WO2020175325A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2020175325A1
WO2020175325A1 PCT/JP2020/006866 JP2020006866W WO2020175325A1 WO 2020175325 A1 WO2020175325 A1 WO 2020175325A1 JP 2020006866 W JP2020006866 W JP 2020006866W WO 2020175325 A1 WO2020175325 A1 WO 2020175325A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
throttle
branch
cooling system
coolers
Prior art date
Application number
PCT/JP2020/006866
Other languages
French (fr)
Japanese (ja)
Inventor
森本 正和
憲志郎 村松
長谷川 恵津夫
伊藤 誠司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020009431A external-priority patent/JP7380248B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080016334.1A priority Critical patent/CN113474936A/en
Publication of WO2020175325A1 publication Critical patent/WO2020175325A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a cooling system.
  • the battery cooler described in Patent Document 1 includes a plate member having a flow path inside. Batteries can be installed on the outer surface of the plate material. In this battery cooler, it is possible to cool the battery by exchanging heat between the battery installed on the outer surface of the plate member and the refrigerant flowing in the flow path inside the plate member. ing.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013_2 6 2 2 8
  • a method in which a plurality of coolers are arranged in parallel and a refrigerant is allowed to flow through those coolers can be considered.
  • the distribution amount of the refrigerant in each cooler may vary.
  • the liquid-phase refrigerant is supplied to each cooler, if the distribution amount of the liquid-phase refrigerant in each cooler varies, the liquid-phase refrigerant will dry out in the cooler with a small flow rate, and Gas phase refrigerant easily exists on the downstream side ⁇ 2020/175 325 2 (:171? 2020/006866
  • An object of the present disclosure is to provide a cooling system capable of cooling a plurality of batteries and suppressing deterioration of the batteries.
  • a cooling system includes a plurality of coolers, and a coolant supply flow path.
  • the cooler has a heat exchange unit that cools the battery by exchanging heat between the refrigerant flowing inside and the battery.
  • the refrigerant supply channel supplies the refrigerant to the plurality of coolers.
  • a main flow channel through which the coolant flows and a plurality of branch flow channels that branch from the main flow channel and distribute the coolant to each of the plurality of coolers are formed.
  • the refrigerant is supplied in parallel to the plurality of coolers.
  • Fig. 1 is a block diagram showing a schematic configuration of a cooling system of the first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a cooling system of a first modified example of the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of a cooling system of a second modified example of the first embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of a cooling system of a second embodiment. ⁇ 2020/175325 3 (:171? 2020/006866
  • FIG. 5 is a block diagram showing a schematic configuration of a cooling system of a third embodiment.
  • FIG. 6 is a block diagram showing a schematic configuration of a cooling system of the fourth embodiment.
  • the cooling system 10 of the first embodiment shown in FIG. 1 is installed in a vehicle, for example.
  • a vehicle is equipped with a plurality of batteries 20 for supplying electric power to a driving motor and various electronic devices.
  • the cooling system 10 is a system for cooling these batteries 20.
  • the cooling system 10 includes a plurality of coolers 30 to 33, a combiner 40, and a condenser 50.
  • the coolers 30 to 33, the combiner 40, and the condenser 50 are connected in an annular shape through the refrigerant passage 10.
  • Refrigerant circulates through the refrigerant flow passage 10 through the coolers 30 to 33, the combustor 40, and the condenser 50.
  • the compressor 40 compresses and discharges the refrigerant.
  • the high-temperature and high-pressure gas-phase refrigerant compressed by the combustor 40 is supplied to the condenser 50.
  • the condenser 50 cools and condenses the vapor-phase refrigerant by exchanging heat between the high-temperature and high-pressure vapor-phase refrigerant flowing inside the condenser and the air flowing outside the condenser.
  • the liquid-phase refrigerant condensed in the condenser 50 is supplied to each of the coolers 30 to 33 through the refrigerant supply flow path ⁇ /20 which constitutes a part of the refrigerant flow path 10. [0012]
  • the liquid-phase refrigerant condensed in the condenser 50 flows in the refrigerant supply channel ⁇ / 20.
  • Refrigerant is supplied in parallel to coolers 30 to 33 by arranging 3 respectively.
  • the cooler 30 has a heat exchange section 300 and a throttle section 301.
  • the heat exchange unit 300 the liquid-phase refrigerant is supplied through the branch passage ⁇ ⁇ / 22 3. Inside the heat exchange section 300, a flow path 302 through which the liquid-phase refrigerant flows is formed. A plurality of batteries 20 are installed on the upper surface of the heat exchange unit 300. In the heat exchange section 300, the battery 20 is cooled by exchanging heat between the refrigerant flowing through the flow path 302 inside the heat exchange section 300 and the battery 20. In the channel 302, the temperature of the refrigerant rises due to heat exchange with the battery 20. Therefore, from the upstream side to the downstream side of the flow path 302, the liquid-phase refrigerant changes to a two-phase state cooling medium in which the gas phase and the liquid phase are mixed.
  • the throttle unit 301 is provided integrally with the heat exchange unit 300.
  • the throttle unit 301 is composed of a fixed throttle valve whose throttle opening is fixed at a constant opening.
  • the throttle unit 301 is a branch flow passage that is formed by narrowing the flow passage of the liquid-phase refrigerant.
  • the coolers 31 to 33 are similar to the cooler 30 in that the heat exchange units 31 0, 320, 3
  • the battery 20 is cooled by exchanging heat between the battery 20 and the refrigerant flowing through the flow paths 31 2, 322, 332 formed therein.
  • the throttles 3 1 1, 32 1, 33 1 adjust the flow rate of the liquid-phase refrigerant flowing from the branch flow passages ⁇ /22 ⁇ 22 to the heat exchange parts 31-33.
  • the refrigerant discharged from each of the coolers 30 to 33 flows to the compressor 40 through the refrigerant discharge flow path ⁇ /30 forming a part of the refrigerant flow path ⁇ /10.
  • the refrigerant discharge channel ⁇ /30 is It has a main channel ⁇ /32 ⁇ 2020/175 325 5 (:171? 2020/006866
  • the refrigerant discharged from 310, 320, and 330 respectively flows.
  • the main channel ⁇ /3 2 is The refrigerant flowing through the
  • an accumulator is provided in the main flow path ⁇ /32 to separate the two-phase refrigerant discharged from the coolers 30 to 33 into a liquid-phase refrigerant and a vapor-phase refrigerant to store an excess refrigerant. Good.
  • the gas-phase refrigerant separated by the accumulator can be supplied to the compressor 40.
  • the plurality of batteries 20 can be cooled. Further, since the flow rates of the refrigerants supplied to the heat exchange sections 300, 310, 320, 330 of the plurality of coolers 30 to 33 are adjusted by the throttle sections 301, 3 1 1, 32 1, 33 1, respectively, Dispersion of the distribution amount of the refrigerant in each heat exchange unit 300, 310, 320, 330 is suppressed. As a result, it is possible to cool the plurality of batteries 20 more uniformly, so that deterioration of the batteries 20 can be suppressed.
  • each of the three heat exchange sections 300, 310, 320, 330 It is provided for each of the three heat exchange sections 300, 310, 320, 330. According to such a configuration, the distribution amount of the refrigerant of all the heat exchange units 300, 310, 320, 330 can be adjusted, so that the distribution amount of the refrigerant of each of the coolers 30 to 33 can be more accurately adjusted. Variation can be suppressed. Therefore, it is possible to cool the plurality of batteries 20 more uniformly.
  • the throttle portions 301, 3 1 1, 32 1 and 33 1 are fixed throttle valves. With such a configuration, it is possible to suppress variations in the distribution amount of the refrigerant among the heat exchange sections 300, 310, 320, and 330 with a simple structure.
  • the throttle portions 301, 3 1 1, 32 1, It is located in each. That is, the throttles 301, 3 1, 1, 32 1, 33 1 are provided separately from the coolers 30 to 33. Even with such a configuration, it is possible to obtain the same or similar operation and effect as the cooling system 10 of the first embodiment.
  • a throttling portion 60 is provided between the connection portion 1 of the 23 and the branch flow passage 2213 to the branch portion.
  • the throttle unit 60 adjusts the flow rate of the liquid-phase refrigerant flowing into the heat exchange units 300 and 310 of the coolers 30 and 31.
  • a throttle portion 61 is also provided between the connecting portion 2 of the branch flow passage 220 and the branch flow passage 22 to the branch portion.
  • the throttle unit 61 adjusts the flow rate of the liquid-phase refrigerant flowing into the heat exchange units 320 and 330 of the coolers 32 and 33, respectively.
  • the throttles 60, 61 are fixed throttle valves.
  • the throttle unit 60 is provided with a cooler 30,
  • each heat exchange unit corresponds to the throttle part shared by 3 1, and the throttle part 61 corresponds to the throttle part shared by the coolers 32 and 33. Even with such a configuration, each heat exchange unit
  • the narrowing portion is provided from the branch portion to the heat exchange portion 300, 310, 320, 33.
  • the throttle portion 70 is provided in the main flow passage 32 of the refrigerant discharge flow passage 30.
  • the throttle portion 70 is composed of an electric throttle valve.
  • the throttle unit 70 restricts the refrigerant discharge passage ⁇ /30 to ⁇ 2020/175 325 7 ⁇ (:171? 2020/006866
  • the pressure of the refrigerant flowing through each heat exchange section 300, 310, 320, 330 can be adjusted, the temperature of the refrigerant flowing through the heat exchange section 300, 310, 320, 330 can be adjusted to the liquid phase refrigerant. It is possible to control the temperature so that it can suppress the evaporation of water.
  • the throttle portions 301, 3 1, 1, 32 1, 33 1 correspond to the first throttle portion
  • the throttle portion 70 corresponds to the second throttle portion and the electric throttle valve for battery. According to the cooling system 10 of the present embodiment described above, the action and effect shown in the following (4) can be obtained.
  • the temperature of the refrigerant increases due to heat exchange with the battery 20 as it goes to the downstream side of the 2, 322, 332, so that the gas-phase refrigerant is easily generated. If the amount of gas-phase refrigerant present on the downstream side of the heat exchange parts 300, 310, 320, 330 increases, the heat exchange efficiency of the heat exchange parts 300, 310, 320, 330 decreases in that part. However, it becomes difficult to uniformly cool the plurality of batteries 20.
  • the cooling system 10 of the present embodiment since the expansion of the liquid-phase refrigerant in the heat exchange units 300, 310, 320, 330 can be suppressed by the throttle unit 70, the heat exchange units 300, 3 It becomes difficult for the gas-phase refrigerant to be generated at 10, 320, and 330. Therefore, it becomes possible to cool the plurality of batteries 20 more uniformly.
  • the throttle unit 301 has a function of changing the degree of throttle according to the temperature of the refrigerant flowing through the cooler 30.
  • Throttle portion 301 includes a valve unit 301 3, a driving unit 301. ⁇ 2020/175 325 8
  • the valve section 301 3 is a branch flow path 2 through which the refrigerant supplied to the heat exchange section 300 flows.
  • the refrigerant having passed through the valve portion 3013 flows into the flow passage 302 inside from one end of the heat exchange portion 300.
  • the flow path 302 of the heat exchange section 300 is formed so as to extend from one end of the heat exchange section 300 to the other end thereof, and is folded back at the other end of the heat exchange section 300 so that the other end of the heat exchange section 300 is formed. It is formed to extend from one part to one end. At one end of the heat exchange unit 300, the refrigerant is discharged from the internal flow passage 302 of the heat exchange unit 300 to the branch flow passage ⁇ /3 13 3 .
  • the drive unit 301 is provided in the middle of the branch flow path ⁇ /3 13 3.
  • Driver 30 is provided in the middle of the branch flow path ⁇ /3 13 3.
  • Each of the swirls has a greenhouse which is partitioned by a diaphragm, and a connecting shaft which connects the diaphragm and the valve section 3 01 3.
  • the greenhouse is filled with gas.
  • the diaphragm is displaced by changing the pressure of the gas in the temperature sensing chamber according to the temperature of the refrigerant flowing through the branch flow path ⁇ /3 13 3. The displacement of this diaphragm is transmitted to the valve unit 301 3 via the connecting shaft, and
  • the displacement of 301 3 changes the degree of throttling of the branch flow passage 223 by the valve 301 3. Basically, the higher the temperature of the refrigerant flowing in the branch flow passage ⁇ /3 13 becomes, the valve portion 3013 changes in the valve opening direction, and the degree of throttling of the throttle portion 301 becomes smaller.
  • the cooling of the battery 20 arranged near the outlet of the heat exchange unit 300 may be insufficient.
  • the cooling system 10 of the present embodiment shown in FIG. 5 when the temperature of the refrigerant discharged from the heat exchange section 300 becomes high, that is, the temperature of the refrigerant flowing through the branch flow path ⁇ /3 13 becomes high. Then, the valve section 301 3 of the throttle section 301 changes to the valve opening direction, ⁇ 2020/175 325 9 boxes (: 171-1? 2020/006866
  • the degree of iris of the rear portion 301 is reduced. As a result, the pressure of the refrigerant supplied to the heat exchange section 300 through the valve section 300 increases, so that the refrigerant near the outlet of the heat exchange section 300 can easily maintain the liquid phase state. As a result, the battery arranged near the outlet of the heat exchange section 300 can be cooled more accurately. The same action and effect can also be achieved in the heat exchange sections 310, 320, 330.
  • the output of the compressor 40 can be reduced, so that the power consumption of the compressor 40 can be reduced.
  • the same action and effect can also be achieved in the heat exchange sections 310, 320, 330.
  • a throttle unit 80 which is a constituent element of a refrigeration cycle used in an air conditioner of a vehicle and An evaporator 81 is provided.
  • An air conditioner is a device that cools or heats a passenger compartment by sending heated or cooled conditioned air into the passenger compartment.
  • the refrigerating cycle is composed of a compressor 40, a condenser 50, a throttle 80 as an expansion valve, and an evaporator 81.
  • the throttle unit 80 and the evaporator 8 1 are provided in the branch channel ⁇ / 2 26.
  • the branch flow path 2 26 is branched from the main flow path ⁇ / 2 1 and is for cooling the battery 20.
  • ⁇ / 3 1 It is provided in parallel with the swamp. ⁇ 2020/175 325 10 boxes (: 171? 2020/006866
  • the liquid-phase refrigerant condensed in the condenser 50 is supplied to the throttle unit 80 through the main flow channel 2 1 and the branch flow channel 2 26 .
  • the throttle unit 80 expands the liquid-phase refrigerant condensed in the condenser 50 and supplies it to the evaporator 81.
  • the throttle section 80 is composed of an electric throttle valve, and the flow rate of the refrigerant supplied to the evaporator 81 can be adjusted by electrically adjusting the degree of throttle.
  • Evaporator 81 functions as a part for cooling the conditioned air blown into the vehicle interior in the refrigeration cycle used for the air conditioning system of the vehicle. Specifically, the evaporator 81 is arranged in an air conditioning duct through which conditioned air flows. Evaporator 81 cools the conditioned air by absorbing heat of the conditioned air into the refrigerant by exchanging heat between the refrigerant flowing inside and the conditioned air flowing in the air conditioning duct. Air-conditioned air cooled by the evaporator 81 is blown into the vehicle interior through the air-conditioning duct to cool the vehicle interior.
  • the vapor-phase refrigerant evaporated by absorbing the heat of the conditioned air in the evaporator 8 1 or the two-phase refrigerant in which the vapor phase and the liquid phase are mixed together is the main channel 3 2 through the branch channel ⁇ / 3 16 After merging with the refrigerant flowing in the air, it is sucked into the combustor 40.
  • the two-phase refrigerant discharged from the coolers 30 and 31 and the evaporator 81 is separated into a liquid-phase refrigerant and a gas-phase refrigerant to store an excess refrigerant.
  • An accumulator may be provided. As a result, the gas-phase refrigerant separated by the accumulator can be supplied to the compressor 40.
  • the branch channels 2 2 3 and ⁇ N 2 2 b correspond to the battery branch channels
  • the branch channel ⁇ / 2 26 corresponds to the air conditioning branch channel
  • the throttle section 80 corresponds to an electric throttle valve for air conditioning.
  • the throttle portions 60, 61 in the example are not limited to fixed throttle valves, but may be electric throttle valves or the like.
  • the throttle portion 70 of the second embodiment is not limited to an electric throttle valve, and may be a fixed throttle valve or the like.
  • the throttle section 80 may be a fixed throttle valve.
  • the present disclosure is not limited to the above specific examples. Those obtained by those skilled in the art who have made appropriate design changes to the above specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure.
  • the elements included in each of the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed.
  • the respective elements included in the above-described specific examples can be appropriately combined as long as no technical contradiction occurs.

Abstract

A cooling system (10) is provided with: a plurality of coolers (30, 31, 32, 33); and a refrigerant supply flow channel (W20). The coolers have heat exchanging parts (300, 310, 320, 330) that cool a battery (20) through heat exchanging between the battery and a refrigerant flowing inside. The refrigerant supply flow channel has formed therein: a main flow channel (W21) through which the refrigerant flows; and a plurality of branch flow channels (W22a, W22b, W22c, W22d) which branch from the main flow channel so as to distribute the refrigerant to the respective coolers. The refrigerant is supplied to the coolers in parallel. When a part where the branch flow channels branch out from the main channel in the refrigerant supply flow channel is defined as a branch part (Pb), throttle parts (301, 311, 321, 331) are provided to portions between the branch part and the respective heat exchanging parts.

Description

\¥0 2020/175325 1 卩(:17 2020 /006866 明 細 書 \\0 2020/175 325 1 (: 17 2020/006866 Clarification
発明の名称 : 冷却システム Title of invention: Cooling system
関連出願の相互参照 Cross-reference of related applications
[0001 ] 本出願は、 2 0 1 9年2月 2 6日に出願された日本国特許出願 2 0 1 9— [0001] This application is a Japanese patent application filed on Feb. 26, 2010, 1994
0 3 2 9 5 6号と、 2 0 2 0年 1月 2 3日に出願された日本国特許出願 2 0 2 0 - 0 0 9 4 3 1号と、 に基づくものであって、 その優先権の利益を主張 するものであり、 その特許出願の全ての内容が、 参照により本明細書に組み 込まれる。 No. 0 3 2 9 5 6 and Japanese patent application No. 2 0 2 0-0 0 9 4 3 1 filed on January 23, 2023, and its priority Claim the interests of all rights and the entire contents of that patent application are incorporated herein by reference.
技術分野 Technical field
[0002] 本開示は、 冷却システムに関する。 [0002] The present disclosure relates to a cooling system.
背景技術 Background technology
[0003] 従来、 下記の特許文献 1 に記載の電池冷却器がある。 特許文献 1 に記載の 電池冷却器は、 内部に流路を有するプレート部材を備えている。 プレート部 材の外面には、 電池を設置することが可能となっている。 この電池冷却器で は、 プレート部材の外面に設置される電池と、 プレート部材の内部の流路を 流れる冷媒との間で熱交換が行われることにより、 電池を冷却することが可 能となっている。 Conventionally, there is a battery cooler described in Patent Document 1 below. The battery cooler described in Patent Document 1 includes a plate member having a flow path inside. Batteries can be installed on the outer surface of the plate material. In this battery cooler, it is possible to cool the battery by exchanging heat between the battery installed on the outer surface of the plate member and the refrigerant flowing in the flow path inside the plate member. ing.
先行技術文献 Prior art documents
特許文献 Patent literature
[0004] 特許文献 1 :特開 2 0 1 3 _ 2 6 2 2 8号公報 [0004] Patent Document 1: Japanese Unexamined Patent Publication No. 2013_2 6 2 2 8
発明の概要 Summary of the invention
[0005] 多数の電池を冷却するための方法の一つとして、 複数の冷却器を並列に配 置した上で、 それらの冷却器に冷媒を流す方法が考えられる。 しかしながら 、 複数の冷却器を並列に配置した場合、 各冷却器の冷媒の分配量にばらつき が生じる可能性がある。 各冷却器に液相冷媒が供給されている場合、 各冷却 器の液相冷媒の分配量にばらつきが生じると、 流量の少ない冷却器内で液相 冷媒がドライアウトすることにより、 冷却器の下流側で気相冷媒が存在し易 〇 2020/175325 2 卩(:171? 2020 /006866 As one of the methods for cooling a large number of batteries, a method in which a plurality of coolers are arranged in parallel and a refrigerant is allowed to flow through those coolers can be considered. However, when a plurality of coolers are arranged in parallel, the distribution amount of the refrigerant in each cooler may vary. When the liquid-phase refrigerant is supplied to each cooler, if the distribution amount of the liquid-phase refrigerant in each cooler varies, the liquid-phase refrigerant will dry out in the cooler with a small flow rate, and Gas phase refrigerant easily exists on the downstream side 〇 2020/175 325 2 (:171? 2020/006866
くなり、 電池を冷却し難くなる。 これにより、 電池の寿命が短くなったり、 最悪の場合には電池に異常が生じたりする可能性がある。 It becomes difficult to cool the battery. This may shorten the battery life or, in the worst case, cause the battery to malfunction.
[0006] 本開示の目的は、 複数の電池の冷却を可能としつつ、 電池の劣化を抑制す ることが可能な冷却システムを提供することにある。 [0006] An object of the present disclosure is to provide a cooling system capable of cooling a plurality of batteries and suppressing deterioration of the batteries.
[0007] 本開示の一態様による冷却システムは、 複数の冷却器と、 冷媒供給流路と 、 を備える。 冷却器は、 内部を流れる冷媒と電池との熱交換により電池を冷 却する熱交換部を有する。 冷媒供給流路は、 複数の冷却器に冷媒を供給する 。 冷媒供給流路には、 冷媒が流れる主流路と、 主流路から分岐して複数の冷 却器のそれぞれに冷媒を分配する複数の分岐流路とが形成される。 複数の分 岐流路に冷却器がそれぞれ配置されることにより複数の冷却器に冷媒が並列 に供給される。 冷媒供給流路において主流路から分岐流路に分岐している部 分を分岐部とするとき、 分岐部から熱交換部までの部分に絞り部が設けられ ている。 [0007] A cooling system according to an aspect of the present disclosure includes a plurality of coolers, and a coolant supply flow path. The cooler has a heat exchange unit that cools the battery by exchanging heat between the refrigerant flowing inside and the battery. The refrigerant supply channel supplies the refrigerant to the plurality of coolers. In the coolant supply flow channel, a main flow channel through which the coolant flows and a plurality of branch flow channels that branch from the main flow channel and distribute the coolant to each of the plurality of coolers are formed. By arranging the coolers in the plurality of branch channels, the refrigerant is supplied in parallel to the plurality of coolers. When the portion of the refrigerant supply flow passage that branches from the main flow passage to the branch flow passage is taken as a branch portion, a throttle portion is provided from the branch portion to the heat exchange portion.
[0008] この構成によれば、 複数の冷却器のそれぞれにより電池を冷却することに より、 複数の電池を冷却することができる。 また、 複数の冷却器の熱交換部 にそれぞれ供給される冷媒の流量が絞り部により調整されるため、 各熱交換 部の冷媒の分配量のばらつきが抑制される。 これにより、 より均一に複数の 電池を冷却することが可能となるため、 電池の劣化を抑制することができる [0008] According to this configuration, it is possible to cool the plurality of batteries by cooling the batteries by each of the plurality of coolers. Further, since the flow rate of the refrigerant supplied to the heat exchange parts of the plurality of coolers is adjusted by the throttle part, the variation in the distribution amount of the refrigerant in each heat exchange part is suppressed. As a result, it is possible to cool the plurality of batteries more uniformly, and thus it is possible to suppress deterioration of the batteries.
図面の簡単な説明 Brief description of the drawings
[0009] [図 1]図 1は、 第 1実施形態の冷却システムの概略構成を示すブロック図であ る。 [0009] [Fig. 1] Fig. 1 is a block diagram showing a schematic configuration of a cooling system of the first embodiment.
[図 2]図 2は、 第 1実施形態の第 1変形例の冷却システムの概略構成を示すブ ロック図である。 [FIG. 2] FIG. 2 is a block diagram showing a schematic configuration of a cooling system of a first modified example of the first embodiment.
[図 3]図 3は、 第 1実施形態の第 2変形例の冷却システムの概略構成を示すブ ロック図である。 [FIG. 3] FIG. 3 is a block diagram showing a schematic configuration of a cooling system of a second modified example of the first embodiment.
[図 4]図 4は、 第 2実施形態の冷却システムの概略構成を示すブロック図であ る。 〇 2020/175325 3 卩(:171? 2020 /006866 [FIG. 4] FIG. 4 is a block diagram showing a schematic configuration of a cooling system of a second embodiment. 〇 2020/175325 3 (:171? 2020/006866
[図 5]図 5は、 第 3実施形態の冷却システムの概略構成を示すブロック図であ る。 [FIG. 5] FIG. 5 is a block diagram showing a schematic configuration of a cooling system of a third embodiment.
[図 6]図 6は、 第 4実施形態の冷却システムの概略構成を示すブロック図であ る。 [FIG. 6] FIG. 6 is a block diagram showing a schematic configuration of a cooling system of the fourth embodiment.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、 冷却システムの実施形態について図面を参照しながら説明する。 説 明の理解を容易にするため、 各図面において同一の構成要素に対しては可能 な限り同一の符号を付して、 重複する説明は省略する。 [0010] Hereinafter, an embodiment of a cooling system will be described with reference to the drawings. In order to facilitate understanding of the explanation, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<第 1実施形態> <First embodiment>
はじめに、 図 1 に示される第 1実施形態の冷却システム 1 0について説明 する。 図 1 に示される冷却システム 1 0は、 例えば車両に搭載される。 車両 には、 走行用のモータや各種電子機器に電力を供給するための複数の電池 2 0が搭載されている。 冷却システム 1 0は、 これらの電池 2 0を冷却するた めのシステムである。 図 1 に示されるように、 冷却システム 1 0は、 複数の 冷却器 3 0〜 3 3と、 コンブレッサ 4 0と、 コンデンサ 5 0とを備えている 。 冷却器 3 0〜 3 3、 コンブレッサ 4 0、 及びコンデンサ 5 0は冷媒流路 1 0を通じて環状に接続されている。 冷却器 3 0〜 3 3、 コンブレッサ 4 0 、 及びコンデンサ 5 0には、 冷媒流路 1 0を通じて冷媒が循環している。 [001 1] コンブレッサ 4 0は冷媒を圧縮して吐出する。 コンブレッサ 4 0により圧 縮された高温高圧の気相冷媒はコンデンサ 5 0に供給される。 First, the cooling system 10 of the first embodiment shown in FIG. 1 will be described. The cooling system 10 shown in FIG. 1 is installed in a vehicle, for example. A vehicle is equipped with a plurality of batteries 20 for supplying electric power to a driving motor and various electronic devices. The cooling system 10 is a system for cooling these batteries 20. As shown in FIG. 1, the cooling system 10 includes a plurality of coolers 30 to 33, a combiner 40, and a condenser 50. The coolers 30 to 33, the combiner 40, and the condenser 50 are connected in an annular shape through the refrigerant passage 10. Refrigerant circulates through the refrigerant flow passage 10 through the coolers 30 to 33, the combustor 40, and the condenser 50. [001 1] The compressor 40 compresses and discharges the refrigerant. The high-temperature and high-pressure gas-phase refrigerant compressed by the combustor 40 is supplied to the condenser 50.
コンデンサ 5 0は、 その内部を流れる高温高圧の気相冷媒と、 その外部を 流れる空気との間で熱交換を行うことにより、 気相冷媒を冷却して凝縮させ る。 コンデンサ 5 0において凝縮された液相冷媒は、 冷媒流路 1 0の一部 を構成する冷媒供給流路\^/ 2 0を通じて各冷却器 3 0〜 3 3に供給される。 [0012] 冷媒供給流路\^/ 2 0は、 コンデンサ 5 0にて凝縮された液相冷媒が流れる
Figure imgf000005_0001
The condenser 50 cools and condenses the vapor-phase refrigerant by exchanging heat between the high-temperature and high-pressure vapor-phase refrigerant flowing inside the condenser and the air flowing outside the condenser. The liquid-phase refrigerant condensed in the condenser 50 is supplied to each of the coolers 30 to 33 through the refrigerant supply flow path \^/20 which constitutes a part of the refrigerant flow path 10. [0012] The liquid-phase refrigerant condensed in the condenser 50 flows in the refrigerant supply channel \^/ 20.
Figure imgf000005_0001
冷媒を各冷却器 3〇〜 3 3に分配する。 図中の分岐部? は、 冷媒供給流路 〇 2020/175325 4 卩(:171? 2020 /006866 Distribute the refrigerant to each cooler 30 to 33. Branch in the figure? Is the refrigerant supply channel 〇 2020/175 325 4 (:171? 2020/006866
0において主流路\^/2 1から分岐流路 22 &〜\^22 に分岐してい る部分を示している。 複数の分岐流路
Figure imgf000006_0001
At 0, the part that branches from the main channel \^/2 1 to the branch channel 22 & ~ \^22 is shown. Multiple branch channels
Figure imgf000006_0001
3がそれぞれ配置されることにより冷却器 3〇〜 33に冷媒が並列に供給さ れる。 Refrigerant is supplied in parallel to coolers 30 to 33 by arranging 3 respectively.
[0013] 冷却器 30は、 熱交換部 300と、 絞り部 301 とを有している。 The cooler 30 has a heat exchange section 300 and a throttle section 301.
熱交換部 300には、 分岐流路\^/223を通じて液相冷媒が供給される。 熱交換部 300の内部には、 液相冷媒が流れる流路 302が形成されている 。 熱交換部 300の上面には、 複数の電池 20が設置されている。 熱交換部 300では、 その内部の流路 302を流れる冷媒と、 電池 20との間で熱交 換が行われることにより、 電池 20が冷却される。 流路 302では、 電池 2 〇との熱交換により冷媒の温度が上昇する。 そのため、 流路 302の上流側 から下流側に向かって、 液相冷媒が、 気相及び液相が混合した 2相状態の冷 媒に変化する。 The heat exchange unit 300, the liquid-phase refrigerant is supplied through the branch passage \ ^ / 22 3. Inside the heat exchange section 300, a flow path 302 through which the liquid-phase refrigerant flows is formed. A plurality of batteries 20 are installed on the upper surface of the heat exchange unit 300. In the heat exchange section 300, the battery 20 is cooled by exchanging heat between the refrigerant flowing through the flow path 302 inside the heat exchange section 300 and the battery 20. In the channel 302, the temperature of the refrigerant rises due to heat exchange with the battery 20. Therefore, from the upstream side to the downstream side of the flow path 302, the liquid-phase refrigerant changes to a two-phase state cooling medium in which the gas phase and the liquid phase are mixed.
[0014] 絞り部 301は、 熱交換部 300に一体的に設けられている。 絞り部 30 The throttle unit 301 is provided integrally with the heat exchange unit 300. Aperture section 30
1は、 分岐流路\^/223と熱交換部 300との間に設けられている。 絞り部 301は、 その絞り開度が一定の開度に固定されている固定絞り弁からなる 。 絞り部 301は、 液相冷媒の流れる流路を絞ることにより、 分岐流路1 is provided between the branch passage \ ^ / 22 3 and the heat exchanger unit 300. The throttle unit 301 is composed of a fixed throttle valve whose throttle opening is fixed at a constant opening. The throttle unit 301 is a branch flow passage that is formed by narrowing the flow passage of the liquid-phase refrigerant.
23から熱交換部 300に流入する液相冷媒の流量を調整する。 熱交換部 3 00には、 絞り部 301 を通じて減圧された液相冷媒が流入する。 Adjust the flow rate of the liquid-phase refrigerant flowing from 2 3 into the heat exchange unit 300. The liquid-phase refrigerant whose pressure has been reduced flows into the heat exchange section 300 through the throttle section 301.
[0015] 冷却器 3 1〜 33は、 冷却器 30と同様に、 熱交換部 3 1 0, 320, 3 [0015] The coolers 31 to 33 are similar to the cooler 30 in that the heat exchange units 31 0, 320, 3
30と、 絞り部 3 1 1 , 32 1 , 33 1 とをそれぞれ有している。 熱交換部 3 1〜 33では、 その内部に形成される流路 3 1 2, 322, 332を流れ る冷媒と、 電池 20との間で熱交換が行われることにより電池 20が冷却さ れる。 絞り部 3 1 1 , 32 1 , 33 1は、 分岐流路\^/22匕~22 から熱 交換部 3 1〜 33に流入する液相冷媒の流量を調整する。 30 and throttle portions 3 1 1, 32 1 and 33 1 respectively. In the heat exchange sections 31 to 33, the battery 20 is cooled by exchanging heat between the battery 20 and the refrigerant flowing through the flow paths 31 2, 322, 332 formed therein. The throttles 3 1 1, 32 1, 33 1 adjust the flow rate of the liquid-phase refrigerant flowing from the branch flow passages \^/22~22 to the heat exchange parts 31-33.
[0016] 各冷却器 30〜 33から排出される冷媒は、 冷媒流路 \^/1 0の一部を構成 する冷媒排出流路\^/30を通じてコンブレッサ 40へと流れる。 冷媒排出流 路\^/30は、
Figure imgf000006_0002
主流路\^/32とを有している 〇 2020/175325 5 卩(:171? 2020 /006866
The refrigerant discharged from each of the coolers 30 to 33 flows to the compressor 40 through the refrigerant discharge flow path \^/30 forming a part of the refrigerant flow path \^/10. The refrigerant discharge channel \^/30 is
Figure imgf000006_0002
It has a main channel \^/32 〇 2020/175 325 5 (:171? 2020/006866
Figure imgf000007_0001
冷却器 30〜 33の熱交換部 300,
..
Figure imgf000007_0001
Heat exchange section 300 of coolers 30-33,
3 1 0, 320, 330から排出される冷媒がそれぞれ流れる。 主流路\^/3 2は、
Figure imgf000007_0002
を流れる冷媒を合流させてコンブレッサ
The refrigerant discharged from 310, 320, and 330 respectively flows. The main channel \^/3 2 is
Figure imgf000007_0002
The refrigerant flowing through the
40へと導く。 Lead to 40.
[0017] なお、 主流路\^/32には、 冷却器 30〜 33から排出される 2相冷媒を液 相冷媒と気相冷媒とに分離して余剰冷媒を蓄えるアキュームレータが設けら れていてもよい。 これにより、 アキュームレータで分離された気相冷媒をコ ンプレッサ 40に供給することができる。 [0017] In addition, an accumulator is provided in the main flow path \^/32 to separate the two-phase refrigerant discharged from the coolers 30 to 33 into a liquid-phase refrigerant and a vapor-phase refrigerant to store an excess refrigerant. Good. As a result, the gas-phase refrigerant separated by the accumulator can be supplied to the compressor 40.
以上説明した本実施形態の冷却システム 1 0によれば、 以下の (1 ) 〜 ( 3) に示される作用及び効果を得ることができる。 According to the cooling system 10 of the present embodiment described above, the actions and effects shown in the following (1) to (3) can be obtained.
[0018] (1 ) 複数の冷却器 30〜 33のそれぞれにより電池 20を冷却すること ができるため、 複数の電池 20を冷却することができる。 また、 複数の冷却 器 30〜 33の熱交換部 300, 3 1 0, 320, 330にそれぞれ供給さ れる冷媒の流量が絞り部 301 , 3 1 1 , 32 1 , 33 1 により調整される ため、 各熱交換部 300, 3 1 0, 320, 330の冷媒の分配量のばらつ きが抑制される。 これにより、 より均一に複数の電池 20を冷却することが 可能となるため、 電池 20の劣化を抑制することができる。 (1) Since the battery 20 can be cooled by each of the plurality of coolers 30 to 33, the plurality of batteries 20 can be cooled. Further, since the flow rates of the refrigerants supplied to the heat exchange sections 300, 310, 320, 330 of the plurality of coolers 30 to 33 are adjusted by the throttle sections 301, 3 1 1, 32 1, 33 1, respectively, Dispersion of the distribution amount of the refrigerant in each heat exchange unit 300, 310, 320, 330 is suppressed. As a result, it is possible to cool the plurality of batteries 20 more uniformly, so that deterioration of the batteries 20 can be suppressed.
[0019] (2) 絞り部 301 , 3 1 1 , 32 1 , 33 1は、 全ての冷却器 30〜 3 [0019] (2) The throttles 301, 3 1 1, 32 1, 33 1 are all coolers 30 to 3
3のそれぞれの熱交換部 300, 3 1 0, 320, 330に対して設けられ ている。 このような構成によれば、 全ての熱交換部 300, 3 1 0, 320 , 330の冷媒の分配量を調整することができるため、 より的確に各冷却器 30〜 33の冷媒の分配量のばらつきを抑制することができる。 よって、 よ り均一に複数の電池 20を冷却することが可能となる。 It is provided for each of the three heat exchange sections 300, 310, 320, 330. According to such a configuration, the distribution amount of the refrigerant of all the heat exchange units 300, 310, 320, 330 can be adjusted, so that the distribution amount of the refrigerant of each of the coolers 30 to 33 can be more accurately adjusted. Variation can be suppressed. Therefore, it is possible to cool the plurality of batteries 20 more uniformly.
[0020] (3) 絞り部 301 , 3 1 1 , 32 1 , 33 1は固定絞り弁である。 この ような構成によれば、 簡素な構造で各熱交換部 300, 3 1 0, 320, 3 30の冷媒の分配量のばらつきを抑制することができる。 (3) The throttle portions 301, 3 1 1, 32 1 and 33 1 are fixed throttle valves. With such a configuration, it is possible to suppress variations in the distribution amount of the refrigerant among the heat exchange sections 300, 310, 320, and 330 with a simple structure.
(第 1変形例) (First modification)
次に、 第 1実施形態の冷却システム 1 0の第 1変形例について説明する。 〇 2020/175325 6 卩(:171? 2020 /006866 Next, a first modified example of the cooling system 10 of the first embodiment will be described. 〇 2020/175 325 6
[0021] 図 2に示されるように、 本変形例の冷却システム 1 0では、 絞り部 301 , 3 1 1 , 32 1 ,
Figure imgf000008_0001
にそれぞれ配置さ れている。 すなわち、 絞り部 301 , 3 1 1 , 32 1 , 33 1は、 冷却器 3 〇〜 33とは別体として設けられている。 このような構成であっても、 第 1 実施形態の冷却システム 1 〇と同一又は類似の作用及び効果を得ることが可 能である。
As shown in FIG. 2, in the cooling system 10 of this modified example, the throttle portions 301, 3 1 1, 32 1,
Figure imgf000008_0001
It is located in each. That is, the throttles 301, 3 1, 1, 32 1, 33 1 are provided separately from the coolers 30 to 33. Even with such a configuration, it is possible to obtain the same or similar operation and effect as the cooling system 10 of the first embodiment.
[0022] (第 2変形例) [0022] (Second Modification)
次に、 第 2実施形態の冷却システム 1 0の第 2変形例について説明する。 図 3に示されるように、 本変形例の冷却システム 1 0では、 分岐流路 2 Next, a second modified example of the cooling system 10 of the second embodiment will be described. As shown in FIG. 3, in the cooling system 10 of this modification, the branch flow passage 2
23と分岐流路 2213との接続部分 1から分岐部 までの間に絞り部 60が設けられている。 絞り部 60は、 冷却器 30, 3 1のそれぞれの熱交 換部 300, 3 1 0に流入する液相冷媒の流量を調整する。 また、 分岐流路 22〇と分岐流路 22 との接続部分 2から分岐部 までの間にも 絞り部 6 1が設けられている。 絞り部 6 1は、 冷却器 32, 33のそれぞれ の熱交換部 320, 330に流入する液相冷媒の流量を調整する。 絞り部 6 0, 6 1は固定絞り弁である。 本変形例では、 絞り部 60が、 冷却器 30,A throttling portion 60 is provided between the connection portion 1 of the 23 and the branch flow passage 2213 to the branch portion. The throttle unit 60 adjusts the flow rate of the liquid-phase refrigerant flowing into the heat exchange units 300 and 310 of the coolers 30 and 31. Further, a throttle portion 61 is also provided between the connecting portion 2 of the branch flow passage 220 and the branch flow passage 22 to the branch portion. The throttle unit 61 adjusts the flow rate of the liquid-phase refrigerant flowing into the heat exchange units 320 and 330 of the coolers 32 and 33, respectively. The throttles 60, 61 are fixed throttle valves. In this modified example, the throttle unit 60 is provided with a cooler 30,
3 1 により共用される絞り部に相当し、 絞り部 6 1が、 冷却器 32, 33に より共用される絞り部に相当する。 このような構成であっても、 各熱交換部It corresponds to the throttle part shared by 3 1, and the throttle part 61 corresponds to the throttle part shared by the coolers 32 and 33. Even with such a configuration, each heat exchange unit
300, 3 1 0, 320, 330の冷媒の分配量のばらつきを抑制すること が可能である。 It is possible to suppress the variation in the distribution amount of the refrigerant of 300, 310, 320, 330.
[0023] なお、 絞り部は、 分岐部 匕から熱交換部 300, 3 1 0, 320, 33 [0023] In addition, the narrowing portion is provided from the branch portion to the heat exchange portion 300, 310, 320, 33.
0までの間の任意の部分に配置することが可能である。 It can be placed in any part between 0.
<第 2実施形態> <Second embodiment>
次に、 冷却システム 1 0の第 2実施形態について説明する。 以下、 第 1実 施形態の冷却システム 1 〇との相違点を中心に説明する。 Next, a second embodiment of the cooling system 10 will be described. Hereinafter, differences from the cooling system 10 according to the first embodiment will be mainly described.
[0024] 図 4に示されるように、 本実施形態の冷却システム 1 0では、 冷媒排出流 路 30の主流路 32に絞り部 70が設けられている。 絞り部 70は電気 式絞り弁からなる。 絞り部 70は、 冷媒排出流路\^/30を絞ることにより、 〇 2020/175325 7 卩(:171? 2020 /006866 As shown in FIG. 4, in the cooling system 10 of the present embodiment, the throttle portion 70 is provided in the main flow passage 32 of the refrigerant discharge flow passage 30. The throttle portion 70 is composed of an electric throttle valve. The throttle unit 70 restricts the refrigerant discharge passage \^/30 to 〇 2020/175 325 7 卩(:171? 2020/006866
冷却器 30〜 33のそれぞれの熱交換部 300, 3 1 0, 320, 330を 流れる冷媒の流量を調整する。 結果的に、 各熱交換部 300, 3 1 0, 32 0, 330を流れる冷媒の圧力を調整できるため、 熱交換部 300, 3 1 0 , 320, 330を流れる冷媒の温度を、 液相冷媒の蒸発を抑制することが 可能な温度に管理することが可能となっている。 Adjust the flow rate of the refrigerant flowing through the heat exchange parts 300, 310, 320, 330 of the coolers 30 to 33, respectively. As a result, since the pressure of the refrigerant flowing through each heat exchange section 300, 310, 320, 330 can be adjusted, the temperature of the refrigerant flowing through the heat exchange section 300, 310, 320, 330 can be adjusted to the liquid phase refrigerant. It is possible to control the temperature so that it can suppress the evaporation of water.
[0025] 本実施形態では、 絞り部 301 , 3 1 1 , 32 1 , 33 1が第 1絞り部に 相当し、 絞り部 70が第 2絞り部及び電池用電気式絞り弁に相当する。 以上説明した本実施形態の冷却システム 1 0によれば、 以下の (4) に示 される作用及び効果を得ることができる。 In the present embodiment, the throttle portions 301, 3 1, 1, 32 1, 33 1 correspond to the first throttle portion, and the throttle portion 70 corresponds to the second throttle portion and the electric throttle valve for battery. According to the cooling system 10 of the present embodiment described above, the action and effect shown in the following (4) can be obtained.
[0026] (4) 熱交換部 300, 3 1 0, 320, 330では、 流路 302 , 3 1 [0026] (4) In the heat exchange section 300, 310, 320, 330, the flow paths 302, 3 1
2, 322, 332の下流側に向かうほど、 電池 20との熱交換により冷媒 の温度が上昇するため、 気相冷媒が生成され易い。 熱交換部 300 , 3 1 0 , 320, 330の下流側に存在する気相冷媒の量が多くなると、 その部分 で熱交換部 300, 3 1 0, 320, 330の熱交換効率が低下するため、 複数の電池 20を均一に冷却することが困難になる。 この点、 本実施形態の 冷却システム 1 0では、 絞り部 70により熱交換部 300, 3 1 0, 320 , 330における液相冷媒の蒸発を抑制することができるため、 熱交換部 3 00, 3 1 0, 320, 330において気相冷媒が生成され難くなる。 その ため、 より均一に複数の電池 20を冷却することが可能となる。 The temperature of the refrigerant increases due to heat exchange with the battery 20 as it goes to the downstream side of the 2, 322, 332, so that the gas-phase refrigerant is easily generated. If the amount of gas-phase refrigerant present on the downstream side of the heat exchange parts 300, 310, 320, 330 increases, the heat exchange efficiency of the heat exchange parts 300, 310, 320, 330 decreases in that part. However, it becomes difficult to uniformly cool the plurality of batteries 20. In this respect, in the cooling system 10 of the present embodiment, since the expansion of the liquid-phase refrigerant in the heat exchange units 300, 310, 320, 330 can be suppressed by the throttle unit 70, the heat exchange units 300, 3 It becomes difficult for the gas-phase refrigerant to be generated at 10, 320, and 330. Therefore, it becomes possible to cool the plurality of batteries 20 more uniformly.
[0027] <第 3実施形態> [0027] <Third Embodiment>
次に、 冷却システム 1 0の第 3実施形態について説明する。 以下、 第 2実 施形態の冷却システム 1 〇との相違点を中心に説明する。 Next, a third embodiment of the cooling system 10 will be described. Hereinafter, differences from the cooling system 10 according to the second embodiment will be mainly described.
図 5に示されるように、 本実施形態の冷却システム 1 0では、 絞り部 30 1 , 3 1 1 , 32 1 , 33 1 として、 固定式絞り弁に代えて、 冷却器 30〜 33とは別に設けられる機械式絞り弁が用いられている。 As shown in FIG. 5, in the cooling system 10 of the present embodiment, as the throttle portions 30 1, 3 1 1, 32 1, 33 1, instead of the fixed throttle valve, separately from the coolers 30 to 33. The mechanical throttle valve provided is used.
[0028] 絞り部 301は、 冷却器 30を流れる冷媒の温度に応じて絞り度合いが変 化する機能を有している。 絞り部 301は、 弁部 301 3と、 駆動部 301 とを有している。 〇 2020/175325 8 卩(:171? 2020 /006866 The throttle unit 301 has a function of changing the degree of throttle according to the temperature of the refrigerant flowing through the cooler 30. Throttle portion 301 includes a valve unit 301 3, a driving unit 301. 〇 2020/175 325 8
弁部 301 3は、 熱交換部 300に供給される冷媒が流れる分岐流路 2The valve section 301 3 is a branch flow path 2 through which the refrigerant supplied to the heat exchange section 300 flows.
23の途中に設けられ、 分岐流路\^/223の流路断面積を絞る部分である。 弁部 301 3を通過した冷媒は熱交換部 300の一端部から、 その内部の流 路 302に流入する。 熱交換部 300の流路 302は、 熱交換部 300の一 端部から他端部まで延びるように形成されるとともに、 熱交換部 300の他 端部で折り返して、 熱交換部 300の他端部から一端部まで延びるように形 成されている。 熱交換部 300の一端部では、 熱交換部 300の内部流路 3 02から分岐流路\^/3 1 3に冷媒が排出される。 It is a part provided in the middle of 23 and narrows the flow passage cross-sectional area of the branch flow passage \^/223. The refrigerant having passed through the valve portion 3013 flows into the flow passage 302 inside from one end of the heat exchange portion 300. The flow path 302 of the heat exchange section 300 is formed so as to extend from one end of the heat exchange section 300 to the other end thereof, and is folded back at the other end of the heat exchange section 300 so that the other end of the heat exchange section 300 is formed. It is formed to extend from one part to one end. At one end of the heat exchange unit 300, the refrigerant is discharged from the internal flow passage 302 of the heat exchange unit 300 to the branch flow passage \^/3 13 3 .
[0029] 駆動部 301 匕は分岐流路\^/3 1 3の途中に設けられている。 駆動部 30 [0029] The drive unit 301 is provided in the middle of the branch flow path \^/3 13 3. Driver 30
1 匕は、 ダイアフラムにより仕切られた感温室と、 ダイアフラム及び弁部 3 01 3を連結する連結軸とを有している。 感温室にはガスが充填されている 。 駆動部 301 では、 分岐流路\^/3 1 3を流れる冷媒の温度に応じて感温 室内のガスの圧力が変化することによりダイアフラムが変位する。 このダイ アフラムの変位が連結軸を介して弁部 301 3に伝達されることにより弁部 Each of the swirls has a greenhouse which is partitioned by a diaphragm, and a connecting shaft which connects the diaphragm and the valve section 3 01 3. The greenhouse is filled with gas. In the drive unit 301, the diaphragm is displaced by changing the pressure of the gas in the temperature sensing chamber according to the temperature of the refrigerant flowing through the branch flow path \^/3 13 3. The displacement of this diaphragm is transmitted to the valve unit 301 3 via the connecting shaft, and
301 3が変位し、 弁部 301 3による分岐流路 223の絞り度合いが変 化する。 基本的には、 分岐流路\^/3 1 3を流れる冷媒の温度が高くなるほど 、 弁部 301 3が開弁方向に変化するため、 絞り部 301の絞り度合いが小 さくなる。 The displacement of 301 3 changes the degree of throttling of the branch flow passage 223 by the valve 301 3. Basically, the higher the temperature of the refrigerant flowing in the branch flow passage \^/3 13 becomes, the valve portion 3013 changes in the valve opening direction, and the degree of throttling of the throttle portion 301 becomes smaller.
[0030] なお、 他の絞り部 3 1 1 , 32 1 , 33 1は、 絞り部 301 と同一又は類 似の構造を有しているため、 それらの詳細な説明は割愛する。 Since the other throttle parts 3 1 1, 32 1, 33 1 have the same or similar structure as the throttle part 301, detailed description thereof will be omitted.
以上説明した本実施形態の冷却システム 1 0によれば、 以下の (5) 及び (6) に示される作用及び効果を更に得ることができる。 According to the cooling system 10 of the present embodiment described above, it is possible to further obtain the operation and effect shown in the following (5) and (6).
[0031] (5) 図 1 に示される第 1実施形態の冷却システム 1 0では、 熱交換部 3 (5) In the cooling system 10 of the first embodiment shown in FIG. 1, the heat exchange unit 3
00の出口側付近で冷媒のほとんどが気相状態になると、 熱交換部 300の 出口付近に配置される電池 20の冷却が不足する可能性がある。 この点、 図 5に示される本実施形態の冷却システム 1 0では、 熱交換部 300から排出 される冷媒の温度が高くなると、 すなわち分岐流路\^/3 1 3を流れる冷媒の 温度が高くなると、 絞り部 301の弁部 301 3が開弁方向に変化して、 絞 〇 2020/175325 9 卩(:171? 2020 /006866 When most of the refrigerant is in the vapor phase near the outlet side of 00, the cooling of the battery 20 arranged near the outlet of the heat exchange unit 300 may be insufficient. In this respect, in the cooling system 10 of the present embodiment shown in FIG. 5, when the temperature of the refrigerant discharged from the heat exchange section 300 becomes high, that is, the temperature of the refrigerant flowing through the branch flow path \^/3 13 becomes high. Then, the valve section 301 3 of the throttle section 301 changes to the valve opening direction, 〇 2020/175 325 9 boxes (: 171-1? 2020/006866
り部 3 0 1の絞り度合いが小さくなる。 これにより、 弁部 3 0 1 3を通じて 熱交換部 3 0 0に供給される冷媒の圧力が上昇するため、 熱交換部 3 0 0の 出口付近の冷媒が液相の状態を維持し易くなる。 結果的に、 熱交換部 3 0 0 の出口付近に配置される電池をより的確に冷却することが可能となる。 なお 、 同様の作用及び効果は熱交換部 3 1 0 , 3 2 0 , 3 3 0でも奏することが 可能である。 The degree of iris of the rear portion 301 is reduced. As a result, the pressure of the refrigerant supplied to the heat exchange section 300 through the valve section 300 increases, so that the refrigerant near the outlet of the heat exchange section 300 can easily maintain the liquid phase state. As a result, the battery arranged near the outlet of the heat exchange section 300 can be cooled more accurately. The same action and effect can also be achieved in the heat exchange sections 310, 320, 330.
[0032] ( 6 ) 本実施形態の冷却システム 1 0では、 分岐流路 3 1 3を流れる冷 媒の温度が低くなると、 すなわち熱交換部 3 0 0から排出される冷媒の温度 が低くなると、 絞り部 3 0 1の弁部 3 0 1 3が閉弁方向に変化して、 絞り部 3 0 1の絞り度合いが大きくなる。 分岐流路\^/ 3 1 3を流れる冷媒の温度が 低いのであれば、 電池 2 0の冷却能力が確保できている状況であるため、 絞 り部 3 0 1の弁部 3 0 1 3の絞り度合いを大きく しても、 電池 2 0の冷却状 態を維持することができる。 また、 絞り部 3 0 1の弁部 3 0 1 3の絞り度合 いが大きくなれば、 コンブレッサ 4 0の出力を下げることができるため、 コ ンプレッサ 4 0の消費電力を低減することができる。 なお、 同様の作用及び 効果は熱交換部 3 1 0 , 3 2 0 , 3 3 0でも奏することが可能である。 (6) In the cooling system 10 of the present embodiment, when the temperature of the cooling medium flowing in the branch flow passage 3 13 becomes low, that is, when the temperature of the refrigerant discharged from the heat exchange section 300 becomes low, The valve portion 3 01 3 of the throttle portion 3 01 changes in the valve closing direction, and the throttle degree of the throttle portion 3 01 increases. If the branch passage \ ^ / 3 1 3 at the temperature of the coolant is low flow, because a situation where the cooling capacity of the battery 2 0 is ensured, the diaphragm Ri 3 0 1 valve portion 3 0 1 3 Even if the degree of throttling is increased, the cooling state of the battery 20 can be maintained. Further, if the degree of throttling of the valve portion 301 of the throttle portion 301 is increased, the output of the compressor 40 can be reduced, so that the power consumption of the compressor 40 can be reduced. The same action and effect can also be achieved in the heat exchange sections 310, 320, 330.
[0033] <第 4実施形態> <Fourth Embodiment>
次に、 冷却システム 1 0の第 4実施形態について説明する。 以下、 第 3実 施形態の冷却システム 1 〇との相違点を中心に説明する。 Next, a fourth embodiment of the cooling system 10 will be described. Hereinafter, the difference from the cooling system 10 according to the third embodiment will be mainly described.
図 6に示されるように、 本実施形態の冷却システム 1 0には、 冷却器 3 2 , 3 3に代えて、 車両の空調装置に用いられる冷凍サイクルの構成要素であ る絞り部 8 0及びエバポレータ 8 1が設けられている。 空調装置は、 加熱又 は冷却した空調空気を車室内に送風することにより車室内の冷房又は暖房を 行う装置である。 冷凍サイクルは、 コンブレッサ 4 0、 コンデンサ 5 0、 膨 張弁としての絞り部 8 0、 及びエバポレータ 8 1 により構成される。 As shown in FIG. 6, in the cooling system 10 of the present embodiment, instead of the coolers 32 and 33, a throttle unit 80 which is a constituent element of a refrigeration cycle used in an air conditioner of a vehicle and An evaporator 81 is provided. An air conditioner is a device that cools or heats a passenger compartment by sending heated or cooled conditioned air into the passenger compartment. The refrigerating cycle is composed of a compressor 40, a condenser 50, a throttle 80 as an expansion valve, and an evaporator 81.
[0034] 絞り部 8 0及びエバポレータ 8 1は分岐流路\^/ 2 2 6に設けられている。 The throttle unit 80 and the evaporator 8 1 are provided in the branch channel \^/ 2 26.
分岐流路 2 2 6は、 主流路\^/ 2 1から分岐し、 且つ電池 2 0の冷却のための
Figure imgf000011_0001
\^/ 3 1 匕に対して並列に設けられている。 〇 2020/175325 10 卩(:171? 2020 /006866
The branch flow path 2 26 is branched from the main flow path \^/ 2 1 and is for cooling the battery 20.
Figure imgf000011_0001
\^/ 3 1 It is provided in parallel with the swamp. 〇 2020/175 325 10 boxes (: 171? 2020/006866
絞り部 8 0には、 コンデンサ 5 0にて凝縮された液相冷媒が主流路 2 1 及び分岐流路 2 2 6を通じて供給される。 絞り部 8 0は、 コンデンサ 5 0 にて凝縮された液相冷媒を膨張させてエバポレータ 8 1 に供給する。 絞り部 8 0は、 電気式絞り弁からなり、 その絞り度合いを電気的に調整することに より、 エバポレータ 8 1 に供給される冷媒の流量を調整することも可能であ る。 The liquid-phase refrigerant condensed in the condenser 50 is supplied to the throttle unit 80 through the main flow channel 2 1 and the branch flow channel 2 26 . The throttle unit 80 expands the liquid-phase refrigerant condensed in the condenser 50 and supplies it to the evaporator 81. The throttle section 80 is composed of an electric throttle valve, and the flow rate of the refrigerant supplied to the evaporator 81 can be adjusted by electrically adjusting the degree of throttle.
[0035] エバポレータ 8 1は、 車両の空調装置に用いられる冷凍サイクルにおいて 、 車室内に送風される空調空気を冷却する部分として機能する。 具体的には 、 エバポレータ 8 1は、 空調空気が流れる空調ダクト内に配置されている。 エバポレータ 8 1は、 その内部を流れる冷媒と、 空調ダクト内を流れる空調 空気との間で熱交換を行うことにより空調空気の熱を冷媒に吸収させて空調 空気を冷却する。 エバポレータ 8 1 により冷却された空調空気が空調ダクト を通じて車室内に送風されることにより車室内の冷房が行われる。 エバポレ —夕 8 1 において空調空気の熱を吸収することにより蒸発した気相冷媒、 又 は気相及び液相が混合した 2相冷媒は、 分岐流路\^/ 3 1 6を通じて主流路 3 2を流れる冷媒に合流した後、 コンブレッサ 4 0に吸入される。 [0035] Evaporator 81 functions as a part for cooling the conditioned air blown into the vehicle interior in the refrigeration cycle used for the air conditioning system of the vehicle. Specifically, the evaporator 81 is arranged in an air conditioning duct through which conditioned air flows. Evaporator 81 cools the conditioned air by absorbing heat of the conditioned air into the refrigerant by exchanging heat between the refrigerant flowing inside and the conditioned air flowing in the air conditioning duct. Air-conditioned air cooled by the evaporator 81 is blown into the vehicle interior through the air-conditioning duct to cool the vehicle interior. The vapor-phase refrigerant evaporated by absorbing the heat of the conditioned air in the evaporator 8 1 or the two-phase refrigerant in which the vapor phase and the liquid phase are mixed together is the main channel 3 2 through the branch channel \^/ 3 16 After merging with the refrigerant flowing in the air, it is sucked into the combustor 40.
[0036] なお、 主流路\^/ 3 2には、 冷却器 3 0 , 3 1及びエバポレータ 8 1から排 出される 2相冷媒を液相冷媒と気相冷媒とに分離して余剰冷媒を蓄えるアキ ュームレータが設けられていてもよい。 これにより、 アキュームレータで分 離された気相冷媒をコンブレッサ 4 0に供給することができる。 [0036] In the main flow path \^/32, the two-phase refrigerant discharged from the coolers 30 and 31 and the evaporator 81 is separated into a liquid-phase refrigerant and a gas-phase refrigerant to store an excess refrigerant. An accumulator may be provided. As a result, the gas-phase refrigerant separated by the accumulator can be supplied to the compressor 40.
[0037] 本実施形態では、 分岐流路 2 2 3 , \N 2 2 bが電池用分岐流路に相当し 、 分岐流路\^/ 2 2 6が空調用分岐流路に相当する。 また、 絞り部 8 0が空調 用電気式絞り弁に相当する。 In the present embodiment, the branch channels 2 2 3 and \N 2 2 b correspond to the battery branch channels, and the branch channel \^/ 2 26 corresponds to the air conditioning branch channel. Further, the throttle section 80 corresponds to an electric throttle valve for air conditioning.
以上説明した本実施形態の冷却システム 1 0によれば、 以下の ( 7 ) に示 される作用及び効果を更に得ることができる。 According to the cooling system 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (7) below.
[0038] ( 7 ) 絞り部 7 0 , 8 0のそれぞれの絞り度合いを電気的に調整すること ができる。 これにより、 電池 2 0の冷却能力とエバポレータ 8 1の冷却能力 とを任意に調整できるため、 結果的に電池 2 0の冷却制御と車両の空調制御 〇 2020/175325 11 卩(:171? 2020 /006866 (7) It is possible to electrically adjust the degree of aperture of each of the apertures 70, 80. As a result, the cooling capacity of the battery 20 and the cooling capacity of the evaporator 81 can be adjusted as desired, resulting in cooling control of the battery 20 and air conditioning control of the vehicle. 〇 2020/175 325 11 卩 (:171? 2020 /006866
とを協調させるような制御を実現することができる。 It is possible to realize a control that makes the and the coordinate.
[0039] <他の実施形態 > <Other Embodiments>
なお、 上記実施形態は、 以下の形態にて実施することもできる。 第 1実施形態の絞り部 301 , 3 1 1 , 32 1 , 33 1、 第 1実施形態 の第 1変形例の絞り部 301 , 3 1 1 , 32 1 , 33 1、 及び第 1実施形態 の変形例の絞り部 60, 6 1は、 固定絞り弁に限らず、 電気式絞り弁等であ ってもよい。 第 2実施形態の絞り部 70は、 電気式絞り弁に限らず、 固定絞 り弁等であってもよい。 In addition, the above-mentioned embodiment can also be implemented in the following forms. The throttle parts 301, 3 1 1, 32 1, 33 1, of the first embodiment, the throttle parts 301, 3 1 1, 32 1, 33 1, of the first modification of the first embodiment, and the modifications of the first embodiment. The throttle portions 60, 61 in the example are not limited to fixed throttle valves, but may be electric throttle valves or the like. The throttle portion 70 of the second embodiment is not limited to an electric throttle valve, and may be a fixed throttle valve or the like.
[0040] 第 3実施形態の冷却システム 1 0では、 一つの冷却器 30のみが設けら れていてもよい。 また、 第 3実施形態の冷却システム 1 0では、 絞り部 80 が固定絞り弁であってもよい。 In the cooling system 10 of the third embodiment, only one cooler 30 may be provided. Further, in the cooling system 10 of the third embodiment, the throttle section 80 may be a fixed throttle valve.
本開示は上記の具体例に限定されるものではない。 上記の具体例に、 当 業者が適宜設計変更を加えたものも、 本開示の特徴を備えている限り、 本開 示の範囲に包含される。 前述した各具体例が備える各要素、 及びその配置、 条件、 形状等は、 例示したものに限定されるわけではなく適宜変更すること ができる。 前述した各具体例が備える各要素は、 技術的な矛盾が生じない限 り、 適宜組み合わせを変えることができる。 The present disclosure is not limited to the above specific examples. Those obtained by those skilled in the art who have made appropriate design changes to the above specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. The elements included in each of the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed. The respective elements included in the above-described specific examples can be appropriately combined as long as no technical contradiction occurs.

Claims

〇 2020/175325 12 卩(:171? 2020 /006866 請求の範囲 〇 2020/175 325 12 boxes (:171? 2020/006866 Claims
[請求項 1] 内部を流れる冷媒と電池 (20) との熱交換により前記電池を冷却 する熱交換部 (300, 3 1 0, 320, 330) を有する複数の冷 却器 (30, 3 1, 32, 33) と、 [Claim 1] A plurality of coolers (30, 3 1) having heat exchange parts (300, 310, 320, 330) for cooling the battery by heat exchange between the refrigerant flowing inside and the battery (20). , 32, 33),
複数の前記冷却器に冷媒を供給する冷媒供給流路 (\^/20) と、 を 備え、 A refrigerant supply channel (\^/20) for supplying a refrigerant to the plurality of coolers,
前記冷媒供給流路には、 冷媒が流れる主流路 (\^/2 1) と、 前記主 流路から分岐して複数の前記冷却器のそれぞれに冷媒を分配する複数 の分岐流路 (\ZV22 a, \N22 b, \ZV22 c, \ZV22 d) とが形成さ れ、 In the refrigerant supply channel, a main channel (\^/2 1) through which the refrigerant flows, and a plurality of branch channels (\ZV22) that branch from the main channel and distribute the refrigerant to each of the plurality of coolers. a, \N22 b, \ZV22 c, \ZV22 d) and
複数の前記分岐流路に前記冷却器がそれぞれ配置されることにより 複数の前記冷却器に冷媒が並列に供給され、 Refrigerant is supplied in parallel to the plurality of coolers by arranging the coolers in the plurality of branch flow paths, respectively,
前記冷媒供給流路において前記主流路から前記分岐流路に分岐して いる部分を分岐部 ( 13) とするとき、 When the portion of the refrigerant supply channel that branches from the main channel to the branch channel is a branch section (13),
前記分岐部から前記熱交換部までの部分に絞り部 (301 , 3 1 1 , 32 1 , 33 1) が設けられている A throttle portion (301, 3 1 1, 32 1, 33 1) is provided in the portion from the branch portion to the heat exchange portion.
冷却システム。 Cooling system.
[請求項 2] 前記絞り部は、 全ての前記冷却器のそれぞれに対して設けられてい る [Claim 2] The throttle section is provided for each of all the coolers.
請求項 1 に記載の冷却システム。 The cooling system according to claim 1.
[請求項 3] 前記絞り部は、 複数の前記冷却器のうちの 2つ以上の冷却器により 共用されている [Claim 3] The throttle section is shared by two or more coolers of the plurality of coolers.
請求項 1 に記載の冷却システム。 The cooling system according to claim 1.
[請求項 4] 前記絞り部は、 固定絞り弁である [Claim 4] The throttle portion is a fixed throttle valve.
請求項 1〜 3のいずれか一項に記載の冷却システム。 The cooling system according to any one of claims 1 to 3.
[請求項 5] 前記固定絞り弁は、 前記冷却器と一体的に設けられている [Claim 5] The fixed throttle valve is provided integrally with the cooler.
請求項 4に記載の冷却システム。 The cooling system according to claim 4.
[請求項 6] 前記固定絞り弁は、 前記冷却器とは別体として設けられている 〇 2020/175325 13 卩(:171? 2020 /006866 [Claim 6] The fixed throttle valve is provided separately from the cooler. 〇 2020/175 325 13 (:171? 2020/006866
請求項 4に記載の冷却システム。 The cooling system according to claim 4.
[請求項 7] 前記絞り部は、 前記冷却器を流れる冷媒の温度に応じて絞り度合い が変化する機械式絞り弁である 7. The throttle section is a mechanical throttle valve whose degree of throttle changes according to the temperature of the refrigerant flowing through the cooler.
請求項 1〜 3のいずれか一項に記載の冷却システム。 The cooling system according to any one of claims 1 to 3.
[請求項 8] 前記絞り部を第 1絞り部とするとき、 [Claim 8] When the throttle portion is the first throttle portion,
前記分岐流路を流れる冷媒の流量を調整する第 2絞り部 (7 0) を 更に備える A second throttle unit (70) for adjusting the flow rate of the refrigerant flowing through the branch flow passage is further provided.
請求項 1〜 7のいずれか一項に記載の冷却システム。 The cooling system according to any one of claims 1 to 7.
[請求項 9] 複数の前記冷却器から排出される冷媒が流れる冷媒排出流路 (\^/ 3 [Claim 9] A refrigerant discharge channel (\^/ 3 in which refrigerant discharged from the plurality of coolers flows)
0) を更に備え、 0) is further provided,
前記冷媒排出流路には、 前記第 2絞り部として、 電池用電気式絞り 弁が設けられている An electric throttle valve for a battery is provided in the refrigerant discharge passage as the second throttle portion.
請求項 8に記載の冷却システム。 The cooling system according to claim 8.
[請求項 10] 前記分岐流路を電池用分岐流路とするとき、 [Claim 10] When the branch flow path is a battery branch flow path,
前記主流路から分岐し、 且つ前記電池用分岐流路に対して並列に設 けられ、 車両の空調装置のエバポレータ (8 1) に冷媒を供給する空 調用分岐流路 2 2 と、 An air-conditioning branch channel 22 that branches from the main channel and is provided in parallel with the battery branch channel and supplies a refrigerant to an evaporator (81) of a vehicle air conditioner,
前記空調用分岐流路を流れる冷媒の流量を調整する空調用電気式絞 り弁 (8 0) と、 を更に備える An air conditioning electric throttle valve (80) for adjusting the flow rate of the refrigerant flowing through the air conditioning branch flow path,
請求項 1〜 9のいずれか一項に記載の冷却システム。 A cooling system according to any one of claims 1-9.
PCT/JP2020/006866 2019-02-26 2020-02-20 Cooling system WO2020175325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080016334.1A CN113474936A (en) 2019-02-26 2020-02-20 Cooling system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019032956 2019-02-26
JP2019-032956 2019-02-26
JP2020-009431 2020-01-23
JP2020009431A JP7380248B2 (en) 2019-02-26 2020-01-23 cooling system

Publications (1)

Publication Number Publication Date
WO2020175325A1 true WO2020175325A1 (en) 2020-09-03

Family

ID=72238900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006866 WO2020175325A1 (en) 2019-02-26 2020-02-20 Cooling system

Country Status (1)

Country Link
WO (1) WO2020175325A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008103A1 (en) * 2021-07-26 2023-02-02 株式会社豊田自動織機 Battery cooling system
WO2023048036A1 (en) * 2021-09-22 2023-03-30 いすゞ自動車株式会社 Battery cooling device
WO2023233726A1 (en) * 2022-05-30 2023-12-07 株式会社豊田自動織機 Battery cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028692A1 (en) * 2008-09-12 2010-03-18 Abb Research Ltd Fluid cooling system, battery storage and method
JP2011042357A (en) * 2009-07-30 2011-03-03 Dr Ing Hcf Porsche Ag Automobile
US20110174004A1 (en) * 2008-07-29 2011-07-21 Thomas Heckenberger Device for cooling a heat source of a motor vehicle
JP2013026228A (en) * 2011-07-14 2013-02-04 Visteon Global Technologies Inc Battery cooler
US20160285145A1 (en) * 2013-12-11 2016-09-29 Bayerische Motoren Werke Aktiengesellschaft Cooling Element
WO2019146240A1 (en) * 2018-01-25 2019-08-01 株式会社デンソー Refrigeration cycle device for battery cooling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174004A1 (en) * 2008-07-29 2011-07-21 Thomas Heckenberger Device for cooling a heat source of a motor vehicle
WO2010028692A1 (en) * 2008-09-12 2010-03-18 Abb Research Ltd Fluid cooling system, battery storage and method
JP2011042357A (en) * 2009-07-30 2011-03-03 Dr Ing Hcf Porsche Ag Automobile
JP2013026228A (en) * 2011-07-14 2013-02-04 Visteon Global Technologies Inc Battery cooler
US20160285145A1 (en) * 2013-12-11 2016-09-29 Bayerische Motoren Werke Aktiengesellschaft Cooling Element
WO2019146240A1 (en) * 2018-01-25 2019-08-01 株式会社デンソー Refrigeration cycle device for battery cooling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008103A1 (en) * 2021-07-26 2023-02-02 株式会社豊田自動織機 Battery cooling system
WO2023048036A1 (en) * 2021-09-22 2023-03-30 いすゞ自動車株式会社 Battery cooling device
JP2023045748A (en) * 2021-09-22 2023-04-03 いすゞ自動車株式会社 Battery cooling device
JP7355088B2 (en) 2021-09-22 2023-10-03 いすゞ自動車株式会社 battery cooling device
WO2023233726A1 (en) * 2022-05-30 2023-12-07 株式会社豊田自動織機 Battery cooling system

Similar Documents

Publication Publication Date Title
US11299014B2 (en) Refrigeration cycle device
US10040334B2 (en) R744 based heat pump system with a water cooled gas cooler for cooling, heating and dehumidification of an EV/HEV
CN110576717B (en) Thermal management system for a vehicle
US20220032732A1 (en) Battery heating device for vehicle
JP5403766B2 (en) Vehicle cooling system
KR101933166B1 (en) Vehicle air conditioning system and method for controlling the vehicle air conditioning system for the temperature control of a vehicle battery
US10612820B2 (en) Transport refrigeration system
WO2020175325A1 (en) Cooling system
US9950591B2 (en) Vehicle air conditioner
JP7380248B2 (en) cooling system
US10989447B2 (en) Refrigeration cycle device
US11897316B2 (en) Refrigeration cycle device
US10611212B2 (en) Air conditioner for vehicle
US11105536B2 (en) Combined heat exchanger
KR102343079B1 (en) Device and method for cooling battery cell modules
CN115516257A (en) Thermal conditioning system for a motor vehicle
US10661635B2 (en) Vehicle air-conditioning unit
US11827076B2 (en) Refrigerant system with two inner heat exchangers
US20230406072A1 (en) Refrigeration Circuit, and Heat Management System and Motor Vehicle Having a Refrigeration Circuit of This Type
JP2020085382A (en) Refrigeration cycle device
WO2022070796A1 (en) Vehicle heat management system
JP2024043183A (en) Vehicle temperature control system and temperature control method
US11607925B2 (en) Method for a thermal management of a motor vehicle
JP7388007B2 (en) Heat exchanger, refrigeration cycle equipment
CN115666982A (en) Method for controlling a thermal conditioning system for a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762934

Country of ref document: EP

Kind code of ref document: A1