WO2020174754A1 - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
WO2020174754A1
WO2020174754A1 PCT/JP2019/043090 JP2019043090W WO2020174754A1 WO 2020174754 A1 WO2020174754 A1 WO 2020174754A1 JP 2019043090 W JP2019043090 W JP 2019043090W WO 2020174754 A1 WO2020174754 A1 WO 2020174754A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
plane
cutting tool
coating
less
Prior art date
Application number
PCT/JP2019/043090
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 力宗
晋 奥野
アノンサック パサート
今村 晋也
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Publication of WO2020174754A1 publication Critical patent/WO2020174754A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • Patent Document 1 discloses a cutting tool including a base material and a coating film formed on the surface of the base material.
  • Patent Document 1 International Publication No. 201 3/037997
  • a cutting tool according to the present disclosure is
  • a cutting tool comprising a base material and a coating for coating the base material, wherein the coating includes «_ 8 2 0 3 layers,
  • the orientation index of the (0 1 1 4) plane ( 3 (0 1 1 4)) represented by the following formula (2) is ⁇ 0.5 and is 3 or less
  • I 1 ⁇ I) indicates the X-ray diffraction intensity obtained when the X-port measurement is performed on the 1 ⁇ I) plane
  • (1 ⁇ I) is the standard strength on the ⁇ 8 ⁇ 2 ⁇ 3 1 ⁇ ⁇ ) plane shown in 0 1 0— 0 1 7 3 of
  • (11 1 ⁇ I) planes are (0 1 2) planes, (1 0 4) planes, (1 1
  • Fig. 1 is a perspective view illustrating one embodiment of a base material of a cutting tool.
  • FIG. 2 is a schematic cross-sectional view of a cutting tool according to an aspect of the present embodiment.
  • FIG. 3 is Ru schematic sectional view showing the tissue structure of a conventional "_ eight ⁇ 2 ⁇ three layers.
  • FIG. 4 FIG.
  • FIG. 5 is a schematic cross-sectional view of a cutting tool according to another aspect of the present embodiment. MODE FOR CARRYING OUT THE INVENTION
  • Patent Document 1 it is possible to improve the performance (for example, abrasion resistance) of a cutting tool by providing a ⁇ _ 8 I 2 0 3 layer or the like in which the ( ⁇ 0 1) orientation is preferential on the base material. I am letting you. However, the priority of the (0 0 1) orientation is
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a cutting tool having excellent wear resistance.
  • a cutting tool comprising a base material and a coating for coating the base material, wherein the coating includes «_ 8 2 0 3 layers,
  • the orientation index ( 3 (0 0 1 2)) of the (0 0 1 2) plane represented by the following formula (1) is 4 or more and 8.5 or less
  • the orientation index of the (0 1 1 4) plane ( 3 (0 1 1 4)) represented by the following formula (2) is ⁇ 0.5 and is 3 or less
  • the sum of 4) and 9 is 9 or less.
  • I 1 ⁇ I) indicates the X-ray diffraction intensity obtained when the X-port measurement is performed on the 1 ⁇ I) plane
  • (1 ⁇ I) is the standard strength on the ⁇ 8 ⁇ 2 ⁇ 3 1 ⁇ ) plane shown in 01 0—01 73
  • (11 1 ⁇ I) planes are (0 1 2) planes, (1 0 4) planes, (1 1
  • the cutting tool has the (0 0 1) orientation by providing the above-described configuration. As a result, the cutting tool has excellent wear resistance.
  • the maximum grain size of the above-mentioned _ _ 8 2 0 3 crystal grains is 3 or less
  • Maximum particle size of the crystal grains is a value determined in a virtual plane parallel to the interface through a point distant ⁇ from the interface of the I 2 ⁇ 3 layer on the opposite side in the thickness direction to the substrate,
  • the cutting tool has further excellent wear resistance.
  • the orientation index 0 (0 1 1 4) is preferably 1 or more and 2.5 or less.
  • the thickness of the above-mentioned ⁇ _ 8 ⁇ 2 0 3 layers should be 1 or more and 10 or less. ⁇ 2020/174754 5 ⁇ (:171?2019/043090
  • the coating further includes an intermediate layer that are provided between the substrate and the eight I 2 ⁇ three layers,
  • the intermediate layer preferably contains a carbonate, a carbonitride oxide, or a boron nitride containing titanium as a constituent element.
  • a cutting tool having excellent adhesion between the substrate and the "_ eight ⁇ 2 ⁇ three layers and.
  • the thickness of the coating film is preferably 1 or more and 30 or less.
  • above coating preferably comprises the further the outermost surface layer formed on the "_ eight ⁇ 2 ⁇ 3 layer.
  • this embodiment is not limited to these.
  • the notation in the form of "8-Mi" means the upper and lower limits of the range (that is, not less than 8 and not more than Min), and when there is no unit description in 8, but only in M The unit is the same as the unit of Mimi.
  • the chemical formula when a compound is represented by a chemical formula in which the ratio of the constituent elements is not limited, such as “Cho 1 ⁇ 1”, the chemical formula is the same as that of any of the conventionally known compositions (elements). Ratio) is included.
  • the chemical formula shall include not only stoichiometric composition but also non-stoichiometric composition.
  • the chemical formula of "Ding 1 ⁇ 1” is not limited to the stoichiometric composition "Ding 1 1X1 ! " Non-stoichiometric compositions such as " 8 " are also included. The same applies to the description of compounds other than "Cho 1 ⁇ 1".
  • a cutting tool comprising a base material and a coating for coating the base material, wherein the coating includes «_ 8 2 0 3 layers,
  • the orientation index of the (0 0 1 2) plane (3 (0 0 1 2)) represented by the above formula (1) is 4 or more and 8.5 or less
  • the orientation index of the (0 1 1 4) plane (3 (0 1 1 4)) represented by the above formula (2) is not less than 0.5 and not more than 3,
  • the surface-coated cutting tool of the present embodiment includes a base material and a coating film that coats the base material (hereinafter, simply referred to as “cutting tool”).
  • the above-mentioned cutting tools are, for example, drills, end mills, exchangeable cutting edges for drills, exchangeable cutting edges for end mills, exchangeable cutting edges for milling, exchangeable cutting edges for turning, metal saws, gear cutting tools. , Reamer, tap, etc.
  • the substrate is a cemented carbide (eg, tungsten carbide).
  • Base cemented carbide In addition to 0, it contains cemented carbide, and in addition to 0, 1 ⁇ 1 Cemented carbide with carbonitride added, etc.),
  • Mets mainly consisting of Ding Teng, Ding Ting 1 ⁇ 1, Ding Ting 1 ⁇ 1, etc.
  • high speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.) ), a cubic boron nitride sintered body (Omi 1 ⁇ 1 sintered body) and a diamond sintered body are preferably contained.
  • base cemented carbide and cermet particularly I-Ol ⁇ 1 base cermet.
  • base cemented carbide and cermet particularly I-Ol ⁇ 1 base cermet.
  • FIG. 1 is a perspective view illustrating one embodiment of a base material of a cutting tool.
  • a cutting tool with such a shape is used as a cutting edge exchange type cutting tip for turning.
  • the substrate 11 shown in Fig. 1 has a surface including an upper surface, a lower surface and four side surfaces, and as a whole, has a rectangular pillar shape that is slightly thin in the vertical direction. Further, a through hole penetrating the upper and lower surfaces is formed in the base material 11, and at the boundary portion of the four side surfaces, the adjacent side surfaces are connected with an arc surface.
  • the upper surface and the lower surface form a rake surface 13
  • the four side surfaces (and the arc surfaces connecting these to each other) form a flank surface and a rake surface 1 3
  • the arc surface connecting the flank and the flank forms the cutting edge portion 10.
  • “Cake face” means the face from which the chips scraped from the work material are raked.
  • the “flank surface” means the surface that is in contact with the work material.
  • the cutting edge part is included in the part that constitutes the cutting edge of the cutting tool.
  • the base material 11 includes a shape having a chip breaker and a shape not having a chip breaker.
  • the shape of the cutting edge 10 is a combination of sharp edge (ridge where rake face and flank intersect), honing (shape with sharp edge added), negative land (chamfered shape), and honing and negative land. Among the shapes, any shape is included.
  • the shape of the base material 11 and the name of each part have been described above with reference to FIG. 1. However, in the cutting tool according to the present embodiment, the shape and the name of each part corresponding to the base material 11 are described. For, the same terms as above will be used. That is, the cutting tool has a rake face, a flank face, and a cutting edge portion that holds the rake face and the flank face.
  • Coating according to the present embodiment includes an I 2 ⁇ 3 layer provided on the substrate.
  • the "coating” is intended to improve various characteristics such as fracture resistance and wear resistance of a cutting tool by coating at least a part of the above-mentioned base material (for example, a part of the above rake face). ⁇ 2020/174754 8 ⁇ (:171?2019/043090
  • the coating film covers not only a part of the base material but the entire surface of the base material. However, it does not depart from the scope of the present embodiment even if a part of the base material is not covered with the coating or the coating is partially different in structure.
  • the coating preferably has a thickness of 1 or more and 30 or less.
  • the thickness of the coating which will be described later eight I 2 ⁇ three layers, the intermediate layer, outermost layer, ⁇ beauty other layers (e.g., undercoat layer, hard layer) of each layer constituting the coating, such as thickness Means the sum.
  • the thickness of the coating film can be measured, for example, by measuring the cross section of the cutting tool with an optical microscope at a magnification of 100 times. Specifically, it can be obtained by measuring three arbitrary points on the cross section and taking the average value of the thicknesses of the three measured points. Described later "- eight I 2 ⁇ three layers, the intermediate layer, the same applies to the case of measuring the outermost layer and other layers respectively thicknesses.
  • the ⁇ _ 8 2 0 3 layer of the present embodiment is a crystal grain of ⁇ _ 8 2 0 3 (aluminum oxide whose crystal structure is ⁇ type) (hereinafter, may be simply referred to as "crystal grain”.) including. That is, the "_ eight ⁇ 2 ⁇ 3 layer of polycrystalline" is a layer containing _ eight ⁇ 2 ⁇ 3.
  • the above "- eight I 2 ⁇ 3 layer within a range not impairing the effects achieved by the cutting tool according to the present embodiment, may be provided directly on the substrate (e.g., Fig. 2), It may be provided on the above-mentioned base material via another layer such as a base layer, a hard layer, and an intermediate layer described later (for example, FIG. 5).
  • the "- eight I 2 ⁇ 3 layer optionally other layers, such as the outermost surface layer provided thereon (e.g., Fig. 5).
  • the «- eight ⁇ 2 ⁇ three layers may be the outermost layer of the coating.
  • a A 2 ⁇ 3 layer preferably has a thickness of 1 or more 1 ⁇ less, more preferable arbitrarily be 3 or more 1 0 less. As a result, it is possible to exert the effect of further excellent wear resistance. ⁇ 2020/174754 9 ⁇ (:171?2019/043090
  • the thickness can be measured, for example, by measuring the cross section of the cutting tool as described above with an optical microscope at a magnification of 1,000 times.
  • the orientation index (3 (0 0 1 2)) of the (0 0 1 2) plane represented by the above formula (1) is 4 or more and 8.5 or less
  • the orientation index of the (0 1 1 4) plane (3 (0 1 1 4)) represented by the above formula (2) is not less than 0.5 and not more than 3,
  • I ( , I) plane shows the X-ray diffraction intensity obtained when measured [0] (X-ray diffraction measurement).
  • the X-ray diffraction intensity means the height of the peak in the diffraction chart obtained by measurement. ⁇ .
  • (1 ⁇ ⁇ ) planes are (0 1 2) planes, (1 0 4) planes, (1 1 0) planes, (1 1 3) planes, (0 2 4) planes,
  • _ eight I 2 ⁇ 3 layer was considered to be preferable in many cases the content of the crystal grains having the (x x 1) orientation.
  • the __ 8 2 0 3 layer is composed of crystal grains with (0 0 1) orientation as shown in Fig. 3. It was considered ideal to consist of (columnar crystals 1 2 3 ).
  • the priority of the (0 0 1) orientation is that the (_ 0 0 1) oriented ⁇ _ 8 2 0 3 crystal grains are adjacent to each other in the ⁇ - 8 0 2 0 3 layer. This means that the crystal orientations are often close to each other.
  • Crystal grains with orientation The presence of crystal grains 12 (1 column) having a (0 1 1 4) orientation between (columnar crystals 1 2 3 ) in a predetermined ratio (for example, FIG. 4) For the first time, we found that the coarsening of columnar crystals 1 2 3 was suppressed.
  • the inventors of the present invention examined the relationship between the degree of presence of the crystal grains 1 2 3 having the (0 0 1) orientation and the crystal grains 1 2 having the (0 1 1 4) orientation and the orientation index.
  • the orientation index of the crystal grains 1 2 3 having the ( ⁇ 0 1) orientation and the crystal grains 1 2 having the (0 1 1 4) orientation was 1 2 3 And (0 1 1 4) which is an index that reflects the presence ratio (volume ratio) of 12 crystal grains having orientation, and the orientation index of the (0 0 1 2) plane represented by the above formula (1).
  • Ding (3 (0 1 12) is 4 or more and 8.5 or less, and the orientation index (0 1 1 4) of the (0 1 1 4) plane represented by the above formula (2) is 0. It was found that it was not less than 5 and not more than 3. Since the coarsening of the columnar crystals 1 2 3 was suppressed, the cutting tool had excellent wear resistance.
  • the above-mentioned orientation index (0 0 1 2) can be obtained by, for example, a mouth measurement performed under the following conditions. Specifically, the "- eight for ⁇ 2 ⁇ three layers any one point definitive to perform the X-ray diffraction measurements were obtained based on the equation (1) (0 0 1 2) plane orientation the index and the orientation index Ding ⁇ (0 0 1 2) in the eight ⁇ 2 ⁇ three layers. However, the above "any one point” ⁇ 2020/174754 11 ⁇ (:171?2019/043090
  • the above-mentioned orientation index (0 1 1 4) is preferably 1 or more and 2.5 or less, and more preferably 1.4 or more and 2.4 or less.
  • the orientation index (3 (0 0 12)) is preferably 4.5 or more and 7.5 or less, and more preferably 5.9 or more and 7.1 or less.
  • _ eight ⁇ 2 ⁇ 3 layer includes the grain _ eight ⁇ 2 ⁇ 3,
  • the "_ eight ⁇ 2 ⁇ 3 crystal grains, it is favorable Mashiku its maximum particle diameter is 3 or less, more preferably 2 to 3.
  • the maximum grain size of the above-mentioned ⁇ _8 I 2 0 3 crystal grains near the interface of the I 2 0 3 layer (that is, the depth position that satisfies Equation (4)) the maximum particle size at a point of the ⁇ 2 ⁇ 3 crystal grains) are considered the inventors to be critical.
  • the "- eight if ⁇ 2 ⁇ three layers thickness X of less than 3 01, the depth position ⁇ satisfying the above formula (4) i.e., 1
  • the maximum particle size of the crystal grains is specifically determined from the color map at "_ eight ⁇ 2 ⁇ three layers of the cross-section made by the following procedure. First ⁇ 3 ⁇ 4- eight ⁇ 2 ⁇ 3 layer formed on the substrate based on the production method described below. Then, "a _ eight I 2 ⁇ three layers, including such substrates" formed - cut to a cross-section perpendicular to obtain the eight I 2 ⁇ three layers. That is, the cut surface obtained by cutting the eight I 2 ⁇ three layers a plane including the normal line of the interface 3 is cut to expose. After that, the cut surface is polished with water-resistant abrasive paper (containing 3 ⁇ 3 abrasive grains as an abrasive).
  • the above cleavage for example, "- eight ⁇ 2 ⁇ three layers 1 2 of surface (" - if eight ⁇ 2 0 3 layer 1 2 outermost layer such as another layer is formed thereon in The surface of the coating) is adhered and fixed on a sufficiently large flat plate using wax or the like, and then cut in a direction perpendicular to the flat plate with a rotary blade cutting machine (the rotary blade and the flat plate are Cut as vertically as possible).
  • This cleavage such as long as performed with respect to the vertical direction, it is "_ eight ⁇ 2 ⁇ 3 layer 1 2 lines at any site of Ukoto.
  • the above polishing is performed using the above water-resistant abrasive paper (#400, #800). ⁇ 2020/174754 13 ⁇ (:171?2019/043090
  • the number (#) of water-resistant abrasive paper means the difference in particle size of the abrasive, and the larger the number, the smaller the particle size of the abrasive.
  • the above-mentioned polished surface is further smoothed by “ion milling treatment with ions.
  • the conditions of the ion milling treatment are as follows.
  • Irradiation time 6 hours.
  • the smoothed cross section (mirror surface) was subjected to a field emission scanning electron microscope equipped with an electron beam backscattering diffractometer (Mitsumi 30 device) (M__3!/ 1) (Product name: "311660", manufactured by Hitachi High-Technologies Corporation) is used for observation, and the obtained observation image is analyzed by Mitsumi 300.
  • the position for observing the above-mentioned smoothed cross section is not particularly limited, but in consideration of the relationship with cutting characteristics, it is preferable to observe the vicinity of the cutting edge portion 10.
  • the observation magnification for Min_3_Min 1 ⁇ /1 shall be 500 times.
  • the «_ 8 2 0 3 layer has high uniformity, the maximum grain size of the crystal grains for a plurality of observation regions in the «—I 2 0 3 layer is ⁇ 2020/174 754 14 ⁇ (: 171?2019/043090
  • the above EBS D analysis result is analyzed using commercially available software (trade name: "orientation I magingmicroscopy Ver 6.2", manufactured by ED AX) to create the above color map. Specifically, first to identify the crystal orientation of the crystal grains contained in the cross-section of A_A I 2 ⁇ three layers 1 2.
  • the crystal orientation of each crystal grain specified here is a plan view of each crystal grain appearing in the cross section of the aA I 2 O 3 layer 12 from the direction normal to the cross section (direction penetrating the paper in Fig. 4). This is the crystal orientation sometimes observed.
  • the normal line of the interface S of the aA I 2 O 3 layer 12 (that is, the interface S of the AI 2 O 3 layer on the opposite side of the base material).
  • the orientation of each crystal grain in the direction is specified.
  • a color map is created based on the specified crystal orientation.
  • the grain boundaries of each crystal grain can be identified.
  • the method of "C rista ID irection MAP" included in the above software can be used to create the color map.
  • the color map is created over the entire area in the thickness direction of the aA 2 0 3 layer 1 2 observed on the cut surface.
  • the interface S of the a-A ⁇ 2 0 3 layer 12 is in the base material on the side opposite to the base material in the direction normal to the main surface of the base material in the color map.
  • the center of a straight line passing through the farthest point and parallel to the main surface of the base material and a straight line passing through the closest point to the base material on the opposite side of the base material and parallel to the main surface of the base material It is a straight line that passes through.
  • points that seem to be abnormal at first glance are excluded.
  • Fig. 4 is a schematic cross-sectional view showing the tissue structure in the a_A I 2 0 3 layer of the present embodiment. It is understood as a color map created based on the cross section of the a-A 2 0 3 layer. You can also do it.
  • crystal grains 12 a (columnar crystals 12 a) show crystal grains having a (0 0 1) orientation
  • crystal grains 12 b (columnar crystals 12 b) are (0 1 1 4)
  • a crystal grain having an orientation is shown.
  • the grain size of the crystal grains of the present embodiment is ⁇ 2020/174754 15 ⁇ (:171?2019/043090
  • Virtual plane? Is obtained as the distance between two points where the straight line and the outer circumference (grain boundary) of the crystal grain intersect.
  • the grain sizes of all the crystal grains existing in the measurement visual field are determined, and the maximum grain size among these is determined.
  • the coating preferably further comprises an intermediate layer provided between the substrate and the I 2 ⁇ three layers.
  • the intermediate layer preferably contains a carbonate, a carbonitride oxide, or a boron nitride containing titanium (1) as a constituent element.
  • the intermediate layer is preferably made of one compound selected from the group consisting of carbonates, carbonitride oxides, and boronitrides containing D as a constituent element. That is, it is preferable that the above-mentioned intermediate layer is made of a compound represented by _, _, _, I/ ⁇ , or 1/ ⁇ . It is preferable that the intermediate layer is a layer of a layer of 1 ⁇ 10 (a layer made of a compound represented by a layer of 1 ⁇ 10).
  • the intermediate layer may contain inevitable impurities as long as the effect of the cutting tool according to the present embodiment is not impaired.
  • the thickness of the intermediate layer is preferably 2 or less, and more preferably 0.5 or more and 1.5 or less.
  • the thickness can be measured, for example, by measuring a cross section of the above-described cutting tool with an optical microscope at a magnification of 100 times.
  • the coating is
  • the cutting tool has excellent discriminating properties of the coating.
  • the outermost surface layer is made of a compound represented by TOKYO TEN, TONE 1 ⁇ 1 or TET TEN 1 ⁇ 1.
  • the toughness of the coating is improved when the outermost surface layer is made of the compound represented by the formula (3, T. 1 ⁇ 1 or T. O. 1 ⁇ 1).
  • the outermost surface layer does not impair the effects of the cutting tool according to this embodiment. ⁇ 2020/174754 16 ⁇ (:171?2019/043090
  • the outermost surface layer preferably has a thickness of not less than 0.1 and not more than 20!, more preferably not less than 0.30! and not more than 0.6!.
  • the thickness can be measured, for example, by measuring the cross section of the cutting tool as described above with an optical microscope at a magnification of 100 times.
  • the coating may further contain other layers as long as the effects of the present embodiment are not impaired.
  • the other layer include a base layer provided directly on the base material, and a hard layer provided between the base layer and the intermediate layer.
  • the hard layer may have a composition different from that of the intermediate layer.
  • the film is improved in adhesion to the substrate.
  • the wear resistance of the coating film is further improved by including the hard layer.
  • the hard layer may be, for example, a layer made of Tengai 0 ⁇ 1.
  • first step A step of preparing the base material (hereinafter, referred to as “first step”),
  • the second step is performed by a chemical vapor deposition method comprises feeding a raw material gas containing 1 ⁇ 1 2 gas.
  • a chemical vapor deposition method comprises feeding a raw material gas containing 1 ⁇ 1 2 gas.
  • the base material is prepared.
  • any substrate can be used as long as it is a conventionally known substrate of this type as described above.
  • a method for preparing the above-mentioned base material a commercially available product may be purchased, or ⁇ 2020/174 754 17 ⁇ (:171?2019/043090
  • It may be manufactured from raw materials.
  • raw material powders having the compounding composition (mass %) described in the examples below are uniformly mixed using a commercially available attritor, and then this mixed powder is used.
  • a predetermined shape for example, model number manufactured by Sumitomo Electric Ehard Metal Co., Ltd. The after pressure molding, at 1 3 0 0 ⁇ 1 5 0 0 ° ⁇ less at a given sintering furnace, 1
  • the above base material made of cemented carbide can be obtained by sintering for 2 hours. Is the shape of an exchangeable cutting tip for turning (see, for example, Figure 1).
  • the second step is performed by a chemical vapor deposition method and includes supplying a source gas containing N 2 gas.
  • _ eight ⁇ 2 ⁇ 3 nuclei has only to be generated.
  • “_ eight ⁇ 2 ⁇ 3 nuclei may be generated just above the base material, the base layer, the hard layer, through other layers such as intermediate layers on said substrate It may be generated.
  • the base material It is performed by a chemical vapor deposition ( ⁇ necked method), by supplying raw material gas including 1 ⁇ 1 2 gas, to produce a "_ eight I 2 ⁇ 3 nuclei. That is, the second step, more runs in a chemical vapor deposition method comprises feeding a raw material gas containing 1 ⁇ 1 2 gas.
  • the "raw material gas” in the second step the raw material gas to produce a "_ eight I 2 ⁇ 3 nuclear stations, to taste.
  • first hundred 2 as a source gas 1 ⁇ 1 2, 1-1_Rei ⁇ , eight ⁇ 3, N 2 3 and? - 1 2 is used.
  • the amount is, for example, a hundred 2 ⁇ . 5-2 vol%, a 1 ⁇ 1 2 2-1 5 vol%, 1 to 1_Rei I ⁇ . 5-4 vol%, the eight I ⁇ I 3 5 to 13% by volume, 1 to 1 2 3 are set to 0.1 to 3% by volume, and the balance is And the like.
  • the temperature in the reaction vessel during the reaction in the second step is preferably 970 ° to 1030 ° .
  • the pressure in the reaction vessel during the reaction in the second step was 80 3 to 150 ⁇ 9
  • the total gas flow rate during the reaction in the second step was 301_/ ⁇ 1 ⁇ n ⁇ 1 00 !_/ ⁇ !
  • the reaction time in the second step is preferably 2 minutes to 60 minutes
  • the amount is, for example, a hundred 2 ⁇ . 5-3 vol%, 1 to 1_Rei ⁇ a 4-6% by volume, the eight I ⁇ I 3. 5 to 1 3 vol%, 1 to 3% by volume, and the balance is ! ⁇ 1 2 .
  • the temperature in the reaction container during the reaction in the third step is preferably 950° to 1050°.
  • the pressure inside the reaction vessel during the reaction in the third step is preferably 10 3 to 80 3 .
  • the total gas flow rate during the reaction in the third step was 301_/ ⁇ 1 ⁇ n ⁇ 100 00 _/ ⁇ !
  • the reaction time in the third step is film formation
  • a step of forming an underlayer, a hard layer or an intermediate layer on the base material may be included.
  • a step of forming an underlayer, a hard layer or an intermediate layer on the base material may be included.
  • the layers may be formed by a conventional method.
  • a surface-coated cutting tool comprising a substrate and a coating covering said substrate, said coating comprises a "_ eight ⁇ 2 ⁇ three layers,
  • the orientation index of the (0 1 1 4) plane (3 (0 1 1 4)) represented by the following formula (2) is ⁇ 0.5 and is 3 or less
  • (1 ⁇ I) is the standard strength on the ⁇ -8 ⁇ 2 ⁇ 3 1 ⁇ ⁇ ) plane as shown in 01 0—01 73 of ⁇ 03 force,
  • (11 1 ⁇ I) planes are (0 1 2) planes, (1 0 4) planes, (1 1
  • the "- eight I 2 ⁇ 3 layer" - includes a grain eight I 2 ⁇ 3,
  • the surface coating cutting tool described in Appendix 1 is obtained by the following equation (3) or the following equation (4).
  • X represents the thickness () of the above-mentioned _ _ 8 2 0 3 layer.
  • the surface-coated cutting tool according to any one of appendices 1 to 3, wherein the thickness of the «_ eight-third layer is 1 or more and 10 or less.
  • the coating further includes an intermediate layer provided between the substrate and the I 2 O 3 layer,
  • the intermediate layer is composed of a carbonate, a carbonitride oxide, or a nitrous oxide containing gallium as a constituent element. ⁇ 2020/174754 21 ⁇ (:171?2019/043090
  • the surface-coated cutting tool according to any one of appendices 1 to 4, including a compound.
  • the surface coating cutting tool according to any one of appendices 1 to 5, wherein the coating has a thickness of 1 or more and 30 or less.
  • the coating is
  • a base material to be coated with a coating film was prepared. Specifically, raw material powders having the following composition (mass %) were uniformly mixed using a commercially available attritor to obtain mixed powders.
  • this mixed powder was pressure-molded into a predetermined shape (model number ⁇ 1 ⁇ /1 ⁇ 1 204081 ⁇ 1_11 manufactured by Sumitomo Electric Hardmetal Co., Ltd.), and the obtained compact was formed.
  • a substrate made of cemented carbide was obtained by placing it in a sintering furnace and sintering it at 1300 to 1500 ° for 1-2 hours.
  • "204081 ⁇ 1-11" is the shape of a cutting edge exchange type cutting tip for turning.
  • a film was formed on the surface of the substrate by forming the layer and the outermost layer in this order.
  • the method for producing each layer constituting the coating film will be described below.
  • a reaction gas having the composition shown below was formed under the film forming conditions of a furnace pressure of 353, a reaction temperature of 100 000 °, and a gas flow rate of 7 01 _ / ⁇ 1 ⁇ .
  • the intermediate layer near Ru said "- and ejected on the eighth ⁇ 2 ⁇ 3 nuclei" - were grown viii ⁇ 2 ⁇ 3 crystals (third step).
  • the cutting tools of sample N 0.7 to 10 correspond to the comparative example.
  • Table 2 shows the results focusing on 14). Note that the "- eight ⁇ 2 ⁇ for the points multiple of three layers orientation index Ding 0 (0 0 1 2) and the alignment index Ding (3 (0
  • the thickness of the coating, and the underlying layer, hard layer, intermediate layer, ⁇ _8 I 2 03 layer and outermost layer that compose the coating are measured in the direction normal to the surface of the substrate using an optical microscope. It was determined from parallel cross-section samples. The results are shown in Table 4.
  • Irradiation angle 0 ° from the normal direction of the interface of the _ 8 I 2 0 3 layer (that is, the linear direction parallel to the thickness direction of the _ _ 8 _ 2 0 3 layer at the cut surface)
  • the processed surface thus prepared was processed by using MINAMI 3MI 1 ⁇ /1 (manufactured by Hitachi High-Technologies Co., Ltd., trade name: "3 11 6600") equipped with MINAMI 30 Watch at 0x magnification ⁇ 2020/174 754 26 ⁇ (:171?2019/043090
  • the observation area of 50 yu, m (a direction parallel to the interface S of AI 2 0 3 layers) X 30 yu,m (aA thickness direction of 2 0 3 layers) on the processed surface is described above. Created a color map of. Specifically, to identify the crystal orientation of the free Murrell each crystal grain in the cross-section of the first a- A ⁇ 2 ⁇ three layers. Here crystal orientation position of each crystal grain is identified, the respective crystal grains appearing on the cross section of aA I 2 0 3 layer, when viewed in plan from a normal direction of the cross section (direction penetrating the paper surface in FIG. 4) This is the observed plane orientation.
  • 0 1 2) is 4 or more and 8.5 or less, and the orientation index (3 (0 1 1 4) is
  • a cutting tool (Sample 1 ⁇ ! ⁇ 0.7 to 10) whose ⁇ (0 1 1 4) is less than 0 .5 is
  • the cutting time was 35 minutes or less.
  • the orientation index of the _ _ 8 2 0 3 layer is 0 (0 0 1 2) is less than 4, and the orientation index of 0 (0 1 1 4) is
  • the cutting tool with a cutting time of less than 0.5 (Sample N 0.10) had the shortest cutting time of 18 minutes.
  • the orientation index of the ⁇ _8 ⁇ 2 0 3 layer is 0 (0 0 1 2
  • the cutting tool orientation index Ding (3 (0 1 1 4) is ⁇ 5 or more on the 3 below, "-. Eight ⁇ 2 ⁇ 3 orientation in layers index Ding It was found that the wear resistance was superior to that of a cutting tool with a ⁇ (0 1 1 4) of less than 0.5.

Abstract

The present invention provides a cutting tool comprising a base material and a coating covering the base material, wherein the coating includes an α-Al2O3 layer, and in the α-Al2O3 layer, the (0 0 12)-plane orientation index TC(0 0 12) is in the range of 4 to 8.5 inclusive, the (0 1 14)-plane orientation index TC(0 1 14) is in the range of 0.5 to 3 inclusive, and the total of the orientation index TC(0 0 12) and the orientation index TC(0 1 14) is no higher than 9.

Description

\¥02020/174754 1 卩(:17 2019/043090 明 細 書 \¥02020/174754 1 卩 (: 17 2019/043090 Clarification
発明の名称 : 切削工具 Title of invention: Cutting tool
技術分野 Technical field
[0001] 本開示は、 切削工具に関する。 本出願は、 201 9年 2月 26日に出願し た日本特許出願である特願 201 9-03264 1号に基づく優先権を主張 する。 当該日本特許出願に記載された全ての記載内容は、 参照によって本明 細書に援用される。 [0001] The present disclosure relates to a cutting tool. This application claims priority based on Japanese Patent Application No. 201 9-032641, which was filed on February 26, 2009. All contents described in the Japanese patent application are incorporated by reference into this specification.
背景技術 Background technology
[0002] 従来より、 切削工具の長寿命化を目的として、 種々の検討がなされている 。 たとえば、 国際公開第 201 3/037997号 (特許文献 1 ) には、 基 材と、 基材の表面に形成されている被膜とを備える切削工具が開示されてい る。 [0002] Conventionally, various studies have been made for the purpose of extending the life of cutting tools. For example, WO 201 3/037997 (Patent Document 1) discloses a cutting tool including a base material and a coating film formed on the surface of the base material.
先行技術文献 Prior art documents
特許文献 Patent literature
[0003] 特許文献 1 :国際公開第 201 3/037997号 [0003] Patent Document 1: International Publication No. 201 3/037997
発明の概要 Summary of the invention
[0004] 本開示に係る切削工具は、 [0004] A cutting tool according to the present disclosure is
基材と、 上記基材を被覆する被膜とを備える切削工具であって、 上記被膜は、 《_八 丨 23層を含み、 A cutting tool comprising a base material and a coating for coating the base material, wherein the coating includes «_ 8 2 0 3 layers,
上記《—八 丨 23層において、 In eight丨2three layers, - the "
下記式 (1 ) で表される (0 0 1 2) 面の配向性指数丁 (3 (0 0The orientation index of the (0 0 1 2) plane represented by the following equation (1) ( 3 (0 0
1 2) が 4以上 8. 5以下であり、 1 2) is 4 or more and 8.5 or less,
下記式 (2) で表される (0 1 1 4) 面の配向性指数丁 (3 (0 1 1 4) が〇. 5以上 3以下であり、 The orientation index of the (0 1 1 4) plane ( 3 (0 1 1 4)) represented by the following formula (2) is ≧0.5 and is 3 or less,
上記配向性指数丁 (3 (0 0 1 2) と上記配向性指数丁 0 (0 1 1The above orientation index ( 3 (0 0 1 2) and the above orientation index 0 (0 1 1
4) との合計が 9以下である。 \¥0 2020/174754 卩(:171?2019/043090 The sum of 4) and 9 is 9 or less. \\0 2020/174754 卩(: 171?2019/043090
[数 1 ] [Number 1]
Figure imgf000004_0001
Figure imgf000004_0001
式 (1) 及び式 (2) 中、 I 1< I) は、 1< I) 面において X 口測定されたときに求められる X線回折強度を示し、 In equations (1) and (2), I 1< I) indicates the X-ray diffraction intensity obtained when the X-port measurement is performed on the 1< I) plane,
1 。 ( 1< I) は、 」〇 0 3力ードの 0 1 0— 0 1 7 3に示されてい る《—八 丨 23の 1< 丨) 面における標準強度を示し、 1. (1< I) is the standard strength on the 《−8 丨23 1< 丨) plane shown in 0 1 0— 0 1 7 3 of
(11 1< I) 面は、 (0 1 2) 面、 (1 0 4) 面、 (1 1 (11 1< I) planes are (0 1 2) planes, (1 0 4) planes, (1 1
0) 面、 (1 1 3) 面、 (0 2 4) 面、 (1 1 6) 面、 (30) plane, (1 1 3) plane, (0 2 4) plane, (1 1 6) plane, (3
0 0) 面、 (0 0 1 2) 面及び (0 1 1 4) 面の 9面のいずれか を示す。 Indicates either the (0 0) plane, the (0 0 1 2) plane, or the (0 1 1 4) plane.
図面の簡単な説明 Brief description of the drawings
[0005] [図 1]図 1は、 切削工具の基材の一態様を例示する斜視図である。 [0005] [Fig. 1] Fig. 1 is a perspective view illustrating one embodiment of a base material of a cutting tool.
[図 2]図 2は、 本実施形態の一態様における切削工具の模式断面図である。 [FIG. 2] FIG. 2 is a schematic cross-sectional view of a cutting tool according to an aspect of the present embodiment.
[図 3]図 3は、 従来の《_八 丨 23層における組織構造を示す模式断面図であ る。 FIG. 3 is Ru schematic sectional view showing the tissue structure of a conventional "_ eight丨2three layers.
[図 4]図 4は、 本実施形態の
Figure imgf000004_0002
[FIG. 4] FIG.
Figure imgf000004_0002
図である。 It is a figure.
[図 5]図 5は、 本実施形態の他の態様における切削工具の模式断面図である。 発明を実施するための形態 [FIG. 5] FIG. 5 is a schematic cross-sectional view of a cutting tool according to another aspect of the present embodiment. MODE FOR CARRYING OUT THE INVENTION
[0006] [本開示が解決しようとする課題] [0006] [Problems to be solved by the present disclosure]
特許文献 1では、 基材上に、 (〇 〇 1) 配向が優先的である《_八 I 2 〇 3層等を設けることによって、 切削工具の性能 (例えば、 耐摩耗性等) を向 上させている。 しかしながら、 (0 0 1) 配向が優先的となることは、In Patent Document 1, it is possible to improve the performance (for example, abrasion resistance) of a cutting tool by providing a <<_ 8 I 2 0 3 layer or the like in which the (○ 0 1) orientation is preferential on the base material. I am letting you. However, the priority of the (0 0 1) orientation is
« _八 丨 23層中において隣接する (0 0 1) 配向した《_八 丨 23結 〇 2020/174754 3 卩(:171?2019/043090 «_ 8 丨23 Layers with adjacent (0 0 1) oriented << _ _ 8 丨23 bonds 〇 2020/174754 3 卩(: 171?2019/043090
晶粒同士の結晶方位が近くなる頻度が高いことを意味する。 ひいては、 これ らの結晶粒が同方向に結晶成長することにより (0 0 1 ) 配向を有するIt means that the crystal orientations of crystal grains are close to each other at high frequency. As a result, these crystal grains have a (0 0 1) orientation due to crystal growth in the same direction.
«-八 I 23の結晶粒が粗大化する傾向がある。 そして、 一般的には 八 I 23の結晶粒の粗大化は《_八 丨 23層の耐摩耗性の低下、 または切削加 エ時の溶着を招来する可能性がある。 このような状況下、 表面に被膜が設け られた切削工具の更なる改良が求められている。 «- eight I 23 crystal grains tend to become coarse. And, in general, eight I 23 grain coarsening is likely to lead to welding of the "_ eight丨2three layers decrease in wear resistance, or during cutting pressurized et. Under these circumstances, there is a demand for further improvement of cutting tools having a coating on the surface.
[0007] 本開示は、 上記事情に鑑みてなされたものであり、 優れた耐摩耗性を有す る切削工具を提供することを目的とする。 [0007] The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a cutting tool having excellent wear resistance.
[0008] [本開示の効果] [0008] [Effects of the present disclosure]
上記によれば、 優れた耐摩耗性を有する切削工具を提供することが可能に なる。 Based on the above, it becomes possible to provide a cutting tool having excellent wear resistance.
[0009] [本開示の実施形態の91説明] [91 Description of Embodiment of Present Disclosure]
最初に本開示の一態様の内容を列記して説明する。 First, the contents of one aspect of the present disclosure will be listed and described.
[ 1 ] 本開示の一態様に係る切削工具は、 [1] A cutting tool according to an aspect of the present disclosure,
基材と、 上記基材を被覆する被膜とを備える切削工具であって、 上記被膜は、 《_八 丨 23層を含み、 A cutting tool comprising a base material and a coating for coating the base material, wherein the coating includes «_ 8 2 0 3 layers,
上記《—八 丨 23層において、 In eight丨2three layers, - the "
下記式 (1 ) で表される (0 0 1 2) 面の配向性指数丁 (3 (0 0 1 2) が 4以上 8. 5以下であり、 The orientation index ( 3 (0 0 1 2)) of the (0 0 1 2) plane represented by the following formula (1) is 4 or more and 8.5 or less,
下記式 (2) で表される (0 1 1 4) 面の配向性指数丁 (3 (0 1 1 4) が〇. 5以上 3以下であり、 The orientation index of the (0 1 1 4) plane ( 3 (0 1 1 4)) represented by the following formula (2) is ≧0.5 and is 3 or less,
上記配向性指数丁 (3 (0 0 1 2) と上記配向性指数丁 0 (0 1 1The above orientation index ( 3 (0 0 1 2) and the above orientation index 0 (0 1 1
4) との合計が 9以下である。 The sum of 4) and 9 is 9 or less.
[数 2] [Number 2]
/(0012) V 1 /(/I 〇 /(0012) V 1 /(/I ○
丁(:(0012) Ding (: (0012)
(0012) ⑴ (0012) ⑴
Figure imgf000005_0001
〇 2020/174754 4 卩(:171?2019/043090
Figure imgf000005_0001
〇 2020/174754 4 卩 (:171?2019/043090
式 (1) 及び式 (2) 中、 I 1< I) は、 1< I) 面において X 口測定されたときに求められる X線回折強度を示し、 In equations (1) and (2), I 1< I) indicates the X-ray diffraction intensity obtained when the X-port measurement is performed on the 1< I) plane,
1 。 ( 1< I) は、 」〇 03力ードの 01 0— 01 73に示されてい る《—八 丨 23の 1< 丨) 面における標準強度を示し、 1. (1< I) is the standard strength on the 《―8丨23 1<丨) plane shown in 01 0—01 73
(11 1< I) 面は、 (0 1 2) 面、 (1 0 4) 面、 (1 1 (11 1< I) planes are (0 1 2) planes, (1 0 4) planes, (1 1
0) 面、 (1 1 3) 面、 (0 2 4) 面、 (1 1 6) 面、 (30) plane, (1 1 3) plane, (0 2 4) plane, (1 1 6) plane, (3
0 0) 面、 (0 0 1 2) 面及び (0 1 1 4) 面の 9面のいずれか を示す。 Indicates either the (0 0) plane, the (0 0 1 2) plane, or the (0 1 1 4) plane.
[0010] 上記切削工具は、 上述のような構成を備えることによって、 (0 0 1 ) 配向を有する
Figure imgf000006_0001
その結果 、 上記切削工具は、 優れた耐摩耗性を有する。
[0010] The cutting tool has the (0 0 1) orientation by providing the above-described configuration.
Figure imgf000006_0001
As a result, the cutting tool has excellent wear resistance.
[0011] [2] 上記《_八 丨 23層は、 《_八 丨 23の結晶粒を含み、 [0011] [2] above "_ eight丨23 layer" includes the grain _ eight丨23,
上記《 _八 丨 23の結晶粒の最大粒径が 3 以下であり、 The maximum grain size of the above-mentioned _ _ 8 2 0 3 crystal grains is 3 or less,
上記結晶粒の最大粒径は、 上記基材とは反対側における上記 I 23 層の界面から厚み方向に丫 離れた地点を通る上記界面に平行な仮想平面 において求められた値であり、 Maximum particle size of the crystal grains is a value determined in a virtual plane parallel to the interface through a point distant丫from the interface of the I 23 layer on the opposite side in the thickness direction to the substrate,
上記丫は下記式 (3) 又は下記式 (4) によって求められることが好まし い。 It is preferable that the above-mentioned value is obtained by the following formula (3) or the following formula (4).
丫 =〇. 5 X (X- 1) /2 + 0. 5、 ただし乂<3 (3) 丫 = 1、 ただし 3£乂 (4) 丫 = ○ 0.5 X (X-1) / 2 + 0.5, but <3 (3) 丫 = 1, but 3 £ (4)
式 (3) 及び式 (4) 中、 Xは上記
Figure imgf000006_0002
上記乂の 単位は である。 ただし、 乂>丫である。
In formula (3) and formula (4), X is the above
Figure imgf000006_0002
The unit of the above is. However, it is >>.
このような構成を備えることによって、 耐摩耗性が更に優れる切削工具と なる。 By providing such a structure, the cutting tool has further excellent wear resistance.
[0012] [3] 上記配向性指数丁 0 (0 1 1 4) は、 1以上 2. 5以下である ことが好ましい。 このように規定することで耐摩耗性が更に優れる切削工具 となる。 [0012] [3] The orientation index 0 (0 1 1 4) is preferably 1 or more and 2.5 or less. By prescribing in this way, a cutting tool with even better wear resistance can be obtained.
[0013] [4] 上記《_八 丨 23層の厚みが 1 以上 1 〇 以下であることが 〇 2020/174754 5 卩(:171?2019/043090 [0013] [4] The thickness of the above-mentioned <<_ 8 丨2 0 3 layers should be 1 or more and 10 or less. 〇 2020/174754 5 卩 (:171?2019/043090
好ましい。 このように規定することで被膜と基材との密着力を良好に維持し つつ、 耐摩耗性が更に優れる切削工具となる。 preferable. By defining in this way, it becomes a cutting tool having excellent wear resistance while maintaining good adhesion between the coating and the substrate.
[0014] [ 5 ] 上記被膜は、 上記基材と上記 八 I 23層との間に設けられてい る中間層を更に含み、 [0014] [5] the coating further includes an intermediate layer that are provided between the substrate and the eight I 2three layers,
上記中間層は、 構成元素としてチタンを含む炭酸化物、 炭窒酸化物又は硼 窒化物を含むことが好ましい。 このように規定することで耐摩耗性に加えて 、 上記基材と上記《_八 丨 23層と間の密着力に優れる切削工具となる。 The intermediate layer preferably contains a carbonate, a carbonitride oxide, or a boron nitride containing titanium as a constituent element. Thus in addition specified in abrasion resistance by, a cutting tool having excellent adhesion between the substrate and the "_ eight丨2three layers and.
[0015] [ 6 ] 上記被膜の厚みが 1 以上 3 0 以下であることが好ましい。 [6] The thickness of the coating film is preferably 1 or more and 30 or less.
このように規定することで被膜と基材との密着力を良好に維持しつつ、 耐摩 耗性が更に優れる切削工具となる。 By defining in this way, it becomes a cutting tool having excellent wear resistance while maintaining good adhesion between the coating and the substrate.
[0016] [ 7 ] 上記被膜は、 上記《_八 丨 23層上に形成されている最表面層を更 に含むことが好ましい。 このように規定することで耐摩耗性に加えて、 被膜 の識別性に優れる切削工具となる。 [0016] [7] above coating preferably comprises the further the outermost surface layer formed on the "_ eight丨23 layer. By defining in this way, in addition to wear resistance, the cutting tool has excellent discriminating properties of the coating.
[0017] [本開示の実施形態の詳細] [Details of Embodiments of the Present Disclosure]
以下、 本開示の一実施形態 (以下 「本実施形態」 と記す。 ) について説明 する。 ただし、 本実施形態はこれらに限定されるものではない。 なお以下の 実施形態の説明に用いられる図面において、 同 _の参照符号は、 同 _部分ま たは相当部分を表わす。 本明細書において 「八〜巳」 という形式の表記は、 範囲の上限下限 (すなわち八以上巳以下) を意味し、 八において単位の記載 がなく、 巳においてのみ単位が記載されている場合、 の単位と巳の単位と は同じである。 さらに、 本明細書において、 たとえば 「丁 丨 1\1」 等のように 、 構成元素の比が限定されていない化学式によって化合物が表された場合に は、 その化学式は従来公知のあらゆる組成 (元素比) を含むものとする。 こ のとき化学式は、 化学量論組成のみならず、 非化学量論組成も含むものとす る。 たとえば 「丁 丨 1\1」 の化学式には、 化学量論組成 「丁 丨 1 1X1 !」 のみなら ず、 たとえば 「丁 丨
Figure imgf000007_0001
8」 のような非化学量論組成も含まれる。 このこと は、 「丁 丨 1\1」 以外の化合物の記載についても同様である。
Hereinafter, one embodiment of the present disclosure (hereinafter referred to as “this embodiment”) will be described. However, the present embodiment is not limited to these. Note in the drawings used in the following description of embodiments, the _ reference numerals, the _ moiety or represents a significant portion. In the present specification, the notation in the form of "8-Mi" means the upper and lower limits of the range (that is, not less than 8 and not more than Min), and when there is no unit description in 8, but only in M The unit is the same as the unit of Mimi. Further, in the present specification, when a compound is represented by a chemical formula in which the ratio of the constituent elements is not limited, such as “Cho 1\1”, the chemical formula is the same as that of any of the conventionally known compositions (elements). Ratio) is included. In this case, the chemical formula shall include not only stoichiometric composition but also non-stoichiometric composition. For example, the chemical formula of "Ding 1\1" is not limited to the stoichiometric composition "Ding 1 1X1 ! "
Figure imgf000007_0001
Non-stoichiometric compositions such as " 8 " are also included. The same applies to the description of compounds other than "Cho 1\1".
[0018] 《表面被覆切削工具》 〇 2020/174754 6 卩(:171?2019/043090 [0018] <<Surface coating cutting tool>> 〇 2020/174754 6 卩 (:171?2019/043090
本実施形態に係る切削工具は、 The cutting tool according to the present embodiment,
基材と、 上記基材を被覆する被膜とを備える切削工具であって、 上記被膜は、 《_八 丨 23層を含み、 A cutting tool comprising a base material and a coating for coating the base material, wherein the coating includes «_ 8 2 0 3 layers,
上記《—八 丨 23層において、 In eight丨2three layers, - the "
上記式 (1) で表される (0 0 1 2) 面の配向性指数丁(3 (0 0 1 2) が 4以上 8 . 5以下であり、 The orientation index of the (0 0 1 2) plane (3 (0 0 1 2)) represented by the above formula (1) is 4 or more and 8.5 or less,
上記式 (2) で表される (0 1 1 4) 面の配向性指数丁(3 (0 1 1 4) が〇. 5以上 3以下であり、 The orientation index of the (0 1 1 4) plane (3 (0 1 1 4)) represented by the above formula (2) is not less than 0.5 and not more than 3,
上記配向性指数丁(3 (0 0 1 2) と上記配向性指数丁 0 (0 1 1 The above orientation index (3 (0 0 1 2)) and the above orientation index 0 (0 1 1
4) との合計が 9以下である。 4) and is less than 9.
[0019] 本実施形態の表面被覆切削工具は、 基材と、 上記基材を被覆する被膜とを 備える (以下、 単に 「切削工具」 という場合がある。 ) 。 上記切削工具は、 例えば、 ドリル、 エンドミル、 ドリル用刃先交換型切削チップ、 エンドミル 用刃先交換型切削チップ、 フライス加工用刃先交換型切削チップ、 旋削加工 用刃先交換型切削チップ、 メタルソー、 歯切工具、 リーマ、 タップ等であり 得る。 The surface-coated cutting tool of the present embodiment includes a base material and a coating film that coats the base material (hereinafter, simply referred to as “cutting tool”). The above-mentioned cutting tools are, for example, drills, end mills, exchangeable cutting edges for drills, exchangeable cutting edges for end mills, exchangeable cutting edges for milling, exchangeable cutting edges for turning, metal saws, gear cutting tools. , Reamer, tap, etc.
[0020] <基材> [0020] <Substrate>
本実施形態の基材は、 この種の基材として従来公知のものであればいずれ のものも使用することができる。 例えば、 上記基材は、 超硬合金 (例えば、 炭化タングステン
Figure imgf000008_0002
基超硬合金、
Figure imgf000008_0001
の他に 0〇を含む超硬合金、 〇の他に〇 「、 丁 し
Figure imgf000008_0003
1\1匕等の炭窒化物を添加した超硬合金等) 、 サ
As the base material of the present embodiment, any base material conventionally known as this type of base material can be used. For example, the substrate is a cemented carbide (eg, tungsten carbide).
Figure imgf000008_0002
Base cemented carbide,
Figure imgf000008_0001
In addition to 0, it contains cemented carbide, and in addition to 0,
Figure imgf000008_0003
1\1 Cemented carbide with carbonitride added, etc.),
—メッ ト (丁 丨 〇、 丁 丨 1\1、 丁 丨 〇1\1等を主成分とするもの) 、 高速度鋼、 セラミックス (炭化チタン、 炭化珪素、 窒化珪素、 窒化アルミニウム、 酸化 アルミニウム等) 、 立方晶型窒化硼素焼結体 (〇巳1\1焼結体) 及びダイヤモ ンド焼結体からなる群から選ばれる 1種を含むことが好ましい。 — Mets (mainly consisting of Ding Teng, Ding Ting 1\1, Ding Ting 1\1, etc.), high speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.) ), a cubic boron nitride sintered body (Omi 1\1 sintered body) and a diamond sintered body are preferably contained.
[0021 ] これらの各種基材の中でも、
Figure imgf000008_0004
基超硬合金、 サーメッ ト (特に丁 I 〇1\1基サーメッ ト) を選択することが好ましい。 この理由は、 これらの基材 が特に高温における硬度と強度とのバランスに優れ、 上記用途の切削工具の 〇 2020/174754 7 卩(:171?2019/043090
[0021] Among these various base materials,
Figure imgf000008_0004
It is preferable to select base cemented carbide and cermet (particularly I-Ol\1 base cermet). The reason for this is that these base materials have an excellent balance of hardness and strength, especially at high temperatures. 〇 2020/174 754 7 卩 (: 171?2019/043090
基材として優れた特性を有するためである。 This is because it has excellent properties as a base material.
[0022] 図 1は切削工具の基材の一態様を例示する斜視図である。 このような形状 の切削工具は、 旋削加工用刃先交換型切削チップとして用いられる。 [0022] FIG. 1 is a perspective view illustrating one embodiment of a base material of a cutting tool. A cutting tool with such a shape is used as a cutting edge exchange type cutting tip for turning.
[0023] 図 1 に示される基材 1 1は、 上面、 下面及び 4つの側面を含む表面を有し ており、 全体として、 上下方向にやや薄い四角柱形状である。 また、 基材 1 1 には上下面を貫通する貫通孔が形成されており、 4つの側面の境界部分に おいては、 隣り合う側面同士が円弧面で繫がれている。 [0023] The substrate 11 shown in Fig. 1 has a surface including an upper surface, a lower surface and four side surfaces, and as a whole, has a rectangular pillar shape that is slightly thin in the vertical direction. Further, a through hole penetrating the upper and lower surfaces is formed in the base material 11, and at the boundary portion of the four side surfaces, the adjacent side surfaces are connected with an arc surface.
[0024] 上記基材 1 1では、 上面及び下面がすくい面 1 3を成し、 4つの側面 (及 びこれらを相互に繫ぐ円弧面) が逃げ面 1 匕を成し、 すくい面 1 3と逃げ面 1 匕とを繫ぐ円弧面が刃先部 1 〇を成す。 「すくい面」 とは、 被削材から削 り取った切りくずをすくい出す面を意味する。 「逃げ面」 とは、 その一部が 被削材と接する面を意味する。 刃先部は、 切削工具の切れ刃を構成する部分 に含まれる。 [0024] In the above-mentioned base material 11, the upper surface and the lower surface form a rake surface 13, and the four side surfaces (and the arc surfaces connecting these to each other) form a flank surface and a rake surface 1 3 The arc surface connecting the flank and the flank forms the cutting edge portion 10. “Cake face” means the face from which the chips scraped from the work material are raked. The “flank surface” means the surface that is in contact with the work material. The cutting edge part is included in the part that constitutes the cutting edge of the cutting tool.
[0025] 上記切削工具が刃先交換型切削チップである場合、 上記基材 1 1は、 チッ プブレーカーを有する形状も、 有さない形状も含まれる。 刃先部 1 〇の形状 は、 シャープエッジ (すくい面と逃げ面とが交差する稜) 、 ホーニング (シ ャープエッジに対してアールを付与した形状) 、 ネガランド (面取りをした 形状) 、 ホーニングとネガランドを組み合わせた形状の中で、 いずれの形状 も含まれる。 [0025] When the cutting tool is a cutting edge exchange type cutting tip, the base material 11 includes a shape having a chip breaker and a shape not having a chip breaker. The shape of the cutting edge 10 is a combination of sharp edge (ridge where rake face and flank intersect), honing (shape with sharp edge added), negative land (chamfered shape), and honing and negative land. Among the shapes, any shape is included.
[0026] 以上、 基材 1 1の形状及び各部の名称を、 図 1 を用いて説明したが、 本実 施形態に係る切削工具において、 上記基材 1 1 に対応する形状及び各部の名 称については、 上記と同様の用語を用いることとする。 すなわち、 上記切削 工具は、 すくい面と、 逃げ面と、 上記すくい面及び上記逃げ面を繫ぐ刃先部 とを有する。 The shape of the base material 11 and the name of each part have been described above with reference to FIG. 1. However, in the cutting tool according to the present embodiment, the shape and the name of each part corresponding to the base material 11 are described. For, the same terms as above will be used. That is, the cutting tool has a rake face, a flank face, and a cutting edge portion that holds the rake face and the flank face.
[0027] <被膜 > [0027] <Coating>
本実施形態に係る被膜は、 上記基材上に設けられた I 23層を含む 。 「被膜」 は、 上記基材の少なくとも一部 (例えば、 上記すくい面の一部等 ) を被覆することで、 切削工具における耐欠損性、 耐摩耗性等の諸特性を向 〇 2020/174754 8 卩(:171?2019/043090 Coating according to the present embodiment includes an I 23 layer provided on the substrate. The "coating" is intended to improve various characteristics such as fracture resistance and wear resistance of a cutting tool by coating at least a part of the above-mentioned base material (for example, a part of the above rake face). 〇 2020/174754 8 卩 (:171?2019/043090
上させる作用を有するものである。 上記被膜は、 上記基材の一部に限らず上 記基材の全面を被覆することが好ましい。 しかしながら、 上記基材の一部が 上記被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりし ていたとしても本実施形態の範囲を逸脱するものではない。 It has the effect of increasing. It is preferable that the coating film covers not only a part of the base material but the entire surface of the base material. However, it does not depart from the scope of the present embodiment even if a part of the base material is not covered with the coating or the coating is partially different in structure.
[0028] 上記被膜は、 その厚みが 1 以上 3〇 以下であることが好ましい。 [0028] The coating preferably has a thickness of 1 or more and 30 or less.
ここで、 被膜の厚みとは、 後述する 八 I 23層、 中間層、 最表面層、 及 び他の層 (例えば、 下地層、 硬質層) 等の被膜を構成する層それぞれの厚み の総和を意味する。 上記被膜の厚みは、 例えば、 上記切削工具の断面を光学 顕微鏡を用いて倍率 1 0 0 0倍で測定することで測定可能である。 具体的に は、 当該断面における任意の 3点を測定し、 測定された 3点の厚みの平均値 をとることで求めることが可能である。 後述する《-八 I 23層、 中間層、 最表面層及び他の層それぞれの厚みを測定する場合も同様である。 Here, the thickness of the coating, which will be described later eight I 2three layers, the intermediate layer, outermost layer,及beauty other layers (e.g., undercoat layer, hard layer) of each layer constituting the coating, such as thickness Means the sum. The thickness of the coating film can be measured, for example, by measuring the cross section of the cutting tool with an optical microscope at a magnification of 100 times. Specifically, it can be obtained by measuring three arbitrary points on the cross section and taking the average value of the thicknesses of the three measured points. Described later "- eight I 2three layers, the intermediate layer, the same applies to the case of measuring the outermost layer and other layers respectively thicknesses.
[0029] ((¾ _八 丨 23層) [0029] ((¾ _ 8 丨2 0 3 layers)
本実施形態の《_八 丨 23層は、 《_八 丨 23 (結晶構造が《型である酸 化アルミニウム) の結晶粒 (以下、 単に 「結晶粒」 という場合がある。 ) を 含む。 すなわち、 上記《_八 丨 23層は、 多結晶の《_八 丨 23を含む層で ある。 The <<_ 8 2 0 3 layer of the present embodiment is a crystal grain of <<_ 8 2 0 3 (aluminum oxide whose crystal structure is << type) (hereinafter, may be simply referred to as "crystal grain".) including. That is, the "_ eight丨23 layer of polycrystalline" is a layer containing _ eight丨23.
[0030] 上記《_八 I 23層は、 本実施形態に係る切削工具が奏する効果を損なわ ない範囲において、 不可避不純物が含まれていてもよい。 [0030] The above "_ eight I 23 layer, within a range not impairing the effects achieved by the cutting tool according to the present embodiment, may be included unavoidable impurities.
[0031 ] 上記《-八 I 23層は、 本実施形態に係る切削工具が奏する効果を損なわ ない範囲において、 上記基材の直上に設けられていてもよいし (例えば、 図 2) 、 後述する下地層、 硬質層、 中間層等の他の層を介して上記基材の上に 設けられていてもよい (例えば、 図 5) 。 上記《-八 I 23層は、 その上に 最表面層等の他の層が設けられていてもよい (例えば、 図 5) 。 また、 上記 «—八 丨 23層は、 上記被膜の最外層であってもよい。 [0031] The above "- eight I 23 layer, within a range not impairing the effects achieved by the cutting tool according to the present embodiment, may be provided directly on the substrate (e.g., Fig. 2), It may be provided on the above-mentioned base material via another layer such as a base layer, a hard layer, and an intermediate layer described later (for example, FIG. 5). The "- eight I 23 layer, optionally other layers, such as the outermost surface layer provided thereon (e.g., Fig. 5). Moreover, the «- eight丨2three layers may be the outermost layer of the coating.
[0032] 本実施形態において、 a A 23層は、 その厚みが 1 以上 1 〇 以下であることが好ましく、 3 以上 1 0 以下であることがより好ま しい。 これにより、 耐摩耗性に更に優れるという効果を発揮することができ 〇 2020/174754 9 卩(:171?2019/043090 [0032] In the present embodiment, a A 23 layer preferably has a thickness of 1 or more 1 〇 less, more preferable arbitrarily be 3 or more 1 0 less. As a result, it is possible to exert the effect of further excellent wear resistance. 〇 2020/174754 9 卩 (:171?2019/043090
る。 当該厚みは、 例えば、 上述したような上記切削工具の断面を光学顕微鏡 を用いて倍率 1 000倍で測定することで測定可能である。 It The thickness can be measured, for example, by measuring the cross section of the cutting tool as described above with an optical microscope at a magnification of 1,000 times.
[0033] 上記切削工具は、 上記《_八 丨 23層において、 [0033] The above cutting tool is in the "_ eight丨2three layers,
上記式 (1) で表される (0 0 1 2) 面の配向性指数丁(3 (0 0 1 2) が 4以上 8. 5以下であり、 The orientation index (3 (0 0 1 2)) of the (0 0 1 2) plane represented by the above formula (1) is 4 or more and 8.5 or less,
上記式 (2) で表される (0 1 1 4) 面の配向性指数丁(3 (0 1 1 4) が〇. 5以上 3以下であり、 The orientation index of the (0 1 1 4) plane (3 (0 1 1 4)) represented by the above formula (2) is not less than 0.5 and not more than 3,
上記配向性指数丁(3 (0 0 1 2) と上記配向性指数丁 0 (0 1 1 The above orientation index (3 (0 0 1 2)) and the above orientation index 0 (0 1 1
4) との合計が 9以下である。 4) and is less than 9.
[0034] 上記式 ( 1) 及び上記式 ( 2) 中、 I (
Figure imgf000011_0001
、 I) 面において乂[¾0測定 (X線回折測定) されたときに求められる X線回折強 度を示す。 ここで上記 X線回折強度とは、 乂[¾0測定によって得られた回折 チヤートにおけるピークの高さを意味する。 丨 。 (
Figure imgf000011_0002
丨) は、 」〇 〇 3力 _ドの 01 0— 01 73に:^されている<¾—八 1 23の ( 1< I) 面における標準強度を示す。 ( 1< 丨) 面は、 (0 1 2) 面、 (1 0 4) 面、 (1 1 0) 面、 (1 1 3) 面、 (0 2 4) 面、
[0034] In the above formula (1) and the above formula (2), I (
Figure imgf000011_0001
, I) plane shows the X-ray diffraction intensity obtained when measured [0] (X-ray diffraction measurement). Here, the X-ray diffraction intensity means the height of the peak in the diffraction chart obtained by measurement.丨. (
Figure imgf000011_0002
Indicates the standard strength on the (1<I) plane of <¾-8 1 2 0 3 which is specified in 01 0- 01 73 of _ 0 0 3 force_. (1< 丨) planes are (0 1 2) planes, (1 0 4) planes, (1 1 0) planes, (1 1 3) planes, (0 2 4) planes,
(1 1 6) 面、 (3 0 0) 面、 (0 0 1 2) 面及び ( 0 1(1 1 6) plane, (3 0 0) plane, (0 0 1 2) plane and (0 1
1 4) 面の 9面のいずれかを示す。 1 4) Shows any one of 9 faces.
[0035] 従来、 《_八 I 23層は、 (〇 〇 1) 配向を有する結晶粒の含有割合 が多いことが好ましいと考えられていた。 すなわち、 《_八 丨 23層は、 図 3に示すような (0 0 1) 配向を有する結晶粒
Figure imgf000011_0003
(柱状晶 1 23) からなることが理想的であると考えられていた。 しかしながら、 上述したよ うに (0 0 1) 配向が優先的となることは、 《-八 丨 23層中において 隣接する (0 0 1) 配向した《_八 丨 23結晶粒同士の結晶方位が近く なる頻度が高いことを意味する。 そのため、 上述のような柱状晶 1 23から なる《_八 I 23層を形成しようとすると、 これらの結晶粒が同方向に結晶 成長することにより (〇 〇 1) 配向を有する《_八 丨 23の結晶粒が粗 大化する傾向がある。 そして、 一般的には 八 I 23の結晶粒の粗大化は 〇 2020/174754 10 卩(:171?2019/043090
Figure imgf000012_0001
または切削加工時の溶着を招来する可能 性がある。
[0035] Conventionally, "_ eight I 23 layer was considered to be preferable in many cases the content of the crystal grains having the (x x 1) orientation. In other words, the __ 8 2 0 3 layer is composed of crystal grains with (0 0 1) orientation as shown in Fig. 3.
Figure imgf000011_0003
It was considered ideal to consist of (columnar crystals 1 2 3 ). However, as described above, the priority of the (0 0 1) orientation is that the (_ 0 0 1) oriented <<_ 8 2 0 3 crystal grains are adjacent to each other in the <- 8 0 2 0 3 layer. This means that the crystal orientations are often close to each other. Therefore, "when you try to form a _ eight I 2three layers, by these grains grown in the same direction (x x 1) has orientation" consisting of columnar crystals 1 23 as described above _ eight tend丨23 crystal grains are coarse maximization. And, in general, eight I 23 grain coarsening of 〇 2020/174 754 10 卩 (:171?2019/043090
Figure imgf000012_0001
Or it may lead to welding during cutting.
[0036] 本発明者らは、 上記課題を解決するために鋭意研究を行ったところ、 (0 [0036] The present inventors have conducted diligent research in order to solve the above-mentioned problems.
0 1) 配向を有する結晶粒
Figure imgf000012_0002
(柱状晶 1 2 3) 同士の間に (0 1 1 4) 配向を有する結晶粒 1 2匕 (柱状晶 1 2匕) が所定の割合で存在す ることによって (例えば、 図 4) 、 上記柱状晶 1 2 3の粗大化が抑制されて いることを初めて見いだした。 また、 本発明者らは、 (0 0 1) 配向を 有する結晶粒 1 2 3及び (0 1 1 4) 配向を有する結晶粒 1 2匕の存在 害 0合と配向性指数との関係について検討したところ、 (〇 〇 1) 配向を 有する結晶粒 1 2 3及び (0 1 1 4) 配向を有する結晶粒 1 2匕の配向 性指数は、 (0 0 1) 配向を有する結晶粒 1 2 3及び (0 1 1 4) 配向を有する結晶粒 1 2匕存在割合 (体積比率) を反映する指標となること 、 及び上記式 (1) で表される (0 0 1 2) 面の配向性指数丁(3 (0 〇 1 2) が 4以上 8 . 5以下であり、 上記式 (2) で表される (0 1 1 4) 面の配向性指数丁〇 (0 1 1 4) が〇. 5以上 3以下であること を見いだした。 上記柱状晶 1 2 3の粗大化が抑制されていることによって、 上記切削工具は、 優れた耐摩耗性を有する。
0 1) Crystal grains with orientation
Figure imgf000012_0002
The presence of crystal grains 12 (1 column) having a (0 1 1 4) orientation between (columnar crystals 1 2 3 ) in a predetermined ratio (for example, FIG. 4) For the first time, we found that the coarsening of columnar crystals 1 2 3 was suppressed. In addition, the inventors of the present invention examined the relationship between the degree of presence of the crystal grains 1 2 3 having the (0 0 1) orientation and the crystal grains 1 2 having the (0 1 1 4) orientation and the orientation index. As a result, the orientation index of the crystal grains 1 2 3 having the (○ 0 1) orientation and the crystal grains 1 2 having the (0 1 1 4) orientation was 1 2 3 And (0 1 1 4) which is an index that reflects the presence ratio (volume ratio) of 12 crystal grains having orientation, and the orientation index of the (0 0 1 2) plane represented by the above formula (1). Ding (3 (0 1 12) is 4 or more and 8.5 or less, and the orientation index (0 1 1 4) of the (0 1 1 4) plane represented by the above formula (2) is 0. It was found that it was not less than 5 and not more than 3. Since the coarsening of the columnar crystals 1 2 3 was suppressed, the cutting tool had excellent wear resistance.
[0037] なお、 本明細書において、 結晶粒の配向性を議論する場合は、 (0 0 [0037] In the present specification, when discussing the orientation of crystal grains, (0 0
1 2) 面に対応する配向性は 「 (0 0 1) 配向」 と表現する。 (0 0 1 2) 面に対応する配向性と (0 0 1) 面に対応する配向性とは同じ であるためである。 一方、 配向性指数を議論する場合は、 「丁〇 (0 0 1 2) The orientation corresponding to the plane is expressed as “(0 0 1) orientation”. This is because the orientation corresponding to the (0 0 1 2) plane and the orientation corresponding to the (0 0 1) plane are the same. On the other hand, when discussing the orientation index, “Cho (0 0
1 2) 」 等のように当該配向性指数に対応する結晶面のミラー指数で表記す る。 1 2)”, etc., and is expressed by the Miller index of the crystal plane corresponding to the orientation index.
[0038] 上記配向性指数丁〇 (0 0 1 2) は、 例えば以下の条件で行う乂[¾口 測定によって求めることが可能である。 具体的には、 上記《—八 丨 23層に おける任意の 1点について、 X線回折測定を行い、 上記式 (1) に基づいて 求められた (0 0 1 2) 面の配向性指数を当該 八 丨 23層における 配向性指数丁〇 (0 0 1 2) とする。 ただし、 上述の 「任意の 1点」 を 〇 2020/174754 11 卩(:171?2019/043090 [0038] The above-mentioned orientation index (0 0 1 2) can be obtained by, for example, a mouth measurement performed under the following conditions. Specifically, the "- eight for丨2three layers any one point definitive to perform the X-ray diffraction measurements were obtained based on the equation (1) (0 0 1 2) plane orientation the index and the orientation index Ding 〇 (0 0 1 2) in the eight丨2three layers. However, the above "any one point" 〇 2020/174754 11 卩 (:171?2019/043090
選択するにあたり、 一見して異常値を示す点は除外する。 本実施形態におい て、 上記<¾_八 丨 2〇 3層は均 _性が高いため、 上記<¾—八 丨 2〇 3層における 複数の点について配向性指数丁 0 (0 0 1 2) を求めても、 有意差は見 られないと本発明者らは考えている。 配向性指数丁〇 (0 1 1 4) も上 記と同様の方法で求めることが可能である。 なお、 上記《—八 丨 23層上に 最表面層等が形成されている場合、 上記最表面層等を研磨して上記 八 I , 〇 3層を露出させてから、 X 口測定を行うこととする。 When selecting, exclude points that show abnormal values at first glance. Te present embodiment smell, the <because of high uniformity _ resistance ¾ _ eight丨2_Rei three layers, the <¾- eight丨2_Rei for a plurality of points in the three-layer oriented index Ding 0 (0 0 1 2) The inventors of the present invention believe that no significant difference is found even if The orientation index (0 1 1 4) can also be obtained by the same method as above. Note that the "- if eight丨23 layer on the outermost surface layer or the like is formed, the eight I by polishing the outermost layer or the like, since to expose the 〇 three layers, the X port measurement I will do it.
[0039] (X線回折測定の条件) [0039] (Conditions for X-ray diffraction measurement)
X線出力 451< , 200〇1八 X-ray output 451 <, 200 0 18
X線源、 波長
Figure imgf000013_0001
1. 54 1 862
X-ray source, wavelength
Figure imgf000013_0001
1.54 1 862
検出器 〇/ 1 e X
Figure imgf000013_0002
I V a 250
Detector 〇 / 1 e X
Figure imgf000013_0002
IV a 250
スキャン軸 20/0 Scan axis 20/0
長手制限スリッ ト幅 2. 0〇!〇! Longitudinal restriction slit width 2.0 0! 0!
スキャンモード 〇〇1\1丁 丨 1\111〇113 Scan mode 〇 〇 1 \ 1 丨 1 \ 111 〇 113
スキャンスピード 20° /〇! 1 门 Scan speed 20°/〇! 1 门
[0040] 上記配向性指数丁〇 (0 1 1 4) は、 1以上 2. 5以下であることが 好ましく、 1. 4以上 2. 4以下であることがより好ましい。 The above-mentioned orientation index (0 1 1 4) is preferably 1 or more and 2.5 or less, and more preferably 1.4 or more and 2.4 or less.
[0041] 上記配向性指数丁(3 (0 0 1 2) は、 4. 5以上 7. 5以下であるこ とが好ましく、 5. 9以上 7. 1以下であることがより好ましい。 The orientation index (3 (0 0 12)) is preferably 4.5 or more and 7.5 or less, and more preferably 5.9 or more and 7.1 or less.
[0042] 上記《_八 丨 23層は、 《_八 丨 23の結晶粒を含み、 [0042] The above "_ eight丨23 layer" includes the grain _ eight丨23,
上記《_八 丨 23の結晶粒は、 その最大粒径が 3 以下であることが好 ましく、 2 以上 3 以下であることがより好ましい。 The "_ eight丨23 crystal grains, it is favorable Mashiku its maximum particle diameter is 3 or less, more preferably 2 to 3.
[0043] 上記結晶粒の最大粒径は、 上記基材とは反対側における上記 I 203 層の界面 3から厚み方向に丫 離れた地点を通る上記界面 3に平行な仮想 平面 において求められた値である (例えば、 図 4参照) 。 ここで、 上記《 _八 I 203層が被膜の最外層である場合、 上記界面 3は被膜の表面と把握す ることができる。 丫は下記式 (3) 又は下記式 (4) によって求められる。 ここで、 式 (3) 及び式 (4) 中、 Xは上記《_八 丨 23層の厚み ( ) 〇 2020/174754 12 卩(:171?2019/043090 Maximum particle size of [0043] the crystal grains obtained in a virtual plane parallel to the interface 3 through a point distant丫in the thickness direction from the interface 3 of the I 2 0 3 layer in the opposite to the substrate Value (see, for example, Figure 4). Here, if the "_ eight I 2 0 3 layer is the outermost layer of the coating, the interface 3 may clear picture with the surface of the coating. The drop is calculated by the following equation (3) or the following equation (4). Here, equation (3) and (4), X the "_ eight丨2three layers thick () 〇 2020/174754 12 卩 (:171?2019/043090
を示す。 すなわち、 上記 Xの単位は である。 ただし、 丫の値は、 《_八 I 23層の厚みを超えることはないため、 乂>丫である。 Indicates. That is, the unit of X above is. However, the value of丫, because does not exceed the thickness of the "_ eight I 2three layers, it is say yes>丫.
耐摩耗性を発揮する観点から、 上記《— I 23層の界面付近における上 記《_八 I 23の結晶粒の最大粒径 (すなわち、 式 (4) を満たす深さ位置 丫 の地点における上記 丨 23の結晶粒の最大粒径) が重要である と本発明者らは考えている。 しかし、 上記《—八 丨 23層の厚み Xが 3 01 未満である場合、 上記式 (4) を満たす深さ位置丫 (すなわち、 1From the viewpoint of exhibiting wear resistance, the maximum grain size of the above-mentioned <<_8 I 2 0 3 crystal grains near the interface of the I 2 0 3 layer (that is, the depth position that satisfies Equation (4)) the maximum particle size at a point of the丨23 crystal grains) are considered the inventors to be critical. However, the "- eight if丨2three layers thickness X of less than 3 01, the depth position丫satisfying the above formula (4) (i.e., 1
) の地点は、 もはや上記《_八 丨 23層の界面付近とは言いがたい。 そのた め、
Figure imgf000014_0001
未満である場合、 式 (3) を満た す深さ位置丫 の地点における上記
Figure imgf000014_0002
Point) is, hard to no longer say that the vicinity of the interface between the above-mentioned "_ eight丨2three layers. for that reason,
Figure imgf000014_0001
If it is less than the above, at the point of the depth position that satisfies the formula (3),
Figure imgf000014_0002
めることとした。 Decided to
丫 =〇. 5 X (X - 1) / 2 + 0 . 5、 (乂<3) (3) 丫 = ○ 0.5 X (X-1) / 2 + 0.5, (B <3) (3)
丫= 1、 (3 £乂) (4) 丫 = 1, (3 £ 乂) (4)
[0044] 上記結晶粒の最大粒径は、 具体的には以下の手順によって作製される《_ 八 丨 23層の断面におけるカラーマップから求められる。 まず<¾—八 丨 23 層を後述の製造方法に基づき基材上に形成する。 そして、 形成された《_八 I 23層を、 基材なども含め《-八 I 23層に垂直な断面が得られるように 切断する。 すなわち、 上記界面 3の法線を含む平面で 八 I 23層を切断 した切断面が露出するように切断する。 その後、 その切断面を耐水研磨紙 ( 研磨剤として 3 丨 <3砥粒研磨剤を含むもの) で研磨する。 [0044] The maximum particle size of the crystal grains is specifically determined from the color map at "_ eight丨2three layers of the cross-section made by the following procedure. First <¾- eight丨23 layer formed on the substrate based on the production method described below. Then, "a _ eight I 2three layers, including such substrates" formed - cut to a cross-section perpendicular to obtain the eight I 2three layers. That is, the cut surface obtained by cutting the eight I 2three layers a plane including the normal line of the interface 3 is cut to expose. After that, the cut surface is polished with water-resistant abrasive paper (containing 3 <3 abrasive grains as an abrasive).
[0045] なお、 上記の切断は、 たとえば《-八 丨 23層 1 2の表面 (《-八 丨 2 0 3 層 1 2上に最表面層等他の層が形成されている場合は被膜の表面) を十分に 大きな保持用の平板上にワックス等を用いて密着固定した後、 回転刃の切断 機にてその平板に対して垂直方向に切断する (当該回転刃と当該平板とが可 能な限り垂直となるように切断する) ものとする。 この切断は、 このような 垂直方向に対して行なわれる限り、 《_八 丨 23層 1 2の任意の部位で行な うことができる。 [0045] The above cleavage, for example, "- eight丨2three layers 1 2 of surface (" - if eight丨2 0 3 layer 1 2 outermost layer such as another layer is formed thereon in The surface of the coating) is adhered and fixed on a sufficiently large flat plate using wax or the like, and then cut in a direction perpendicular to the flat plate with a rotary blade cutting machine (the rotary blade and the flat plate are Cut as vertically as possible). This cleavage such as long as performed with respect to the vertical direction, it is "_ eight丨23 layer 1 2 lines at any site of Ukoto.
[0046] また、 上記の研磨は、 上記耐水研磨紙を用いて行う (# 4 0 0、 # 8 0 0 〇 2020/174754 13 卩(:171?2019/043090 [0046] Further, the above polishing is performed using the above water-resistant abrasive paper (#400, #800). 〇2020/174754 13 卩(:171?2019/043090
、 # 1 5 0 0を順に用いて行なう) ものとする。 耐水研磨紙の番号 (#) は 、 研磨剤の粒径の違いを意味し、 番号が大きくなるほど研磨剤の粒径は小さ くなる。 , # 150 0 in order). The number (#) of water-resistant abrasive paper means the difference in particle size of the abrasive, and the larger the number, the smaller the particle size of the abrasive.
[0047] 引続き、 上記の研磨面を 「イオンによるイオンミーリング処理によりさ らに平滑化する。 イオンミーリング処理の条件は以下の通りである。 Subsequently, the above-mentioned polished surface is further smoothed by “ion milling treatment with ions. The conditions of the ion milling treatment are as follows.
加速電圧
Figure imgf000015_0001
Acceleration voltage
Figure imgf000015_0001
照射角度: 《_八 I 23層の当該界面 3の法線方向 (すなわち切断面におけ る《_八 丨 23層の厚み方向に平行となる直線方向) から 0 ° Irradiation angle "_ eight I 2three layers in the normal direction of the interface 3 (i.e. that put on the cut surface" 0 ° from _ eight丨23-layer linear direction parallel to the thickness direction of)
照射時間: 6時間。 Irradiation time: 6 hours.
[0048] 次に、 上記の平滑化処理された断面 (鏡面) を、 電子線後方散乱回折装置 (巳巳 3 0装置) を備えた電界放出型走査型電子顕微鏡 ( 巳_ 3巳!\/1) ( 製品名 : 「3 11 6 6 0 0」 、 日立ハイテクノロジーズ社製) を用いて観察し 、 得られた観察像に対して巳巳 3 0解析を行う。 上記平滑化処理された断面 を観察する位置は、 特に限定されないが、 切削特性との関係を考慮すると、 刃先部 1 〇の近傍を観察することが好ましい。 なお、 巳_ 3巳1\/1の観察倍 率は 5 0 0 0倍とする。 [0048] Next, the smoothed cross section (mirror surface) was subjected to a field emission scanning electron microscope equipped with an electron beam backscattering diffractometer (Mitsumi 30 device) (M__3!!/ 1) (Product name: "311660", manufactured by Hitachi High-Technologies Corporation) is used for observation, and the obtained observation image is analyzed by Mitsumi 300. The position for observing the above-mentioned smoothed cross section is not particularly limited, but in consideration of the relationship with cutting characteristics, it is preferable to observe the vicinity of the cutting edge portion 10. The observation magnification for Min_3_Min 1\/1 shall be 500 times.
[0049] 解析に関し、 データは、 集束電子ビームを各ピクセル上へ個 別に位置させることによって順に収集する。 サンプル面 (平滑化処理された
Figure imgf000015_0002
の法線は、 入射ビームに対して 7 0 ° 傾斜させ、 解 析は、 1 5 1< Vにて行なう。 帯電効果を避けるために、 1 0 3の圧力を印 加する。 開口径 6 0 〇1または 1 2 0 〇1と合わせて高電流モードを用いる 。 データ収集は、 断面上、 5 0 (《— 丨 23層の界面 3に平行な方向 )
Figure imgf000015_0003
(« -八 1 23層の厚み方向) の面領域 (観察領域) に相当す る 1 0 0 0 X 6 0 0ポイントについて、 〇. 0 5 /ステップにて行なう 。 このときの測定視野数は、 特に制限はなく 1視野でも差し支えない。 ただ し、 上述の観察領域を選択するにあたり、 一見して異常値を示す観察領域は 除外する。 本実施形態において、 上記《_八 丨 23層は均一性が高いため、 上記《— I 2 0 3層における複数の観察領域について上記結晶粒の最大粒径 〇 2020/174754 14 卩(:171?2019/043090
[0049] For analysis, data are collected in sequence by individually positioning a focused electron beam on each pixel. Sample surface (smoothed
Figure imgf000015_0002
The normal of is tilted at 70° to the incident beam, and the analysis is performed at 1 5 1 <V. A pressure of 10 3 is applied to avoid charging effects. Use a high current mode in combination with an aperture diameter of 600 or 120. Data collection, on the section, 5 0 ( "-丨23-layer direction parallel to the interface 3)
Figure imgf000015_0003
Conduct at 0,005/step for 1 0 0 0 X 6 00 points corresponding to the surface region (observation region) of («- 8 1 2 0 3 layer thickness direction). At this time, the number of fields of view to be measured is not particularly limited, and one field may be used. However, when selecting the above-mentioned observation areas, the observation areas that show abnormal values at first glance are excluded. In the present embodiment, since the «_ 8 2 0 3 layer has high uniformity, the maximum grain size of the crystal grains for a plurality of observation regions in the «—I 2 0 3 layer is 〇 2020/174 754 14 卩 (: 171?2019/043090
を求めても、 有意差は見られないと本発明者らは考えている。 The inventors of the present invention believe that no significant difference is found even if
[0050] 上記 E BS D解析結果を、 市販のソフトウェア (商品名 : 「o r i e n t a t i o n I m a g i n g m i c r o s c o p y Ve r 6. 2」 、 E D AX社製) を用いて分析し、 上記カラーマップを作成する。 具体的には 、 まず a_A I 23層 1 2の断面に含まれる各結晶粒の結晶方位を特定する 。 ここで特定される各結晶粒の結晶方位は、 a-A I 23層 1 2の断面に現 れる各結晶粒を、 当該断面の法線方向 (図 4において紙面を貫く方向) から 平面視したときに観察される結晶方位である。 そして、 得られた各結晶粒の 結晶方位に基づいて、 a-A I 23層 1 2の界面 S (すなわち、 上記基材と は反対側における上記 A I 23層の界面 S) の法線方向における各結晶 粒の方位を特定する。 そして、 特定された結晶方位に基づいてカラーマップ を作成する。 作成されたカラーマップにおいて、 各結晶粒の粒界が判別可能 となる。 該カラーマップの作成には、 上記ソフトウェアに含まれる 「C r i s t a I D i r e c t i o n MA P」 の手法を用いることができる。 な お、 カラーマップは切断面に観察される a-A 丨 23層 1 2の厚さ方向の全 域に亙って作成される。 また本実施形態において、 上記 a— A 丨 23層 1 2 の界面 Sは、 上記カラーマップにおける上記基材の主面の法線方向において 、 上記基材とは反対側における上記基材に最も遠い点を通り且つ上記基材の 主面に平行な直線と、 上記基材とは反対側における上記基材に最も近い点を 通り且つ上記基材の主面に平行な直線との中心を通る直線である。 ただし、 上述の 「基材に最も近い点」 及び 「基材に最も遠い点」 を選択するにあたり 、 一見して異常点と思われる点は除外する。 [0050] The above EBS D analysis result is analyzed using commercially available software (trade name: "orientation I magingmicroscopy Ver 6.2", manufactured by ED AX) to create the above color map. Specifically, first to identify the crystal orientation of the crystal grains contained in the cross-section of A_A I 2three layers 1 2. The crystal orientation of each crystal grain specified here is a plan view of each crystal grain appearing in the cross section of the aA I 2 O 3 layer 12 from the direction normal to the cross section (direction penetrating the paper in Fig. 4). This is the crystal orientation sometimes observed. Then, based on the crystallographic orientations of the obtained crystal grains, the normal line of the interface S of the aA I 2 O 3 layer 12 (that is, the interface S of the AI 2 O 3 layer on the opposite side of the base material). The orientation of each crystal grain in the direction is specified. Then, a color map is created based on the specified crystal orientation. In the created color map, the grain boundaries of each crystal grain can be identified. The method of "C rista ID irection MAP" included in the above software can be used to create the color map. The color map is created over the entire area in the thickness direction of the aA 2 0 3 layer 1 2 observed on the cut surface. In addition, in the present embodiment, the interface S of the a-A 丨2 0 3 layer 12 is in the base material on the side opposite to the base material in the direction normal to the main surface of the base material in the color map. The center of a straight line passing through the farthest point and parallel to the main surface of the base material and a straight line passing through the closest point to the base material on the opposite side of the base material and parallel to the main surface of the base material It is a straight line that passes through. However, when selecting the “point closest to the base material” and the “point farthest from the base material” mentioned above, points that seem to be abnormal at first glance are excluded.
[0051] 図 4は、 本実施形態の a_A I 23層における組織構造を示す模式断面図 であるが、 上記 a— A 丨 23層の断面に基づいて作成されたカラーマップと 把握することもできる。 図 4においては、 結晶粒 1 2 a (柱状晶 1 2 a) が (0 0 1) 配向を有する結晶粒を示し、 結晶粒 1 2 b (柱状晶 1 2 b) が (0 1 1 4) 配向を有する結晶粒を示す。 [0051] Fig. 4 is a schematic cross-sectional view showing the tissue structure in the a_A I 2 0 3 layer of the present embodiment. It is understood as a color map created based on the cross section of the a-A 2 0 3 layer. You can also do it. In FIG. 4, crystal grains 12 a (columnar crystals 12 a) show crystal grains having a (0 0 1) orientation, and crystal grains 12 b (columnar crystals 12 b) are (0 1 1 4) A crystal grain having an orientation is shown.
[0052] そして本実施形態の上記結晶粒の粒径は、 上記カラーマップにおいて、 上 〇 2020/174754 15 卩(:171?2019/043090 [0052] The grain size of the crystal grains of the present embodiment is 〇2020/174754 15 卩(:171?2019/043090
記仮想平面?を示す直線と結晶粒の外周 (粒界) とが交差する二点間の距離 として求められる。 このような方法によって、 測定視野において存在するす ベての結晶粒について粒径を求め、 これらの中の最大粒径を求める。 求めら れた最大粒径を 「《_ I 23の結晶粒の最大粒径」 とする。 Virtual plane? Is obtained as the distance between two points where the straight line and the outer circumference (grain boundary) of the crystal grain intersect. By such a method, the grain sizes of all the crystal grains existing in the measurement visual field are determined, and the maximum grain size among these is determined. The maximum particle size it was asked to "maximum particle size of the" _ I 23 of grain ".
[0053] (中間層) [0053] (Intermediate layer)
上記被膜は、 上記基材と上記 I 23層との間に設けられている中間 層を更に含むことが好ましい。 上記中間層は、 構成元素としてチタン (丁 1 ) を含む炭酸化物、 炭窒酸化物又は硼窒化物を含むことが好ましい。 これに より、 被膜の
Figure imgf000017_0001
耐摩耗性の向上が効果的に 得られる。 本実施形態の一側面において、 上記中間層は、 構成元素として丁 I を含む炭酸化物、 炭窒酸化物及び硼窒化物からなる群より選ばれる 1種の 化合物からなることが好ましい。 すなわち、 上記中間層は、 丁 丨 〇〇、 丁 I 〇1\1〇又は丁 丨 巳 1\1で表される化合物からなることが好ましい。 上記中間層 は、 丁 丨 〇1\1〇層 (丁 丨 〇 1\1〇で表される化合物からなる層) であることが 好ましい。
The coating preferably further comprises an intermediate layer provided between the substrate and the I 2three layers. The intermediate layer preferably contains a carbonate, a carbonitride oxide, or a boron nitride containing titanium (1) as a constituent element. As a result,
Figure imgf000017_0001
The improvement of wear resistance is effectively obtained. In one aspect of the present embodiment, the intermediate layer is preferably made of one compound selected from the group consisting of carbonates, carbonitride oxides, and boronitrides containing D as a constituent element. That is, it is preferable that the above-mentioned intermediate layer is made of a compound represented by _, _, _, I/\, or 1/\. It is preferable that the intermediate layer is a layer of a layer of 1×10 (a layer made of a compound represented by a layer of 1×10).
[0054] 上記中間層は、 本実施形態に係る切削工具が奏する効果を損なわない範囲 において、 不可避不純物が含まれていてもよい。 [0054] The intermediate layer may contain inevitable impurities as long as the effect of the cutting tool according to the present embodiment is not impaired.
[0055] 上記中間層は、 その厚みが 2 以下であることが好ましく、 〇. 5 以上 1 . 5 以下であることがより好ましい。 当該厚みは、 例えば、 上述 したような上記切削工具の断面を光学顕微鏡を用いて倍率 1 0 0 0倍で測定 することで測定可能である。 [0055] The thickness of the intermediate layer is preferably 2 or less, and more preferably 0.5 or more and 1.5 or less. The thickness can be measured, for example, by measuring a cross section of the above-described cutting tool with an optical microscope at a magnification of 100 times.
[0056] (最表面層) [0056] (Outermost layer)
上記被膜は、
Figure imgf000017_0002
The coating is
Figure imgf000017_0002
ことが好ましい。 このようにすることで耐摩耗性に加えて、 被膜の識別性に 優れる切削工具となる。 上記最表面層は、 丁 丨 〇、 丁 丨 1\1又は丁 丨 〇1\1で表 される化合物からなることが好ましい。 上記最表面層が丁 丨 (3、 丁 丨 1\1又は 丁 丨 〇1\1で表される化合物からなることによって、 被膜の靱性が向上する。 It is preferable. By doing so, in addition to wear resistance, the cutting tool has excellent discriminating properties of the coating. It is preferable that the outermost surface layer is made of a compound represented by TOKYO TEN, TONE 1\1 or TET TEN 1\1. The toughness of the coating is improved when the outermost surface layer is made of the compound represented by the formula (3, T. 1\1 or T. O. 1\1).
[0057] 上記最表面層は、 本実施形態に係る切削工具が奏する効果を損なわない範 〇 2020/174754 16 卩(:171?2019/043090 The outermost surface layer does not impair the effects of the cutting tool according to this embodiment. 〇2020/174754 16 卩(:171?2019/043090
囲において、 不可避不純物が含まれていてもよい。 In the enclosure, inevitable impurities may be contained.
[0058] 上記最表面層は、 その厚みが〇. 1 以上 2 〇!以下であることが好ま しく、 〇. 3 〇!以上 0 . 6 〇!以下であることがより好ましい。 当該厚み は、 例えば、 上述したような上記切削工具の断面を光学顕微鏡を用いて倍率 1 0 0 0倍で測定することで測定可能である。 [0058] The outermost surface layer preferably has a thickness of not less than 0.1 and not more than 20!, more preferably not less than 0.30! and not more than 0.6!!. The thickness can be measured, for example, by measuring the cross section of the cutting tool as described above with an optical microscope at a magnification of 100 times.
[0059] (他の層) [0059] (Other layer)
本実施形態の効果を損なわない範囲において、 上記被膜は他の層を更に含 んでいてもよい。 他の層としては例えば、 上記基材の直上に設けられている 下地層、 及び上記下地層と上記中間層との間に設けられている硬質層等が挙 げられる。 上記硬質層は、 上記中間層と組成が異なっていてもよい。 上記被 膜は、 上記下地層を含むことによって上記基材に対する密着性が向上する。 上記下地層としては、 例えば丁 丨 1\!からなる層が挙げられる。 上記被膜は、 上記硬質層を含むことによって耐摩耗性が更に向上する。 上記硬質層として は、 例えば、 丁 丨 〇1\1からなる層が挙げられる。 The coating may further contain other layers as long as the effects of the present embodiment are not impaired. Examples of the other layer include a base layer provided directly on the base material, and a hard layer provided between the base layer and the intermediate layer. The hard layer may have a composition different from that of the intermediate layer. By including the underlayer, the film is improved in adhesion to the substrate. As the above-mentioned underlayer, for example, a layer made of Ting 1\! The wear resistance of the coating film is further improved by including the hard layer. The hard layer may be, for example, a layer made of Tengai 0\1.
[0060] 《表面被覆切削工具の製造方法》 [0060] <<Method for manufacturing surface-coated cutting tool>>
本実施形態に係る切削工具の製造方法は、 The manufacturing method of the cutting tool according to the present embodiment,
上記切削工具の製造方法であって、 A method of manufacturing the above cutting tool,
上記基材を準備する工程 (以下、 「第一工程」 という) と、 A step of preparing the base material (hereinafter, referred to as “first step”),
上記基材上に《_八 丨 23の核を生成する工程 (以下、 「第二工程」 とい ぅ) と、 Generating a "_ eight丨23 nuclei on the substrate (hereinafter," second-step "gutter U) and,
上記《_八 丨 23の核から《_八 丨 23の結晶を成長させる工程 (以下、 「第三工程」 という) とを含み、 The "_ eight丨2 〇 from 3 nuclei" _ eight丨2third step of growing a crystal (hereinafter, referred to as "third step") and a,
上記第二工程は、 化学気相蒸着法により実行され、 1\1 2ガスを含む原料ガス を供給することを含む。 以下、 各工程について説明する。 The second step is performed by a chemical vapor deposition method comprises feeding a raw material gas containing 1 \ 1 2 gas. Hereinafter, each step will be described.
[0061 ] <第_工程> [0061] <Process _>
第一工程では、 上記基材を準備する。 上記基材としては、 上述したように この種の基材として従来公知のものであればいずれのものも使用することが できる。 上記基材を準備する方法としては、 市販品を購入してもよいし、 原 〇 2020/174754 17 卩(:171?2019/043090 In the first step, the base material is prepared. As the above-mentioned substrate, any substrate can be used as long as it is a conventionally known substrate of this type as described above. As a method for preparing the above-mentioned base material, a commercially available product may be purchased, or 〇 2020/174 754 17 卩 (:171?2019/043090
料から製造してもよい。 例えば、 上記基材が超硬合金からなる場合、 後述す る実施例に記載の配合組成 (質量%) からなる原料粉末を市販のアトライタ 一を用いて均一に混合して、 続いてこの混合粉末を所定の形状 (例えば、 住 友電エハードメタル株式会社製の型番
Figure imgf000019_0001
に加 圧成形した後に、 所定の焼結炉において 1 3 0 0〜 1 5 0 0 °〇以下で、 1〜
It may be manufactured from raw materials. For example, when the above-mentioned base material is made of cemented carbide, raw material powders having the compounding composition (mass %) described in the examples below are uniformly mixed using a commercially available attritor, and then this mixed powder is used. A predetermined shape (for example, model number manufactured by Sumitomo Electric Ehard Metal Co., Ltd.
Figure imgf000019_0001
The after pressure molding, at 1 3 0 0~ 1 5 0 0 ° 〇 less at a given sintering furnace, 1
2時間焼結することにより、 超硬合金からなる上記基材を得ることができる 〇 なお、 上述の
Figure imgf000019_0002
は、 旋削用の刃先交換型 切削チップの形状である (例えば、 図 1参照) 。
The above base material made of cemented carbide can be obtained by sintering for 2 hours.
Figure imgf000019_0002
Is the shape of an exchangeable cutting tip for turning (see, for example, Figure 1).
[0062] <第二工程 > [0062] <Second step>
第二工程では、 上記基材上に
Figure imgf000019_0003
上記第二工程 は、 化学気相蒸着法により実行され、 N 2ガスを含む原料ガスを供給すること を含む。
In the second step, on the above substrate
Figure imgf000019_0003
The second step is performed by a chemical vapor deposition method and includes supplying a source gas containing N 2 gas.
[0063] ここで、 「基材上に
Figure imgf000019_0004
とは、 上記基材の上側 に《_八 丨 23の核が生成されていればよい。 言い換えると、 《_八 丨 23 の核は、 上記基材の直上に生成されていてもよいし、 下地層、 硬質層、 中間 層等の他の層を介して上記基材の上に生成されてもよい。
[0063] Here, "on the substrate
Figure imgf000019_0004
And is on the upper side of the substrate "_ eight丨23 nuclei has only to be generated. In other words, "_ eight丨23 nuclei may be generated just above the base material, the base layer, the hard layer, through other layers such as intermediate layers on said substrate It may be generated.
[0064] 上記基材上
Figure imgf000019_0005
化学気相蒸着法 (〇 口法) により実行され、 1\1 2ガスを含む原料ガスを供給することによって、 《 _八 I 23の核を生成する。 すなわち、 上記第二工程は、 化学気相蒸着法に より実行され、 1\1 2ガスを含む原料ガスを供給することを含む。 ここで、 第二 工程における 「原料ガス」 とは、 《_八 I 23の核を生成するための原料ガ スを局、味する。
[0064] On the base material
Figure imgf000019_0005
It is performed by a chemical vapor deposition (〇 necked method), by supplying raw material gas including 1 \ 1 2 gas, to produce a "_ eight I 23 nuclei. That is, the second step, more runs in a chemical vapor deposition method comprises feeding a raw material gas containing 1 \ 1 2 gas. Here, the "raw material gas" in the second step, the raw material gas to produce a "_ eight I 23 nuclear stations, to taste.
従来、 被膜の《_八 I 23層以外の層において窒化物を生成する目的で 1\1 2 ガスが使われていた。 しかし、 《_八 I 23層の配向性を制御する目的で、 上記基材上に
Figure imgf000019_0006
Conventionally, 1 \ 1 2 gas was used for the purpose of forming nitrides in "_ eight I 23 except layer a layer of the coating. However, for the purpose of controlling the orientation of the "_ eight I 2three layers, on to the substrate
Figure imgf000019_0006
だしたのは本発明者らが初めてである。 上述の 1\1 2ガスは、 生成相である
Figure imgf000019_0007
八 I 23の核の組成に変化を与えないことから、 触媒として作用していると 本発明者らは考えている。 〇 2020/174754 18 卩(:171?2019/043090
This is the first time that the present inventors have done so. 1 \ 1 2 gas described above is the production phase
Figure imgf000019_0007
Because it does not give a change in the composition of the eight I 23 nuclei, the present inventors acting as a catalyst is considered. 〇 2020/174 754 18 卩 (: 171?2019/043090
[0065] 具体的には、 まず原料ガスとして〇〇2、 1\12、 1~1〇 丨、 八 丨 〇 丨 3、 N23 及び!· 12を用いる。 配合量は、 例えば、 〇〇2を〇. 5〜 2体積%、 1\12を 2〜 1 5体積%、 1~1〇 I を〇. 5〜 4体積%、 八 I 〇 I 3を 5〜 1 3体積%、 1~12 3を〇. 1〜 3体積%とし、 残部は
Figure imgf000020_0001
とすることが挙げられる。
[0065] Specifically, first hundred 2 as a source gas, 1 \ 1 2, 1-1_Rei丨, eight丨〇丨3, N 2 3 and? - 1 2 is used. The amount is, for example, a hundred 2 〇. 5-2 vol%, a 1 \ 1 2 2-1 5 vol%, 1 to 1_Rei I 〇. 5-4 vol%, the eight I 〇 I 3 5 to 13% by volume, 1 to 1 2 3 are set to 0.1 to 3% by volume, and the balance is
Figure imgf000020_0001
And the like.
[0066] 第二工程における反応中の反応容器内の温度は、 970°〇~ 1 030°〇で あることが好ましい。 [0066] The temperature in the reaction vessel during the reaction in the second step is preferably 970 ° to 1030 ° .
[0067] 第二工程における反応中の反応容器内の圧力は、 80 3〜 1 50 ^ 9 [0067] The pressure in the reaction vessel during the reaction in the second step was 80 3 to 150 ^ 9
3であることが好ましい。 It is preferably 3.
[0068] 第二工程における反応中の総ガス流量は、 301_/〇1 丨 n~ 1 00 !_/〇! [0068] The total gas flow rate during the reaction in the second step was 301_/○ 1 丨n~ 1 00 !_/○!
I 门であることが好ましい。 It is preferably I.
第二工程における反応時間は、 2分間〜 60分間であることが好ましく、 The reaction time in the second step is preferably 2 minutes to 60 minutes,
5分間〜 40分間であることがより好ましい。 It is more preferably 5 minutes to 40 minutes.
[0069] <第三工程> [0069] <Third step>
第三工程では、 上記<¾_八 丨 23の核から(¾_八 丨 2〇 3の結晶を成長させ る。 上記《_八 丨 23の核から《_八 丨 23の結晶を成長させる方法は、 〇 〇法により実行される。 In the third step, the above-mentioned <¾_ eight丨2 from 〇 3 of the nucleus (¾_ eight丨2_Rei 3 of the crystal Ru grown. Above "_ eight丨2 〇 from 3 nuclear" _ eight丨23 The method for growing the crystal of is carried out by the XX method.
[0070] 具体的には、 まず原料ガスとして〇〇2、 1~1〇 丨、 八 丨 〇 丨 3
Figure imgf000020_0002
[0070] Specifically, first, as a raw material gas, 〇 〇 2 , 1 to 100 丨, 8 丨 〇 丨3 ,
Figure imgf000020_0002
2を用いる。 配合量は、 例えば、 〇〇2を〇. 5〜 3体積%、 1~1〇 丨 を 4〜 6 体積%、 八 I 〇 I 3を 5〜 1 3体積%、
Figure imgf000020_0003
1〜 3体積%とし、 残部 は!· 12とすることが挙げられる。
Use 2. The amount is, for example, a hundred 2 〇. 5-3 vol%, 1 to 1_Rei丨a 4-6% by volume, the eight I 〇 I 3. 5 to 1 3 vol%,
Figure imgf000020_0003
1 to 3% by volume, and the balance is !· 1 2 .
[0071] 第三工程における反応中の反応容器内の温度は、 950°〇~ 1 050°〇で あることが好ましい。 [0071] The temperature in the reaction container during the reaction in the third step is preferably 950° to 1050°.
[0072] 第三工程における反応中の反応容器内の圧力は、 1 0 3〜 80 3 であることが好ましい。 The pressure inside the reaction vessel during the reaction in the third step is preferably 10 3 to 80 3 .
[0073] 第三工程における反応中の総ガス流量は、 301_/〇1 丨 n~ 1 00 !_/〇! [0073] The total gas flow rate during the reaction in the third step was 301_/〇 1 丨n~ 100 00 _/〇!
I 门であることが好ましい。 It is preferably I.
第三工程における反応時間は、 成膜する
Figure imgf000020_0004
The reaction time in the third step is film formation
Figure imgf000020_0004
宜変更することが可能である。 〇 2020/174754 19 卩(:171?2019/043090 It can be changed as appropriate. 〇 2020/174 754 19 卩 (: 171?2019/043090
[0074] <その他の工程 > [0074] <Other processes>
本実施形態に係る製造方法では、 上述した工程の他にも、 本実施形態の効 果を損なわない範囲で他の工程を適宜行ってもよい。 In the manufacturing method according to the present embodiment, in addition to the above-described steps, other steps may be appropriately performed within a range that does not impair the effects of the present embodiment.
[0075] 本実施形態では上記第二工程の前に、 上記基材上に下地層、 硬質層又は中 間層を形成する工程を含んでいてもよい。 本実施形態では、 上記第三工程の 後に、
Figure imgf000021_0001
[0075] In the present embodiment, before the second step, a step of forming an underlayer, a hard layer or an intermediate layer on the base material may be included. In the present embodiment, after the third step,
Figure imgf000021_0001
[0076] 上述の下地層、 硬質層、 中間層又は最表面層を形成する場合、 従来の方法 によってそれそれの層を形成してもよい。 [0076] When the underlayer, the hard layer, the intermediate layer or the outermost surface layer described above is formed, the layers may be formed by a conventional method.
[0077] 以上の説明は、 以下に付記する特徴を含む。 [0077] The above description includes the features described below.
(付記 1) (Appendix 1)
基材と、 前記基材を被覆する被膜とを備える表面被覆切削工具であって、 前記被膜は、 《_八 丨 23層を含み、 A surface-coated cutting tool comprising a substrate and a coating covering said substrate, said coating comprises a "_ eight丨2three layers,
前記《_八 丨 23層において、 In the "_ eight丨2three layers,
下記式 (1) で表される (0 0 1 2) 面の配向性指数丁(3 (0 0 The orientation index of the (0 0 1 2) plane represented by the following equation (1) (3 (0 0
1 2) が 4以上 8 . 5以下であり、 1 2) is 4 or more and 8.5 or less,
下記式 (2) で表される (0 1 1 4) 面の配向性指数丁(3 (0 1 1 4) が〇. 5以上 3以下であり、 The orientation index of the (0 1 1 4) plane (3 (0 1 1 4)) represented by the following formula (2) is ≧0.5 and is 3 or less,
前記配向性指数丁(3 (0 0 1 2) と前記配向性指数丁 0 (0 1 1 The orientation index (3 (0 0 1 2)) and the orientation index 0 (0 1 1
4) との合計が 9以下である、 表面被覆切削工具。 4) Surface coated cutting tools with a total of 9 and less.
[数 3] [Number 3]
Figure imgf000021_0002
Figure imgf000021_0002
(式 (1) 及び式 (2) 中、 I (11
Figure imgf000021_0003
I) 面におい て X 口測定されたときに求められる X線回折強度を示し、 20/174754 20 卩(:171?2019/043090
(In formula (1) and formula (2), I (11
Figure imgf000021_0003
I) Shows the X-ray diffraction intensity obtained when the X-port is measured on the surface, 20/174754 20 卩 (: 171?2019/043090
1 。 ( 1< I) は、 」〇 03力ードの 01 0— 01 73に示されてい る《—八 丨 23の 1< 丨) 面における標準強度を示し、 1. (1<I) is the standard strength on the 《-8 丨23 1< 丨) plane as shown in 01 0—01 73 of ◯ 03 force,
(11 1< I) 面は、 (0 1 2) 面、 (1 0 4) 面、 (1 1 (11 1 <I) planes are (0 1 2) planes, (1 0 4) planes, (1 1
0) 面、 (1 1 3) 面、 (0 2 4) 面、 (1 1 6) 面、 (30) plane, (1 1 3) plane, (0 2 4) plane, (1 1 6) plane, (3
0 0) 面、 (0 0 1 2) 面及び (0 1 1 4) 面の 9面のいずれか を示す。 ) Indicates either the (0 0) plane, the (0 0 1 2) plane, or the (0 1 1 4) plane. )
(付記 2) (Appendix 2)
前記《-八 I 23層は、 《-八 I 23の結晶粒を含み、 The "- eight I 23 layer" - includes a grain eight I 23,
前記《_八 丨 23の結晶粒は、 その最大粒径が 3 以下であり、 前記結晶粒の最大粒径は、 前記基材とは反対側における前記
Figure imgf000022_0001
I 203 層の界面から厚み方向に丫 離れた地点を通る前記界面に平行な仮想平面 において求められた値であり、
The "_ eight丨23 crystal grains, the maximum particle diameter of 3 or less, the maximum grain size of the crystal grains, the at side opposite to the substrate
Figure imgf000022_0001
It is a value obtained in an imaginary plane parallel to the interface passing through a point distant from the interface of the I 2 0 3 layer in the thickness direction,
前記丫は下記式 (3) 又は下記式 (4) によって求められる、 付記 1 に記 載の表面被覆切削工具。 The surface coating cutting tool described in Appendix 1 is obtained by the following equation (3) or the following equation (4).
丫 =〇. 5 X (X- 1) /2 + 0. 5 (乂<3) (3) 丫 = ○ 0.5 X (X-1) / 2 + 0.5 (乂<3) (3)
丫= 1 (3£乂) (4) 丫 = 1 (3 £) (4)
(式 (3) 及び式 (4) 中、 Xは前記《_八 丨 23層の厚み ( ) を示す 。 ただし、 乂>丫である。 ) (In the formulas (3) and (4), X represents the thickness () of the above-mentioned _ _ 8 2 0 3 layer.
(付記 3) (Appendix 3)
前記配向性指数丁(3 (0 1 1 4) は、 1以上 2. 5以下である、 付記 1又は付記 2に記載の表面被覆切削工具。 The surface-coated cutting tool according to Appendix 1 or 2, wherein the orientation index (3 (0 1 1 4) is 1 or more and 2.5 or less.
(付記 4) (Appendix 4)
前記《_八 丨 2〇 3層は、 その厚みが 1 以上 1 〇 以下である、 付記 1〜付記 3のいずれかに記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of appendices 1 to 3, wherein the thickness of the «_ eight-third layer is 1 or more and 10 or less.
(付記 5) (Appendix 5)
前記被膜は、 前記基材と前記 I 23層との間に設けられている中間 層を更に含み、 The coating further includes an intermediate layer provided between the substrate and the I 2 O 3 layer,
前記中間層は、 構成元素として丁 丨 を含む炭酸化物、 炭窒酸化物又は硼窒 〇 2020/174754 21 卩(:171?2019/043090 The intermediate layer is composed of a carbonate, a carbonitride oxide, or a nitrous oxide containing gallium as a constituent element. 〇 2020/174754 21 卩 (:171?2019/043090
化物を含む、 付記 1〜付記 4のいずれかに記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of appendices 1 to 4, including a compound.
(付記 6) (Appendix 6)
前記被膜は、 その厚みが 1 以上 3〇 以下である、 付記 1〜付記 5 のいずれかに記載の表面被覆切削工具。 The surface coating cutting tool according to any one of appendices 1 to 5, wherein the coating has a thickness of 1 or more and 30 or less.
(付記 7) (Appendix 7)
前記被膜は、
Figure imgf000023_0001
The coating is
Figure imgf000023_0001
、 付記 1〜付記 6のいずれかに記載の表面被覆切削工具。 , The surface-coated cutting tool according to any one of Appendix 1 to Appendix 6.
実施例 Example
[0078] 以下、 実施例を挙げて本発明を詳細に説明するが、 本発明はこれらに限定 されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0079] 《切削工具の作製》 [0079] <<Preparation of cutting tool>>
<基材の準備> <Preparation of substrate>
まず、 第一工程として、 被膜で被覆する基材を準備した。 具体的には、 以 下の配合組成 (質量%) からなる原料粉末を、 市販のアトライターを用いて 均一に混合して混合粉末を得た。 First, as a first step, a base material to be coated with a coating film was prepared. Specifically, raw material powders having the following composition (mass %) were uniformly mixed using a commercially available attritor to obtain mixed powders.
原料粉末の配合組成 Composition of raw powder
〇〇 7質量% 〇 〇 7 mass%
〇 r3C2 0. 5質量% 〇 r 3 C 2 0.5 mass%
1\1匕〇 3. 5質量% 1\1 cup ○ 3.5% by mass
3〇 1. 0質量% Ding 3 ○ 1.0 mass%
残部 Balance
[0080] 次に、 この混合粉末を所定の形状 (住友電エハードメタル株式会社製の型 番〇 1\/1〇 1 204081\1_11乂) に加圧成形した後に、 得られた成形体を 焼結炉に入れて 1 300〜 1 500°〇で 1〜 2時間焼結することにより、 超 硬合金からなる基材を得た。
Figure imgf000023_0002
204081\1-11乂」 は、 旋削用 の刃先交換型切削チップの形状である。
[0080] Next, this mixed powder was pressure-molded into a predetermined shape (model number 〇 1\/1 〇 1 204081\1_11 manufactured by Sumitomo Electric Hardmetal Co., Ltd.), and the obtained compact was formed. A substrate made of cemented carbide was obtained by placing it in a sintering furnace and sintering it at 1300 to 1500 ° for 1-2 hours.
Figure imgf000023_0002
"204081\1-11" is the shape of a cutting edge exchange type cutting tip for turning.
[0081] <被膜の形成> <Formation of coating>
基材の表面上に、 表 4に示される下地層、 硬質層、 中間層、 《-八 I 23 〇 2020/174754 22 卩(:171?2019/043090 On the surface of the base material, the underlayer, the hard layer, the intermediate layer, and 《-VIII I 23 shown in Table 4 were used. 〇 2020/174 754 22 卩 (: 171?2019/043090
層及び最表面層をこの順に形成することによって、 基材の表面上に被膜を形 成した。 以下、 被膜を構成する各層の作製方法について説明する。 A film was formed on the surface of the substrate by forming the layer and the outermost layer in this order. The method for producing each layer constituting the coating film will be described below.
[0082] (下地層、 硬質層及び中間層の形成) (Formation of Underlayer, Hard Layer, and Intermediate Layer)
表 1 に記載の成膜条件のもとで、 表 1 に記載の組成を有する反応ガスを、 基材の表面上に噴出して下地層、 硬質層及び中間層をこの順に形成した。 Under the film forming conditions shown in Table 1, a reaction gas having the composition shown in Table 1 was jetted onto the surface of the base material to form an underlayer, a hard layer and an intermediate layer in this order.
[0083] [表 1 ] [0083] [Table 1]
Figure imgf000024_0003
Figure imgf000024_0003
[0084] (« _八 I 23層の形成) [0084] («_ eight I 2 0 3 layer formation)
炉内圧力 1 0 0 3、 反応温度 1 0 0 0 °〇、 ガス流量
Figure imgf000024_0001
nの 成膜条件のもとで、 表 2に記載の組成を有する反応ガスを、 表 2に記載の時 間で中間層の表面上に噴出
Figure imgf000024_0002
(第二工程) 。 なお、 試料 N 0 . 1 0では、 上記第二工程に対応する処理を行わなかった。
Furnace pressure 100 3, reaction temperature 100 0 ° 〇, gas flow rate
Figure imgf000024_0001
Under the film forming conditions of n, the reaction gas having the composition shown in Table 2 is jetted onto the surface of the intermediate layer at the time shown in Table 2.
Figure imgf000024_0002
(Second step). In addition, in the sample N 0.10, the treatment corresponding to the second step was not performed.
[0085] [0085]
〇 2020/174754 23 卩(:171?2019/043090 〇 2020/174754 23 卩(: 171?2019/043090
[表 2] [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0086] 次に、 炉内圧力 3 5 3、 反応温度 1 0 0 0 °〇、 ガス流量 7 0 1_ /〇1 丨 门の成膜条件のもとで、 以下に示す組成を有する反応ガスを、 中間層上にあ る上記《—八 丨 23の核に噴出して、 《—八 丨 23の結晶を成長させた (第 三工程) 。 以上の手順によって、 《_八 丨 23層を形成した。 [0086] Next, a reaction gas having the composition shown below was formed under the film forming conditions of a furnace pressure of 353, a reaction temperature of 100 000 °, and a gas flow rate of 7 01 _ / 〇 1 门. , the intermediate layer near Ru said "- and ejected on the eighth丨23 nuclei" - were grown viii丨23 crystals (third step). By the above procedure, to form a "_ eight丨2three layers.
第三工程における反応ガス組成 Reaction gas composition in the third step
〇〇2 : 2体積% 〇 〇 2 : 2% by volume
1~1〇 1 : 2体積% 1 to 10 1 :2 volume%
八 I (3 I 3 : 1 0体積% Eight I (3 I 3 : 10% by volume
N 2 3 : 〇. 5体積% N 2 3:. 〇 5 vol%
1~1 2 :残り 1 ~ 1 2 :Remaining
[0087] (最表面層の形成) (Formation of outermost surface layer)
表 3に記載の成膜条件のもとで、 表 3に記載の組成を有する反応ガスを、 〇 2020/174754 24 卩(:171?2019/043090 Under the film forming conditions shown in Table 3, the reaction gas having the composition shown in Table 3 was added. 〇 2020/174754 24 卩 (:171?2019/043090
a— A \ 23層の表面上に噴出して最表面層を形成した。 a- A \ 2 0 It spouted on the surface of 3 layers and formed the outermost layer.
[0088] [表 3] [0088] [Table 3]
Figure imgf000026_0003
Figure imgf000026_0003
[0089] 以上の手順で試料 N 0. 1〜 1 0の切削工具を作製した。 試料 1\!〇. 1〜 [0089] The cutting tools of Samples N 0.1 to 10 were manufactured by the above procedure. Sample 1\!〇.1〜
6の切削工具が実施例に対応する。 試料 N 0. 7〜 1 0の切削工具が比較例 に対応する。 Six cutting tools correspond to the examples. The cutting tools of sample N 0.7 to 10 correspond to the comparative example.
[0090] 《切削工具の特性評価》 [0090] <<Evaluation of cutting tool characteristics>>
<配向性指数の測定> <Measurement of orientation index>
上記のようにして作製した試料 1\1〇. 1〜 1 0の切削工具を用いて、 X線 回折測定によって各切削工具の《— 丨 23層における各配向面の配向性指 数を測定した。 測定は以下の条件で行った。 まず、 上記《-八 丨 23層上形 成されている最表面層を研磨して上記 八 I 23層を露出させた。 次に《 _八 I 23層における任意の 1点を X線回折測定して各配向面の配向性指数 を求めた。 配向性指数丁 (3 (0 0 1 2) 及び配向性指数丁 (3 (0 1. Above manner Sample 1 \ 1_Rei produced 1 with 1 0 cutting tool, each cutting tool by X-ray diffraction measurement "-丨2 〇 number orientation finger of each orientation plane in the three-layer It was measured. The measurement was performed under the following conditions. First, the "- polished viii丨23 layer form made is the outermost layer and to expose the eight I 2three layers. Then "one arbitrary point in _ eight I 2three layers were measured X-ray diffraction seek orientation index of each orientation plane. Orientation index ( 3 (0 0 1 2) and orientation index ( 3 (0 1
1 4) に着目した結果を表 2に示す。 なお、 上記《—八 丨 23層における複 数の点について配向性指数丁 0 (0 0 1 2) 及び配向性指数丁 (3 (0Table 2 shows the results focusing on 14). Note that the "- eight丨2 〇 for the points multiple of three layers orientation index Ding 0 (0 0 1 2) and the alignment index Ding (3 (0
1 1 4) を求めたが、 有意差は認められなかった。 1 1 4) was calculated, but no significant difference was found.
[0091] (X線回折測定の条件) [0091] (Conditions for X-ray diffraction measurement)
X線出力 451< , 200〇1八 X-ray output 451 <, 200 0 18
X線源、 波長
Figure imgf000026_0001
1. 54 1 862
X-ray source, wavelength
Figure imgf000026_0001
1.54 1 862
検出器 〇/ 1 e X
Figure imgf000026_0002
I V a 250
Detector 〇 / 1 e X
Figure imgf000026_0002
IV a 250
スキヤン軸 26/6 Skiyan axis 26/6
長手制限スリッ ト幅 2. 00101 Longitudinal limit slit width 2.00 101
スキャンモード 〇〇1\1丁 丨 1\111〇113 Scan mode 〇 〇 1 \ 1 丨 1 \ 111 〇 113
スキヤンスピード 20° /〇! 1 门 Sukiyan speed 20°/〇! 1 门
[0092] <被膜等の厚さの測定> 〇 2020/174754 25 卩(:171?2019/043090 [Measurement of thickness of coating film, etc.] 〇 2020/174 754 25 卩 (: 171?2019/043090
被膜、 並びに、 当該被膜を構成する下地層、 硬質層、 中間層、 《_八 I 2〇 3層及び最表面層それぞれの厚みは、 光学顕微鏡を用いて基材の表面の法線方 向に平行な断面サンプルから求めた。 結果を表 4に示す。 The thickness of the coating, and the underlying layer, hard layer, intermediate layer, <<_8 I 2 03 layer and outermost layer that compose the coating are measured in the direction normal to the surface of the substrate using an optical microscope. It was determined from parallel cross-section samples. The results are shown in Table 4.
[0093] [表 4] [0093] [Table 4]
Figure imgf000027_0002
Figure imgf000027_0002
[0094] < « _八 I 23層における結晶粒の最大粒径の測定 > [0094] <«__Measurement of maximum grain size of crystal grains in I 2 O 3 layer>
以下の手順にて、 《_八 I 23層における結晶粒の最大粒径を測定した。 まず、 被膜における I 23層の界面 (基材とは反対側の界面) に垂直 な断面が得られるように上記切削工具を切断した。 その後、 その切断面を耐 水研磨紙 (# 4 0 0、 # 8 0 0、 # 1 5 0 0) で研磨を実施し、 《— 丨 2〇 3層の加工面を作製した。 引き続き、 上記加工面を八 「イオンによるイオンミ —リング処理によりさらに平滑化を行つた。 イオンミーリング処理の条件は 以下の通りである。 The following procedure to measure the maximum grain size of crystal grains in "_ eight I 2three layers. First, and cutting the cutting tool as a cross section perpendicular to obtain the (interface opposite to the substrate) the interface I 2three layers in the film. Thereafter, the resistance to water abrasive paper cut surfaces (# 4 0 0, # 8 0 0, # 1 5 0 0) carried out polished with "- to prepare a working surface of丨2 〇 three layers. Subsequently, the above-mentioned machined surface was further smoothed by ion milling treatment with eight ions. The conditions of the ion milling treatment are as follows.
加速電圧
Figure imgf000027_0001
Acceleration voltage
Figure imgf000027_0001
照射角度: 《_八 I 23層の当該界面の法線方向 (すなわち切断面における « _八 丨 23層の厚み方向に平行となる直線方向) から 0 ° Irradiation angle: 0 ° from the normal direction of the interface of the _ 8 I 2 0 3 layer (that is, the linear direction parallel to the thickness direction of the _ _ 8 _ 2 0 3 layer at the cut surface)
照射時間: 6時間 Irradiation time: 6 hours
[0095] 作製された上記加工面を巳巳 3 0を備えた 巳一3巳1\/1 (日立ハイテクノ ロジーズ社製、 商品名 : 「3 11 6 6 0 0」 ) を用いて 5 0 0 0倍の倍率で観 〇 2020/174754 26 卩(:171?2019/043090 [0095] The processed surface thus prepared was processed by using MINAMI 3MI 1\/1 (manufactured by Hitachi High-Technologies Co., Ltd., trade name: "3 11 6600") equipped with MINAMI 30 Watch at 0x magnification 〇 2020/174 754 26 卩 (:171?2019/043090
察することにより、 加工面における 50 yu, m ( a— A I 23層の界面 Sに平 行な方向) X 30 yu,m (a-A 丨 23層の厚み方向) の観察領域に関して上 述のカラーマップを作成した。 具体的には、 まず a— A 丨 23層の断面に含 まれる各結晶粒の結晶方位を特定した。 ここで特定される各結晶粒の結晶方 位は、 a-A I 203層の断面に現れる各結晶粒を、 当該断面の法線方向 (図 4において紙面を貫く方向) から平面視したときに観察される面方位である 。 そして、 得られた各結晶粒の結晶方位に基づいて、 a-A I 23層の界面 (すなわち、 基材とは反対側における上記 a— A I 23層の界面) の法線方 向における各結晶粒の面方位を特定した。 そして、 特定された面方位に基づ いてカラーマップを作成した。 各カラーマップについて、 市販のソフトウェ ア (商品名 : 「O r i e n t a t i o n I m a g i n g M i c r o s e o p y V e r 6. 2」 、 E DAX社製) を用いて、 各測定視野において 存在するすべての結晶粒について粒径を求め、 これらの中の最大粒径を求め た。 結果を表 5に示す。 The observation area of 50 yu, m (a direction parallel to the interface S of AI 2 0 3 layers) X 30 yu,m (aA thickness direction of 2 0 3 layers) on the processed surface is described above. Created a color map of. Specifically, to identify the crystal orientation of the free Murrell each crystal grain in the cross-section of the first a- A丨2three layers. Here crystal orientation position of each crystal grain is identified, the respective crystal grains appearing on the cross section of aA I 2 0 3 layer, when viewed in plan from a normal direction of the cross section (direction penetrating the paper surface in FIG. 4) This is the observed plane orientation. Then, based on the crystal orientation of the crystal grains obtained in the normal Direction of the interface of aA I 2three layers (i.e., the interface of the a- AI 23 layer on the opposite side of the substrate) The plane orientation of each crystal grain was specified. Then, a color map was created based on the specified plane orientation. For each color map, a commercially available software (trade name: "Orientation I maging Microscopy Ver 6.2", manufactured by EDAX) was used to determine the grain size of all the crystal grains present in each measurement visual field. Was calculated, and the maximum particle size among these was calculated. The results are shown in Table 5.
[0096] [表 5] [0096] [Table 5]
Figure imgf000028_0001
Figure imgf000028_0001
[0097] 《切削試験》 〇 2020/174754 27 卩(:171?2019/043090 [0097] <<Cutting test>> 〇 2020/174 754 27 卩 (: 171?2019/043090
上記のようにして作製した試料 1\1 〇 . 1〜 1 0の切削工具を用いて、 以下 の切削試験を行った。 The following cutting tests were performed using the cutting tools of Sample 1\0.1 to 10 manufactured as described above.
[0098] <耐摩耗性試験> <Abrasion resistance test>
試料 1\1〇 . 1〜 1 0の切削工具について、 以下の切削条件により逃げ面摩 耗量 ( V匕) が〇. 2 となるまでの切削時間を測定し、 工具寿命を評価 した。 その結果を表 6に示す。 切削時間が長いほど耐摩耗性に優れる切削エ 具として、 長寿命化を実現することができる可能性が高いと評価することが できる。 With respect to the cutting tools of Sample 1\10.10 to 10 under the following cutting conditions, the cutting time until the flank wear amount (V well) was 0.2 was measured to evaluate the tool life. The results are shown in Table 6. It can be evaluated that the longer the cutting time, the better the wear resistance of the cutting tool, and the longer the life of the cutting tool.
[0099] (耐摩耗性試験の切削条件) [0099] (Cutting conditions for wear resistance test)
被削材 = 3 3 4 0 0 丸棒
Figure imgf000029_0002
Work material = 3 3 4 0 0 Round bar
Figure imgf000029_0002
切削液 : なし Cutting fluid: None
[0100] [表 6] [0100] [Table 6]
Figure imgf000029_0003
Figure imgf000029_0003
[0101 ] 耐摩耗性試験の結果から、
Figure imgf000029_0001
(0
[0101] From the results of the wear resistance test,
Figure imgf000029_0001
(0
0 1 2) が 4以上 8 . 5以下であり、 配向性指数丁(3 (0 1 1 4) が 0 1 2) is 4 or more and 8.5 or less, and the orientation index (3 (0 1 1 4) is
〇. 5以上 3以下である切削工具 (試料 1\!〇. 1〜 6) は、 切削時間が 4 0 分以上であることが分かった。 一方、 《_八 丨 23層における配向性指数丁 〇 2020/174754 28 卩(:171?2019/043090 It was found that the cutting time for the cutting tools (Sample 1\!○.1 to 6) that are more than 0.5 and less than 3 is 40 minutes or more. On the other hand, "_ eight丨23 orientation in the layer index Ding 〇 2020/174 754 28 卩 (:171?2019/043090
〇 (0 1 1 4) が〇. 5未満である切削工具 (試料 1\!〇. 7〜 1 0) はA cutting tool (Sample 1\!○ 0.7 to 10) whose 〇 (0 1 1 4) is less than 0 .5 is
、 切削時間が 35分以下であった。 特に《_八 丨 23層における配向性指数 丁〇 (0 0 1 2) が 4未満であり、 配向性指数丁〇 (0 1 1 4) がThe cutting time was 35 minutes or less. In particular, the orientation index of the _ _ 8 2 0 3 layer is 0 (0 0 1 2) is less than 4, and the orientation index of 0 (0 1 1 4) is
〇. 5未満である切削工具 (試料 N 0. 1 0) は、 切削時間が 1 8分で最も 短い切削時間であった。 The cutting tool with a cutting time of less than 0.5 (Sample N 0.10) had the shortest cutting time of 18 minutes.
以上の結果から、 《_八 丨 23層における配向性指数丁〇 (0 0 1 2From the above results, the orientation index of the 《_8 丨2 0 3 layer is 0 (0 0 1 2
) が 4以上 8. 5以下であり、 配向性指数丁(3 (0 1 1 4) が〇. 5以 上 3以下である切削工具は、 《—八 丨 23層における配向性指数丁〇 (0 1 1 4) が〇. 5未満である切削工具と比較して、 耐摩耗性に優れること が分かった。 ) Is 4 or more 8.5 or less, the cutting tool orientation index Ding (3 (0 1 1 4) is 〇 5 or more on the 3 below, "-. Eight丨23 orientation in layers index Ding It was found that the wear resistance was superior to that of a cutting tool with a ◯ (0 1 1 4) of less than 0.5.
[0102] 以上のように本発明の実施形態および実施例について説明を行なったが、 上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から 予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
[0103] 今回開示された実施の形態および実施例はすべての点で例示であって、 制 限的なものではないと考えられるべきである。 本発明の範囲は上記した実施 の形態および実施例ではなく請求の範囲によって示され、 請求の範囲と均等 の意味、 および範囲内でのすべての変更が含まれることが意図される。 符号の説明 The embodiments and examples disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiments and examples but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope. Explanation of symbols
[0104] 1 3 すくい面、 1 匕 逃げ面、
Figure imgf000030_0001
刃先部、 1 0 切削工具、
[0104] 1 3 rake face, 1 clearance face,
Figure imgf000030_0001
Cutting edge, 10 cutting tools,
1 1 基材、 1 2 «-八 丨 23層、
Figure imgf000030_0002
(0 0 1) 配向を 有する結晶粒、 1 2匕 (0 1 1 4) 配向を有する結晶粒、 1 3 中間層、 1 4 最表面層、 仮想平面、 3 基材とは反対側におけ る(¾ _八 丨 23層の界面
1 1 base material, 1 2 «- 8 丨2 0 3 layers,
Figure imgf000030_0002
Crystal grains having (0 0 1) orientation, 12 swarts Crystal grains having (0 1 1 4) orientation, 1 3 Intermediate layer, 1 4 Outermost surface layer, Virtual plane, 3 On the side opposite to the substrate (¾ _ 8 丨2 3 layer interface

Claims

〇 2020/174754 29 卩(:171?2019/043090 請求の範囲 [請求項 1 ] 基材と、 前記基材を被覆する被膜とを備える切削工具であって、 前記被膜は、 《_八 丨 2〇 3層を含み、 前記《_八 丨 2〇3層において、 下記式 (1) で表される (0 0 1 2) 面の配向性指数丁〇 (0 0 1 2) が 4以上 8 . 5以下であり、 下記式 (2) で表される (0 1 1 4) 面の配向性指数丁〇 (0 1 1 4) が〇. 5以上 3以下であり、 前記配向性指数丁(3 (0 0 1 2) と前記配向性指数丁(3 (01 1 4) との合計が 9以下である、 切削工具。 〇 2020/174754 29 box (: 171?2019/043090) [claim 1] A cutting tool comprising a base material and a coating for coating the base material, wherein the coating is «_ 8 丨 2 〇 Including the three layers, in the __ eight-third layer, the orientation index of the (0 0 1 2) plane represented by the following formula (1) 〇 (0 0 1 2) is 4 or more 8. 5 or less, and the orientation index of the (0 1 1 4) plane represented by the following formula (2) 〇 (0 1 1 4) is ≧0.5 and 3 or less, and the orientation index (3 A cutting tool in which the sum of (0 0 1 2) and the orientation index (3 (01 1 4)) is 9 or less.
[数 1 ] [Number 1]
Figure imgf000031_0001
Figure imgf000031_0001
式 (1) 及び式 (2) 中、 I (11 1< I) は、 (11 1< 丨) 面に おいて X 口測定されたときに求められる X線回折強度を示し、 In equations (1) and (2), I (11 1< I) indicates the X-ray diffraction intensity obtained when the X-port measurement is performed on the (11 1< 丨) plane,
I 。 ( 1< I) は、 」〇 0 3力ードの 0 1 0 - 0 1 7 3に示 されている《_八 丨 23の (11 1< I) 面における標準強度を示 し、 I. (1< I) is the standard strength in the (11 1< I) plane of 《_8 丨23 shown in 0 1 0-0 1 7 3 of ◯ 0 3
(11 1< I) 面は、 (0 1 2) 面、 (1 0 4) 面、 (1 (11 1< I) planes are (0 1 2) planes, (1 0 4) planes, (1
1 〇) 面、 (1 1 3) 面、 (0 2 4) 面、 (1 1 61 0) plane, (1 1 3) plane, (0 2 4) plane, (1 1 6
) 面、 (3 0 0) 面、 (0 0 1 2) 面及び (0 1 1 4) 面の 9面のいずれかを示す。 ) Plane, (300) plane, (0 0 1 2) plane and (0 1 1 4) plane.
[請求項 2] 前記《-八 I 23層は、 《-八 I 23の結晶粒を含み、 [Claim 2] The "- eight I 23 layer" - includes eight I 23 crystal grains,
前記《 _八 丨 23の結晶粒の最大粒径が 3 以下であり、 前記結晶粒の最大粒径は、 前記基材とは反対側における前記 八 I 23層の界面から厚み方向に丫 離れた地点を通る前記界面に 〇 2020/174754 30 卩(:171?2019/043090 The maximum grain size of the crystal grains of the << _ 8 2 0 3 is 3 or less, and the maximum grain size of the crystal grains is the thickness direction from the interface of the 8 I 2 0 3 layer on the side opposite to the base material. At the interface that passes through a distant point 〇 2020/174 754 30 卩 (:171?2019/043090
平行な仮想平面において求められた値であり、 It is a value obtained in parallel virtual planes,
前記丫は下記式 (3) 又は下記式 (4) によって求められる、 請求 項 1 に記載の切削工具。 The cutting tool according to claim 1, wherein the slope is obtained by the following formula (3) or the following formula (4).
丫 =〇. 5 X (X - 1) / 2 + 0 . 5、 ただし乂<3 (3) 丫 = 1、 ただし 3 £乂 (4) 佫 = ○ 0.5 X (X-1) / 2 + 0.5, where <3 (3) 丫 = 1, but 3 £ 乂 (4)
式 (3) 及び式 (4) 中、 Xは前記
Figure imgf000032_0001
In formula (3) and formula (4), X is the above
Figure imgf000032_0001
前記 Xの単位は である。 ただし、 乂>丫である。 The unit of X is However, the difference is >>.
[請求項 3] 前記配向性指数丁〇 (0 1 1 4) は、 1以上 2 . 5以下である [Claim 3] The orientation index D (0 1 1 4) is 1 or more and 2.5 or less.
、 請求項 1又は請求項 2に記載の切削工具。 The cutting tool according to claim 1 or 2.
[請求項 4] 前記《_八 丨 23層の厚みが 1 以上 1 〇 以下である、 請 求項 1から請求項 3のいずれか一項に記載の切削工具。 [Claim 4] The cutting tool according to any one of claims 1 to 3, wherein the thickness of the «_ 8 2 0 3 layer is 1 or more and 10 or less.
[請求項 5] 前記被膜は、 前記基材と前記 I 23層との間に設けられて いる中間層を更に含み、 [Claim 5] The coating further comprises an intermediate layer provided between the I 23 layer and the substrate,
前記中間層は、 構成元素としてチタンを含む炭酸化物、 炭窒酸化物 又は硼窒化物を含む、 請求項 1から請求項 4のいずれか一項に記載の 切削工具。 The cutting tool according to any one of claims 1 to 4, wherein the intermediate layer contains a carbonate, a carbonitride oxide, or a boron nitride containing titanium as a constituent element.
[請求項 6] 前記被膜の厚みが 1 以上 3 0 以下である、 請求項 1から請 求項 5のいずれか一項に記載の切削工具。 [Claim 6] The cutting tool according to any one of claims 1 to 5, wherein the coating has a thickness of 1 or more and 30 or less.
[請求項 7] 前記被膜は、
Figure imgf000032_0002
[Claim 7] The coating is
Figure imgf000032_0002
更に含む、 請求項 1から請求項 6のいずれか一項に記載の切削工具。 The cutting tool according to any one of claims 1 to 6, further comprising:
PCT/JP2019/043090 2019-02-26 2019-11-01 Cutting tool WO2020174754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-032641 2019-02-26
JP2019032641 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020174754A1 true WO2020174754A1 (en) 2020-09-03

Family

ID=72239325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043090 WO2020174754A1 (en) 2019-02-26 2019-11-01 Cutting tool

Country Status (1)

Country Link
WO (1) WO2020174754A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141797A1 (en) * 2016-02-18 2017-08-24 株式会社タンガロイ Coated cutting tool
WO2018079229A1 (en) * 2016-10-25 2018-05-03 株式会社タンガロイ Coated cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141797A1 (en) * 2016-02-18 2017-08-24 株式会社タンガロイ Coated cutting tool
WO2018079229A1 (en) * 2016-10-25 2018-05-03 株式会社タンガロイ Coated cutting tool

Similar Documents

Publication Publication Date Title
JP6037255B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6037256B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6973699B2 (en) Surface coating cutting tool and its manufacturing method
JP7101178B2 (en) Cutting tool with coating
KR102170166B1 (en) Surface-coated cutting tool and its manufacturing method
JP5884004B1 (en) Surface coated cutting tool
WO2017122448A1 (en) Surface-coated cutting tool and method for producing same
JP6044861B1 (en) Surface-coated cutting tool and manufacturing method thereof
WO2017179220A1 (en) Surface-coated cutting tool and manufacturing method therefor
JP6784345B1 (en) Cutting tools
JP6912032B2 (en) Cutting tools
WO2020174756A1 (en) Cutting tool
WO2020174754A1 (en) Cutting tool
JP6550661B2 (en) Method of manufacturing surface coated cutting tool
WO2020174755A1 (en) Cutting tool
WO2019176201A1 (en) Surface coated cutting tool and manufacturing method for same
JP6926387B2 (en) Cutting tools
JPWO2019176202A1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6750789B1 (en) Cutting tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP