WO2020173438A1 - 一种卫星协作通信的方法、装置及系统 - Google Patents

一种卫星协作通信的方法、装置及系统 Download PDF

Info

Publication number
WO2020173438A1
WO2020173438A1 PCT/CN2020/076642 CN2020076642W WO2020173438A1 WO 2020173438 A1 WO2020173438 A1 WO 2020173438A1 CN 2020076642 W CN2020076642 W CN 2020076642W WO 2020173438 A1 WO2020173438 A1 WO 2020173438A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
base station
set threshold
network device
satellite base
Prior art date
Application number
PCT/CN2020/076642
Other languages
English (en)
French (fr)
Inventor
林美新
乔云飞
孟贤
秦大力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20763305.8A priority Critical patent/EP3905764A4/en
Publication of WO2020173438A1 publication Critical patent/WO2020173438A1/zh
Priority to US17/403,953 priority patent/US11616567B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18523Satellite systems for providing broadcast service to terrestrial stations, i.e. broadcast satellite service
    • H04B7/18526Arrangements for data linking, networking or transporting, or for controlling an end to end session
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18528Satellite systems for providing two-way communications service to a network of fixed stations, i.e. fixed satellite service or very small aperture terminal [VSAT] system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0831Core entity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the embodiments of the present invention belong to the field of satellite communication, and more specifically, relate to a method, device, and system for satellite cooperative communication.
  • Information and communication networks are also moving from fixed networks to mobile networks, and from networks that are isolated from each other on the ground and the sky to a space-earth integration network.
  • the world-earth convergence network is a major information infrastructure that extends human activities to space, far seas and even deep space.
  • the world-earth integration network can adapt to the needs of economic and social development mode changes and information technology development. It is the focus, focus and direction of information technology, information industry, information network and informatization development.
  • Satellite communication is an important part of the space-earth convergence network.
  • Standard organizations such as the 3rd Generation Partnership Project (3GPP) and the International Telecommunication Union (ITU, International Telecommunication Union) have successively carried out research and discussion on satellite communication standards for space and earth integration, focusing on the integration of existing 5G standards
  • satellite communication technology define and analyze the application scenarios, network structure, key technologies and other content of 5G satellite network, so as to meet the global coverage of the world-earth convergence network.
  • 3GPP 3rd Generation Partnership Project
  • ITU International Telecommunication Union
  • satellite communication technology define and analyze the application scenarios, network structure, key technologies and other content of 5G satellite network, so as to meet the global coverage of the world-earth convergence network.
  • This application focuses on the satellite network collaboration technology under the satellite and 5G converged architecture.
  • Satellite communication has the characteristics of long communication distance, large coverage area, and flexible networking.
  • satellite communication Communication technology plays an irreplaceable role. Satellite networks can provide services for both fixed terminals and various mobile terminals.
  • Figure 1 is a schematic diagram of the satellite coverage area.
  • Land densely populated areas such as Beijing, Shanghai and other megacities
  • the area covered by the 101 beam 104 (Beam #l) has a large population density, and the number of satellite communication users has a huge potential.
  • the communication load of the satellite 101 is very large or even exceeds the load capacity.
  • the population density is small, and the coverage area belongs to sparsely populated cities, desert areas and even ocean areas.
  • the distribution of satellite communication users is very sparse, or even none. Satellite resources are not fully utilized. Satellite resources in areas with sparse users are seriously wasted. At the same time, satellite resources in areas with dense users may be seriously insufficient to provide access services.
  • the current common solution is to modify the pilot power to adjust the coverage of the cell, but modifying the pilot power will affect the amount of traffic supported by the cell.
  • Another solution is mobile load balancing (MLB, Mobility Load Balancing). Biasing the measured value of the handover cell to adjust the handover area, this method can only meet the needs of users at the edge of the cell and has limitations. The huge difference in the amount of users in different coverage areas puts forward higher requirements for the coverage of satellite beams.
  • the present application provides a satellite communication method and network equipment, which can coordinate satellite beam sharing network load when the network load is heavy, and improve the utilization rate of satellite resources.
  • this application provides a satellite communication method, which is applied to a first network device, such as a user plane function UPF unit or a device with a similar functional unit.
  • the method includes: a first network device obtains traffic between multiple satellite communication links, or obtains air interface resources allocated by a ground station to multiple satellite base stations; the first network device sends identification information to a second network device, so The identification information indicates that the traffic between the satellite communication links reaches a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the set threshold.
  • the second network device is, for example, a device with access and mobility management function AMF unit or similar functional unit.
  • the first network device belongs to the data plane functional entity, and is responsible for managing user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • the second network device AMF unit or similar unit
  • the idle satellite resources are actively mobilized according to the load demand to share the load, and the coordinated satellite beams and the satellites of the original cell share the access services of the cell, thereby realizing the cooperation between the satellites.
  • Communication utilizes the characteristics of a large adjustable range of satellite beams but different utilization of network resources in different coverage cells, fully improves the utilization rate of network resources, and provides better access services for terminal users.
  • the identification information also indicates that the traffic between the satellite communication links reaches a cell corresponding to a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach a cell corresponding to the set threshold.
  • the identification information can carry the identification (ID) of the cell or the satellite base station whose load reaches the set threshold, in another feasible implementation scheme, the cell or the cell whose load reaches the set threshold can also be sent separately through a kind of identification information.
  • the identification (ID) of the satellite base station can carry the identification (ID) of the cell or the satellite base station whose load reaches the set threshold.
  • the method further includes: the first network device sends a first cell identity to the second network device, where the first cell identity is determined by the traffic between the satellite communication links reaching a set threshold The satellite communication link is determined, or determined by the satellite base station whose air interface resource allocated to the satellite base station by the ground station reaches a set threshold.
  • the method further includes: the first network device sending a second cell identity and load information to a second network device, where the second cell identity is not reached by the traffic between the satellite communication links
  • the satellite communication link with the set threshold is determined, or the satellite base station whose air interface resources allocated to the satellite base station by the ground station has not reached the set threshold, and the load information indicates the satellite communication link with the set threshold. Or indicate the air interface resources allocated by the satellite base station that has not reached the set threshold.
  • the method further includes: the first network device sends a second cell identity and load information to the second network device, the second cell identity is determined by a satellite ephemeris, and the load information is determined by the The satellite base station corresponding to the satellite ephemeris is determined.
  • the first network device creates a load threshold, where the load threshold is a threshold T1 set for traffic between the satellite communication links, or set for air interface resources allocated by the satellite base station Threshold T2.
  • the first network device can also create a threshold to give the first network device more operating space.
  • the first network device if the traffic between the satellite communication links reaches the threshold T1, the first network device sends the identification information to the second network device.
  • the present application provides a satellite communication method, which is applied to a second network device, such as an AMF unit with access and mobility management function or a device with a similar functional unit.
  • the method includes: a second network device receives a first message sent by a first network device, where the first message includes identification information; the second network device determines the satellite base station to be linked according to the first message; the The second network device sends a second message to the satellite base station to be linked, where the second message includes information about beams generated by the satellite base station to be linked; the satellite base station to be linked has free satellite resources; the identifier
  • the information indicates that the traffic between satellite communication links has reached the set threshold, or the air interface resources allocated by the ground station to the satellite base station have reached the set threshold.
  • the first network device is, for example, a user plane function UPF unit or a device similar to a functional unit.
  • the second network device belongs to the control plane functional entity and is responsible for user access Access management, security certification, and mobility management. Monitor the network traffic of each satellite or each cell to determine the traffic load of each satellite, and trigger the second network device (AMF unit or similar unit) to schedule idle beam resources through the identification information, and the second network device instructs the surrounding satellite resources to flow densely
  • the area provides new access and service cells.
  • the second network device can actively mobilize idle satellite resources according to load requirements to share the load, and coordinate the satellite beams to share the access services of the cell with the satellites of the original cell, thereby achieving The cooperative communication between satellites.
  • This method utilizes the characteristics of a large adjustable range of satellite beams but different utilization of network resources in different coverage cells, fully improves the utilization of network resources, and provides better access services for terminal users.
  • the first message further includes: a second cell identifier and load information, where the second cell identifier indicates satellite base stations around the satellite whose traffic reaches a set threshold; and the load information indicates the The traffic of the satellite communication link that does not reach the set threshold in the second cell identity, or indicates the air interface resources allocated by the satellite base station that does not reach the set threshold in the second cell identity.
  • the identification information also indicates that the traffic between the satellite communication links reaches a cell corresponding to a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach a cell corresponding to the set threshold.
  • the identification information can carry the identification (ID) of the cell or the satellite base station whose load reaches the set threshold, in another feasible implementation scheme, the cell or the cell whose load reaches the set threshold can also be sent separately through a kind of identification information.
  • the identification (ID) of the satellite base station can carry the identification (ID) of the cell or the satellite base station whose load reaches the set threshold.
  • the first message includes a first cell identifier
  • the first cell identifier is determined by a satellite communication link whose traffic between the satellite communication links reaches a set threshold, or by the ground station The satellite base station whose air interface resource allocated to the satellite base station reaches the set threshold is determined.
  • the second cell identity is determined by a satellite communication link whose traffic between the satellite communication links has not reached a set threshold, or the air interface resources allocated by the ground station to the satellite base station have not reached the set threshold.
  • the satellite base station with a certain threshold is determined.
  • the second cell identity is determined by a satellite ephemeris
  • the load information is determined by a satellite base station corresponding to the satellite ephemeris.
  • this application provides a first network device, such as a user plane function UPF unit or a device with a similar functional unit.
  • the first network device includes: a monitoring unit, used to obtain traffic between multiple satellite communication links, or to obtain air interface resources allocated by a ground station to multiple satellite base stations; a sending unit, used to send identification information to the second network device The identification information indicates that the traffic between the satellite communication links reaches a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the set threshold.
  • the identification information also indicates that the traffic between the satellite communication links reaches a cell corresponding to a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach a cell corresponding to the set threshold.
  • the sending unit is further configured to send a first cell identifier to the second network device, where the first cell identifier is determined by the satellite communication link whose traffic between the satellite communication links reaches a set threshold Determined, or determined by the satellite base station whose air interface resource allocated to the satellite base station by the ground station reaches a set threshold.
  • the sending unit is further configured to send a second cell identity and load information to a second network device, where the second cell identity is determined by the fact that the traffic between the satellite communication links does not reach a set threshold.
  • the satellite communication link is determined, or the satellite base station whose air interface resources allocated by the ground station to the satellite base station has not reached a set threshold, and the load information indicates the traffic of the satellite communication link that has not reached the set threshold, or Indicate the air interface resources allocated by the satellite base station that has not reached the set threshold.
  • the sending unit is further configured to send a second cell identity and load information to a second network device, where the second cell identity is determined by a satellite ephemeris, and the load information is determined by the satellite ephemeris The corresponding satellite base station is determined.
  • the first network device further includes: a creating unit, configured to create a load threshold, where the load threshold is a threshold T1 set for traffic between the satellite communication links, or is the satellite The threshold T2 set by the air interface resources allocated by the base station.
  • the first network device if the traffic between the satellite communication links reaches the threshold T1, the first network device sends the identification information to the second network device.
  • this application provides a second network device, such as a device with an access and mobility management function AMF unit or a similar functional unit.
  • the second network device includes: a receiving unit, configured to receive a first message sent by a first network device, where the first message includes identification information; and a processing unit, configured to determine the satellite base station to be linked according to the first message
  • a sending unit configured to send a second message to the satellite base station to be linked, where the second message includes the satellite to be linked Information about the base station generating beams; the satellite base station to be linked has free satellite resources; the identification information indicates that the traffic between the satellite communication links reaches a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the set threshold .
  • the first message further includes: a second cell identifier and load information, where the second cell identifier indicates satellite base stations around the satellite whose traffic reaches a set threshold; and the load information indicates the The traffic of the satellite communication link that does not reach the set threshold, or indicates the air interface resources allocated by the satellite base station that does not reach the set threshold.
  • the identification information also indicates that the traffic between the satellite communication links reaches a cell corresponding to a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach a cell corresponding to the set threshold.
  • the first message includes a first cell identifier
  • the first cell identifier is determined by a satellite communication link whose traffic between the satellite communication links reaches a set threshold, or by the ground station The satellite base station whose air interface resource allocated to the satellite base station reaches the set threshold is determined.
  • the second cell identity is determined by a satellite communication link whose traffic between the satellite communication links has not reached a set threshold, or the air interface resources allocated by the ground station to the satellite base station have not reached the set threshold.
  • the satellite base station with a certain threshold is determined.
  • the second cell identity is determined by a satellite ephemeris
  • the load information is determined by a satellite base station corresponding to the satellite ephemeris.
  • the present application provides a satellite communication method, which is applied to a second network device, such as an AMF unit with an access and mobility management function or a device with a similar functional unit.
  • the method includes: obtaining data by a second network device, the data carrying population distribution information and movement track information of a satellite base station; and determining, by the second network device, the satellite base station to be linked and the satellite to be linked according to the data Parameters of the base station; the second network device sends a message to the satellite base station to be linked, and the message includes information about the beam generated by the satellite base station to be linked.
  • the second network device belongs to the control plane functional entity and is responsible for user access management. Security certification and mobility management. Monitor the network traffic of each satellite or each cell to determine the traffic load of each satellite, and trigger the second network device (AMF unit or similar unit) through the population distribution information and the movement track information of the satellite base station to schedule idle beam resources, and the second network device Instructs surrounding satellite resources to provide new access and service cells to traffic-intensive areas.
  • the second network device can mobilize idle satellite resources to share the load according to the preset load requirements of each cell, and the coordinated satellite beams and the satellites of the original cell share the access service of the cell, thereby achieving Cooperative communication between satellites.
  • This method belongs to static configuration of satellite cell beams according to the distribution of ground population (users), which can be used in conjunction with the above-mentioned dynamic load monitoring and dynamic adjustment to make full use of satellite resources, improve resource utilization, and provide users with better communication services.
  • the population distribution information carries population distribution levels of different regions.
  • the second network device determining the satellite base station to be linked and the parameters of the satellite base station to be linked according to the data specifically includes: if the population distribution level of the current cell reaches a set threshold, The second network device determines the satellite base station to be linked and the parameters of the satellite base station to be linked according to the data.
  • the message carries the direction, angle, frequency, and power information of the generated beam.
  • the parameters of the satellite base station to be linked include motion trajectory parameters and a communication protocol
  • the motion trajectory parameters include azimuth, elevation, and polarization angles for receiving signals of the satellite base station to be linked
  • the communication protocol includes the frequency and power of the beam transmitted by the satellite base station to be linked.
  • this application provides a second network device, such as a device with an access and mobility management function AMF unit or a similar functional unit.
  • the second network device includes: an acquiring unit, configured to acquire data, the data carrying population distribution information and movement track information of the satellite base station; a processing unit, configured to determine the satellite base station to be linked and the to-be-linked satellite base station according to the data The parameters of the satellite base station; the sending unit sends a message to the satellite base station to be linked, and the message includes information about the beam generated by the satellite base station to be linked.
  • the population distribution information carries population distribution levels of different regions.
  • this application provides a satellite cooperative communication system.
  • the satellite communication system includes a ground station, a first network device, and a second network device, where: the first network device is the third aspect and any implementation manners thereof The first network device described in the above, the second network device is the second network device described in the fourth aspect and any implementation manner thereof.
  • a ground station is generally a ground device set on the surface of the earth (including on ships or airplanes) for satellite communication, and is mainly responsible for forwarding signaling and data between the satellite base station and the core network.
  • the present application provides a computer storage medium, and the computer storage medium may be non-volatile.
  • the computer storage medium stores computer readable instructions, and when the computer readable instructions are executed by the processor, the method provided by any of the foregoing implementation manners is implemented.
  • the present application provides a computer program product that contains computer-readable instructions, and when the computer-readable instructions are executed by a processor, the method provided by any of the foregoing implementations is implemented.
  • this application provides a first network device, such as a user plane function UPF unit or a device with a similar functional unit.
  • the first network device includes: a processor and a memory.
  • the memory is used to store computer-readable instructions (or referred to as computer programs), and the processor is used to read the computer-readable instructions to implement the foregoing aspects related to the first network device and the method provided by any implementation manner thereof .
  • the first network device further includes a transceiver for receiving and sending data.
  • this application provides a second network device, such as an AMF unit with access and mobility management function or a device with a similar functional unit.
  • the second network device includes: a processor and a memory.
  • the memory is used to store computer-readable instructions (or referred to as computer programs), and the processor is used to read the computer-readable instructions to implement the foregoing aspects related to the second network device and the method provided by any implementation manner thereof .
  • the first network device further includes a transceiver for receiving and sending data.
  • the method of using the first network device to learn satellite link traffic or satellite base station air interface resources or the method of configuring population distribution information and/or satellite base station movement trajectory information is heavily loaded on the original satellite network.
  • the second network device may mobilize idle satellite resources to share the network load and improve resource utilization.
  • Figure 1 is a schematic diagram of the satellite coverage area
  • Figure 2 is a schematic diagram of a typical network architecture of a satellite communication system
  • FIG. 3 is a schematic diagram of a satellite coordinated communication architecture provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a satellite coordinated communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of another satellite coordinated communication method provided by an embodiment of this application.
  • Figure 6 is a schematic diagram of adjusting the satellite beam according to the population distribution density table
  • FIG. 7 is a schematic structural diagram of a first network device 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second network device 800 provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another second network device 900 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a first network device 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a second network device 1100 according to an embodiment of the present application.
  • a typical network architecture of a satellite communication system is taken as an example.
  • the actual satellite communication is similar to this.
  • FIG. 2 is a schematic diagram of a typical network architecture of a satellite communication system.
  • the satellite communication system 200 includes a terminal device 201, a satellite base station 202, a ground station 203, and a core network 204 (the core network 204 mainly includes a user plane function UPF unit 205 , Access and mobility management function AMF unit 206, session management function SMF unit 207, data network 208).
  • the terminal device 201 communicates with the satellite base station 202 through the air interface access network, and the satellite base station 202 is connected to the ground core network 204 through a wireless link (NG interface).
  • NG interface wireless link
  • the description of each network element and interface in Figure 2 is as follows:
  • the terminal device 201 in this application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • the terminal device 201 can access a satellite network through an air interface and initiate calls, surf the Internet and other services, and can be a mobile device supporting a 5G new radio (NR, new radio).
  • NR new radio
  • the terminal device 201 may be a mobile phone, a tablet computer, a portable notebook computer, a virtual ⁇ hybrid ⁇ augmented reality device, a navigation device, a ground base station (for example: eNB and gNB), a ground station (GS), and a session start Protocol (Session Initiation Protocol, SIP) telephone, wireless local loop (Wireless Local Loop, WLL) station, personal digital assistant (Personal Digital Assistant, PDA), handheld device with satellite communication function, computing device or connected to wireless modem Other processing equipment, vehicle-mounted equipment, wearable equipment, terminal equipment in the 5G network, future evolution of the Public Land Mobile Network (PLMN) or terminal equipment in other future communication systems, etc.
  • PLMN Public Land Mobile Network
  • the satellite base station 202 mainly provides a wireless access service for the terminal device 201, schedules wireless resources to the connected terminal device, and provides a reliable wireless transmission protocol and data encryption protocol.
  • Satellite base stations refer to base stations that use artificial earth satellites and high-altitude aircraft as wireless communications, such as evolved base stations (eNB) and 5G base stations (gNB).
  • the satellite base station can be a geostationary (geostationary earth orbit, GEO) satellite, or a non-geostationary (none-geostationary earth orbit, NGEO) medium earth orbit (MEO) satellite and low earth orbit (LEO)
  • GEO geostationary earth orbit
  • NGEO non-geostationary earth orbit
  • MEO medium earth orbit
  • LEO low earth orbit
  • the satellite may also be a High Altitude Platform Station (HAPS) or the like.
  • HAPS High Altitude Platform Station
  • the ground station 203 is mainly responsible for forwarding signaling and service data between the satellite base station 202 and the core network 204.
  • the ground station generally refers to the ground equipment installed on the surface of the earth (including on ships or airplanes) for satellite communication. It is mainly composed of a high-gain antenna system that can track artificial satellites, a microwave high-power transmitting system, a low-noise receiving system and a power supply system.
  • the core network (core network) 204 is mainly used for user access control, billing, mobility management, session management, user security authentication, supplementary services, and so on.
  • the core network 204 mainly includes a user plane function unit 205, an access and mobility management function unit 206, a session management function unit 207, and a data network 208. It is composed of multiple functional units, which can be divided into control plane functional entities and data plane functional entities.
  • Access and mobility management functional unit (AMF, Access and Mobility Function) 206 is a control plane functional entity, responsible for user access management, security authentication, and mobility management.
  • the Session Management Function (SMF, Session Management Function) 207 is a functional entity of the control plane, responsible for session management, and connected to the AMF.
  • User Plane Function (UPF, User Plane Function) 205 is a data plane functional entity, responsible for managing user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • the data network 208 is a data plane functional entity and is connected to the UPF.
  • the core network also includes other functional units, but they are no longer listed.
  • the first network device in this application document refers to a device with a user plane function UPF unit or similar functional unit.
  • the second network device in this application document refers to the device of the access and mobility management function AMF unit or similar functional unit. Prepared.
  • the user plane function UPF unit is used to refer to the first network device
  • the mobility management function AMF unit is used to refer to the second network device. This reference is not The embodiments of this application constitute a substantial limitation.
  • the wireless communication between the user equipment and the satellite base station can be based on the new air interface technology (5G NR, 5th generation mobile networks newradio), the long term evolution technology (LTE, long term evolution), and the global system for mobile communication (GSM, global system for mobile communication) and universal mobile telecommunications system (UMTS, universal mobile telecommunications system) and other air interface technologies.
  • the Xn interface refers to the interface between the satellite base station and the satellite base station, and is mainly used for signaling interaction such as handover.
  • the NG interface refers to the interface between the satellite base station and the ground station (core network), which mainly interacts with the NAS and other signaling of the core network, as well as user service data.
  • FIG. 3 is a schematic diagram of a satellite coordinated communication architecture provided by an embodiment of the application.
  • the network architecture mainly includes a satellite base station 301 (Sat. #1, Sat. #2, Sat. #3), a terminal device 302, and a ground station 303 , A user plane function UPF unit 304, and an access and mobility management AMF unit 305.
  • the embodiment of the present application exemplifies the case of 3 satellite base stations, but the actual number of satellite base stations is not limited to 3, and can also be 2 or more, which can be determined according to ephemeris and satellite load conditions.
  • Satellite base station Sat. #1 satellite beam coverage area set 306 is an area with dense users, satellite base station Sat. #1 has a heavy communication load, and satellite base station Sat.
  • the wireless link established by the satellite base station Sat. #1 and the ground station 303 is marked as Link1.
  • the wireless link established by the satellite base station Sat. #2 and the satellite base station Sat. #3 and the ground station 303 is marked as Link2 and Link3.
  • the ground station is mainly used to forward signaling and service data between the satellite base station and the core network, and UPF is one of the data plane functional entities of the core network, responsible for data transmission and traffic statistics.
  • the link established between the satellite base station Sat. #1 and the core network (UPF) is also called Link1.
  • the link established between the satellite base station Sat. #2 and the satellite base station Sat. #3 and the UPF is marked as Link2, Link3 .
  • FIG. 4 is a schematic flowchart of a satellite cooperative communication method provided by an embodiment of this application.
  • the method can be used in the network architecture shown in FIG. 3.
  • the UPF monitors the traffic between the satellite base station and the core network or the air interface resource allocation of the ground station to determine the load situation of the satellite base station, and triggers the AMF to adjust the communication resources of the satellite base station to meet the communication needs.
  • the method includes:
  • the user plane function unit obtains traffic between multiple satellite communication links, or obtains air interface resources allocated by the ground station to multiple satellite base stations.
  • UPF sends identification information to the access and mobility management function unit (AMF), where the identification information indicates that the traffic between the satellite communication links reaches a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach Set the threshold.
  • AMF access and mobility management function unit
  • the UPF sends a first message including identification information to the access and mobility management functional unit (AMF), where the first message includes the identification information, the second cell identification and load information.
  • AMF access and mobility management functional unit
  • the AMF determines the satellite base station to be linked and its parameters according to the first message.
  • the AMF sends a second message to the satellite base station to be linked, where the second message includes information about beams generated by the satellite base station to be linked.
  • the parameters include motion track information and communication protocol information.
  • the motion track information includes the azimuth angle, elevation angle, and polarization angle of the satellite to be linked;
  • the communication protocol information includes communication frequency and power.
  • the information includes the direction, angle, frequency and power of the beam generated by the satellite base station to be linked.
  • the satellite communication link may be a wireless link between each satellite base station and a ground station, or it may be a radio link between the ground station and the user plane function unit (UPF) that reflects the data traffic of each satellite base station.
  • the communication link may also be a communication link between the satellite base station and the core network. The traffic reflects the load of each satellite base station.
  • the air interface resources of the ground station refer to the frequency resources that the ground station can allocate to each satellite base station, and the allocated air interface resources can reflect the load situation of each satellite base station.
  • the UPF of the terrestrial core network is used for the link Link1 between the three satellite base stations (Sat. #1, Sat. #2, Sat. #3) and the core network.
  • Link2, Link3 perform traffic statistics, calculate the traffic trafficl, traffic2, traffic3 within the preset time interval, and determine the 3 satellite base stations (Sat. #1, Sat. #2, Sat. #3) load conditions.
  • UPF monitors the air interface resources allocated by the ground station to the 3 satellite base stations to determine the load of the 3 satellite base stations (Sat. #1, Sat. #2, Sat. #3).
  • the trigger identification information further indicates that the traffic between the satellite communication links reaches the cell corresponding to the set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the set threshold.
  • the trigger identification information can carry the identification (ID) of the cell or the satellite base station whose load reaches the set threshold, in another feasible implementation scheme, the cell whose load reaches the set threshold can also be sent separately through a kind of identification information. Or the identification (ID) of the satellite base station.
  • the UPF sends a first cell identity to the AMF, and the first cell identity is determined by the satellite communication link whose traffic between the satellite communication links reaches a set threshold, or is allocated by the ground station to the satellite base station The satellite base station whose air interface resource reaches the set threshold is determined.
  • the UPF preconfigures a load threshold Threshold, and the threshold may be a set threshold T1 of satellite link traffic, or a set threshold T2 of air interface resources allocated by the ground station to each satellite.
  • the UPF device creates a load threshold, where the load threshold is a threshold T1 set for the traffic between the satellite communication links, or a threshold T2 set for the air interface resources allocated by the satellite base station.
  • the UPF sends the trigger identification information to the AMF.
  • the UPF sends the trigger identification information to the AMF.
  • thresholds can also be created to give UPF more operating space.
  • UPF monitors the flow between satellite communication links or the allocation of air interface resources of the ground station, when UPF detects that the flow or the allocation of air interface resources reaches the set threshold, it will send the identifier that reaches the set threshold to AMF in the form of signaling
  • the signaling further includes a cell identity (ID) corresponding to the flow or air interface resource allocation reaching a set threshold, and the flow of other links or air interface resource allocation.
  • ID cell identity
  • the traffic of link Link1 exceeds the set threshold T1
  • UPF detects this situation, and UPF sends information to AMF. It contains the identifier that the traffic of the link Link1 reaches the set threshold, the cell identifier (ID) corresponding to the link, the traffic of other links or the allocation of air interface resources.
  • the AMF in addition to the trigger identification information, the AMF also needs to determine the scheduled satellite beams according to the surrounding satellite resources, so the ID and load information of the surrounding satellite resources are required.
  • the first message further includes: a second cell identifier and load information, where the second cell identifier indicates satellite base stations around the satellite whose traffic reaches a set threshold; and the load information indicates the second The traffic of the satellite communication link that does not reach the set threshold in the cell identifier, or indicates the air interface resources allocated by the satellite base station that does not reach the set threshold in the second cell identifier.
  • the second cell identity is determined by the satellite communication link whose traffic between the satellite communication links has not reached a set threshold, or the air interface resources allocated by the ground station to the satellite base station have not reached the set threshold.
  • the satellite base station is determined.
  • the second cell identity is determined by a satellite ephemeris
  • the load information is determined by a satellite base station corresponding to the satellite ephemeris.
  • the parameters that need to be determined include the azimuth, elevation, and polarization angles of the satellite to be linked, and the azimuth, elevation, and polarization angles of the satellite to be linked refer to the antenna that receives the satellite signal to be linked.
  • the azimuth, elevation and polarization angles include the azimuth, elevation and polarization angles.
  • the AMF selects, according to the satellite ephemeris, a satellite near the satellite base station whose traffic or air interface resource allocation reaches a set threshold as the satellite base station to be linked.
  • the traffic of link Link1 exceeds the set threshold T1
  • link Link1 corresponds to the satellite base station Sat. #1
  • AMF selects the satellite base station Sat. #1 according to the satellite ephemeris
  • the satellite base station Sat. #2 which is relatively close, serves as the satellite base station to be linked to assist in sharing the communication load of the satellite base station Sat. #1.
  • the cell 307 covered by the beam of the satellite base station Sat. #2 belongs to an area where users are sparse, and the satellite base station Sat. #2 still has surplus communication capacity to undertake More communication load.
  • the AMF will determine the motion trajectory information and communication protocol information of the satellite base station Sat. #2, which includes the azimuth, elevation and polarization angles of the satellite base station Sat. #2.
  • the communication protocol information includes information such as the frequency and power of the satellite beam allocated by the satellite base station Sat. #2 to cell 306.
  • the AMF may also select the satellite base station Sat. #3 as the satellite base station to be linked that assists in sharing the communication load of the satellite base station Sat. #1 in some cases.
  • the satellite base station to be linked After step 104, optionally, the satellite base station to be linked generates a beam to cover a designated area (a cell with a high load), and accepts access by terminal equipment in the designated area.
  • the AMF sends information to the satellite base station Sat. #2 through the ground station, instructing the satellite base station Sat. #2 to generate a beam to cover a designated area (a certain area of the cell 306), and the receiving cell 306 Access to terminal equipment in the area.
  • the information includes the direction and angle of the beam generated by the satellite base station Sat. #2, and the frequency and power of satellite communication.
  • AMF selects the satellite base station Sat. #3 as the satellite base station to be linked to assist in sharing the communication load of the satellite base station Sat. #1, the AMF sends information to the satellite base station Sat. #3 through the ground station to instruct the satellite base station Sat. #3 Generate beams to cover a designated area (a certain area of cell 306).
  • the beam generated by the satellite base station to be linked still cannot meet the communication requirements of the cell, and the traffic of the satellite base station initially covering the cell or the air interface resource allocation of the ground station still reaches the set threshold, it can be passed again
  • the message triggers AMF to deploy other satellite beams to assist terminal equipment in the cell to access.
  • Monitoring traffic or air interface resources in this application refers to obtaining traffic or air interface resource allocation conditions or information, and the two can be interchanged, and do not constitute a practical limit to the solutions in the embodiments of this application.
  • This embodiment provides a network architecture and communication method for satellite coordinated communication.
  • the user plane function unit (UPF) monitors the flow between satellite communication links or the allocation of ground station air interface resources. UPF sends information including the identification of the load reaching the threshold and the load status of surrounding satellites to the Access and Mobility Management Function Unit (AMF).
  • the AMF determines the satellite base station to be linked and its parameters, and sends information to the satellite base station to be linked.
  • the satellite base station to be linked generates a beam to cover a designated area (a cell with a high load), and accepts access by terminal equipment in the designated area.
  • the network architecture and communication method of satellite coordinated communication judges the load status of the satellite base station by monitoring the traffic between the satellite base station and the core network or the air interface resource allocation of the ground station through UPF, and triggers the AMF to adjust the communication of the satellite base station through a message.
  • This solution utilizes the characteristics of a large adjustable range of satellite beams but different utilization of network resources in different coverage cells to fully improve the utilization of network resources and provide better access services for end users.
  • Fig. 5 is a schematic flowchart of another satellite coordinated communication method provided by an embodiment of the application. As shown in Figure 5, the method mainly involves satellite base stations, terminal equipment, access and mobility management functional units (AMF). AMF dispatches satellites around the high-load satellite base station to share traffic based on the population density and the movement trajectory of the satellite base station.
  • the method includes:
  • AMF acquires data, where the data carries population distribution information and movement track information of a satellite base station.
  • the AMF determines the satellite base station to be linked and the parameters of the satellite base station to be linked according to the data.
  • the AMF sends a message to the satellite base station to be linked, where the message includes information about beams generated by the satellite base station to be linked.
  • the population distribution information may be a population distribution density table as shown in Table 1 or other forms with the same effect. According to the population distribution of different geographical locations, it is divided into levels. Further, the population distribution information carries population distribution levels of different regions. In step 202, if the population distribution level of the current cell reaches a set threshold, the AMF determines the satellite base station to be linked and the parameters of the satellite base station to be linked according to the data.
  • the parameters of the satellite base station to be linked include a motion trajectory parameter and a communication protocol
  • the motion trajectory parameters include an azimuth angle, an elevation angle, and a polarization angle for receiving signals of the satellite base station to be linked
  • the communication protocol Including the frequency and power of the beam transmitted by the satellite base station to be linked.
  • the message carries the direction, angle, frequency, and power information of the generated beam.
  • the ground area can be divided into different levels such as A, B, C, D,...
  • the corresponding population distribution densities are: $100 people/km2, $1000 people/km2, and $50000 people/km2 Kilometers, $100000 people/square kilometer Inside,...
  • the population density distribution table is generated according to the above level division and stored in the network element node (for example, AMF) of the core network. It is also possible to divide the ground area directly per square kilometer, and classify different ground areas according to the population distribution density per square kilometer.
  • Figure 6 is a schematic diagram of adjusting satellite beams according to the population distribution density table.
  • Figure 6 corresponds to Table 1.
  • area A is a densely populated land area, such as a geographical area involving large cities such as Beijing.
  • the population distribution level is S ;
  • Area B is an area near the ocean, such as a geographic area involving coastal cities such as Qingdao, with a population distribution level of B;
  • Area C is a marine area, such as a geographic area involving the Yellow Sea and other sea areas, with a population distribution level of A.
  • the satellite beam of the satellite base station 401 covers area A. Since area A belongs to a densely populated area, the communication load of the satellite base station 401 (Sat.
  • the satellite base station 401 (Sat. #2) is close to the satellite base station 401 (Sat. #1), and the beam of the satellite base station 401 (Sat. #2) can cover part or all of the area A.
  • the satellite base station 401 (Sat. #2) generates part or all of the beam coverage area A according to the information sent by the AMF.
  • the number of beams, frequency, power, and the angle of the satellite antenna are determined according to the information sent by the AMF.
  • the terminal equipment in the area covered by the satellite base station 401 (Sat. #1) and (Sat. #2) at the same time can access the satellite base station 401 (Sat. #1) or the satellite base station 401 (Sat. #2) according to the normal process.
  • the AMF sends information to the satellite base station 401 (Sat. #2) with a small load before time T1.
  • FIG. 7 is a schematic structural diagram of a first network device 700 provided by an embodiment of the present application, such as a user plane function UPF unit or a device with a similar functional unit. As shown in FIG. 7, the first network device 700 includes:
  • the monitoring unit 701 is used to monitor traffic between multiple satellite communication links, or to monitor air interface resources allocated by the ground station to multiple satellite base stations;
  • the sending unit 702 is configured to send trigger identification information to the second network device, where the trigger identification information indicates that the traffic between the satellite communication links reaches a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the set threshold.
  • the trigger identification information further indicates that the traffic between the satellite communication links reaches a cell corresponding to a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach a cell corresponding to the set threshold.
  • the second network device may be a device with an access and mobility management function AMF unit or a similar functional unit.
  • the sending unit 702 is further configured to send a first cell identifier to the second network device, where the first cell identifier is determined by the satellite communication link whose traffic between the satellite communication links reaches a set threshold , Or determined by the satellite base station whose air interface resource allocated to the satellite base station by the ground station reaches the set threshold.
  • the sending unit 702 is further configured to send a second cell identity and load information to a second network device, where the second cell identity is determined by the satellite whose traffic between the satellite communication links does not reach a set threshold.
  • the communication link is determined, or by the The air interface resources allocated by the surface station to the satellite base station have not reached the set threshold.
  • the load information indicates the traffic of the satellite communication link that has not reached the set threshold, or indicates the satellites that have not reached the set threshold. Air interface resources allocated by the base station.
  • the sending unit 702 is further configured to send a second cell identity and load information to a second network device, where the second cell identity is determined by a satellite ephemeris, and the load information is corresponding to the satellite ephemeris The satellite base station is determined.
  • the first network device further includes: a creating unit 703, configured to create a load threshold, where the load threshold is a threshold T1 set for the traffic between the satellite communication links, or is the satellite base station Threshold T2 set by the allocated air interface resources.
  • a creating unit 703 configured to create a load threshold, where the load threshold is a threshold T1 set for the traffic between the satellite communication links, or is the satellite base station Threshold T2 set by the allocated air interface resources.
  • the first network device sends the trigger identification information to the second network device.
  • FIG. 8 is a schematic structural diagram of a second network device 800 provided by an embodiment of the present application, such as a device with an access and mobility management function AMF unit or a similar functional unit. As shown in FIG. 8, the second network device 800 includes:
  • the receiving unit 801 is configured to receive a first message sent by a first network device, where the first message includes trigger identification information, a second cell identification, and load information;
  • the first processing unit 802 is configured to determine, according to the first message, the satellite base station to be linked and the parameters of the satellite base station to be linked;
  • the first sending unit 803 is configured to send a second message to the satellite base station to be linked, where the second message includes information about beams generated by the satellite base station to be linked;
  • the trigger identification information indicates that the traffic between satellite communication links reaches a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the set threshold, and the load information indicates that the satellite communication link that does not reach the set threshold Or indicate the air interface resources allocated by the satellite base station that has not reached the set threshold.
  • the trigger identification information further indicates that the traffic between the satellite communication links reaches the cell corresponding to a set threshold, or the air interface resources allocated by the ground station to the satellite base station reach the cell corresponding to the set threshold.
  • the first message includes a first cell identifier
  • the first cell identifier is determined by a satellite communication link whose traffic between the satellite communication links reaches a set threshold, or the ground station is a satellite The satellite base station whose air interface resource allocated by the base station reaches the set threshold is determined.
  • the second cell identity is determined by a satellite communication link whose traffic between the satellite communication links has not reached a set threshold, or the air interface resources allocated by the ground station to the satellite base station have not reached the set threshold The satellite base station is determined.
  • FIG. 9 is a schematic structural diagram of a second network device 900 according to an embodiment of the present application, such as a device with an access and mobility management function AMF unit or a similar functional unit. As shown in FIG. 9, the second network device 900 includes:
  • the acquiring unit 901 is configured to acquire data, the data carrying population distribution information and the movement track information of the satellite base station; the second processing unit 902, is configured to determine the satellite base station to be linked and the satellite base station to be linked according to the data The parameters;
  • the second sending unit 903 sends a message to the satellite base station to be linked, where the message includes information about beams generated by the satellite base station to be linked.
  • the population distribution information carries population distribution levels of different regions.
  • the processing unit determines the satellite base station to be linked and the parameters of the satellite base station to be linked according to the data.
  • the first network device or the second network device in the embodiment of this application may have some units (or devices) It is realized by the software circuit and another part of the units (or devices) is realized by software. It is also possible that all the units (or devices) are realized by hardware circuits, and it is also possible that all the units (or devices) are realized by software.
  • FIG. 10 is a schematic structural diagram of a first network device 1000 according to an embodiment of the present application.
  • a first network device 1000 such as a user plane function UPF unit or a device with a similar functional unit.
  • the first network device 1000 includes: a processor 1001 and a memory 1002, where the memory 1002 may be independent of the processor or independent of the network device (Memory#3), or may be inside the processor or the network device ( Memory #1 and Memory #2).
  • the storage 1002 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk.
  • the memory 1002 is used to store computer readable instructions (or called computer programs),
  • the processor 1001 is configured to read the computer-readable instructions to implement the foregoing aspects related to the first network device and the method provided in any implementation manner thereof.
  • the memory 1002 (Memory #1) is located in the device.
  • the memory 1002 (Memory #2) is integrated with the processor.
  • the memory 1002 (Memory #3) is located outside the device.
  • the first network device further includes a transceiver 1003, configured to receive and send data.
  • FIG. 11 is a schematic structural diagram of a second network device 1100 according to an embodiment of the present application.
  • a second network device 1100 for example, a device with an access and mobility management function AMF unit or similar functional unit.
  • the second network device 1100 includes: a processor 1101 and a memory 1102, where the memory 1102 may be independent of the processor or independent of the network device (Memory #3), or may be inside the processor or network device ( Memory #1 and Memory #2).
  • the storage 1102 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk.
  • the memory 1102 is used to store computer readable instructions (or called computer programs),
  • the processor 1101 is configured to read the computer-readable instructions to implement the foregoing aspects related to the second network device and the method provided in any implementation manner thereof.
  • the memory 1002 (Memory #1) is located in the device.
  • the memory 1002 (Memory #2) is integrated with the processor.
  • the memory 1002 (Memory #3) is located outside the device.
  • the first network device further includes a transceiver 1103, configured to receive and send data.
  • the processor 1001 or 1101 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof . It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including one or more combination of processors, a combination of digital signal processors and microprocessors, and so on.
  • the memory 1002 or 1102 may include: a volatile memory (volatile memory), such as a random-access memory (random-access memory, RAM); the memory may also include a non-volatile memory (non-volatility memory) , Such as flash memory (flash memory), hard disk drive (HDD) or solid-state drive (solid-state drive, SSD), cloud storage (cloud storage), network attached storage (NAS: network attached storage), network Disk (network drive), etc.; the memory can also include a combination of the above-mentioned types of memory or any other medium or product with storage function.
  • a volatile memory such as a random-access memory (random-access memory, RAM
  • the memory may also include a non-volatile memory (non-volatility memory) , Such as flash memory (flash memory), hard disk drive (HDD) or solid-state drive (solid-state drive, SSD), cloud storage (cloud storage), network attached storage (NAS: network attached storage), network Disk (network drive), etc.
  • the memory can
  • the satellite communication system includes a ground station, a first network device, and a second network device, where: the first network device is described in the embodiment corresponding to FIG. 7 The first network device.
  • the second network device is the second network device described in the embodiment corresponding to FIG. 8.
  • Ground stations are generally ground equipment installed on the surface of the earth (including on ships or airplanes) for satellite communications, and are mainly responsible for forwarding satellite base stations and Signaling and data between core networks.
  • the first network device may be a device with a user plane function UPF unit or a similar functional unit
  • the second network device may be a device with an access and mobility management function AMF unit or a similar functional unit.
  • An embodiment of the present application also provides a satellite cooperative communication system.
  • the satellite communication system includes a ground station, a first network device, and a second network device, where: the first network device is described in the embodiment corresponding to FIG. 10 The first network device.
  • the second network device is the second network device described in the embodiment corresponding to FIG. 11.
  • a ground station is generally a ground device set on the surface of the earth (including on ships or airplanes) for satellite communication, and is mainly responsible for forwarding signaling and data between the satellite base station and the core network.
  • the first network device may be a device with a user plane function UPF unit or a similar functional unit
  • the second network device may be a device with an access and mobility management function AMF unit or a similar functional unit.
  • the embodiments of the present application also provide a computer-readable medium on which computer program instructions are stored, and when the computer program instructions are executed by a computer, the method in any of the foregoing embodiments is implemented.
  • the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the method in any of the above-mentioned embodiments.
  • a person of ordinary skill in the art may realize that the units and algorithm steps of the examples described in combination with the embodiments disclosed in this document can be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the specific working process of the system and device described above can refer to the corresponding process in the foregoing method embodiment, which is not repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computing Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种卫星通信方法和网络设备。第一网络设备获知卫星通信链路间的流量或卫星基站分配的空口资源,第一网络设备发送标识信息给第二网络设备,该标识信息指示卫星通信链路间的流量达到设定阈值,或地面站为卫星基站分配的空口资源达到设定阈值。第二网络设备接收标识消息,确定有空闲资源的待链接的卫星基站,向待链接的卫星基站发送包括所待链接卫星基站生成波束信息的第二消息。采用该方法,第一网络设备获取卫星基站覆盖小区的负载情况,这样第二网络设备可以协调其他卫星波束资源来分担网络负载,提高卫星资源的利用率。

Description

一种卫星协作通信的方法、 装置及系统 技术领域
本发明实施例属于卫星通信领域, 并且更具体地, 涉及一种卫星协作通信的方法、 装置及系 统。
背景技术
近年来, 信息技术发展突飞猛进, 该技术的应用正在进一步影响人类社会发展的方向。 信息 通信网络也在从固定网络走向移动网络, 从地面、 天空互相孤立的网络走向天地融合网络。 天地融合网络是将人类活动拓展至空间、 远海乃至深空的重大信息基础设施。 天地融合网络 可适应经济、 社会发展方式转变和信息技术发展的需求, 是信息技术、 信息产业、 信息网络 和信息化发展的重点、 焦点和方向。
卫星通信是天地融合网络的重要组成部分。 第三代合作伙伴计划 ( 3GPP, 3rd Generation Partnership Project) 和国际电信联盟 (ITU, International Telecommunication Union) 等标准组 织相继开展天地融合的卫星通信标准的研究与讨论, 主要聚焦于融合现有的 5G 标准和卫星 通信技术, 对 5G 卫星网络的应用场景、 网络结构、 关键技术等内容进行定义和分析, 以满 足天地融合网络在全球范围内的覆盖。 目前研究已经启动, 并对卫星与 5G 融合的架构等做 了研究。 本申请聚焦于卫星和 5G 融合架构下的卫星网络协作技术, 卫星通信具备通信距离 远、 覆盖面积大、 组网灵活等特点, 在一些重要领域, 如空间通信、 航空通信、 军事通信等, 卫星通信技术发挥着无可替代的作用。 卫星网络既可以为固定终端提供服务, 也可为各种移 动终端提供服务。
为了满足对地球表面的完全覆盖, 卫星波束总是均勾地覆盖在地球表面。 然而, 在不同卫星 波束覆盖下的区域会由于人口分布而导致用户数目差异巨大, 图 1是卫星覆盖区域的示意图, 陆地人口密集区域 (比如北京、 上海等超大城市) 有着密集的用户, 如卫星 101 的波束 104 (Beam #l ) 所覆盖的区域人口密度大, 卫星通信的用户数量潜力巨大, 卫星 101的通信负载 很大甚至超出负载能力。 但是在人烟稀少的地区, 如卫星 102和 103 的波束 104 (Beam #2 ) 覆盖的区域, 人口密度小, 覆盖区域属于人口稀少的城市、 沙漠地区甚至海洋等地区。 卫星 通信的用户分布非常稀疏, 甚至没有。 卫星资源没有得到充分利用, 用户稀疏地区的卫星资 源被严重浪费, 同时用户密集地区的卫星资源又可能严重不足, 无法提供接入服务。 目前常 见的解决方案有修改导频功率来调整小区的覆盖范围, 但是修改导频功率会影响小区所支持 的业务量, 另一种解决方案是移动负载均衡 (MLB, Mobility Load Balancing) , 即通过偏置 切换小区测量值来调整切换区域, 该方法只能满足小区边缘用户的需求, 存在局限性。 不同 覆盖区域用户量差异巨大的现状对卫星波束的覆盖形式提出了更高的要求。
发明内容
本申请提供了一种卫星通信方法和网络设备, 在网络负载较重的情况下, 能够协调卫星 波束分担网络负载, 提高卫星资源的利用率。
以下从多个方面介绍本申请, 容易理解的是, 该以下多个方面的实现方式可互相参 考。
第一方面, 本申请提供一种卫星通信方法, 所述方法应用于第一网络设备, 例如用户面 功能 UPF单元或类似功能单元的设备。 所述方法包括: 第一网络设备获取多条卫星通信链路 间的流量, 或获取地面站为多个卫星基站分配的空口资源; 所述第一网络设备发送标识信息 给第二网络设备, 所述标识信息指示所述卫星通信链路间的流量达到设定阈值, 或所述地面 站为卫星基站分配的空口资源达到设定阈值。 第二网络设备例如接入与移动管理功能 AMF 单元或类似功能单元的设备。
可见, 该方法应用于卫星协作通信系统中的第一网络设备, 作为卫星协作通信系统中的 重要网元, 第一网络设备 (UPF单元或类似单元) 属于数据面功能实体, 负责管理用户面数 据的传输, 流量统计, 安全窃听等功能。 监测各个卫星或各个小区的网络流量来判断各卫星 的流量负载,通过标识信息触发第二网络设备(AMF单元或类似单元)调度空闲的波束资源, 指示周边的卫星资源向流量密集区域提供新的接入和服务小区。 通过这样的方法, 与第二网 络设备一起, 根据负载需求主动调动空闲的卫星资源以分担负载, 协调来的卫星波束与原小 区的卫星共同承担小区的接入服务, 从而实现了卫星间的协作通信。 该方法利用卫星波束可 调整范围大、但不同覆盖小区的网络资源利用情况不同的特点,充分提高网络资源的利用率, 为终端用户提供更好的接入服务。
在一些实现方式下, 所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小 区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。 考虑到标识信息可 以携带负载达到设定阈值的小区或卫星基站的标识 (ID), 在另一种可行的实现方案中, 还可 以通过一种标识信息单独发送该负载达到设定阈值的小区或卫星基站的标识 (ID)。
在一些实现方式下,所述方法还包括:所述第一网络设备发送第一小区标识给第二网络设备, 所述第一小区标识由所述卫星通信链路间的流量达到设定阈值的卫星通信链路确定, 或由所 述地面站为卫星基站分配的空口资源达到设定阈值的卫星基站确定。
在一些实现方式下, 所述方法还包括: 所述第一网络设备发送第二小区标识和负载信息给第 二网络设备, 所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链 路确定, 或由所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定, 所述 负载信息指示所述未达到设定阈值的卫星通信链路的流量, 或指示所述未达到设定阈值的卫 星基站分配的空口资源。
在一些实现方式下, 所述方法还包括: 所述第一网络设备发送第二小区标识和负载信息给第 二网络设备, 所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历对应的卫星 基站确定。
在一些实现方式下, 所述第一网络设备创建负载阈值, 所述负载阈值是为所述卫星通信 链路间的流量设定的阈值 T1, 或为所述卫星基站分配的空口资源设定的阈值 T2。
在第一网络设备除了可以使用预先设定阈值确定是否触发流量预警信息外, 还可以创建 阈值, 给第一网络设备更大操作空间。
在一些实现方式下, 若所述卫星通信链路间的流量达到所述阈值 T 1, 所述第一网络设备发送 所述标识信息给所述第二网络设备。
在一些实现方式下, 若所述地面站为卫星基站分配的空口资源达到所述阈值 T2, 所述第一网 络设备发送所述标识信息给所述第二网络设备。 第二方面, 本申请提供一种卫星通信方法, 所述方法应用于第二网络设备, 例如接入与移动 管理功能 AMF 单元或类似功能单元的设备。 所述方法包括: 第二网络设备接收第一网络设 备发送的第一消息, 所述第一消息包括标识信息; 所述第二网络设备根据所述第一消息确定 待链接的卫星基站; 所述第二网络设备向所述待链接的卫星基站发送第二消息, 所述第二消 息包括所述待链接卫星基站生成波束的信息; 所述待链接的卫星基站具有空闲的卫星资源; 所述标识信息指示卫星通信链路间的流量达到设定阈值, 或地面站为卫星基站分配的空口资 源达到设定阈值。 第一网络设备例如用户面功能 UPF单元或类似功能单元的设备。
可以看出, 该方法应用于卫星协作通信系统中的第二网络设备, 作为卫星协作通信系统 中的重要网元, 第二网络设备 (AMF单元或类似单元) 属于控制面功能实体, 负责用户接入 管理, 安全认证, 还有移动性管理。 监测各个卫星或各个小区的网络流量来判断各卫星的流 量负载, 通过标识信息触发第二网络设备 (AMF单元或类似单元) 调度空闲的波束资源, 第 二网络设备指示周边的卫星资源向流量密集区域提供新的接入和服务小区。通过这样的方法, 与第一网络设备一起, 第二网络设备可以根据负载需求主动调动空闲的卫星资源以分担负载, 协调来的卫星波束与原小区的卫星共同承担小区的接入服务,从而实现了卫星间的协作通信。 该方法利用卫星波束可调整范围大、 但不同覆盖小区的网络资源利用情况不同的特点, 充分 提高网络资源的利用率, 为终端用户提供更好的接入服务。
在一些实现方式下, 所述第一消息还包括: 第二小区标识和负载信息, 所述第二小区标 识指示所述流量达到设定阈值的卫星周围的卫星基站; 所述负载信息指示所述第二小区标识 中未达到设定阈值的卫星通信链路的流量, 或指示所述第二小区标识中未达到设定阈值的卫 星基站分配的空口资源。
在一些实现方式下, 所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小 区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。 考虑到标识信息可 以携带负载达到设定阈值的小区或卫星基站的标识 (ID), 在另一种可行的实现方案中, 还可 以通过一种标识信息单独发送该负载达到设定阈值的小区或卫星基站的标识 (ID)。
在一些实现方式下, 所述第一消息包括第一小区标识, 所述第一小区标识由所述卫星通信链 路间的流量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源 达到设定阈值的卫星基站确定。
在一些实现方式下, 所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星 通信链路确定,或由所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定。
在一些实现方式下, 所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历 对应的卫星基站确定。
第三方面,本申请提供一种第一网络设备,例如用户面功能 UPF单元或类似功能单元的设备。 该第一网络设备包括: 监测单元, 用于获取多条卫星通信链路间的流量, 或获取地面站为多 个卫星基站分配的空口资源; 发送单元, 用于发送标识信息给第二网络设备, 所述标识信息 指示所述卫星通信链路间的流量达到设定阈值, 或所述地面站为卫星基站分配的空口资源达 到设定阈值。
在一些实现方式下, 所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小 区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。
在一些实现方式下, 所述发送单元, 还用于发送第一小区标识给第二网络设备, 所述第一小 区标识由所述卫星通信链路间的流量达到设定阈值的卫星通信链路确定, 或由所述地面站为 卫星基站分配的空口资源达到设定阈值的卫星基站确定。
在一些实现方式下, 所述发送单元, 还用于发送第二小区标识和负载信息给第二网络设备, 所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链路确定, 或由 所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定, 所述负载信息指示 所述未达到设定阈值的卫星通信链路的流量, 或指示所述未达到设定阈值的卫星基站分配的 空口资源。
在一些实现方式下, 所述发送单元, 还用于发送第二小区标识和负载信息给第二网络设备, 所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历对应的卫星基站确定。 在一些实现方式下, 所述第一网络设备还包括: 创建单元, 用于创建负载阈值, 所述负载阈 值是为所述卫星通信链路间的流量设定的阈值 T1, 或为所述卫星基站分配的空口资源设定的 阈值 T2。
在一些实现方式下, 若所述卫星通信链路间的流量达到所述阈值 T 1, 所述第一网络设备发送 所述标识信息给所述第二网络设备。
在一些实现方式下, 若所述地面站为卫星基站分配的空口资源达到所述阈值 T2, 所述第一网 络设备发送所述标识信息给所述第二网络设备。 第四方面, 本申请提供一种第二网络设备, 例如接入与移动管理功能 AMF 单元或类似功能 单元的设备。 该第二网络设备包括: 接收单元, 用于接收第一网络设备发送的第一消息, 所 述第一消息包括标识信息; 处理单元, 用于设备根据所述第一消息确定待链接的卫星基站; 发送单元, 用于向所述待链接的卫星基站发送第二消息, 所述第二消息包括所述待链接卫星 基站生成波束的信息; 所述待链接的卫星基站具有空闲的卫星资源; 所述标识信息指示卫星 通信链路间的流量达到设定阈值, 或地面站为卫星基站分配的空口资源达到设定阈值。
在一些实现方式下, 所述第一消息还包括: 第二小区标识和负载信息, 所述第二小区标识指 示所述流量达到设定阈值的卫星周围的卫星基站; 所述负载信息指示所述未达到设定阈值的 卫星通信链路的流量, 或指示所述未达到设定阈值的卫星基站分配的空口资源。
在一些实现方式下, 所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小 区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。
在一些实现方式下, 所述第一消息包括第一小区标识, 所述第一小区标识由所述卫星通信链 路间的流量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源 达到设定阈值的卫星基站确定。
在一些实现方式下, 所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星 通信链路确定,或由所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定。
在一些实现方式下, 所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历 对应的卫星基站确定。 第五方面, 本申请提供一种卫星通信方法, 所述方法应用于第二网络设备, 例如接入与移动 管理功能 AMF 单元或类似功能单元的设备。 所述方法包括: 第二网络设备获取数据, 所述 数据携带人口分布信息和卫星基站的运动轨迹信息; 所述第二网络设备根据所述数据确定待 链接的卫星基站和所述待链接的卫星基站的参数; 所述第二网络设备向待链接的卫星基站发 送消息, 所述消息包括所述待链接卫星基站生成波束的信息。
可以看出, 该方法应用于另一种卫星协作通信系统中的第二网络设备, 作为重要网元, 第二网络设备(AMF单元或类似单元)属于控制面功能实体, 负责用户接入管理,安全认证, 还有移动性管理。 监测各个卫星或各个小区的网络流量来判断各卫星的流量负载, 通过人口 分布信息和卫星基站的运动轨迹信息触发第二网络设备 (AMF单元或类似单元) 调度空闲的 波束资源, 第二网络设备指示周边的卫星资源向流量密集区域提供新的接入和服务小区。 通 过这样的方法, 第二网络设备可以根据预先设定的各小区负载需求情况调动空闲的卫星资源 以分担负载, 协调来的卫星波束与原小区的卫星共同承担小区的接入服务, 从而实现了卫星 间的协作通信。 该方法属于根据地面人口 (用户) 分布情况静态配置卫星小区波束, 可以跟 上述的动态负载监测和动态调整联合使用, 充分利用卫星资源, 提高资源利用率, 为用户提 供更好的通信服务。
在一些实现方式下, 所述人口分布信息携带不同地区的人口分布等级。
在一些实现方式下, 所述第二网络设备根据所述数据确定待链接的卫星基站和所述待链接的 卫星基站的参数, 具体包括: 若当前小区所述人口分布等级达到设定阈值, 所述第二网络设 备根据所述数据确定待链接的卫星基站和所述待链接的卫星基站的参数。
在一些实现方式下, 所述消息携带所述生成波束的方向、 角度、 频率和功率信息。
在一些实现方式下, 所述待链接的卫星基站的参数包括运动轨迹参数和通信协议, 所述运动 轨迹参数包括接收所述待链接的卫星基站信号的方位角、 仰角和极化角; 所述通信协议包括 所述待链接的卫星基站发射波束的频率、 功率。
第六方面, 本申请提供一种第二网络设备, 例如接入与移动管理功能 AMF 单元或类似功能 单元的设备。 该第二网络设备包括: 获取单元, 用于获取数据, 所述数据携带人口分布信息 和卫星基站的运动轨迹信息; 处理单元, 用于根据所述数据确定待链接的卫星基站和所述待 链接的卫星基站的参数; 发送单元, 向待链接的卫星基站发送消息, 所述消息包括所述待链 接卫星基站生成波束的信息。
在一些实现方式下, 所述人口分布信息携带不同地区的人口分布等级。
在一些实现方式下, 若当前小区所述人口分布等级达到设定阈值, 所述处理单元根据所述数 据确定待链接的卫星基站和所述待链接的卫星基站的参数。 第七方面, 本申请提供一种卫星协作通信系统, 所述卫星通信系统包括地面站、 第一网络设 备、 第二网络设备, 其中: 所述第一网络设备为第三方面及其任意实现方式中所述的第一网 络设备, 所述第二网络设备为第四方面及其任意实现方式中所述的第二网络设备。 地面站一 般是设置在地球表面 (包括设置在船舶或者飞机上) 上进行人造卫星通信的地面设备, 主要 负责转发卫星基站和核心网之间的信令和数据。 第八方面, 本申请提供一种计算机存储介质, 该计算机存储介质可以是非易失性的。 该 计算机存储介质中存储有计算机可读指令, 当该计算机可读指令被处理器执行时实现前述任 意实现方式提供的方法。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品中包含计算机可读指令, 当该计算机可读指令被处理器执行时实现前述任意实现方式提供的方法。 第十方面, 本申请提供一种第一网络设备, 例如用户面功能 UPF单元或类似功能单元的 设备。 该第一网络设备包括: 处理器, 存储器。 所述存储器用于存储计算机可读指令 (或者 称之为计算机程序),所述处理器用于读取所述计算机可读指令以实现前述有关第一网络设备 的方面及其任意实现方式提供的方法。
在一些实现方式下, 该第一网络设备还包括收发器, 用于接收和发送数据。
第十一方面, 本申请提供一种第二网络设备, 例如接入与移动管理功能 AMF 单元或类 似功能单元的设备。 该第二网络设备包括: 处理器, 存储器。 所述存储器用于存储计算机可 读指令(或者称之为计算机程序), 所述处理器用于读取所述计算机可读指令以实现前述有关 第二网络设备的方面及其任意实现方式提供的方法。
在一些实现方式下, 该第一网络设备还包括收发器, 用于接收和发送数据。
在本申请实施例中, 利用第一网路设备获知卫星链路间流量或卫星基站空口资源的方法 或者, 配置人口分布信息和 /或卫星基站的运动轨迹信息的方法, 在原卫星网络负载较重的情 况下可以使得第二网络设备调动空闲的卫星资源以分担该网络负载, 提高资源利用率。 附图说明
为了更清楚地说明本发明的实施例或现有技术中的技术方案, 下面将对描述背景技术和实施 例时所使用的附图作简单的介绍。 显而易见地, 下面附图中描述的仅仅是本发明的一部分实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图 和描述得到其他的附图或实施例, 而本发明旨在涵盖所有这些衍生的附图或实施例。
图 1是卫星覆盖区域的示意图;
图 2为卫星通信系统典型网络架构的示意图;
图 3为本申请实施例提供的一种卫星协调通信的架构示意图;
图 4所示为本申请实施例提供的一种卫星协调通信方法的流程示意图;
图 5所示为本申请实施例提供的另一种卫星协调通信方法的流程示意图;
图 6是根据人口分布密度表调整卫星波束的示意图;
图 7是本申请实施例提供的一种第一网络设备 700的结构示意图;
图 8是本申请实施例提供的一种第二网络设备 800的结构示意图;
图 9是本申请实施例提供的另一种第二网络设备 900的结构示意图;
图 10是本申请实施例提供的一种第一网络设备 1000的结构示意图;
图 11是本申请实施例提供的一种第二网络设备 1100的结构示意图。
具体实施方式 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例, 对本发明进 行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限 定本发明。 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
为了更好地理解本申请实施例公开的卫星协调通信的网络架构和通信方法, 先对本申请实施 例的应用场景进行介绍。 请参阅图 2, 首先以卫星通信系统的典型网络架构为例进行介绍, 实际卫星通信与此类似。
图 2为卫星通信系统典型网络架构的示意图, 如图 2所示, 卫星通信系统 200包括终端 设备 201、 卫星基站 202、 地面站 203、 核心网 204 (核心网 204主要包括用户面功能 UPF单 元 205、 接入与移动管理功能 AMF单元 206、 会话管理功能 SMF单元 207、 数据网络 208 )。 终端设备 201 通过空口接入网络与卫星基站 202通信, 卫星基站 202通过无线链路 (NG接 口) 与地面的核心网 204联接。 同时, 在卫星基站 202之间也存在无线链路, 通过 Xn接口 完成卫星基站与卫星基站之间的信令交互和用户数据传输。 图 2 中的各个网元以及接口说明 如下:
终端设备 201 在本申请中可以指用户设备 (UE)、 接入终端、 用户单元、 用户站、 移动站、 移动台、 远方站、 远程终端、 移动设备、 用户终端、 终端、 无线通信设备、 用户代理或用户 装置。 终端设备 201可以通过空口接入卫星网络并发起呼叫, 上网等业务, 可以是是支持 5G 新空口 (NR, new radio) 的移动设备。 典型的, 终端设备 201可以是移动电话、 平板电脑、 便携式笔记本电脑、 虚拟 \混合 \增强现实设备、 导航设备、 地面基站 (例如: eNB 和 gNB ) 和地面站 (ground station, GS)、 会话启动协议 (Session Initiation Protocol, SIP) 电话、 无线 本地环路 (Wireless Local Loop, WLL)站、 个人数字处理 (Personal Digital Assistant, PDA)、 具有卫星通信功能的手持设备、 计算设备或连接到无线调制解调器的其它处理设备、 车载设 备、 可穿戴设备, 5G 网络中的终端设备、 未来演进的公用陆地移动通信网络 (Public Land Mobile Network, PLMN) 或未来的其他通信系统中的终端设备等。
卫星基站 202主要为终端设备 201提供无线接入服务,调度无线资源给接入的终端设备, 提供可靠的无线传输协议和数据加密协议等。 卫星基站是指将人造地球卫星和高空飞行器等 作为无线通信的基站, 例如演进型基站 (eNB) 和 5G基站 (gNB) 等。 卫星基站可以是静止 轨道 (geostationary earth orbit , GEO)卫星,也可以是非静止轨道 (none-geostationary earth orbit, NGEO) 的中轨道 (medium earth orbit, MEO) 卫星和低轨道 (low earth orbit, LEO) 卫星, 还可以是高空通信平台 (High Altitude Platform Station, HAPS) 等。
在本申请实施例中, 地面站 (ground station)203主要负责转发卫星基站 202和核心网 204 之间的信令和业务数据。 地面站一般是指设置在地球表面 (包括设置在船舶或者飞机上) 上 进行人造卫星通信的地面设备。 主要由可跟踪人造卫星的高增益天线系统、 微波大功率发射 系统、 低噪声接收系统和电源系统等组成。
核心网 (core network) 204主要用于用户接入控制、 计费, 移动性管理, 会话管理, 用 户安全认证, 补充业务等。 在本申请实施例中, 核心网 204主要包括用户面功能单元 205、 接入与移动管理功能单元 206、 会话管理功能单元 207、 数据网络 208。 它由多个功能单元组 成, 可以分为控制面功能实体和数据面功能实体。接入与移动管理功能单元 (AMF, Access and mobility fun ction)206为控制面功能实体, 负责用户接入管理, 安全认证, 还有移动性管理。 会话管理功能单元 ( SMF, Session Management Function) 207为控制面的功能实体, 负责会 话管理,并与 AMF相连。用户面功能单元 (UPF, User Plane Function)205为数据面功能实体, 负责管理用户面数据的传输, 流量统计,安全窃听等功能。数据网络 208为数据面功能实体, 与 UPF相连。 核心网中还包括其他功能单元, 但不再—列举。
本申请文件中的第一网路设备是指用户面功能 UPF单元或类似功能单元的设备。
本申请文件中的第二网路设备是指接入与移动管理功能 AMF 单元或类似功能单元的设 备。 为了更好和更清楚的描述功能单元, 本申请实施例中使用用户面功能 UPF单元指代第一 网路设备, 用移动管理功能 AMF 单元指代第二网路设备, 这种指代并不对本申请实施例构 成实质限定。
用户设备与卫星基站实现无线通信可以基于包括第五代移动通信系统新空口技术 ( 5G NR, 5th generation mobile networks newradio)、 长期演进技术 (LTE, long term evolution)、 全球移动通信系统 (GSM, global system for mobile communication) 和通用移动通信系统 (UMTS, universal mobile telecommunications system) 等空口技术。 Xn接口是指卫星基站和 卫星基站之间的接口, 主要用于切换等信令交互。 NG接口是指卫星基站和地面站 (核心网) 之间接口, 主要交互核心网的 NAS等信令, 以及用户的业务数据。
图 3 为本申请实施例提供的一种卫星协调通信的架构示意图, 该网络架构主要包括卫星 基站 301 ( Sat. #1、 Sat. #2、 Sat. #3 ), 终端设备 302, 地面站 303 , 用户面功能 UPF单元 304, 接入和移动性管理 AMF单元 305。 本申请实施例举例了 3颗卫星基站的情况, 但实际卫星基 站的数量不限于 3颗, 也可以是 2颗, 或者多颗, 可以根据星历 (ephemeris) 和卫星负载情 况确定。卫星基站 Sat. #1的卫星波束的覆盖区域集合 306属于用户密集的区域,卫星基站 Sat. #1的通信负载大, 卫星基站 Sat. #2的卫星波束的覆盖区域集合 307属于用户稀疏的区域, 卫 星基站 Sat. #2的通信负载小,卫星基站 Sat. #3的卫星波束的覆盖区域集合 308属于几乎没有 用户的无人区域, 卫星基站 Sat. #3基本没有通信负载。 卫星基站 Sat. #1与地面站 303建立的 无线链路记为 Linkl, 同样的, 卫星基站 Sat. #2、 卫星基站 Sat. #3与地面站 303建立的无线 链路记为 Link2、 Link3。 地面站主要用于转发卫星基站和核心网之间的信令和业务数据, 而 UPF是核心网的数据面功能实体之一, 负责数据传输与流量统计。 将卫星基站 Sat. #1与核心 网 (UPF) 之间建立的链路也称为 Linkl, 卫星基站 Sat. #2、 卫星基站 Sat. #3与 UPF之间建 立的链路记为 Link2、 Link3。
图 4所示为本申请实施例提供的一种卫星协作通信方法的流程示意图, 该方法可用于图 3所示的网络架构。 通过 UPF监测卫星基站和核心网之间的流量或地面站的空口资源分配来 判断卫星基站的负载情况, 通过消息触发 AMF 调整卫星基站的通信资源来满足通信需求。 该方法包括:
101、 用户面功能单元 (UPF) 获取多条卫星通信链路间的流量, 或获取地面站为多个卫 星基站分配的空口资源。
102、 UPF发送标识信息给接入与移动管理功能单元 (AMF), 所述标识信息指示所述卫 星通信链路间的流量达到设定阈值,或所述地面站为卫星基站分配的空口资源达到设定阈值。
102’、 UPF发送包括标识信息在内的第一消息给接入与移动管理功能单元 (AMF), 所述 第一消息包括标识信息、 第二小区标识和负载信息。
103、 AMF根据所述第一消息确定待链接的卫星基站及其参数。
104、 AMF 向所述待链接的卫星基站发送第二消息, 所述第二消息包括所述待链接卫星 基站生成波束的信息。
所述参数包括运动轨迹信息和通信协议信息。 所述运动轨迹信息包括所述待链接的卫星 的方位角、 仰角和极化角; 所述通信协议信息包括通信的频率、 功率。
所述信息包括所述待链接卫星基站生成波束的方向、 角度、 频率和功率。
对于步骤 101, 具体地, 所述卫星通信链路可以是各个卫星基站与地面站之间的无线链 路, 也可以是地面站与用户面功能单元 (UPF)之间反应各个卫星基站数据流量的通信链路, 还可以是卫星基站和核心网之间的通信链路。 所述流量反映各个卫星基站的负载。
具体地, 所述地面站空口资源是指地面站能够为各个卫星基站分配的频率资源, 通过分 配的空口资源能够反映各个卫星基站的负载情况。
示例性的,在图 3所示的网络架构中,地面核心网的 UPF分别对 3个卫星基站 ( Sat. #1、 Sat. #2、 Sat. #3 ) 与核心网之间的链路 Linkl、 Link2、 Link3进行流量统计, 计算预设时间间 隔内的流量 trafficl、 traffic2、 traffic3 , 根据预设时间间隔内的流量来判断 3个卫星基站 ( Sat. #1、 Sat. #2、 Sat. #3) 的负载情况。 或者 UPF监测地面站为 3个卫星基站分配的空口资源情 况来判断 3个卫星基站 (Sat. #1、 Sat. #2、 Sat. #3) 的负载。
对于步骤 102, 可选的, 所述触发标识信息还指示所述卫星通信链路间的流量达到设定 阈值对应的小区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。 考虑 到触发标识信息可以携带负载达到设定阈值的小区或卫星基站的标识 (ID), 在另一种可行的 实现方案中, 还可以通过一种标识信息单独发送该负载达到设定阈值的小区或卫星基站的标 识 (ID)。
可选的, UPF发送第一小区标识给 AMF, 所述第一小区标识由所述卫星通信链路间的流 量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源达到设定 阈值的卫星基站确定。
可选的, UPF 预先配置负载阈值 Threshold, 所述阈值可以是卫星链路流量的设定阈值 T1, 也可以是地面站为各个卫星分配的空口资源的设定阈值 T2。 可选的, UPF设备创建负载 阈值, 所述负载阈值是为所述卫星通信链路间的流量设定的阈值 T1, 或为所述卫星基站分配 的空口资源设定的阈值 T2。
进一步地, 若所述卫星通信链路间的流量达到所述阈值 Tl, UPF发送所述触发标识信息 给 AMF。
进一步地, 若所述地面站为卫星基站分配的空口资源达到所述阈值 T2, 所 UPF 发送所 述触发标识信息给 AMF。
在 UPF除了可以使用预先设定阈值确定是否触发流量预警信息外, 还可以创建阈值, 给 UPF更大操作空间。
由于 UPF监测卫星通信链路间的流量或地面站空口资源分配, 当 UPF监测到流量或者 空口资源分配达到设定的阈值时, 会将达到设定的阈值的标识以信令的形式发送给 AMF, 所 述信令还包含流量或者空口资源分配达到设定的阈值对应的小区标识 (ID), 其他链路的流量 或者空口资源分配情况。
示例性的, 在图 3所示的网络架构中, 从某一时刻开始, 链路 Linkl 的流量超过了设定 的阈值 Tl, UPF监测到了这一情况, UPF则发送信息给 AMF, 所述信息中包含该链路 Linkl 的流量达到设定阈值的标识, 以及该链路对应的小区标识 (ID), 其他链路的流量或者空口资 源分配情况。
对于步骤 102’, 除了触发标识信息之外, AMF还需要根据周围的卫星资源确定调度的卫 星波束, 所以需要周围卫星资源的 ID和负载信息。
可选的, 所述第一消息还包括: 第二小区标识和负载信息, 所述第二小区标识指示所述 流量达到设定阈值的卫星周围的卫星基站; 所述负载信息指示所述第二小区标识中未达到设 定阈值的卫星通信链路的流量, 或指示所述第二小区标识中未达到设定阈值的卫星基站分配 的空口资源。
具体地, 所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链 路确定, 或由所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定。 可选 的,所述第二小区标识由卫星星历确定,所述负载信息由所述卫星星历对应的卫星基站确定。
对于步骤 103, 需要确定的参数包括待链接的卫星的的方位角、 仰角和极化角, 所述待 链接的卫星的方位角、 仰角和极化角是指接收该待链接的卫星信号的天线的方位角、 仰角和 极化角。
可选的, AMF根据卫星星历选择流量或者空口资源分配达到设定阈值的卫星基站附近的 卫星作为所述待链接的卫星基站。
示例性的,在图 3所示的网络架构中,链路 Linkl的流量超过了设定的阈值 T1,链路 Linkl 对应卫星基站 Sat. #1, AMF根据卫星星历选择卫星基站 Sat. #1在该时刻下距离较近的卫星 基站 Sat. #2作为协助分担卫星基站 Sat. #1通信负载的待链接的卫星基站。 卫星基站 Sat. #2 的波束覆盖的小区 307属于用户稀疏的区域, 卫星基站 Sat. #2仍有富余的通信能力可以承担 更多通信负载。 AMF将确定卫星基站 Sat. #2的运动轨迹信息和通信协议信息, 该运动轨迹 信息包括卫星基站 Sat. #2 的方位角、 仰角和极化角。 该通信协议信息包括卫星基站 Sat. #2 分配给 306小区的卫星波束的频率、 功率等信息。 可选的, AMF某些情况下也可以选择卫星 基站 Sat. #3作为协助分担卫星基站 Sat. #1通信负载的待链接的卫星基站。
在步骤 104之后, 可选的, 所述待链接的卫星基站生成波束覆盖指定区域 (负载高的小 区), 接受所述指定区域内的终端设备接入。
示例性的, 在图 3所示的网络架构中, AMF通过地面站向卫星基站 Sat. #2发送信息, 指示卫星基站 Sat. #2生成波束覆盖指定区域 (小区 306的某区域), 接收小区 306该区域内 的终端设备的接入。 所述信息包括卫星基站 Sat. #2生成波束的方向和角度, 以及卫星通信的 频率和功率等。 可选的, 若 AMF选择卫星基站 Sat. #3作为协助分担卫星基站 Sat. #1通信负 载的待链接的卫星基站, AMF通过地面站向卫星基站 Sat. #3发送信息, 指示卫星基站 Sat. #3 生成波束覆盖指定区域 (小区 306的某区域)。
在另一种情况下, 如果所述待链接的卫星基站生成波束依然无法满足小区的通信需求, 最初覆盖该小区的卫星基站的流量或者地面站空口资源分配仍达到设定阈值, 则可以通过再 次消息触发 AMF调配其他的卫星波束协助该小区终端设备接入。
本申请中监测流量或空口资源即是获取流量或者空口资源分配的情况或信息, 两者可以 互换, 并不对本申请实施例中的方案构成实际限定。
本实施例提供了一种卫星协调通信的网络架构和通信方法, 用户面功能单元 (UPF) 监 测卫星通信链路间的流量或地面站空口资源分配。 UPF发送包含负载达到阈值的标识和周边 卫星的负载情况的信息给接入与移动管理功能单元 (AMF)。 AMF确定待链接的卫星基站及 其参数, 并向所述待链接的卫星基站发送信息。 所述待链接的卫星基站生成波束覆盖指定区 域 (负载高的小区), 接受所述指定区域内的终端设备接入。 本实施例提供的卫星协调通信的 网络架构和通信方法通过 UPF监测卫星基站和核心网之间的流量或地面站的空口资源分配来 判断卫星基站的负载情况, 通过消息触发 AMF 调整卫星基站的通信资源来满足通信需求。 本方案利用卫星波束可调整范围大、 但不同覆盖小区的网络资源利用情况不同的特点, 充分 提高网络资源的利用率, 为终端用户提供更好的接入服务。 图 5所示为本申请实施例提供的另一种卫星协调通信方法的流程示意图。 如图 5所示, 该方法主要涉及到卫星基站、 终端设备、 接入与移动管理功能单元 (AMF)。 AMF根据人口 分布密度和卫星基站的运动轨迹调度高负载卫星基站周围的卫星分担流量。 该方法包括:
201、 AMF获取数据, 所述数据携带人口分布信息和卫星基站的运动轨迹信息。
202、 AMF根据所述数据确定待链接的卫星基站和所述待链接的卫星基站的参数。
203、 AMF 向待链接的卫星基站发送消息, 所述消息包括所述待链接卫星基站生成波束 的信息。
可选的,所述人口分布信息可以是如表 1所示的人口分布密度表或相同效果的其他形式。 根据不同地理位置的人口分布情况划分等级。 进一步的, 所述人口分布信息携带不同地区的 人口分布等级。 在步骤 202中, 若当前小区所述人口分布等级达到设定阈值, AMF根据所述 数据确定待链接的卫星基站和所述待链接的卫星基站的参数。
可选的, 所述待链接的卫星基站的参数包括运动轨迹参数和通信协议, 所述运动轨迹参 数包括接收所述待链接的卫星基站信号的方位角、 仰角和极化角; 所述通信协议包括所述待 链接的卫星基站发射波束的频率、 功率。 从具体实现角度, 由于卫星的运动轨迹是固定不变 的, 卫星在任何时刻的位置信息都可以通过计算获得, 所以卫星的运动轨迹参数可以通过计 算获取, 也可以通过查询星历获取。
可选的, 所述消息携带所述生成波束的方向、 角度、 频率和功率信息。
示例性的, 可以将地面区域划分成 A, B, C, D, . . .等不同级别, 分别对应的是人口分 布密度为: $100人 /平方公里, $1000人 /平方公里, $50000人 /平方公里, $100000人 /平方公 里, . . .。根据上面的级别划分生成人口密度分布表存储在核心网的网元节点 (例如 AMF)中。 还可以将地面区域直接按照每平方公里进行划分, 按照每平方公里内的人口分布密度将不同 的地面区域进行人口等级划分。
图 6是根据人口分布密度表调整卫星波束的示意图, 图 6与表 1对应, 如图 6所示, 区 域 A是陆地人口密集区, 例如涉及北京等大型城市的地理区域, 人口分布等级为 S ; 区域 B 是海洋附近区域, 例如涉及青岛等沿海城市的地理区域, 人口分布等级为 B ; 区域 C是海洋 区域, 例如涉及黄海等海域的地理区域, 人口分布等级为 A。 在如图 6所示的 T1时刻, 卫星 基站 401 ( Sat. #1 ) 的卫星波束覆盖区域 A, 由于区域 A属于人口分布密集区域, 卫星基站 401 ( Sat. #1 ) 的通信负载大, 区域 A内的终端用户可能存在无法接入卫星网络的情况。 卫星 基站 401 ( Sat. #2)的卫星波束覆盖区域 B, 区域 B属于人口分布稀疏区域,卫星基站 401 ( Sat. #2) 的通信负载小。 另一方面, 卫星基站 401 ( Sat. #2) 与卫星基站 401 ( Sat. #1 ) 距离近, 卫星基站 401 ( Sat. #2) 的波束可以覆盖区域 A的部分或全部区域。 卫星基站 401 ( Sat. #2) 根据 AMF发送的信息生成波束覆盖区域 A的部分或全部区域, 波束的数量、 频率、 功率以 及卫星天线的角度等信息根据 AMF发送的信息确定。被卫星基站 401 ( Sat. #1 )和 ( Sat. #2) 同时覆盖的区域内终端设备可以按照正常流程接入卫星基站 401 ( Sat. #1 )或卫星基站 401 ( Sat. #2)。
可选的, AMF在 T1时刻之前发送信息至负载小的卫星基站 401 ( Sat. #2)。
表 1 人口分布密度表
Figure imgf000012_0001
本实施例提供了一种卫星协调通信的方法, 接入与移动管理功能单元 (AMF) 获取人口 分布数据和卫星基站的运动轨迹信息。 在某时刻, AMF向待链接的卫星基站发送信息, 所述 信息指示所述待链接的卫星基站建立波束的数量、 波束的频率和功率, 天线的角度等。 本实 施例提供的卫星协调通信的方法通过人口分布数据来协调卫星波束, 通过调动空闲的资源对 人口密集区域进行波束覆盖。 提高了卫星基站资源的利用率, 优化了卫星资源的配置, 同时 为人口密集区域提供更高的接入容量, 以满足人口密集区域用户的通信需求。 图 7是本申请实施例提供的一种第一网络设备 700的结构示意图, 例如用户面功能 UPF 单元或类似功能单元的设备。 如图 7所示, 该第一网络设备 700包括:
监测单元 701, 用于监测多条卫星通信链路间的流量, 或监测地面站为多个卫星基站分 配的空口资源;
发送单元 702, 用于发送触发标识信息给第二网络设备, 所述触发标识信息指示所述卫 星通信链路间的流量达到设定阈值,或所述地面站为卫星基站分配的空口资源达到设定阈值。 在一些实现方式下, 所述触发标识信息还指示所述卫星通信链路间的流量达到设定阈值对应 的小区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。
具体地, 所述第二网络设备可以是接入与移动管理功能 AMF单元或类似功能单元的设备。 可选的, 所述发送单元 702, 还用于发送第一小区标识给第二网络设备, 所述第一小区标识 由所述卫星通信链路间的流量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基 站分配的空口资源达到设定阈值的卫星基站确定。
可选的, 所述发送单元 702, 还用于发送第二小区标识和负载信息给第二网络设备, 所述第 二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链路确定, 或由所述地 面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定, 所述负载信息指示所述未 达到设定阈值的卫星通信链路的流量, 或指示所述未达到设定阈值的卫星基站分配的空口资 源。
可选的, 所述发送单元 702, 还用于发送第二小区标识和负载信息给第二网络设备, 所述第 二小区标识由卫星星历确定, 所述负载信息由所述卫星星历对应的卫星基站确定。
可选的, 所述第一网络设备还包括: 创建单元 703, 用于创建负载阈值, 所述负载阈值是为 所述卫星通信链路间的流量设定的阈值 T1, 或为所述卫星基站分配的空口资源设定的阈值 T2。
可选的, 若所述卫星通信链路间的流量达到所述阈值 T1, 所述第一网络设备发送所述触发标 识信息给所述第二网络设备。
可选的, 若所述地面站为卫星基站分配的空口资源达到所述阈值 T2, 所述第一网络设备发送 所述触发标识信息给所述第二网络设备。 图 8是本申请实施例提供的一种第二网络设备 800的结构示意图, 例如接入与移动管理 功能 AMF单元或类似功能单元的设备。 如图 8所示, 该第二网络设备 800包括:
接收单元 801, 用于接收第一网络设备发送的第一消息, 所述第一消息包括触发标识信 息、 第二小区标识和负载信息;
第一处理单元 802, 用于设备根据所述第一消息确定待链接的卫星基站和所述待链接的 卫星基站的参数;
第一发送单元 803, 用于向所述待链接的卫星基站发送第二消息, 所述第二消息包括所 述待链接卫星基站生成波束的信息;
所述触发标识信息指示卫星通信链路间的流量达到设定阈值, 或地面站为卫星基站分配 的空口资源达到设定阈值, 所述负载信息指示所述未达到设定阈值的卫星通信链路的流量, 或指示所述未达到设定阈值的卫星基站分配的空口资源。
可选的,所述触发标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小区, 或所述地面站为卫星基站分配的空口资源达到设定阈值对应的小区。
可选的, 所述第一消息包括第一小区标识, 所述第一小区标识由所述卫星通信链路间的 流量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源达到设 定阈值的卫星基站确定。
可选的, 所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链 路确定, 或由所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定。
可选的, 所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历对应的卫星 基站确定。 图 9是本申请实施例提供的一种第二网络设备 900的结构示意图, 例如接入与移动管理 功能 AMF单元或类似功能单元的设备。 如图 9所示, 该第二网络设备 900包括:
获取单元 901, 用于获取数据,所述数据携带人口分布信息和卫星基站的运动轨迹信息; 第二处理单元 902, 用于根据所述数据确定待链接的卫星基站和所述待链接的卫星基站 的参数;
第二发送单元 903, 向待链接的卫星基站发送消息, 所述消息包括所述待链接卫星基站 生成波束的信息。
可选的, 所述人口分布信息携带不同地区的人口分布等级。
可选的, 若当前小区所述人口分布等级达到设定阈值, 所述处理单元根据所述数据确定待链 接的卫星基站和所述待链接的卫星基站的参数。 本申请实施例中的第一网络设备或者第二网络设备可能有部分单元 (或器件) 为通过硬 件电路来实现而另一部分单元 (或器件) 通过软件来实现, 也可能其中所有单元 (或器件) 都通过硬件电路来实现, 还可能其中所有单元 (或器件) 都通过软件来实现。
图 10是本申请实施例提供的一种第一网络设备 1000的结构示意图, 如图 10所示, 一种 第一网络设备 1000,例如用户面功能 UPF单元或类似功能单元的设备。该第一网络设备 1000 包括: 处理器 1001, 存储器 1002, 其中, 存储器 1002可以独立于处理器之外或独立于网络 设备之外 (Memory#3), 也可以在处理器或网络设备之内 (Memory #1和 Memory #2)。 存储 器 1002可以是物理上独立的单元, 也可以是云服务器上的存储空间或网络硬盘等。
所述存储器 1002用于存储计算机可读指令 (或者称之为计算机程序),
所述处理器 1001 用于读取所述计算机可读指令以实现前述有关第一网络设备的方面及 其任意实现方式提供的方法。
可选的, 所述存储器 1002 (Memory #1) 位于所述装置内。
可选的, 所述存储器 1002 (Memory #2) 与所述处理器集成在一起。
可选的, 所述存储器 1002 (Memory #3) 位于所述装置之外。
可选的, 该第一网络设备还包括收发器 1003, 用于接收和发送数据。
图 11是本申请实施例提供的一种第二网络设备 1100的结构示意图, 如图 11所示, 一种 第二网络设备 1100, 例如接入与移动管理功能 AMF单元或类似功能单元的设备。 该第二网 络设备 1100包括: 处理器 1101, 存储器 1102, 其中, 存储器 1102可以独立于处理器之外或 独立于网络设备之外 (Memory #3), 也可以在处理器或网络设备之内 (Memory #1和 Memory #2)。存储器 1102可以是物理上独立的单元,也可以是云服务器上的存储空间或网络硬盘等。
所述存储器 1102用于存储计算机可读指令 (或者称之为计算机程序),
所述处理器 1101 用于读取所述计算机可读指令以实现前述有关第二网络设备的方面及 其任意实现方式提供的方法。
可选的, 所述存储器 1002 (Memory #1) 位于所述装置内。
可选的, 所述存储器 1002 (Memory #2) 与所述处理器集成在一起。
可选的, 所述存储器 1002 (Memory #3) 位于所述装置之外。
可选的, 该第一网络设备还包括收发器 1103, 用于接收和发送数据。
另外, 该处理器 1001或 1101可以是中央处理器单元, 通用处理器, 数字信号处理器, 专用集成电路, 现场可编程门阵列或者其他可编程逻辑器件、 晶体管逻辑器件、 硬件部件或 者其任意组合。 其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框, 模 块和电路。 所述处理器也可以是实现计算功能的组合, 例如包含一个或多个彳敖处理器组合, 数字信号处理器和微处理器的组合等等。 另外, 该存储器 1002或 1102可以包括: 易失性存 储器 (volatile memory ), 例如随机存取存储器 (random-access memory, RAM); 存储器也 可以包括非易失性存储器 ( non-volat i le memory ), 例如快闪存储器 ( flash memory ), 硬盘 ( hard disk drive, HDD )或固态硬盘 ( solid-state drive, SSD )、 云存储 ( cloud storage )、 网络附接存储 (NAS: network attached Storage)、 网盘 (network drive) 等; 存储器还可 以包括上述种类的存储器的组合或者其他具有存储功能的任意形态的介质或产品。 本申请实施例还提供一种卫星协作通信系统,所述卫星通信系统包括地面站、第一网络设备、 第二网络设备, 其中: 所述第一网络设备为图 7对应的实施例中所描述的第一网络设备。 所述 第二网络设备为图 8对应的实施例中所描述的第二网络设备。 地面站一般是设置在地球表面 (包括设置在船舶或者飞机上) 上进行人造卫星通信的地面设备, 主要负责转发卫星基站和 核心网之间的信令和数据。 所述第一网络设备可以是用户面功能 UPF单元或类似功能单元的 设备, 所述第二网络设备可以是接入与移动管理功能 AMF单元或类似功能单元的设备。 本申请实施例还提供一种卫星协作通信系统,所述卫星通信系统包括地面站、第一网络设备、 第二网络设备, 其中: 所述第一网络设备为图 10对应的实施例中所描述的第一网络设备。 所 述第二网络设备为图 11对应的实施例中所描述的第二网络设备。地面站一般是设置在地球表 面 (包括设置在船舶或者飞机上) 上进行人造卫星通信的地面设备, 主要负责转发卫星基站 和核心网之间的信令和数据。所述第一网络设备可以是用户面功能 UPF单元或类似功能单元 的设备, 所述第二网络设备可以是接入与移动管理功能 AMF单元或类似功能单元的设备。
本申请实施例还提供了一种计算机可读介质, 其上存储有计算机程序指令, 该计算机程 序指令被计算机执行时实现上述任一实施例中的方法。
本申请实施例还提供了一种计算机程序产品, 该计算机程序产品被计算机执行时实现上 述任一实施例中的方法。 本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示例的单元及算法步 骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。 这些功能究竟以硬件还是 软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个特 定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本申请的范围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的系统、 装置的具 体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再贅述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可以通过其它 的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单元的划分, 仅 仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以结合 或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可 以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元 单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个 计算机可读取存储介质中。 基于这样的理解, 本申请的技术方案本质上或者说对现有技术做 出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来, 该计算机软件产品存 储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等) 执行本申请各个实施例所述方法的全部或部分步骤。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技 术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明 的保护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种卫星通信方法, 其特征在于, 所述方法包括:
第一网络设备获取多条卫星通信链路间的流量, 或获取地面站为多个卫星基站分配的空口资 源;
所述第一网络设备发送标识信息给第二网络设备, 所述标识信息指示所述卫星通信链路间的 流量达到设定阈值, 或所述地面站为卫星基站分配的空口资源达到设定阈值。
2、 如权利要求 1所述的方法, 其特征在于,
所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小区, 或所述地面站为 卫星基站分配的空口资源达到设定阈值对应的小区。
3、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括:
所述第一网络设备发送第一小区标识给第二网络设备, 所述第一小区标识由所述卫星通信链 路间的流量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源 达到设定阈值的卫星基站确定。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括:
所述第一网络设备发送第二小区标识和负载信息给第二网络设备, 所述第二小区标识由所述 卫星通信链路间的流量未达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分 配的空口资源未达到设定阈值的卫星基站确定, 所述负载信息指示所述未达到设定阈值的卫 星通信链路的流量, 或指示所述未达到设定阈值的卫星基站分配的空口资源。
5、 如权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括:
所述第一网络设备发送第二小区标识和负载信息给第二网络设备, 所述第二小区标识由卫星 星历确定, 所述负载信息由所述卫星星历对应的卫星基站确定。
6、 一种卫星通信方法, 其特征在于, 所述方法包括:
第二网络设备接收第一网络设备发送的第一消息, 所述第一消息包括标识信息, 所述标识信 息指示卫星通信链路间的流量达到设定阈值, 或地面站为卫星基站分配的空口资源达到设定 阈值;
所述第二网络设备根据所述第一消息确定待链接的卫星基站, 所述待链接的卫星基站具 有空闲的卫星资源;
所述第二网络设备向所述待链接的卫星基站发送第二消息, 所述第二消息包括所述待链接卫 星基站生成波束的信息。
7、如权利要求 6所述的方法,其特征在于,所述第一消息还包括:第二小区标识和负载信息, 所述第二小区标识指示所述流量达到设定阈值的卫星周围的卫星基站; 所述负载信息指示所 述第二小区标识中未达到设定阈值的卫星通信链路的流量, 或指示所述第二小区标识中未达 到设定阈值的卫星基站分配的空口资源。
8、 如权利要求 7所述的方法, 其特征在于,
所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小区, 或所述地面站为 卫星基站分配的空口资源达到设定阈值对应的小区。
9、 如权利要求 7所述的方法, 其特征在于,
所述第一消息包括第一小区标识, 所述第一小区标识由所述卫星通信链路间的流量达到设定 阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源达到设定阈值的卫星 基站确定。
10、 如权利要求 7-9任意一项所述的方法, 其特征在于,
所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链路确定, 或由 所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定。
11、 如权利要求 7-9任意一项所述的方法, 其特征在于,
所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历对应的卫星基站确定。
12、 一种第一网络设备, 其特征在于, 包括:
监测单元, 用于获取多条卫星通信链路间的流量, 或获取地面站为多个卫星基站分配的空口 资源;
发送单元, 用于发送标识信息给第二网络设备, 所述标识信息指示所述卫星通信链路间的流 量达到设定阈值, 或所述地面站为卫星基站分配的空口资源达到设定阈值。
13、 根据权利要求 12所述的第一网络设备, 其特征在于,
所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小区, 或所述地面站为 卫星基站分配的空口资源达到设定阈值对应的小区。
14、 根据权利要求 12所述的第一网络设备, 其特征在于,
所述发送单元, 还用于发送第一小区标识给第二网络设备, 所述第一小区标识由所述卫星通 信链路间的流量达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口 资源达到设定阈值的卫星基站确定。
15、 根据权利要求 12或 13所述的第一网络设备, 其特征在于,
所述发送单元, 还用于发送第二小区标识和负载信息给第二网络设备, 所述第二小区标识由 所述卫星通信链路间的流量未达到设定阈值的卫星通信链路确定, 或由所述地面站为卫星基 站分配的空口资源未达到设定阈值的卫星基站确定, 所述负载信息指示所述未达到设定阈值 的卫星通信链路的流量, 或指示所述未达到设定阈值的卫星基站分配的空口资源。
16、 根据权利要求 12或 13所述的第一网络设备, 其特征在于,
所述发送单元, 还用于发送第二小区标识和负载信息给第二网络设备, 所述第二小区标识由 卫星星历确定, 所述负载信息由所述卫星星历对应的卫星基站确定。
17、 一种第二网络设备, 其特征在于, 包括:
接收单元, 用于接收第一网络设备发送的第一消息, 所述第一消息包括标识信息, 所述标识 信息指示卫星通信链路间的流量达到设定阈值, 或地面站为卫星基站分配的空口资源达到设 定阈值;
处理单元, 用于设备根据所述第一消息确定待链接的卫星基站, 所述待链接的卫星基站具有 空闲的卫星资源;
发送单元, 用于向所述待链接的卫星基站发送第二消息, 所述第二消息包括所述待链接卫星 基站生成波束的信息。
18、 根据权利要求 17所述的第二网络设备, 其特征在于, 所述第一消息还包括: 第二小区标 识和负载信息, 所述第二小区标识指示所述流量达到设定阈值的卫星周围的卫星基站; 所述 负载信息指示所述未达到设定阈值的卫星通信链路的流量, 或指示所述未达到设定阈值的卫 星基站分配的空口资源。
19、 根据权利要求 18所述的第二网络设备, 其特征在于,
所述标识信息还指示所述卫星通信链路间的流量达到设定阈值对应的小区, 或所述地面站为 卫星基站分配的空口资源达到设定阈值对应的小区。
20、 根据权利要求 18所述的第二网络设备, 其特征在于,
所述第一消息包括第一小区标识, 所述第一小区标识由所述卫星通信链路间的流量达到设定 阈值的卫星通信链路确定, 或由所述地面站为卫星基站分配的空口资源达到设定阈值的卫星 基站确定。
21、 根据权利要求 18-20任意一项所述的第二网络设备, 其特征在于,
所述第二小区标识由所述卫星通信链路间的流量未达到设定阈值的卫星通信链路确定, 或由 所述地面站为卫星基站分配的空口资源未达到设定阈值的卫星基站确定。
22、 根据权利要求 18-20任意一项所述的第二网络设备, 其特征在于,
所述第二小区标识由卫星星历确定, 所述负载信息由所述卫星星历对应的卫星基站确定。
23、 一种计算机可读存储介质, 其特征在于, 包括计算机程序指令, 当其在计算机上运行时, 使得所述计算机执行如权利要求 1-11 中任意一项所述的卫星通信方法。
24、 一种第一网络设备, 其特征在于, 包括: 处理器, 存储器;
所述存储器用于存储计算机可读指令或者计算机程序, 所述处理器用于读取所述计算机可读 指令以实现如权利要求 1-5中任意一项所述的卫星通信方法。
25、 一种第二网络设备, 其特征在于, 包括: 处理器, 存储器;
所述存储器用于存储计算机可读指令或者计算机程序, 所述处理器用于读取所述计算机可读 指令以实现如权利要求 6-11 中任意一项所述的卫星通信方法。
PCT/CN2020/076642 2019-02-27 2020-02-25 一种卫星协作通信的方法、装置及系统 WO2020173438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20763305.8A EP3905764A4 (en) 2019-02-27 2020-02-25 METHOD, DEVICE AND SYSTEM FOR COOPERATIVE SATELLITE COMMUNICATION
US17/403,953 US11616567B2 (en) 2019-02-27 2021-08-17 Coordinated satellite communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910146990.2A CN111629400B (zh) 2019-02-27 2019-02-27 一种卫星协作通信的方法、装置及系统
CN201910146990.2 2019-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/403,953 Continuation US11616567B2 (en) 2019-02-27 2021-08-17 Coordinated satellite communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2020173438A1 true WO2020173438A1 (zh) 2020-09-03

Family

ID=72239112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076642 WO2020173438A1 (zh) 2019-02-27 2020-02-25 一种卫星协作通信的方法、装置及系统

Country Status (4)

Country Link
US (1) US11616567B2 (zh)
EP (1) EP3905764A4 (zh)
CN (1) CN111629400B (zh)
WO (1) WO2020173438A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193976A (zh) * 2021-03-05 2021-07-30 中国电子科技集团公司电子科学研究院 一种天地一体化信息网络地面信息港构建方法
CN113708828A (zh) * 2021-10-27 2021-11-26 武汉兴图新科电子股份有限公司 一种北斗三号短报文信道调度方法及系统
CN114666393A (zh) * 2020-12-04 2022-06-24 大唐移动通信设备有限公司 协议数据单元pdu会话的管理方法、装置及存储介质
CN115362639A (zh) * 2021-03-10 2022-11-18 北京小米移动软件有限公司 确定卫星频段、频段调整方法及装置
CN115801091A (zh) * 2022-10-11 2023-03-14 西安电子科技大学 面向星地协同计算的大规模星座网络资源调度方法
CN116131906A (zh) * 2022-12-29 2023-05-16 中国电信股份有限公司卫星通信分公司 卫星终端的注册方法、装置及系统
US11968127B2 (en) 2020-12-04 2024-04-23 Datang Mobile Communications Equipment Co., Ltd. Protocol data unit (PDU) session management method and apparatus

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182658B (zh) * 2018-11-12 2023-04-07 华为技术有限公司 一种卫星通信的方法、装置及系统
CN112203308B (zh) * 2020-10-12 2022-03-29 重庆邮电大学 卫星地面融合网络数据传输方法
CN116420420A (zh) * 2020-10-28 2023-07-11 中兴通讯股份有限公司 用于无线通信的方法、设备和计算机程序产品
CN112399450B (zh) * 2020-12-11 2023-06-16 中国联合网络通信集团有限公司 一种干扰评估方法及装置
CN114726429A (zh) * 2020-12-22 2022-07-08 中国移动通信有限公司研究院 一种非地球同步卫星轨道、核心网及组网、使用方法
CN114665943A (zh) * 2020-12-23 2022-06-24 中国移动通信有限公司研究院 用于网络接入的信息处理方法、装置、星载设备和终端
US11582690B2 (en) * 2021-01-19 2023-02-14 Qualcomm Incorporated Cell selection, network selection, tracking area management, and paging for aerial operation
CN113115299B (zh) * 2021-03-22 2022-11-18 中国联合网络通信集团有限公司 一种ursp规则更新方法及装置
CN113454929A (zh) * 2021-05-10 2021-09-28 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
CN114884552B (zh) * 2021-05-17 2023-07-04 银河航天(北京)网络技术有限公司 一种基于卫星网络的地面通信方法
CN115720108A (zh) * 2021-08-24 2023-02-28 华为技术有限公司 一种通信方法和通信装置
CN113852408B (zh) * 2021-09-26 2024-04-30 中国电子科技集团公司第五十四研究所 实现TtT通信模式的低轨卫星移动通信系统及实现方法
CN114025367B (zh) * 2021-10-22 2022-11-18 爱浦路网络技术(南京)有限公司 天地一体化信息网络、负载均衡方法、装置和存储介质
CN114039648B (zh) * 2021-10-29 2023-03-31 北京邮电大学 一种卫星网络的覆盖扩展方法及装置
CN113891418B (zh) * 2021-11-03 2022-06-28 广州爱浦路网络技术有限公司 天地一体化信息网络中用户终端的接入方法、天地一体化信息网络、装置和介质
CN116209074A (zh) * 2021-11-30 2023-06-02 华为技术有限公司 一种多链路通信的方法和装置
CN114339735B (zh) * 2021-12-10 2023-09-08 重庆邮电大学 一种基于ntru的天地一体化网络匿名接入认证方法
CN114285455B (zh) * 2021-12-16 2022-10-21 广州爱浦路网络技术有限公司 基于核心网的卫星节能控制方法、系统、装置及存储介质
CN114205881B (zh) * 2021-12-31 2024-02-09 中国信息通信研究院 一种基站间切换方法和设备
CN118541930A (zh) * 2022-01-12 2024-08-23 诺基亚技术有限公司 协调无人机载具以调整无线覆盖区域的通信
US20230247484A1 (en) * 2022-02-02 2023-08-03 Cisco Technology, Inc. Adaptive load balancing in a satellite network
CN114499649A (zh) * 2022-03-30 2022-05-13 阿里巴巴达摩院(杭州)科技有限公司 卫星通信方法、装置、设备、系统及存储介质
CN115021796A (zh) * 2022-05-31 2022-09-06 清华大学 一种卫星网络小区呼吸处理方法及系统
CN114827152B (zh) * 2022-07-01 2022-09-27 之江实验室 一种星地协同网络低延时云边端协同计算方法和装置
CN117440468A (zh) * 2022-07-13 2024-01-23 华为技术有限公司 一种通信方法及装置
CN117478580A (zh) * 2022-07-29 2024-01-30 华为技术有限公司 一种发送负载信息的方法、发送报文的方法及装置
CN115379493A (zh) * 2022-08-12 2022-11-22 广州银禾网络通信有限公司 一种支撑卫星与5g通信网络融合的测试方法和系统
CN115348669A (zh) * 2022-08-19 2022-11-15 中国电信股份有限公司 卫星频谱资源利用方法、信关站、系统、设备及介质
CN115483961B (zh) * 2022-08-24 2023-07-21 爱浦路网络技术(南京)有限公司 天地一体化系统中的星载upf部署方法、装置及介质
CN115622614B (zh) * 2022-10-26 2023-08-01 广州爱浦路网络技术有限公司 一种卫星通信方法、装置及网元
CN116112065B (zh) * 2023-04-10 2023-06-06 银河航天(北京)网络技术有限公司 基于卫星通信的文件共享方法、系统、装置及存储介质
CN116865841A (zh) * 2023-09-05 2023-10-10 四川创智联恒科技有限公司 一种基于卫星基站的卫星编号交换方法
CN117915345B (zh) * 2023-12-29 2024-09-24 中国人民解放军军事科学院系统工程研究院 一种意图驱动的云-网-端卫星通信网络

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780997A2 (en) * 1995-12-19 1997-06-25 Trw Inc. Communication satellite load balancing system and method
CN103905306A (zh) * 2014-04-02 2014-07-02 中国人民解放军西安通信学院 一种适用于geo/leo双层星座网络的路由交换方法
CN104066120A (zh) * 2014-06-13 2014-09-24 北京邮电大学 Lte卫星通信系统移动负载均衡方法
CN108540206A (zh) * 2018-04-11 2018-09-14 西安邮电大学 一种基于流量预测的三层卫星网络负载均衡路由方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379758B2 (en) * 2002-07-23 2008-05-27 Qualcomm Incorporated Satellite communication system constituted with primary and back-up multi-beam satellites
CN101001100A (zh) * 2007-01-10 2007-07-18 北京航空航天大学 卫星星间链路的切换保护方法
US8634296B2 (en) * 2009-06-16 2014-01-21 Viasat, Inc. Dynamic bandwidth resource allocation for satellite downlinks
US8958328B2 (en) * 2011-09-28 2015-02-17 Gilat Satellite Networks Ltd. Load balancing
CN103269245A (zh) * 2013-05-13 2013-08-28 北京邮电大学 一种天基数据网的用户与geo星关联方法
CN104079341B (zh) * 2014-07-02 2017-06-23 南京邮电大学 低轨卫星网络星间链路分配方法
CN106993312B (zh) * 2017-04-28 2020-02-07 北京邮电大学 基于最小化最大传输时间的多波束负载均衡方法
US10999773B2 (en) * 2017-08-11 2021-05-04 Gogo Business Aviation Llc Opportunistic balancing in multiple links
US10742312B2 (en) * 2018-02-20 2020-08-11 Hughes Network Systems, Llc Satellite and terrestrial load balancing
US10863404B2 (en) * 2018-11-20 2020-12-08 Hughes Network Systems, Llc Satellite load balancing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780997A2 (en) * 1995-12-19 1997-06-25 Trw Inc. Communication satellite load balancing system and method
CN103905306A (zh) * 2014-04-02 2014-07-02 中国人民解放军西安通信学院 一种适用于geo/leo双层星座网络的路由交换方法
CN104066120A (zh) * 2014-06-13 2014-09-24 北京邮电大学 Lte卫星通信系统移动负载均衡方法
CN108540206A (zh) * 2018-04-11 2018-09-14 西安邮电大学 一种基于流量预测的三层卫星网络负载均衡路由方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905764A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114666393A (zh) * 2020-12-04 2022-06-24 大唐移动通信设备有限公司 协议数据单元pdu会话的管理方法、装置及存储介质
CN114666393B (zh) * 2020-12-04 2024-04-02 大唐移动通信设备有限公司 协议数据单元pdu会话的管理方法、装置及存储介质
US11968127B2 (en) 2020-12-04 2024-04-23 Datang Mobile Communications Equipment Co., Ltd. Protocol data unit (PDU) session management method and apparatus
CN113193976A (zh) * 2021-03-05 2021-07-30 中国电子科技集团公司电子科学研究院 一种天地一体化信息网络地面信息港构建方法
CN113193976B (zh) * 2021-03-05 2022-12-16 中国电子科技集团公司电子科学研究院 一种天地一体化信息网络地面信息港构建方法
CN115362639A (zh) * 2021-03-10 2022-11-18 北京小米移动软件有限公司 确定卫星频段、频段调整方法及装置
CN113708828A (zh) * 2021-10-27 2021-11-26 武汉兴图新科电子股份有限公司 一种北斗三号短报文信道调度方法及系统
CN113708828B (zh) * 2021-10-27 2022-02-08 武汉兴图新科电子股份有限公司 一种北斗三号短报文信道调度方法及系统
CN115801091A (zh) * 2022-10-11 2023-03-14 西安电子科技大学 面向星地协同计算的大规模星座网络资源调度方法
CN116131906A (zh) * 2022-12-29 2023-05-16 中国电信股份有限公司卫星通信分公司 卫星终端的注册方法、装置及系统
CN116131906B (zh) * 2022-12-29 2024-05-24 中国电信股份有限公司卫星通信分公司 卫星终端的注册方法、装置及系统

Also Published As

Publication number Publication date
EP3905764A4 (en) 2022-04-06
CN111629400A (zh) 2020-09-04
CN111629400B (zh) 2022-03-29
EP3905764A1 (en) 2021-11-03
US20210376919A1 (en) 2021-12-02
US11616567B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2020173438A1 (zh) 一种卫星协作通信的方法、装置及系统
US11997725B2 (en) Satellite communication method, apparatus, and system
WO2020083030A1 (zh) 基于卫星网络的通信方法、装置及系统
CN101999217B (zh) 用于对网络中网际协议语音通信进行管理的系统
WO2020244563A1 (zh) 用于切换的方法和装置
US20220264417A1 (en) Network switching method and apparatus
US10306579B2 (en) User plane for fifth generation cellular architecture
CN110401972A (zh) 在多网络切片的网络中路由消息的方法、设备及系统
EP4102890A1 (en) Cell handover method, electronic device, and storage medium
CN113825254B (zh) 通信方法、装置、系统以及存储介质
US20240334525A1 (en) Access network device, terminal device, and core network device
El Jaafari et al. Introduction to the 3GPP‐defined NTN standard: A comprehensive view on the 3GPP work on NTN
JP7047104B2 (ja) マルチコネクティビティネットワークにおける測位方法、端末装置、及び測位管理機能エンティティ
CN115833916B (zh) 卫星基站切换方法、装置、卫星基站及存储介质
WO2023160381A1 (zh) 通信方法和装置
WO2022033268A1 (zh) 无人机信息处理方法及装置、终端
WO2022217613A1 (zh) 数据传输方法、设备及存储介质
CN116867002A (zh) 通信方法和装置
RU2787012C2 (ru) Система, устройство и способ спутниковой связи
WO2024212751A1 (zh) 一种信息传输方法、装置及设备
Wang et al. UAV assisted adaptive aerial Internet
EP4178247A1 (en) Network selection method, electronic device, and storage medium
WO2024037371A1 (en) Apparatus, method, and computer program
WO2024026640A1 (en) Apparatus, method, and computer program
AU2021104716A4 (en) Smart integrating & supporting system for satellite communication from mobile devices to public land mobile networks using iot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020763305

Country of ref document: EP

Effective date: 20210729

NENP Non-entry into the national phase

Ref country code: DE