通領域、 並びに、 プロテア —ゼ、 又はプロテアーゼ切断部位及びシグナル伝達因子に加えて、 他のドメ インを含むこともできる。 他のドメインの例としては、 共刺激伝達ドメイン 、 スぺーサー配列、 シグナルペプチド等が挙げられるが、 これらに限定され ない。 [0053] The CAR of the present invention can contain other domains in addition to the above-mentioned antigen-binding region, transmembrane region, and protease or protease cleavage site and signal transduction factor. Examples of other domains include, but are not limited to, costimulatory transduction domains, spacer sequences, signal peptides and the like.
[0054] T細胞上に発現する共刺激分子は、 抗原提示細胞上に発現する各共刺激分 子に特異的なリガンドとの結合により、 細胞内に共刺激シグナルを伝達し、 [0054] The costimulatory molecule expressed on T cells transmits a costimulatory signal intracellularly by binding with a ligand specific to each costimulatory molecule expressed on antigen-presenting cells,
T細胞の活性化を補助することが知られている (二次シグナル伝達) 。 本発 明において、 「共刺激シグナル伝達ドメイン」 とは、 前記のような共刺激分 子の共刺激シグナル伝達に関与する細胞内ドメインを意味する。 共刺激分子 の例としては、 CD 28、 4- 1 B B (CD 1 37) 、 0X040 (CD 1 34) 、 I COS, CD 2、 CD4、 CD 5、 CD8a、 CD8/S、 C D 1 54等が挙げられる。 本発明の CARは、 これら共刺激分子の共刺激シグナ ル伝達ドメインを含むことができる。 It is known to help activate T cells (secondary signaling). In the present invention, the “costimulatory signal transduction domain” means an intracellular domain involved in costimulatory signal transduction of the costimulatory molecule as described above. Examples of costimulatory molecules include CD 28, 4-1 BB (CD 1 37), 0X040 (CD 1 34), I COS, CD 2, CD4, CD 5, CD8a, CD8/S, CD 1 54, etc. Can be mentioned. The CAR of the present invention can include costimulatory signal transduction domains of these costimulatory molecules.
[0055] 本発明の CARが含み得る共刺激シグナル伝達ドメインの数は、 1つに限 定されず、 複数であってもよい。 本発明の CARは、 共刺激シグナル伝達ド メインを、 例えば、 1〜 5個、 1〜 3個、 又は 1個若しくは 2個含むことが できる。 本発明の CARが、 複数の共刺激シグナル伝達ドメインを含む場合 、 当該ドメインは、 同じものであってもよく、 また異なるものであってもよ い。 [0055] The number of costimulatory signaling domains that the CAR of the present invention may include is not limited to one and may be multiple. The CAR of the present invention can contain, for example, 1 to 5, 1 to 3, or 1 or 2 costimulatory signaling domains. When the CAR of the present invention contains multiple costimulatory signaling domains, the domains may be the same or different.
[0056] 本発明において 「スぺーサー配列」 は、 各領域等の間を連結する配列を意 味する。 スぺーサー配列のアミノ酸数としては特に制限されるものではない が、 通常 2〜 300アミノ酸、 好ましく 5〜 200アミノ酸であり、 さらに 好ましくは 7〜 1 00アミノ酸である。 抗原結合領域と膜貫通領域とを連結 する配列としては、 抗原結合領域の抗原結合能を抑制しないものであれば特 に制限はないが、 例えば、 ヒトロドプシン由来の 9アミノ酸 (C 9配列) 、[0056] In the present invention, the "spacer sequence" means a sequence that connects regions or the like. The number of amino acids in the spacer sequence is not particularly limited, but it is usually 2 to 300 amino acids, preferably 5 to 200 amino acids, and more preferably 7 to 100 amino acids. Connects the antigen binding region and transmembrane region The sequence to be used is not particularly limited as long as it does not inhibit the antigen-binding ability of the antigen-binding region. For example, 9 amino acids derived from human rhodopsin (C 9 sequence),
I g G、 I g A、 I g D、 CD8a、 CD8/S、 CD 28、 CD4等の細胞 外ヒンジドメイン、 上述のグリシン及びセリンから構成されるリンカーが挙 げられる。 また、 膜貫通領域又は共刺激シグナル伝達ドメインと、 プロテア —ゼ又はそれによって切断される部位とを連結する配列としては、 プロテア —ゼ、 シグナル伝達因子若しくは共刺激シグナル伝達ドメインの活性を抑制 しないもの、 又は該プロテアーゼによる接岸を抑制しないものであれば特に 制限はないが、 例えば、 H I V g p 4 1のアンカー配列、 上述のグリシン 及びセリンから構成されるリンカーが挙げられる。 Extracellular hinge domains such as IgG, IgA, IgD, CD8a, CD8/S, CD28, and CD4, and a linker composed of the above-mentioned glycine and serine are listed. The sequence connecting the transmembrane region or costimulatory signal transduction domain and the protease or the site cleaved by the proteinase does not inhibit the activity of protease, signal transduction factor or costimulatory signal transduction domain. , Or an anchor sequence of HIV gp 41, and a linker composed of the above-mentioned glycine and serine, though not particularly limited as long as it does not inhibit the berthing by the protease.
[0057] 本発明において 「シグナルペプチド」 は、 CARの分泌を促すため、 また は細胞膜への局在化を指示するためのぺプチドを意味し、 リーダー配列とも 称される。 シグナルペプチドは、 通常、 抗原結合領域の N末端に直接又は間 接的に結合され得る。 また任意で、 細胞プロセシング及び細胞膜への CAR の局在化中に抗原結合領域から、 シグナルペプチドは切断されてもよい。 か かるシグナルべプチドの例としては、 T細胞受容体の a鎖及び /S鎖、 CD8 a、 CD8/S、 CD3 f、 CD 28、 CD3 s、 CD45、 CD4、 CD 5 、 CD 9、 CD 1 6、 CD 22、 CD33、 CD37、 CD 64、 CD80 、 CD86、 CD 1 34、 CD 1 37、 I COS, CD 1 54、 G I T R、 ヒト GM-CS F受容体 a等のシグナルべプチドが挙げられる。 [0057] In the present invention, the "signal peptide" means a peptide for promoting the secretion of CAR or directing the localization to the cell membrane, and is also called a leader sequence. The signal peptide will usually be attached directly or indirectly to the N-terminus of the antigen binding region. Also optionally, the signal peptide may be cleaved from the antigen binding region during cell processing and localization of CAR to the cell membrane. Examples of such signal peptides include a chain and /S chain of T cell receptor, CD8a, CD8/S, CD3f, CD28, CD3s, CD45, CD4, CD5, CD9, CD1. 6. Signal peptides such as CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, ICOS, CD154, GITR, and human GM-CSF receptor a can be mentioned.
[0058] また、 本発明の CARは、 上述の共刺激伝達ドメイン、 スぺーサー配列及 びシグナルペプチドの他、 他の機能性タンパク質を有していてもよい。 他の 機能性タンパク質としては特に制限はなく、 本発明の C A Rに付与したい機 能に応じて適宜選択される。 例えば、 C A Rの精製及び検出を容易にする目 的で用いる機能性タンパク質としては、 My cタグ、 H i sタグ、 HAタグ 、 F L A Gタグ (登録商標、 S i g m a— A l d r i c h社) 、 虽光タンパ ク質タグ áG F P等) 等が挙げられる。 [0058] Further, the CAR of the present invention may have other functional proteins in addition to the above-mentioned costimulatory transduction domain, spacer sequence and signal peptide. The other functional protein is not particularly limited and may be appropriately selected depending on the function to be imparted to C A R of the present invention. For example, functional proteins used for the purpose of facilitating the purification and detection of CAR include My c tag, His tag, HA tag, FLAG tag (registered trademark, Sigma—Aldrich), and fluorescent protein. Quality tags á G FP, etc.) and the like.
[0059] 以上、 本発明の C A Rにおける各領域等の例について説明したが、 これら 領域等に関する具体的なアミノ酸配列は、 当業者であれば、 公知の文献や N CB I (h t t p : //www. n c b i . n I m . n i h . g o v/g u i d e/) 等のデータベースを検索して適宜入手することができる。 また、 そのようにして入手できる典型的なアミノ酸配列 (例えば、 NCB I レフ ァレンスシークェンス) に限らず、 本発明に係る領域等は、 当該領域が担う 機能を維持している限り、 それら典型的なアミノ酸配列に対する改変体、 相 同体も含み得る。 また、 かかる改変体、 相同体は、 典型的なアミノ酸配列に 対し、 通常高い相同性を有する。 高い相同性は、 通常 60%以上であり、 好 ましくは 70 %以上、 より好ましくは 80 %以上、 さらに好ましくは 90 % 以上 (例えば、 95 %以上、 96 %以上、 97 %以上、 98 %以上、 99% 以上) である。 [0059] The examples of each area in the CAR of the present invention have been described above. Those skilled in the art can search for a specific amino acid sequence regarding a region or the like by searching known literature or a database such as N CB I (http: //www. ncbi .n Im m. nih. gov/guide/). It can be obtained as appropriate. Further, not only the typical amino acid sequence thus obtained (for example, NCB I reference sequence), but also the region according to the present invention, as long as the function of the region is maintained, It may also include variants and homologues of the amino acid sequence. In addition, such a variant or homologue usually has high homology to a typical amino acid sequence. The high homology is usually 60% or more, preferably 70% or more, more preferably 80% or more, further preferably 90% or more (for example, 95% or more, 96% or more, 97% or more, 98% or more. More than 99%).
[0060] 上述のとおり、 本発明の 「切断用 CAR」 は、 N末端側から順に少なくと も、 抗原結合領域、 膜貫通領域及びプロテアーゼが、 直接又は間接的に連結 されてなるものであればよいが、 N末端側から順に、 シグナルペプチド、 抗 原結合領域、 スぺーサー配列、 膜貫通領域、 スぺーサー配列及びプロテアー ゼが連結されてなるものが好ましい。 [0060] As described above, the "cleaving CAR" of the present invention is, as long as it comprises, in order from the N-terminal side, at least an antigen-binding region, a transmembrane region and a protease, which are directly or indirectly linked. However, it is preferable that the signal peptide, the antigen binding region, the spacer sequence, the transmembrane region, the spacer sequence and the protease are linked in this order from the N-terminal side.
[0061] なお、 後述の実施例において示すとおり、 自己切断によって遊離したプロ テアーゼによる、 抗原認識非特異的な活性化用 CARの切断を抑制するとい う観点から、 本発明の 「切断用 CAR」 は、 前記プロテアーゼによって切断 される部位を含まない。 C A Rが当該部位を含まないことは、 当業者であれ ば、 例えば、 ぺプチドデータべース (ME RO PS、 h t t p s : //w w w. e b i . a c . u k/me r o p s /等) を検索することによって、 確 認することができる。 [0061] As will be shown in Examples described later, from the viewpoint of suppressing the cleavage of the antigen recognition nonspecific activation CAR by the protease released by self-cleavage, the "cleavage CAR" of the present invention. Does not include a site cleaved by the protease. If the CAR does not include the relevant part, those skilled in the art can search for peptide databases (ME RO PS, https: //ww w. ebi .ac .uk/me rops / etc.), for example. By doing so, we can confirm.
[0062] 本発明の 「活性化用 CAR」 は、 N末端側から順に少なくとも、 抗原結合 領域、 膜貫通領域、 プロテアーゼによって切断される部位及びシグナル伝達 因子が、 直接又は間接的に連結されてなるものであればよいが、 N末端側か ら順に、 シグナルペプチド、 抗原結合領域、 スぺーサー配列、 膜貫通領域、 共刺激伝達ドメイン、 スぺーサー配列、 プロテアーゼによって切断される部 \¥0 2020/175366 27 卩(:171? 2020 /007038 [0062] The "activating CAR" of the present invention comprises, in order from the N-terminal side, at least an antigen-binding region, a transmembrane region, a site cleaved by a protease and a signal transduction factor, which are directly or indirectly linked. Anything can be used, but from the N-terminal side, the signal peptide, the antigen-binding region, the spacer sequence, the transmembrane region, the costimulatory transduction domain, the spacer sequence, and the part cleaved by the protease. \¥0 2020/175 366 27 卩 (: 171? 2020 /007038
位及びシグナル伝達因子が、 直接又は間接的に連結されてなるものが好まし い。 It is preferred that the position and the signal transduction factor are directly or indirectly linked.
[0063] <キメラ抗原受容体をコードするヌクレオチド> [0063] <Nucleotide Encoding Chimeric Antigen Receptor>
本発明は、 本発明の〇八 をコードするポリヌクレオチドを提供する。 [0064] 一本鎖抗体等の抗原結合領域をコードするヌクレオチド配列の情報につい ては、 標的とする抗原を認識するモノクローナル抗体を作製し、 かかるモノ クローナル抗体のアミノ酸配列をエドマン法等の公知の方法で決定し、 かか るアミノ酸配列に基づいて入手することもできる。 また、 当該モノクローナ ル抗体を産生するハイプリ ドーマのヌクレオチド配列を解析することによっ ても入手することができる。 The present invention provides a polynucleotide encoding the XVIII of the present invention. [0064] For information on the nucleotide sequence encoding the antigen-binding region of a single-chain antibody or the like, a monoclonal antibody that recognizes a target antigen is prepared, and the amino acid sequence of such a monoclonal antibody is determined by a known method such as Edman method. It can also be obtained based on the amino acid sequence determined by the method. It can also be obtained by analyzing the nucleotide sequence of a hybridoma producing the monoclonal antibody.
[0065] また、 抗原結合領域を含め、 本発明の〇 [¾における各領域等をコードす る具体的なヌクレオチド配列は、 当業者であれば、 公知の文献や 1\1〇巳 丨 (
Figure imgf000028_0001
[0065] In addition, specific nucleotide sequences encoding each region and the like of the present invention including the antigen-binding region can be known to those skilled in the art by publicly known literature or 1\1 巳丨 (
Figure imgf000028_0001
) 等のデータべースを検索しても適宜入手することができる。 さらに、 上記 領域等をコードするヌクレオチド配列は、 公知のものに限定されず、 上記各 領域等をコードするヌクレオチド配列であれば用いることができる。 遺伝子 コードの縮重により、 1つのアミノ酸に対応するコドンは複数存在する。 し たがって、 同一のアミノ酸配列をコードするヌクレオチド配列は多数存在す る。 本発明のポリヌクレオチドのヌクレオチド配列は、 本発明の〇八[¾をコ -ドする限り、 遺伝子コードの縮重によって生じる複数のヌクレオチド配列 のいずれであってもよい。 さらにまた、 〇八 を発現する細胞細胞における 発現を最適化するために、 本発明の〇 における各領域等をコードするヌ クレオチド配列において、 アミノ酸をコードするための選択されるコドンは 改変されてもよい。 You can also get it as appropriate by searching a database such as. Furthermore, the nucleotide sequence encoding the above regions and the like is not limited to known ones, and any nucleotide sequence that encodes the above regions or the like can be used. Due to the degeneracy of the genetic code, there are multiple codons for an amino acid. Therefore, there are many nucleotide sequences that encode the same amino acid sequence. The nucleotide sequence of the polynucleotide of the present invention may be any of a plurality of nucleotide sequences generated by the degeneracy of the genetic code, as long as it encodes the eighteenth of the present invention. Furthermore, in order to optimize the expression in the cell expressing 08, in the nucleotide sequence encoding each region or the like in 0 of the present invention, the selected codon for encoding the amino acid may be modified. Good.
[0066] そして、 当業者であれば、 このようなヌクレオチド配列情報に基づき、 化 学合成する方法 (ホスホロアミダイ ト法等) や、 〇[¾によって増幅する方 法等の公知の技術を用い、 各領域等をコードするポリヌクレオチドを作製す ることができる。 さらに、 このようにして得られた各領域等をコードするポ \¥02020/175366 28 卩(:171? 2020 /007038 [0066] Then, those skilled in the art can use known techniques such as a method for chemical synthesis (phosphoramidite method, etc.) and a method for amplification according to the following method based on such nucleotide sequence information. A polynucleotide encoding a region or the like can be prepared. Furthermore, the code that encodes each area obtained in this way is \¥02020/175 366 28 卩 (: 171? 2020 /007038
リヌクレオチドを、 直接又はスぺーサー介して連結することにより、 本発明 の〇八 をコードするポリヌクレオチドを得ることができる。 なお、 各領域 等をコードするポリヌクレオチドの連結は、 後述の実施例において示すよう に、 例えば、 才ーバーラップ伸長 〇[¾法 (〇 0 「 1 3 6父 6门 3 I 〇 n 〇[¾) 等の公知の方法を用いて行うことができる。 By linking the polynucleotides directly or via a spacer, the polynucleotide encoding XVIII of the present invention can be obtained. The ligation of polynucleotides encoding each region can be carried out, for example, as described in the Examples below, by means of the burlap extension 〇[¾ method (〇 0 ”1 3 6 father 6 门 3 I 〇 n 〇 [¾). It can be performed using a known method such as.
[0067] <キメラ抗原受容体をコードするポリヌクレオチドを含むベクター> <Vector containing a polynucleotide encoding a chimeric antigen receptor>
本発明は、 上述のポリヌクレオチドを含むベクターを提供する。 本発明の ベクターとしては直鎖状でも環状でもよく、 例えば、 ウイルスベクター、 プ ラスミ ドべクター、 エピソーマルべクター、 人工染色体べクター、 トランス ポゾンベクターが挙げられる。 The present invention provides a vector containing the above-mentioned polynucleotide. The vector of the present invention may be linear or circular, and examples thereof include viral vectors, plasmid vectors, episomal vectors, artificial chromosome vectors, and transposon vectors.
[0068] ウイルスベクターとしては、 例えば、 レンチウイルス等のレトロウイルス ベクター、 センダイウイルスベクター、 アデノウイルスベクター、 アデノ随 伴ウイルスベクター、 ヘルぺスウイルスベクター、 ワクシニアウイルスべク 夕一、 ボックスウイルスベクター、 ポリオウイルスベクター、 シルビスウイ ルスべクター、 ラブドウイルスベクター、 パラミクソウイルスべクター、 才 ルソミクソウイルスベクターが挙げられる。 [0068] Examples of viral vectors include retrovirus vectors such as lentivirus, Sendai virus vector, adenovirus vector, adeno-associated virus vector, herpes virus vector, vaccinia virus vector, box virus vector, polio. Viral vectors, Sylvis virus vectors, rhabdovirus vectors, paramyxovirus vectors, and rhusomyxovirus vectors.
[0069] プラスミ ドベクターとしては、 例えば、
Figure imgf000029_0001
1、 八 1 _ 1 1
Figure imgf000029_0002
[0069] As the plasmid vector, for example,
Figure imgf000029_0001
1, eight 1 _ 1 1
Figure imgf000029_0002
、 動物細胞発現用プラスミ ドベクターが挙げられる。 , And a plasmid vector for expressing animal cells.
[0070] エピソーマルべクターは、 染色体外で自律複製可能なベクターである。 エ ピソーマルべクターを用いる具体的手段は、 公知である (丫リら、 3〇 I 6 门〇 6、 2009年、 324, 797 -801ページ、 参照) 。 エピソー マルべクターとしては、 例えば、 £ 6 V, 3 40等に由来する自律複製に 必要な配列をベクター要素として含むベクターが挙げられる。 自律複製に必 要なベクタ—要素としては、 具体的には、 複製開始点と、 複製開始点に結合 して複製を制御するタンパク質をコードする遺伝子であり、 例えば、
Figure imgf000029_0003
/ にあっては複製開始点〇 「 丨 ?と巳巳 八一 1遺伝子、 3 40にあっては 複製開始点〇 「 丨 と 3 40 !_丁遺伝子が挙げられる。 [0071] 人工染色体べクターとしては、 例えば、 YAC (Ye a s t a r t i f i c i a I c h r omo s ome) ベクター、 B A C (B a c t e r i a I a r t i f i c i a l c h r omo s ome) ベクター、 PAC (P 1 — d e r i v e d a r t i f i c i a l c h r omo s ome) べク 夕一が挙げられる。
[0070] Episomal vector is a vector that is capable of autonomous replication outside the chromosome. The specific means of using an episomal vector is known (see 丫Ri et al., 30 I 6 鈨 6, 2009, 324, 797 -801, page). Examples of the episomal vector include a vector containing, as a vector element, a sequence required for autonomous replication, which is derived from £6V, 340 and the like. The vector elements required for autonomous replication are, specifically, a replication origin and a gene encoding a protein that regulates replication by binding to the replication origin.
Figure imgf000029_0003
In the case of /, the origin of replication is 〇“ 丨? and Mitsumi Yaichi 1 gene, and in the case of 340, the origin of replication 〇“ 丨 and 340!_Ding gene. [0071] Examples of artificial chromosome vectors include YAC (Ye astartificia I chr omo s ome) vector, BAC (B acteria I artificial chr omo s ome) vector, and PAC (P 1 — derivedartificial chr omo s ome) vector. Is mentioned.
[0072] これらべクターにおいて、 増殖が緩やかな細胞であっても高効率に遺伝子 を導入し易く、 また安定発現株の樹立が容易であるという観点から、 レトロ ウイルスベクターが好ましく、 レンチウイルスがより好ましい。 [0072] In these vectors, a retrovirus vector is preferable, and a lentivirus is more preferable because it is easy to introduce a gene with high efficiency even in cells with slow growth and a stable expression strain can be easily established. preferable.
[0073] 本発明のベクターには、 上述の C A Rをコードするポリヌクレオチドの他 に、 プロモーター、 エンハンサー、 ポリ A付加シグナル、 夕ーミネーター等 の発現制御配列、 複製開始点や複製開始点に結合して複製を制御するタンパ ク質をコードするヌクレオチド配列、 他のタンパク質をコードするヌクレオ チド等を含んでいてもよい。 [0073] In addition to the above-mentioned CAR-encoding polynucleotide, the vector of the present invention binds to an expression control sequence such as a promoter, an enhancer, a poly A addition signal, and an expression terminator, an origin of replication or an origin of replication. It may contain a nucleotide sequence encoding a protein that regulates replication, a nucleotide encoding another protein, and the like.
[0074] 上述の C A Rをコードするポリヌクレオチドや後述の他のタンパク質をコ -ドするヌクレオチドは、 プロモーターの下流に作動可能に配置することで 、 各ポリヌクレオチドを効率よく転写することが可能となる。 かかる 「プロ モーター」 としては、 例えば、 CM V (サイ トメガロウイルス) プロモータ _、 S Raプロモーター、 S V 40初期プロモーター、 レトロウイルスの L T R、 R S V (ラウス肉腫ウイルス) プロモーター、 HSV-TK (単純へ ルぺスウイルスチミジンキナーゼ) プロモーター、 E F 1 aプロモーター、 メタロチオネインプロモーター、 ヒートシヨックプロモーター等が挙げられ る。 [0074] A polynucleotide encoding the above-mentioned CAR and a nucleotide encoding another protein described below can be efficiently transcribed by arranging the polynucleotide operably downstream of the promoter. .. Examples of such "promoters" include CMV (cytomegalovirus) promoter _, S Ra promoter, SV40 early promoter, retrovirus LTR, RSV (Rous sarcoma virus) promoter, HSV-TK (simple helix). Pesvirus thymidine kinase) promoter, EF 1 a promoter, metallothionein promoter, heat shock promoter, etc.
[0075] 「他のタンパク質をコードするヌクレオチド」 としては、 例えば、 蛍光夕 ンパク質遺伝子、 レポーター遺伝子、 薬剤耐性遺伝子等のマーカー遺伝子、 サイ トカイン等の T細胞活性化に関与する分子をコードする遺伝子等を挙げ ることができる。 また、 例えば、 I R ES、 2 Aペプチド配列 (例えば、 T h o s e a a s i g n a由来の 2Aペプチド (T 2A) ) をコードする D N A等を用いることにより、 前記他のタンパク質は上述の C A Rと共にポ リシストロニックに発現させることが可能となる。 [0075] Examples of "nucleotides encoding other proteins" include, for example, fluorescent protein genes, reporter genes, marker genes such as drug resistance genes, and genes encoding molecules involved in T cell activation such as cytokines. Etc. can be mentioned. In addition, for example, by using the DNA encoding the IR ES, 2 A peptide sequence (for example, T hoseaasigna-derived 2A peptide (T 2A)), the other protein is combined with the CAR described above. It can be expressed in a liscistronic manner.
[0076] さらに、 CARを発現する細胞を投与した対象 (がん患者等) の体内で、 投与した C A R発現細胞のアポトーシスを適宜誘導するため、 自殺遺伝子を 「他のタンパク質をコードするヌクレオチド」 として、 本発明のベクターは 含み得る。 自殺遺伝子としては、 例えば、 単純へルベスウイルスのチミジン キナーゼ (H S V-T K) 、 誘導性カスパーゼ 9 ( i n d u c i b l e c a s p a s e 9 : i C a s p 9) が挙げられる。 また、 かかる遺伝子の機能 を活性化する薬剤としては、 H S V— T Kに対してはガンシクロビル、 i C a s p 9に対しては二量体誘導化合物 (c h e m i c a l i n d u c t i o n o f d i me r i z a t i o n : C I D) である A P 1 903等を 挙げることができる (Co o p e r L J . ら、 C y t o t h e r a p y. [0076] Furthermore, in order to properly induce apoptosis of the administered CAR-expressing cells in the body of a subject (cancer patient, etc.) to which CAR-expressing cells have been administered, the suicide gene is defined as "nucleotides encoding other proteins". The vector of the present invention may include: Examples of the suicide gene include thymidine kinase (H S V-T K) of herpes simplex virus and inducible caspase 9 (in d u c i b l e c a s p a s e 9 :i C a s p 9). In addition, as agents that activate the function of such genes, AP1 903, which is a ganciclovir for HSV-TK, and a dimer induction compound (CID) for iCasp9, etc. (Co oper LJ. et al., C ytotherap y.
2006 ; 8 (2) : 1 05- 1 7ページ、 J e n s e n M. C. ら . B i 〇 I B l o o d Ma r r ow T r a n s p l a n t . 201 0 S e p ; 1 6 (9) = 1 245— 56ベージ、 J o n e s BS· 、 F r o n t P h a r m a c o l . 201 4 N o v 27 ; 5 : 254. M i n a g a w a K . , P h a r m a c e u t i c a l s (B a s e I ) . 201 5 Ma y 8 ; 8 (2) : 230-49ぺージ、 B o l e-R i c h a r d E . F r o n t P h a r m a c o l . 201 5 A u g 25 ; 6 : 1 74 参照) 。 2006; 8 (2): 1 05- 1 7 pages, J ensen MC et al. B i 〇 IB lood Ma rr ow T ransplant. 201 0 S ep ;1 6 (9) = 1 245—56 pages, J ones BS , F ront P harmacol .201 4 N ov 27 ;5 :254. M inagawa K. ,P harmaceuticals (B ase I ). 201 5 May 8 ;8 (2) :Page 230-49, B ol eR ichard E. Front Pharmacol. 201 5 Aug 25; 6: 1 74).
[0077] また、 本発明において、 切断用 C A Rをコードするポリヌクレオチドと、 活性化用 C A Rをコードするポリヌクレオチドとは、 単一のべクターに組み 込んでもよく、 各々別々のべクターに組み込んでもよいが、 かかるベクター により形質転換され、 切断用 CAR及び活性化用 CARを発現する T細胞の 、 抗原認識非依存的な活性化をより抑制し易くなるという観点から、 別々の ベクターに組み込むことが望ましい。 また、 単一のべクターに組み込む際に は、 例えば、 I R ES、 2 Aペプチド配列をコードする DN A等を該ベクタ —に揷入することにより、 ポリシストロニックに切断用 C A R及び活性化用 C A Rを発現させることが可能となる。 \¥0 2020/175366 31 卩(:171? 2020 /007038 [0077] In the present invention, the polynucleotide encoding the cleavage CAR and the polynucleotide encoding the activation CAR may be incorporated into a single vector or may be incorporated into separate vectors. However, it is preferable to incorporate them in separate vectors from the viewpoint of facilitating suppression of the antigen recognition-independent activation of T cells transformed with such a vector and expressing a cleavage CAR and an activation CAR. desirable. In addition, when incorporating into a single vector, for example, IR ES, DN A encoding the 2 A peptide sequence, etc. are inserted into the vector to allow polycistronic cleavage CAR and activation. It becomes possible to express CAR. \¥0 2020/175 366 31 卩 (: 171? 2020 /007038
[0078] <キメラ抗原受容体を発現する細胞> <Cells Expressing Chimeric Antigen Receptor>
本発明は、 本発明の〇 を発現する細胞を提供する。 本発明の細胞は、 上述の本発明の〇八 をコードするポリヌクレオチド又はべクターを、 細胞 に導入することにより得ることができる。 The present invention provides a cell expressing O of the present invention. The cell of the present invention can be obtained by introducing the polynucleotide or vector encoding the above-mentioned XVIII of the present invention into the cell.
[0079] 本発明のポリヌクレオチド又はべクターが導入される 「細胞」 は、 哺乳動 物由来の細胞であることが好ましく、 例えば、 ヒト由来の細胞、 又は齧歯類 (マウス、 ラッ ト等) 、 ウシ、 ヒツジ、 ウマ、 イヌ、 ブタ、 サル等の非ヒト 哺乳動物由来の細胞を用いることができる。 細胞の種類は、 特に限定されず 、 血液、 骨髄液等の体液や、 脾臓、 胸腺、 リンパ節等の組織、 腫瘍やがん性 腹水等から採取された細胞等を使用することができる。 好ましい例としては 、 免疫細胞を挙げることができ、 末梢血から分離された末梢血単核球等を好 適に用いることができる。 末梢血単核球に含まれる細胞の中でも、 特に好ま しい細胞としては、 丁細胞、
Figure imgf000032_0001
細胞、 及びこれらの前駆細胞を挙げられる 。 丁細胞の種類は、 特に限定されず、 《/3丁細胞、 ァ 5丁細胞、 0 0 8陽性 丁細胞、 0 0 4陽性丁細胞、 細胞傷害性丁細胞 (<3丁 1_) 、 腫瘍浸潤丁細胞 、 エフエクターメモリー丁細胞 (丁巳1\/1) 、 セントラルメモリー丁細胞 (丁 , ナチュラルキラー丁細胞等のいずれの丁細胞であってもよい。
[0079] The "cell" into which the polynucleotide or the vector of the present invention is introduced is preferably a cell derived from a mammal, for example, a cell derived from human, or a rodent (mouse, rat, etc.). Cells derived from non-human mammals such as cow, sheep, horse, dog, pig and monkey can be used. The type of cells is not particularly limited, and it is possible to use body fluids such as blood and bone marrow fluid, tissues such as spleen, thymus, lymph nodes, cells collected from tumors and cancerous ascites, and the like. Preferred examples include immune cells, and peripheral blood mononuclear cells isolated from peripheral blood can be preferably used. Among the cells contained in peripheral blood mononuclear cells, particularly preferred cells are Ding cells,
Figure imgf000032_0001
Cells, and their progenitor cells. The type of Ding cells is not particularly limited, and is 《/3 Ding cells, 5 d cells, 08 positive D cells, 04 positive D cells, cytotoxic D cells (<3 1_), tumor invasion. It may be any type of Ding cell such as Ding cell, F-Ector memory Ding cell (Ding 1\/1), Central memory Ding cell (Ding, Natural killer Ding cell, etc.
[0080] 本発明に係る細胞は、 過剰な免疫反応等を抑えるタンパク質 (免疫チェッ クポイント物質等) の機能が抑制されている細胞であってもよい。 かかる夕 [0080] The cell according to the present invention may be a cell in which the function of a protein (such as an immune checkpoint substance) that suppresses an excessive immune reaction is suppressed. Such an evening
Figure imgf000032_0003
Figure imgf000032_0003
クラス I、
Figure imgf000032_0002
クラス I I、 〇八!_ 9が挙げられる。
Class I,
Figure imgf000032_0002
Class II, 08!_9.
[0081 ] また、 本発明に係る細胞は、 多家移植をし易くするために、 内在性の丁〇 [0081] In addition, the cells according to the present invention contain endogenous cells to facilitate polymorphic transplantation.
[¾、 !! !_八等のタンパク質の機能が抑制されている細胞であってもよい。 \¥0 2020/175366 32 卩(:171? 2020 /007038 [¾,! ! !_ It may be a cell in which the functions of proteins such as Yachi are suppressed. \¥0 2020/175 366 32 卩 (: 171? 2020 /007038
[0082] タンパク質の機能を抑制する方法としては、 前記タンパク質をコードする 遺伝子を標的とするノックアウト法、 前記遺伝子の転写産物と相補的な 3 (二重鎖[¾ 、 例えば 3 丨 [¾ ) を用いる方法、 当該転写産物と 相補的なアンチセンス 8 を用いる方法、 前記転写産物を特異的に開裂す るリボザイム活性を有する
Figure imgf000033_0001
八を用いる方法が挙げられる。 また、 部位特 異的なヌクレアーゼ (例えば、 ジンクフィンガーヌクレアーゼ ( 1\1) 、 転写活性化様エフェクターヌクレアーゼ (丁八1_巳 1\1) 、
Figure imgf000033_0002
[0082] As a method of suppressing the function of a protein, a knockout method targeting a gene encoding the protein, 3 complementary to the transcription product of the gene (double-stranded [¾, for example, 3 侨 [¾]) Method of using, method of using antisense 8 complementary to the transcript, having ribozyme activity of specifically cleaving the transcript
Figure imgf000033_0001
The method using eight is mentioned. In addition, site-specific nucleases (eg, zinc finger nuclease (1\1), transcription activation-like effector nuclease (Chohachi 1_Mi 1\1),
Figure imgf000033_0002
3 3
Figure imgf000033_0003
二本鎖切断酵素) を利用して、 標的遺伝子を改変する方法 であるゲノム編集法も、 前記物質の機能を抑制するために好適に用いられる
3 3
Figure imgf000033_0003
A genome editing method, which is a method of modifying a target gene using a double-strand cleaving enzyme), is also suitably used for suppressing the function of the substance.
[0083] 本発明のポリヌクレオチド又はべクターを細胞に導入する方法としては、 リポフェクション法、 マイクロインジェクション法、 リン酸カルシウム法、[0083] As the method for introducing the polynucleotide or vector of the present invention into cells, lipofection method, microinjection method, calcium phosphate method,
0巳八巳ーデキストラン法、 エレクトロボーレーション法、 パーティクルガ ン法等を挙げることができる。 また、 本発明のベクターがレトロウイルスべ クターである場合、 ベクターが有している 1_丁 配列及びパッケージングシ グナル配列に基づいて適切なパッケージング細胞を選択し、 これを使用して レトロウイルス粒子を調製してもよい。 パッケージング細胞としては、 例え ば、 〇 1 3、 八3 1 7、 〇 +巳一8 6、 〇 ? + 6 八〇1 - 1 2、 9 3 I
Figure imgf000033_0004
「 丨 が挙げられる。 また、 トランスフェクション効率の高い 2 9 3細胞や 2 9 3丁細胞をパッケージング細胞として用いることもできる。
Examples include the 0-Hachimi-dextran method, the electroboration method, and the particle gun method. In addition, when the vector of the present invention is a retroviral vector, an appropriate packaging cell is selected based on the 1_c sequence and the packaging signal sequence of the vector, and this is used to select a retrovirus. Particles may be prepared. As packaging cells, for example, 〇 13 ,8 3 17 ,○ + Michi 8 6 ,○ ?+ 6 880 1-1 2, 9 3 I
Figure imgf000033_0004
In addition, 293 cells and 293 cells with high transfection efficiency can also be used as packaging cells.
[0084] 本発明において、 切断用 0八 をコードするべクターと、 活性化用 0八[¾ をコードするべクターとを別々に細胞に導入する場合、 導入するべクターの 比率は、 当業者であれば、 各 0 の発現に用いるベクターの種類及びプロ モータの強さ、 並びにプロテアーゼの種類等を考慮しながら、 適宜調整する ことができる。 例えば、 これらべクターにより形質転換され、 切断用 0八[¾ 及び活性化用〇 を発現する丁細胞の、 抗原認識非依存的な活性化がより 抑制され易くなるという観点から、 細胞に導入するこれらべクターの重量比 又はモル比 (切断用 0 をコードするべクターの重量又はモル量:活性化 用 C A Rをコードするべクターの重量又はモル量) は、 5 : 1〜 1 0 0 : 1 であることが好ましく、 1 0 : 1〜 5 0 : 1であることがより好ましい。 [0084] In the present invention, when the vector for cleavage 08 and the vector for activation 08 [¾ are separately introduced into cells, the ratio of vectors to be introduced is not limited to those skilled in the art. If so, it can be appropriately adjusted in consideration of the type of vector and the strength of the promoter used for expression of each 0, the type of protease, and the like. For example, from the viewpoint that the antigen recognition-independent activation of Ding cells transformed with these vectors and expressing Cleavage 08 [¾ and Activation O is more easily suppressed, they are introduced into the cells. Weight ratio or molar ratio of these vectors (weight or molar amount of vector coding for cleavage 0: activation The weight or molar amount of the vector coding the CAR for use in the present invention is preferably 5:1 to 100:1, and more preferably 10:1 to 50:1.
[0085] また、 本発明のポリヌクレオチド又はべクターを細胞に導入した後、 当該 細胞の C A Rの発現は、 フローサイ トメ トリー、 R T - P C R、 ノーザンブ ロッティング、 ウェスタンブロッティング、 E L I S A、 蛍光免疫染色等の 公知の方法により確認することができる。 [0085] In addition, after the polynucleotide or vector of the present invention is introduced into cells, the expression of CAR in the cells can be measured by flow cytometry, RT-PCR, Northern blotting, Western blotting, ELISA, fluorescent immunostaining, etc. It can be confirmed by a known method.
[0086] <医薬組成物等 > [0086] <Pharmaceutical composition, etc.>
後述の実施例、 並びに図 1及び 2において示すとおり、 切断用 C A R及び 活性化用 C A Rを発現させた T細胞は、 各 C A Rを介して 2種の抗原を認識 することにより、 正常細胞には細胞障害等をもたらすことなく、 標的細胞に 対しては細胞障害等を奏することが可能となる。 As shown in the examples below and in Figures 1 and 2, T cells that express the cleavage and activation CARs recognize normal cells by recognizing two types of antigens through each CAR. It is possible to cause cell damage or the like to the target cell without causing damage or the like.
[0087] 具体的には、 図 1 に示す、 前記シグナル伝達分子として、 細胞膜より遊離 した場合に機能する遊離性シグナル伝達因子を用いる系 (ポジティブシステ ム) においては、 標的細胞において発現する 2つの標的抗原を、 切断用 C A R及び活性化用 C A Rが各々抗原結合領域を介して認識した際に、 活性化さ れた前記プロテアーゼによる活性化用 C A Rの切断が生じ、 前記シグナル伝 達因子は、 細胞膜より遊離することにより機能する。 そして、 これら C A R を発現する細胞は活性化され、 標的細胞に細胞障害等をもたらすことが可能 となる。 また、 正常細胞が、 前記 2つの標的抗原のうちのいずれか一方の抗 原しか発現していない場合には、 切断用 C A R及び活性化用 C A Rを発現す る細胞は活性化されないため、 当該細胞に細胞障害等はもたらされない。 [0087] Specifically, as shown in Fig. 1, in the system using a free signal transduction factor that functions when released from the cell membrane as the signal transduction molecule (positive system), two signals expressed in target cells are used. When the cleaving CAR and the activating CAR recognize the target antigen through the antigen-binding region, the activated CAR cleaves the activating CAR, and the signal transduction factor is the cell membrane. It works by being more liberated. Then, the cells expressing these C A Rs are activated, and it becomes possible to bring about cell damage and the like in the target cells. Further, when the normal cell expresses only one of the two target antigens, the cell expressing the cleavage CAR and the activation CAR is not activated. Does not cause cell damage.
[0088] また、 図 2に示す、 前記シグナル伝達分子として、 細胞膜の内側に存在し ている場合に機能する、 膜局在型シグナル伝達因子を用いる系 (ネガティブ システム) においては、 正常細胞において発現する 2つの抗原を、 切断用 C A R及び活性化用 C A Rが各々抗原結合領域を介して認識した際には、 当該 シグナル伝達因子は、 活性化されたプロテアーゼによる活性化用 C A Rの切 断によって細胞膜から遊離することにより不活化され、 正常細胞に細胞障害 等は及ぼされない。 一方、 標的細胞において、 切断用 C A Rが認識する抗原 \¥02020/175366 34 卩(:171? 2020 /007038 [0088] In addition, as shown in Fig. 2, in the system using a membrane-localized signal transduction factor (negative system) that functions when it is present inside the cell membrane as the signal transduction molecule, it is expressed in normal cells. When the cleaving CAR and the activating CAR recognize the two antigens, respectively, via the antigen-binding region, the signal transduction factor is cleaved from the cell membrane by cleavage of the activating CAR by an activated protease. When it is released, it is inactivated and normal cells are not damaged. On the other hand, the antigen recognized by the cleavage CAR in the target cell \¥02020/175366 34 卩 (: 171? 2020 /007038
は発現せず、 活性化用〇 が認識する抗原が発現する場合には、 前記プロ テアーゼは活性化されることなく、 従来の〇八[¾同様に、 活性化用〇八[¾の 標的抗原認識に応じ、 前記シグナル伝達分子は細胞膜内側にて機能し、 これ ら〇 を発現する細胞は活性化され、 標的細胞に細胞障害等をもたらされ る。 When the antigen recognized by the activation antigen is expressed, the protease is not activated, and the activation antigen is the target antigen of the activation α[8] In response to the recognition, the signal transduction molecule functions inside the cell membrane, and the cells expressing O are activated, resulting in cytotoxicity or the like in the target cells.
[0089] したがって、 本発明は、 本発明の細胞を含む、 標的細胞が関与する疾患を 治療又は予防するための医薬組成物を提供する。 [0089] Therefore, the present invention provides a pharmaceutical composition comprising the cell of the present invention for treating or preventing a disease involving a target cell.
[0090] かかる疾患としては、 特に制限はなく、 例えば、 がん、 感染症、 炎症性疾 患が挙げられる。 「がん」 としては、 より具体的に、 慢性リンパ性白血病 ( 標的抗原 = 001 9、 005等) 、 巳細胞性慢性リンパ性白血病 (標的抗原 : 001 9, 0052, 001 60等) 、 びまん性大細胞型巳細胞リンパ腫 (標的抗原 = 001 9、 0020, 0022等) 、 急性骨髄性白血病 (標的 抗原: 〇 01 3、 〇 033等) 、 多発性骨髄腫 (標的抗原: 巳〇 IV!八、 〇 0 1 38等) 、 乳がん (標的抗原: 1~1巳[¾ 2、
Figure imgf000035_0001
神経芽細胞腫 ( 標的抗原: ◦ 02、 1\10八1\/1、 八 !_[<) 、 神経膠腫 (標的抗原: 巳◦ [¾、 ビメンチン等) 、 結腸直腸がん (標的抗原:葉酸受容体、 〇八 1 25等) 、 腎細胞がん (標的抗原:炭酸脱水酵素 I X (0八 I X) 、 0250等) 、 前 立腺がん (標的抗原: 31\/1 等) 、 大腸がん (標的抗原: 33等) が挙 げられる。 「感染症」 としては、 より具体的に、 1~1 丨 V、 1~1巳 、 巳巳 、 〇1\/1 、 1~1 ? 、 ラッサウイルス、 インフルエンザウイルス、 真菌等の感染 症が挙げられる。 「炎症性疾患」 としては、 より具体的に、 全身性エリテマ 卜ーデス (3 !_巳) 、 糖尿病、 関節リウマチ ([¾八) 、 反応性関節炎、 多発 性硬化症
Figure imgf000035_0002
、 尋常性天疱瘡、 セリアック病、 クローン病、 炎症性腸疾 患、 潰瘍性大腸炎、 自己免疫性甲状腺疾患、 X連鎖無ガンマグロブリン血症 が挙げられる。
[0090] The disease is not particularly limited, and examples thereof include cancer, infectious disease, and inflammatory disease. More specifically, “cancer” includes chronic lymphocytic leukemia (target antigen = 001 9, 005, etc.), C-cell chronic lymphocytic leukemia (target antigen: 001 9, 0052, 001 60, etc.), diffuse Large cell mast cell lymphoma (target antigen = 001 9, 0020, 0022, etc.), acute myelogenous leukemia (target antigen: 〇 01 3, 〇 033, etc.), multiple myeloma (target antigen: M 〇 IV!8, 〇 0 1 38 etc.), breast cancer (target antigen: 1 to 1 [[2,
Figure imgf000035_0001
Neuroblastoma (target antigen: ◦ 02, 1\10 8 1\/1, 8 !_[<), glioma (target antigen: † ◦ [¾, vimentin, etc.), colorectal cancer (target antigen) : Folate receptor, 08/125 etc.), Renal cell carcinoma (Target antigen: Carbonic anhydrase IX (08 IX), 0250 etc.), Prostatic adenocarcinoma (Target antigen: 31\/1 etc.), Colorectal cancer (target antigen: 33 etc.) is listed. More specifically, ``infectious diseases'' include infectious diseases such as 1 to 1 V, 1 to 1, Minami, 〇1\/1, 1 to 1?, Lassa virus, influenza virus, and fungi. To be More specifically, “inflammatory diseases” include systemic lupus erythematosus (3!_M), diabetes, rheumatoid arthritis ([¾8), reactive arthritis, multiple sclerosis).
Figure imgf000035_0002
, Pemphigus vulgaris, celiac disease, Crohn's disease, inflammatory bowel disease, ulcerative colitis, autoimmune thyroid disease, X-linked agammaglobulinemia.
[0091] 本発明の医薬組成物は、 本発明の細胞に加えて、 薬学的に許容される担体 等の他の成分を含んでいてもよい。 薬学的に許容される担体としては、 細胞 培養培地、 生理食塩水、 リン酸緩衝液、 クエン酸緩衝液が挙げられる。 また \¥0 2020/175366 35 卩(:171? 2020 /007038 [0091] The pharmaceutical composition of the present invention may contain other components such as a pharmaceutically acceptable carrier in addition to the cells of the present invention. Examples of the pharmaceutically acceptable carrier include cell culture medium, physiological saline, phosphate buffer and citrate buffer. Also \¥0 2020/175 366 35 卩 (: 171? 2020 /007038
、 更なる他の成分として、 サイ トカイン等の丁細胞活性化因子、 免疫賦活剤 、 免疫チェックポイント阻害剤、 他の〇 を発現する細胞、 抗癌剤、 抗炎 症剤等を挙げることができるが、 これらに限定されない。 , And yet other components include Ding cell activating factor such as cytokine, immunostimulant, immune checkpoint inhibitor, other cells expressing O, anticancer agent, anti-inflammatory agent, etc., It is not limited to these.
[0092] また、 上述のとおり、 本発明の細胞を用いることにより、 標的細胞が関与 する疾患を治療又は予防することが可能となる。 したがって、 本発明は、 下 記治療又は予防方法も提供し得る。 [0092] Further, as described above, the use of the cells of the present invention makes it possible to treat or prevent a disease involving target cells. Therefore, the present invention may also provide the following treatment or prevention method.
[0093] 切断用 0 及び活性化用 0 を発現する細胞、 又は該細胞を含む医薬 組成物を、 対象に投与する工程を含む、 前記第 2の抗原を少なくとも発現す る標的細胞が関与する疾患を治療又は予防する方法。 [0093] A disease involving a target cell that expresses at least the second antigen, which comprises the step of administering to the subject a cell that expresses 0 for cleavage and 0 for activation, or a pharmaceutical composition containing the cell. A method of treating or preventing.
[0094] 本発明の細胞又は医薬組成物の対象への投与は、 特に制限されることはな く、 例えば、 注射 (静脈内投与等) 又は輸注によって行なうことができる。 また、 標的細胞が存在する部位 (例えば、 腫瘍内) に直接注入等することに より投与してもよい。 [0094] The administration of the cell or the pharmaceutical composition of the present invention to a subject is not particularly limited, and can be performed, for example, by injection (intravenous administration etc.) or infusion. Alternatively, it may be administered by direct injection or the like into the site where the target cells are present (for example, in a tumor).
[0095] 本発明の細胞又は医薬組成物の投与量は、 治療的に有効な量であればよく 、 当業者であれば、 投与対象の年齢、 性別及び体重等、 疾患の種類、 進行度 及び症状等、 並びに投与方法等により、 投与量及び投与間隔を、 適宜調整す ることができる。 例えば、 投与量としては、 1回の投与において、 投与細胞 の個数として、 1 X 1 〇3〜 1 X 1 0 1 0個/ 9 (体重) 、 好ましくは 1 X 1 0 4〜 1 X 1 〇9個/ 9 (体重) 、 より好ましくは 1 X 1 〇5〜 1 X 1 〇8個 (体重) とすることができる。 投与間隔としては、 例えば、 1週毎、 1 0〜 3 0日毎、 1月毎、 3〜 6月毎、 1年毎等とすることができる。 また 、 本発明の細胞は、 投与対象の体内で自律的に増殖できるため、 1回きりの 投与とすることもできる。 また、 投与後に体内の本発明の細胞数をモニタリ ングし、 その結果に応じて投与時期を決定するようにしてもよい。 [0095] The dose of the cell or the pharmaceutical composition of the present invention may be any amount that is therapeutically effective, and those skilled in the art will know the age, sex, weight, etc. of the administration subject, the type of disease, the degree of progression, and The dose and administration interval can be appropriately adjusted depending on the symptoms and the administration method. For example, the dose is 1×10 3 to 1× 10 10 cells/9 (body weight), preferably 1×10 4 to 1×10 1 as the number of cells to be administered per administration. 9/9 (weight), more preferably, to 1 X 1 〇 5 ~ 1 X 1 〇 8 (body weight). The administration interval can be, for example, weekly, every 10 to 30 days, every month, every 3 to 6 months, every year, etc. Further, the cells of the present invention can autonomously proliferate in the body of the subject to be administered, and thus can be administered only once. In addition, the number of cells of the present invention in the body may be monitored after administration, and the administration time may be determined according to the result.
[0096] また、 プロテアーゼ阻害剤による制御可能なプロテアーゼを有する切断用 〇八 を発現する本発明の細胞を用いた場合、 当該細胞が過剰に活性化する ことにより、 高サイ トカイン血症等の有害事象が生じた場合には、 対象にプ ロテアーゼに対する阻害剤を投与することによって、 本発明の細胞の活性を 抑制することもできる。 [0096] In addition, when the cells of the present invention that express a cleavage reagent having a protease that can be controlled by a protease inhibitor are used, excessive activation of the cells may cause adverse effects such as hypercytokineemia. In the event of an event, the subject's activity is inhibited by administering an inhibitor of protease to the subject. It can be suppressed.
実施例 Example
[0097] 以下、 実施例に基づいて本発明をより具体的に説明するが、 本発明は以下 の実施例に限定されるものではない。 また、 本実施例は、 下記材料及び方法 を用いて行なった。 [0097] Hereinafter, the present invention will be described more specifically based on Examples, but the present invention is not limited to the following Examples. In addition, this example was performed using the following materials and methods.
[0098] (細胞と試薬) [0098] (Cells and Reagents)
293 T細胞及び S K-B R-3細胞は、 1 0 %ウシ胎仔血清 ( F B S ; S i g m a A l d r i c h, S t . L o u i s, M〇, I o t # 1 4 M 0 67) を添加したダルベッコ改変イーグル培地 (DMEM ; N i s s u i P h a r m a c e u t i c a l , T o k y o, J a p a n) にて培養した。 なお、 S K_B R_3細胞は、 東京医科歯科大学 分子遺伝分野及び分子細 胞遺伝分野より分与頂いた。 293 T cells and SKB R-3 cells were Dulbecco's modified Eagles supplemented with 10% fetal bovine serum (FBS; Sigma Aldrich, St Louis, M 〇, I ot # 14 M 0 67). It culture|cultivated by the culture medium (DMEM;Nissui Pharmaceutical, Tokyo, Japan). SK_BR_3 cells were kindly provided by the Department of Molecular Genetics and Molecular Cellular Genetics of Tokyo Medical and Dental University.
[0099] K 562細胞、 R a j i細胞及び J u r k a t細胞は、 1 0%F BSを添 加した R PM I - 1 640 (F U J I F I LM Wa k o P u r e C h e m i c a l , O s a k a, J a p a n) にて培養した。 [0099] K562 cells, Raji cells and Jurkat cells were cultured in RPMI-1640 (FUJIFI LM Wako Pure Chemical, Osaka, Japan) supplemented with 10% FBS. did.
[0100] H I Vプロテアーゼ (H 丨 V P R) 阻害剤であるサキナビル (S a q u i n a v i r ) 及びネルフィナビル (N e l f i n a v i r) (N I H A I D S R e s e a r c h a n d R e t e r e n c e R e a g e n t P r o g r am) は、 東京医科歯科大学 ウイルス制御学分野より分与頂い た。 [0100] HIV Protease (H 丨 VPR) Inhibitor Saquinavir and Nelfinavir (NIHAIDSR esearchand R eterence Reagent P rogr am) were donated by the Department of Virus Control, Tokyo Medical and Dental University It was
[0101] 抗 R F Pウサギポリクローナル抗体 (PM005, 丨 〇 t # 045 ) は、 Me d i c a l a n d B i o l o g i c a l L a b o r a t o r i e s (N a g o y a, J a p a n) より、 抗 My c T a gウサギポリクロー ナル抗体 (06-549, l o t #24 1 65) は、 U p s t a t e B i o t e c h n o l o g y (L a k e P l a c i d, NY) より、 抗 S y n t a x i n 4マウスモノクローナル抗体 (QQ- 1 7, l o t # F 2 1 1 8) は、 S a n t a C r u z B i o t e c h n o l o g y (S a n t a C r u z, C A) より、 抗 /S-a c t i nマウスモノクローナル抗体 ( A 1 978, l o t # 1 1 7 K4873) は、 S i g m a A l d r i c h より、 西洋ワサビペルオキシダーゼ (H R P) 標識抗ウサギ丨 g G抗体 (N A 934 - 1 ML, l o t # 1 6836 1 38) 及び H R P標識抗マウス I g G抗体 (NA 93 1 0 - 1 mL, l o t # 1 4975046) は、 GE H e a l t h c a r e (C h i c a g o, I L) より購入した。 マウス ( G 3 A 1 ) m A b I g G 1 アイソタイプコントロール ( 54 1 5 , I 〇 t # 1 0) は Ce l I S i g n a l i n g T e c h n o l o g y (D a n v e r s, M A) より購入した。 P E標識抗ヒト C D 69抗体 (3 1 09 05, l o t # B 258745) 及び P e r C P/C y 5. 5標識抗ヒト H E R 2抗体 (3244 1 5, l o t # B 236448) は、 B i o l e g e n d (S a n D i e g o, CA) より購入した。 A P C マウス抗ヒ 卜 C D 1 9抗体 (5554 1 5, l o t # 7 1 086 1 2) は BD P h a r m i n g e n (S a n D i e g o, CA) より購入した。 [0101] The anti-RFP rabbit polyclonal antibody (PM005, 丨 〇 t # 045) was used as an anti-My c T ag rabbit polyclonal antibody (06-549, lot) from Medical and Biological Laboratories (N agoya, Japan). #24 1 65) is from U pstate B iotechnology (Lake Placid, NY), and anti-Syntaxin 4 mouse monoclonal antibody (QQ- 1, 7, lot # F 2 1 1 8) is S anta C ruz B iotechnology. (Santa Cruz, CA) anti-/Sactin mouse monoclonal antibody ( A 1 978, lot # 1 1 7 K4873) was obtained from Sigma A ldrich by horseradish peroxidase (HRP)-labeled anti-rabbit gG antibody (NA 934-1 ML, lot # 1 6836 1 38) and HRP-labeled anti-rabbit. Mouse IgG antibody (NA 93 10-1 mL, lot # 1 4975046) was purchased from GE Healthcare (Chicago, IL). Mice (G3A1) mAbIgG1 isotype control (54 15 ,I o t #10) was purchased from Cel IS ignaling Technology (D anvers, MA). PE-labeled anti-human CD 69 antibody (3 1 09 05, lot # B 258745) and Per CP/C y 5.5 labeled anti-human HER 2 antibody (3244 1 5, lot # B 236448) were labeled with B iolegend (S purchased from an Diego, CA). APC mouse anti-human CD 19 antibody (5554 1 5, lot # 7 1 086 1 2) was purchased from BD P harmingen (S an Diego, CA).
[0102] (発現べクター) [0102] (Expression vector)
図 3、 9及び 1 8に示す各キメラ抗原受容体 (CAR) 等をコードするプ ラスミ ドべクターを作成するため、 材料として、 p H R P G K a n t i C D 1 9一 s y n N o t c h一 T e t RV P 64 (Ad d g e n e p i a s m i d # 79 1 26) 、 p H R P G K a n t i H e r 24 D 5 - 3 s y n N o t c h一 G a I 4 V P 64 (Ad d g e n e p l a s m i d # 85422) 、 p H R P G K a n t i H e r 24 D 5 - 8 s y n N o t c h G a I 4 V P 64 (Ad d g e n e p i a s m i d # 85425 ) 、 p c D N A 3. 1 - P S 1 1 - s c F v F c -C D 28 - g p 4 1 (7 06— 7 1 3) (Ad d g e n e p l a s m i d # 60606) 、 p c D NA3/G F P-P R (Ad d g e n e p i a s m i d # 20253) 、 pGEM— h u m a n TCR z e t a/ 2470 (Ad d g e n e p l a s m i d # 1 1 507) 、 及び pC r y 2 P H R-mC h -R h oA ( Ad d g e n e p i a s m i d #42958) は、 Ad d g e n e (W a t e r t own, MA) より購入した。 虽光タンパク質 mC h e r r yをコ -ドする c D N Aプラスミ ドは N a t h a n C S h a n e rより分与を 受けた (N a t h a n C S h a n e rら、 N a t B i o t e c h n o 1. 、 2004年 1 2月、 22巻、 1 2号、 1 567 - 1 572ぺージ 参 照) 。 As a material, p HRPGK anti CD 1 9 1 syn N otch 1 T et RV P 64 was prepared to construct a plasmid vector encoding each chimeric antigen receptor (CAR) shown in FIGS. 3, 9 and 18. (Ad dgenepiasmid # 79 1 26), p HRPGK anti H er 24 D 5-3 syn N otch G a I 4 VP 64 (Ad dgeneplasmid # 85422), p HRPGK anti H er 24 D 5-8 syn N otch G a I 4 VP 64 (Ad dgenepiasmid # 85425 ), pc DNA 3.1-PS 11-sc F v F c -CD 28-gp 4 1 (7 06 — 7 1 3) (Ad dgeneplasmid # 60606), pc D NA3/GF PP R (Ad dgenepiasmid # 20253), pGEM— human TCR zeta/ 2470 (Ad dgeneplasmid # 1 1 507), and pC ry 2 PH R-mC h -R h oA (Ad dgenepiasmid #42958) Purchased from Ad dgene (W atert own, MA). Fluorescent protein mC herry -C DNA plasmid was distributed by N athan CS haner (N athan CS haner et al., N at Biotechno 1., Jan. 2004, Vol. 22, No. 12, 1 567-1 572). See page).
[0103] p H R P G K a n t i C D 1 9 s y n N o t c h T e t R V P 6 4プラスミ ドを錶型とし、 a n t i — CD 1 9 o u t e r Fプライマー 及び a n t i — CD 1 9— CD 28 i n n e r Rプライマーを用い、 P C Rを行なった。 また、 p c D N A 3. 1 - P S 1 1 - s c F v F c-CD 28- g p 4 1 (706- 7 1 3) プラスミ ドを錶型とし、 a n t i - CD 1 9— CD 28 i n n e r Fプライマー及び CD 28— o u t e r R プライマーを用い、 PCRを行なった。 そして、 これら PCRによって得ら れた 2種類の増幅産物を錶型とし、 更に a n t i — C D 1 9 o u t e r Fプライマー及び CD 28 o u t e r Rプライマーを用いた P C Rを行 なうことにより、 a n t i -CD 1 9 s c F vと CD 28細胞内ドメインと が融合されたポリペプチドをコードする c D N Aを増幅した。 [0103] p HRPGK anti CD 19 syn-Notch T et RVP 64 PCR is performed by using the plasmid as a hook and anti-CD 19 outer F primer and anti-CD 19-CD 28 inner R primer. It was In addition, pc DNA 3.1-PS 11-sc F v F c-CD 28- gp 4 1 (706- 7 1 3) plasmid was made into a claw shape, and anti-CD 1 9 — CD 28 inner F primer and PCR was performed using the CD 28- outer R primer. Then, the two types of amplification products obtained by these PCRs were made into a hook type, and PCR was performed using anti-CD 19 outer F primer and CD 28 outer R primer to obtain anti -CD 19 A cDNA encoding a polypeptide in which scFv and CD28 intracellular domain were fused was amplified.
[0104] さらに、 当該 c D N Aを錶型とし、 a n t i -CD 1 9 o u t e r F プライマーと、 内部に H 丨 V P R認識配列を組み込んだ CD 28— CV 1 i n n e r Rプライマーとを用い、 PCRを行なった。 また、 p C r y 2 P H R-mC h -R h o Aプラスミ ドを錶型とし、 CV 1 -mC h e e r y i n n e r Fプライマー及び mC h e r r y o u t e r Rプライマ —を用い、 PCRを行なった。 そして、 これら PC Rによって得られた 2種 類の増幅産物を錶型とし、 更に a n t i — CD 1 9 o u t e r Fプライ マーと mC h e r r y o u t e r Rプライマーを用いた PCRを行なう ことにより、 H 丨 V P R認識配列をコードする c D N Aを介在させたうえで m C h e r r y遺伝子を、 前記 a n t i — CD 1 9 s c F v及び C D 28 細胞内ドメインをコードする c D N Aの 3’ 末に接続した。 なお、 このよう に異なる配列を PC Rにて接続するために、 1 5 me rの重複配列を含んだ プライマーによる o v e r l a p e x t e n s i o n PCRを用いた。 [0105] そして、 得られた CD 1 9 s c F v、 C D 28細胞内ドメイン、 H I V P R認識配列及び mC h e r r yをコードする c D N Aの 5’ 末端は E c o R I にて、 3’ 一末端は X h o 丨 にて制限酵素処理を行い、 p c D N A 3.[0104] Further, PCR was carried out using the cDNA as a claw type, an anti-CD 19 outer F primer, and a CD 28-CV 1 inner R primer into which an H H VPR recognition sequence was incorporated. Further, PCR was carried out by using pCry2PHR-mCh-RhoA plasmid as a claw type and using CV1-mC heeryinner F primer and mC herryouter R primer. Then, the two types of amplification products obtained by these PC Rs were made into a claw type, and PCR using the anti-CD 19 outer F primer and the mC herryouter R primer was performed to detect the H 侨 VPR recognition sequence. The mC herry gene was ligated to the 3'end of the cDNA encoding the anti-CD19 scFv and CD28 intracellular domains with the encoding cDNA interposed. In order to connect such different sequences with PCR, overlap extension PCR using a primer containing a 15 mer overlapping sequence was used. [0105] Then, the 5'end of the cDNA encoding the obtained CD19 sc Fv, CD28 intracellular domain, HIVPR recognition sequence and mC herry was Eco RI, and the 3'end was X ho. Carry out restriction enzyme treatment on pc DNA 3.
1 (+ ) ベクター (T h e r mo F i s h e r S c i e n t i f i c, W a I t h a m , M A ) に組み込み、 a n t i _ C D 1 9 _ C D 28 _ C S — mC h e r r y CAR (図 3 参照) をコードするべクター (p c DN A3— a n t i — C D 1 9— CD 28— c I e a v e s i t e— mC h e r r yベクター) を作成した。 1 (+) vector (T her mo F isher Scientific, W a Itham, MA) and coded for anti _ CD 1 9 _ CD 28 _ CS — mC herry CAR (see Figure 3). DN A3 — anti — CD 1 9 — CD 28 — c I eavesite — mC herry vector).
[0106] また、 p c DNA3— a n t i — CD 1 9— CD 28— c l e a v e s i t e— mC h e r r yベクター及び pGEM— h u m a n TCR z e t a/ 2470ベクターを基に、 o v e r l a p e x t e n s i o n P CRにより、 C D 3 - z e t a細胞内ドメイン及び T 2 A配列を介在したう えで Y F P遺伝子を接続し、 p c DNA3-a n t i -C D 1 9 -C D 28 — c l e a v e s i t e— CD3 z e t a ( I CD) — T 2A— Y F Pベ クターを作成した (図 1 8 参照のほど) 。 当該べクターのことを、 以下 「 p c DNA3— a n t i — C D 1 9— E f f e c t o r— CAR— T 2A— Y F Pベクター」 又は 「a n t i -C D 1 9 E f f e c t o r C A R- T 2 A- Y F P発現べクター」 とも称する。 また、 当該べクターがコードす る活性化用 CARを ra n t i -CD 1 9_E f f e c t o r-CAR」 と も称する。 [0106] In addition, based on pc DNA3 — anti — CD 1 9 — CD 28 — cleavesite — mC herry vector and pGEM — human TCR zeta/2470 vector, CD3-zeta intracellular domain and T 2 by overlap extension PCR. The YFP gene was ligated via the A sequence to create pc DNA3-a nti -CD 1 9 -CD 28 — cleavesite — CD3 zeta (I CD) — T 2A — YFP vector (see Figure 18). ). The vector is referred to as “pc DNA3— anti — CD 19 — E ffector — CAR — T 2A — YFP vector” or “anti -CD 19 E ffector CAR R-T 2 A- YFP expression vector”. Also called. The activation CAR coded by the vector is also referred to as rantti-CD19_Effector-CAR".
[0107] また、 前記同様〇 v e r l a p e x t e n s i o n PCRにて、 a n t i -C D 1 9 s c F v、 CD 28細胞内ドメイン及び H I V P Rをコー ドする c D N Aを作成し、 E c o R I及び X h〇 丨 にて制限酵素処理を行っ たうえで p c DNA3. 1 (+ ) ベクターに揷入し、 a n t i -C D 1 9 - CD 28-H I V P R CAR (図 9 参照) をコードするべクター ( p c D N A 3 - a n t i -CD 1 9-CD 28-H I V P Rベクター) を作成し た。 [0107] In the same manner as above, 〇 verlap extension PCR was used to prepare cDNA encoding anti-CD 119 sc F v, CD 28 intracellular domain and HIVPR, and restricted with Eco RI and X h 〇 丨. After enzyme treatment, the vector was inserted into pc DNA3.1 (+) vector and the vector encoding the anti -CD 19 -CD 28-HIVPR CAR (see Figure 9) (pc DNA 3-anti -CD 1 9-CD 28-HIVPR vector) was created.
[0108] C D 28の細胞内ドメインの C末端を欠失させるべく、 さらに H I V P R の N末端も欠失させるべく、 p c DNA3-a n t i -CD 1 9-CD 28 -H I V P Rベクターを基に PC Rにて目的配列を除去し、 a n t i -CD 1 9-CD 28-H I V P R A 4 CAR及び a n t i -C D 1 9 -C D 28 A I CD-H I V P R A 4 CAR (共に図 9 参照) を各々コー ドするべクター (p c DNA3-a n t i -CD 1 9-CD 28-H I V P R (A4) ベクター及び p c DNA3-a n t i -CD 1 9_CD 28 (△ I CD) -H I V P R (A4) ベクター) を作成した。 [0108] To further delete the C-terminus of the intracellular domain of CD28, HIVPR In order to delete the N-terminal of the vector, the target sequence was removed by PCR based on pc DNA3-a nti -CD 19-CD 28 -HIVPR vector, and anti -CD 19-CD 28-HIVPRA 4 CAR and Vectors (pc DNA3-a nti -CD 1 9-CD 28-HIVPR (A4) vector and pc DNA3 that code anti -CD 19 -CD 28 AI CD-H IVPRA 4 CAR (see Figure 9 for both). -a nti -CD 19_CD 28 (△ I CD) -HIVPR (A4) vector) was prepared.
さらにまた、 p c DNA3-a n t i -CD 1 9-CD 28-H I V P R ベクター、 p c DNA3-a n t i - CD 1 9-CD 28-H I V P R (A 4) ベクター、 及び p c DNA3-a n t i -CD 1 9-CD 28 (A I C D) _H I V P R (A4) ベクターにおいて、 各切断用 C A R遺伝子の 3’ 末端に接続するように Y F P遺伝子を挿入したベクターも調製した。 Furthermore, pc DNA3-a nti -CD 19-CD 28-HIVPR vector, pc DNA3-a nti -CD 19-CD 28-HIVPR (A 4) vector, and pc DNA3-a nti -CD 19-. In the CD 28 (AICD)_H IVPR (A4) vector, a vector was also prepared in which the YFP gene was inserted so as to connect to the 3'end of each cleavage CAR gene.
[0109] また、 p c DNA3— a n t i — CD 1 9— CD 28— c l e a v e s [0109] Also, pc DNA3— a n t i — CD 1 9— CD 28— c l e a v e s
1 t e— mC h e r r yベクターを基に、 p H R PGK a n t i H e r 1 t e — mC h e r r y vector, p H R PGK a n t i H e r
24 D 5 - 3 s y n N o t c h G a I 4V P 64ベクターより PCRに て増幅した a n t i - H E R 2 (4 D 5 - 3) 3〇 を〇 6 1^ 1 3 e x t e n s i o n PCRにて接続し、 p c DNA3— a n t i — H E R 2 (4 D 5 - 3) -CD 28-CS-mC h e r r yベクターを作成した。 24 D 5-3 syn Notch G a I 4V P 64 anti-HER 2 (4 D 5-3) 3 〇 amplified by PCR was connected by 〇 6 1^13 extension PCR and pc DNA3 — Anti — HER 2 (4 D 5-3) -CD 28-CS-mC herry vector was prepared.
[0110] さらに、 p c DNA3-a n t i - H E R 2 (4 D 5 - 3) -CD 28- CS— mC h e r r yベクター及び p c DNA3— a n t i — C D 1 9— C D 28 (A I C D) -H I V P R (A4) ベクターを基に o v e r l a p e x t e n s i o n PCRを用いて p c DNA3— a n t i — H E R 2 ( 4 D 5— 3 ) — S c i s s o r s— CAR— T 2A— mC h e r r yベクタ —を作成した。 [0110] Furthermore, pc DNA3-anti-HER 2 (4 D 5-3) -CD 28-CS- mC herry vector and pc DNA3-anti-CD 19-CD 28 (AICD) -HIVPR (A4) vector. Based on this, pcDNA3— anti — HER 2 (4 D 5 — 3) — S cissors — CAR — T 2A — mC herry vector — was created using overlap extension PCR.
[0111] さらにまた、 N h e 丨及び X h〇 丨 を用いた制限酵素処理によって a n t i - H E R 2 (4 D 5 - 3) -S c i s s o r s -CAR-T 2A-mC h e r r y遺伝子断片を調製し、 p c DN A3 (-) -H y g r〇ベクター ( T h e r mo F i s h e r S c i e n t i f i c) に揷入することで、 \¥02020/175366 41 卩(:171? 2020 /007038 [0111] Furthermore, anti-HER 2 (4 D 5 -3) -S cissors -CAR-T 2A-mC herry gene fragment was prepared by restriction enzyme treatment with N he and X h 〇 丨, and pc DN A3 (-) -H ygr 〇 By inserting into vector (T her mo Fisher Scientific), \¥02020/175366 41 卩 (: 171? 2020 /007038
Figure imgf000042_0007
Figure imgf000042_0007
同様の方法にて、 〇 0 八3 (-)
Figure imgf000042_0001
I - \-\ E R 2 (405-8)
In the same way, 0 0 8 3 (-)
Figure imgf000042_0001
I-\-\ ER 2 (405-8)
— 3〇 I 330 「 3 _〇八[¾_丁 2八_111〇 116 「 「ソ_1~179 「〇ベクタ —も作成した。 — 3 〇 I 330 “3 _ 〇 8 [¾_ Ding 28 _111 〇 116 ”“Seo_1 ~ 179” 〇 Vector — was also created.
[0112] 〇〇 1 9を細胞において強制的に発現させるため、
Figure imgf000042_0003
丨細胞由来
Figure imgf000042_0002
八から〇 01 9遺伝子をクローニングし、 〇 0 八3 (-) - h V 3 r 〇ベクターに揷入することにより、 〇 0 八3 (-)
Figure imgf000042_0004
[0112] In order to forcibly express OO 19 in cells,
Figure imgf000042_0003
Derived from 丨 cells
Figure imgf000042_0002
By cloning the 0 to 0 01 9 gene and inserting it into the 0 0 8 3 (-)-h V 3 r 0 vector, the 0 0 8 3 (-)
Figure imgf000042_0004
「〇ベクタ— (〇〇] 9発現べクタ—) を作成した。 また、 1~1巳[¾ 2を細胞 において強制的に発現させるため、
Figure imgf000042_0005
“○ vector — (〇 〇) 9 expression vector” was created. In addition, in order to forcibly express 1 to 1 裳 [¾ 2 in cells,
Figure imgf000042_0005
遺伝子をクローニングし、 〇 0 八3 (-) — 11ソ 9 「〇ベクター に揷入することにより、 1~1巳 2発現べクターを作成した。 The gene was cloned and the 1 to 2 expression vector was prepared by inserting into the 088 (3)- 11 So 9" vector.
[0113] なお、 上記各 〇[¾には 丁 3 ポリメラーゼ (丁八[<八[¾八, 3 1 9 [0113] Each of the above 〇 [in ¾ Ding 3 polymerase (Ding eight <eight [¾ eight, 3 1 9
3, J a p a n) 及び<〇0- I リ 3ポリメラーゼ (丁〇丫〇巳〇, 03
Figure imgf000042_0006
を用いた。 また、 作成したベクターについては、 東京 医科歯科大学 難治疾患研究所 ゲノム解析室に委託し、 配列を確認した。
3, J apan) and <○ 0-I 3 polymerase (Cho 〇 丫 〇 跳 〇, 03
Figure imgf000042_0006
Was used. Regarding the prepared vector, the sequence was confirmed by entrusting it to the Genome Analysis Section, Research Institute for Intractable Diseases, Tokyo Medical and Dental University.
[0114] 上記 〇 にて用いたプライマーは、 3 丨 9013 八 丨 「 丨 〇 社に設 計及び合成を委託した。 これらプライマーの配列は表 1〜 3に示す。 [0114] The primers used in ◯ above were outsourced to 3 companies 9013 8 丨 丨 〇 for design and synthesis. The sequences of these primers are shown in Tables 1 to 3.
[0115] \¥0 2020/175366 42 卩(:17 2020 /007038 [0115] \¥0 2020/175 366 42 卩 (: 17 2020 /007038
table
V V
翳   Midori
Figure imgf000043_0001
Figure imgf000043_0001
[01 16] [表 2] [01 16] [Table 2]
(¾ 発現べク ' 權築!!ブ イ 、
Figure imgf000044_0002
(¾ expressive'building! bu,
Figure imgf000044_0002
[0117] [表 3] [0117] [Table 3]
Figure imgf000044_0001
Figure imgf000044_0001
[0118] 作成した各 CARをコードする DNA配列を、 配列番号: 1、 3、 5、 7 、 45、 47、 49及び 5 1 に示す。 また各 C A Rのアミノ酸配列を、 配列 番号: 2. 4. 6、 8、 46、 48、 5〇及び 52に示す。 [0118] The prepared DNA sequences encoding each CAR are shown in SEQ ID NOs: 1, 3, 5, 7, 45, 47, 49 and 51. The amino acid sequences of the respective C ARs are shown in SEQ ID NOs: 2.4.6, 8, 46, 48, 50 and 52.
[0119] 配列番号: 2に示す ra n t i - CD 1 9-CD 28-CS-mC h e r \¥02020/175366 44 卩(:171? 2020 /007038 [0119] SEQ ID NO: 2 ra nti-CD 19-CD 28-CS-mC her \¥02020/175366 44 卩 (: 171? 2020 /007038
「ソ 〇八[¾」 のアミノ酸配列において、 1〜 2 1位のアミノ酸からなる配 列はリーダー配列を示し、 22〜 3 1位のアミノ酸からなる配列は IV!ソ〇夕 グを示し、 32〜 273位ののアミノ酸からなる配列は 3门 I 1 -001 9 _ 3〇 を示し、 274〜 282位のアミノ酸からなる配列は〇 9配列を 示し、 283〜 348位のアミノ酸からなる配列は 0028膜貫通領域を示 し、 349〜 36 1位のアミノ酸からなる配列は〇 028細胞内ドメインを 示し、 362〜 369位のアミノ酸からなる配列は 9 4 1配列を示し、 3 7〇〜 377位のアミノ酸からなる配列は 1~1 丨 V 切断部位を示し、 37 8〜 6 1 3位のアミノ酸からなる配列は
Figure imgf000045_0001
In the amino acid sequence of “So[8]”, the sequence consisting of amino acids 1 to 21 indicates the leader sequence, and the sequence consisting of amino acids 22 to 31 indicates IV! The sequence consisting of amino acids from position 273 to 3 shows I 1 -001 9 _ 3 0, the sequence consisting of amino acids from 274 to 282 shows 9 sequence, and the sequence consisting of amino acids from 283 to 348 represents 0028. It shows the transmembrane region, and the sequence consisting of amino acids 349 to 36 1 represents the 028 intracellular domain, the sequence consisting of amino acids 362 to 369 represents the 9 41 sequence, and the sequence consisting of 3 0 7 to 377. The sequence consisting of amino acids indicates the 1 to 1 V cleavage site, and the sequence consisting of amino acids at positions 378 to 61 3 is
Figure imgf000045_0001
[0120] 配列番号: 4に示す 「3门 1 -001 9-〇028-1~1 丨 ?[¾ 〇八 [¾」 のアミノ酸配列において、 369位迄のアミノ酸配列については配列番 号: 2におけるそれらと同じである。 配列番号: 4に記載のアミノ酸配列に おいて、 37〇〜 468位のアミノ酸からなる配列は 1~1 丨 V を示す。[0120] In the amino acid sequence of "3门 1 -001 9-〇 028-1 to 1 丨? [¾ 〇8 [¾]" shown in SEQ ID NO: 4, the amino acid sequence up to the 369th position is SEQ ID NO: 2 Same as those in. In the amino acid sequence of SEQ ID NO: 4, the sequence consisting of amino acids 370 to 468 shows 1 to 1 V.
[0121] 配列番号: 6に示す 「3门 1:
Figure imgf000045_0002
八4 〇八[¾」 のアミノ酸配列において、 369位迄のアミノ酸配列については 配列番号: 2におけるそれらと同じである。 配列番号: 6に記載のアミノ酸 配列において、 37〇〜 464位のアミノ酸からなる配列は 1\1末端の 4アミ ノ酸が欠失している
Figure imgf000045_0003
を示す。
[0121] SEQ ID NO: 6 shown in "3: 1:
Figure imgf000045_0002
In the 8408 [¾] amino acid sequence, the amino acid sequence up to the 369th position is the same as those in SEQ ID NO: 2. In the amino acid sequence set forth in SEQ ID NO: 6, the sequence consisting of amino acids 370 to 464 has a deletion of 4 amino acids at the 1\1 end.
Figure imgf000045_0003
Indicates.
[0122] 配列番号: 8に示す 「3门 1 -001 9-0028 △ 丨 〇0-1~1 I V 八4 〇八[¾」 のアミノ酸配列において、 348位迄のアミノ酸配列 については配列番号: 2におけるそれらと同じである。 配列番号: 8に記載 のアミノ酸配列において、 349〜 356位のアミノ酸からなる配列は 9 4 1配列を示し、 357〜 45 1位のアミノ酸からなる配列は 1\!末端の 4ア ミノ酸が欠失している
Figure imgf000045_0004
を示す。
[0122] In the amino acid sequence of "3 门 1 -001 9-0028 △ 丨 0-1 to 1 IV 8 4 808 [¾] shown in SEQ ID NO: 8, the amino acid sequence up to the 348th position is SEQ ID NO: Same as those in 2. In the amino acid sequence of SEQ ID NO: 8, the sequence consisting of amino acids 349 to 356 shows 941 sequence, and the sequence consisting of amino acids 357 to 451 lacks 1 amino acid at the 1\! end. Have lost
Figure imgf000045_0004
Indicates.
[0123] 配列番号: 46に示す 「3门 丨 一1~1巳[¾ 2 (405-3) -0028-
Figure imgf000045_0005
〇八[¾」 のアミノ酸配列において、 1〜 2 1位のア ミノ酸からなる配列はリーダー配列を示し、 22〜 3 1位のアミノ酸からな る配列は IV!ソ〇タグを示し、 32〜 277位のアミノ酸からなる配列は 3 n t i - H E R 2 (4 D 5 - 3) s c F vを示し、 278〜 286位のアミノ 酸からなる配列は C 9配列を示し、 287〜 352位のアミノ酸からなる配 列は C D 28膜貫通領域を示し、 353〜 365位のアミノ酸からなる配列 は C D 28細胞内ドメインを示し、 366〜 373位のアミノ酸からなる配 列は g P 4 1配列を示し、 374〜 381位のアミノ酸からなる配列は H I V P R切断部位を示し、 382〜 6 1 7位のアミノ酸からなる配列は mC h e r r yを: 〇
[0123] SEQ ID NO: 46 “3门丨一1 1跳[¾ 2 (405-3) -0028-
Figure imgf000045_0005
In the amino acid sequence of 〇8[¾], the sequence consisting of amino acids at positions 1 to 21 indicates the leader sequence, and the sequence consisting of amino acids at positions 22 to 31 indicates IV! Sequence consisting of amino acid at position 277 is 3 n ti-HER 2 (4 D 5-3) sc F v, the sequence consisting of amino acids 278 to 286 represents the C 9 sequence, and the sequence consisting of amino acids 287 to 352 represents the CD 28 transmembrane region. The sequence consisting of amino acids 353 to 365 represents the CD28 intracellular domain, the sequence consisting of amino acids 366 to 373 represents the gP41 sequence, and the sequence consisting of amino acids 374 to 381 represents The sequence showing the HIVPR cleavage site and consisting of amino acids 382 to 617 is mC herry: 〇
[0124] 配列番号: 48に示す ra n t i - CD 1 9-CD 28-CS-CD3 z e t a ( I CD) -T 2A-Y F P」 のアミノ酸配列において、 377位迄 のアミノ酸配列については配列番号: 2におけるそれらと同じである。 配列 番号: 48に記載のアミノ酸配列において、 378〜 489位のアミノ酸か らなる配列は C D 3 z e t a ( I CD) を示し、 490〜 5 1 0位のアミノ 酸からなる配列は T 2 A配列を示し、 5 1 1〜 747位のアミノ酸からなる 配列は Y F Pを示す。 [0124] In the amino acid sequence of "ranti-CD 1 9-CD 28-CS-CD3 zeta (I CD) -T 2A-YFP" shown in SEQ ID NO: 48, the amino acid sequence up to position 377 is SEQ ID NO: 2 Same as those in. In the amino acid sequence of SEQ ID NO: 48, the sequence consisting of amino acids 378 to 489 represents CD 3 zeta (I CD), and the sequence consisting of amino acids 490 to 5 10 represents T 2 A sequence. The sequence consisting of amino acids 511 to 747 is YFP.
[0125] 配列番号: 50に示す ra n t i - H E R 2 (4 D 5 - 3) -CD 28 [0125] ra n t i -H ER 2 (4 D 5 -3) -CD 28 shown in SEQ ID NO: 50
△ I CD-H I V P R A 4 T 2 A - m C h e r r y」 のアミノ酸配列に おいて、 1〜 2 1位のアミノ酸からなる配列はリーダー配列を示し、 22〜 3 1位のアミノ酸からなる配列は M y cタグを示し、 32〜 277位のアミノ 酸からなる配列は a n t i - H E R 2 (4 D 5 - 3) s c F vを示し、 27 8〜 286位のアミノ酸からなる配列は C 9配列を示し、 287〜 352位 のアミノ酸からなる配列は C D 28膜貫通領域を示し、 353〜 360位の アミノ酸からなる配列は g P 4 1配列を示し、 36 1〜 455位のアミノ酸 からなる配列は N末端の 4アミノ酸が欠失している H 丨 V P R切断部位を示 し、 456〜 476位のアミノ酸からなる配列は T 2 A配列を示し、 477 〜 7 1 2位のアミノ酸からなる配列は m C h e r r yを示す。 In the amino acid sequence of "I CD-H IVPRA 4 T 2 A-m Chery", the sequence consisting of amino acids 1 to 21 is the leader sequence, and the sequence consisting of amino acids 22 to 31 is M It shows the yc tag, the sequence consisting of amino acids at positions 32 to 277 shows anti-HER 2 (4 D 5 -3) sc F v, and the sequence consisting of amino acids from 278 to 286 shows C 9 sequence, The sequence consisting of amino acids 287 to 352 represents the CD28 transmembrane region, the sequence consisting of amino acids 353 to 360 represents the gP41 sequence, and the sequence consisting of amino acids 361 to 455 represents the N-terminal region. It shows the H H VPR cleavage site in which 4 amino acids are deleted, the sequence consisting of amino acids 456 to 476 represents the T 2 A sequence, and the sequence consisting of amino acids 477 to 71 12 represents m C herry. Show.
配列番号: 52に示す ra n t i - H E R 2 (4 D 5 - 8) -CD 28 SEQ ID NO: 52 ra nt i -H ER 2 (4 D 5 -8) -CD 28
△ I CD-H I V P R A 4 T 2 A - m C h e r r y」 のアミノ酸配列に おいて、 32〜 277位のアミノ酸からなる配列は a n t i - H E R 2 (4 D 5 -8) s c F vを示し、 それ以外の配列については、 配列番号: 50に おけるそれらと同じである。 In the amino acid sequence of “△ CD-H IVPRA 4 T 2 A-m C herry”, the sequence consisting of amino acids 32 to 277 is the anti-HER 2 (4 D 5 -8) sc F v, and other sequences are the same as those in SEQ ID NO: 50.
[0126] (遺伝子導入と安定発現細胞株の樹立) [0126] (Gene transfer and establishment of stable expression cell line)
上述のベクターの、 293 T細胞及び S K_B R— 3細胞への遺伝子導入 は、 L i p o f e c t am i n e d 000 い- h e r mo F i s h e r S c i e n t i f i c) を用い、 添付のプロトコルに従って実施した。 J u r k a t細胞及び R a j i細胞への遺伝子導入には N u c I e o f e c t o r k i t V (L o n z a, B a s e l , Sw i t z e r l a n d) を 用い、 それぞれ添付のプロトコルに従って実施した。 Gene transfer of the above vector into 293 T cells and SK_BR-3 cells was performed according to the attached protocol using L i p o f e c t am i n e d 000 i-h e r mo F i sh e r S c i e n t i f i c). For gene transfer into J u r k a t cells and R a j i cells, N u c I e o f e c t o r k i t V (L o n z a, B a se l, Sw i t z e r l a n d) was used, and each was carried out according to the attached protocol.
[0127] CD 1 9発現べクターを遺伝子導入した S K— B R— 3細胞に対し、 遺伝 子導入 24時間後より培地中に終濃度 1 00 M9/mLの H y g r om y c i n (WAK0) を添加することで CD 1 9を安定的に発現する S K-B R -3細胞を樹立した。 また、 H E R 2発現べクターを遺伝子導入した R a j i細胞に対し、 同様に遺伝子導入 24時間後より培地中に終濃度 300^9 /mL0H y g r om y c i nを添加することで、 H E R 2を安定的に発現 する S K-B R-3細胞を樹立した。 [0127] To SK-BR-3 cells transfected with the CD 19 expression vector, 24 hours after the gene transfer, a final concentration of 100 M9/mL of Hygr om ycin (WAK0) was added to the medium. As a result, SKBR-3 cells stably expressing CD 19 were established. In addition, HER 2 was stably added to Raji cells transfected with the HER 2 expression vector by adding a final concentration of 300^9/mL0H ygr om ycin to the medium 24 hours after gene transfer. The expressing SKBR-3 cells were established.
[0128] p c DNA3-a n t i -C D 1 9-E f f e c t o r-CAR-T 2A _Y F P遺伝子を遺伝子導入した J u r k a t細胞に対し、 遺伝子導入から 24時間後に FACS a r i all (BD B i o s c i e n c e, S a n J o s e, C A) を用いて Y F P陽性細胞を選別したうえで、 培地中に終 濃度 1 m g/mLの G4 1 8 (T h e r mo F i s h e r S c i e n t i f i c ) を添加することで a n t i — CD 1 9— E f f e c t o r— CA R-T 2A-Y F P遺伝子を安定的に発現する J u r k a t細胞を樹立した 。 この a n t i — C D 1 9 E f f e c t o r/J u r k a t細胞に対し、 同様に p c D N A 3 (-) -a n t i - H E R 2 (4 D 5 - 3) -S c i s s o r s— CAR— T 2A— mC h e r r y— H y g r oベクター又は p c D N A 3 (-) -a n t i - H E R 2 (4 D 5 - 8) -S c i s s o r s - CAR— T 2A— mC h e r r y— H y g r oベクターを遺伝子導入した。 遺伝子導入から 24時間後に F ACS a r i a IIを用いて Y F P及び m C h e r r y陽性細胞を選別したうえで、 培地中に終濃度 1 m g/mLの G4 1 8及び 200 g/mLの H y g r om y c i nを添加することで、 a n t i -CD 1 9-E f f e e t o r-CAR-T 2A-Y F P遺伝子と、 a n t i - H E R 2 (4 D 5 - 3) -S c i s s o r s - C A R遺伝子又は a n t i - H E R 2 (4 D 5 - 8) -S c i s s o r s -CAR遺伝子との両 者を安定的に発現する J u r k a t細胞を樹立した。 [0128] pc DNA3-a nti -CD 19-E ffector-CAR-T 2A _Y FP gene-transduced J urkat cells, 24 hours after gene transfer, FACS ari all (BD B ioscience, San (Yose, CA) to select YFP-positive cells, and then add G4 18 (T her mo Fisher Scientific) at a final concentration of 1 mg/mL to the medium to obtain anti-CD 19- Effector—Jurkat cells stably expressing the CA RT 2A-YFP gene were established. Against this anti — CD 19 E ffector/J urkat cells, pc DNA 3 (-) -anti-HER 2 (4 D 5-3) -S cissors — CAR — T 2A — mC herry — Hygro vector Alternatively, pc DNA3(-)-anti-HER2(4D5-8)-Scissors-CAR-T2A-mCherry-Hygro vector was introduced into the gene. Twenty-four hours after gene transfer, YFP and mCherry-positive cells were selected using FACS aria II and the final concentration of 1 mg/mL G4 18 and 200 g/mL Hygr om ycin were added to the medium. The addition of anti -CD 19-E ffeeto r-CAR-T 2A-YFP gene and anti -HER 2 (4 D 5 -3) -S cissors-CAR gene or anti -HER 2 (4 D 5 8) We established Jurkat cells that stably express both the -S cissors and CAR genes.
[0129] (細胞溶解液の調製) [0129] (Preparation of cell lysate)
前記遺伝子導入した各細胞に関し、 全細胞、 細胞膜又は細胞質のタンパク 質溶解液を調製した。 全細胞溶解液は、 回収した細胞に溶解バッファ _ (1 %T r i t o n -X, 50 mM T r i s - H C I , 0. 5 M N aC I , For each of the cells into which the gene was introduced, a protein lysate of whole cells, cell membrane or cytoplasm was prepared. The whole cell lysate was added to the collected cells by lysis buffer _ (1% T r i t o n -X, 50 mM T r i s -H C I ,0.5 M N aC I ,.
50 mM N a F, 5 mM E DTA, 40 mM /S_グリセロリン酸, 1 m M オルトバナジン酸ナトリウム, 1 mM フッ化フェニルメチルスルホ ニル, 1 〇M9/m 丨 アプロチニン, 1 〇 g/m 丨 ロイぺプチン) を 添加し、 氷上で 1 5分溶解したうえで 4°C、 1 5, 000 r pmCX I 5分 間の遠心分離を行い、 調製した。 50 mM Na F, 5 mM E DTA, 40 mM /S_ glycerophosphate, 1 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 10 M9/m aprotinin, 10 g/m 丨(Leupeptin) was added, and the mixture was dissolved on ice for 15 minutes, and then centrifuged at 4 ° C for 15,000 rpm CX I for 5 minutes to prepare.
[0130] 細胞膜と細胞質の分画は、 トライデント膜タンパク質抽出キッ ト (Ge n e t e x, I r v i n e, CA) を用い、 添付のプロトコルに従って実施し た。 細胞膜分画のペレッ トは前記バッファーにて全細胞溶解同様に溶解した 。 なお、 細胞質分画は、 前記キッ ト添付の B u f f e r Aに溶解された状 態でサンプリングした。 [0130] Fractionation of cell membrane and cytoplasm was performed using a Trident membrane protein extraction kit (Genetx, Irvine, CA) according to the attached protocol. The pellet of the cell membrane fraction was lysed in the same buffer as the whole cell lysis. The cytoplasmic fraction was sampled in the state of being dissolved in Buffer A attached to the kit.
[0131] (ウェスタンブロッ ト) [0131] (Western blot)
前記各タンパク質溶解液を、 等量の 2XL a e mm l iサンプルバッファ —と混和し、 1 〇〇°Cで 5分間反応させ、 ウェスタンプロッ トに供するサン プルを調製した。 電気泳動のゲルには 1 2. 5% PAGE L (ATTO, T o k y o, J a p a n) を用いた。 ブロッティング後のブロッキングは 5 % スキムミルク (Me i j i , T o k y o, J a p a n) を用いて行なっ た。 検出試薬にはウェスタンライ トニングプラス EC L (P e r k i n E \¥02020/175366 48 卩(:17 2020 /007038 Each of the protein lysates was mixed with an equal amount of 2XL ae mm li sample buffer and reacted at 100 ° C for 5 minutes to prepare a sample for Western blot. As the gel for electrophoresis, 12.5% PAGE L (ATTO, Tokyo, Japan) was used. Blocking after blotting was performed using 5% skim milk (Meiji, Tokyo, Japan). Western lightning plus ECL (Perkin E \\02020/175 366 48 卩 (: 17 2020 /007038
I me r, W a I t h a m , M A ) を用いた。 I mer, W a It h a m, M A) was used.
[0132] (蛍光顕微鏡観察) [0132] (Fluorescence microscope observation)
蛍光顕微鏡観察は、 オールインワン蛍光顕微鏡 BZ-81 00又は BZ -X 800 (共に、 KEYE NCE, O s a k a, J a p a n) を用いて行 なった。 核染色は H o e c h s t 33258 (D o j i n d o, K u m a mo t o, J a p a n) を用いて行なった。 The fluorescence microscope observation was performed using an all-in-one fluorescence microscope BZ-8100 or BZ-X800 (both are KEYE NCE, Osak a, Jap a n). Nuclear staining was performed using Ho e c h st 33258 (D o j i n d o, K u ma mo t o, J apa n).
[0133] (q RT-PCR) [0133] (q RT-PCR)
細胞からの m RNA抽出には、 T R I z o l r e a g e n t (T h e r mo F i s h e r S c i e n t i f i c) を用い、 c DN A合成には S u p e r S c r i p t IIR e v e r s e T r a n s c r i p t a s e ( T h e r mo F i s h e r S c i e n t i f i c) を用いて各々行なっ た。 なお、 逆転写反応は、 250 n gの t o t a l RNAを用いて実施し た。 q RT— PCRは、 L i g h t C y c l e r F a s t S t a r t D N A Ma s t e r S Y B R G r e e n I (R o c h e, B a s e l , Sw i t z e r l a n d) 及び L i g h t c y c l e r 480 (R o c h e) にて行い、 解析した。 なお、 q R T— P C Rに用いたプライマーの配 列 (S i g m a A l d r i c hより購入) を表 4に示す。 TRI zolreagent (T her mo Fisher Scientific) was used for mRNA extraction from cells, and Super S cript IIR everse T ranscriptase (T her mo Fisher Scientific) was used for c DN A synthesis. I did it. The reverse transcription reaction was performed using 250 ng of t o t a l RNA. q RT—PCR was performed using L i g h t C y c l e r F a s t S t a r t D N A Ma s t e r S Y B R G r e e n I (R o c h e, B a s e l, Sw i t z e r l a n d) and L i g h t c y c l e r 480 (R o c h e). Table 4 shows the sequences of the primers used for qRT-PCR (purchased from SigmaAldriCh).
[0134] [表 4] [0134] [Table 4]
Figure imgf000049_0001
Figure imgf000049_0001
[0135] (表面抗原解析) [0135] (Surface antigen analysis)
表面抗原解析は、 FACS C a l i b u r及び FACS
Figure imgf000049_0002
311 ( B D B i o s c i e n c e) を用いたフローサイ トメ トリ により行なつ た。 なお、 その際のブロッキングには、 1 % マウス I g G アイソタイプ \¥02020/175366 49 卩(:171? 2020 /007038
Surface antigen analysis is performed using FACS C alibur and FACS
Figure imgf000049_0002
It was conducted by flow cytometry using 311 (BDB ioscience). For blocking, use 1% mouse IgG isotype \¥02020/175366 49 卩 (: 171? 2020 /007038
コントロールを用いた。 蛍光標識には、 巳標識抗ヒト 0069抗体を 30 倍希釈して、 ? 6 「〇 /〇ソ 5. 5標識抗ヒ
Figure imgf000050_0001
抗体を 50倍希釈 して、 〇標識マウス抗ヒト〇〇 1 9抗体を 20倍希釈して、 用いた。 得 られたデータは 1 〇\«」 0
Figure imgf000050_0002
(60 6 1 030 1 6
A control was used. For fluorescent labeling, dilute the Nami-labeled anti-human 0069 antibody 30-fold and 6 "○ / 〇 So 5.5 Labeling
Figure imgf000050_0001
The antibody was diluted 50-fold, and the 〇 labeled mouse anti-human 〇 19 antibody was diluted 20-fold and used. The data obtained is 1 〇\«” 0
Figure imgf000050_0002
(60 6 1 0 30 1 6
1106) を用いて解析した。 1106).
[0136] (実施例 1) [0136] (Example 1)
図 1及び 2に示したコンセプトの有効性を検証するため、 従来用いられて いる 3门 I 1 -001 9 〇八 の配列を基に、 1~1 丨 V 標的配列 (〇 I 63 V 396 3 I 1 6 ; 03) を組み込み、 003 å 6 I ^の代わりに虽 光タンパク質
Figure imgf000050_0004
「ソを組み込んだ〇八
Figure imgf000050_0003
(3门 1: 丨 _〇 01 9 _
In order to verify the effectiveness of the concepts shown in Figures 1 and 2, based on the sequence of 3 I 1 -001 90 8 that has been conventionally used, 1 to 1 V target sequence (○ I 63 V 396 3 I 16; 03), and instead of 003 å 6 I ^ fluorescent protein
Figure imgf000050_0004
"Has incorporated Seo
Figure imgf000050_0003
(3 门 1: 丨 _ 〇 01 9 _
〇028-〇3-〇1〇 6 1^ 「ソ 〇八[¾、 図 3 参照) をコードするべク 夕一を作成した。 なお、 1~1 丨 V 標的配列として、 1~1 丨 V 1の配列におい てトランスフレーム (丁 ) タンパク質とプロテアーゼ ( [¾) タンパク質 とに挟まれた 8アミノ酸 (36 「一 1"16— 36 「一 1"16— 「〇—◦ I 丨 ㊀一丁 11 「、 配列番号: 9) を用いた。 〇 028- 〇 3- 〇 1 〇 6 1^ We have created a vector that encodes “So 8 [¾, see Figure 3]. Note that 1 to 1 V V target sequence is 1 to 1 V Eight amino acids sandwiched between the trans-frame (Cho) protein and the protease ([¾) protein in the sequence of 1 (36 “1 1”16 — 36 “1 1” 16 — “〇 — ◦ I ㊀ 1 chome 11 “, SEQ ID NO: 9) was used.
[0137] そして、 このべクターを 293丁細胞に導入し、 a n t i _CD 1 9_C [0137] Then, this vector was introduced into 293 cells, and a n t i _CD 19_C
028—〇3—〇1〇 116 「 「ソ 〇八[¾ (以下 「31^ I — 001
Figure imgf000050_0005
028—〇3—〇1〇116 116 “So 008 [¾ (hereinafter “31^ I — 001
Figure imgf000050_0005
116 「 「ソ 〇 [¾」 とも称する) を過剰発現させた。 その結果、 図 4に示 すとおり、
Figure imgf000050_0006
「ソシグナルが細胞質に局在することを確認した。
116 "also referred to as "So [¾") was overexpressed. As a result, as shown in Figure 4,
Figure imgf000050_0006
"It was confirmed that the so signal was localized in the cytoplasm.
[0138] 次に、 前記 293丁細胞を、 001 9を発現していない骨髄系腫瘍由来細 胞株 < 562細胞と共培養した。 その結果、 図 5に示すとおり、 前述の 2 93丁細胞の単培養と比して、
Figure imgf000050_0007
「ソシグナルの局在に変化がみら れなかった。 _方、 0口 1 9陽性細胞であるバーキッ トリンパ腫由来細胞株 88」 丨細胞との共培養においては 011㊀ 「 「ソシグナルの集積が認めら れた (図 5 参照) 。 これらのことから、
Figure imgf000050_0008
[0138] Next, the 293 cells were co-cultured with myeloid tumor-derived cell line <562 cells that did not express 0019. As a result, as shown in Fig. 5, compared to the above-mentioned single culture of 293 cells,
Figure imgf000050_0007
"There was no change in the localization of so-signal. _ , 0 mouth 19 Burkitt lymphoma-derived cell line 88 which is a 19-positive cell" 011 ㊀ "" (See Figure 5.) From these things,
Figure imgf000050_0008
7 0 は、 標的分子である 001 9を認識して細胞膜上に集合し得る ことが示唆された。 It was suggested that 70 can recognize the target molecule 001 9 and assemble on the cell membrane.
[0139] 次に、 図 9に示す 3门 1 -001 9—〇028— !! 丨 [¾ 〇八[¾ ( \¥02020/175366 50 卩(:171? 2020 /007038 [0139] Next, as shown in FIG. 9, 1-001 9—〇028— !!丨 [¾ 〇8[¾ ( \¥02020/175 366 50 卩 (: 171? 2020 /007038
以下
Figure imgf000051_0001
〇八[¾」 とも称する) をコードするべクター も、 前記 293丁細胞に遺伝子導入し、 当該細胞において 3 n t 1 -001
Figure imgf000051_0002
Less than
Figure imgf000051_0001
Vector (also referred to as 〇8[¾]) was also gene-transfected into the 293 cells to generate 3 nt 1 -001 in the cells.
Figure imgf000051_0002
せた。 その結果、 図 6に示すとおり、 01〇 116 「 「ソシグナルの局在が細胞 膜から細胞質に変化した。 すなわち、 図 1及び 2に示したコンセプトとは異 なり、 標的細胞 (図 2においては正常細胞) 非存在下でも、 〇028-1~1 I 〇八 中のプロテアーゼが活性化されてしまい、 3门 1: 丨 一〇01
Figure imgf000051_0003
ソが細胞質中に 遊離してしまったことが示唆される。
Let As a result, as shown in Fig. 6, 01 〇 116 ""The localization of so signal was changed from the cell membrane to the cytoplasm. In other words, unlike the concept shown in Figs. Even in the absence of cells, the protease in 〇028-1 to 1 I 08 is activated, resulting in 3:1: 丨1001.
Figure imgf000051_0003
It is suggested that Seo has been released into the cytoplasm.
[0140] また、 細胞膜と細胞質を分画したうえでウェスタンブロッ トを行なった結
Figure imgf000051_0004
[0140] In addition, Western blotting was performed after fractionating the cell membrane and cytoplasm.
Figure imgf000051_0004
独で発現させたサンプルにおいては、 細胞膜画分にて当該〇 の全長 (約 701< 03) が検出された。 一方、 〇028-1~1 丨 ?[¾ 〇八[¾と共発現 させた場合には、 前記図 6に示した結果同様に、 予想とは異なり、 細胞質画 分にて〇1〇 116 「 「 Vのみの分子量に相当する約 301< 03のバンドを細胞 質が検出された。 さらに、 細胞膜画分においては 3 n I 1 -001 9 3〇 Vから〇〇 28までの分子量に相当する約 401< 03のバンドが検出され た (図 7 参照) 。 In the sample expressed by itself, the full length of ◯ (about 701<03) was detected in the cell membrane fraction. On the other hand, 〇028-1 ~ 1 丨? When co-expressed with [¾08[¾, similar to the results shown in Fig. 6, unlike the expectation, in the cytoplasmic fraction, 〇10116 "" corresponding to the molecular weight of only V The cytoplasm was detected in the band <03. Furthermore, in the cell membrane fraction, a band of about 401<03 corresponding to the molecular weight of 3 n I 1 -001 93 0 V to 〇 28 was detected ( (See Figure 7).
[0141] さらに、 1~1 丨 V 阻害剤であるサキナビル又はネルフイナビルを、 3 n
Figure imgf000051_0005
[0141] Furthermore, saquinavir or nelfinavir, which are 1 to 1 V inhibitors, are
Figure imgf000051_0005
8を共発現させた 293丁細胞に添加した結果、 図 8に示すとおり、 1~1 I V ^阻害剤用量依存的に、
Figure imgf000051_0006
1 —001 9— 01〇 116 「 「ソ 〇八[¾の 全長を示すバンド (約 701<口 8) が増加する一方で、 01(3116 「 「ソのみ を示すバンド (約 401< 03) は減少した。
As a result of addition to 293 cells co-expressing 8 as shown in FIG. 8, 1 to 1 IV ^ inhibitor dose-dependently,
Figure imgf000051_0006
1 — 001 9— 01 〇 116 ““The band that shows the total length of Soh 8 [¾ (approx. 701< mouth 8) increased, while 01 (3116 ”the band that shows only Soh (about 401< 03) Diminished.
[0142] 以上の結果から、 上述のとおり、 図 1及び 2に示したコンセプトとは異な
Figure imgf000051_0007
[0142] From the above results, as described above, the concept different from that shown in Figs.
Figure imgf000051_0007
的ドメイン (ここでは 01(3116 「 「ソ) を、 標的抗原非依存的に生じた反応 \¥02020/175366 51 卩(:171? 2020 /007038 Target domain (here 01 (3116 ““so”) \¥02020/175366 51 卩 (: 171? 2020 /007038
とはいえ、 少なくとも、 1~1 丨 V による認識配列切断によって細胞質に切 り離すことができることは示された。 However, it was shown that at least it can be cleaved into the cytoplasm by cleavage of the recognition sequence by 1 to 1 V.
[0143] (実施例 2) [0143] (Example 2)
前述のとおり、
Figure imgf000052_0001
1 -001 9-〇028-1~1 1 [¾ 〇八[¾ (〇 028_1~1 丨 ?[¾ 〇 [¾) を用いた場合には、 標的細胞非存在下でも、 標的抗原非依存的に !! 丨 ?[¾によって、 a n t i -CD 1 9-CD 28-
Figure imgf000052_0002
As mentioned above,
Figure imgf000052_0001
1 -001 9- 〇 028-1 ~ 1 1 [¾ 〇 8 [¾ (〇 028_1 ~ 1 丨?[ ¾ 〇 [¾)], the target antigen-independent even in the absence of target cells To !! [By ¾, anti -CD 1 9-CD 28-
Figure imgf000052_0002
八[¾) 中の認識配列 (03) が切断されてしまうことが明らかになった。 そ こで、 かかる標的抗原非依存的なプロテアーゼによる切断を抑えるため、 以 下に示すとおり、 〇028-1~1 丨 ?[¾ 〇八[¾の配列について、 更なる検 討を行なった。 It was revealed that the recognition sequence (03) in the eight [¾] was truncated. Therefore, in order to suppress the cleavage by the protease that does not depend on the target antigen, as shown below, 〇028-1 ~ 1? Further examination was conducted on the sequence of [¾08[¾].
[0144] 1~1 丨 V は二量体で働くプロテアーゼであり、 丨 3
Figure imgf000052_0003
「配列と呼 ばれる、 その 1\1末端の 4アミノ酸 ( 「〇-〇 1 门一 1 1 6-丁 〇 は、 当該自己二量体化に寄与することが報告されている (口 3ソ 6 「
Figure imgf000052_0004
. ら
[0144] 1 ~ 1 V is a dimeric protease,
Figure imgf000052_0003
It has been reported that the four amino acids at its 1\1 end, called the sequence ("○-○ 1 门一 1 16 6-chome" contributes to the self-dimerization. "
Figure imgf000052_0004
..
、 」 巳 1 〇〇16 3〇 I . 201 3 36 1 2 ; 20 : 67 参照 , ``Mi 1 〇 〇 16 3 〇 I. 201 3 36 1 2 ;20:67
[0145] —方、 図 1及び 2に示すコンセプトにおいては、 抗原認識に依存しない、 丨 3
Figure imgf000052_0005
「配列による自己二量体化は生じないことは望ましい。 また、 当該配列は、 プロテアーゼ活性自体には必須とされていない。 そこで、 この
Figure imgf000052_0006
「配列が上述の標的抗原非依存的切断の一因になり得ると考え
[0145] — On the other hand, the concepts shown in Figures 1 and 2 do not rely on antigen recognition.
Figure imgf000052_0005
"It is desirable that the sequence does not cause self-dimerization. Moreover, the sequence is not essential for the protease activity itself.
Figure imgf000052_0006
"We believe that sequences may contribute to the above-mentioned target antigen-independent cleavage.
、 〇028-1~1 丨 ?[¾ 〇八[¾ (a n I 1 -001 9-〇028 - 1~1 I V ミノ酸を除去した〇八
Figure imgf000052_0007
〇八[¾) を想到し、 当該〇八[¾ (以下 「〇028-1~1 1 ?[¾八4 〇八[¾」 とも称する) をコ
, 〇028-1 ~ 1 丨? [¾ 〇 8 [¾ (an I 1 -001 9- 〇 028-1 to 1 IV Removed mino acid
Figure imgf000052_0007
In consideration of 0,8 [¾], the 0,8 [¾ (hereinafter also referred to as "0,028-1 to 11? [8,8,08 [¾])
—ドするべクター ( 〇口 八3— 门 I — 001 9 3〇 ー〇口 2
Figure imgf000052_0008
(八4) ベクター) を作成した。
— Vector to be used (○ mouth 8 3 — Gate I — 001 9 3 〇 ー mouth 2
Figure imgf000052_0008
(8) Vector) was created.
[0146] また、 図 7に示したウェスタンプロッ トによる解析結果にて、 0028-
Figure imgf000052_0009
\¥02020/175366 52 卩(:171? 2020 /007038
[0146] In addition, in the analysis result by the Western plot shown in FIG.
Figure imgf000052_0009
\¥02020/175366 52 卩(: 171? 2020/007038
抗 1\/1ソ〇 39抗体によって、 当該 0 の全長に由来するバンド (約 5 01< 03) は検出されなかった。 このことから、 〇028-1~1 丨 ?[¾ 〇 八[¾において、 1~1 丨 V による配列内での自己切断が生じている可能性が 示唆された。 そして、 この切断によって当該〇八 より遊離した 1~1 丨
Figure imgf000053_0001
が、 a〇 t
Figure imgf000053_0002
〇八 中の認識配列を、 標的抗 原非依存的に切断してしまっていることが想定される。
No band (approximately 501 <03) derived from the full length of 0 was detected by the anti-1\/1 antibody. From this, 〇028-1 ~ 1 丨? In [¾ 08 [¾, it was suggested that there may be self-cleavage within the sequence due to 1 to 1 V. Then, this disconnection causes the release of 1 to 1
Figure imgf000053_0001
But a 〇 t
Figure imgf000053_0002
It is assumed that the recognition sequence in VIII has been cleaved independently of the target antigen.
[0147] そこで、 ペプチドデータべース (IV!巳 〇 3、 1: 1 3 : //\^\«\« . ㊀匕 ^〇 . リ 1</〇16 「〇 3/) を検索した結果、 0028の細胞 内ドメイン内に 1~1 丨 V が属するアスパラギン酸プロテアーゼの切断候補 となる配列が存在することが明らかになった。 そのため、 前記自己切断は、 当該配列によって生じていること、 及び〇 028内の前記配列を 1~1 丨
Figure imgf000053_0003
が切断することによって、 細胞膜に 1~1 丨 V を係留できていないことも想 定される。
[0147] Then, we searched the peptide database (IV!Mi 〇 3, 1: 1 3 : / \^\«\« .㊀匕 ^ 〇 .ri 1</ 〇 16 “〇 3/” As a result, it was revealed that there is a sequence that is a cleavage candidate for the aspartic protease to which 1 to 1 V is in the intracellular domain of 0028. Therefore, the self-cleavage is caused by the sequence, And the sequence in 〇 028 from 1 to 1
Figure imgf000053_0003
It is also conceivable that 1 to 1 V of V could not be anchored to the cell membrane due to the cleavage of.
[0148] —方、 〇〇 28の細胞内ドメインは〇〇
Figure imgf000053_0004
〇八[¾の活性 には不要であると考え、
Figure imgf000053_0005
I -001 9-〇028-1~1 I y P RA4 〇八[¾ (〇028-1~1 1 ?[¾八4 〇八[¾) から、 0028の細胞内ドメ インを除去した〇八[¾ (a n I 1 -〇01 9-〇028八 1 〇0-1~1 1 ?
Figure imgf000053_0006
、 (以下 「〇028八 1 〇0-1~1 1 [¾八4 〇八[¾」 又は 「31^ 1: I —001 9— 3〇 I 330 「 3—〇八[¾
[0148] — 〇 〇 28 intracellular domains are 〇 〇
Figure imgf000053_0004
Considered unnecessary for activity of 0,8,
Figure imgf000053_0005
I -001 9- 〇 028-1 ~ 1 I y P RA4 〇8 [¾ (〇 028-1 ~ 11? [¾8 408 [¾]) from which 0028 intracellular domain was removed [¾ (an I 1-〇 01 9- 〇 028 8 1 〇 0-1 ~ 1 1?
Figure imgf000053_0006
, (Hereinafter “〇028 8 1 0 0 1 to 1 1 [¾ 8 4 0 8 [¾] or “31^1: I — 001 9— 3 0 I 330 “3 — 0 8 [¾
」 とも称する) をコードするべクター
Figure imgf000053_0007
1 -001 9 3〇 ー〇028 (△ ! 〇0) -1~1 1 ?[¾ (△ 4) ベクター) を作成 した。
] Also coded)
Figure imgf000053_0007
1 -001 9 3 〇 〇 028 (△! 〇 0) -1 ~ 1 1? [¾ (△ 4) vector) was created.
[0149] そして、 このようにして作成した各べクターを 293丁細胞に遺伝子導入 し、 〇028-1~1 丨 ?[¾ 〇八1 〇028-1~1 丨 ?[¾八4 〇八[¾及 び〇028八 丨 〇0— 1~1 丨 y P RA4 〇八 を各々過剰発現させ、 ウェス タンプロッ トにより解析した。 その結果、 図 1 0に示すとおり、 〇028八 I 〇0— 1~1 丨 \Z P RA4 〇八 を過剰発現したサンプルにおいてのみ、 完 全長のバンドが検出された。 \¥0 2020/175366 53 卩(:171? 2020 /007038 [0149] Then, each of the vectors thus prepared was introduced into 293 cells, and 〇028-1 ~ 1 丨? [¾ 0 8 1 0 028-1 ~ 1 丨? [¾4808 [¾ and 02828 88 丨 〇 0 to 1 to 1 丨 y P RA4 08] were each overexpressed and analyzed by a western blot. As a result, as shown in FIG. 10, the full-length band was detected only in the sample overexpressing 028888 I 0-1 to 1 \ZP RA4 08. \\0 2020/175 366 53 卩 (: 171? 2020 /007038
さらに、 図 9に示す 3種の切断用〇八 の細胞内局在を評価するため、 〇 末端に丫 を融合させた態様にて各切断用 0 を、 2 9 3丁細胞におい て発現させ、 蛍光顕微鏡にて観察 ·解析した。 その結果、 図 1 1 に示すとお り、
Figure imgf000054_0001
〇八 と丫 との融合タンパク質を発現した 細胞では、 細胞膜への局在は認められなかった。 一方、 図 1 2に示すとおり 、
Figure imgf000054_0002
〇八 と丫 との融合タンパク質を発現し た細胞においては、 一部細胞質内にシグナルを認めたものの、 細胞膜に局在 する傾向を示された。 さらに、 図 1 3に示すとおり、 〇0 2 8八 丨 〇0 - 1~1 〇八[¾と丫 との融合タンパク質を発現した細胞において は、 細胞質に丫 由来の蛍光シグナルは検出されず、 完全な細胞膜への局 在が認められた。
Furthermore, in order to evaluate the subcellular localization of the three types of cleavage 08 shown in Fig. 9, each cleavage 0 was expressed in 2 93 3 cells in a mode in which a cage was fused at the 0 end. Observed and analyzed with a fluorescence microscope. As a result, as shown in Figure 11,
Figure imgf000054_0001
No localization to the cell membrane was observed in cells that expressed the fusion protein of Eight and eight. On the other hand, as shown in Figure 12,
Figure imgf000054_0002
In the cells expressing the fusion protein of Eight and eight, although a signal was partially observed in the cytoplasm, it tended to be localized in the cell membrane. Furthermore, as shown in FIG. 13, no fluorescence signal derived from the cytoplasm was detected in cells expressing the fusion protein of 〇 0 2 8 8 丨 〇 0-1 to 10 8 [¾ and 丫, Localization to the complete cell membrane was observed.
以上のことから、 上述の想定のとおり、 0 0 2 8の細胞内ドメイン及び 1~1 I V の 1\1末側の配列に存在する認識配列が、
Figure imgf000054_0003
による自己切断 をうけていることが示唆される。 また、 これら認識配列を除去することによ り、 切断用〇 を細胞膜に係留することに成功した。
From the above, as assumed above, the recognition sequence present in the intracellular domain of 0 0 28 and the 1\1 terminal side of 1 to 1 IV,
Figure imgf000054_0003
It is suggested that they are undergoing self-disconnection. In addition, by removing these recognition sequences, we succeeded in anchoring the cleavage circles to the cell membrane.
[0150] (実施例 3) [0150] (Example 3)
図 1及び 2に示すとおり、 プロテアーゼを有する切断用〇八 が標的細胞 を認識した際に、 活性化用〇八 中において、 プロテアーゼ認識配列におけ る切断が特異的に誘導されるかについて、 1~1 I V による切断部位を有さ
Figure imgf000054_0004
〇八[¾を用い、 検証した。
As shown in Figs. 1 and 2, when the cleavage-hazard having a protease recognizes a target cell, whether the cleavage at the protease recognition sequence is specifically induced in the activation-chamber 1 ~ 1 has a cleavage site by IV
Figure imgf000054_0004
It was verified by using 0-8 [¾.
[0151] 具体的には、 2 9 3丁細胞に、
Figure imgf000054_0005
〇 八 をコードするべクターと、
Figure imgf000054_0006
〇八[¾ をコードするべクターとを遺伝子導入し、
Figure imgf000054_0007
[0151] Specifically, for 293 cells,
Figure imgf000054_0005
With a vector that codes 0
Figure imgf000054_0006
〇8[¾-encoding vector and
Figure imgf000054_0007
グナルを検出した。 The gnoll was detected.
[0152] その結果、 図 1 4に示すとおり、 標的細胞非存在下では、 3 n I I - 0 0 [0152] As a result, as shown in Fig. 14, in the absence of target cells, 3 n I I-0 0
1 9 -〇1〇 6 「 「 ソ 〇八 中のプロテアーゼ認識配列は切断されること なく、 01〇 6 「 「ソが細胞膜に局在していることが認められた。 すなわち 、 標的抗原非依存的な切断は生じていないことが明らかになった。 \¥02020/175366 54 卩(:171? 2020 /007038
Figure imgf000055_0001
1 9-0 106 "" It was confirmed that the protease recognition sequence in So 08 was not cleaved, and that 01 0 6 "" was localized at the cell membrane. It was revealed that the general disconnection did not occur. \¥02020/175366 54 卩 (: 171? 2020 /007038
Figure imgf000055_0001
0— 1~1 1 ?[¾八4 〇八 を共発現させた 293丁細胞と、 その標的細胞 である
Figure imgf000055_0002
3」 丨細胞とを共培養し、 ウェスタンプロッ トにより分析した結果 、 図 1 5に示すとおり、 31^ I I —001 9—〇1〇 116 「 「ソ 〇八[¾から 遊離した111〇 116 「 「ソを検出することができた。
0— 1 ~ 1 1? [293 cells co-expressing 808 and its target cells
Figure imgf000055_0002
3” Co-cultured with roe cells and analyzed by Western blot. As shown in Figure 15, 31^ II — 001 9 — 〇 1 〇 116 ”“ 111 〇 116 ” "I was able to detect Seo.
[0154] したがって、 図 1及び 2に示したコンセプトのとおり、 切断用〇八[¾ (上
Figure imgf000055_0003
〇八[¾に相当) がその標的抗原を 認識した場合のみ、 当該〇八 中のプロテアーゼ (上述の 1~1 I
Figure imgf000055_0004
[0154] Therefore, according to the concept shown in Figs.
Figure imgf000055_0003
Protease (see 1 to 1 I above) contained in the relevant VIII only if VIII (equivalent to ¾) recognizes its target antigen.
Figure imgf000055_0004
が活性化され、 当該活性化されたプロテアーゼにより活性化用 0 が切断 されることにより、 シグナル伝達因子 (上述の 01〇 6 「 「;/に相当) が細 胞質中に遊離されることが明らかになった。 Is activated, and the activated protease is cleaved to activate 0, so that the signal transduction factor (corresponding to 01〇6““;/ above) may be released into the cytoplasm. It was revealed.
[0155] (実施例 4) [0155] (Example 4)
実施例 3に示すとおり、 001 9のみを標的抗原とする 1抗原認識系 (シ ングルアーム系) において、 切断用〇八 による活性化用〇八 の切断が、 標的細胞における前記抗原を認識することによって生じることが認められた As shown in Example 3, in the 1-antigen recognition system (single arm system), which uses only 001 9 as the target antigen, the cleavage of the activation 08 by the cleavage 08 causes the antigen to be recognized in the target cells. Recognized to occur
[0156] 次に、 標的抗原を 2種類とした場合 (2抗原認識系、 ダブルアーム系) に おいても、 標的細胞依存的な切断用 0八 による切断が生じることを、 00 [0156] Next, even in the case of using two types of target antigens (two-antigen recognition system, double-arm system), target cell-dependent cleavage for cleavage was observed as follows.
Figure imgf000055_0009
Figure imgf000055_0009
1 〇0-1~1 丨 ?[¾八4 〇八[¾ (a n I I -〇 01 9 - 3〇 I
Figure imgf000055_0005
1 0-1 ~ 1 丨? [¾ 8 4 0 8 [¾ (an II-0 01 9-3 0 I
Figure imgf000055_0005
_〇八[¾) を共発現させた 293丁細胞とを用い、 確認した。 It was confirmed by using 293 cells co-expressing ____8[¾).
[0157] より具体的には、 生来 1~1巳 2を発現している
Figure imgf000055_0006
(図 1
More specifically [0157] is expressed innate 1-1 snake 2
Figure imgf000055_0006
(Figure 1
6の
Figure imgf000055_0007
参照のほど) に、 〇〇 1 9発現べクタ
6's
Figure imgf000055_0007
For reference, 〇 〇 19 Expression vector
—を導入することにより、 2種の抗原 (1~1巳[¾ 2及び〇01 9) を発現する 細胞を、 標的細胞として樹立した (図 1 6の 「3 <-巳
Figure imgf000055_0008
参照のほど) 。 \¥02020/175366 55 卩(:171? 2020 /007038
By introducing —, cells expressing two types of antigens (1 to 1 [[2] and 0 019) were established as target cells (see “3 <-
Figure imgf000055_0008
For reference). \¥02020/175366 55 卩 (: 171? 2020 /007038
[0158] また、 293丁細胞に、
Figure imgf000056_0001
1 -1~1巳[¾ 2 (405-3 ) —〇口 28—〇3— 01(3116 「 「ソベクター及び 〇 0 八3— 门 !: I -001 9-0028 (△ ! 〇0) -1~1 1 ?[¾ (八4) ベクターを、 重量
Figure imgf000056_0002
[0158] Also, for 293 cells,
Figure imgf000056_0001
1 -1 ~ 1 裳 [¾ 2 (405-3) — 〇 mouth 28 — 〇 3 — 01 (3116 ““Sovector and 〇 0 8 3 — 门 !: I -001 9-0028 (△! 〇 0)- 1 ~ 1 1? [¾ (8 4) Vector, weight
Figure imgf000056_0002
る丁細胞を調製した。 Routing cells were prepared.
[0159] そして、 当該丁細胞を
Figure imgf000056_0003
したところ、 図 1 7 に示すとおり、 細胞質内の
Figure imgf000056_0004
「ソシグナルは認められなかった (図 1 7の
Figure imgf000056_0005
参照のほど) 。 一方、 前記丁細胞 を前記改変丁細胞と共培養した結果、 01〇 116 「 「ソシグナルの細胞質内へ の移行が認められた (図 1 7の 「3 <-巳[¾-3/〇01 9」 参照のほど
[0159] Then,
Figure imgf000056_0003
Then, as shown in Fig. 17,
Figure imgf000056_0004
"No so signal was observed (Fig. 17
Figure imgf000056_0005
For reference). On the other hand, as a result of co-culturing the above-mentioned Ding cells with the above-mentioned Ding cells, 01 〇 116 ”“so signal translocation into the cytoplasm was observed (“3 <-M[[-3-3 〇 019 As for reference
[0160] 以上の結果により、 図 1及び 2に示すように、 標的細胞中の 2抗原 (ここ では、
Figure imgf000056_0007
を、 切断用〇八
Figure imgf000056_0006
(ここでは、 3 n I 丨 _〇 01 9 -3〇 I 330 「 3 -〇八[¾) 及び活性化用〇八
Figure imgf000056_0008
(ここでは、 3门 1:
Figure imgf000056_0009
〇八[¾) が各々認識した場合に、 切断用
[0160] From the above results, as shown in FIGS. 1 and 2, two antigens in the target cell (here,
Figure imgf000056_0007
For cutting
Figure imgf000056_0006
(In this case, 3 n I _ 〇 01 9 -3 〇 I 330 ”3-〇 8 [¾] and activation 〇 8
Figure imgf000056_0008
(Here, 3
Figure imgf000056_0009
For cutting when each of the eight (¾) recognizes
〇八 による標的細胞特異的な活性化用 0 の切断を誘導できることが確 認された。 It was confirmed that target cell-specific cleavage of 0 for activation by Escherichia coli can be induced.
[0161] (実施例 5) [0161] (Example 5)
図 2に示すネガティブシステムが機能することを実証するに際し、 先ず、 本願発明にかかる活性化用〇 によって、 標的細胞特異的な丁細胞の活性 化を誘導できることを確認した。 In demonstrating the function of the negative system shown in FIG. 2, first, it was confirmed that the activation O according to the present invention can induce the activation of Ding cells specific to a target cell.
[0162] 具体的には先ず、 活性化用〇八 発現べクターとして、 共刺激分子である 認識配列を介在した
Figure imgf000056_0010
I -0
Figure imgf000056_0011
八一丫 発現べクターを作成し た (図 1 8 参照のほど) 。 なお、 ここではチサゲンレクル (キムリア (登 録商標) 、 ノバルティス社製) 等の実臨床でも使用されている 003
Figure imgf000056_0012
6 3を用いたネガティブ ·システムを評価するため、 前記べクターを作成し た。 また、 図 1 8に示すとおり、 当該べクターにおいては、 蛍光タンパク質 発現により活性化用 CARの発現を追跡するため、 a n t i _CD 1 9 E f f e c t 〇 r C A R下流には T 2 A配列を介在し Y F P遺伝子が組み込 んである。
[0162] Specifically, first, a recognition sequence, which is a costimulatory molecule, was interposed as an activation expression vector.
Figure imgf000056_0010
I -0
Figure imgf000056_0011
We created an expression vector (see Figure 18). In addition, it is also used in actual clinical trials such as Chisagen Lecle (Kimria (registered trademark), manufactured by Novartis) 003
Figure imgf000056_0012
6 In order to evaluate the negative system using 3 It was In addition, as shown in Fig. 18, in this vector, in order to trace the expression of the activation CAR by the expression of the fluorescent protein, the T_A sequence was mediated downstream of anti_CD19Effect 〇 r CAR and YFP was inserted. The gene is integrated.
[0163] そして、 a n t i -CD 1 9 E f f e c t o r CAR-T 2A-Y F [0163] Then, a n t i -CD 19 E f f e c t o r CAR-T 2A-Y F
P発現べクターを J u r k a t細胞に遺伝子導入し、 K 562細胞 (CD 1 9陰性細胞) 又は R a j i細胞 (CD 1 9陽性細胞) との共培養を実施した 。 その結果、 図 1 9に示すとおり、 Y F Pを発現する C A R陽性 J u r k a t細胞において、 CD 1 9陽性の R a j i細胞特異的に T細胞活性化マーカ —である CD 69の発現誘導が確認された。 また、 図 20に示すとおり、 C AR陽性 J u r k a t細胞を単離して遺伝子発現解析を実施したところ、 R a j i との共培養にて 丨 L _ 2 m R N Aの発現誘導が認められた。 The P-expressing vector was gene-transfected into Jurkat cells and cocultured with K562 cells (CD19 negative cells) or Raji cells (CD19 positive cells). As a result, as shown in FIG. 19, inducing expression of CD69, which is a T cell activation marker specifically in CD19-positive Raji cells, was confirmed in CFP-positive Jurkat cells expressing YFP. Further, as shown in FIG. 20, when CAR positive J u r k at cells were isolated and gene expression analysis was performed, induction of L _ 2 m R N A expression was confirmed by co-culture with R a j i.
[0164] さらにまた、 a n t i -C D 1 9 E f f e c t o r CAR-T 2A- Y F P発現べクターに組み込まれた G4 1 8薬剤耐性遺伝子を利用し、 G 4 1 8での薬剤選択によって a n t i -C D 1 9 E f f e c t o r CAR -T 2A-Y F Pを安定的に発現する J u r k a t細胞 (以下、 「a n t i — CD 1 9 E f f e c t o r/J u r k a t細胞」 とも称する) を樹立し た。 そして、 この細胞においても、 図 2 1 に示すとおり、 R a j i細胞又は CD 1 9を遺伝子を導入した前記改変 S K_B R_ 3細胞との共培養によっ て、 C D 69発現で示される同細胞の活性化が誘導されることが確認された [0164] Furthermore, by utilizing the G4 18 drug resistance gene incorporated into the anti-CD 19 Effector CAR-T 2A-YFP expression vector, anti -CD 19 Jurkat cells stably expressing Effector CAR -T 2A-YFP (hereinafter also referred to as "anti-CD 19 Effector/Jurkat cells") were established. Then, also in this cell, as shown in Fig. 21, by co-culture with Raji cells or the modified SK_BR_3 cells into which the CD19 gene had been introduced, the cells of CD69 expression, It was confirmed that activation was induced
[0165] 以上のとおり、 H 丨 V P R認識配列が介在してある活性化用 C A Rによっ ても、 標的細胞特異的な T細胞活性化が誘導できることが確認された。 [0165] As described above, it was confirmed that target cell-specific T cell activation can also be induced by activation C A R mediated by the H V VP recognition sequence.
[0166] (実施例 6) [0166] (Example 6)
図 2に示すネガティブシステムが機能することを実証するため、 実施例 5 において調製した a n t i — C D 1 9 E f f e c t 。 r/J u r k a t細 胞に、 a n t i - H E R 2 (4 D 5 - 3) -S c i s s o r s -CAR-T 2 A-mC h e r r y発現べクターを遺伝子導入した。 そして、 当該べクタ —に組み込まれている H y g r om y c i n耐性遺伝子を利用し、 G 4 1 8 と H y g r om y c i nの双方による薬剤選択を行うことで a n t i — CD 1 9 E f f e c t o r CAR及び a n t i - H E R 2 (4 D 5 - 3) - S c i s s o r s— CARの双方を安定的に発現する J u r k a t細胞 (以 下、 ra n t i — C D 1 9 E f f e c t o r CAR + a n t i — H E R 2 ( 4 D 5— 3 ) S c i s s o r s/J u r k a t細胞」 とも称する) を樹 立した (図 22 参照) 。 To demonstrate that the negative system shown in FIG. 2 works, the anti-CD 19 Effect prepared in Example 5. An anti-HER2(4D5-3)-Scissors-CAR-T2A-mCherry expression vector was introduced into r/J urkat cells. And the vector Using the Hygr om ycin resistance gene incorporated in — and drug selection by both G 4 18 and Hygr om ycin, anti — CD 19 E ffector CAR and anti-HER 2 (4 D 5-3)-S cissors — J urkat cells stably expressing both CARs (hereinafter, ra nti — CD 19 Effector CAR + anti — HER 2 (4 D 5 — 3 )S cissors/J urkat (Also referred to as cells)) (see Figure 22).
また、 a n t i - H E R 2 (4 D 5 - 3) -S c i s s o r s -CAR- T 2A-mC h e r r y発現べクターの代わりに、 a n t i - H E R 2 (4 D 5— 8 ) — S c i s s o r s— CAR— T 2A— mC h e r r y発現べク 夕一を、 a n t i — CD 1 9 E f f e c t o r/J u r k a t細胞に遺伝 子導入し、 a n t i — CD 1 9 E f f e c t o r CAR及び a n t i — H E R 2 (4 D 5-8) -S c i s s o r s - C A Rの双方を安定的に発現 する J u r k a t細胞 (以下、 ra n t i — CD 1 9 E f f e c t o r CAR + a n t i — H E R 2 ( 4 D 5— 8 ) S c i s s o r s/J u r k a t細胞」 とも称する) も樹立した (図 22 参照) 。 Also, instead of anti -HER 2 (4 D 5 -3) -S cissors -CAR-T 2A-mC herry expression vector, anti -HER 2 (4 D 5-8) — S cissors— CAR— T 2A — MC herry expression vector was introduced into anti — CD 19 E ffector/J urkat cells, and anti — CD 19 E ffector CAR and anti — HER 2 (4 D 5-8) -S cissors -Established J urkat cells that stably express both CAR (hereinafter also referred to as ranti — CD 19 Effector CAR + anti — HER 2 (4 D 5-8 )S cissors/J urkat cells) (See Figure 22).
[0167] そして、 これら C A R発現 J u r k a t細胞を、 R a j i細胞、 S K- B [0167] Then, these C A R-expressing J u r k a t cells are transformed into R a j i cells and S K-B cells.
R _ 3細胞又は前記改変 S K-B R _ 3細胞と共培養し、 早期活性化のマー 力一である CD 69の発現量を指標として、 T細胞の活性化について解析し た。 The cells were co-cultured with R_3 cells or the modified SK-BR__3 cells, and T cell activation was analyzed using the expression level of CD69, which is a marker for early activation, as an index.
その結果、 図 23及び 24に示すとおり、 R a j i細胞 (CD 1 9陽性/ H E R 2陰性) に対しては切断用 C A Rの有無にかかわらず C A R発現 J u r k a t細胞はほぼ同等の活性化を示した。 一方、 改変 S K _ B R _ 3細胞 (CD 1 9陽性/ H E R 2陽性) に対しては a n t i -H E R 2 (4 D 5- 3) -S c i s s o r s _C A Rを発現する群において活性化の減弱が認め られた。 さらに、 図 24に示すとおり、 a n t i — H E R 2 (4 D 5— 3) s c F vよりも親和性の高い s c F vである a n t i — H E R 2 (4 D 5— 8) s c F vを発現させた細胞においては、 より効率的な活性化の減弱が認 \¥0 2020/175366 58 卩(:171? 2020 /007038 As a result, as shown in FIGS. 23 and 24, CAR-expressing J urkat cells showed almost the same activation as R aji cells (CD 19 positive/HER 2 negative) regardless of the presence or absence of the cleavage CAR. .. On the other hand, for modified SK _ BR _ 3 cells (CD 19 positive / HER 2 positive), a decrease in activation was observed in the group expressing anti -HER 2 (4 D 5-3) -S cissors _C AR. Was given. Furthermore, as shown in Figure 24, anti-HER2 (4 D 5-8) sc F v, which is a sc F v with higher affinity than anti-HER 2 (4 D 5-3) sc F v, was expressed. In cells, a more efficient attenuation of activation was observed. \\0 2020/175 366 58 卩 (: 171? 2020 /007038
められた。 Was messed up.
[0168] 以上のとおり、 切断用〇八[¾は、 標的細胞の表面抗原の発現パターン依存 的に活性化用 0八 による丁細胞の活性化を調節できることが、 確認された 。 また、 表面抗原に対して親和性の高い切断用 0 は、 より効率的に活性 化用〇八 の活性化を減弱できることも、 実証された。 [0168] As described above, it was confirmed that the cleaving 08 [¾ can regulate the activation of Ding cells by the activation 08 depending on the expression pattern of the surface antigen of the target cell. It was also demonstrated that cleavage 0, which has a high affinity for surface antigens, can more efficiently attenuate the activation 08 activation.
産業上の利用可能性 Industrial availability
[0169] 以上説明したように、 本発明によれば、 2種類の〇八[¾ (切断用〇八[¾及 び活性化用〇八[¾) が 2つの抗原を各々認識することにより、 これら 0八[¾ を発現する細胞によって、 正常細胞への細胞障害等を抑えつつ、 標的細胞に 細胞障害等をもたらすことが可能となる。 さらに、 切断用〇 が有するプ ロテアーゼに対する阻害剤を用いることにより、 活性化用 0八 の活性化を 抑制することによって、 前記〇 を発現する細胞の活性の強さ、 その持続 性を制御することも可能となる。 [0169] As described above, according to the present invention, two kinds of 08 [¾ (cleavage 08 [¾ and activation 08 [¾] recognize each of two antigens, By expressing these 0.8 cells, it becomes possible to bring about cell damage and the like in the target cells while suppressing the cell damage and the like to normal cells. In addition, by using an inhibitor against the protease possessed by the cleaving 〇, the activity of the cell expressing the 〇 and its persistence can be controlled by suppressing the activation of the activating 08. Will also be possible.
[0170] したがって、 本発明の〇八[¾は、 副作用少なく、 また過剰に活性化された 丁細胞によって生じる有害事象 (高サイ トカイン血症等) も制御しながら、 がん等の疾患を治療又は予防することが可能となるため、 がん免疫療法等に おいて有用である。 [0170] Therefore, the present invention [08] treats diseases such as cancer while controlling side effects and controlling adverse events (such as hypercytokineemia) caused by excessively activated Ding cells. Or, it can be prevented, and is useful in cancer immunotherapy and the like.

Claims

\¥0 2020/175366 59 卩(:17 2020 /007038 請求の範囲 \¥0 2020/175 366 59 卩(: 17 2020/007038 Claims
[請求項 1 ] 第 1の抗原に結合する領域と、 膜貫通領域と、 プロテアーゼとを含 み、 かつ、 前記プロテアーゼによって切断される部位を含まない、 キ メラ抗原受容体。 [Claim 1] A chimeric antigen receptor comprising a region that binds to a first antigen, a transmembrane region, and a protease, and does not include a site cleaved by the protease.
[請求項 2] 第 2の抗原に結合する領域と、 膜貫通領域と、 請求項 1 に記載のプ ロテアーゼによって切断される部位と、 シグナル伝達因子とを含む、 キメラ抗原受容体。 [Claim 2] A chimeric antigen receptor comprising a region that binds to a second antigen, a transmembrane region, a site that is cleaved by the protease of claim 1, and a signal transduction factor.
[請求項 3] 前記シグナル伝達因子が、 細胞膜の内側に存在している場合に機能 する、 膜局在型シグナル伝達因子である、 請求項 2に記載のキメラ抗 原受容体。 [Claim 3] The chimeric antigen receptor according to claim 2, wherein the signal transduction factor is a membrane-localized signal transduction factor that functions when present inside the cell membrane.
[請求項 4] 前記シグナル伝達因子が、 請求項 1 に記載のプロテアーゼによって 前記部位が切断され、 細胞膜より遊離した場合に機能する、 遊離性シ グナル伝達因子である、 請求項 2に記載のキメラ抗原受容体。 [Claim 4] The chimera according to claim 2, wherein the signal transduction factor is a free signal transduction factor that functions when the site is cleaved by the protease according to claim 1 and is released from the cell membrane. Antigen receptor.
[請求項 5] 請求項 1〜 4のうちのいずれか一項に記載のキメラ抗原受容体をコ [Claim 5] A chimeric antigen receptor according to any one of claims 1 to 4
—ドするヌクレオチド。 — The nucleotides to add.
[請求項 6] 請求項 5に記載のヌクレオチドを含むベクター。 [Claim 6] A vector comprising the nucleotide according to claim 5.
[請求項 7] 請求項 1 に記載のキメラ抗原受容体と、 請求項 2〜 4のうちのいず れか一項に記載のキメラ抗原受容体とを発現する細胞。 [Claim 7] A cell that expresses the chimeric antigen receptor according to claim 1 and the chimeric antigen receptor according to any one of claims 2 to 4.
[請求項 8] 丁細胞又はナチュラルキラー細胞である、 請求項 7に記載の細胞。 [Claim 8] The cell according to claim 7, which is a Ding cell or a natural killer cell.
[請求項 9] 請求項 7又は 8に記載の細胞を含む、 医薬組成物。 [Claim 9] A pharmaceutical composition comprising the cell according to claim 7 or 8.
PCT/JP2020/007038 2019-02-25 2020-02-21 Chimeric antigen receptor WO2020175366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502186A JPWO2020175366A1 (en) 2019-02-25 2020-02-21

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-031858 2019-02-25
JP2019031858 2019-02-25
JP2019197465 2019-10-30
JP2019-197465 2019-10-30

Publications (1)

Publication Number Publication Date
WO2020175366A1 true WO2020175366A1 (en) 2020-09-03

Family

ID=72238492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007038 WO2020175366A1 (en) 2019-02-25 2020-02-21 Chimeric antigen receptor

Country Status (2)

Country Link
JP (1) JPWO2020175366A1 (en)
WO (1) WO2020175366A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504601A (en) * 2013-12-20 2017-02-09 セレクティスCellectis Method for manipulating multi-input signal sensitive T cells for immunotherapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504601A (en) * 2013-12-20 2017-02-09 セレクティスCellectis Method for manipulating multi-input signal sensitive T cells for immunotherapy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AOYAMA, SATORU ET AL.: "A navel protease-mediated chimeric antigen receptor (CAR): ''double-arm'' CAR- T cell system improves target specificity of CAR-T cell therapy", BLOOD, vol. 134, November 2019 (2019-11-01) *

Also Published As

Publication number Publication date
JPWO2020175366A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US20210253726A1 (en) Car expression vector and car-expressing t cells
US10647997B2 (en) Modified effector cell (or chimeric receptor) for treating disialoganglioside GD2-expressing neoplasia
US20210038649A1 (en) Chimeric antigen receptors and uses thereof
CN106999552B (en) Methods and compositions for treating cancer
KR20190114966A (en) Engineered natural killer cells and uses thereof
JP7277388B2 (en) Method
US20220125905A1 (en) Mesothelin cars and uses thereof
JP7233720B2 (en) Immune Competent Cells Expressing Cell Surface Molecules That Specifically Recognize Human Mesothelin, IL-7, and CCL19
US10023648B2 (en) Anti-TOSO chimeric antigen receptor and its use
JP2017522859A (en) T cell receptor specific for glypican 3 and its use for immunotherapy of hepatocellular carcinoma
KR20170093248A (en) Carbonic anhydrase ix specific chimeric antigen receptors and methods of use thereof
CN113166226A (en) Immune response cell expressing dominant negative FAS and use thereof
WO2023104171A1 (en) Chimeric antigen receptor t cell secreting bispecific antibodies, preparation method therefor and use thereof
JP2024514355A (en) Chimeric antigen receptor (CAR)-T cells
WO2020175366A1 (en) Chimeric antigen receptor
CN114457117A (en) Dendritic cell tumor vaccine and uses thereof
US20240000937A1 (en) Methods and compositions of car-expressing natural killer cells with bispecific antigen-binding molecules as cancer therapeutic agents
IL297916A (en) Compositions and methods for tcr reprogramming using cd70 specific fusion proteins
JP7475088B2 (en) Immunocompetent cells expressing cell surface molecules that specifically recognize human mesothelin, IL-7, and CCL19
US20240075065A1 (en) Cd28-targeting chimeric antigen receptor (car) t cells, methods of generation and uses thereof
EP4028031A1 (en) Antigen recognizing receptors targeting cd371 and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762815

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021502186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762815

Country of ref document: EP

Kind code of ref document: A1