WO2020173507A1 - 一种碳纤维集束试样及其制备方法 - Google Patents

一种碳纤维集束试样及其制备方法 Download PDF

Info

Publication number
WO2020173507A1
WO2020173507A1 PCT/CN2020/085810 CN2020085810W WO2020173507A1 WO 2020173507 A1 WO2020173507 A1 WO 2020173507A1 CN 2020085810 W CN2020085810 W CN 2020085810W WO 2020173507 A1 WO2020173507 A1 WO 2020173507A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
confinement ring
fiber bundle
ring
carbon fibre
Prior art date
Application number
PCT/CN2020/085810
Other languages
English (en)
French (fr)
Inventor
张裕祥
高峡
杨寅
李琴梅
刘伟丽
汪雨
赵新颖
汤庆峰
Original Assignee
北京市理化分析测试中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910145061.XA external-priority patent/CN109855934B/zh
Priority claimed from CN201920246363.1U external-priority patent/CN209784012U/zh
Application filed by 北京市理化分析测试中心 filed Critical 北京市理化分析测试中心
Priority to EP20763922.0A priority Critical patent/EP3933374A4/en
Publication of WO2020173507A1 publication Critical patent/WO2020173507A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising

Definitions

  • Carbon fiber is known as one of the materials with the best comprehensive performance in the industry today. It is a new type of carbon material whose chemical composition contains more than 90% carbon element. Carbon fiber and its modified composite materials have been widely used in many fields such as aerospace, machinery manufacturing, textiles, chemicals, civil engineering, and medical and health care. Both carbon fiber itself and its composite materials have great practical application value.
  • Thermal conductivity is one of the important physical parameters for evaluating the thermal properties of carbon fibers. Accurately measuring the axial thermal conductivity of carbon fibers has important guiding significance for the development, preparation and evaluation of carbon fibers and their composite materials with different thermal properties.
  • steady-state method There are many methods to test the thermal conductivity of materials, which can be roughly divided into two categories: steady-state method and transient method.
  • the steady-state method directly measures the thermal conductivity according to the Fourier equation, but the temperature range and thermal conductivity range are narrow, and it is mainly suitable for measuring medium and low thermal conductivity materials at medium temperatures.
  • the transient law has a wide range of applications, and is especially suitable for high thermal conductivity materials and high-temperature testing.
  • the Flash Method also known as Laser method or laser flash method.
  • Traditional carbon fiber axial thermal conductivity measurement methods mainly include electrical methods such as direct current energization method, T-shape method, and 3CD method.
  • electrical methods such as direct current energization method, T-shape method, and 3CD method.
  • the radial dimension of a single carbon fiber is too small (usually only a few microns) and anisotropy. It is difficult to directly and accurately measure the thermal conductivity of a single carbon fiber.
  • He Fengmei et al. used the laser flash method to obtain the thermal diffusivity and thermal conductivity of carbon fibers, which confirmed the feasibility of the laser flash method to measure the thermal diffusivity of carbon fibers.
  • ASTM E1461- 2013 "Standard Test Method for Thermal Diffusivity by the Flash Method" test specimens required a generally circular sheet, the front surface area is smaller than the energy of the east area of the n general, samples having a diameter of 10 to try To 12.5 mm (under special circumstances, the diameter is as small as 6 mm, and the diameter as large as 30 mm has been successfully used Used reports). Large / [, and the optimum thickness should be selected based upon the estimated thermal diffusivity such that the time to reach half of the maximum temperature in the range 10 to 100,011 _. At higher temperatures, thinner specimens are required to minimize heat loss correction; however, specimens should generally be thick enough to represent the test material. Generally, the thickness is in the range of i to 6 mm.
  • the carbon fibers when the laser flash method is used to trace the axial thermal conductivity (thermal diffusivity and thermal conductivity) of carbon fibers, the carbon fibers must be bundled in the radial direction (multiple axially parallel carbon fibers are arranged in a cylindrical shape), and then a certain amount is intercepted along the axial direction.
  • the preparation and preparation of a circular thin sample specimen is the key link in the application of the flash method to measure the thermal diffusivity.
  • the carbon fiber bundle samples use cylindrical holders to hold the carbon fiber bundles.
  • the cylindrical holders Either the carbon fiber bundles are difficult to penetrate into the cylindrical holders, or the finished samples are in shape.
  • the dimensional accuracy is difficult to reach the standards required by GB/T 22588-2008 and ASTM E1461-2013, the internal smoothness is insufficient, and the filling rate of carbon fiber cannot be accurately determined.
  • the present invention provides a carbon fiber bundle sample, which uses two half-circle buckles to form a confinement ring to constrain the carbon fiber bundle to obtain accurate bulk density and outer dimensions.
  • the carbon fiber bundle sample includes: a confinement ring and a carbon fiber bundle
  • the confinement ring includes: an upper confinement ring and a lower confinement ring; the upper confinement ring and the lower confinement ring are two buckle-shaped semicircular rings, which form a full circle as a confinement ring after butting, and a cylindrical carbon fiber bundle Constrained in the confinement ring.
  • the axial length of the formed confinement ring is 1 mm ⁇ 6mm; the inner diameter of the formed confinement ring is 6 mm ⁇ 18mm, and the wall thickness is 2 mm ⁇ 2, 5 mm D
  • the material of the confinement ring is a polymer organic material with a thermal conductivity of less than 1W/(m ⁇ K).
  • the material of the confinement ring is ABS plastic or nylon.
  • the volume filling rate of the carbon fiber in the confinement ring is 50% to 80%.
  • the preparation method of the carbon fiber bundle sample is:
  • Step 1 Calculate the mass M of the carbon fiber to be tested required to reach the set volume filling rate
  • Step 2 Weigh the carbon fibers to be tested with a mass of M, and bundle them in parallel axially to form a cylindrical carbon fiber bundle; Step 3: Straighten the carbon fiber bundle;
  • Step 4 buckle the upper confinement ring and the lower confinement ring from two opposite directions of the outer circumference of the carbon fiber bundle to form a confinement ring, and constrain the carbon fiber bundle in the confinement ring;
  • Step 5 Trimming the carbon fiber bundles extending from both ends of the confinement ring to obtain a carbon fiber bundle sample.
  • the calculation method of the mass M of the carbon fiber to be tested required to achieve the set volume filling rate is: select a bundle of carbon fibers with a length of L and a mass of m, and according to the specific gravity of the carbon fiber to be tested, formula (1) Calculate single root The cross-sectional area S of carbon fiber.
  • the present invention adopts two semicircular rings of the buckle to form a confinement ring to constrain the carbon fiber bundle, so that the carbon fiber bundle sample can obtain accurate volume density and external dimensions;
  • sample preparation method of the present invention can greatly reduce the interference of the sample preparation process on the experimental results, ensure the accuracy and repeatability of the experimental links, and facilitate the later analysis of experimental data and experimental results , It is beneficial to the application of flash method to measure the axial thermal diffusion coefficient of carbon fiber.
  • Figure 1 is a front view of a carbon fiber bundle sample
  • Figure 2 is a schematic diagram of the upper confinement ring structure
  • Figure 3 is a schematic diagram of the lower confinement ring structure
  • Figure 4 is a schematic diagram of the working positions of the upper and lower confinement rings
  • Figure 5 is a schematic diagram of the upper restraint replacement part with upper restraint ring
  • Figure 6 is a schematic diagram of the lower restraint replacement part with lower restraint ring
  • Figure 7 is a schematic diagram of the carbon fibers to be trimmed after the carbon fibers are bundled with restraint.
  • This embodiment provides a carbon fiber bundle sample, which uses two half-circle buckles to form a confinement ring to constrain the carbon fiber bundle, which can obtain accurate bulk density and external dimensions.
  • the carbon fiber bundle sample includes: a confinement ring and a carbon fiber bundle constrained inside the confinement ring.
  • the carbon fiber bundle is a cylindrical shape formed by a plurality of axially parallel carbon fibers to be tested.
  • the confinement ring is formed by butting two buckle-shaped semicircular rings.
  • the two semicircular rings are respectively upper confinement ring 1 and lower confinement 2, and upper confinement ring 1 and lower confinement 2 are butted After that, a complete circle is formed, and the upper confinement ring 1 and the lower confinement 2 are connected in the butt joint by a buckle, so that they cannot be separated in the radial direction, and the carbon fiber bundle is constrained in the confinement ring.
  • the inner diameter of the formed confinement ring is 6 mm ⁇ 18mm, preferably 12.7mm; the thickness of the confinement ring (that is, the axial length) is 1 mm ⁇ 6mm, considering that the sample thickness after the carbon fiber bundle is less than 3 mm is prone to loosening.
  • the thickness of the confinement ring is 4mm when the thermal conductivity of the carbon fiber to be tested is less than 100W/(m K), and the thickness of the confinement ring is 6mm when the thermal conductivity of the carbon fiber to be tested is greater than 500W/(m K). That is to say, a relatively small thickness is used when testing carbon fibers with low thermal conductivity, and a relatively large thickness is used when testing carbon fibers with high thermal conductivity.
  • the wall thickness of the confinement ring is preferably 2 ⁇ 2.5 mm.
  • the material of the confinement ring can be made of an opaque polymer organic material with a thermal conductivity of less than lW/(nrK). This material can be made by machining, such as ABS plastic; or this material can be 3D printed, such as nylon. And the confinement ring is not easy to deform after sample preparation.
  • the preparation process of the carbon fiber bundle sample in the above embodiment 1 is:
  • the carbon fiber bundles are as tight as possible in the confinement ring, and theoretically, a volume filling rate of up to 80% can be achieved. 50% to 80% is more suitable, and a higher volume filling rate is preferred.
  • the cross-sectional area of the inner hole of the confinement ring S y is calculated according to the inner diameter D of the confinement ring :
  • Set the volume filling rate K, the cross-sectional area S of the carbon fiber bundle with the volume filling rate K is obtained from the formula (3): S 2 KS >;
  • the proportional coefficient of S and S c can be obtained:
  • the upper confinement ring 1 and the lower confinement ring 2 are respectively buckled together from two opposite directions on the outer circumference of the carbon fiber bundle to form a confinement ring, and the carbon fiber bundle is constrained in the confinement ring;
  • step (4) when the upper confinement ring 1 and the lower confinement ring 2 are respectively buckled from two opposite directions of the outer circumference of the carbon fiber bundle to form a confinement ring, the upper confinement ring 1 is clamped and positioned by the upper confinement ring positioning component , Clamping and positioning the lower confinement ring 2 through the lower confinement ring positioning component;
  • the upper confinement ring positioning component includes: upper confinement ring bracket 3, positioning piece B4, positioning piece D5 and connecting fasteners, wherein the connecting fasteners are screws.
  • the upper restraint ring bracket 3-end is a semicircular structure consistent with the arc of the upper restraint ring 1.
  • the upper restraint ring 1 is placed on the arc surface of the semicircular structure, and the positioning piece B4 and the positioning piece D5 are respectively mounted on the On both sides of the semicircular structure of the upper confinement ring bracket 3, clamp the upper confinement ring 1 in the middle of the two to realize the positioning of the upper confinement ring 1, so that the positioning piece B4, the positioning piece D5, and the half
  • the arc surface of the circular structure limits the axial and radial displacement of the upper confinement ring 1 and prevents the upper confinement ring 1 from rotating and falling off the upper confinement ring bracket 3.
  • the structure of the lower confinement ring positioning component is the same as that of the upper confinement ring positioning component, as shown in Figure 6, which specifically includes: a lower confinement ring bracket 6, a positioning piece A7, a positioning piece C8 and a coupling fastener, wherein the coupling is fastened
  • the pieces are screws.
  • Lower restraint ring bracket 6—end is a semicircular structure consistent with the arc of lower restraint 2, lower restraint 2 is placed on the arc surface of the semicircular structure, positioning piece A7 and positioning piece C8 are respectively mounted on the lower restraining ring by screws On the two end faces of the semicircular structure of the bracket 6, clamp the lower confinement ring 1 in the middle to realize the positioning of the lower confinement ring 1, thus through the positioning piece A7, the positioning piece C8 and the semicircular structure
  • the arc surface limits the axial and radial displacement of the lower confinement ring 2 and prevents the lower confinement ring 2 from rotating and falling off from the lower confinement ring bracket 6.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种碳纤维集束试样的制备方法,采用对扣的两个半圆环形成约束环约束碳纤维集束,能够得到精确的体积密度和外形尺寸。该碳纤维集束试样包括:约束环和碳纤维集束;约束环包括:上约束环(1)和下约束环(2);上约束环(1)和下约束环(2)为两个卡扣形式的半圆环,其对接后形成一个整圆,圆柱形的碳纤维集束约束在约束环内。制备该碳纤维集束试样时,先计算所需碳纤维的质量M,然后称取质量为M的待测碳纤维,轴向平行集束形成圆柱状的碳纤维集束;拉直碳纤维集束后,将上约束环(1)和下约束环(2)分别从碳纤维集束外圆周相对的两个方向扣接在一起形成约束环,将碳纤维集束约束在约束环内;最后对伸出约束环两端的碳纤维集束进行切边,得到碳纤维集束试样。

Description

一种碳纤维集束试样及其制备方法
技术领域 发明涉及一种试样及其制备方法, 具体涉及一种碳纤维集束试样及其制备方法。 背景技术 碳纤维被誉为当今工业界综合性能最好的材料之一。 它是一种化学组成中含碳元素质量 分数在 90%以上的新型碳材料。 碳纤维及其改性复合材料已经广泛应用于航天航空、 机械制 造、 纺织、 化工、 土木以及医疗卫生等许多领域, 不论碳纤维本身还是其复合材料实际应用 价值巨大。
热导率是评价碳纤维热学特性的重要物性参数之一, 准确测量得到碳纤维的轴向热导率 对于开发、 制备和评估不同热学特性的碳纤维及其复合材料具有重要的指导意义。
材料的导热性能测试方法很多, 大体可分为稳态法与瞬态法两大类。 其中稳态法根据 Fourier方程直接测量导热系数, 但温度范围与导热系数范围较窄, 主要适用于在中等温度下 测量中低导热系数材料。 瞬态法则应用范围较为宽广, 尤其适合于高导热系数材料以及高温 下的测试, 其中发展最快、 最具代表性、 得到国际热物理学界普遍承认的方法是闪光法 (FlashMethod) , 亦称为激光法或激光闪射法。
传统的碳纤维轴向导热性测量方法主要包括直流通电法、 T 形法、 3CD 法等电学方法。 然而单根碳纤维径向尺寸过小(通常只有几微米), 且各项异性, 直接准确测量单根碳纤维热 导率有一定的难度。 何凤梅等采用激光闪射法获得碳纤维热扩散率及导热系数, 证实了激光 闪射法测量碳纤维热扩散率的可行性。
现行的国家标准 GB/T 22588— 2008《闪光法测量热扩散系数或导热系数》等同采用 ASTM E1461— 2001 《Standard Test Method for Thermal Diffusivity by the Flash Method》。 该酒 B式方法 适用于对基本上完全致密, 均匀和各向同性的固体材料迸行的测量, 所述材料对所施加的能 量腺冲是不透明的。 然而, 在某些情况中, 周于多孔疏松试样时, 也产生可接受的结果。 所 以 对于径向尺寸微小、 各项异性的碳纤维, 需要通过 F格和适当的实验设计 适应与这些 严格准则的某些偏差来进行碳纤维的轴向导热测试。
ASTM E1461— 2013《Standard Test Method for Thermal Diffusivity by the Flash Method》中 要求测试试样通常为一个圆形的薄片, 其前表面面积小于能量東的面积 n 通常情况下, 试 试样的直径为 10至 12.5毫米 (特殊情况下, 直径小至 6毫米, 直径大至 30毫米己有成功使 用的报告)。最佳厚度取决于估计的热扩散率的大 /[、, 并且应该选择使得达到最大温度一半的 时间在 10至 100011 范_内。 在更高的温度下需要更薄的试样以最小化热损失校正; 然而, 试样通常应该足够厚以代表测试材料。 通常, 厚度在 i至 6毫米范围内。
因此, 采用激光闪射法溯试碳纤维轴向导热性能 (热扩散率和导热系数) 时、 必须使碳 纤维沿径向集束(多根轴向平行的碳纤维排列成圆柱状), 然后沿轴向截取一定长度制备成一 个圆形的薄片试样 试样及其制备是应用闪光法测量热扩散系数的关键环节。
目前, 碳纤维集束试样有采用圆柱形夹持器夹持碳纤维集束, 采用圆柱形夹持器存在很 大问题, 要么碳纤维束难以穿入圆柱形夹持器内, 要么制成的试样在外形尺寸精度上难以达 到 GB/T 22588— 2008和 ASTM E1461— 2013所要求的标准, 内部平顺性不足, 而且不能够 精准的确定碳纤维的填充率。 发明内容 有鉴于此, 本发明提供一种碳纤维集束试样, 采用对扣的两个半圆环形成约束环约束碳 纤维集束, 能够得到精确的体积密度和外形尺寸。
所述的碳纤维集束试样包括: 约束环和碳纤维集束;
所述约束环包括: 上约束环和下约束环; 所述上约束环和下约束环为两个卡扣形式的半 圆环, 其对接后形成一个整圆作为约束环, 圆柱形的碳纤维集束约束在约束环内。
所形成的约束环的轴向长度为 1 mm〜 6mm; 所形成的约束环的内径为 6 mm〜 18mm, 壁厚 2 mm 〜 2, 5 mmD
所述约束环的材料为热导率小于 lW/(m · K)的高分子有机材料。
所述约束环的材料为 ABS塑料或尼龙。
碳纤维在所述约束环内的体积填充率为 50%〜 80%。
所述的碳纤维集束试样的制备方法为:
步骤一: 计算达到设定体积填充率所需的待测碳纤维的质量 M;
步骤二: 称取质量为 M的待测碳纤维, 轴向平行集束形成圆柱状的碳纤维集束; 步骤三: 拉直碳纤维集束;
步骤四: 将所述上约束环和下约束环分别从所述碳纤维集束外圆周相对的两个方向扣接 在一起形成约束环, 将所述碳纤维集束约束在所述约束环内;
步骤五: 对伸出约束环两端的碳纤维集束进行切边处理, 得到碳纤维集束试样。
所述步骤一中, 达到设定体积填充率所需的待测碳纤维的质量 M的计算方法为: 选取一束长度为 L、 质量为 m的碳纤维, 根据待测碳纤维的比重 由式(1)计算单根 碳纤维的横截面积 S。
(1)
Figure imgf000005_0001
根据约束环的内径 D由式 (2)计算约束环内孔截面积 Sy
Figure imgf000005_0002
设定体积填充率 K, 由式 (3) 得出体积填充率为 K的碳纤维集束试样的横截面积 S:
S = KS: (3) 由式 (4), 得出 S和 S。的比例系数:
Figure imgf000005_0003
则达到体积填充率 K所需待测碳纤维的质量 M为:
Figure imgf000005_0004
@m。
有益效果:
(1)本发明采用对扣的两个半圆环形成约束环约束碳纤维集束, 能够使碳纤维集束试样 得到精确的体积密度和外形尺寸;
(2)采用本发明的试样制备方法能够极大的减小试样的制样环节对实验结果的干扰, 保 证实验环节的准确性和可重复性、 便于后期对实验数据及实验结果的分析, 有利于用闪光法 测量碳纤维轴向热扩散系数的应用于推广。
(3)在制备试样时, 依据约束环的内径和设定的体积填充率计算所需碳纤维的质量, 能 够保证碳纤维集束试样体积密度的精确性。 附图说明 图 1为碳纤维集束试样的主视图;
图 2为上约束环结构示意图;
图 3为下约束环结构示意图;
图 4为上约束环与下约束环工作位置示意图;
图 5为装有上约束环的上约束换部件结构示意图;
图 6为装有下约束环的下约束换部件结构示意图;
图 7为用约束约将碳纤维集束后待切边的示意图。
其中: 1-上约束环; 2 -下约束环; 3 -上约束环托架; 4 -定位片 C; 5 -定位片 D; 6 -下约束 环托架; 7 -定位片 A; 8 -定位片 B 具体实施方式 下面结合附图并举实施例, 对本发明进行详细描述。
实施例 1 :
本实施例提供一种碳纤维集束试样,采用对扣的两个半圆环形成约束环约束碳纤维集束, 能够得到精确的体积密度和外形尺寸。
该碳纤维集束试样包括: 约束环和约束在该约束环内部的碳纤维集束。
其中碳纤维集束为多根轴向平行的待测碳纤维平行集束成的圆柱状。 如图 1-图 4所示, 约束环由两个卡扣形式的半圆环对接后形成, 两个半圆环分别为上约束环 1和下约束 2, 上 约束环 1和下约束 2对接后形成一个整圆, 上约束环 1和下约束 2在对接处采用卡扣形式连 接, 使其沿径向方向不能分离, 碳纤维集束约束在约束环内。
所形成的约束环的内径为 6 mm ~18mm, 优选 12.7mm; 约束环的厚度 (即轴向长度)为 1 mm ~6mm, 考虑到碳纤维集束后试样厚度小于 3 mm时容易出现松散现象, 基于此, 本方 案在待测碳纤维热导率小于 100W/(m K) 时约束环的厚度采用 4mm, 在待测碳纤维热导率大 于 500W/(m K) 时约束环的厚度采用 6mm, 也就是说在测试低热导率的碳纤维时采用相对较 小的厚度,在测试高热导率的碳纤维时采用相对较大的厚度。约束环的壁厚以 2〜 2.5 mm为最 优。约束环的材料可以由热导率小于 lW/(nrK)的不透明高分子有机材料制成, 这种材料可以 通过机械加工制作, 如 ABS塑料; 或者这种材料可以通过 3D打印, 比如尼龙。 并且在试样 制备后约束环不易变形。
实施例 2:
上述实施例 1中的碳纤维集束试样的制备过程为:
( 1 ) 计算所需碳纤维的质量 M
碳纤维集束在约束环内时尽可能紧密, 理论上可以达到最高为 80%的体积填充率, 50%〜 80%比较适宜, 优选较高的体积填充率。
选取一束质量为 m、 长度为 L的待测碳纤维, 根据待测碳纤维的比重
Figure imgf000006_0001
由式 ( 1 ) 计 算单根碳纤维的横截面积 Sc:
( 1 )
Figure imgf000006_0002
由式 ( 2 ), 根据约束环的内径 D计算约束环内孔截面积 Sy :
Figure imgf000006_0003
设定体积填充率 K, 由式 ( 3 ) 得出体积填充率为 K的碳纤维集束的横截面积 S: S二 KS>; ( 3 ) 由式 ( 4), 得出 S和 Sc的比例系数:
Figure imgf000007_0001
则达到体积填充率 K所需碳纤维的质量为: M= m。
(2) 称取质量为 M的待测碳纤维, 轴向平行集束形成圆柱状的碳纤维集束;
( 3 ) 拉直碳纤维集束
(4)将上约束环 1和下约束环 2分别从碳纤维集束外圆周相对的两个方向扣接在一起形 成约束环, 将碳纤维集束约束在约束环内;
( 5 )将用约束环约束的碳纤维集束伸出于约束环两端较长的碳纤维集束适当剪短, 以便 后续切边。 夹持已扣合的装有碳纤维集束的约束环的一端, 用刀具贴着约束环另一端的边缘 切掉多余的碳纤维。 然后采用以此方法对约束环另一端碳纤维集束进行切边, 由此形式与约 束环厚度一致的碳纤维集束试样, 如图 7所示。
上述步骤 (4) 中, 将上约束环 1和下约束环 2分别从碳纤维集束外圆周相对的两个方向 扣接形成约束环时, 通过上约束环定位部件对上约束环 1进行夹紧定位, 通过下约束环定位 部件对下约束环 2进行夹紧定位;
如图 5所示, 上约束环定位部件包括: 上约束环托架 3、 定位片 B4、 定位片 D5及联接 紧固件, 其中联接紧固件为螺钉。 上约束环托架 3—端为与上约束环 1弧形一致的半圆形结 构, 上约束环 1放置在半圆形结构圆弧面上, 定位片 B4和定位片 D5分别通过螺钉安装在上 约束环托架 3半圆形结构的两侧端面上, 将位于两者中间的上约束环 1夹紧, 实现对上约束 环 1的定位, 由此通过定位片 B4、 定位片 D5以及半圆形结构圆弧面限制上约束环 1的轴向 和径向位移, 防止上约束环 1转动以及从上约束环托架 3上脱落。
下约束环定位部件的结构与上约束环定位部件的结构相同, 如图 6所示, 具体包括: 下 约束环托架 6、 定位片 A7、 定位片 C8和联接紧固件, 其中联接紧固件为螺钉。 下约束环托 架 6—端为与下约束 2弧形一致的半圆形结构, 下约束 2放置在半圆形结构圆弧面上, 定位 片 A7和定位片 C8分别通过螺钉安装在下约束环托架 6半圆形结构的两侧端面上,将位于两 者中间的下约束环 1夹紧, 实现对下约束环 1的定位, 由此通过定位片 A7、 定位片 C8以及 半圆形结构圆弧面限制下约束环 2的轴向和径向位移, 防止下约束环 2转动以及从下约束环 托架 6上脱落。
综上所述, 以上仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围。 凡在 本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1、 一种碳纤维集束试样, 其特征在于, 包括: 约束环和碳纤维集束;
所述约束环包括: 上约束环 (1) 和下约束环 (2); 所述上约束环 (1) 和下约束环 (2) 为两个卡扣形式的半圆环, 其对接后形成一个整圆作为约束环, 圆柱形的碳纤维集束约束在 约束环内。
2、 如权利要求 1所述的碳纤维集束试样, 其特征在于, 所形成的约束环的轴向长度为 1 mm〜 6mm; 所形成的约束环的内径为 6 mm〜 18mm, 壁厚 2 mm〜 2. 5 mm。
3、 如权利要求 1所述的碳纤维集束试样, 其特征在于, 所述约束环的材料为热导率小于 lW/(m · K)的高分子有机材料。
4、 如权利要求 3所述的碳纤维集束试样, 其特征在于, 所述约束环的材料为 ABS塑料或 尼龙。
5、 如权利要求 1所述的碳纤维集束试样, 其特征在于, 碳纤维在所述约束环内的体积填 充率为 50%~80%。
6、 权利要求 1〜 5任意一项碳纤维集束试样的制备方法, 其特征在于:
步骤一: 计算达到设定体积填充率所需的待测碳纤维的质量 M;
步骤二: 称取质量为 M的待测碳纤维, 轴向平行集束形成圆柱状的碳纤维集束; 步骤三: 拉直碳纤维集束;
步骤四: 将所述上约束环 (1) 和下约束环 (2) 分别从所述碳纤维集束外圆周相对的两 个方向扣接在一起形成约束环, 将所述碳纤维集束约束在所述约束环内;
步骤五: 对伸出约束环两端的碳纤维集束进行切边处理, 得到碳纤维集束试样。
7、 如权利要求 6所述的碳纤维集束试样制备方法, 其特征在于, 所述步骤一中, 达到设 定体积填充率所需的待测碳纤维的质量 M的计算方法为:
选取一束长度为 L、 质量为 m的碳纤维, 根据待测碳纤维的比重
Figure imgf000009_0001
由式(1)计算单根 碳纤维的横截面积 S。:
m
5 L ( 1 ) 根据约束环的内径 D由式 (2) 计算约束环内孔截面积 Sy
Figure imgf000009_0002
设定体积填充率 K, 由式 (3) 得出体积填充率为 K的碳纤维集束试样的横截面积 S:
S = KS^ (3) 由式 (4), 得出 S和 S。的比例系数: 则达到体积填充率 K所需待测碳纤维的质量 M为:
Figure imgf000010_0001
8、 如权利要求 6所述的碳纤维集束试样制备方法, 其特征在于, 所述步骤四中, 将所述 上约束环 (1) 和下约束环 (2) 分别从所述碳纤维集束外圆周相对的两个方向扣接形成约束 环时, 通过上约束环定位部件对所述上约束环(1)进行夹紧定位, 通过下约束环定位部件对 所述下约束环 (2) 进行夹紧定位;
所述上约束环定位部件包括: 上约束环托架 (3)、 定位片 B (4) 和定位片 D (5); 所述 上约束环托架 (3) —端为与所述上约束环 (1) 半径一致的半圆形结构, 所述上约束环 (1) 放置在该半圆形结构圆弧面上, 所述定位片 B(4)和定位片 D(5)分别通过紧固连接件安装 在上约束环托架 (3)半圆形结构两侧的端面上, 将位于两者中间的所述上约束环 (1)夹紧; 所述下约束环定位部件的结构与所述上约束环定位部件的结构相同。
9、 如权利要求 6所述的碳纤维集束试样的制备方法, 其特征在于, 所述步骤五中, 先将 碳纤维集束两端伸出于约束环部分剪短至设定长度; 然后夹持住所述约束环, 用刀具贴着所 述约束环端部切掉伸出所述约束环的碳纤维集束; 对所述碳纤维集束一端切边完成后, 采用 同样方法对所述约束环另一端碳纤维集束进行切边处理, 由此形成与所述约束环厚度一致的 碳纤维集束试样。
PCT/CN2020/085810 2019-02-27 2020-04-21 一种碳纤维集束试样及其制备方法 WO2020173507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20763922.0A EP3933374A4 (en) 2019-02-27 2020-04-21 CARBON FIBER BEAM SAMPLE AND METHOD FOR PREPARING IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910145061.X 2019-02-27
CN201920246363.1 2019-02-27
CN201910145061.XA CN109855934B (zh) 2019-02-27 2019-02-27 一种碳纤维集束试样及其制备方法
CN201920246363.1U CN209784012U (zh) 2019-02-27 2019-02-27 一种碳纤维集束试样

Publications (1)

Publication Number Publication Date
WO2020173507A1 true WO2020173507A1 (zh) 2020-09-03

Family

ID=72239300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085810 WO2020173507A1 (zh) 2019-02-27 2020-04-21 一种碳纤维集束试样及其制备方法

Country Status (2)

Country Link
EP (1) EP3933374A4 (zh)
WO (1) WO2020173507A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129896A (en) * 1998-12-17 2000-10-10 Drawn Optical Components, Inc. Biosensor chip and manufacturing method
CN101530964A (zh) * 2009-04-28 2009-09-16 南通市神马电力科技有限公司 一种芯棒与金具连接的定位环
JP2013181902A (ja) * 2012-03-02 2013-09-12 Mitsubishi Rayon Co Ltd ストランド引張試験片
CN104913969A (zh) * 2015-05-22 2015-09-16 南京航空航天大学 带基体纤维束的双轴拉剪试验件及其制备方法
CN106645277A (zh) * 2016-10-20 2017-05-10 北京航空航天大学 一种用于纤维轴向导热性能测试的试件及其制备方法
CN108871919A (zh) * 2018-07-20 2018-11-23 交通运输部天津水运工程科学研究所 一种固化土试验用敲打式拉手对开模制模装置
CN109855934A (zh) * 2019-02-27 2019-06-07 北京市理化分析测试中心 一种碳纤维集束试样及其制备方法
CN209784012U (zh) * 2019-02-27 2019-12-13 北京市理化分析测试中心 一种碳纤维集束试样

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175394A (ja) * 2004-12-24 2006-07-06 Toray Ind Inc 縮径済み糸束の製造方法および製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129896A (en) * 1998-12-17 2000-10-10 Drawn Optical Components, Inc. Biosensor chip and manufacturing method
CN101530964A (zh) * 2009-04-28 2009-09-16 南通市神马电力科技有限公司 一种芯棒与金具连接的定位环
JP2013181902A (ja) * 2012-03-02 2013-09-12 Mitsubishi Rayon Co Ltd ストランド引張試験片
CN104913969A (zh) * 2015-05-22 2015-09-16 南京航空航天大学 带基体纤维束的双轴拉剪试验件及其制备方法
CN106645277A (zh) * 2016-10-20 2017-05-10 北京航空航天大学 一种用于纤维轴向导热性能测试的试件及其制备方法
CN108871919A (zh) * 2018-07-20 2018-11-23 交通运输部天津水运工程科学研究所 一种固化土试验用敲打式拉手对开模制模装置
CN109855934A (zh) * 2019-02-27 2019-06-07 北京市理化分析测试中心 一种碳纤维集束试样及其制备方法
CN209784012U (zh) * 2019-02-27 2019-12-13 北京市理化分析测试中心 一种碳纤维集束试样

Also Published As

Publication number Publication date
EP3933374A1 (en) 2022-01-05
EP3933374A4 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
CN103983658B (zh) 一种纤维中温纵向线膨胀系数测试装置
CN209784012U (zh) 一种碳纤维集束试样
Kwok et al. Strength characterization of tubular ceramic materials by flexure of semi-cylindrical specimens
WO2020173507A1 (zh) 一种碳纤维集束试样及其制备方法
CN109855934B (zh) 一种碳纤维集束试样及其制备方法
CN109959577A (zh) 木材微观含水率的检测方法
CN109900534B (zh) 一种碳纤维集束制样装置及碳纤维集束的制备方法
CN209961560U (zh) 一种碳纤维集束制样装置
WO2020173508A1 (zh) 一种碳纤维集束制样装置及碳纤维集束的制备方法
CN105157864B (zh) 空心圆棒试件内壁温度的测量方法
CN109030544B (zh) 一种基于微型晶体晶格参数变化的最高温度测量方法
Lieberman et al. CVD/PAN felt carbon/carbon composites
CN109459320B (zh) 一种热塑性塑料最高使用温度的测试方法
Metcalfe et al. Effect of test specimen size on graphite strength
CN206258314U (zh) 一种蠕变试验夹具
Dahad et al. Study the effect of different percentages of natural (orange peels and date seeds) and industrial materials (carbon and silica) on the mechanical and thermal properties of polymeric reinforced composites
Hust et al. Round robins on the apparent thermal conductivity of low-density glass fiber insulations using guarded hot plate and heat flow meter apparatus
Adams Properties characterization—mechanical/physical/hygrothermal properties test methods
Fiala et al. An impedance non-destructive method to evaluate the steel fibers in composites
Zhou et al. X-ray microtomography observation of interfacial debonding in CFRP under combined loading
CN117740940A (zh) 一种用于测定陶瓷基复合材料弹性模量的工装及方法
CN105973700A (zh) 由低合金高强钢的最大荷载确定其断裂韧度的方法
Kharabet et al. Study of Carbon-Fiber-Reinforced Polymers conductivity's dependence on a mechanical strain
Makabe et al. Effect of Specimen Thickness on Fatigue Limit in Carbon Composites
Loveday et al. Mechanical Testing at> 1000 C

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020763922

Country of ref document: EP

Effective date: 20210927