WO2020173514A1 - Verfahren zum betreiben eines hybridantriebsstrangs - Google Patents

Verfahren zum betreiben eines hybridantriebsstrangs Download PDF

Info

Publication number
WO2020173514A1
WO2020173514A1 PCT/DE2019/101080 DE2019101080W WO2020173514A1 WO 2020173514 A1 WO2020173514 A1 WO 2020173514A1 DE 2019101080 W DE2019101080 W DE 2019101080W WO 2020173514 A1 WO2020173514 A1 WO 2020173514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
clutch
output
speed
combustion engine
Prior art date
Application number
PCT/DE2019/101080
Other languages
English (en)
French (fr)
Inventor
Timo ENDERS
Ralf Mannsperger
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2020173514A1 publication Critical patent/WO2020173514A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/266Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators with two coaxial motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/203Reducing vibrations in the driveline related or induced by the clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/022Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/028Clutch input shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for operating a hybrid drive train in a hybrid drive train in a vehicle according to the preamble of claim 1.
  • a method for operating a hybrid drive train is known, for example, from the as yet unpublished German patent application 102018130775.6.
  • This describes a vehicle with a drive train, having an internal combustion engine for providing a first drive torque, an electric motor connected to the internal combustion engine for providing a second drive torque and a further electric motor connected to an output for providing a third drive torque.
  • a separating clutch is effectively arranged between the electric motor and the further electric motor, the vehicle being started from the stationary position, in which the vehicle and the further electric motor are stationary, by opening the separating clutch in a first step and then in one step In the second step, the electric motor is accelerated to a first speed value, in a third step the separating clutch is closed and the second drive torque is transmitted to the output and thereby accelerates the vehicle.
  • the internal combustion engine and the electric motor can be connected to the output via a separating clutch, with the separating clutch being closed regardless of a state of the internal combustion engine and the further electric motor providing the first drive torque and the electric motor the second when there is a specific acceleration requirement
  • the object of the present invention is to improve a method for operating a hybrid drive train. The restart of the
  • a method for operating a hybrid drive train having the features according to claim 1. Accordingly, a method for operating a hybrid drive train in a vehicle, in which an internal combustion engine can provide a first drive torque, a first electric motor can provide a second drive torque and a second electric motor can provide a third drive torque, and a disconnect clutch is arranged that has a
  • a clutch output that can rotate at an output speed proposed, wherein the clutch input is connected to the second electric motor and the clutch output is connected to the first electric motor and the
  • Separating clutch is effectively arranged between the first and second electric motor, the separating clutch being opened in a first operating state and, starting from the first operating state, a second operating state in which the separating clutch is actuated and the internal combustion engine is the first
  • Drive torque can be delivered to an output by adjusting the input speed and the output speed to each other before actuating the separating clutch and actuating the separating clutch as soon as the speed difference between the input speed and the output speed falls below a speed threshold value.
  • the frictional energy that occurs when the disconnect clutch is actuated can be reduced.
  • the wear of the separating clutch can be reduced and the service life of the separating clutch can be increased.
  • Driving comfort can be improved due to the small or non-existent speed difference when the separating clutch is actuated.
  • the separating clutch can be made smaller and the cost can be reduced.
  • the mass of the clutch can be reduced.
  • the control effort for controlling the separating clutch is reduced.
  • the disconnect clutch can be set to only one open and one actuated state.
  • the speed difference is preferably formed by the input speed being greater than the output speed.
  • the output can be a transmission, a differential or at least a vehicle wheel.
  • the first and second electric motors can be operated with speed control.
  • the input speed is adjusted to the output speed by the second electric motor
  • Input speed controls This allows the input speed to be effected quickly and accurately.
  • the first operating state changes to the second operating state when the vehicle speed is above one
  • Limit value and / or the accelerator pedal position is above a limit value.
  • the internal combustion engine is switched off in the first operating state.
  • the internal combustion engine can be restarted more quickly to the first in the second operating state
  • the first electric motor delivers the second drive torque to the output in the first operating state.
  • Vehicle can only use the first in the first operating state
  • Electric motor are driven.
  • the separating clutch is effectively arranged between the internal combustion engine and the output.
  • the first electric motor is connected to the output and / or the internal combustion engine is connected to the second electric motor.
  • the internal combustion engine, the second electric motor, the separating clutch and the first electric motor are effectively arranged in series.
  • the second electric motor acts in the second operating state as a generator driven by the internal combustion engine, the generated electrical energy of which is provided to an electrical energy store and / or the first electric motor.
  • the second electric motor can also be freely rotating or deliver the third drive torque to the output, especially when the separating clutch is actuated.
  • Figure 1 A hybrid drive train in a vehicle in which the
  • Figure 2 A comparison of different actuation curves of a
  • Figure 3 A speed and actuation curve diagram when using the
  • Figure 1 shows a hybrid drive train 10 in a vehicle in which the
  • the hybrid drive train 10 comprises an internal combustion engine 12 that can provide a first drive torque, a first electric motor 14 that can provide a second drive torque and a second electric motor 16 that can provide a third drive torque.
  • the internal combustion engine 12, the first electric motor 14 and the second electric motor 16 are effectively connected in series.
  • the first electric motor 14 is directly connected to an output 18, which is formed by a gear 20.
  • the output is connected to vehicle wheels 22.
  • the internal combustion engine 12 is directly connected to the second electric motor 16.
  • a separating clutch 24 is effectively arranged between the first electric motor 14 and the second electric motor 16.
  • the separating clutch 24 has a clutch input 26, which can rotate at an input speed, and a clutch output 28, which can rotate at an output speed.
  • the clutch input 26 is connected to the second electric motor 16 and to the internal combustion engine 12, in particular rotating.
  • the clutch output 28 is connected to the first electric motor 14, preferably in a rotating fashion.
  • the separating clutch 24 can be actuated by a clutch actuation unit, whereby the clutch input 26 is connected to the clutch output 28 and causes a torque transmission.
  • a torque transmission of the first and / or third drive torque to the output 18 can be influenced by the separating clutch 24. If the separating clutch 24 is open, one is
  • the separating clutch 24 In a first operating state of the vehicle, the separating clutch 24 is open and the vehicle is driven exclusively by the second drive torque that is provided by the first electric motor 14.
  • Internal combustion engine 12 may be in operation or switched off. Is the
  • the first drive torque can operate the second electric motor 16, which converts the first drive torque as a generator
  • the decoupling clutch 24 is in a second operating state of the vehicle
  • FIG. 2 shows a comparison of various actuation curves of a disconnect clutch according to the prior art and when using the
  • FIGS. 2 a) and b) there is in each case a course of an actuating position
  • Separating clutch is initially opened, the clutch output rotates together with the output at the output speed, while the combustion engine and the associated clutch input do not rotate.
  • the vehicle is driven by the first electric motor, which is connected to the output and the clutch output. If the vehicle needs more acceleration, the additional drive torque of the internal combustion engine can be provided. To do this, the internal combustion engine must first be started, which can be done by the first electric motor.
  • the disconnect clutch is via a first
  • Actuating position 104 transferred from an open to an actuated state. This allows the drive torque of the first electric motor by a
  • Slip operation 106 of the disconnect clutch are passed to the internal combustion engine, whereby the internal combustion engine is started.
  • the slip operation 106 is maintained until the internal combustion engine has reached the required speed.
  • the disconnect clutch is operated with a second actuation position 108, through which the drive torque of the internal combustion engine is applied to the output and in addition to the drive torque of the first electric motor.
  • Separating clutch is therefore zero.
  • the vehicle is driven exclusively by the first electric motor, which is connected to the output.
  • the combustion engine must first be started. This is done by pressing the disconnect clutch, which is a first
  • actuation position 104 Assumes actuation position 104 and maintains this in a slip mode 106 until the internal combustion engine is started.
  • the separating clutch is then opened, giving the internal combustion engine the time to reach the required speed when the separating clutch is open.
  • the disconnect clutch When the internal combustion engine reaches this speed, the disconnect clutch is up to the second
  • the actuation position 108 is closed and the internal combustion engine transfers the drive torque to the output in addition to the drive torque of the first electric motor.
  • FIG. 2 c a course of an actuating position 112 of a disconnect clutch when using the method in a further special embodiment of the invention is shown.
  • a first operating state 114 the separating clutch is open, the first electric motor transfers the second drive torque to the output and the internal combustion engine is switched off.
  • the transition from the first operating state 114 to the second operating state 116 takes place in that the disengaged separating clutch is closed.
  • the input speed is adjusted to the output speed.
  • the second electric motor which is coupled to the clutch input together with the internal combustion engine and is speed-controlled.
  • the second electric motor thus regulates the input speed, which means that the internal combustion engine also rotates at this speed.
  • the internal combustion engine is initially started by the increase in the input speed and can also output the first drive torque when a specified input speed is reached.
  • the separating clutch is only activated when the speed difference between the input speed and the output speed falls below a speed threshold value. Then the clutch is brought directly from the open state into the second actuation position and the first drive torque is applied to the output together with the second drive torque.
  • the second electric motor can also deliver the third drive torque or it can rotate freely.
  • FIG. 3 shows a speed and actuation curve diagram when the method is used in a further special embodiment of the invention.
  • the time course of the output speed 120 and the input speed 122 of the separating clutch and in FIG. 3 b) the actuation position 124 is the
  • a first operating state 114 of the vehicle the separating clutch is opened and the vehicle is driven by the first electric motor, which is the second
  • the output speed 120 corresponds to the speed of the first electric motor.
  • the second electric motor and the internal combustion engine do not rotate.
  • a second operating state 116 in addition to the second drive torque, the first drive torque of the internal combustion engine is effective on the output and the separating clutch is closed up to the actuation position 126.
  • the transition from the first operating state 114 to the second operating state 116 is initiated at a first point in time 128, from which, for example, the vehicle speed exceeds a limit value and / or the accelerator pedal position exceeds a limit value.
  • the separating clutch is initially still open, the input speed is increased by the second electric motor, which is connected to the internal combustion engine. This starts the internal combustion engine and can deliver the first drive torque when a specified input speed is reached.
  • the second electric motor is operated with speed control in order to match the input speed with the output speed. Falls below 130 from a second point in time the speed difference between input speed and output speed a speed threshold value and the clutch is operated and takes the
  • Actuation position 126 a As a result, the frictional energy that occurs when the disconnect clutch is actuated can be reduced. The wear of the separating clutch can be reduced and the service life of the separating clutch can be increased.
  • the clutch is actuated up to actuation position 126, the first drive torque is transmitted to the output in addition to the second drive torque.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybridantriebsstrangs (10) in einem Fahrzeug, in dem ein Verbrennungsmotor (12) ein erstes Antriebsmoment, ein erster Elektromotor (14) ein zweites Antriebsmoment und ein zweiter Elektromotor (16) ein drittes Antriebsmoment bereitstellen können und eine Trennkupplung (24) angeordnet ist, die einen Kupplungseingang (26), der mit einer Eingangsdrehzahl drehen kann und einen mit dem Kupplungseingang (26) bei betätigter Trennkupplung (24) wirksam verbindbaren Kupplungsausgang (28), der mit einer Ausgangsdrehzahl drehen kann, aufweist, wobei der Kupplungseingang (26) mit dem zweiten Elektromotor (16) und der Kupplungsausgang (28) mit dem ersten Elektromotor (14) verbunden ist und die Trennkupplung (24) wirksam zwischen dem ersten und zweiten Elektromotor (14, 16) angeordnet ist, wobei in einem ersten Betriebszustand (114) die Trennkupplung (24) geöffnet ist und ausgehend von dem ersten Betriebszustand (114) ein zweiter Betriebszustand (116), bei dem die Trennkupplung (24) betätigt ist und der Verbrennungsmotor (12) das erste Antriebsmoment an einen Abtrieb (18) abgeben kann eingenommen wird, indem vor Betätigung der Trennkupplung (24) die Eingangsdrehzahl und die Ausgangsdrehzahl einander angeglichen werden und die Trennkupplung (24) betätigt wird, sobald der Drehzahlunterschied zwischen Eingangsdrehzahl und Ausgangsdrehzahl einen Drehzahlschwellwert unterschreitet

Description

Verfahren zum Betreiben eines Hvbridantriebsstranqs
Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybridantriebsstrangs in einem Hybridantriebsstrang in einem Fahrzeug nach dem Oberbegriff von Anspruch 1 .
Ein Verfahren zum Betreiben eines Hybridantriebsstrangs ist beispielsweise aus der noch unveröffentlichten deutschen Patentanmeldung 102018130775.6 bekannt. Darin wird ein Fahrzeug mit einem Antriebsstrang beschrieben, aufweisend einen Verbrennungsmotor zur Bereitstellung eines ersten Antriebsmoments, einen mit dem Verbrennungsmotor verbundenen Elektromotor zur Bereitstellung eines zweiten Antriebsmoments und einen mit einem Abtrieb verbundenen weiteren Elektromotor zur Bereitstellung eines dritten Antriebsmoments. Eine Trennkupplung ist wirksam zwischen dem Elektromotor und dem weiteren Elektromotor angeordnet, wobei ein Anfahren des Fahrzeugs aus dem Stand des Fahrzeugs heraus, bei dem das Fahrzeug und der weitere Elektromotor Stillstehen, erfolgt, indem in einem ersten Schritt die Trennkupplung geöffnet wird, anschließend in einem zweiten Schritt der Elektromotor auf einen ersten Drehzahlwert beschleunigt wird, in einem dritten Schritt die Trennkupplung geschlossen wird und dabei das zweite Antriebsmoment an den Abtrieb überträgt und dadurch das Fahrzeug beschleunigt.
Weiterhin ist ein Verfahren zum Betreiben eines Hybridantriebsstrangs
beispielsweise aus der noch unveröffentlichten deutschen Patentanmeldung
102018126881.5 bekannt. Der Verbrennungsmotor und der Elektromotor sind über eine Trennkupplung mit dem Abtrieb verbindbar, wobei bei Vorliegen einer bestimmten Beschleunigungsanforderung die Trennkupplung unabhängig von einem Zustand des Verbrennungsmotors geschlossen wird und der weitere Elektromotor das erste Antriebsdrehmoment und der Elektromotor das zweite
Antriebsdrehmoment gemeinsam an den Abtrieb abgeben.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Betreiben eines Hybridantriebsstrangs zu verbessern. Der Wiederstart des
Verbrennungsmotors soll verbessert werden. Wenigstens eine dieser Aufgaben wird durch ein Verfahren zum Betreiben eines Hybridantriebsstrangs mit den Merkmalen nach Anspruch 1 gelöst. Entsprechend wird ein Verfahren zum Betreiben eines Hybridantriebsstrangs in einem Fahrzeug, in dem ein Verbrennungsmotor ein erstes Antriebsmoment, ein erster Elektromotor ein zweites Antriebsmoment und ein zweiter Elektromotor ein drittes Antriebsmoment bereitstellen können und eine Trennkupplung angeordnet ist, die einen
Kupplungseingang, der mit einer Eingangsdrehzahl drehen kann und einen mit dem Kupplungseingang bei betätigter Trennkupplung wirksam verbindbaren
Kupplungsausgang, der mit einer Ausgangsdrehzahl drehen kann, aufweist, vorgeschlagen, wobei der Kupplungseingang mit dem zweiten Elektromotor und der Kupplungsausgang mit dem ersten Elektromotor verbunden ist und die
Trennkupplung wirksam zwischen dem ersten und zweiten Elektromotor angeordnet ist, wobei in einem ersten Betriebszustand die Trennkupplung geöffnet ist und ausgehend von dem ersten Betriebszustand ein zweiter Betriebszustand, bei dem die Trennkupplung betätigt ist und der Verbrennungsmotor das erste
Antriebsmoment an einen Abtrieb abgeben kann eingenommen wird, indem vor Betätigung der Trennkupplung die Eingangsdrehzahl und die Ausgangsdrehzahl einander angeglichen werden und die Trennkupplung betätigt wird, sobald der Drehzahlunterschied zwischen Eingangsdrehzahl und Ausgangsdrehzahl einen Drehzahlschwellwert unterschreitet.
Dadurch kann die bei Betätigung der Trennkupplung auftretende Reibenergie verringert werden. Der Verschleiß der Trennkupplung kann verringert und die Laufleistung der Trennkupplung erhöht werden. Durch den gering oder nicht vorhandenen Drehzahlunterschied bei Betätigen der Trennkupplung kann der Fahrkomfort verbessert werden. Die Trennkupplung kann kleiner ausgeführt werden und die Kosten können verringert werden. Die Masse der Trennkupplung kann verringert werden. Weiterhin wird der Regelungsaufwand zur Ansteuerung der Trennkupplung verringert. Beispielsweise kann die Trennkupplung auf nur noch einen geöffneten und einen betätigten Zustand eingestellt werden. Weitere
Zwischenzustände können ausbleiben.
Der Drehzahlunterschied wird bevorzugt gebildet, indem die Eingangsdrehzahl grösser als die Ausgangsdrehzahl ist. Der Abtrieb kann ein Getriebe, ein Differential oder wenigstens ein Fahrzeugrad sein.
Der erste und zweite Elektromotor können drehzahlgeregelt betrieben werden.
In einer speziellen Ausführung der Erfindung wird die Eingangsdrehzahl an die Ausgangsdrehzahl angeglichen, indem der zweite Elektromotor die
Eingangsdrehzahl steuert. Dadurch kann die Eingangsdrehzahl schnell und genau bewirkt werden.
In einer speziellen Ausführung der Erfindung wechselt der erste Betriebszustand zu dem zweiten Betriebszustand, wenn die Fahrzeuggeschwindigkeit über einem
Grenzwert und/oder die Fahrpedalstellung über einem Grenzwert liegt.
In einer bevorzugten Ausführung der Erfindung ist der Verbrennungsmotor in dem ersten Betriebszustand ausgeschaltet. Der Verbrennungsmotor kann schneller wieder gestartet werden, um in dem zweiten Betriebszustand das erste
Antriebsmoment abgeben zu können.
In einer vorteilhaften Ausführung der Erfindung gibt der erste Elektromotor in dem ersten Betriebszustand das zweite Antriebsmoment an den Abtrieb ab. Das
Fahrzeug kann in dem ersten Betriebszustand ausschließlich von dem ersten
Elektromotor angetrieben werden.
In einer speziellen Ausführung der Erfindung ist die Trennkupplung wirksam zwischen dem Verbrennungsmotor und dem Abtrieb angeordnet.
In einer weiteren speziellen Ausführung der Erfindung ist der erste Elektromotor mit dem Abtrieb und/oder der Verbrennungsmotor mit dem zweiten Elektromotor verbunden.
In einer bevorzugten Ausführung der Erfindung sind der Verbrennungsmotor, der zweite Elektromotor, die Trennkupplung und der erste Elektromotor wirksam in Reihe angeordnet.
In einer speziellen Ausführung der Erfindung wirkt der zweite Elektromotor in dem zweiten Betriebszustand als von dem Verbrennungsmotor angetriebener Generator, dessen erzeugte elektrische Energie einem elektrischen Energiespeicher und/oder dem ersten Elektromotor bereitgestellt wird. Auch kann der zweite Elektromotor freidrehend sein oder das dritte Antriebsmoment, insbesondere bei betätigter Trennkupplung, an den Abtrieb abgeben.
In einer bevorzugten Ausführung der Erfindung wird vor Betätigung der
Trennkupplung der Verbrennungsmotor durch den zweiten Elektromotor gestartet. Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der Figurenbeschreibung und den Abbildungen.
Die Erfindung wird im Folgenden unter Bezugnahme auf die Abbildungen ausführlich beschrieben. Es zeigen im Einzelnen:
Figur 1 : Einen Hybridantriebsstrang in einem Fahrzeug bei dem das
Verfahren in einer speziellen Ausführungsform der Erfindung eingesetzt wird.
Figur 2: Eine Vergleichsdarstellung verschiedener Betätigungskurven einer
Trennkupplung gemäß dem Stand der Technik und bei Anwendung von dem Verfahren in einer weiteren speziellen Ausführungsform der Erfindung.
Figur 3: Ein Drehzahl- und Betätigungsverlaufsdiagramm bei Anwendung des
Verfahrens in einer weiteren speziellen Ausführungsform der
Erfindung.
Figur 1 zeigt einen Hybridantriebsstrang 10 in einem Fahrzeug bei dem das
Verfahren in einer speziellen Ausführungsform der Erfindung eingesetzt wird. Der Hybridantriebsstrang 10 umfasst einen Verbrennungsmotor 12, der ein erstes Antriebsmoment bereitstellen kann, einen ersten Elektromotor 14, der ein zweites Antriebsmoment bereitstellen kann und einen zweiten Elektromotor 16, der ein drittes Antriebsmoment bereitstellen kann.
Der Verbrennungsmotor 12, der erste Elektromotor 14 und der zweite Elektromotor 16 sind wirksam in Reihe geschaltet. Der erste Elektromotor 14 ist unmittelbar mit einem Abtrieb 18, der durch ein Getriebe 20 gebildet wird, verbunden. Der Abtrieb ist mit Fahrzeugrädern 22 verbunden. Der Verbrennungsmotor 12 ist mit dem zweiten Elektromotor 16 unmittelbar verbunden. Eine Trennkupplung 24 ist wirksam zwischen dem ersten Elektromotor 14 und dem zweiten Elektromotor 16 angeordnet. Die Trennkupplung 24 weist einen Kupplungseingang 26, der mit einer Eingangsdrehzahl drehen kann und einen Kupplungsausgang 28, der mit einer Ausgangsdrehzahl drehen kann, auf. Der Kupplungseingang 26 ist mit dem zweiten Elektromotor 16 und mit dem Verbrennungsmotor 12, insbesondere drehtest, verbunden. Der Kupplungsausgang 28 ist mit dem ersten Elektromotor 14, bevorzugt drehtest, verbunden.
Die Trennkupplung 24 kann durch eine Kupplungsbetätigungseinheit betätigt werden, wodurch der Kupplungseingang 26 mit dem Kupplungsausgang 28 verbunden wird und eine Drehmomentübertragung bewirkt. Durch die Trennkupplung 24 kann eine Drehmomentübertragung des ersten und/oder dritten Antriebsmoments an den Abtrieb 18 beeinflusst werden. Ist die Trennkupplung 24 geöffnet, ist eine
Drehmomentübertragung unterbrochen, wohingegen die Drehmomentübertragung bei betätigter Trennkupplung 24 erfolgen kann.
In einem ersten Betriebszustand des Fahrzeugs ist die Trennkupplung 24 geöffnet und das Fahrzeug wird ausschließlich durch das zweite Antriebsmoment, das durch den ersten Elektromotor 14 bereitgestellt wird, angetrieben. Dabei kann der
Verbrennungsmotor 12 in Betrieb sein oder auch abgeschaltet sein. Ist der
Verbrennungsmotor 12 in Betrieb, kann das erste Antriebsmoment den zweiten Elektromotor 16 betreiben, der das erste Antriebsmoment als Generator in
elektrische Energie umwandelt und einem elektrischen Energiespeicher und/oder dem ersten Elektromotor 14 zur Verfügung stellt.
In einem zweiten Betriebszustand des Fahrzeugs ist die Trennkupplung 24
geschlossen und der Verbrennungsmotor 12 ist in Betrieb und das erste
Antriebsmoment steht an dem Abtrieb 18 bereit.
In Figur 2 ist eine Vergleichsdarstellung verschiedener Betätigungskurven einer Trennkupplung gemäß dem Stand der Technik und bei Anwendung von dem
Verfahren in einer weiteren speziellen Ausführungsform der Erfindung dargestellt. In den Figuren 2 a) und b) ist jeweils ein Verlauf einer Betätigungsposition einer
Trennkupplung nach dem Stand der Technik abgebildet. Je größer dieser Wert ist, desto stärker ist die Trennkupplung betätigt, wobei ein Wert von Null für eine geöffnete Trennkupplung steht. Der in Figur 2 a) abgebildete Verlauf der Betätigungsposition 102 liegt bei einem dynamischen Startvorgang des Verbrennungsmotors vor. Dabei ist die
Trennkupplung zunächst geöffnet, der Kupplungsausgang dreht zusammen mit dem Abtrieb mit der Ausgangsdrehzahl, während der Verbrennungsmotor und der damit verbundene Kupplungseingang nicht drehen. Das Fahrzeug wird durch den ersten Elektromotor, der mit dem Abtrieb und dem Kupplungsausgang verbunden ist, angetrieben. Bei erhöhtem Beschleunigungsbedarf des Fahrzeugs kann das zusätzliche Antriebsmoment des Verbrennungsmotors bereitgestellt werden. Hierfür muss zunächst der Verbrennungsmotor gestartet werden, was durch den ersten Elektromotor erfolgen kann. Hierfür wird die Trennkupplung über eine erste
Betätigungsposition 104 von einem geöffneten, in einen betätigten Zustand überführt. Dadurch kann das Antriebsmoment des ersten Elektromotors durch einen
Schlupfbetrieb 106 der T rennkupplung an den Verbrennungsmotor geleitet werden, wodurch der Verbrennungsmotor gestartet wird. Der Schlupfbetrieb 106 wird beibehalten, bis der Verbrennungsmotor die geforderte Drehzahl erreicht hat. Dann wird die Trennkupplung mit einer zweiten Betätigungsposition 108 betrieben, durch die das Antriebsmoment des Verbrennungsmotors an dem Abtrieb und zusätzlich zu dem Antriebsmoment des ersten Elektromotors anliegt.
Der in Figur 2 b) abgebildete Verlauf der Betätigungsposition 110 liegt bei einem weniger dynamischen Startvorgang des Verbrennungsmotors vor. Auch hier ist die Trennkupplung zunächst geöffnet und der Kupplungsausgang dreht gemeinsam mit dem Abtrieb mit der Ausgangsdrehzahl. Der Verbrennungsmotor und der damit verbundene Kupplungseingang drehen sich nicht, die Eingangsdrehzahl der
Trennkupplung ist daher Null. Das Fahrzeug wird ausschließlich durch den ersten Elektromotor angetrieben, der mit dem Abtrieb verbunden ist. Bei einer
Beschleunigungsanforderung, durch die das Antriebsmoment des
Verbrennungsmotors benötigt wird, muss zunächst der Verbrennungsmotor gestartet werden. Dies erfolgt durch Betätigen der Trennkupplung, die eine erste
Betätigungsposition 104 einnimmt und diese in einem Schlupfbetrieb 106 beibehält, bis der Verbrennungsmotor gestartet ist. Anschließend wird die Trennkupplung geöffnet, wodurch dem Verbrennungsmotor bei geöffneter Trennkupplung die Zeit gegeben wird, auf die geforderte Drehzahl zu gelangen. Flat der Verbrennungsmotor diese Drehzahl erreicht, wird die Trennkupplung bis zu der zweiten Betätigungsposition 108 geschlossen und der Verbrennungsmotor überträgt das Antriebsmoment zusätzlich zu dem Antriebsmoment des ersten Elektromotors an den Abtrieb.
Bei beiden aufgezeigten Startvorgängen des Verbrennungsmotors liegt ein
Schlupfbetrieb 106 der Trennkupplung vor, durch den Reibenergie und
Wärmeenergie entsteht. Dadurch ist es erforderlich, die Trennkupplung geeignet robust auszulegen. Außerdem ist zu beachten, dass die Eingangsdrehzahl bei Betätigung der Trennkupplung grösser ist als die Ausgangsdrehzahl, da ansonsten eine Zug-Schub-Umkehr im Betrieb des Fahrzeugs auftritt, die sich unangenehm auf die Fahrdynamik und den Fahrkomfort des Fahrzeugs auswirkt.
In Figur 2 c) ist ein Verlauf einer Betätigungsposition 112 einer Trennkupplung bei Anwendung von dem Verfahren in einer weiteren speziellen Ausführungsform der Erfindung abgebildet. In einem ersten Betriebszustand 114 ist die Trennkupplung geöffnet, der erste Elektromotor überträgt das zweite Antriebsmoment an den Abtrieb und der Verbrennungsmotor ist abgeschaltet.
Bei einer Beschleunigungsanforderung, durch die das erste Antriebsmoment des Verbrennungsmotors zusätzlich zu dem zweiten Antriebsmoment an dem Abtrieb anliegen soll, ist ein zweiter Betriebszustand einzunehmen. Bei diesem zweiten Betriebszustand 116 ist die Trennkupplung über die zweite Betätigungsposition 108 geschlossen und das erste Antriebsmoment wird über die Trennkupplung an den Abtrieb übertragen.
Der Übergang von dem ersten Betriebszustand 114 zu dem zweiten Betriebszustand 116 erfolgt, indem die geöffnete Trennkupplung geschlossen wird. Vor Betätigung der Trennkupplung allerdings wird die Eingangsdrehzahl der Ausgangsdrehzahl angeglichen. Dies erfolgt durch den zweiten Elektromotor, der gemeinsam mit dem Verbrennungsmotor an dem Kupplungseingang angekoppelt ist und drehzahlgeregelt ist. Der zweite Elektromotor regelt somit die Eingangsdrehzahl, wodurch auch der Verbrennungsmotor mit dieser Drehzahl dreht. Der Verbrennungsmotor wird durch den Anstieg der Eingangsdrehzahl zunächst angeworfen und kann ab Erreichen einer vorgegebenen Eingangsdrehzahl auch das erste Antriebsmoment abgeben. Die Trennkupplung wird erst dann betätigt, wenn der Drehzahlunterschied zwischen Eingangsdrehzahl und Ausgangsdrehzahl einen Drehzahlschwellwert unterschreitet. Dann wird die Trennkupplung unmittelbar von dem geöffneten Zustand in die zweite Betätigungsposition gebracht und das erste Antriebsmoment liegt gemeinsam mit dem zweiten Antriebsmoment an dem Abtrieb an. Der zweite Elektromotor kann das dritte Antriebsmoment zusätzlich abgeben oder aber frei drehen.
Durch das unmittelbare Betätigen der Trennkupplung bei angeglichener
Eingangsdrehzahl und Ausgangsdrehzahl wird der Schlupfbetrieb der Trennkupplung verkürzt oder verhindert. Die Reibenergie und die Wärmeenergie wird gesenkt.
Figur 3 zeigt ein Drehzahl- und Betätigungsverlaufsdiagramm bei Anwendung des Verfahrens in einer weiteren speziellen Ausführungsform der Erfindung. In Figur 3 a) ist der zeitliche Verlauf der Ausgangsdrehzahl 120 und der Eingangsdrehzahl 122 der Trennkupplung und in Figur 3 b) ist die Betätigungsposition 124 der
Trennkupplung abgebildet.
In einem ersten Betriebszustand 114 des Fahrzeugs ist die Trennkupplung geöffnet und das Fahrzeug wird durch den ersten Elektromotor, der das zweite
Antriebsmoment an dem Abtrieb bereitstellt, angetrieben. Die Ausgangsdrehzahl 120 entspricht der Drehzahl des ersten Elektromotors. Der zweite Elektromotor und der Verbrennungsmotor drehen sich nicht.
In einem zweiten Betriebszustand 116 ist zusätzlich zu dem zweiten Antriebsmoment das erste Antriebsmoment des Verbrennungsmotors an dem Abtrieb wirksam und die Trennkupplung ist bis zu der Betätigungsposition 126 geschlossen. Der Übergang von dem ersten Betriebszustand 114 zu dem zweiten Betriebszustand 116 wird bei einem ersten Zeitpunkt 128, ab dem beispielsweise die Fahrzeuggeschwindigkeit einen Grenzwert und/oder die Fahrpedalstellung einen Grenzwert überschreitet, eingeleitet. Bei zunächst noch geöffneter Trennkupplung wird die Eingangsdrehzahl durch den zweiten Elektromotor, der mit dem Verbrennungsmotor verbunden ist, erhöht. Dadurch wird der Verbrennungsmotor gestartet und kann bei Erreichen einer vorgegebenen Eingangsdrehzahl das erste Antriebsmoment abgeben.
Der zweite Elektromotor wird drehzahlgeregelt betrieben, um die Eingangsdrehzahl der Ausgangsdrehzahl anzugleichen. Ab einem zweiten Zeitpunkt 130 unterschreitet der Drehzahlunterschied zwischen Eingangsdrehzahl und Ausgangsdrehzahl einen Drehzahlschwellwert und die Trennkupplung wird betätigt und nimmt die
Betätigungsposition 126 ein. Dadurch kann die bei Betätigung der Trennkupplung auftretende Reibenergie verringert werden. Der Verschleiß der Trennkupplung kann verringert und die Laufleistung der Trennkupplung erhöht werden. Bei erfolgter Betätigung der Trennkupplung bis zu der Betätigungsposition 126 wird das erste Antriebsmoment zusätzlich zu dem zweiten Antriebsmoment an den Abtrieb übertragen.
Bezuqszeichenliste
10 Hybridantriebsstrang
12 Verbrennungsmotor
14 erster Elektromotor
16 zweiter Elektromotor
18 Abtrieb
20 Getriebe
22 Fahrzeugrad
24 Trennkupplung
26 Kupplungseingang
28 Kupplungsausgang
102 Betätigungsposition
104 Betätigungsposition
106 Schlupfbetrieb
108 Betätigungsposition
110 Betätigungsposition
112 Betätigungsposition
114 erster Betriebszustand
116 zweiter Betriebszustand
120 Ausgangsdrehzahl
122 Eingangsdrehzahl
124 Betätigungsposition
126 Betätigungsposition 128 erster Zeitpunkt 130 zweiter Zeitpunkt

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Hybridantriebsstrangs (10) in einem Fahrzeug, in dem ein Verbrennungsmotor (12) ein erstes Antriebsmoment, ein erster Elektromotor (14) ein zweites Antriebsmoment und ein zweiter Elektromotor (16) ein drittes Antriebsmoment bereitstellen können und
eine Trennkupplung (24) angeordnet ist, die einen Kupplungseingang (26), der mit einer Eingangsdrehzahl drehen kann und einen mit dem
Kupplungseingang (26) bei betätigter Trennkupplung (24) wirksam
verbindbaren Kupplungsausgang (28), der mit einer Ausgangsdrehzahl drehen kann, aufweist, wobei
der Kupplungseingang (26) mit dem zweiten Elektromotor (16) und
der Kupplungsausgang (28) mit dem ersten Elektromotor (14) verbunden ist und
die Trennkupplung (24) wirksam zwischen dem ersten und zweiten
Elektromotor (14, 16) angeordnet ist,
dadurch gekennzeichnet, dass
in einem ersten Betriebszustand (114) die Trennkupplung (24) geöffnet ist und ausgehend von dem ersten Betriebszustand (114) ein zweiter Betriebszustand (116), bei dem die Trennkupplung (24) betätigt ist und der Verbrennungsmotor (12) das erste Antriebsmoment an einen Abtrieb (18) abgeben kann
eingenommen wird, indem
vor Betätigung der Trennkupplung (24) die Eingangsdrehzahl und die
Ausgangsdrehzahl einander angeglichen werden und die Trennkupplung (24) betätigt wird, sobald der Drehzahlunterschied zwischen Eingangsdrehzahl und Ausgangsdrehzahl einen Drehzahlschwellwert unterschreitet.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die
Eingangsdrehzahl an die Ausgangsdrehzahl angeglichen wird, indem der zweite Elektromotor (16) die Eingangsdrehzahl steuert.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Betriebszustand (114) zu dem zweiten Betriebszustand (116) wechselt, wenn die Fahrzeuggeschwindigkeit über einem Grenzwert und/oder die
Fahrpedalstellung über einem Grenzwert liegt.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass der Verbrennungsmotor (12) in dem ersten
Betriebszustand (114) ausgeschaltet ist.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass der erste Elektromotor (14) in dem ersten
Betriebszustand (114) das zweite Antriebsmoment an den Abtrieb (18) abgibt.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass die Trennkupplung (24) wirksam zwischen dem
Verbrennungsmotor (12) und dem Abtrieb (18) angeordnet ist.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass der erste Elektromotor (14) mit dem Abtrieb (18) und/oder der Verbrennungsmotor (12) mit dem zweiten Elektromotor (16) verbunden ist.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass der Verbrennungsmotor (12), der zweite Elektromotor (16), die Trennkupplung (24) und der erste Elektromotor (14) wirksam in Reihe angeordnet sind.
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass der zweite Elektromotor (16) in dem zweiten
Betriebszustand (116) als von dem Verbrennungsmotor (12) angetriebener Generator wirkt, dessen erzeugte elektrische Energie einem elektrischen Energiespeicher und/oder dem ersten Elektromotor (14) bereitgestellt wird.
10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass vor Betätigung der Trennkupplung (24) der
Verbrennungsmotor (12) durch den zweiten Elektromotor (16) gestartet wird.
PCT/DE2019/101080 2019-02-25 2019-12-12 Verfahren zum betreiben eines hybridantriebsstrangs WO2020173514A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019104678.5 2019-02-25
DE102019104678 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020173514A1 true WO2020173514A1 (de) 2020-09-03

Family

ID=69167552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2019/101080 WO2020173514A1 (de) 2019-02-25 2019-12-12 Verfahren zum betreiben eines hybridantriebsstrangs

Country Status (1)

Country Link
WO (1) WO2020173514A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453385B2 (en) 2019-12-18 2022-09-27 Kawasaki Motors, Ltd. Hybrid vehicle controller
WO2023174475A1 (de) * 2022-03-15 2023-09-21 Schaeffler Technologies AG & Co. KG Verfahren zum ankoppeln eines ersten teilantriebsstrangs eines hybridfahrzeuges an einen zweiten teilantriebsstrang, computerprogrammprodukt und hybridfahrzeugantriebsstrang
WO2024027139A1 (zh) * 2022-08-01 2024-02-08 三一重型装备有限公司 混合动力系统及作业机械

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053505A1 (de) * 2008-10-28 2010-04-29 Volkswagen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeuges
US20150291150A1 (en) * 2011-01-13 2015-10-15 Cummins Inc. System, method, and apparatus for controlling power output distribution in a hybrid power train

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053505A1 (de) * 2008-10-28 2010-04-29 Volkswagen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeuges
US20150291150A1 (en) * 2011-01-13 2015-10-15 Cummins Inc. System, method, and apparatus for controlling power output distribution in a hybrid power train

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453385B2 (en) 2019-12-18 2022-09-27 Kawasaki Motors, Ltd. Hybrid vehicle controller
EP3838642B1 (de) * 2019-12-18 2023-08-23 Kawasaki Motors, Ltd. Hybridfahrzeugsteuergerät
WO2023174475A1 (de) * 2022-03-15 2023-09-21 Schaeffler Technologies AG & Co. KG Verfahren zum ankoppeln eines ersten teilantriebsstrangs eines hybridfahrzeuges an einen zweiten teilantriebsstrang, computerprogrammprodukt und hybridfahrzeugantriebsstrang
WO2024027139A1 (zh) * 2022-08-01 2024-02-08 三一重型装备有限公司 混合动力系统及作业机械

Similar Documents

Publication Publication Date Title
EP2349801B1 (de) Verfahren und vorrichtung zum anfahren eines hybridfahrzeuges
EP3419847A1 (de) Antriebssystem für ein hybridfahrzeug sowie verfahren zum betreiben eines solchen antriebssystems
EP2726354B1 (de) Verfahren zum betrieb eines kraftfahrzeugs
WO2020173514A1 (de) Verfahren zum betreiben eines hybridantriebsstrangs
EP2884083A1 (de) Verfahren zum Start eines Verbrennungsmotors eines Kraftfahrzeugs und Kraftfahrzeug
WO2020088711A1 (de) Verfahren für einen antriebsstrang und hybridmodul in einem antriebsstrang
EP3277552B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
EP2718593B1 (de) Verfahren zum betreiben einer antriebsvorrichtung sowie vorrichtung zum betreiben der antriebsvorrichtung
WO2014020026A1 (de) Verfahren zum betreiben eines antriebstrangs
DE102020111605A1 (de) Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs eines elektrisch angetriebenen Kraftwagens
DE102019220191A1 (de) Verfahren zum Starten eines Verbrennungsmotors in einem Antriebsstrang mit hybridisiertem Doppelkupplungsgetriebe
WO2019185262A1 (de) Verfahren zum betrieb eines antriebsstranges eines kraftfahrzeugs, und antriebs-strangmodul eines solchen kraftfahrzeugs
DE102015223595A1 (de) Verfahren zum Ankoppeln eines Nebenabtriebes
DE102018130775A1 (de) Hybridmodul und Verfahren zur Steuerung eines Anfahrvorgangs
DE102018204907A1 (de) Verfahren zum Betrieb eines Antriebsstranges eines Kraftfahrzeugs, und Antriebsstrangmodul eines solchen Kraftfahrzeugs
WO2020114549A1 (de) Verfahren zum start eines verbrennungsmotors eines hybridfahrzeuges
DE102018206057B4 (de) Verfahren zum Starten einer Verbrennungskraftmaschine
DE102019201790A1 (de) Verfahren und Steuereinheit zum Betrieb eines Kraftfahrzeug-Antriebsstranges
DE102017220072A1 (de) Verfahren beim Betrieb eines Hybridfahrzeugs
EP3672821A1 (de) Impulsstart in einem hybrid-antriebsstrang
WO2018065313A1 (de) Verfahren zum anfahren eines kraftfahrzeuges
DE102016125443A1 (de) Antriebsstrang
EP3771583A1 (de) Verfahren zum starten eines verbrennungsmotors in einem antriebsstrang mit hybridisiertem doppelkupplungsgetriebe
DE102018131279A1 (de) Verfahren zur Steuerung eines Anfahrvorgangs eines Fahrzeugs
DE102021210986A1 (de) Verfahren zum Schließen einer Schalteinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19836785

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19836785

Country of ref document: EP

Kind code of ref document: A1