WO2020174667A1 - Outdoor unit of air conditioner - Google Patents

Outdoor unit of air conditioner Download PDF

Info

Publication number
WO2020174667A1
WO2020174667A1 PCT/JP2019/007870 JP2019007870W WO2020174667A1 WO 2020174667 A1 WO2020174667 A1 WO 2020174667A1 JP 2019007870 W JP2019007870 W JP 2019007870W WO 2020174667 A1 WO2020174667 A1 WO 2020174667A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
unit
heat generating
defrost heater
temperature
Prior art date
Application number
PCT/JP2019/007870
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/007870 priority Critical patent/WO2020174667A1/en
Publication of WO2020174667A1 publication Critical patent/WO2020174667A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the present invention relates to an outdoor unit of an air conditioner that defrosts during heating operation.
  • the outdoor unit When the air conditioner performs heating operation, the outdoor unit discharges the water generated in the outdoor heat exchanger functioning as an evaporator onto the outdoor unit base, and then discharges the water from the drain discharge hole to the outside. In cold regions, water may freeze on the outdoor unit base before being discharged from the drain discharge hole. Therefore, in an air conditioner for cold regions, the defrost heater is arranged on the outdoor unit base.
  • Patent Literature 1 discloses a technique of detecting the temperature of outside air or the temperature of an outdoor heat exchanger when performing defrosting, and suppressing the freezing of water by energizing a heater when the detected temperature is low. Disclosure.
  • the amount of heat for suppressing freezing of water may be smaller than when the temperature of the outside air is relatively low.
  • the technique disclosed in Patent Document 1 even when the temperature of the outside air is relatively high, the same amount of heat as when the temperature of the outside air is relatively low is consumed. That is, in the technique disclosed in Patent Document 1, when defrosting is performed, the same electric power is consumed even when the temperature of the outside air is relatively high and when it is relatively low. It is required to provide a technology that suppresses power consumption when defrosting is performed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an outdoor unit of an air conditioner that suppresses power consumption when defrosting is performed.
  • the outdoor unit of the air conditioner is a temperature sensor for detecting the temperature of the outside air, and is for performing heat exchange between the refrigerant and the outside air.
  • a control unit that controls energization to the.
  • the outdoor unit of the air conditioner according to the present invention can suppress power consumption when defrosting is performed.
  • the perspective view of the defrost heater which the outdoor unit of the air conditioner which concerns on Embodiment 1 has. 1 is a block diagram showing a configuration of a control board included in an outdoor unit of an air conditioner according to Embodiment 1.
  • the flowchart which shows the procedure of operation
  • the perspective view of the defrost heater which the outdoor unit of the air conditioner which concerns on Embodiment 2 has.
  • the perspective view of the defrost heater which the outdoor unit of the air conditioner which concerns on Embodiment 3 has.
  • the flowchart which shows the procedure of operation
  • FIG. 1 is an exploded perspective view of an outdoor unit 1 of an air conditioner according to Embodiment 1.
  • the "outdoor unit 1 of the air conditioner” may be referred to as the "outdoor unit 1".
  • FIG. 1 is a diagram schematically showing a state in which the outdoor unit 1 is disassembled.
  • the outdoor unit 1 includes an outdoor unit base 2, a front panel 3, a front cover part 4 attached to the front panel 3, a right side panel 5, a right side attachment part 6 attached to the right side panel 5, and a ceiling panel.
  • the front panel 3 has a left side panel portion.
  • the shape of the housing 8 is a horizontally long rectangular shape.
  • the outdoor unit 1 further includes a temperature sensor 9 that detects the temperature of outside air.
  • the outside air is the air outside the outdoor unit 1.
  • the outdoor unit 1 further includes a partition plate 10 that partitions the inside of the housing 8 into two spaces.
  • the partition plate 10 partitions the inside of the housing 8 into a machine room side 11 and a heat exchanger side 12.
  • the outdoor unit 1 includes a compressor 13 that compresses a refrigerant, a control board 14 for controlling defrost, a first board cover 15 that covers the control board 14, and a second board cover 16 that covers the first board cover 15. Further has.
  • the outdoor unit 1 further includes piping, a four-way switching valve, and an expansion valve.
  • the compressor 13, the control board 14, the first board cover 15, the second board cover 16, the piping, the four-way switching valve and the expansion valve are arranged on the machine chamber side 11.
  • the temperature sensor 9 is connected to the control board 14.
  • the outdoor unit 1 includes an outdoor heat exchanger 17 for exchanging heat between the refrigerant and the outside air, an outdoor fan 18, and a plurality of heat generations for suppressing freezing of water generated in the outdoor heat exchanger 17. And a defrost heater 19 including a portion.
  • the outdoor heat exchanger 17, the outdoor fan 18, and the defrost heater 19 are arranged on the heat exchanger side 12.
  • the defrost heater 19 has an L-shape.
  • the outdoor unit 1 has a control unit that controls energization to a plurality of heat generating units included in the defrost heater 19 based on the temperature detected by the temperature sensor 9.
  • the control unit is included in the control board 14. Details of the control unit will be described later.
  • the compressor 13, the outdoor heat exchanger 17, the outdoor fan 18, and the defrost heater 19 are arranged on the outdoor unit base 2.
  • a concave drainage channel is provided on the bottom surface side of the outdoor unit base 2. The drainage channel is not shown in FIG.
  • the heating operation is performed, water is generated in the outdoor heat exchanger 17, and the water moves from the outdoor heat exchanger 17 to the outdoor unit base 2. The water that has moved to the outdoor unit base 2 is collected in the drainage channel.
  • the drainage channel is for discharging the water to the outside of the outdoor unit 1.
  • the defrost heater 19 is arranged in a portion below the outdoor heat exchanger 17 in the drainage channel.
  • FIG. 2 is a perspective view of the defrost heater 19 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 2 schematically shows the structure of the defrost heater 19.
  • the defrost heater 19 has a first heat generating portion 21 and a second heat generating portion 22 that is separated from the first heat generating portion 21.
  • the 1st exothermic part 21 and the 2nd exothermic part 22 are examples of a plurality of exothermic parts.
  • Each of the 1st exothermic part 21 and the 2nd exothermic part 22 is formed by performing bending formation processing to a rod-shaped exothermic body a plurality of times.
  • the defrost heater 19 further includes a first harness 23 and a second harness 24 arranged in the first heating section 21, and a third harness 25 and a fourth harness 26 arranged in the second heating section 22.
  • the first harness 23, the second harness 24, the third harness 25, and the fourth harness 26 are used when the defrost heater 19 is energized.
  • the defrost heater 19 is arranged in the drainage channel of the outdoor unit base 2, and an electric current is supplied when defrosting is performed.
  • FIG. 3 is a block diagram showing a configuration of the control board 14 included in the outdoor unit 1 of the air conditioner according to the first embodiment.
  • the control board 14 has a control unit 31 that controls energization to a plurality of heat generating units included in the defrost heater 19 based on the temperature detected by the temperature sensor 9.
  • the plurality of heat generating parts are the first heat generating part 21 and the second heat generating part 22.
  • the temperature sensor 9 and the defrost heater 19 are also shown in FIG.
  • the control board 14 further includes a storage unit 32 that stores data used by the control unit 31.
  • An example of the storage unit 32 is a semiconductor memory, and an example of the semiconductor memory is a ROM (Read Only Memory).
  • the control board 14 further includes a switch unit 33 including a plurality of switches, and a power supply unit 34.
  • the control unit 31 is connected to the temperature sensor 9, the storage unit 32, the switch unit 33, and the power supply unit 34.
  • the control unit 31 receives from the temperature sensor 9 a signal indicating the temperature detected by the temperature sensor 9.
  • Part of the data stored in the storage unit 32 is, for example, temperature conversion data for converting the signal received from the temperature sensor 9 by the control unit 31 into temperature.
  • the control unit 31 determines the temperature indicated by the signal received from the temperature sensor 9 using the temperature conversion data.
  • the switch unit 33 is connected to the power supply unit 34 and the defrost heater 19.
  • the control unit 31 controls the plurality of switches included in the switch unit 33 based on the temperature based on the signal received from the temperature sensor 9, and controls the plurality of switches to control the defrost heater 19. Control.
  • the temperature based on the signal received from the temperature sensor 9 is the temperature detected by the temperature sensor 9.
  • FIG. 4 is a diagram illustrating a configuration of the switch unit 33 included in the outdoor unit 1 of the air conditioner according to the first embodiment.
  • FIG. 4 also shows the control unit 31, the power supply unit 34, and the defrost heater 19.
  • the switch unit 33 includes a first switch 41, a second switch 42, a third switch 43, a fourth switch 44, a fifth switch 45, and a sixth switch 46.
  • the first switch 41, the second switch 42, the third switch 43, the fourth switch 44, the fifth switch 45, and the sixth switch 46 energize the first heat generating portion 21 and the second heat generating portion 22 included in the defrost heater 19. Used to control the.
  • “Vdc” means a DC voltage.
  • the control unit 31 outputs a first control signal for controlling on and off of the first switch 41 to the first switch 41, and a second control signal for controlling on and off of the second switch 42 as a second switch. And outputs to the third switch 43 a third control signal that outputs the second control signal to the second switch 43 and controls the on/off of the third switch 43.
  • the first switch 41 is turned on or off according to the first control signal
  • the second switch 42 is turned on or off according to the second control signal
  • the third switch 43 is turned on according to the third control signal. Or it is turned off.
  • An example of each of the first switch 41, the second switch 42, and the third switch 43 is a transistor.
  • the fourth switch 44 is turned on or off according to the on or off state of the first switch 41.
  • the fifth switch 45 is turned on or off according to the on or off state of the second switch 42.
  • the sixth switch 46 switches the connecting portion according to the on or off state of the third switch 43.
  • An example of each of the fourth switch 44, the fifth switch 45, and the sixth switch 46 is a relay.
  • the first switch 41 when the first switch 41 is turned on, the first contact 441 and the second contact 442 of the fourth switch 44 are connected, and when the second switch 42 is turned on, the fifth switch 45 is turned on.
  • the first contact 451 and the second contact 452 are connected.
  • the third switch 43 When the third switch 43 is turned on, the first contact 461 and the second contact 462 of the sixth switch 46 are connected to each other, and when the third switch 43 is turned off, the first contact 461 of the sixth switch 46 is connected to the first contact 461.
  • the third contact 463 is connected.
  • the first contact 461 of the sixth switch 46 is connected to the third harness 25 of the defrost heater 19.
  • the second contact 462 of the sixth switch 46 is connected to the wiring that connects the fourth switch 44 and the first harness 23.
  • the third contact 463 of the sixth switch 46 is connected to the wiring that connects the fifth switch 45 and the second harness 24.
  • the fourth switch 44 and the third harness 25 of the defrost heater 19 are connected.
  • the fifth switch 45 and the third harness 25 of the defrost heater 19 are connected.
  • the fourth harness 26 of the defrost heater 19 is connected to the wiring that connects the power supply unit 34 and the fifth switch 45.
  • FIG. 5 is a diagram showing a relationship between the defrost heater 19 and the switch unit 33 included in the outdoor unit 1 of the air conditioner according to the first embodiment.
  • T indicates the temperature detected by the temperature sensor 9
  • 1th indicates the first threshold value
  • second threshold value indicates the second threshold value
  • Ra is included in the defrost heater 19.
  • the resistance value of the first heat generating portion 21 is shown
  • Rb shows the resistance value of the second heat generating portion 22 included in the defrost heater 19.
  • Both the first threshold value 1th and the second threshold value 2th are predetermined threshold values for temperature.
  • the second threshold 2th is smaller than the first threshold 1th.
  • Data indicating each of the first threshold value 1th, the second threshold value 2th, the resistance value Ra of the first heating section 21 and the resistance value Rb of the second heating section 22 is stored in the storage section 32 of the control board 14. There is.
  • each of the first switch 41, the second switch 42, and the third switch 43 is in the off state, and the power supply unit 34 and the defrost heater 19 are not connected. That is, when the operation mode is other than heating, there is no resistance of the defrost heater 19.
  • the first switch 41 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th, the first switch 41 is in the on state and the second switch Each of the 42 and the third switch 43 is in the off state.
  • the first heat generating portion 21 and the second heat generating portion 22 of the defrost heater 19 are connected in series, and in that state, the power supply portion 34 and the defrost heater 19 are connected. Since the first heat generating portion 21 and the second heat generating portion 22 are connected in series, the resistance value of the defrost heater 19 is “Ra+Rb”.
  • each of the first switch 41, the second switch 42, and the third switch 43 is in the ON state.
  • the first heat generating portion 21 and the second heat generating portion 22 of the defrost heater 19 are connected in parallel, and in this state, the power supply portion 34 and the defrost heater 19 are connected. Since the first heat generating portion 21 and the second heat generating portion 22 are connected in parallel, the resistance value of the defrost heater 19 is “(Ra ⁇ Rb)/(Ra+Rb)”.
  • the electric power consumed in the defrost heater 19 when the operation mode is heating and the temperature T is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th. are shown to be “minimal”. It is shown that the power consumed in the defrost heater 19 when the operation mode is heating and the temperature T is lower than the second threshold value 2th is “maximum”.
  • FIG. 6 is a flowchart showing an operation procedure of the control unit 31 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1.
  • the control unit 31 determines whether the operation mode is "heating" (S1).
  • the control unit 31 does not need to energize the defrost heater 19, and therefore the first switch 41, the second switch 42, and the third switch.
  • Control is performed to turn off all 43 (S2).
  • step S2 the operation of the control unit 31 proceeds to step S7 described below.
  • the control unit 31 determines that the operation mode is “heating” (Yes in S1), the control unit 31 receives a signal indicating the temperature T detected by the temperature sensor 9 from the temperature sensor 9 and stores the signal in the storage unit 32.
  • the temperature T detected by the temperature sensor 9 is determined based on the temperature conversion data.
  • the temperature T detected by the temperature sensor 9 is the temperature of the outside air.
  • the control unit 31 determines whether or not the temperature T detected by the temperature sensor 9 is lower than the first threshold value 1th (S3).
  • the control unit 31 determines that the temperature T detected by the temperature sensor 9 is equal to or higher than the first threshold value 1th (No in S3), it is not necessary to energize the defrost heater 19, and thus the first switch 41 is used. , The second switch 42 and the third switch 43 are all turned off (S2).
  • the control unit 31 determines whether or not the temperature T is lower than the second threshold value 2th ( S4).
  • the control unit 31 determines that the temperature T is equal to or higher than the second threshold value 2th (No in S4), the first switch 41 is turned on in order to minimize the power consumed in the defrost heater 19.
  • control is performed to turn off each of the second switch 42 and the third switch 43 (S5).
  • the first heat generating portion 21 and the second heat generating portion 22 are connected in series, and the resistance value of the defrost heater 19 becomes “Ra+Rb”.
  • the control unit 31 connects the first heat generating unit 21 and the second heat generating unit 22 in series.
  • the first heat generating part 21 and the second heat generating part 22 are electrically connected to each other.
  • the control unit 31 maximizes the power consumed in the defrost heater 19, and thus the first switch 41 is used. , The second switch 42 and the third switch 43 are all turned on (S6). As a result, the first heat generating portion 21 and the second heat generating portion 22 are connected in parallel, and the resistance value of the defrost heater 19 becomes “(Ra ⁇ Rb)/(Ra+Rb)”.
  • the control unit 31 connects the first heat generating unit 21 and the second heat generating unit 22 in parallel and connects the first heat generating unit 21 with the first heat generating unit 21.
  • the second heat generating portion 22 is energized.
  • step S7 determines whether or not the operation of the air conditioner is stopped by the operation of the user (S7).
  • the control unit 31 performs the process of step S1.
  • the control unit 31 ends the operation.
  • the control unit 31 when the air conditioner performs the heating operation, the control unit 31 energizes the plurality of heat generating units included in the defrost heater 19 based on the temperature T detected by the temperature sensor 9. To control. Specifically, when the temperature T is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th, the control unit 31 connects the first heating unit 21 and the second heating unit 22 in series. The first heat generating portion 21 and the second heat generating portion 22 are energized. When the temperature T is lower than the second threshold value 2th, the control unit 31 connects the first heat generating unit 21 and the second heat generating unit 22 in parallel and energizes the first heat generating unit 21 and the second heat generating unit 22. Let
  • the defrost heater 19 uses the minimum electric power when the operation mode is “heating” and the temperature T is lower than the first threshold 1th and equal to or higher than the second threshold 2th. Heat the base 2. When the temperature T is lower than the second threshold 2th, the defrost heater 19 heats the outdoor unit base 2 with the maximum electric power.
  • the outdoor unit 1 of the air conditioner according to the first embodiment heats the outdoor unit base 2 with either of two levels of electric power in accordance with the temperature T detected by the temperature sensor 9. To do. In other words, the outdoor unit 1 does not always heat the outdoor unit base 2 with the same electric power when performing defrosting. Therefore, the outdoor unit 1 can suppress the power consumption when defrosting is performed, corresponding to the temperature T detected by the temperature sensor 9.
  • Embodiment 2 The defrost heater 19 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1 has a first heat generating portion 21 and a second heat generating portion 22 that is separated from the first heat generating portion 21.
  • the defrost heater 19 is replaced with the defrost heater 50.
  • FIG. 7 is a perspective view of the defrost heater 50 included in the outdoor unit of the air conditioner according to the second embodiment.
  • FIG. 7 schematically shows the structure of the defrost heater 50.
  • the defrost heater 50 is formed by performing bending forming processing on a single rod-shaped heating element a plurality of times.
  • the defrost heater 50 has a fifth harness 51, a sixth harness 52, and a seventh harness 53.
  • the fifth harness 51 is provided on the first end side of the heating element
  • the sixth harness 52 is provided on the second end side of the heating element.
  • the seventh harness 53 is provided in the middle of the heating element. The fifth harness 51, the sixth harness 52, and the seventh harness 53 are used when the defrost heater 50 is energized.
  • the portion of the heating element from the fifth harness 51 to the seventh harness 53 is the third heating portion 54
  • the portion of the heating element from the seventh harness 53 to the sixth harness 52 is the fourth heating portion 55. That is, the defrost heater 50 has the third heat generating portion 54 and the fourth heat generating portion 55 connected in series to the third heat generating portion 54.
  • the third heat generating portion 54 and the fourth heat generating portion 55 are examples of a plurality of heat generating portions.
  • the resistance value of the fourth heat generating portion 55 is smaller than the resistance value of the third heat generating portion 54.
  • FIG. 8 is a diagram showing a configuration of the switch unit 60 included in the outdoor unit of the air conditioner according to the second embodiment.
  • FIG. 8 also shows the control unit 31, the power supply unit 34, and the defrost heater 50.
  • the switch unit 60 includes a first switch 41, a second switch 42, a third switch 43, a fourth switch 44, a fifth switch 45, and a seventh switch 61.
  • Each of the first switch 41, the second switch 42, the third switch 43, the fourth switch 44, and the fifth switch 45 is the switch described in the first embodiment.
  • “Vdc” means a DC voltage.
  • the control unit 31 outputs a first control signal for controlling on and off of the first switch 41 to the first switch 41, and a second control signal for controlling on and off of the second switch 42 as a second switch. And outputs to the third switch 43 a third control signal that outputs the second control signal to the second switch 43 and controls the on/off of the third switch 43.
  • the first switch 41 is turned on or off according to the first control signal
  • the second switch 42 is turned on or off according to the second control signal
  • the third switch 43 is turned on according to the third control signal. Or it is turned off.
  • the fourth switch 44 is turned on or off according to the on or off state of the first switch 41.
  • the fifth switch 45 is turned on or off according to the on or off state of the second switch 42.
  • the seventh switch 61 is turned on or off according to the on or off state of the third switch 43.
  • An example of the seventh switch 61 is a relay.
  • the first switch 41 when the first switch 41 is turned on, the first contact 441 and the second contact 442 of the fourth switch 44 are connected, and when the second switch 42 is turned on, the fifth switch 45 is turned on.
  • the first contact 451 and the second contact 452 are connected.
  • the third switch 43 When the third switch 43 is turned on, the first contact 611 and the second contact 612 of the seventh switch 61 are connected.
  • the power supply unit 34 and the fifth harness 51 of the defrost heater 50 are connected.
  • the power supply unit 34 and the seventh harness 53 of the defrost heater 50 are connected.
  • the wiring that connects the fourth switch 44 and the fifth harness 51 and the wiring that connects the fifth switch 45 and the seventh harness 53 are connected.
  • the sixth harness 52 of the defrost heater 50 is connected to the wiring that connects the power supply unit 34 and the fifth switch 45.
  • FIG. 9 is a diagram showing a relationship between the defrost heater 50 and the switch unit 60 included in the outdoor unit of the air conditioner according to the second embodiment.
  • T indicates the temperature detected by the temperature sensor 9
  • 3th indicates the third threshold value
  • 4th indicates the fourth threshold value
  • 5th indicates the fifth threshold value.
  • Rc indicates the resistance value of the third heating portion 54 included in the defrost heater 50
  • Rd indicates the resistance value of the fourth heating portion 55 included in the defrost heater 50. It is assumed that “Rc” is greater than “Rd”.
  • Each of the third threshold value 3th, the fourth threshold value 4th, and the fifth threshold value 5th is a predetermined threshold value for temperature.
  • the fourth threshold 4th is smaller than the third threshold 3th
  • the fifth threshold 5th is smaller than the fourth threshold 4th.
  • Data indicating each of the third threshold value 3th, the fourth threshold value 4th, the fifth threshold value 5th, the resistance value Rc of the third heating portion 54, and the resistance value Rd of the fourth heating portion 55 is stored in the control board 14. It is stored in the unit 32.
  • each of the first switch 41, the second switch 42, and the third switch 43 is in the off state, and the power supply unit 34 and the defrost heater 50 are not connected. That is, when the operation mode is other than heating, the defrost heater 50 has no resistance.
  • the first switch 41 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the first switch 41 is in the ON state and the second switch 41 is in the ON state. Each of the 42 and the third switch 43 is in the off state.
  • the third heat generating portion 54 and the fourth heat generating portion 55 of the defrost heater 50 are connected in series, and in this state, the power supply portion 34 and the defrost heater 50 are connected. Since the third heat generating portion 54 and the fourth heat generating portion 55 are connected in series, the resistance value of the defrost heater 50 is “Rc+Rd”.
  • each of the first switch 41 and the second switch 42 is in the ON state. Therefore, the third switch 43 is in the off state.
  • the power supply section 34 is connected only to the third heating section 54 of the defrost heater 50.
  • the resistance value of the defrost heater 50 is “Rc”.
  • each of the first switch 41 and the third switch 43 is in the ON state, and the second switch 42 is It is off.
  • the power supply section 34 is connected only to the fourth heating section 55 of the defrost heater 50.
  • the resistance value of the defrost heater 50 is “Rd”.
  • “Rc+Rd” is greater than “Rc” and “Rd”. As described above, “Rc” is larger than “Rd”. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the fifth threshold value 5th, the heat generation amount in the defrost heater 50 and the power consumed in the defrost heater 50 are the heating mode. Therefore, the temperature T is higher than those when the temperature is equal to or higher than the fifth threshold value 5th. When the operation mode is heating and the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th, the heat generation amount in the defrost heater 50 and the power consumed in the defrost heater 50 are the heating mode. And the temperature T is lower than the third threshold value 3th and higher than those when the temperature T is equal to or higher than the fourth threshold value 4th.
  • the electric power consumed in the defrost heater 50 when the operation mode is heating and the temperature T is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th. are shown to be “minimal”.
  • the power consumed in the defrost heater 50 when the operation mode is heating and the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th is shown as “intermediate”.
  • the power consumed in the defrost heater 50 when the operation mode is heating and the temperature T is lower than the fifth threshold value 5th is shown to be “maximum”.
  • FIG. 10 is a flowchart showing an operation procedure of the control unit 31 included in the outdoor unit of the air-conditioning apparatus according to Embodiment 2.
  • the control unit 31 determines whether the operation mode is "heating" (S11). When determining that the operation mode is other than "heating" (No in S11), the control unit 31 does not need to energize the defrost heater 50, and thus the first switch 41, the second switch 42, and the third switch. Control is performed to turn off all 43 (S12).
  • step S2 the operation of the control unit 31 proceeds to step S19 described below.
  • the control unit 31 determines that the operation mode is "heating” (Yes in S11)
  • the control unit 31 receives a signal indicating the temperature T detected by the temperature sensor 9 from the temperature sensor 9 and stores the signal in the storage unit 32.
  • the temperature T detected by the temperature sensor 9 is determined based on the temperature conversion data.
  • the temperature T detected by the temperature sensor 9 is the temperature of the outside air.
  • the control unit 31 determines whether the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th (S13).
  • control unit 31 determines that the temperature T detected by the temperature sensor 9 is equal to or higher than the third threshold value 3th (No in S13), it is not necessary to energize the defrost heater 50, and thus the first switch 41 is used. , The second switch 42 and the third switch 43 are all turned off (S12).
  • control unit 31 determines whether or not the temperature T is lower than the fourth threshold value 4th ( S14).
  • the control unit 31 determines whether or not the temperature T is lower than the fourth threshold value 4th ( S14).
  • the control unit 31 turns on the first switch 41 in order to minimize the power consumed in the defrost heater 50.
  • control is performed to turn off each of the second switch 42 and the third switch 43 (S15).
  • the third heating portion 54 and the fourth heating portion 55 are connected in series, and the resistance value of the defrost heater 50 becomes “Rc+Rd”.
  • the control unit 31 connects the third heating unit 54 and the fourth heating unit 55 in series.
  • the third heat generating portion 54 and the fourth heat generating portion 55 are electrically connected by connecting.
  • the control unit 31 determines whether or not the temperature T is lower than the fifth threshold value 5th ( S16).
  • the control unit 31 sets the first switch 41 and the second switch 42 in order to make the power consumed in the defrost heater 50 intermediate.
  • Each of the switches is turned on and the third switch 43 is turned off (S17).
  • the power supply section 34 is connected only to the third heating section 54 of the defrost heater 50.
  • the resistance value of the defrost heater 50 is “Rc”.
  • the control unit 31 energizes only the third heat generating unit 54.
  • V the voltage applied from the power supply unit 34 to the defrost heater 50
  • W4 the power consumed in the defrost heater 50
  • the control unit 31 maximizes the electric power consumed in the defrost heater 50, and thus the first switch 41 is used.
  • the third switch 43 and the third switch 43 are turned on and the second switch 42 is turned off (S18).
  • the power supply section 34 is connected only to the fourth heat generating section 55 of the defrost heater 50.
  • the resistance value of the defrost heater 50 is “Rd”.
  • the control unit 31 energizes only the fourth heat generating unit 55.
  • V the voltage applied from the power supply unit 34 to the defrost heater 50
  • W5 the power consumed in the defrost heater 50
  • step S17 or step S18 the control unit 31 determines whether or not the operation of the air conditioner is stopped by the operation of the user (S19). When determining that the operation of the air conditioner is continuously performed (No in S19), the control unit 31 performs the process of step S11. When determining that the operation of the air conditioner is stopped (Yes in S19), the control unit 31 ends the operation.
  • the control unit 31 when the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the control unit 31 causes the third heat generating unit 54 and the third heat generating unit 54 to operate.
  • the fourth heat generating portion 55 is connected in series to energize the third heat generating portion 54 and the fourth heat generating portion 55.
  • the control unit 31 When the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th, the control unit 31 energizes only the third heat generating unit 54.
  • the control unit 31 When the temperature T is lower than the fifth threshold value 5th, the control unit 31 energizes only the fourth heat generating unit 55.
  • the defrost heater 50 under the control of the control unit 31, when the operation mode is “heating” and the temperature T is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the outdoor unit with minimum power. Heat the base 2.
  • the defrost heater 50 heats the outdoor unit base 2 with an intermediate electric power.
  • the defrost heater 50 heats the outdoor unit base 2 with maximum electric power.
  • the outdoor unit of the air conditioner according to the second embodiment heats the outdoor unit base 2 with one of three levels of electric power corresponding to the temperature T detected by the temperature sensor 9. ..
  • the outdoor unit of the air conditioner according to Embodiment 2 does not always heat the outdoor unit base 2 with the same electric power when performing defrosting. Therefore, the outdoor unit of the air conditioner according to Embodiment 2 can suppress the power consumption when defrosting is performed, corresponding to the temperature T detected by the temperature sensor 9.
  • the defrost heater 19 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1 has a first heat generating portion 21 and a second heat generating portion 22 that is separated from the first heat generating portion 21.
  • the defrost heater 19 is replaced with the defrost heater 70.
  • matters different from the first embodiment will be mainly described.
  • FIG. 11 is a perspective view of the defrost heater 70 included in the outdoor unit of the air conditioner according to the third embodiment.
  • FIG. 11 schematically shows the structure of the defrost heater 70.
  • the defrost heater 70 is formed by performing bending forming processing on one rod-shaped heat generating portion 71 a plurality of times.
  • the defrost heater 70 has an eighth harness 72 and a ninth harness 73.
  • the eighth harness 72 is provided on the first end side of the heat generating section 71, and the ninth harness 73 is provided on the second end side of the heat generating section 71.
  • the eighth harness 72 and the ninth harness 73 are used when the defrost heater 70 is energized.
  • FIG. 12 is a diagram showing a configuration of the switch unit 80 included in the outdoor unit of the air conditioner according to the third embodiment.
  • FIG. 12 also shows the control unit 31, the power supply unit 34, and the defrost heater 70.
  • the switch unit 80 includes a first switch 41, a second switch 42, a fourth switch 44, and an eighth switch 81.
  • Each of the first switch 41, the second switch 42, and the fourth switch 44 is the switch described in the first embodiment.
  • the switch unit 80 further includes a zero-cross detection unit 82 that detects a zero-cross signal of the AC voltage supplied by the power supply unit 34.
  • the AC voltage is an AC voltage applied to the defrost heater 70. That is, the power supply unit 34 supplies the AC voltage applied to the defrost heater 70.
  • the controller 31 controls energization to the defrost heater 70 based on the temperature detected by the temperature sensor 9 and the zero-cross signal detected by the zero-cross detector 82. Furthermore, the control unit 31 controls the period in which the defrost heater 70 is energized based on the temperature detected by the temperature sensor 9 and the zero-cross signal detected by the zero-cross detection unit 82.
  • “Vdc” means a DC voltage.
  • the control unit 31 outputs a first control signal for controlling on and off of the first switch 41 to the first switch 41, and a second control signal for controlling on and off of the second switch 42 as a second switch.
  • the eighth switch 81 is turned on or off according to the on or off state of the second switch 42. Specifically, the eighth switch 81 connects the power supply unit 34 and the defrost heater 70 when the second switch 42 is on, and when the second switch 42 is off, the power supply unit 34. And the defrost heater 70 are not connected. Furthermore, the on-duty of the eighth switch 81 is adjusted according to the on or off state of the second switch 42, and the connection state between the power supply section 34 and the defrost heater 70 is switched.
  • An example of the eighth switch 81 is a phototriac coupler.
  • the zero-cross detector 82 detects the zero-cross signal of the AC voltage supplied by the power supply 34 and outputs the detected zero-cross signal to the controller 31.
  • the control unit 31 controls the on-duty of the eighth switch 81 based on the zero-cross signal.
  • the control unit 31 performs phase control for controlling the ignition phase every half cycle of the AC frequency.
  • the control unit 31 performs wave number control that controls the ratio of one cycle of the AC voltage to the ON cycle and the OFF cycle in a constant cycle.
  • the control unit 31 performs hybrid control that combines phase control and wave number control.
  • FIG. 13 is a diagram showing a waveform of an AC voltage when the control unit 31 included in the outdoor unit of the air conditioner according to the third embodiment performs the phase control.
  • the control unit 31 turns on the eighth switch 81 for a predetermined time from the rising timing of the zero-cross signal, and causes the power supply unit 34 to energize the defrost heater 70.
  • the shaded area in FIG. 13 indicates the AC voltage in the section in which energization is performed.
  • FIG. 14 is a diagram showing a waveform of an AC voltage when the control unit 31 included in the outdoor unit of the air conditioner according to the third embodiment performs the wave number control.
  • the control unit 31 keeps the eighth switch 81 in the ON state until the number of times the zero-cross signal is detected exceeds the predetermined number from the rising timing of the zero-cross signal, and energizes the defrost heater 70 from the power supply unit 34. Let it be done.
  • the shaded area in FIG. 14 indicates the AC voltage in the section in which energization is performed.
  • FIG. 15 is a diagram showing a relationship between the defrost heater 70 and the switch unit 80 included in the outdoor unit of the air conditioner according to the third embodiment.
  • “T” indicates the temperature detected by the temperature sensor 9
  • “thA”, “thB”, “thC”,. . . , "ThY” and “thZ” are predetermined thresholds for temperature.
  • the threshold thA is larger than the threshold thB
  • the threshold thB is larger than the threshold thC
  • the threshold thY is larger than the threshold thZ.
  • the order of the magnitudes of the threshold values is the order of the alphabet added immediately after “th”.
  • Data indicating each threshold value is stored in the storage unit 32 included in the control board 14.
  • the first switch 41 When the operation mode is other than heating, the first switch 41 is in the off state, the on-duty of the eighth switch 81 is 0%, and the power supply unit 34 and the defrost heater 70 are not connected. That is, when the operation mode is other than heating, the defrost heater 70 has no resistance.
  • the first switch 41 is in the off state and the on-duty of the eighth switch 81 is 0%.
  • the power supply unit 34 and the defrost heater 70 are not connected. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is equal to or higher than the threshold value thA, there is no resistance of the defrost heater 70.
  • the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the threshold value thA
  • the first switch 41 is in the on state
  • the on-duty of the eighth switch 81 is not 0%
  • the power supply unit 34 and the defrost heater 70 are connected.
  • the amount of heat generated by the defrost heater 70 and the power consumed by the defrost heater 70 are determined according to the on-duty ratio of the eighth switch 81. In FIG. 15, it is shown that the power consumed in the defrost heater 70 is maximum when the on-duty of the eighth switch 81 is 100%.
  • FIG. 16 is a flowchart showing an operation procedure of the control unit 31 included in the outdoor unit of the air-conditioning apparatus according to Embodiment 3.
  • the control unit 31 determines whether the operation mode is "heating" (S21).
  • the control unit 31 does not need to energize the defrost heater 70, so the first switch 41 is turned off and the first switch 41 is turned off.
  • the on-duty of the 8 switch 81 is controlled to be 0% (S22).
  • step S22 the operation of the control unit 31 proceeds to step S25 described below.
  • the control unit 31 determines that the operation mode is “heating” (Yes in S21)
  • the control unit 31 receives a signal indicating the temperature T detected by the temperature sensor 9 from the temperature sensor 9 and stores the signal in the storage unit 32.
  • the temperature T detected by the temperature sensor 9 is determined based on the temperature conversion data.
  • the temperature T detected by the temperature sensor 9 is the temperature of the outside air.
  • the controller 31 determines whether the temperature T detected by the temperature sensor 9 is lower than the threshold thA (S23).
  • the control unit 31 determines that the temperature T detected by the temperature sensor 9 is equal to or higher than the threshold value thA (No in S23), there is no need to energize the defrost heater 70, so the first switch 41 is turned off. At the same time, the on-duty of the eighth switch 81 is controlled to 0% (S22).
  • the control unit 31 determines that the temperature T detected by the temperature sensor 9 is lower than the threshold value thA (Yes in S23), the temperature T is determined based on the on-duty data for determining the on-duty corresponding to the temperature. The on-duty corresponding to T is determined. The on-duty data is stored in the storage unit 32. The control unit 31 turns on the eighth switch 81 and turns on the first switch 41 at the determined on-duty (S24).
  • step S22 or step S24 the control unit 31 determines whether or not the operation of the air conditioner is stopped by the operation of the user (S25). When determining that the operation of the air conditioner is continued (No in S25), the control unit 31 performs the process of step S21. When determining that the operation of the air conditioner is stopped (Yes in S25), the control unit 31 ends the operation.
  • the control unit 31 supplies electric power for a period corresponding to the temperature T.
  • the defrost heater 70 is supplied.
  • the defrost heater 70 heats the outdoor unit base 2 for a period corresponding to the temperature T under the control of the control unit 31.
  • the outdoor unit of the air conditioner according to Embodiment 3 heats the outdoor unit base 2 with one of a plurality of levels of electric power corresponding to the temperature T detected by the temperature sensor 9. To do. Furthermore, the outdoor unit of the air-conditioning apparatus according to Embodiment 3 controls the period during which the defrost heater 70 is energized based on the temperature T and the zero-cross signal detected by the zero-cross detection unit 82. To do. In other words, the outdoor unit of the air conditioner according to Embodiment 3 does not continue to heat the outdoor unit base 2 when performing defrosting. Therefore, the outdoor unit of the air-conditioning apparatus according to Embodiment 3 can suppress the power consumption when defrosting is performed, corresponding to the temperature T detected by the temperature sensor 9.
  • FIG. 17 is a diagram showing the processor 91 when some or all of the functions of the control unit 31 of the outdoor unit 1 of the air conditioner according to Embodiment 1 are realized by the processor 91. That is, some or all of the functions of the control unit 31 may be realized by the processor 91 that executes the program stored in the memory 92.
  • the processor 91 is a CPU (Central Processing Unit), a processing device, a computing device, a microprocessor, or a DSP (Digital Signal Processor).
  • the memory 92 is also shown in FIG.
  • control unit 31 When some or all of the functions of the control unit 31 are realized by the processor 91, some or all of the functions are realized by the processor 91 and software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 92.
  • the processor 91 realizes a part or all of the functions of the control unit 31 by reading and executing the program stored in the memory 92.
  • the outdoor unit 1 stores a program that results in some or all of the steps executed by the control unit 31. It has a memory 92 for performing. It can be said that the program stored in the memory 92 causes a computer to execute part or all of the procedure or method executed by the control unit 31.
  • the memory 92 is, for example, a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM, flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). It is a memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disk).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EEPROM registered trademark
  • It is a memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disk).
  • FIG. 18 is a diagram showing the processing circuit 93 when a part or all of the functions of the control unit 31 included in the outdoor unit 1 of the air conditioner according to Embodiment 1 are realized by the processing circuit 93. That is, some or all of the functions of the control unit 31 may be realized by the processing circuit 93.
  • the processing circuit 93 is dedicated hardware.
  • the processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Is.
  • part of the plurality of functions may be realized by software or firmware, and the rest of the plurality of functions may be realized by dedicated hardware.
  • the plurality of functions included in the control unit 31 can be realized by hardware, software, firmware, or a combination thereof.
  • a part or all of the functions of the control unit 31 of each of the second and third embodiments may be realized by a processor that executes a program stored in the memory.
  • the memory is a memory for storing a program in which some or all of the steps executed by the control unit 31 are eventually executed.
  • a part or all of the functions of the control unit 31 of each of the second embodiment and the third embodiment may be realized by a processing circuit.
  • the processing circuit is a processing circuit similar to the processing circuit 93.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An outdoor unit (1) of an air conditioner has: a temperature sensor (9) for detecting the outside air temperature; an outdoor heat exchanger (17) for performing heat exchange between a refrigerant and the outside air; a defrost heater (19) having a plurality of heat-generating portions for preventing water produced in the outdoor heat exchanger (17) from freezing; and a control unit (31) for controlling energization of the plurality of heat-generating portions contained in the defrost heater (19), on the basis of the temperature detected by the temperature sensor (9).

Description

空気調和機の室外機Air conditioner outdoor unit
 本発明は、暖房運転時にデフロストを行う空気調和機の室外機に関する。 The present invention relates to an outdoor unit of an air conditioner that defrosts during heating operation.
 空気調和機が暖房運転を行う場合、室外機は、蒸発器として機能する室外熱交換器において発生する水が室外機ベースの上に滴下した後、当該水をドレン排出孔から外部に排出する。寒冷地においては、水はドレン排出孔から排出される前に室外機ベースの上で凍結する場合がある。そのため、寒冷地向けの空気調和機では、デフロストヒータが室外機ベースの上に配置されている。 When the air conditioner performs heating operation, the outdoor unit discharges the water generated in the outdoor heat exchanger functioning as an evaporator onto the outdoor unit base, and then discharges the water from the drain discharge hole to the outside. In cold regions, water may freeze on the outdoor unit base before being discharged from the drain discharge hole. Therefore, in an air conditioner for cold regions, the defrost heater is arranged on the outdoor unit base.
 寒冷地向けの空気調和機では、室外熱交換器において発生する水が凍結するおそれがある場合、デフロストヒータに電流が流され、それにより室外機ベースが加熱されて、水が室外機ベースの上で凍結することが抑制される。その結果、氷が堆積することにより室外ファンがロックされることが抑制される。例えば、特許文献1は、デフロストを行う場合、外気の温度又は室外熱交換器の温度を検出し、検出された温度が低い場合、ヒータに通電することにより水が凍結することを抑制する技術を開示している。 In an air conditioner for cold climates, when the water generated in the outdoor heat exchanger may freeze, an electric current is passed through the defrost heater, which heats the outdoor unit base, causing the water to rise above the outdoor unit base. Freezing is suppressed. As a result, the outdoor fan is prevented from being locked by the accumulation of ice. For example, Patent Literature 1 discloses a technique of detecting the temperature of outside air or the temperature of an outdoor heat exchanger when performing defrosting, and suppressing the freezing of water by energizing a heater when the detected temperature is low. Disclosure.
実公平4-10496号公報Japanese Utility Model Publication No. 4-10496
 外気の温度が比較的高い場合、水が凍結することを抑制するための熱量は、外気の温度が比較的低い場合に比べて少なくて済むことがある。しかしながら、特許文献1が開示している技術では、外気の温度が比較的高い場合でも、外気の温度が比較的低い場合と同様の熱量を消費する。つまり、特許文献1が開示している技術では、デフロストが行われる場合、外気の温度が比較的高い場合でも比較的低い場合と同じ電力が消費される。デフロストが行われる場合の電力の消費を抑制する技術が提供されることが要求されている。  When the temperature of the outside air is relatively high, the amount of heat for suppressing freezing of water may be smaller than when the temperature of the outside air is relatively low. However, in the technique disclosed in Patent Document 1, even when the temperature of the outside air is relatively high, the same amount of heat as when the temperature of the outside air is relatively low is consumed. That is, in the technique disclosed in Patent Document 1, when defrosting is performed, the same electric power is consumed even when the temperature of the outside air is relatively high and when it is relatively low. It is required to provide a technology that suppresses power consumption when defrosting is performed.
 本発明は、上記に鑑みてなされたものであって、デフロストが行われる場合の電力の消費を抑制する空気調和機の室外機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an outdoor unit of an air conditioner that suppresses power consumption when defrosting is performed.
 上述した課題を解決し、目的を達成するために、本発明に係る空気調和機の室外機は、外気の温度を検出する温度センサと、冷媒と外気との間で熱交換を行わせるための室外熱交換器と、室外熱交換器において発生する水が凍結することを抑制する複数の発熱部を含むデフロストヒータと、温度センサによって検出された温度をもとにデフロストヒータが含む複数の発熱部への通電を制御する制御部とを有する。 In order to solve the above-mentioned problems and achieve the object, the outdoor unit of the air conditioner according to the present invention is a temperature sensor for detecting the temperature of the outside air, and is for performing heat exchange between the refrigerant and the outside air. An outdoor heat exchanger, a defrost heater including a plurality of heat generating portions that suppress freezing of water generated in the outdoor heat exchanger, and a plurality of heat generating portions included in the defrost heater based on the temperature detected by the temperature sensor. And a control unit that controls energization to the.
 本発明に係る空気調和機の室外機は、デフロストが行われる場合の電力の消費を抑制することができる。 The outdoor unit of the air conditioner according to the present invention can suppress power consumption when defrosting is performed.
実施の形態1に係る空気調和機の室外機の分解斜視図The disassembled perspective view of the outdoor unit of the air conditioner which concerns on Embodiment 1. 実施の形態1に係る空気調和機の室外機が有するデフロストヒータの斜視図The perspective view of the defrost heater which the outdoor unit of the air conditioner which concerns on Embodiment 1 has. 実施の形態1に係る空気調和機の室外機が有する制御基板の構成を示すブロック図1 is a block diagram showing a configuration of a control board included in an outdoor unit of an air conditioner according to Embodiment 1. 実施の形態1に係る空気調和機の室外機が有するスイッチ部の構成を示す図The figure which shows the structure of the switch part which the outdoor unit of the air conditioner which concerns on Embodiment 1 has. 実施の形態1に係る空気調和機の室外機が有するデフロストヒータとスイッチ部との関係を示す図The figure which shows the relationship between the defrost heater and switch part which the outdoor unit of the air conditioner which concerns on Embodiment 1 has. 実施の形態1に係る空気調和機の室外機が有する制御部の動作の手順を示すフローチャートThe flowchart which shows the procedure of operation|movement of the control part which the outdoor unit of the air conditioner which concerns on Embodiment 1 has. 実施の形態2に係る空気調和機の室外機が有するデフロストヒータの斜視図The perspective view of the defrost heater which the outdoor unit of the air conditioner which concerns on Embodiment 2 has. 実施の形態2に係る空気調和機の室外機が有するスイッチ部の構成を示す図The figure which shows the structure of the switch part which the outdoor unit of the air conditioner which concerns on Embodiment 2 has. 実施の形態2に係る空気調和機の室外機が有するデフロストヒータとスイッチ部との関係を示す図The figure which shows the relationship between the defrost heater and switch part which the outdoor unit of the air conditioner which concerns on Embodiment 2 has. 実施の形態2に係る空気調和機の室外機が有する制御部の動作の手順を示すフローチャートThe flowchart which shows the procedure of operation|movement of the control part which the outdoor unit of the air conditioner which concerns on Embodiment 2 has. 実施の形態3に係る空気調和機の室外機が有するデフロストヒータの斜視図The perspective view of the defrost heater which the outdoor unit of the air conditioner which concerns on Embodiment 3 has. 実施の形態3に係る空気調和機の室外機が有するスイッチ部の構成を示す図The figure which shows the structure of the switch part which the outdoor unit of the air conditioner which concerns on Embodiment 3 has. 実施の形態3に係る空気調和機の室外機が有する制御部が位相制御を行う場合の交流電圧の波形を示す図The figure which shows the waveform of the alternating voltage when the control part which the outdoor unit of the air conditioner which concerns on Embodiment 3 has performs phase control. 実施の形態3に係る空気調和機の室外機が有する制御部が波数制御を行う場合の交流電圧の波形を示す図The figure which shows the waveform of the alternating voltage when the control part which the outdoor unit of the air conditioner which concerns on Embodiment 3 has performs a wave number control. 実施の形態3に係る空気調和機の室外機が有するデフロストヒータとスイッチ部との関係を示す図The figure which shows the relationship between the defrost heater and switch part which the outdoor unit of the air conditioner which concerns on Embodiment 3 has. 実施の形態3に係る空気調和機の室外機が有する制御部の動作の手順を示すフローチャートThe flowchart which shows the procedure of operation|movement of the control part which the outdoor unit of the air conditioner which concerns on Embodiment 3 has. 実施の形態1に係る空気調和機の室外機が有する制御部の一部又は全部の機能がプロセッサによって実現される場合のプロセッサを示す図The figure which shows a processor in case some or all functions of the control part which the outdoor unit of the air conditioner which concerns on Embodiment 1 has are implement|achieved by a processor. 実施の形態1に係る空気調和機の室外機が有する制御部の一部又は全部の機能が処理回路によって実現される場合の処理回路を示す図The figure which shows the processing circuit in case some or all functions of the control part which the outdoor unit of the air conditioner which concerns on Embodiment 1 has are implement|achieved by the processing circuit.
 以下に、本発明の実施の形態に係る空気調和機の室外機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The outdoor unit of the air conditioner according to the embodiment of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、実施の形態1に係る空気調和機の室外機1の分解斜視図である。本願では、「空気調和機の室外機1」を「室外機1」と記載する場合がある。図1は、室外機1を分解した状態を模式的に示す図である。室外機1は、室外機ベース2と、前面パネル3と、前面パネル3に取り付けられる前面側カバー部4と、右側面パネル5と、右側面パネル5に取り付けられる右側付属部6と、天井パネル7とを含む筐体8を有する。前面パネル3は、左側面パネル部を有する。筐体8の形状は、横長長方形状である。
Embodiment 1.
FIG. 1 is an exploded perspective view of an outdoor unit 1 of an air conditioner according to Embodiment 1. In the present application, the "outdoor unit 1 of the air conditioner" may be referred to as the "outdoor unit 1". FIG. 1 is a diagram schematically showing a state in which the outdoor unit 1 is disassembled. The outdoor unit 1 includes an outdoor unit base 2, a front panel 3, a front cover part 4 attached to the front panel 3, a right side panel 5, a right side attachment part 6 attached to the right side panel 5, and a ceiling panel. And a housing 8 including the housing 7. The front panel 3 has a left side panel portion. The shape of the housing 8 is a horizontally long rectangular shape.
 室外機1は、外気の温度を検出する温度センサ9を更に有する。外気は、室外機1の外部の空気である。室外機1は、筐体8の内部を2個の空間に仕切る仕切板10を更に有する。仕切板10は、筐体8の内部を機械室側11と熱交換器側12とに仕切る。室外機1は、冷媒を圧縮する圧縮機13と、デフロストを制御するための制御基板14と、制御基板14を覆う第1基板カバー15と、第1基板カバー15を覆う第2基板カバー16とを更に有する。図1には示されていないが、室外機1は、配管、四方切換弁及び膨張弁を更に有する。圧縮機13、制御基板14、第1基板カバー15、第2基板カバー16、配管、四方切換弁及び膨張弁は、機械室側11に配置されている。温度センサ9は、制御基板14に接続されている。 The outdoor unit 1 further includes a temperature sensor 9 that detects the temperature of outside air. The outside air is the air outside the outdoor unit 1. The outdoor unit 1 further includes a partition plate 10 that partitions the inside of the housing 8 into two spaces. The partition plate 10 partitions the inside of the housing 8 into a machine room side 11 and a heat exchanger side 12. The outdoor unit 1 includes a compressor 13 that compresses a refrigerant, a control board 14 for controlling defrost, a first board cover 15 that covers the control board 14, and a second board cover 16 that covers the first board cover 15. Further has. Although not shown in FIG. 1, the outdoor unit 1 further includes piping, a four-way switching valve, and an expansion valve. The compressor 13, the control board 14, the first board cover 15, the second board cover 16, the piping, the four-way switching valve and the expansion valve are arranged on the machine chamber side 11. The temperature sensor 9 is connected to the control board 14.
 室外機1は、冷媒と外気との間で熱交換を行わせるための室外熱交換器17と、室外ファン18と、室外熱交換器17において発生する水が凍結することを抑制する複数の発熱部を含むデフロストヒータ19とを更に有する。室外熱交換器17、室外ファン18及びデフロストヒータ19は、熱交換器側12に配置されている。デフロストヒータ19の形状は、L字形状である。室外機1は、温度センサ9によって検出された温度をもとにデフロストヒータ19が含む複数の発熱部への通電を制御する制御部を有する。当該制御部は、制御基板14に含まれている。制御部の詳細については、後述する。 The outdoor unit 1 includes an outdoor heat exchanger 17 for exchanging heat between the refrigerant and the outside air, an outdoor fan 18, and a plurality of heat generations for suppressing freezing of water generated in the outdoor heat exchanger 17. And a defrost heater 19 including a portion. The outdoor heat exchanger 17, the outdoor fan 18, and the defrost heater 19 are arranged on the heat exchanger side 12. The defrost heater 19 has an L-shape. The outdoor unit 1 has a control unit that controls energization to a plurality of heat generating units included in the defrost heater 19 based on the temperature detected by the temperature sensor 9. The control unit is included in the control board 14. Details of the control unit will be described later.
 圧縮機13、室外熱交換器17、室外ファン18及びデフロストヒータ19は、室外機ベース2の上に配置されている。室外機ベース2の底面側には、凹状の排水路が設けられている。排水路は、図1に示されていない。暖房運転が行われる場合、室外熱交換器17において水が発生し、当該水は室外熱交換器17から室外機ベース2に移動する。室外機ベース2に移動した水は、排水路に集められる。排水路は、当該水を室外機1の外部に排出するためのものである。デフロストヒータ19は、排水路のなかの室外熱交換器17の下方の部位に配置されている。 The compressor 13, the outdoor heat exchanger 17, the outdoor fan 18, and the defrost heater 19 are arranged on the outdoor unit base 2. A concave drainage channel is provided on the bottom surface side of the outdoor unit base 2. The drainage channel is not shown in FIG. When the heating operation is performed, water is generated in the outdoor heat exchanger 17, and the water moves from the outdoor heat exchanger 17 to the outdoor unit base 2. The water that has moved to the outdoor unit base 2 is collected in the drainage channel. The drainage channel is for discharging the water to the outside of the outdoor unit 1. The defrost heater 19 is arranged in a portion below the outdoor heat exchanger 17 in the drainage channel.
 図2は、実施の形態1に係る空気調和機の室外機1が有するデフロストヒータ19の斜視図である。図2は、デフロストヒータ19の構造を模式的に示している。デフロストヒータ19は、第1発熱部21と、第1発熱部21と離れている第2発熱部22とを有する。第1発熱部21及び第2発熱部22は、複数の発熱部の例である。第1発熱部21及び第2発熱部22の各々は、棒状の発熱体に対して複数回の曲げ形成加工を行うことによって形成される。 FIG. 2 is a perspective view of the defrost heater 19 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1. FIG. 2 schematically shows the structure of the defrost heater 19. The defrost heater 19 has a first heat generating portion 21 and a second heat generating portion 22 that is separated from the first heat generating portion 21. The 1st exothermic part 21 and the 2nd exothermic part 22 are examples of a plurality of exothermic parts. Each of the 1st exothermic part 21 and the 2nd exothermic part 22 is formed by performing bending formation processing to a rod-shaped exothermic body a plurality of times.
 デフロストヒータ19は、第1発熱部21に配置されている第1ハーネス23及び第2ハーネス24と、第2発熱部22に配置されている第3ハーネス25及び第4ハーネス26とを更に有する。第1ハーネス23、第2ハーネス24、第3ハーネス25及び第4ハーネス26は、デフロストヒータ19に対して通電が行われる場合に用いられる。上述の通り、デフロストヒータ19は、室外機ベース2の排水路に配置されており、デフロストが行われる場合に電流が流される。 The defrost heater 19 further includes a first harness 23 and a second harness 24 arranged in the first heating section 21, and a third harness 25 and a fourth harness 26 arranged in the second heating section 22. The first harness 23, the second harness 24, the third harness 25, and the fourth harness 26 are used when the defrost heater 19 is energized. As described above, the defrost heater 19 is arranged in the drainage channel of the outdoor unit base 2, and an electric current is supplied when defrosting is performed.
 図3は、実施の形態1に係る空気調和機の室外機1が有する制御基板14の構成を示すブロック図である。制御基板14は、温度センサ9によって検出された温度をもとにデフロストヒータ19が含む複数の発熱部への通電を制御する制御部31を有する。実施の形態1では、複数の発熱部は第1発熱部21及び第2発熱部22である。図3には、温度センサ9及びデフロストヒータ19も示されている。 FIG. 3 is a block diagram showing a configuration of the control board 14 included in the outdoor unit 1 of the air conditioner according to the first embodiment. The control board 14 has a control unit 31 that controls energization to a plurality of heat generating units included in the defrost heater 19 based on the temperature detected by the temperature sensor 9. In the first embodiment, the plurality of heat generating parts are the first heat generating part 21 and the second heat generating part 22. The temperature sensor 9 and the defrost heater 19 are also shown in FIG.
 制御基板14は、制御部31によって用いられるデータを記憶する記憶部32を更に有する。記憶部32の例は半導体メモリであり、半導体メモリの例はROM(Read Only Memory)である。制御基板14は、複数のスイッチを含むスイッチ部33と、電源部34とを更に有する。制御部31は、温度センサ9、記憶部32、スイッチ部33及び電源部34に接続されている。 The control board 14 further includes a storage unit 32 that stores data used by the control unit 31. An example of the storage unit 32 is a semiconductor memory, and an example of the semiconductor memory is a ROM (Read Only Memory). The control board 14 further includes a switch unit 33 including a plurality of switches, and a power supply unit 34. The control unit 31 is connected to the temperature sensor 9, the storage unit 32, the switch unit 33, and the power supply unit 34.
 制御部31は、温度センサ9によって検出された温度を示す信号を温度センサ9から受信する。記憶部32が記憶するデータの一部は、例えば、制御部31が温度センサ9から受信した信号を温度に換算するための温度換算データである。制御部31は、温度換算データを用いて温度センサ9から受信した信号が示す温度を判断する。スイッチ部33は、電源部34及びデフロストヒータ19に接続されている。制御部31は、温度センサ9から受信した信号をもとにする温度をもとに、スイッチ部33に含まれている複数のスイッチを制御し、複数のスイッチを制御することによってデフロストヒータ19を制御する。上記の温度センサ9から受信した信号をもとにする温度は、温度センサ9によって検出された温度である。 The control unit 31 receives from the temperature sensor 9 a signal indicating the temperature detected by the temperature sensor 9. Part of the data stored in the storage unit 32 is, for example, temperature conversion data for converting the signal received from the temperature sensor 9 by the control unit 31 into temperature. The control unit 31 determines the temperature indicated by the signal received from the temperature sensor 9 using the temperature conversion data. The switch unit 33 is connected to the power supply unit 34 and the defrost heater 19. The control unit 31 controls the plurality of switches included in the switch unit 33 based on the temperature based on the signal received from the temperature sensor 9, and controls the plurality of switches to control the defrost heater 19. Control. The temperature based on the signal received from the temperature sensor 9 is the temperature detected by the temperature sensor 9.
 図4は、実施の形態1に係る空気調和機の室外機1が有するスイッチ部33の構成を示す図である。図4には、制御部31、電源部34及びデフロストヒータ19も示されている。スイッチ部33は、第1スイッチ41、第2スイッチ42、第3スイッチ43、第4スイッチ44、第5スイッチ45及び第6スイッチ46を有する。第1スイッチ41、第2スイッチ42、第3スイッチ43、第4スイッチ44、第5スイッチ45及び第6スイッチ46は、デフロストヒータ19が含む第1発熱部21及び第2発熱部22への通電を制御するために用いられる。図4において、「Vdc」は直流電圧を意味する。 FIG. 4 is a diagram illustrating a configuration of the switch unit 33 included in the outdoor unit 1 of the air conditioner according to the first embodiment. FIG. 4 also shows the control unit 31, the power supply unit 34, and the defrost heater 19. The switch unit 33 includes a first switch 41, a second switch 42, a third switch 43, a fourth switch 44, a fifth switch 45, and a sixth switch 46. The first switch 41, the second switch 42, the third switch 43, the fourth switch 44, the fifth switch 45, and the sixth switch 46 energize the first heat generating portion 21 and the second heat generating portion 22 included in the defrost heater 19. Used to control the. In FIG. 4, “Vdc” means a DC voltage.
 制御部31は、第1スイッチ41のオンとオフとを制御する第1制御信号を第1スイッチ41に出力し、第2スイッチ42のオンとオフとを制御する第2制御信号を第2スイッチ42に出力し、第3スイッチ43のオンとオフとを制御する第3制御信号を第3スイッチ43に出力する。第1スイッチ41は第1制御信号にしたがってオン又はオフの状態になり、第2スイッチ42は第2制御信号にしたがってオン又はオフの状態になり、第3スイッチ43は第3制御信号にしたがってオン又はオフの状態になる。第1スイッチ41、第2スイッチ42及び第3スイッチ43の各々の例は、トランジスタである。 The control unit 31 outputs a first control signal for controlling on and off of the first switch 41 to the first switch 41, and a second control signal for controlling on and off of the second switch 42 as a second switch. And outputs to the third switch 43 a third control signal that outputs the second control signal to the second switch 43 and controls the on/off of the third switch 43. The first switch 41 is turned on or off according to the first control signal, the second switch 42 is turned on or off according to the second control signal, and the third switch 43 is turned on according to the third control signal. Or it is turned off. An example of each of the first switch 41, the second switch 42, and the third switch 43 is a transistor.
 第4スイッチ44は、第1スイッチ41のオン又はオフの状態にしたがってオン又はオフの状態になる。第5スイッチ45は、第2スイッチ42のオン又はオフの状態にしたがってオン又はオフの状態になる。第6スイッチ46は、第3スイッチ43のオン又はオフの状態にしたがって、接続する部位を切り換える。第4スイッチ44、第5スイッチ45及び第6スイッチ46の各々の例は、リレーである。 The fourth switch 44 is turned on or off according to the on or off state of the first switch 41. The fifth switch 45 is turned on or off according to the on or off state of the second switch 42. The sixth switch 46 switches the connecting portion according to the on or off state of the third switch 43. An example of each of the fourth switch 44, the fifth switch 45, and the sixth switch 46 is a relay.
 具体的には、第1スイッチ41がオンの状態になると、第4スイッチ44の第1接点441と第2接点442とが繋がり、第2スイッチ42がオンの状態になると、第5スイッチ45の第1接点451と第2接点452とが繋がる。第3スイッチ43がオンの状態になると、第6スイッチ46の第1接点461と第2接点462とが繋がり、第3スイッチ43がオフの状態になると、第6スイッチ46の第1接点461と第3接点463とが繋がる。 Specifically, when the first switch 41 is turned on, the first contact 441 and the second contact 442 of the fourth switch 44 are connected, and when the second switch 42 is turned on, the fifth switch 45 is turned on. The first contact 451 and the second contact 452 are connected. When the third switch 43 is turned on, the first contact 461 and the second contact 462 of the sixth switch 46 are connected to each other, and when the third switch 43 is turned off, the first contact 461 of the sixth switch 46 is connected to the first contact 461. The third contact 463 is connected.
 第4スイッチ44の第1接点441と第2接点442とが繋がると、電源部34とデフロストヒータ19の第1ハーネス23とが繋がる。第5スイッチ45の第1接点451と第2接点452とが繋がると、電源部34とデフロストヒータ19の第2ハーネス24とが繋がる。 When the first contact 441 and the second contact 442 of the fourth switch 44 are connected, the power supply unit 34 and the first harness 23 of the defrost heater 19 are connected. When the first contact 451 and the second contact 452 of the fifth switch 45 are connected, the power supply unit 34 and the second harness 24 of the defrost heater 19 are connected.
 第6スイッチ46の第1接点461は、デフロストヒータ19の第3ハーネス25に接続されている。第6スイッチ46の第2接点462は、第4スイッチ44と第1ハーネス23とを結ぶ配線に接続されている。第6スイッチ46の第3接点463は、第5スイッチ45と第2ハーネス24とを結ぶ配線に接続されている。第6スイッチ46の第1接点461と第2接点462とが繋がると、第4スイッチ44とデフロストヒータ19の第3ハーネス25とが繋がる。第6スイッチ46の第1接点461と第3接点463とが繋がると、第5スイッチ45とデフロストヒータ19の第3ハーネス25とが繋がる。デフロストヒータ19の第4ハーネス26は、電源部34と第5スイッチ45とを結ぶ配線に接続されている。 The first contact 461 of the sixth switch 46 is connected to the third harness 25 of the defrost heater 19. The second contact 462 of the sixth switch 46 is connected to the wiring that connects the fourth switch 44 and the first harness 23. The third contact 463 of the sixth switch 46 is connected to the wiring that connects the fifth switch 45 and the second harness 24. When the first contact 461 and the second contact 462 of the sixth switch 46 are connected, the fourth switch 44 and the third harness 25 of the defrost heater 19 are connected. When the first contact 461 and the third contact 463 of the sixth switch 46 are connected, the fifth switch 45 and the third harness 25 of the defrost heater 19 are connected. The fourth harness 26 of the defrost heater 19 is connected to the wiring that connects the power supply unit 34 and the fifth switch 45.
 図5は、実施の形態1に係る空気調和機の室外機1が有するデフロストヒータ19とスイッチ部33との関係を示す図である。図5において、「T」は温度センサ9によって検出された温度を示し、「1th」は第1の閾値を示し、「2th」は第2の閾値を示し、「Ra」はデフロストヒータ19が有する第1発熱部21の抵抗値を示し、「Rb」はデフロストヒータ19が有する第2発熱部22の抵抗値を示している。 FIG. 5 is a diagram showing a relationship between the defrost heater 19 and the switch unit 33 included in the outdoor unit 1 of the air conditioner according to the first embodiment. In FIG. 5, “T” indicates the temperature detected by the temperature sensor 9, “1th” indicates the first threshold value, “2th” indicates the second threshold value, and “Ra” is included in the defrost heater 19. The resistance value of the first heat generating portion 21 is shown, and “Rb” shows the resistance value of the second heat generating portion 22 included in the defrost heater 19.
 第1の閾値1th及び第2の閾値2thはいずれも、温度についてのあらかじめ決められた閾値である。第2の閾値2thは、第1の閾値1thより小さい。第1の閾値1th、第2の閾値2th、第1発熱部21の抵抗値Ra及び第2発熱部22の抵抗値Rbの各々を示すデータは、制御基板14が有する記憶部32に記憶されている。 Both the first threshold value 1th and the second threshold value 2th are predetermined threshold values for temperature. The second threshold 2th is smaller than the first threshold 1th. Data indicating each of the first threshold value 1th, the second threshold value 2th, the resistance value Ra of the first heating section 21 and the resistance value Rb of the second heating section 22 is stored in the storage section 32 of the control board 14. There is.
 運転モードが暖房以外である場合、第1スイッチ41、第2スイッチ42及び第3スイッチ43の各々はオフの状態であって、電源部34とデフロストヒータ19とは接続されない。すなわち、運転モードが暖房以外である場合、デフロストヒータ19の抵抗はない状態である。 When the operation mode is other than heating, each of the first switch 41, the second switch 42, and the third switch 43 is in the off state, and the power supply unit 34 and the defrost heater 19 are not connected. That is, when the operation mode is other than heating, there is no resistance of the defrost heater 19.
 運転モードが暖房であって、温度センサ9によって検出された温度Tが第1の閾値1th以上である場合も、第1スイッチ41、第2スイッチ42及び第3スイッチ43の各々はオフの状態であって、電源部34とデフロストヒータ19とは接続されない。すなわち、運転モードが暖房であって、温度センサ9によって検出された温度Tが第1の閾値1th以上である場合、デフロストヒータ19の抵抗はない状態である。 Even when the operation mode is heating and the temperature T detected by the temperature sensor 9 is not less than the first threshold value 1th, each of the first switch 41, the second switch 42, and the third switch 43 is in the off state. Therefore, the power supply unit 34 and the defrost heater 19 are not connected. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is equal to or higher than the first threshold value 1th, the defrost heater 19 has no resistance.
 運転モードが暖房であって温度センサ9によって検出された温度Tが第1の閾値1thより低くかつ第2の閾値2th以上である場合、第1スイッチ41はオンの状態であって、第2スイッチ42及び第3スイッチ43の各々はオフの状態である。デフロストヒータ19の第1発熱部21と第2発熱部22とは直列に接続され、その状態で電源部34とデフロストヒータ19とは接続される。第1発熱部21と第2発熱部22とが直列に接続されるので、デフロストヒータ19の抵抗値は「Ra+Rb」である。 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th, the first switch 41 is in the on state and the second switch Each of the 42 and the third switch 43 is in the off state. The first heat generating portion 21 and the second heat generating portion 22 of the defrost heater 19 are connected in series, and in that state, the power supply portion 34 and the defrost heater 19 are connected. Since the first heat generating portion 21 and the second heat generating portion 22 are connected in series, the resistance value of the defrost heater 19 is “Ra+Rb”.
 運転モードが暖房であって温度センサ9によって検出された温度Tが第2の閾値2thより低い場合、第1スイッチ41、第2スイッチ42及び第3スイッチ43の各々はオンの状態である。デフロストヒータ19の第1発熱部21と第2発熱部22とは並列に接続され、その状態で電源部34とデフロストヒータ19とは接続される。第1発熱部21と第2発熱部22とが並列に接続されるので、デフロストヒータ19の抵抗値は「(Ra×Rb)/(Ra+Rb)」である。 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the second threshold 2th, each of the first switch 41, the second switch 42, and the third switch 43 is in the ON state. The first heat generating portion 21 and the second heat generating portion 22 of the defrost heater 19 are connected in parallel, and in this state, the power supply portion 34 and the defrost heater 19 are connected. Since the first heat generating portion 21 and the second heat generating portion 22 are connected in parallel, the resistance value of the defrost heater 19 is “(Ra×Rb)/(Ra+Rb)”.
 「(Ra×Rb)/(Ra+Rb)」は、「Ra+Rb」より小さい。すなわち、運転モードが暖房であって温度センサ9によって検出された温度Tが第2の閾値2thより低い場合のデフロストヒータ19における発熱量及びデフロストヒータ19において消費される電力は、運転モードが暖房であって温度Tが第1の閾値1thより低くかつ第2の閾値2th以上である場合のそれらより大きい。 “(Ra×Rb)/(Ra+Rb)” is smaller than “Ra+Rb”. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the second threshold value 2th, the heat generation amount in the defrost heater 19 and the power consumed in the defrost heater 19 are the heating mode. Therefore, the temperature T is lower than the first threshold value 1th and higher than those when the temperature T is equal to or higher than the second threshold value 2th.
 図5では、当該二つの電力を対比するために、運転モードが暖房であって温度Tが第1の閾値1thより低くかつ第2の閾値2th以上である場合にデフロストヒータ19において消費される電力は、「最小」であると示されている。運転モードが暖房であって温度Tが第2の閾値2thより低い場合にデフロストヒータ19において消費される電力は、「最大」であると示されている。 In FIG. 5, in order to compare the two electric powers, the electric power consumed in the defrost heater 19 when the operation mode is heating and the temperature T is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th. Are shown to be "minimal". It is shown that the power consumed in the defrost heater 19 when the operation mode is heating and the temperature T is lower than the second threshold value 2th is “maximum”.
 次に、室外機1が有する制御部31の動作を説明する。図6は、実施の形態1に係る空気調和機の室外機1が有する制御部31の動作の手順を示すフローチャートである。空気調和機の運転が開始されると、制御部31は、運転モードが「暖房」であるか否かを判定する(S1)。制御部31は、運転モードが「暖房」以外であると判定した場合(S1でNo)、デフロストヒータ19への通電を行う必要がないので、第1スイッチ41、第2スイッチ42及び第3スイッチ43のすべてをオフの状態にする制御を行う(S2)。ステップS2の処理が行われると、制御部31の動作は後述するステップS7に移行する。 Next, the operation of the control unit 31 included in the outdoor unit 1 will be described. FIG. 6 is a flowchart showing an operation procedure of the control unit 31 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1. When the operation of the air conditioner is started, the control unit 31 determines whether the operation mode is "heating" (S1). When determining that the operation mode is other than "heating" (No in S1), the control unit 31 does not need to energize the defrost heater 19, and therefore the first switch 41, the second switch 42, and the third switch. Control is performed to turn off all 43 (S2). When the process of step S2 is performed, the operation of the control unit 31 proceeds to step S7 described below.
 制御部31は、運転モードが「暖房」であると判定した場合(S1でYes)、温度センサ9によって検出された温度Tを示す信号を温度センサ9から受信し、記憶部32に記憶されている温度換算データをもとに、温度センサ9によって検出された温度Tを判断する。温度センサ9によって検出された温度Tは、外気の温度である。制御部31は、温度センサ9によって検出された温度Tが第1の閾値1thより低いか否かを判定する(S3)。 When the control unit 31 determines that the operation mode is “heating” (Yes in S1), the control unit 31 receives a signal indicating the temperature T detected by the temperature sensor 9 from the temperature sensor 9 and stores the signal in the storage unit 32. The temperature T detected by the temperature sensor 9 is determined based on the temperature conversion data. The temperature T detected by the temperature sensor 9 is the temperature of the outside air. The control unit 31 determines whether or not the temperature T detected by the temperature sensor 9 is lower than the first threshold value 1th (S3).
 制御部31は、温度センサ9によって検出された温度Tが第1の閾値1th以上であると判定した場合(S3でNo)、デフロストヒータ19への通電を行う必要がないので、第1スイッチ41、第2スイッチ42及び第3スイッチ43のすべてをオフの状態にする制御を行う(S2)。 When the control unit 31 determines that the temperature T detected by the temperature sensor 9 is equal to or higher than the first threshold value 1th (No in S3), it is not necessary to energize the defrost heater 19, and thus the first switch 41 is used. , The second switch 42 and the third switch 43 are all turned off (S2).
 制御部31は、温度センサ9によって検出された温度Tが第1の閾値1thより低いと判定した場合(S3でYes)、当該温度Tが第2の閾値2thより低いか否かを判定する(S4)。制御部31は、当該温度Tが第2の閾値2th以上であると判定した場合(S4でNo)、デフロストヒータ19において消費される電力を最小にするため、第1スイッチ41をオンの状態にすると共に、第2スイッチ42及び第3スイッチ43の各々をオフの状態にする制御を行う(S5)。これにより、第1発熱部21と第2発熱部22とが直列に接続され、デフロストヒータ19の抵抗値は「Ra+Rb」となる。 When determining that the temperature T detected by the temperature sensor 9 is lower than the first threshold value 1th (Yes in S3), the control unit 31 determines whether or not the temperature T is lower than the second threshold value 2th ( S4). When the control unit 31 determines that the temperature T is equal to or higher than the second threshold value 2th (No in S4), the first switch 41 is turned on in order to minimize the power consumed in the defrost heater 19. At the same time, control is performed to turn off each of the second switch 42 and the third switch 43 (S5). As a result, the first heat generating portion 21 and the second heat generating portion 22 are connected in series, and the resistance value of the defrost heater 19 becomes “Ra+Rb”.
 すなわち、温度センサ9によって検出された温度Tが第1の閾値1thより低くかつ第2の閾値2th以上である場合、制御部31は、第1発熱部21と第2発熱部22とを直列に接続して第1発熱部21と第2発熱部22とに通電させる。電源部34からデフロストヒータ19に印加される電圧を「V」と定義し、デフロストヒータ19において消費される電力を「W1」と定義すると、デフロストヒータ19において消費される電力W1は下記の式(1)によって算出される。
   W1=V/(Ra+Rb) ・・・(1)
That is, when the temperature T detected by the temperature sensor 9 is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th, the control unit 31 connects the first heat generating unit 21 and the second heat generating unit 22 in series. The first heat generating part 21 and the second heat generating part 22 are electrically connected to each other. When the voltage applied from the power supply unit 34 to the defrost heater 19 is defined as “V” and the power consumed in the defrost heater 19 is defined as “W1”, the power W1 consumed in the defrost heater 19 is expressed by the following formula ( Calculated according to 1).
W1=V 2 /(Ra+Rb) (1)
 制御部31は、温度センサ9によって検出された温度Tが第2の閾値2thより低いと判定した場合(S4でYes)、デフロストヒータ19において消費される電力を最大にするため、第1スイッチ41、第2スイッチ42及び第3スイッチ43のすべてをオンの状態にする制御を行う(S6)。これにより、第1発熱部21と第2発熱部22とが並列に接続され、デフロストヒータ19の抵抗値は「(Ra×Rb)/(Ra+Rb)」となる。 When determining that the temperature T detected by the temperature sensor 9 is lower than the second threshold value 2th (Yes in S4), the control unit 31 maximizes the power consumed in the defrost heater 19, and thus the first switch 41 is used. , The second switch 42 and the third switch 43 are all turned on (S6). As a result, the first heat generating portion 21 and the second heat generating portion 22 are connected in parallel, and the resistance value of the defrost heater 19 becomes “(Ra×Rb)/(Ra+Rb)”.
 すなわち、温度センサ9によって検出された温度Tが第2の閾値2thより低い場合、制御部31は、第1発熱部21と第2発熱部22とを並列に接続して第1発熱部21と第2発熱部22とに通電させる。電源部34からデフロストヒータ19に印加される電圧を「V」と定義し、デフロストヒータ19において消費される電力を「W2」と定義すると、デフロストヒータ19において消費される電力W2は下記の式(2)によって算出される。
   W2=(Ra+Rb)×V/(Ra×Rb) ・・・(2)
That is, when the temperature T detected by the temperature sensor 9 is lower than the second threshold value 2th, the control unit 31 connects the first heat generating unit 21 and the second heat generating unit 22 in parallel and connects the first heat generating unit 21 with the first heat generating unit 21. The second heat generating portion 22 is energized. When the voltage applied from the power supply unit 34 to the defrost heater 19 is defined as “V” and the power consumed in the defrost heater 19 is defined as “W2”, the power W2 consumed in the defrost heater 19 is expressed by the following formula ( Calculated according to 2).
W2=(Ra+Rb)×V 2 /(Ra×Rb) (2)
 ステップS5又はステップS6の処理が行われた後、制御部31は、ユーザの操作によって空気調和機が運転を停止した状態か否かを判定する(S7)。制御部31は、空気調和機の運転が継続して行われていると判定した場合(S7でNo)、ステップS1の処理を行う。制御部31は、空気調和機の運転が停止していると判定した場合(S7でYes)、動作を終了する。 After the processing of step S5 or step S6 is performed, the control unit 31 determines whether or not the operation of the air conditioner is stopped by the operation of the user (S7). When determining that the operation of the air conditioner is continuously performed (No in S7), the control unit 31 performs the process of step S1. When determining that the operation of the air conditioner is stopped (Yes in S7), the control unit 31 ends the operation.
 上述の通り、実施の形態1では、制御部31は、空気調和機が暖房運転を行う場合、温度センサ9によって検出された温度Tをもとにデフロストヒータ19が含む複数の発熱部への通電を制御する。具体的には、当該温度Tが第1の閾値1thより低くかつ第2の閾値2th以上である場合、制御部31は、第1発熱部21と第2発熱部22とを直列に接続して第1発熱部21と第2発熱部22とに通電させる。当該温度Tが第2の閾値2thより低い場合、制御部31は、第1発熱部21と第2発熱部22とを並列に接続して第1発熱部21と第2発熱部22とに通電させる。 As described above, in the first embodiment, when the air conditioner performs the heating operation, the control unit 31 energizes the plurality of heat generating units included in the defrost heater 19 based on the temperature T detected by the temperature sensor 9. To control. Specifically, when the temperature T is lower than the first threshold value 1th and equal to or higher than the second threshold value 2th, the control unit 31 connects the first heating unit 21 and the second heating unit 22 in series. The first heat generating portion 21 and the second heat generating portion 22 are energized. When the temperature T is lower than the second threshold value 2th, the control unit 31 connects the first heat generating unit 21 and the second heat generating unit 22 in parallel and energizes the first heat generating unit 21 and the second heat generating unit 22. Let
 デフロストヒータ19は、制御部31による制御にしたがって、運転モードが「暖房」であって当該温度Tが第1の閾値1thより低くかつ第2の閾値2th以上である場合、最小の電力で室外機ベース2を加熱する。当該温度Tが第2の閾値2thより低い場合、デフロストヒータ19は、最大の電力で室外機ベース2を加熱する。 Under control of the control unit 31, the defrost heater 19 uses the minimum electric power when the operation mode is “heating” and the temperature T is lower than the first threshold 1th and equal to or higher than the second threshold 2th. Heat the base 2. When the temperature T is lower than the second threshold 2th, the defrost heater 19 heats the outdoor unit base 2 with the maximum electric power.
 すなわち、実施の形態1に係る空気調和機の室外機1は、デフロストを行う場合、温度センサ9によって検出された温度Tに対応して、2段階の電力のいずれかで室外機ベース2を加熱する。言い換えると、室外機1は、デフロストを行う場合、常に同一の電力で室外機ベース2を加熱しない。したがって、室外機1は、温度センサ9によって検出された温度Tに対応して、デフロストが行われる場合の電力の消費を抑制することができる。 That is, when performing defrosting, the outdoor unit 1 of the air conditioner according to the first embodiment heats the outdoor unit base 2 with either of two levels of electric power in accordance with the temperature T detected by the temperature sensor 9. To do. In other words, the outdoor unit 1 does not always heat the outdoor unit base 2 with the same electric power when performing defrosting. Therefore, the outdoor unit 1 can suppress the power consumption when defrosting is performed, corresponding to the temperature T detected by the temperature sensor 9.
実施の形態2.
 実施の形態1に係る空気調和機の室外機1が有するデフロストヒータ19は、第1発熱部21と、第1発熱部21と離れている第2発熱部22とを有する。実施の形態2では、デフロストヒータ19はデフロストヒータ50に置き換えられる。実施の形態2では、実施の形態1と相違する事項を主に説明する。図7は、実施の形態2に係る空気調和機の室外機が有するデフロストヒータ50の斜視図である。図7は、デフロストヒータ50の構造を模式的に示している。デフロストヒータ50は、ひとつの棒状の発熱体に対して複数回の曲げ形成加工を行うことによって形成される。
Embodiment 2.
The defrost heater 19 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1 has a first heat generating portion 21 and a second heat generating portion 22 that is separated from the first heat generating portion 21. In the second embodiment, the defrost heater 19 is replaced with the defrost heater 50. In the second embodiment, matters different from the first embodiment will be mainly described. FIG. 7 is a perspective view of the defrost heater 50 included in the outdoor unit of the air conditioner according to the second embodiment. FIG. 7 schematically shows the structure of the defrost heater 50. The defrost heater 50 is formed by performing bending forming processing on a single rod-shaped heating element a plurality of times.
 デフロストヒータ50は、第5ハーネス51、第6ハーネス52及び第7ハーネス53を有する。第5ハーネス51は発熱体の第1の端部側に設けられており、第6ハーネス52は発熱体の第2の端部側に設けられている。第7ハーネス53は、発熱体の中間部に設けられている。第5ハーネス51、第6ハーネス52及び第7ハーネス53は、デフロストヒータ50に対して通電が行われる場合に用いられる。 The defrost heater 50 has a fifth harness 51, a sixth harness 52, and a seventh harness 53. The fifth harness 51 is provided on the first end side of the heating element, and the sixth harness 52 is provided on the second end side of the heating element. The seventh harness 53 is provided in the middle of the heating element. The fifth harness 51, the sixth harness 52, and the seventh harness 53 are used when the defrost heater 50 is energized.
 発熱体の第5ハーネス51から第7ハーネス53までの部分は第3発熱部54であり、発熱体の第7ハーネス53から第6ハーネス52までの部分は第4発熱部55である。つまり、デフロストヒータ50は、第3発熱部54と、第3発熱部54に直列に接続されている第4発熱部55とを有する。第3発熱部54及び第4発熱部55は、複数の発熱部の例である。第4発熱部55の抵抗値は、第3発熱部54の抵抗値より小さい。 The portion of the heating element from the fifth harness 51 to the seventh harness 53 is the third heating portion 54, and the portion of the heating element from the seventh harness 53 to the sixth harness 52 is the fourth heating portion 55. That is, the defrost heater 50 has the third heat generating portion 54 and the fourth heat generating portion 55 connected in series to the third heat generating portion 54. The third heat generating portion 54 and the fourth heat generating portion 55 are examples of a plurality of heat generating portions. The resistance value of the fourth heat generating portion 55 is smaller than the resistance value of the third heat generating portion 54.
 図8は、実施の形態2に係る空気調和機の室外機が有するスイッチ部60の構成を示す図である。図8には、制御部31、電源部34及びデフロストヒータ50も示されている。スイッチ部60は、第1スイッチ41、第2スイッチ42、第3スイッチ43、第4スイッチ44、第5スイッチ45及び第7スイッチ61を有する。第1スイッチ41、第2スイッチ42、第3スイッチ43、第4スイッチ44及び第5スイッチ45の各々は、実施の形態1において説明されたスイッチである。図8において、「Vdc」は直流電圧を意味する。 FIG. 8 is a diagram showing a configuration of the switch unit 60 included in the outdoor unit of the air conditioner according to the second embodiment. FIG. 8 also shows the control unit 31, the power supply unit 34, and the defrost heater 50. The switch unit 60 includes a first switch 41, a second switch 42, a third switch 43, a fourth switch 44, a fifth switch 45, and a seventh switch 61. Each of the first switch 41, the second switch 42, the third switch 43, the fourth switch 44, and the fifth switch 45 is the switch described in the first embodiment. In FIG. 8, “Vdc” means a DC voltage.
 制御部31は、第1スイッチ41のオンとオフとを制御する第1制御信号を第1スイッチ41に出力し、第2スイッチ42のオンとオフとを制御する第2制御信号を第2スイッチ42に出力し、第3スイッチ43のオンとオフとを制御する第3制御信号を第3スイッチ43に出力する。第1スイッチ41は第1制御信号にしたがってオン又はオフの状態になり、第2スイッチ42は第2制御信号にしたがってオン又はオフの状態になり、第3スイッチ43は第3制御信号にしたがってオン又はオフの状態になる。 The control unit 31 outputs a first control signal for controlling on and off of the first switch 41 to the first switch 41, and a second control signal for controlling on and off of the second switch 42 as a second switch. And outputs to the third switch 43 a third control signal that outputs the second control signal to the second switch 43 and controls the on/off of the third switch 43. The first switch 41 is turned on or off according to the first control signal, the second switch 42 is turned on or off according to the second control signal, and the third switch 43 is turned on according to the third control signal. Or it is turned off.
 第4スイッチ44は、第1スイッチ41のオン又はオフの状態にしたがってオン又はオフの状態になる。第5スイッチ45は、第2スイッチ42のオン又はオフの状態にしたがってオン又はオフの状態になる。第7スイッチ61は、第3スイッチ43のオン又はオフの状態にしたがってオン又はオフの状態になる。第7スイッチ61の例は、リレーである。 The fourth switch 44 is turned on or off according to the on or off state of the first switch 41. The fifth switch 45 is turned on or off according to the on or off state of the second switch 42. The seventh switch 61 is turned on or off according to the on or off state of the third switch 43. An example of the seventh switch 61 is a relay.
 具体的には、第1スイッチ41がオンの状態になると、第4スイッチ44の第1接点441と第2接点442とが繋がり、第2スイッチ42がオンの状態になると、第5スイッチ45の第1接点451と第2接点452とが繋がる。第3スイッチ43がオンの状態になると、第7スイッチ61の第1接点611と第2接点612とが繋がる。 Specifically, when the first switch 41 is turned on, the first contact 441 and the second contact 442 of the fourth switch 44 are connected, and when the second switch 42 is turned on, the fifth switch 45 is turned on. The first contact 451 and the second contact 452 are connected. When the third switch 43 is turned on, the first contact 611 and the second contact 612 of the seventh switch 61 are connected.
 第4スイッチ44の第1接点441と第2接点442とが繋がると、電源部34とデフロストヒータ50の第5ハーネス51とが繋がる。第5スイッチ45の第1接点451と第2接点452とが繋がると、電源部34とデフロストヒータ50の第7ハーネス53とが繋がる。第7スイッチ61の第1接点611と第2接点612とが繋がると、第4スイッチ44と第5ハーネス51とを結ぶ配線と、第5スイッチ45と第7ハーネス53とを結ぶ配線とが繋がる。デフロストヒータ50の第6ハーネス52は、電源部34と第5スイッチ45とを結ぶ配線に接続されている。 When the first contact 441 and the second contact 442 of the fourth switch 44 are connected, the power supply unit 34 and the fifth harness 51 of the defrost heater 50 are connected. When the first contact 451 and the second contact 452 of the fifth switch 45 are connected, the power supply unit 34 and the seventh harness 53 of the defrost heater 50 are connected. When the first contact 611 and the second contact 612 of the seventh switch 61 are connected, the wiring that connects the fourth switch 44 and the fifth harness 51 and the wiring that connects the fifth switch 45 and the seventh harness 53 are connected. .. The sixth harness 52 of the defrost heater 50 is connected to the wiring that connects the power supply unit 34 and the fifth switch 45.
 図9は、実施の形態2に係る空気調和機の室外機が有するデフロストヒータ50とスイッチ部60との関係を示す図である。図9において、「T」は温度センサ9によって検出された温度を示し、「3th」は第3の閾値を示し、「4th」は第4の閾値を示し、「5th」は第5の閾値を示し、「Rc」はデフロストヒータ50が有する第3発熱部54の抵抗値を示し、「Rd」はデフロストヒータ50が有する第4発熱部55の抵抗値を示している。「Rc」は「Rd」より大きいことを仮定する。 FIG. 9 is a diagram showing a relationship between the defrost heater 50 and the switch unit 60 included in the outdoor unit of the air conditioner according to the second embodiment. In FIG. 9, “T” indicates the temperature detected by the temperature sensor 9, “3th” indicates the third threshold value, “4th” indicates the fourth threshold value, and “5th” indicates the fifth threshold value. “Rc” indicates the resistance value of the third heating portion 54 included in the defrost heater 50, and “Rd” indicates the resistance value of the fourth heating portion 55 included in the defrost heater 50. It is assumed that "Rc" is greater than "Rd".
 第3の閾値3th、第4の閾値4th及び第5の閾値5thはいずれも、温度についてのあらかじめ決められた閾値である。第4の閾値4thは第3の閾値3thより小さく、第5の閾値5thは第4の閾値4thより小さい。第3の閾値3th、第4の閾値4th、第5の閾値5th、第3発熱部54の抵抗値Rc及び第4発熱部55の抵抗値Rdの各々を示すデータは、制御基板14が有する記憶部32に記憶されている。 Each of the third threshold value 3th, the fourth threshold value 4th, and the fifth threshold value 5th is a predetermined threshold value for temperature. The fourth threshold 4th is smaller than the third threshold 3th, and the fifth threshold 5th is smaller than the fourth threshold 4th. Data indicating each of the third threshold value 3th, the fourth threshold value 4th, the fifth threshold value 5th, the resistance value Rc of the third heating portion 54, and the resistance value Rd of the fourth heating portion 55 is stored in the control board 14. It is stored in the unit 32.
 運転モードが暖房以外である場合、第1スイッチ41、第2スイッチ42及び第3スイッチ43の各々はオフの状態であって、電源部34とデフロストヒータ50とは接続されない。すなわち、運転モードが暖房以外である場合、デフロストヒータ50の抵抗はない状態である。 When the operation mode is other than heating, each of the first switch 41, the second switch 42, and the third switch 43 is in the off state, and the power supply unit 34 and the defrost heater 50 are not connected. That is, when the operation mode is other than heating, the defrost heater 50 has no resistance.
 運転モードが暖房であって、温度センサ9によって検出された温度Tが第3の閾値3th以上である場合も、第1スイッチ41、第2スイッチ42及び第3スイッチ43の各々はオフの状態であって、電源部34とデフロストヒータ50とは接続されない。すなわち、運転モードが暖房であって、温度センサ9によって検出された温度Tが第3の閾値3th以上である場合、デフロストヒータ50の抵抗はない状態である。 Even when the operation mode is heating and the temperature T detected by the temperature sensor 9 is equal to or higher than the third threshold value 3th, each of the first switch 41, the second switch 42, and the third switch 43 is in the off state. Therefore, the power supply unit 34 and the defrost heater 50 are not connected. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is equal to or higher than the third threshold value 3th, there is no resistance of the defrost heater 50.
 運転モードが暖房であって温度センサ9によって検出された温度Tが第3の閾値3thより低くかつ第4の閾値4th以上である場合、第1スイッチ41はオンの状態であって、第2スイッチ42及び第3スイッチ43の各々はオフの状態である。デフロストヒータ50の第3発熱部54と第4発熱部55とは直列に接続され、その状態で電源部34とデフロストヒータ50とは接続される。第3発熱部54と第4発熱部55とが直列に接続されるので、デフロストヒータ50の抵抗値は「Rc+Rd」である。 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the first switch 41 is in the ON state and the second switch 41 is in the ON state. Each of the 42 and the third switch 43 is in the off state. The third heat generating portion 54 and the fourth heat generating portion 55 of the defrost heater 50 are connected in series, and in this state, the power supply portion 34 and the defrost heater 50 are connected. Since the third heat generating portion 54 and the fourth heat generating portion 55 are connected in series, the resistance value of the defrost heater 50 is “Rc+Rd”.
 運転モードが暖房であって温度センサ9によって検出された温度Tが第4の閾値4thより低くかつ第5の閾値5th以上である場合、第1スイッチ41及び第2スイッチ42の各々はオンの状態であって、第3スイッチ43はオフの状態である。電源部34は、デフロストヒータ50の第3発熱部54のみに接続される。デフロストヒータ50の抵抗値は、「Rc」である。 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the fourth threshold value 4th and is equal to or higher than the fifth threshold value 5th, each of the first switch 41 and the second switch 42 is in the ON state. Therefore, the third switch 43 is in the off state. The power supply section 34 is connected only to the third heating section 54 of the defrost heater 50. The resistance value of the defrost heater 50 is “Rc”.
 運転モードが暖房であって温度センサ9によって検出された温度Tが第5の閾値5thより低い場合、第1スイッチ41及び第3スイッチ43の各々はオンの状態であって、第2スイッチ42はオフの状態である。電源部34は、デフロストヒータ50の第4発熱部55のみに接続される。デフロストヒータ50の抵抗値は、「Rd」である。 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the fifth threshold value 5th, each of the first switch 41 and the third switch 43 is in the ON state, and the second switch 42 is It is off. The power supply section 34 is connected only to the fourth heating section 55 of the defrost heater 50. The resistance value of the defrost heater 50 is “Rd”.
 「Rc+Rd」は、「Rc」及び「Rd」より大きい。上述の通り、「Rc」は「Rd」より大きい。すなわち、運転モードが暖房であって温度センサ9によって検出された温度Tが第5の閾値5thより低い場合のデフロストヒータ50における発熱量及びデフロストヒータ50において消費される電力は、運転モードが暖房であって温度Tが第5の閾値5th以上である場合のそれらより大きい。運転モードが暖房であって当該温度Tが第4の閾値4thより低くかつ第5の閾値5th以上である場合のデフロストヒータ50における発熱量及びデフロストヒータ50において消費される電力は、運転モードが暖房であって温度Tが第3の閾値3thより低くかつ第4の閾値4th以上である場合のそれらより大きい。 “Rc+Rd” is greater than “Rc” and “Rd”. As described above, “Rc” is larger than “Rd”. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the fifth threshold value 5th, the heat generation amount in the defrost heater 50 and the power consumed in the defrost heater 50 are the heating mode. Therefore, the temperature T is higher than those when the temperature is equal to or higher than the fifth threshold value 5th. When the operation mode is heating and the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th, the heat generation amount in the defrost heater 50 and the power consumed in the defrost heater 50 are the heating mode. And the temperature T is lower than the third threshold value 3th and higher than those when the temperature T is equal to or higher than the fourth threshold value 4th.
 図9では、当該三つの電力を対比するために、運転モードが暖房であって温度Tが第3の閾値3thより低くかつ第4の閾値4th以上である場合にデフロストヒータ50において消費される電力は、「最小」であると示されている。運転モードが暖房であって温度Tが第4の閾値4thより低くかつ第5の閾値5th以上である場合にデフロストヒータ50において消費される電力は、「中間」であると示されている。運転モードが暖房であって温度Tが第5の閾値5thより低い場合にデフロストヒータ50において消費される電力は、「最大」であると示されている。 In FIG. 9, in order to compare the three electric powers, the electric power consumed in the defrost heater 50 when the operation mode is heating and the temperature T is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th. Are shown to be "minimal". The power consumed in the defrost heater 50 when the operation mode is heating and the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th is shown as "intermediate". The power consumed in the defrost heater 50 when the operation mode is heating and the temperature T is lower than the fifth threshold value 5th is shown to be “maximum”.
 次に、実施の形態2に係る空気調和機の室外機が有する制御部31の動作を説明する。図10は、実施の形態2に係る空気調和機の室外機が有する制御部31の動作の手順を示すフローチャートである。空気調和機の運転が開始されると、制御部31は、運転モードが「暖房」であるか否かを判定する(S11)。制御部31は、運転モードが「暖房」以外であると判定した場合(S11でNo)、デフロストヒータ50への通電を行う必要がないので、第1スイッチ41、第2スイッチ42及び第3スイッチ43のすべてをオフの状態にする制御を行う(S12)。ステップS2の処理が行われると、制御部31の動作は後述するステップS19に移行する。 Next, the operation of the control unit 31 included in the outdoor unit of the air-conditioning apparatus according to Embodiment 2 will be described. FIG. 10 is a flowchart showing an operation procedure of the control unit 31 included in the outdoor unit of the air-conditioning apparatus according to Embodiment 2. When the operation of the air conditioner is started, the control unit 31 determines whether the operation mode is "heating" (S11). When determining that the operation mode is other than "heating" (No in S11), the control unit 31 does not need to energize the defrost heater 50, and thus the first switch 41, the second switch 42, and the third switch. Control is performed to turn off all 43 (S12). When the process of step S2 is performed, the operation of the control unit 31 proceeds to step S19 described below.
 制御部31は、運転モードが「暖房」であると判定した場合(S11でYes)、温度センサ9によって検出された温度Tを示す信号を温度センサ9から受信し、記憶部32に記憶されている温度換算データをもとに、温度センサ9によって検出された温度Tを判断する。温度センサ9によって検出された温度Tは、外気の温度である。制御部31は、温度センサ9によって検出された温度Tが第3の閾値3thより低いか否かを判定する(S13)。 When the control unit 31 determines that the operation mode is "heating" (Yes in S11), the control unit 31 receives a signal indicating the temperature T detected by the temperature sensor 9 from the temperature sensor 9 and stores the signal in the storage unit 32. The temperature T detected by the temperature sensor 9 is determined based on the temperature conversion data. The temperature T detected by the temperature sensor 9 is the temperature of the outside air. The control unit 31 determines whether the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th (S13).
 制御部31は、温度センサ9によって検出された温度Tが第3の閾値3th以上であると判定した場合(S13でNo)、デフロストヒータ50への通電を行う必要がないので、第1スイッチ41、第2スイッチ42及び第3スイッチ43のすべてをオフの状態にする制御を行う(S12)。 When the control unit 31 determines that the temperature T detected by the temperature sensor 9 is equal to or higher than the third threshold value 3th (No in S13), it is not necessary to energize the defrost heater 50, and thus the first switch 41 is used. , The second switch 42 and the third switch 43 are all turned off (S12).
 制御部31は、温度センサ9によって検出された温度Tが第3の閾値3thより低いと判定した場合(S13でYes)、当該温度Tが第4の閾値4thより低いか否かを判定する(S14)。制御部31は、当該温度Tが第4の閾値4th以上であると判定した場合(S14でNo)、デフロストヒータ50において消費される電力を最小にするため、第1スイッチ41をオンの状態にすると共に、第2スイッチ42及び第3スイッチ43の各々をオフの状態にする制御を行う(S15)。これにより、第3発熱部54と第4発熱部55とが直列に接続され、デフロストヒータ50の抵抗値は「Rc+Rd」となる。 When the control unit 31 determines that the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th (Yes in S13), it determines whether or not the temperature T is lower than the fourth threshold value 4th ( S14). When determining that the temperature T is equal to or higher than the fourth threshold value 4th (No in S14), the control unit 31 turns on the first switch 41 in order to minimize the power consumed in the defrost heater 50. At the same time, control is performed to turn off each of the second switch 42 and the third switch 43 (S15). As a result, the third heating portion 54 and the fourth heating portion 55 are connected in series, and the resistance value of the defrost heater 50 becomes “Rc+Rd”.
 すなわち、温度センサ9によって検出された温度Tが第3の閾値3thより低くかつ第4の閾値4th以上である場合、制御部31は、第3発熱部54と第4発熱部55とを直列に接続して第3発熱部54と第4発熱部55とに通電させる。電源部34からデフロストヒータ50に印加される電圧を「V」と定義し、デフロストヒータ50において消費される電力を「W3」と定義すると、デフロストヒータ50において消費される電力W3は下記の式(3)によって算出される。
   W3=V/(Rc+Rd) ・・・(3)
That is, when the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the control unit 31 connects the third heating unit 54 and the fourth heating unit 55 in series. The third heat generating portion 54 and the fourth heat generating portion 55 are electrically connected by connecting. When the voltage applied from the power supply unit 34 to the defrost heater 50 is defined as “V” and the power consumed in the defrost heater 50 is defined as “W3”, the power W3 consumed in the defrost heater 50 is expressed by the following formula ( 3) is calculated.
W3=V 2 /(Rc+Rd) (3)
 制御部31は、温度センサ9によって検出された温度Tが第4の閾値4thより低いと判定した場合(S14でYes)、当該温度Tが第5の閾値5thより低いか否かを判定する(S16)。制御部31は、当該温度Tが第5の閾値5th以上であると判定した場合(S16でNo)、デフロストヒータ50において消費される電力を中間にするため、第1スイッチ41及び第2スイッチ42の各々をオンの状態にすると共に、第3スイッチ43をオフの状態にする制御を行う(S17)。これにより、電源部34は、デフロストヒータ50の第3発熱部54のみに接続される。デフロストヒータ50の抵抗値は、「Rc」となる。 When determining that the temperature T detected by the temperature sensor 9 is lower than the fourth threshold value 4th (Yes in S14), the control unit 31 determines whether or not the temperature T is lower than the fifth threshold value 5th ( S16). When determining that the temperature T is equal to or higher than the fifth threshold value 5th (No in S16), the control unit 31 sets the first switch 41 and the second switch 42 in order to make the power consumed in the defrost heater 50 intermediate. Each of the switches is turned on and the third switch 43 is turned off (S17). As a result, the power supply section 34 is connected only to the third heating section 54 of the defrost heater 50. The resistance value of the defrost heater 50 is “Rc”.
 すなわち、温度センサ9によって検出された温度Tが第4の閾値4thより低くかつ第5の閾値5th以上である場合、制御部31は、第3発熱部54のみに通電させる。電源部34からデフロストヒータ50に印加される電圧を「V」と定義し、デフロストヒータ50において消費される電力を「W4」と定義すると、デフロストヒータ50において消費される電力W4は下記の式(4)によって算出される。
   W4=V/Rc ・・・(4)
That is, when the temperature T detected by the temperature sensor 9 is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th, the control unit 31 energizes only the third heat generating unit 54. When the voltage applied from the power supply unit 34 to the defrost heater 50 is defined as “V” and the power consumed in the defrost heater 50 is defined as “W4”, the power W4 consumed in the defrost heater 50 is expressed by the following formula ( 4).
W4=V 2 /Rc (4)
 制御部31は、温度センサ9によって検出された温度Tが第5の閾値5thより低いと判定した場合(S16でYes)、デフロストヒータ50において消費される電力を最大にするため、第1スイッチ41及び第3スイッチ43の各々をオンの状態にすると共に、第2スイッチ42をオフの状態にする制御を行う(S18)。これにより、電源部34は、デフロストヒータ50の第4発熱部55のみに接続される。デフロストヒータ50の抵抗値は、「Rd」となる。 When determining that the temperature T detected by the temperature sensor 9 is lower than the fifth threshold value 5th (Yes in S16), the control unit 31 maximizes the electric power consumed in the defrost heater 50, and thus the first switch 41 is used. The third switch 43 and the third switch 43 are turned on and the second switch 42 is turned off (S18). As a result, the power supply section 34 is connected only to the fourth heat generating section 55 of the defrost heater 50. The resistance value of the defrost heater 50 is “Rd”.
 すなわち、温度センサ9によって検出された温度Tが第5の閾値5thより低い場合、制御部31は、第4発熱部55のみに通電させる。電源部34からデフロストヒータ50に印加される電圧を「V」と定義し、デフロストヒータ50において消費される電力を「W5」と定義すると、デフロストヒータ50において消費される電力W5は下記の式(5)によって算出される。
   W5=V/Rd ・・・(5)
That is, when the temperature T detected by the temperature sensor 9 is lower than the fifth threshold value 5th, the control unit 31 energizes only the fourth heat generating unit 55. When the voltage applied from the power supply unit 34 to the defrost heater 50 is defined as “V” and the power consumed in the defrost heater 50 is defined as “W5”, the power W5 consumed in the defrost heater 50 is expressed by the following equation ( 5).
W5=V 2 /Rd (5)
 ステップS17又はステップS18の処理が行われた後、制御部31は、ユーザの操作によって空気調和機が運転を停止した状態か否かを判定する(S19)。制御部31は、空気調和機の運転が継続して行われていると判定した場合(S19でNo)、ステップS11の処理を行う。制御部31は、空気調和機の運転が停止していると判定した場合(S19でYes)、動作を終了する。 After the processing of step S17 or step S18 is performed, the control unit 31 determines whether or not the operation of the air conditioner is stopped by the operation of the user (S19). When determining that the operation of the air conditioner is continuously performed (No in S19), the control unit 31 performs the process of step S11. When determining that the operation of the air conditioner is stopped (Yes in S19), the control unit 31 ends the operation.
 上述の通り、実施の形態2では、温度センサ9によって検出された温度Tが第3の閾値3thより低くかつ第4の閾値4th以上である場合、制御部31は、第3発熱部54と第4発熱部55とを直列に接続して第3発熱部54と第4発熱部55とに通電させる。当該温度Tが第4の閾値4thより低くかつ第5の閾値5th以上である場合、制御部31は、第3発熱部54のみに通電させる。当該温度Tが第5の閾値5thより低い場合、制御部31は、第4発熱部55のみに通電させる。 As described above, in the second embodiment, when the temperature T detected by the temperature sensor 9 is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the control unit 31 causes the third heat generating unit 54 and the third heat generating unit 54 to operate. The fourth heat generating portion 55 is connected in series to energize the third heat generating portion 54 and the fourth heat generating portion 55. When the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th, the control unit 31 energizes only the third heat generating unit 54. When the temperature T is lower than the fifth threshold value 5th, the control unit 31 energizes only the fourth heat generating unit 55.
 デフロストヒータ50は、制御部31による制御にしたがって、運転モードが「暖房」であって当該温度Tが第3の閾値3thより低くかつ第4の閾値4th以上である場合、最小の電力で室外機ベース2を加熱する。デフロストヒータ50は、当該温度Tが第4の閾値4thより低くかつ第5の閾値5th以上である場合、中間の電力で室外機ベース2を加熱する。デフロストヒータ50は、当該温度Tが第5の閾値5thより低い場合、最大の電力で室外機ベース2を加熱する。 The defrost heater 50, under the control of the control unit 31, when the operation mode is “heating” and the temperature T is lower than the third threshold value 3th and equal to or higher than the fourth threshold value 4th, the outdoor unit with minimum power. Heat the base 2. When the temperature T is lower than the fourth threshold value 4th and equal to or higher than the fifth threshold value 5th, the defrost heater 50 heats the outdoor unit base 2 with an intermediate electric power. When the temperature T is lower than the fifth threshold value 5th, the defrost heater 50 heats the outdoor unit base 2 with maximum electric power.
 すなわち、実施の形態2に係る空気調和機の室外機は、デフロストを行う場合、温度センサ9によって検出された温度Tに対応して、3段階の電力のいずれかで室外機ベース2を加熱する。言い換えると、実施の形態2に係る空気調和機の室外機は、デフロストを行う場合、常に同一の電力で室外機ベース2を加熱しない。したがって、実施の形態2に係る空気調和機の室外機は、温度センサ9によって検出された温度Tに対応して、デフロストが行われる場合の電力の消費を抑制することができる。 That is, when performing defrosting, the outdoor unit of the air conditioner according to the second embodiment heats the outdoor unit base 2 with one of three levels of electric power corresponding to the temperature T detected by the temperature sensor 9. .. In other words, the outdoor unit of the air conditioner according to Embodiment 2 does not always heat the outdoor unit base 2 with the same electric power when performing defrosting. Therefore, the outdoor unit of the air conditioner according to Embodiment 2 can suppress the power consumption when defrosting is performed, corresponding to the temperature T detected by the temperature sensor 9.
実施の形態3.
 実施の形態1に係る空気調和機の室外機1が有するデフロストヒータ19は、第1発熱部21と、第1発熱部21と離れている第2発熱部22とを有する。実施の形態3では、デフロストヒータ19はデフロストヒータ70に置き換えられる。実施の形態3では、実施の形態1と相違する事項を主に説明する。図11は、実施の形態3に係る空気調和機の室外機が有するデフロストヒータ70の斜視図である。図11は、デフロストヒータ70の構造を模式的に示している。デフロストヒータ70は、ひとつの棒状の発熱部71に対して複数回の曲げ形成加工を行うことによって形成される。
Embodiment 3.
The defrost heater 19 included in the outdoor unit 1 of the air-conditioning apparatus according to Embodiment 1 has a first heat generating portion 21 and a second heat generating portion 22 that is separated from the first heat generating portion 21. In the third embodiment, the defrost heater 19 is replaced with the defrost heater 70. In the third embodiment, matters different from the first embodiment will be mainly described. FIG. 11 is a perspective view of the defrost heater 70 included in the outdoor unit of the air conditioner according to the third embodiment. FIG. 11 schematically shows the structure of the defrost heater 70. The defrost heater 70 is formed by performing bending forming processing on one rod-shaped heat generating portion 71 a plurality of times.
 デフロストヒータ70は、第8ハーネス72及び第9ハーネス73を有する。第8ハーネス72は発熱部71の第1の端部側に設けられており、第9ハーネス73は発熱部71の第2の端部側に設けられている。第8ハーネス72及び第9ハーネス73は、デフロストヒータ70に対して通電が行われる場合に用いられる。 The defrost heater 70 has an eighth harness 72 and a ninth harness 73. The eighth harness 72 is provided on the first end side of the heat generating section 71, and the ninth harness 73 is provided on the second end side of the heat generating section 71. The eighth harness 72 and the ninth harness 73 are used when the defrost heater 70 is energized.
 図12は、実施の形態3に係る空気調和機の室外機が有するスイッチ部80の構成を示す図である。図12には、制御部31、電源部34及びデフロストヒータ70も示されている。スイッチ部80は、第1スイッチ41、第2スイッチ42、第4スイッチ44及び第8スイッチ81を有する。第1スイッチ41、第2スイッチ42及び第4スイッチ44の各々は、実施の形態1において説明されたスイッチである。 FIG. 12 is a diagram showing a configuration of the switch unit 80 included in the outdoor unit of the air conditioner according to the third embodiment. FIG. 12 also shows the control unit 31, the power supply unit 34, and the defrost heater 70. The switch unit 80 includes a first switch 41, a second switch 42, a fourth switch 44, and an eighth switch 81. Each of the first switch 41, the second switch 42, and the fourth switch 44 is the switch described in the first embodiment.
 スイッチ部80は、電源部34が供給する交流電圧のゼロクロス信号を検出するゼロクロス検出部82を更に有する。当該交流電圧は、デフロストヒータ70に印加される交流電圧である。つまり、電源部34はデフロストヒータ70に印加される交流電圧を供給する。制御部31は、温度センサ9によって検出された温度と、ゼロクロス検出部82によって検出されたゼロクロス信号とをもとに、デフロストヒータ70への通電を制御する。更に言うと、制御部31は、温度センサ9によって検出された温度と、ゼロクロス検出部82によって検出されたゼロクロス信号とをもとに、デフロストヒータ70に通電が行われる期間を制御する。図12において、「Vdc」は直流電圧を意味する。 The switch unit 80 further includes a zero-cross detection unit 82 that detects a zero-cross signal of the AC voltage supplied by the power supply unit 34. The AC voltage is an AC voltage applied to the defrost heater 70. That is, the power supply unit 34 supplies the AC voltage applied to the defrost heater 70. The controller 31 controls energization to the defrost heater 70 based on the temperature detected by the temperature sensor 9 and the zero-cross signal detected by the zero-cross detector 82. Furthermore, the control unit 31 controls the period in which the defrost heater 70 is energized based on the temperature detected by the temperature sensor 9 and the zero-cross signal detected by the zero-cross detection unit 82. In FIG. 12, “Vdc” means a DC voltage.
 制御部31は、第1スイッチ41のオンとオフとを制御する第1制御信号を第1スイッチ41に出力し、第2スイッチ42のオンとオフとを制御する第2制御信号を第2スイッチ42に出力する。第8スイッチ81は、第2スイッチ42のオン又はオフの状態にしたがってオン又はオフの状態になる。具体的には、第8スイッチ81は、第2スイッチ42がオンの状態である場合、電源部34とデフロストヒータ70とを接続させ、第2スイッチ42がオフの状態である場合、電源部34とデフロストヒータ70とを接続させない。更に言うと、第2スイッチ42のオン又はオフの状態にしたがって、第8スイッチ81のオンデューティが調整され、電源部34とデフロストヒータ70との接続の状態が切り換わる。第8スイッチ81の例は、フォトトライアックカプラである。 The control unit 31 outputs a first control signal for controlling on and off of the first switch 41 to the first switch 41, and a second control signal for controlling on and off of the second switch 42 as a second switch. To 42. The eighth switch 81 is turned on or off according to the on or off state of the second switch 42. Specifically, the eighth switch 81 connects the power supply unit 34 and the defrost heater 70 when the second switch 42 is on, and when the second switch 42 is off, the power supply unit 34. And the defrost heater 70 are not connected. Furthermore, the on-duty of the eighth switch 81 is adjusted according to the on or off state of the second switch 42, and the connection state between the power supply section 34 and the defrost heater 70 is switched. An example of the eighth switch 81 is a phototriac coupler.
 すなわち、実施の形態3では、第1スイッチ41がオンの状態になると、第4スイッチ44の第1接点441と第2接点442とが繋がる。第2スイッチ42がオンの状態になると、第8スイッチ81が導通する。 That is, in the third embodiment, when the first switch 41 is turned on, the first contact 441 and the second contact 442 of the fourth switch 44 are connected. When the second switch 42 is turned on, the eighth switch 81 becomes conductive.
 ゼロクロス検出部82は、電源部34が供給する交流電圧のゼロクロス信号を検出し、検出したゼロクロス信号を制御部31に出力する。制御部31は、ゼロクロス信号をもとに、第8スイッチ81のオンデューティを制御する。例えば、制御部31は、交流周波数の半サイクル毎に点弧位相を制御する位相制御を行う。又は、例えば、制御部31は、一定の周期のなかで、交流電圧の1サイクルのオン周期とオフ周期との比率を制御する波数制御を行う。又は、例えば、制御部31は、位相制御と波数制御とをあわせたハイブリッド制御を行う。 The zero-cross detector 82 detects the zero-cross signal of the AC voltage supplied by the power supply 34 and outputs the detected zero-cross signal to the controller 31. The control unit 31 controls the on-duty of the eighth switch 81 based on the zero-cross signal. For example, the control unit 31 performs phase control for controlling the ignition phase every half cycle of the AC frequency. Alternatively, for example, the control unit 31 performs wave number control that controls the ratio of one cycle of the AC voltage to the ON cycle and the OFF cycle in a constant cycle. Alternatively, for example, the control unit 31 performs hybrid control that combines phase control and wave number control.
 図13は、実施の形態3に係る空気調和機の室外機が有する制御部31が位相制御を行う場合の交流電圧の波形を示す図である。制御部31は、ゼロクロス信号の立ち上がりのタイミングからあらかじめ決められた時間、第8スイッチ81をオンの状態にし、電源部34からデフロストヒータ70への通電を行わせる。図13の斜線部は、通電が行われる区間の交流電圧を示している。 FIG. 13 is a diagram showing a waveform of an AC voltage when the control unit 31 included in the outdoor unit of the air conditioner according to the third embodiment performs the phase control. The control unit 31 turns on the eighth switch 81 for a predetermined time from the rising timing of the zero-cross signal, and causes the power supply unit 34 to energize the defrost heater 70. The shaded area in FIG. 13 indicates the AC voltage in the section in which energization is performed.
 図14は、実施の形態3に係る空気調和機の室外機が有する制御部31が波数制御を行う場合の交流電圧の波形を示す図である。制御部31は、ゼロクロス信号の立ち上がりのタイミングからゼロクロス信号が検出された回数があらかじめ決められた回数を超えるまで、第8スイッチ81をオンの状態にし、電源部34からデフロストヒータ70への通電を行わせる。図14の斜線部は、通電が行われる区間の交流電圧を示している。 FIG. 14 is a diagram showing a waveform of an AC voltage when the control unit 31 included in the outdoor unit of the air conditioner according to the third embodiment performs the wave number control. The control unit 31 keeps the eighth switch 81 in the ON state until the number of times the zero-cross signal is detected exceeds the predetermined number from the rising timing of the zero-cross signal, and energizes the defrost heater 70 from the power supply unit 34. Let it be done. The shaded area in FIG. 14 indicates the AC voltage in the section in which energization is performed.
 図15は、実施の形態3に係る空気調和機の室外機が有するデフロストヒータ70とスイッチ部80との関係を示す図である。図15において、「T」は温度センサ9によって検出された温度を示し、「thA」、「thB」、「thC」、...、「thY」及び「thZ」の各々は、温度についてのあらかじめ決められた閾値である。閾値thAは閾値thBより大きく、閾値thBは閾値thCより大きく、閾値thYは閾値thZより大きい。このように、閾値の大きさの順は、「th」の直後に付加されるアルファベットの順である。各閾値を示すデータは、制御基板14が有する記憶部32に記憶されている。 FIG. 15 is a diagram showing a relationship between the defrost heater 70 and the switch unit 80 included in the outdoor unit of the air conditioner according to the third embodiment. In FIG. 15, “T” indicates the temperature detected by the temperature sensor 9, and “thA”, “thB”, “thC”,. . . , "ThY" and "thZ" are predetermined thresholds for temperature. The threshold thA is larger than the threshold thB, the threshold thB is larger than the threshold thC, and the threshold thY is larger than the threshold thZ. As described above, the order of the magnitudes of the threshold values is the order of the alphabet added immediately after “th”. Data indicating each threshold value is stored in the storage unit 32 included in the control board 14.
 運転モードが暖房以外である場合、第1スイッチ41はオフの状態であり、第8スイッチ81のオンデューティは0%であって、電源部34とデフロストヒータ70とは接続されない。すなわち、運転モードが暖房以外である場合、デフロストヒータ70の抵抗はない状態である。 When the operation mode is other than heating, the first switch 41 is in the off state, the on-duty of the eighth switch 81 is 0%, and the power supply unit 34 and the defrost heater 70 are not connected. That is, when the operation mode is other than heating, the defrost heater 70 has no resistance.
 運転モードが暖房であって、温度センサ9によって検出された温度Tが閾値thA以上である場合も、第1スイッチ41はオフの状態であり、第8スイッチ81のオンデューティは0%であって、電源部34とデフロストヒータ70とは接続されない。すなわち、運転モードが暖房であって、温度センサ9によって検出された温度Tが閾値thA以上である場合、デフロストヒータ70の抵抗はない状態である。 Even when the operation mode is heating and the temperature T detected by the temperature sensor 9 is equal to or higher than the threshold thA, the first switch 41 is in the off state and the on-duty of the eighth switch 81 is 0%. The power supply unit 34 and the defrost heater 70 are not connected. That is, when the operation mode is heating and the temperature T detected by the temperature sensor 9 is equal to or higher than the threshold value thA, there is no resistance of the defrost heater 70.
 運転モードが暖房であって、温度センサ9によって検出された温度Tが閾値thAより低い場合、第1スイッチ41はオンの状態であり、第8スイッチ81のオンデューティは0%でなく、電源部34とデフロストヒータ70とは接続される。デフロストヒータ70における発熱量及びデフロストヒータ70において消費される電力は、第8スイッチ81のオンデューティの割合に対応して決定される。図15では、第8スイッチ81のオンデューティが100%である場合にデフロストヒータ70において消費される電力が最大であると示されている。 When the operation mode is heating and the temperature T detected by the temperature sensor 9 is lower than the threshold value thA, the first switch 41 is in the on state, the on-duty of the eighth switch 81 is not 0%, and the power supply unit 34 and the defrost heater 70 are connected. The amount of heat generated by the defrost heater 70 and the power consumed by the defrost heater 70 are determined according to the on-duty ratio of the eighth switch 81. In FIG. 15, it is shown that the power consumed in the defrost heater 70 is maximum when the on-duty of the eighth switch 81 is 100%.
 次に、実施の形態3に係る空気調和機の室外機が有する制御部31の動作を説明する。図16は、実施の形態3に係る空気調和機の室外機が有する制御部31の動作の手順を示すフローチャートである。空気調和機の運転が開始されると、制御部31は、運転モードが「暖房」であるか否かを判定する(S21)。制御部31は、運転モードが「暖房」以外であると判定した場合(S21でNo)、デフロストヒータ70への通電を行う必要がないので、第1スイッチ41をオフの状態にすると共に、第8スイッチ81のオンデューティを0%にする制御を行う(S22)。ステップS22の処理が行われると、制御部31の動作は後述するステップS25に移行する。 Next, the operation of the control unit 31 included in the outdoor unit of the air-conditioning apparatus according to Embodiment 3 will be described. FIG. 16 is a flowchart showing an operation procedure of the control unit 31 included in the outdoor unit of the air-conditioning apparatus according to Embodiment 3. When the operation of the air conditioner is started, the control unit 31 determines whether the operation mode is "heating" (S21). When determining that the operation mode is other than "heating" (No in S21), the control unit 31 does not need to energize the defrost heater 70, so the first switch 41 is turned off and the first switch 41 is turned off. The on-duty of the 8 switch 81 is controlled to be 0% (S22). When the process of step S22 is performed, the operation of the control unit 31 proceeds to step S25 described below.
 制御部31は、運転モードが「暖房」であると判定した場合(S21でYes)、温度センサ9によって検出された温度Tを示す信号を温度センサ9から受信し、記憶部32に記憶されている温度換算データをもとに、温度センサ9によって検出された温度Tを判断する。温度センサ9によって検出された温度Tは、外気の温度である。制御部31は、温度センサ9によって検出された温度Tが閾値thAより低いか否かを判定する(S23)。 When the control unit 31 determines that the operation mode is “heating” (Yes in S21), the control unit 31 receives a signal indicating the temperature T detected by the temperature sensor 9 from the temperature sensor 9 and stores the signal in the storage unit 32. The temperature T detected by the temperature sensor 9 is determined based on the temperature conversion data. The temperature T detected by the temperature sensor 9 is the temperature of the outside air. The controller 31 determines whether the temperature T detected by the temperature sensor 9 is lower than the threshold thA (S23).
 制御部31は、温度センサ9によって検出された温度Tが閾値thA以上であると判定した場合(S23でNo)、デフロストヒータ70への通電を行う必要がないので、第1スイッチ41をオフの状態にすると共に、第8スイッチ81のオンデューティを0%にする制御を行う(S22)。 When the control unit 31 determines that the temperature T detected by the temperature sensor 9 is equal to or higher than the threshold value thA (No in S23), there is no need to energize the defrost heater 70, so the first switch 41 is turned off. At the same time, the on-duty of the eighth switch 81 is controlled to 0% (S22).
 制御部31は、温度センサ9によって検出された温度Tが閾値thAより低いと判定した場合(S23でYes)、温度に対応したオンデューティを決定するためのオンデューティデータをもとに、当該温度Tに対応するオンデューティを決定する。オンデューティデータは、記憶部32に記憶されている。制御部31は、決定したオンデューティで第8スイッチ81をオンの状態にすると共に、第1スイッチ41をオンの状態にする(S24)。 When the control unit 31 determines that the temperature T detected by the temperature sensor 9 is lower than the threshold value thA (Yes in S23), the temperature T is determined based on the on-duty data for determining the on-duty corresponding to the temperature. The on-duty corresponding to T is determined. The on-duty data is stored in the storage unit 32. The control unit 31 turns on the eighth switch 81 and turns on the first switch 41 at the determined on-duty (S24).
 ステップS22又はステップS24の処理が行われた後、制御部31は、ユーザの操作によって空気調和機が運転を停止した状態か否かを判定する(S25)。制御部31は、空気調和機の運転が継続して行われていると判定した場合(S25でNo)、ステップS21の処理を行う。制御部31は、空気調和機の運転が停止していると判定した場合(S25でYes)、動作を終了する。 After the processing of step S22 or step S24 is performed, the control unit 31 determines whether or not the operation of the air conditioner is stopped by the operation of the user (S25). When determining that the operation of the air conditioner is continued (No in S25), the control unit 31 performs the process of step S21. When determining that the operation of the air conditioner is stopped (Yes in S25), the control unit 31 ends the operation.
 上述の通り、実施の形態3では、制御部31は、運転モードが「暖房」であって温度センサ9によって検出された温度Tが閾値thAより低い場合、当該温度Tに対応する期間、電力をデフロストヒータ70に供給させる。デフロストヒータ70は、制御部31による制御にしたがって、運転モードが「暖房」であって当該温度Tが閾値thAより低い場合、温度Tに対応する期間、室外機ベース2を加熱する。 As described above, in the third embodiment, when the operation mode is “heating” and the temperature T detected by the temperature sensor 9 is lower than the threshold thA, the control unit 31 supplies electric power for a period corresponding to the temperature T. The defrost heater 70 is supplied. When the operation mode is “heating” and the temperature T is lower than the threshold thA, the defrost heater 70 heats the outdoor unit base 2 for a period corresponding to the temperature T under the control of the control unit 31.
 すなわち、実施の形態3に係る空気調和機の室外機は、デフロストを行う場合、温度センサ9によって検出された温度Tに対応して、複数の段階の電力のいずれかで室外機ベース2を加熱する。更に言うと、実施の形態3に係る空気調和機の室外機は、当該温度Tと、ゼロクロス検出部82によって検出されたゼロクロス信号とをもとに、デフロストヒータ70に通電が行われる期間を制御する。言い換えると、実施の形態3に係る空気調和機の室外機は、デフロストを行う場合、室外機ベース2を加熱し続けない。したがって、実施の形態3に係る空気調和機の室外機は、温度センサ9によって検出された温度Tに対応して、デフロストが行われる場合の電力の消費を抑制することができる。 That is, when performing defrosting, the outdoor unit of the air conditioner according to Embodiment 3 heats the outdoor unit base 2 with one of a plurality of levels of electric power corresponding to the temperature T detected by the temperature sensor 9. To do. Furthermore, the outdoor unit of the air-conditioning apparatus according to Embodiment 3 controls the period during which the defrost heater 70 is energized based on the temperature T and the zero-cross signal detected by the zero-cross detection unit 82. To do. In other words, the outdoor unit of the air conditioner according to Embodiment 3 does not continue to heat the outdoor unit base 2 when performing defrosting. Therefore, the outdoor unit of the air-conditioning apparatus according to Embodiment 3 can suppress the power consumption when defrosting is performed, corresponding to the temperature T detected by the temperature sensor 9.
 図17は、実施の形態1に係る空気調和機の室外機1が有する制御部31の一部又は全部の機能がプロセッサ91によって実現される場合のプロセッサ91を示す図である。つまり、制御部31の一部又は全部の機能は、メモリ92に格納されるプログラムを実行するプロセッサ91によって実現されてもよい。プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図17には、メモリ92も示されている。 FIG. 17 is a diagram showing the processor 91 when some or all of the functions of the control unit 31 of the outdoor unit 1 of the air conditioner according to Embodiment 1 are realized by the processor 91. That is, some or all of the functions of the control unit 31 may be realized by the processor 91 that executes the program stored in the memory 92. The processor 91 is a CPU (Central Processing Unit), a processing device, a computing device, a microprocessor, or a DSP (Digital Signal Processor). The memory 92 is also shown in FIG.
 制御部31の一部又は全部の機能がプロセッサ91によって実現される場合、当該一部又は全部の機能は、プロセッサ91と、ソフトウェア、ファームウェア、又は、ソフトウェア及びファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、制御部31の一部又は全部の機能を実現する。 When some or all of the functions of the control unit 31 are realized by the processor 91, some or all of the functions are realized by the processor 91 and software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 92. The processor 91 realizes a part or all of the functions of the control unit 31 by reading and executing the program stored in the memory 92.
 制御部31の一部又は全部の機能がプロセッサ91によって実現される場合、室外機1は、制御部31によって実行されるステップの一部又は全部が結果的に実行されることになるプログラムを格納するためのメモリ92を有する。メモリ92に格納されるプログラムは、制御部31が実行する手順又は方法の一部又は全部をコンピュータに実行させるものであるともいえる。 When a part or all of the functions of the control unit 31 are realized by the processor 91, the outdoor unit 1 stores a program that results in some or all of the steps executed by the control unit 31. It has a memory 92 for performing. It can be said that the program stored in the memory 92 causes a computer to execute part or all of the procedure or method executed by the control unit 31.
 メモリ92は、例えば、RAM(Random Access Memory)、ROM、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。 The memory 92 is, for example, a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM, flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). It is a memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disk).
 図18は、実施の形態1に係る空気調和機の室外機1が有する制御部31の一部又は全部の機能が処理回路93によって実現される場合の処理回路93を示す図である。つまり、制御部31の一部又は全部の機能は、処理回路93によって実現されてもよい。 FIG. 18 is a diagram showing the processing circuit 93 when a part or all of the functions of the control unit 31 included in the outdoor unit 1 of the air conditioner according to Embodiment 1 are realized by the processing circuit 93. That is, some or all of the functions of the control unit 31 may be realized by the processing circuit 93.
 処理回路93は、専用のハードウェアである。処理回路93は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。 The processing circuit 93 is dedicated hardware. The processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Is.
 制御部31が有する複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、制御部31が有する複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。 Regarding the plurality of functions that the control unit 31 has, part of the plurality of functions may be realized by software or firmware, and the rest of the plurality of functions may be realized by dedicated hardware. As described above, the plurality of functions included in the control unit 31 can be realized by hardware, software, firmware, or a combination thereof.
 実施の形態2及び実施の形態3の各々の制御部31の一部又は全部の機能は、メモリに格納されるプログラムを実行するプロセッサによって実現されてもよい。当該メモリは、当該制御部31によって実行されるステップの一部又は全部が結果的に実行されることになるプログラムを格納するためのメモリである。実施の形態2及び実施の形態3の各々の制御部31の一部又は全部の機能は、処理回路によって実現されてもよい。当該処理回路は、処理回路93と同様の処理回路である。 A part or all of the functions of the control unit 31 of each of the second and third embodiments may be realized by a processor that executes a program stored in the memory. The memory is a memory for storing a program in which some or all of the steps executed by the control unit 31 are eventually executed. A part or all of the functions of the control unit 31 of each of the second embodiment and the third embodiment may be realized by a processing circuit. The processing circuit is a processing circuit similar to the processing circuit 93.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with another known technique, and the configurations of the configurations are not deviated from the scope not departing from the gist of the present invention. It is also possible to omit or change parts.
 1 空気調和機の室外機、2 室外機ベース、3 前面パネル、4 前面側カバー部、5 右側面パネル、6 右側付属部、7 天井パネル、8 筐体、9 温度センサ、10 仕切板、11 機械室側、12 熱交換器側、13 圧縮機、14 制御基板、15 第1基板カバー、16 第2基板カバー、17 室外熱交換器、18 室外ファン、19,50,70 デフロストヒータ、21 第1発熱部、22 第2発熱部、23 第1ハーネス、24 第2ハーネス、25 第3ハーネス、26 第4ハーネス、31 制御部、32 記憶部、33,60,80 スイッチ部、34 電源部、41 第1スイッチ、42 第2スイッチ、43 第3スイッチ、44 第4スイッチ、45 第5スイッチ、46 第6スイッチ、51 第5ハーネス、52 第6ハーネス、53 第7ハーネス、54 第3発熱部、55 第4発熱部、61 第7スイッチ、71 発熱部、72 第8ハーネス、73 第9ハーネス、81 第8スイッチ、82 ゼロクロス検出部、91 プロセッサ、92 メモリ、93 処理回路、441,451,461,611 第1接点、442,452,462,612 第2接点、463 第3接点。 1 air conditioner outdoor unit, 2 outdoor unit base, 3 front panel, 4 front side cover part, 5 right side panel, 6 right side accessory part, 7 ceiling panel, 8 case, 9 temperature sensor, 10 partition plate, 11 Machine room side, 12 heat exchanger side, 13 compressor, 14 control board, 15 first board cover, 16 second board cover, 17 outdoor heat exchanger, 18 outdoor fan, 19, 50, 70 defrost heater, 21st 1 heat generation part, 22 second heat generation part, 23 first harness, 24 second harness, 25 third harness, 26 fourth harness, 31 control part, 32 storage part, 33, 60, 80 switch part, 34 power supply part, 41 1st switch, 42 2nd switch, 43 3rd switch, 44 4th switch, 45 5th switch, 46 6th switch, 51 5th harness, 52 6th harness, 53 7th harness, 54 3rd heating part , 55 4th heat generation part, 61 7th switch, 71 heat generation part, 72 8th harness, 73 9th harness, 81 8th switch, 82 zero cross detection part, 91 processor, 92 memory, 93 processing circuit, 441, 451 461, 611 first contact, 442, 452, 462, 612 second contact, 463 third contact.

Claims (8)

  1.  外気の温度を検出する温度センサと、
     冷媒と外気との間で熱交換を行わせるための室外熱交換器と、
     前記室外熱交換器において発生する水が凍結することを抑制する複数の発熱部を有するデフロストヒータと、
     前記温度センサによって検出された温度をもとに前記デフロストヒータが有する前記複数の発熱部への通電を制御する制御部と
     を備える空気調和機の室外機。
    A temperature sensor that detects the temperature of the outside air,
    An outdoor heat exchanger for performing heat exchange between the refrigerant and the outside air,
    A defrost heater having a plurality of heat generating portions for suppressing freezing of water generated in the outdoor heat exchanger,
    An outdoor unit for an air conditioner, comprising: a control unit that controls energization to the plurality of heat generating units included in the defrost heater based on the temperature detected by the temperature sensor.
  2.  前記デフロストヒータが有する前記複数の発熱部は、第1発熱部と、前記第1発熱部と離れている第2発熱部とであって、
     前記温度センサによって検出された温度が第1の閾値より低くかつ前記第1の閾値より小さい第2の閾値以上である場合、前記制御部は、前記第1発熱部と前記第2発熱部とを直列に接続して前記第1発熱部と前記第2発熱部とに通電させる
     請求項1に記載の空気調和機の室外機。
    The plurality of heat generating parts included in the defrost heater are a first heat generating part and a second heat generating part separated from the first heat generating part,
    When the temperature detected by the temperature sensor is lower than a first threshold value and equal to or higher than a second threshold value that is smaller than the first threshold value, the control unit causes the first heat generating unit and the second heat generating unit to operate. The outdoor unit of the air conditioner according to claim 1, wherein the outdoor unit of the air conditioner is connected in series to energize the first heating unit and the second heating unit.
  3.  前記温度センサによって検出された温度が前記第2の閾値より低い場合、前記制御部は、前記第1発熱部と前記第2発熱部とを並列に接続して前記第1発熱部と前記第2発熱部とに通電させる
     請求項2に記載の空気調和機の室外機。
    When the temperature detected by the temperature sensor is lower than the second threshold value, the control unit connects the first heat generating unit and the second heat generating unit in parallel and the first heat generating unit and the second heat generating unit. The outdoor unit of the air conditioner according to claim 2, wherein the heat generating portion is energized.
  4.  前記デフロストヒータが有する前記複数の発熱部は、第3発熱部と、抵抗値が前記第3発熱部の抵抗値より小さくかつ前記第3発熱部と直列に接続されている第4発熱部とであって、
     前記温度センサによって検出された温度が第3の閾値より低くかつ前記第3の閾値より小さい第4の閾値以上である場合、前記制御部は、前記第3発熱部と前記第4発熱部とに通電させる
     請求項1に記載の空気調和機の室外機。
    The plurality of heat generating parts included in the defrost heater include a third heat generating part and a fourth heat generating part having a resistance value smaller than the resistance value of the third heat generating part and connected in series with the third heat generating part. There
    When the temperature detected by the temperature sensor is lower than a third threshold value and equal to or higher than a fourth threshold value smaller than the third threshold value, the control unit controls the third heating unit and the fourth heating unit. The outdoor unit of the air conditioner according to claim 1, which is energized.
  5.  前記温度センサによって検出された温度が前記第4の閾値より低くかつ前記第4の閾値より小さい第5の閾値以上である場合、前記制御部は、前記第3発熱部のみに通電させる
     請求項4に記載の空気調和機の室外機。
    When the temperature detected by the temperature sensor is lower than the fourth threshold value and is equal to or higher than a fifth threshold value that is smaller than the fourth threshold value, the control unit causes only the third heat generating unit to be energized. The outdoor unit of the air conditioner described in.
  6.  前記温度センサによって検出された温度が前記第5の閾値より低い場合、前記制御部は、前記第4発熱部のみに通電させる
     請求項5に記載の空気調和機の室外機。
    The outdoor unit of the air conditioner according to claim 5, wherein when the temperature detected by the temperature sensor is lower than the fifth threshold value, the control unit energizes only the fourth heat generating unit.
  7.  外気の温度を検出する温度センサと、
     冷媒と外気との間で熱交換を行わせるための室外熱交換器と、
     前記室外熱交換器において発生する水が凍結することを抑制するデフロストヒータと、
     前記デフロストヒータに印加される交流電圧を供給する電源部が供給する交流電圧のゼロクロス信号を検出するゼロクロス検出部と、
     前記温度センサによって検出された温度と、前記ゼロクロス検出部によって検出されたゼロクロス信号とをもとに、前記デフロストヒータへの通電を制御する制御部と
     を備える空気調和機の室外機。
    A temperature sensor that detects the temperature of the outside air,
    An outdoor heat exchanger for performing heat exchange between the refrigerant and the outside air,
    A defrost heater that suppresses freezing of water generated in the outdoor heat exchanger,
    A zero-cross detection unit that detects a zero-cross signal of an AC voltage supplied by a power supply unit that supplies the AC voltage applied to the defrost heater,
    An outdoor unit for an air conditioner, comprising: a controller that controls energization to the defrost heater based on a temperature detected by the temperature sensor and a zero-cross signal detected by the zero-cross detector.
  8.  前記制御部は、前記温度センサによって検出された温度と、前記ゼロクロス検出部によって検出されたゼロクロス信号とをもとに、前記デフロストヒータに通電が行われる期間を制御する
     請求項7に記載の空気調和機の室外機。
    8. The air according to claim 7, wherein the control unit controls a period in which the defrost heater is energized based on a temperature detected by the temperature sensor and a zero-cross signal detected by the zero-cross detection unit. An outdoor unit of a harmony machine.
PCT/JP2019/007870 2019-02-28 2019-02-28 Outdoor unit of air conditioner WO2020174667A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007870 WO2020174667A1 (en) 2019-02-28 2019-02-28 Outdoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007870 WO2020174667A1 (en) 2019-02-28 2019-02-28 Outdoor unit of air conditioner

Publications (1)

Publication Number Publication Date
WO2020174667A1 true WO2020174667A1 (en) 2020-09-03

Family

ID=72239171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007870 WO2020174667A1 (en) 2019-02-28 2019-02-28 Outdoor unit of air conditioner

Country Status (1)

Country Link
WO (1) WO2020174667A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105510U (en) * 1980-12-22 1982-06-29
JPH05149606A (en) * 1991-11-28 1993-06-15 Mitsubishi Electric Corp Heater controller of air conditioner
JP2000237030A (en) * 1999-02-18 2000-09-05 Toshiba Home Technology Corp Electric carpet
JP2002089906A (en) * 2000-09-21 2002-03-27 Daikin Ind Ltd Air conditioner
JP2003314932A (en) * 2002-04-23 2003-11-06 Denso Corp Refrigerator
JP2016223669A (en) * 2015-05-28 2016-12-28 株式会社デンソー Control device and heat pump type water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105510U (en) * 1980-12-22 1982-06-29
JPH05149606A (en) * 1991-11-28 1993-06-15 Mitsubishi Electric Corp Heater controller of air conditioner
JP2000237030A (en) * 1999-02-18 2000-09-05 Toshiba Home Technology Corp Electric carpet
JP2002089906A (en) * 2000-09-21 2002-03-27 Daikin Ind Ltd Air conditioner
JP2003314932A (en) * 2002-04-23 2003-11-06 Denso Corp Refrigerator
JP2016223669A (en) * 2015-05-28 2016-12-28 株式会社デンソー Control device and heat pump type water heater

Similar Documents

Publication Publication Date Title
JP4453662B2 (en) Heat pump type water heater
KR101225977B1 (en) Air conditioner and Control method of the same
JP6052675B2 (en) HEAT PUMP SYSTEM CONTROL DEVICE, HEAT PUMP SYSTEM, AND HEAT PUMP SYSTEM CONTROL METHOD
EP2287536B1 (en) Hot water circulation system comprising a heat pump and method for controlling the same
CN111503832B (en) Method for controlling self-cleaning drying of air conditioner, air conditioner indoor unit and storage medium
JP5831355B2 (en) Air conditioner
JP5378630B1 (en) Electric compressor control method, control device, and refrigerator
KR102290031B1 (en) Air conditioner and a method for controlling the same
JP3609286B2 (en) Air conditioning equipment
JP2015087076A (en) Air conditioner
WO2020174667A1 (en) Outdoor unit of air conditioner
JP2005049022A (en) Air conditioner
JP6629446B2 (en) Defrost judgment device, defrost control device and air conditioner
JP7053942B2 (en) Outdoor unit of air conditioner
CN111219936A (en) Refrigerator and control method thereof
KR101652523B1 (en) A refrigerator and a control method the same
JP2008175437A (en) Refrigerator
JP5212330B2 (en) Air conditioner
JP2016223669A (en) Control device and heat pump type water heater
JP2013231522A (en) Heat pump device
CN113864978B (en) Air conditioner, reversing control method and device thereof, storage medium and processor
KR100753029B1 (en) Defrosting apparatus and method for out-door unit in heat-pump type air-conditioner
JP6775548B2 (en) Motor control device and air conditioner
JP2020106204A (en) On-vehicle refrigeration device
JP2020094779A (en) On-vehicle refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP