WO2020173215A1 - 一种用于光模块的波分复用装置和方法 - Google Patents

一种用于光模块的波分复用装置和方法 Download PDF

Info

Publication number
WO2020173215A1
WO2020173215A1 PCT/CN2019/129740 CN2019129740W WO2020173215A1 WO 2020173215 A1 WO2020173215 A1 WO 2020173215A1 CN 2019129740 W CN2019129740 W CN 2019129740W WO 2020173215 A1 WO2020173215 A1 WO 2020173215A1
Authority
WO
WIPO (PCT)
Prior art keywords
division multiplexing
wavelength division
optical
multiplexing device
optical module
Prior art date
Application number
PCT/CN2019/129740
Other languages
English (en)
French (fr)
Inventor
罗超
付永安
孙莉萍
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Publication of WO2020173215A1 publication Critical patent/WO2020173215A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • This application relates to the field of optical communications, and in particular to a wavelength division multiplexing device and method for optical modules. Background technique
  • this application solves the problem of realization and integration of the wavelength division multiplexing function in the optical module.
  • the present application provides a wavelength division multiplexing device for an optical module.
  • the wavelength division multiplexing device is provided with at least two splitting slots, and the splitting slots selectively totally reflect optical signals of a specified wavelength. Or full transmission;
  • the light splitting slot corresponds to the position of the optical path input port and/or the optical path output port, and is used to transmit the optical signal of the emitting element and/or receiving element corresponding to the corresponding position; wherein, the optical path input port is used to transmit light
  • the signal is input into the wavelength division multiplexing device; the optical path output port is used to output the optical signal from the wavelength division multiplexing device.
  • the light splitting groove at the optical path input port divides the incident light signal into reflected light and transmitted light, and the transmitted light enters the backlight detector through the corresponding optical path output port.
  • a reflective surface group is further included, and the transmitted light is reflected by the reflective surface group and then enters the backlight detector through the corresponding light path output port.
  • At least two transmitting elements are further included to form a wavelength division multiplexing transmitting device; or, at least two receiving elements are further included to form a wavelength division multiplexing receiving device; or, at least one transmitting element and at least one receiving device are also included.
  • the components constitute a wavelength division multiplexing transceiver; the wavelengths of optical signals transmitted or received by any two components are different, and the processed optical signal wavelength corresponds to the optical signal wavelength transmitted by the optical splitting slot at the corresponding position.
  • the wavelength division multiplexing device is provided with a receiving groove corresponding to the surface of the optical path input and output port, and is configured to place the transmitting element, the receiving element and/or the backlight detector.
  • the accommodating groove has a multi-layer concentric step shape, wherein the inner step contains the transmitting element, the receiving element and/or the backlight detector, and the outer step contains the related peripheral circuits.
  • the opening of the accommodating groove is hermetically sealed, and the transmitting element, receiving element and/or back The photodetector and related peripheral circuits are packaged in the containing groove.
  • the beam splitter is provided with a beam splitter or a semi-permeable film, and the beam splitter or the semi-permeable film selectively totally reflects or totally transmits the optical signal of the specified wavelength.
  • the lower half of the beam splitting groove matches the shape of the beam splitter
  • the upper half is a quadrangular pedestal
  • the lower bottom surface of the quadrangular pedestal is the slot insertion opening
  • the upper bottom surface of the quadrangular pedestal is under the beam splitter.
  • the present application provides a wavelength division multiplexing method for an optical module, which is applied to the above-mentioned wavelength division multiplexing device for an optical module as claimed in the right, to divide and multiplex the optical signal transmitted in the optical fiber.
  • the beneficial effects of the embodiments of the present application are: by providing a light splitting groove in the main body of the wavelength division multiplexing device, and the use of corresponding optical elements and circuit elements, a specific optical path system is constructed to make the wavelength division multiplexing
  • the device can complete the multiplexing of optical signals of different wavelengths, complete the transmission and reception of multiple signals on a single optical fiber, and improve the integration of the wavelength division multiplexing device through the design of the main body shape and structure of the wavelength division multiplexing device This reduces the difficulty of optical path installation, ensures the transmission quality of optical communication, and reduces the cost of optical communication.
  • This application provides a wavelength division multiplexing device and method for an optical module, and its purpose is to provide a new wavelength division multiplexing device integration device and method, which performs processing on multiple optical signals of different wavelengths in the optical module. Divide multiplexing, improve communication efficiency and reduce communication costs.
  • FIG. 1 is a schematic structural diagram of a wavelength division multiplexing device for an optical module provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the structure of a wavelength division multiplexing device for an optical module provided by an embodiment of the present application Figure;
  • FIG. 3 is a schematic structural diagram of another wavelength division multiplexing device for optical modules provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another wavelength division multiplexing device for optical modules provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a partial structure of a wavelength division multiplexing device for an optical module provided by an embodiment of the present application;
  • Fig. 6 is a schematic structural diagram of another wavelength division multiplexing device for optical modules provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another wavelength division multiplexing device for optical modules provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another wavelength division multiplexing device for optical modules provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of another wavelength division multiplexing device for optical modules provided by an embodiment of the present application. detailed description
  • This application is an architecture of a specific functional system. Therefore, the specific embodiments mainly illustrate the functional logical relationship of each structural module, and do not limit specific software and hardware implementations.
  • Example 1 As the demand for data information grows, the requirements for optical modules used for signal interconnection are getting higher and higher. How to improve the transmission performance of optical modules, reduce the cost of optical modules, and improve the integration and stability of optical modules is an urgent need in practical applications. solved problem. For the traditional wavelength division multiplexing optical system, there are many optical components and circuit components and low integration, making production and debugging more complicated, and product accuracy and stability are also affected. In order to solve the aforementioned problems, the present application provides a wavelength division multiplexing device and method for optical modules. By optimizing the design of the structure of the wavelength division multiplexing device, the integration, stability and stability of the wavelength division multiplexing device are improved. Versatility, facilitates the installation, sealing, replacement, etc. of the wavelength division multiplexing device, reduces communication errors and failures caused by installation and sealing problems, and enables the optical module using the wavelength division multiplexing device to meet more application scenarios demand.
  • the specific structure of the wavelength division multiplexing device used in the optical module of the present application will be described with reference to FIG. 1 and FIG. 2.
  • a main structure of a wavelength division multiplexing device is briefly listed.
  • the same design ideas can be used to adjust the specific numbers and positions of components and circuit elements of the optical system according to actual conditions. .
  • the main body of the wavelength division multiplexing device in the wavelength division multiplexing device has a shape similar to a rectangular parallelepiped, and the main body is made of a uniform and transparent medium.
  • Figure 2 is a cross-sectional view of the main body of the WDM device taken along the plane where the top surface and the central axis of the fiber entrance side are located, that is, a simplified structure and optical path diagram of the lens cut along the central axis A-A of Figure 1 as the dividing line.
  • the surface placed on the installation plane is the bottom surface
  • BC is the bottom surface section line.
  • the surface opposite to the bottom surface is the top surface
  • DA is the top surface section line.
  • the light entrance surface of the optical interface is the fiber entrance side
  • AB is the section line of the fiber entrance side.
  • the surface opposite to the fiber entrance side is the second side
  • CD is the second side section line.
  • the bottom surface and the top surface are approximately parallel, and the fiber entrance side surface and the second side surface are approximately parallel.
  • E1E2E3E4 and F1F2F3F4 are the cross sections of the beam splitter.
  • the angle between E1E2 and AE1 is 135 degrees, and E1E2, E3E4, F1F2, F3F4 are parallel to each other.
  • Multiple optical splitting slots corresponding to optical signals of different wavelengths can be set up as needed to divide and multiplex multiple optical signals of different wavelengths
  • the beam splitter E1E2E3E4 is aligned with the straight lens T2 and the receiving element 12.
  • the position of T2 is the wave At the output port of the division multiplexing device, the optical signal corresponding to the wavelength of the division slot E1E2E3E4 is received by 12 through T2 after refraction.
  • the light splitting slot F1F2F3F4 is aligned with the collimating lens T3 and the emitting element 13.
  • the position of T3 is the input port of the wavelength division multiplexing device.
  • the optical signal corresponding to the wavelength of the light splitting slot F1F2F3F4 passes through T2, is refracted, and then transmits through E1E2E3E4, and then passes through the collimating lens T1, sent to optical interface II.
  • multiple optical splitting slots corresponding to optical signals of different wavelengths are set in the wavelength division multiplexing device to split or multiplex the optical signals of different wavelengths, so that the optical module where the wavelength division multiplexing device is located It can respectively receive multiple optical signals of different wavelengths transmitted in the same optical fiber, or send multiple optical signals of different wavelengths to the same optical fiber, or transmit and receive multiple optical signals of different wavelengths at the same time to realize wavelength division multiplexing.
  • the main body of the wavelength division multiplexing device is a uniformly transparent medium, the optical signals of different wavelengths that need to be processed can be regarded as lossless linear transmission, and the optical splitting groove and the optical path input port and the optical path output port required to be used are integrated.
  • the collimating lens integrates the optical path system required by the wavelength division multiplexing device into the same assembly as much as possible, reduces the difficulty of installation and debugging of the optical path system, reduces the error caused by factors such as air in the optical path transmission, and improves the stability of the optical path And transmission quality.
  • Example 2 Example 2:
  • the main body of the wavelength division multiplexing device can cooperate with optical components and circuit elements to form a specific optical path to complete signal transmission and reception and wavelength division multiplexing functions.
  • the transmitting element is configured to send optical signals into the wavelength division multiplexing device
  • the receiving element is configured to receive from the wavelength division multiplexing device. Use the optical signal from the device.
  • the wavelength wl optical signal L1 When receiving the optical signal, the wavelength wl optical signal L1 is emitted from the optical interface II and passes through the collimating lens T1 It is collimated and reaches the beam splitting groove M1, which totally reflects on L1. After being reflected, L1 is collimated by the collimating lens T2, and then enters the receiving element 12.
  • the optical signal L2 of wavelength w2 is emitted from the emitting element 13, collimated by the collimating lens T3, and reaches the beam splitter M2, M2 reflects L2, and L2 is reflected to reach Ml, Ml totally transmits to L2, After transmission, L2 is combined with L1, collimated by T1, and shot into II.
  • the two optical signals L1 and L2 of wavelengths wl and w2 are split and multiplexed by the above-mentioned device, and can be transmitted on the same optical fiber, which reduces the number of optical fibers used for transmission, and reduces the transmission cost and failure rate.
  • the wavelength division multiplexing device can also be used for multiple transmission or multiple reception.
  • a few typical application scenarios are listed as follows. In actual applications, according to needs, without conflict, Combine and expand the use of the optical path system described in this embodiment to form a multi-channel transceiver wavelength division multiplexing device:
  • (1) WDM transmitting device As shown in Fig. 3, the optical signal L4 of wavelength wl is emitted from the emitting element 14 corresponding to T2, and reaches Ml after being collimated by T2. Ml reflects on L4, and after reflection, L4 enters II through T1.
  • the optical signal L2 of wavelength w2 is emitted by the emitting element 13, collimated by T3, and reaches M2, M2 reflects on L2, L2 is reflected to reach Ml, and Ml is fully transmitted to L2. After transmission, L2 is combined with L1 and passes through T1. After collimation, shot into II.
  • the optical signal L1 of wavelength wl is emitted from II, collimated by T1, reaches the beam splitter Ml, is reflected by Ml, collimated by T2, and enters the receiving element 12.
  • the optical signal L5 of wavelength w2 is emitted from II, collimated by T1, and arrives at the beam splitter Ml, Ml is fully transmitted to L5, after transmission, L5 reaches M2, and M2 is fully reflected to L5. After reflection, L5 is collimated by T3 and injected into Receiving element 15.
  • Example 3 In the actual use of the wavelength division multiplexing device, a beam splitter can be placed in the beam splitter, the beam splitter can transmit or reflect laser light of different wavelengths, and the surface of the beam splitter can be coated.
  • the size of the beam splitter is small, and the thickness is usually about 0.1 mm, which is inconvenient for installation and position alignment, and is easily damaged.
  • the main body of the wavelength division multiplexing device is used as the base of the beam splitter, and the beam splitter slot is used to determine the installation position of the beam splitter, which improves the convenience and position accuracy of the beam splitter installation process, and also prevents the beam splitting caused by various factors.
  • the position of the film is changed to ensure the accuracy of the optical path.
  • the optical path transmitted by the optical signal in the wavelength division multiplexing device is mainly in the internal uniform medium, it can also prevent the optical signal transmission path from changing or optical power attenuation due to air temperature or impurities, reducing transmission signal errors, and improving The transmission reliability of the optical module where the wavelength division multiplexing device is located.
  • the beam splitter may not use a beam splitter, but a semi-transparent film, a prism, a grating, a fiber splitter, a taper coupler, and other optics that separate optical signals of specific wavelengths. Device.
  • the use of different optical devices can make the application scenarios of the optical module where the wavelength division multiplexing device is located more extensive, and meet the actual use requirements for special applications.
  • the shape of the beam splitter can be further optimized.
  • Figure 5 shows a typical structure in a specific application scenario.
  • the shape of the beam splitter surrounded by E1E2E3E4 in Figure 2 can be optimized to E1E2E3E5E6 The surrounding shape.
  • the E1E2 and E2E3 planes remain unchanged, and the E3E4 plane is divided into two upper and lower sections.
  • the lower section E3E5 is parallel to E1E2 and is longer than the top of the beam splitter. It is used to fix the beam splitter.
  • the upper section is E5E6.
  • the length of E1E6 at the opening is greater than the length of E1E4 in Fig. Slot opening is convenient for installation.
  • the angle between E5E6 and the top surface E5G is 90 degrees.
  • This structure not only facilitates the installation of the beam splitter, prevents collision damage during the installation of the beam splitter, but also fixes the position of the beam splitter.
  • the assembly process improves the assembly accuracy of the wavelength division multiplexing device.
  • the size of the beam splitter slot needs to be slightly larger than the size of the beam splitter, resulting in air between the beam splitter and the main body of the wavelength division multiplexing device.
  • Layer affect the signal transmission path and optical power, and in severe cases, stray light will affect the optical signal transmission.
  • a refractive index rubber can be filled between the lens body and the beam splitter to make the beam splitter and the lens body closely fit. This method can not only adhere and fix the beam splitter, but also provide a buffer layer around the beam splitter to prevent damage caused by collision and friction between the beam splitter and the lens body, and effectively solve the adverse effects of the gap air layer on the transmission of optical signals.
  • the necessary optical devices such as a collimating lens are integrated on the same optical device, and the beam splitter with different transmittance can be inserted according to the wavelength of the transmitted light signal, and the beam splitter can be used in the beam splitter. Replace when damaged.
  • This design not only simplifies the assembly of the wavelength division multiplexing device, ensures the position accuracy of the beam splitter and the collimating lens, but also retains the flexibility of plugging and unplugging the beam splitter, and ensures the versatility of the optical module where the wavelength division multiplexing device is located. , So that the optical module can be used in more occasions without changing the structure as much as possible.
  • Example 4 Example 4:
  • a vertical laser When a vertical laser is used in a wavelength division multiplexing device, it is usually necessary to set a boss under the laser to install a backlight detection element to confirm whether the power of the light signal emitted by the emitting element is correct.
  • the backlight detection element directly receives the light emitted by the emitting element and is The amount of light arrived is judged. This structure will lead to the structure design of the wavelength division multiplexing device to reserve enough space to install the boss and the backlight detection element at a specific location near the emitting element, which causes the structure of the wavelength division multiplexing device to fail to achieve the optimal design.
  • the embodiment of the application provides a wavelength division multiplexing device for an optical module.
  • the backlight monitoring optical path is added, and the light signal emitted by the emitting element is conducted to a position that is more convenient for setting the backlight monitor, so that the wavelength division
  • the structure of the multiplexing device is more compact, which avoids the problems of irregular shape, large volume, and inconvenient installation of the wavelength division multiplexing device due to the boss structure.
  • FIG. 6 shows another cross-sectional view of the main body of the wavelength division multiplexing device in the wavelength division multiplexing device along the plane where the top surface and the central axis of the fiber entrance side are located.
  • AB and BC in Figure 6 are the same as those in Figure 2, and CD and DA in Figure 2 are optimized to CD1D2D3D4A.
  • CD1 is the central axis of the second side surface
  • D2D3 and D4A are the central axis of the top surface
  • D3D4 and D1D2 are the reflecting surfaces.
  • the angle between D3D4 and D4A is 135 degrees
  • the angle between D1D2 and D2D3 is 135 degrees.
  • the optical signal L2 of wavelength w2 is emitted from the emitting element 13 and passes through the collimating lens
  • T3 collimation After T3 collimation, it passes through the optical lens body to reach the beam splitter M2, and M2 partially reflects the part of L2 transmission.
  • the reflected light L21 of L2 reflected by M2 reaches Ml, and Ml is totally transmitted to L21.
  • L21 After being transmitted, L21 is combined with L1, and after being collimated by T1, it enters II.
  • the transmitted light L22 transmitted by L2 through M2 reaches the first reflecting surface, the first reflecting surface totally reflects L22 of wavelength w2, L22 reaches the second reflecting surface after reflection, and the second reflecting surface totally reflects L22 of wavelength w2, L22 After being reflected again, it is collimated by the collimating lens T4 and is incident on the backlight detector 14.
  • the emitted light signal L2 is transmitted and reflected through the backlight monitoring light path system composed of M2, the first reflecting surface, and the second reflecting surface. Finally, it reaches the backlight detector 14 arranged in other positions, and the light intensity is monitored by 14.
  • This embodiment only lists a typical backlight monitoring light path structure, and other light path structures can also be used to guide the light emitted from the emitting element to other positions that are convenient for setting the backlight detector, for example, the backlight detector is placed outside of the side parallel to this section. , Or above the top surface.
  • the backlight detection optical path, the emitting element and the backlight detector included in the optical path are located at the extreme edge of the overall optical path of the wavelength division multiplexing device, such as the position closest to the second side surface.
  • 13 and 14 can also be connected to the adaptive control circuit, and the main control chip judges whether the received optical power of 14 is correct, for example, 13 the optical power is incorrect.
  • the main control chip can adjust the output power of 13 adaptively.
  • the main control chip can be realized by a single chip microcomputer.
  • the backlight monitoring optical path of the emitted light is added, although the optical lens is slightly increased
  • the structure is complex, but it can make the structure of the entire wavelength division multiplexing device more reasonable and compact, avoiding the element shape and structure limitation caused by the backlight monitoring element must be installed near the emitting element in the original structure, and the structure design of the wavelength division multiplexing device It is more flexible and reasonable, optimizes the shape and structure of the wavelength division multiplexing device as a whole, and avoids problems such as irregular shape of the wavelength division multiplexing device and complicated circuit connections caused by the position of the backlight monitoring element.
  • the addition of the backlight monitoring optical path can provide more space and layout schemes for other functional components in the wavelength division multiplexing device, such as the main control chip, which further increases the scalability of the wavelength division multiplexing device function and reduces the increase Design obstacles for wavelength division multiplexing device functions.
  • Example 5
  • the wavelength division multiplexing device includes components such as optical interfaces, transmitting components, receiving components, optical system, and auxiliary circuit components. These components are easily damaged and have certain requirements for waterproof and dustproof. . At the same time, there is a certain gap between the light emitting element, the receiving element, etc. and the optical lens. If there are too many impurities in the gap, it will cause problems such as optical path deviation, light energy loss, and stray light crosstalk.
  • This embodiment provides a wavelength division multiplexing device for an optical module.
  • the optical interface, the transmitting element, the receiving element, the backlight monitoring element, etc. are placed on the main body of the wavelength division multiplexing device.
  • the containing groove it is convenient to fix and package the components.
  • FIG. 7 is another cross-sectional view of the main body of the wavelength division multiplexing device taken along the plane where the top surface and the central axis of the fiber entrance side are located:
  • AB is optimized as AA1A2A3A4B BC is optimized to BB1B2B3B4C.
  • the area enclosed by A1A2A3A4 is the accommodating slot for preventing the optical interface
  • the area enclosed by B1B2B3B4 is the accommodating slot for preventing the emitting element, the receiving element, and the backlight detector.
  • the depth and width of the accommodating groove are determined by the size of the components arranged therein, and it is ensured that the optical path in the optical lens is not affected.
  • AA1, A4B, BB2, and B4C retain a certain thickness to ensure the mechanical strength of the side wall of the containing groove and make it difficult to break.
  • the specific thickness is determined by factors such as the size of the wavelength division multiplexing device, packaging process, and material.
  • the A1A4 and B1B4 surfaces can be sealed to seal the corresponding components in the containing groove.
  • the optical fiber port of the optical interface is set on the A1A4 sealing cover plate and connected with the external optical fiber.
  • the sealed cavity can be evacuated or other closed processes can be used to reduce internal environmental factors such as air and impurities that affect the optical path, and further increase the accuracy of the optical path.
  • the accommodating groove enclosed by the optical lenses A1A2A3A4 and B1B2B3B4 can also be changed to accommodating grooves of other shapes according to the requirements of the components and the closed structure.
  • the figure 8 shows the multilayer stepped groove.
  • the shape of the accommodating groove includes a step for installing the peripheral circuit of the wavelength division multiplexing device, which can be used to install circuit components such as PCB boards and control chips.
  • This design can make all the main components of the wavelength division multiplexing device enclosed in the wave Inside the main body of the wavelength division multiplexing device, the overall sealing and shape structure of the wavelength division multiplexing device are further optimized.
  • the shape of the receiving groove can also be adjusted according to actual needs, so that it can match the shape and structure of the installation surface of the wavelength division multiplexing device, and reserve the height of the supporting foot.
  • the main body of the wavelength division multiplexing device is provided with a receiving groove for sealing.
  • the overall structure is more compact, which can provide higher airtightness and stability, and make the entire wavelength division multiplexing device structure It occupies a smaller space, has a more regular shape, is easier to install, and has fewer failures caused by external environmental factors such as shaking, which facilitates the installation and use of the wavelength division multiplexing device.
  • Example 6
  • the optical interface is specifically a wide band multi-mode fiber (Wide Band Multi-Mode Fiber, abbreviated as WBMMF).
  • WBMMF Wideband Multi-Mode Fiber
  • Broadband multi-mode fiber draws on the wavelength division multiplexing technology of traditional single-mode fiber, and can transmit n different signals simultaneously in a multi-mode fiber, which improves the transmission bandwidth.
  • the number of multimode optical fibers used for transmission is reduced to 1/n before, which reduces the cost of optical fiber transmission and also reduces the probability of communication errors caused by fiber failure.
  • the value of n is currently 2, 4, 8 and so on.
  • the optical lens provided in this embodiment can be provided with more than two light splitting grooves according to the number of signals on the multimode fiber.
  • n spectroscopic grooves for different wavelengths they can be The transmission and analysis of n channels of optical signals with different wavelengths meets the demand for simultaneous transmission of multiple channels of optical communication data through broadband multimode fibers.
  • Fig. 9 is a partial top view of Fig. 1.
  • the wavelength division multiplexing device is provided with 4 light splitting slots, and each light splitting slot position corresponds to a receiving/transmitting element capable of processing optical signals of corresponding wavelengths, forming a 4-way optical signal receiving/sending system.
  • the number and position of the beam splitter and receiving/sending components can be adjusted according to actual needs.
  • the emitting element is specifically a vertical cavity surface laser (Vertical Cavity Surface Emitting Laser, abbreviated as VCSEL).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • this type of laser is applied to a wavelength division multiplexing device. It is easier to achieve two-dimensional plane and optoelectronic integration, easy to achieve effective integration with optical fiber, can achieve high-speed modulation, can be applied to long-distance and high-speed optical fiber communication systems, the active area size is extremely small, but high packaging density and low Threshold current, wide operating temperature and current range, low cost and other advantages.
  • Using a surface emitting laser can further reduce the size of the wavelength division multiplexing device, reduce the cost of the wavelength division multiplexing device, and increase the transmission distance and communication distance of the optical module where the wavelength division multiplexing device is located.
  • the wavelength division multiplexing device has a more compact structure, a smaller volume, a simpler installation, a more stable and stable structure.
  • the versatility is stronger, thereby improving the transmission performance of optical communication, reducing the cost of optical communication, and providing an efficient and reliable wavelength division multiplexing device for optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种用于光模块的波分复用装置和方法。其中波分复用装置包括至少两个分光槽(F1F2F3F4,E1E2E3E4),分光槽(F1F2F3F4,E1E2E3E4)选择性的对指定波长的光信号全反射或全透射;分光槽(F1F2F3F4,E1E2E3E4)对应光路输入口和光路输出口位置,配置为传输相应位置设置的发射元件(I3)或接收元件(I2)的光信号。通过在波分复用装置主体中设置分光槽(F1F2F3F4,E1E2E3E4),以及相应光学元件和电路元件的配合使用,构建特定的光路系统,使波分复用装置能够完成不同波长光信号的分复用,在一根光纤上完成多路信号的收发,并通过对波分复用装置主体形状和结构的设计,提高了波分复用装置的集成度,降低了光路安装难度,保证了光通信的传输质量,降低光通信的成本。

Description

一种用于光模块的波分复用装置和方法 相关申请的交叉引用
本申请基于申请号为 201910141737.8、 申请日为 2019年 02月 26 日的 中国专利申请提出, 并要求该中国专利申请的优先权, 该中国专利申请的 全部内容在此引入本申请作为参考。 技术领域
本申请涉及光通信领域, 特别是涉及一种用于光模块的波分复用装置 和方法。 背景技术
近年来, 数据信息需求大量增长, 光模块在数据通信中的应用越来越 广泛, 对光模块的传输性能、 稳定性、 易用性、 成本等都提出了较高要求。 为了提高通信带宽, 降低通信成本, 目前在短距离数据传输中, 尤其是数 据中心中广泛使用多模光纤进行数据传输, 从而要求光模块具备发送及传 输多路不同波长光信号的能力。
为了解决光模块的分光复用问题, 目前通常借鉴单模光纤的波分复用 技术, 在多模光模块中加入波分复用装置, 使用平面分光镜组对多路不同 波长光信号进行分光复用。 但是, 分光复用光路系统中光学器件较多, 且 光路精确度要求较高, 安装调试都较为繁琐困难, 并且安装使用过程中易 受损, 导致用于光模块的波分复用装置的集成度、 稳定性及通用性较低。
鉴于此, 如何克服该现有技术所存在的缺陷, 使用集成度更高的光路 系统解决分光片安装困难及针对不同波长的通用性问题, 提供更易用、 更 稳定、 成本更低的用于光模块的波分复用装置, 是本技术领域亟待解决的 问题。 发明内容
针对现有技术的以上缺陷或改进需求, 本申请解决了光模块中波分复 用功能的实现及集成问题。
本申请实施例采用如下技术方案:
第一方面, 本申请提供了一种用于光模块的波分复用装置, 所述波分 复用装置设置至少两个分光槽, 所述分光槽选择性的对指定波长的光信号 全反射或全透射; 所述分光槽对应光路输入口和 /或光路输出口位置, 用于 传输相应位置对应设置的发射元件和 /或接收元件的光信号; 其中, 所述光 路输入口用于将光信号输入到波分复用装置中; 所述光路输出口用于将光 信号从波分复用装置中输出。
上述方案中, 光路输入口的分光槽将入射光信号分为反射光与透射光, 所述透射光通过相应光路输出口射入背光探测器。
上述方案中, 还包括反射面组, 所述透射光经反射面组反射后通过相 应光路输出口射入背光探测器。
上述方案中, 还包含至少两个发射元件, 构成波分复用发射装置; 或, 还包含至少两个接收元件, 构波分复用接收装置; 或, 还包含至少一个发 射元件和至少一个接收元件, 构成波分复用收发装置; 所述任两个元件发 射或接收的光信号波长不同, 且所处理的光信号波长对应相应位置分光槽 传输的光信号波长。
上述方案中, 所述波分复用装置对应光路输入输出口的面设置容纳槽, 配置为放置发射元件、 接收元件和 /或背光探测器。
上述方案中, 所述容纳槽为多层同心阶梯状, 其中内层阶梯容纳发射 元件、 接收元件和 /或背光探测器, 外层阶梯容纳相关外围电路。
上述方案中, 所述容纳槽开口密闭, 所述发射元件、 接收元件和 /或背 光探测器, 及相关外围电路封装在容纳槽内。
上述方案中, 所述分光槽中设置有分光片或半透膜, 所述分光片或半 透膜选择性的对指定波长的光信号全反射或全透射。
上述方案中, 所述分光槽下半部分与所述分光片形状匹配, 上半部分 为四棱台, 四棱台下底面为所述分光槽插入口, 四棱台的上底面与分光槽 下半部分相连。
另一方面, 本申请提供了一种光模块的波分复用方法, 应用于权利要 求上述用于光模块的波分复用装置, 对光纤中所传输的光信号进行分复用。
与现有技术相比, 本申请实施例的有益效果在于: 通过在波分复用装 置主体中设置分光槽, 以及相应光学元件和电路元件的配合使用, 构建特 定的光路系统, 使波分复用装置能够完成不同波长光信号的分复用, 在一 根光纤上完成多路信号的收发, 并通过对波分复用装置主体形状和结构的 设计, 提高了波分复用装置的集成度, 降低了光路安装难度, 保证了光通 信的传输质量, 降低光通信的成本。
本申请提供了一种用于光模块的波分复用装置和方法, 其目的在于提 供一种新的波分复用装置集成装置及方法, 对所在光模块中多路不同波长 的光信号进行分复用, 提高通信效率、 降低通信成本。 附图说明 为了更清楚地说明本申请实施例的技术方案, 下面将对本申请实施例 中所需要使用的附图作简单地介绍。 显而易见地, 下面所描述的附图仅仅 是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1 是本申请实施例提供的一种用于光模块的波分复用装置结构示意 图;
图 2 是本申请实施例提供的一种用于光模块的波分复用装置结构示意 图;
图 3 是本申请实施例提供的另一种用于光模块的波分复用装置结构示 意图;
图 4是本申请实施例提供的另一种用于光模块的波分复用装置结构示 意图;
图 5 是本申请实施例提供的一种用于光模块的波分复用装置中局部结 构示意图;
图 6是本申请实施例提供的另一种用于光模块的波分复用装置结构示 意图;
图 7 是本申请实施例提供的另一种用于光模块的波分复用装置结构示 意图;
图 8 本申请实施例提供的另一种用于光模块的波分复用装置结构示意 图;
图 9 本申请实施例提供的另一种用于光模块的波分复用装置结构示意 图。 具体实施方式
为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图 及实施例, 对本申请进行进一步详细说明。 应当理解, 此处所描述的具体 实施例仅仅用以解释本申请, 并不用于限定本申请。
本申请是一种特定功能系统的体系结构, 因此在具体实施例中主要说 明各结构模组的功能逻辑关系, 并不对具体软件和硬件实施方式做限定。
此外, 下面所描述的本申请各个实施方式中所涉及到的技术特征只要 彼此之间未构成冲突就可以相互组合。 下面就参考附图和实施例结合来详 细说明本申请。
实施例 1: 随着数据信息需求的增长, 用于信号互联的光模块要求也越来越高, 如何提高光模块的传输性能, 降低光模块成本, 提高光模块的集成性和稳 定性是目前实际应用中亟待解决的问题。 对于传统的波分复用光路系统, 光学元件、 电路元件较多且集成度低, 使得生产调试都较为繁琐, 产品精 度和稳定性也受到影响。 为了解决前述问题, 本申请提供了一种用于光模 块的波分复用装置和方法, 通过对波分复用装置结构的优化设计, 提高了 波分复用装置的集成度、 稳定性和通用性, 便于波分复用装置的安装、 密 封、 替换等, 减少了因安装和密封问题导致的通信错误及故障, 并使得使 用该波分复用装置的光模块能够满足更多应用场景的需求。
下面结合图 1、图 2说明本申请用于光模块的波分复用装置的具体结构。 在本申请实施例中, 简单列举一种波分复用装置主体结构, 在具体实施中 也可根据实际情况, 利用相同的设计思路对光路系统各部件及各电路元件 的具体数量及位置进行调整。
在本实施例的某一具体应用场景中, 如图 1 所示为波分复用装置中波 分复用装置主体形状近似长方体, 主体材质为均勾全透光介质。
图 2为波分复用装置主体沿顶面和入纤侧面中轴线所在平面剖开后的 剖面图, 即沿图 1中轴线 A-A为分界线切开透镜后的一种简化结构及光路 示意图。 放置在安装平面上的面为底面, BC为底面剖线。 与底面相对的面 为顶面, DA为顶面剖线。 光接口的光射入面为入纤侧面, AB为入纤侧面 剖线。 与入纤侧面相对的面为第二侧面, CD为第二侧面剖线。 底面和顶面 大致平行, 入纤侧面和第二侧面大致平行。
E1E2E3E4和 F1F2F3F4为分光槽剖面。优选的, E1E2与 AE1夹角 135 度, E1E2、 E3E4、 F1F2、 F3F4 互相平行。 可根据需要设置多个对应不同 波长光信号的分光槽, 对多路不同波长的光信号进行分复用
分光槽 E1E2E3E4正对准直透镜 T2及接收元件 12, T2所在位置即波 分复用装置输出口, 对应分光槽 E1E2E3E4波长的光信号经折射通过 T2被 12接收。
分光槽 F1F2F3F4正对准直透镜 T3及发射元件 13, T3所在位置即波分 复用装置输入口, 对应分光槽 F1F2F3F4波长的光信号通过 T2, 经折射, 再通过 E1E2E3E4透射, 再经准直透镜 T1 , 发送至光接口 II。
本实施例所提供的方案, 通过在波分复用装置中设置多个对应不同波 长光信号的分光槽, 对不同波长的光信号进行分波或合波, 使波分复用装 置所在光模块可分别接收同一根光纤中传输的多路不同波长的光信号, 或 向同一根光纤中发送多路不同波长的光信号, 或同时收发多路不同波长的 光信号, 实现波分复用。
并且, 由于波分复用装置主体为均勾全透光介质, 所需处理的不同波 长光信号都可视为无损直线传输, 并集成了分光槽及光路输入口和光路输 出口所需使用的准直透镜, 将波分复用装置所需光路系统尽可能的集成到 同一装配组件中, 减少了光路系统安装调试的难度, 减少光路传输中因空 气等因素导致的误差, 提高了光路稳定性及传输质量。 实施例 2:
在本实施例的某些具体应用场景中, 波分复用装置主体可配合光学元 件及电路元件组成特定光路, 完成信号收发及波分复用功能。
在本申请实施例中, 简单列举一种典型的波分复用装置光路结构, 在 具体实施中也可根据实际情况, 利用相同的设计思路对光路系统各部件及 各电路元件的具体数量及位置进行调整。 结合图 2说明如下:
以波分复用收发装置的应用场景为例: 光路中存在一个发射元件 12及 一个接收元件 13, 发射元件配置为将光信号发送入波分复用装置, 接收元 件配置为接收自波分复用装置中传出的光信号。
接收光信号时, 波长 wl光信号 L1由光接口 II 出射, 经准直透镜 T1 准直, 到达分光槽 Ml , Ml 对 L1全反射, L1 经反射后通过准直透镜 T2 准直, 射入接收元件 12。
发送光信号时, 波长 w2的光信号 L2由发射元件 13出射, 经准直透镜 T3准直后, 到达分光槽 M2, M2对 L2反射, L2经反射后到达 Ml , Ml 对 L2全透射, 经透射后 L2与 L1合束, 经 T1准直后, 射入 II。
波长 wl和 w2的两束光信号 L1和 L2经上述装置分光复用, 能够在同 一条光纤上传输, 减少了用于传输的光纤数量, 降低了传输的成本和故障 率。
在本实施例的实际应用中, 波分复用装置还可用于多路发送或多路接 收, 列举几个典型的应用场景如下, 在实际应用中, 可根据需要, 在不冲 突的情况下, 对本实施例中所描述的光路系统进行组合、 拓展使用, 构成 多路收发波分复用装置:
( 1 ) 波分复用发射装置。 如图 3 , 波长 wl的光信号 L4由对应 T2的 发射元件 14出射, 经 T2准直后, 到达 Ml , Ml对 L4反射, L4经反射后 通过 T1射入 II。 波长 w2的光信号 L2由发射元件 13出射, 经 T3准直后, 到达 M2, M2对 L2反射, L2经反射后到达 Ml , Ml对 L2全透射, 经透 射后 L2与 L1合束, 经 T1准直后, 射入 II。
( 2 ) 波分复用接收装置。 如图 4, 波长 wl的光信号 L1 由 II 出射, 经 T1准直,到达分光片 Ml ,经 Ml反射后通过 T2准直,射入接收元件 12。 波长 w2的光信号 L5由 II 出射, 经 T1准直, 到达分光片 Ml , Ml对 L5 全透射,经透射后 L5到达 M2, M2对 L5全反射,经反射后 L5经 T3准直, 射入接收元件 15。
本实施例中, 通过不同的收发器件及光路组合, 实现了同一结构波分 复用装置的不同功能拓展, 使其具备更高的通用性, 应用场景更加广泛。 实施例 3: 在波分复用装置的实际使用中, 可在分光槽中放置分光片, 分光片可 对不同波长激光进行透射或反射, 分光片表面可镀膜。 分光片尺寸较小, 厚度通常为 0.1mm左右, 安装和位置校准都不便, 且易被损坏。 本申请实 施例以波分复用装置主体作为分光片基座, 利用分光槽确定分光片安装位 置, 提高了分光片安装过程的便利程度和位置精确度, 同时还可防止各种 因素导致的分光片位置改变, 保证了光路的精确性。 并且, 由于波分复用 装置中的光信号所传输的光路主要都在内部均勾介质中, 还可防止因空气 温度或杂质导致光信号传输路径改变或光功率衰减, 减少传输信号错误, 提高了波分复用装置所在光模块的传输可靠性。
除此之外, 在某些应用场景中, 分光槽也可以不使用分光片, 而是使 用半透膜、 棱镜、 光栅、 光纤分光器、 拉锥耦合器等其它具备分离特定波 长光信号的光学器件。 使用不同的光学器件可使波分复用装置所在光模块 的应用场景更广泛, 针对特殊应用场合满足实际使用需求。
在本实施例的某些具体实施方案中, 分光槽形状可做进一步优化, 如 图 5所示为某具体应用场景下的典型结构, 图 2中 E1E2E3E4所围成的分 光槽形状可优化为 E1E2E3E5E6所围成的形状。 其中 E1E2、 E2E3面不变, E3E4面分成上下两段, 下段 E3E5与 E1E2平行, 长度超过分光片顶端, 用于固定分光片, 上段为 E5E6 , 开口处 E1E6长度大于图 2中 E1E4长度, 扩大分光槽开口方便安装。 优选的, E5E6与顶面 E5G夹角 90度。 安装分 光片时, 只需将分光片沿箭头方向推入即可简单准确的完成安装。 这一结 构不仅便于分光片的安装, 防止分光片安装过程中出现碰撞损坏, 同时也 固定了分光片的位置, 在安装时不需要额外对分光片位置进行校准, 简化 了波分复用装置的组装工艺, 提高了波分复用装置的组装精度。
进一步的, 为了保证公差范围内的分光片都能放入分光槽中, 分光槽 尺寸需略大于分光片尺寸, 导致分光片和波分复用装置主体之间出现空气 层, 影响信号传输路径及光功率, 严重时会产生杂散光影响光信号传输。 为了保证光信号传输的准确性和稳定性, 可在透镜本体和分光片间填充入 折射率匹胶, 使分光片与透镜本体之间紧密贴合。 这种方式既能粘附固定 分光片, 又为分光片周围提供了缓冲层防止了分光片和透镜本体碰撞摩擦 产生损坏, 还有效的解决了间隙空气层对光信号传输产生的不良影响。
使用一体成型透镜和分光片组合, 既将必要的光学器件如准直透镜都 集成在同一光学器件上, 又可根据传输光信号波长的不同插入不同透光度 的分光片, 又可在分光片出现损坏时进行替换。 这一设计既简化了波分复 用装置的组装, 保证了分光片和准直透镜的位置精度, 又保留了分光片插 拔的灵活性, 保证了波分复用装置所在光模块的通用性, 使光模块能够在 尽可能不改变结构的基础上应用在更多场合。 实施例 4:
波分复用装置中使用垂直激光器时, 通常需要在激光器下方设置凸台, 以安装背光探测元件确认发射元件发出的光信号是否功率正确, 背光探测 元件直接接收发射元件发出的光, 并对接收到的光量进行判断。 这一结构 会导致波分复用装置结构设计时必须在发射元件附近特定位置保留足够的 空间安装凸台及背光探测元件, 导致波分复用装置结构形状无法达到最优 设计。
本申请实施例提供了一种用于光模块的波分复用装置, 通过优化光路 系统, 增加背光监测光路, 将发射元件发出的光信号传导至更便于设置背 光监测器的位置, 使波分复用装置结构更紧凑, 避免了因凸台结构而出现 的波分复用装置外形不规则、 体积过大、 安装不便等问题。
在某些具体实施方式中, 如图 6所示为波分复用装置中波分复用装 置主体沿顶面和入纤侧面中轴线所在平面剖开后的另一种剖面图, 本实施 例仅描述一种典型的应用实例, 在具体实施中也可根据实际情况, 利用相 同的设计思路对光路系统中光学元件的数量位置等进行调整: 图 6中 AB、 BC与图 2相同, 图 2中 CD、 DA优化为 CD1D2D3D4A。 CD1 为第二侧面中轴线, D2D3、 D4A为顶面中轴线, D3D4、 D1D2 为反 射面。 优选的, D3D4与 D4A夹角 135度, D1D2与 D2D3夹角 135度。
发送光信号时, 波长 w2的光信号 L2由发射元件 13出射, 经准直透镜
T3准直后, 穿过光透镜本体到达分光片 M2, M2对 L2部分反射部分透射。 L2经 M2反射后的反射光 L21到达 Ml , Ml对 L21全透射, 经透射后 L21 与 L1合束, 经 T1准直后, 射入 II。 L2经 M2透射后的透射光 L22到达第 一反射面, 第一反射面对波长 w2的 L22全反射, L22经反射后到达第二反 射面, 第二反射面对波长 w2的 L22全反射, L22经再次反射后经准直透镜 T4准直, 射入背光探测器 14。
在本实施例中, 发射元件 13附近不需要特别预留空间放置背光感应器 件, 而是将出射光信号 L2通过 M2、 第一反射面、 第二反射面组成的背光 监测光路系统进行透射和反射, 最终到达设置在其它位置的背光探测器 14, 由 14对光强度进行监测。
本实施例仅列举了一种典型的背光监测光路结构, 也可使用其它光路 结构将发射元件出射光引导至其它便于设置背光探测器的位置, 如将背光 探测器设置于平行此剖面的侧面以外, 或顶面以上等位置。 优选的, 背光 探测光路, 及此光路所包含的发射元件及背光探测器, 位于波分复用装置 整体光路的最边缘, 如最靠近第二侧面的位置。
在本实施例的某些应用场景中,也可在将 13和 14连入自适应控制电路 中, 通过主控芯片判断 14接收到的光功率判断 13出光功率是否正确, 如 13 出光功率不正确, 主控芯片可自适应调整 13的出光功率。 主控芯片可使用 单片机等实现。
波分复用装置中增加出射光的背光监测光路, 虽稍微增加了光透镜的 结构复杂度, 但能够使整个波分复用装置的结构更加合理紧凑, 避免了原 结构中必须在发射元件附近设置背光监测元件而导致的元件形状和结构限 制, 使波分复用装置结构设计更灵活合理, 从整体上优化了波分复用装置 的形状和结构, 避免了因背光监测元件位置导致的波分复用装置形状不规 则、 电路连接复杂等问题。 同时, 增加背光监测光路, 可为波分复用装置 中的其它功能元件, 如主控芯片等提供更多空间和布局方案, 进一步增加 了波分复用装置功能的可扩展性, 减少了增加波分复用装置功能时的设计 障碍。 实施例 5:
在实际应用中, 波分复用装置中包含光接口、发射元件、接收元件、 光路系统等部件, 及附属的电路元件等部件, 这些部件都易损伤, 并对于 防水、 防尘都有一定要求。 同时, 光发射元件、 接收元件等与光透镜间都 存在一定间隙, 若间隙中杂质过多会导致光路偏移、 光能量损失、 杂散光 串扰等问题。
本实施例提供了一种用于光模块的波分复用装置, 通过改变波分复用 装置主体形状, 将光接口、 发射元件、 接收元件、 背光监测元件等置于波 分复用装置主体的容纳槽内, 便于元件的固定及封装。
在本实施例的某些具体实施方式中, 图 7 为波分复用装置中主体沿顶 面和入纤侧面中轴线所在平面剖开后的另一种剖面图: 图中 AB 优化为 AA1A2A3A4B , BC优化为 BB1B2B3B4C。 其中 A1A2A3A4所围成区域为 防止光接口的容纳槽, B1B2B3B4 围成区域为防止发射元件、 接收元件、 背光探测器容纳槽。 容纳槽深度和宽度由设置在其中的元件尺寸决定, 并 保证不影响光透镜中光路进行。 AA1、 A4B、 BB2、 B4C保留一定厚度, 保 证容纳槽侧壁的机械强度, 使其不易破损。 具体厚度由波分复用装置大小、 封装工艺、 材质等因素决定。 在本实施例的某些应用场景中, A1A4、 B1B4 面可进行密封, 将相应 元件密封在容纳槽之内。 其中光接口的光纤端口设置在 A1A4密封盖板上, 与外部光纤连接。 密封腔内可抽真空或使用其它封闭工艺, 使内部影响光 路的环境因素如空气、 杂质等更少, 进一步增加光路的准确性。
在本实施例的某些应用场景中, 光透镜 A1A2A3A4、 B1B2B3B4所围 成的容纳槽还可根据元件部件及封闭结构的需要变化为其它形状的容纳 槽, 如在某些应用场景中, 如图 8所示的多层阶梯状凹槽。 该容纳槽形状 包含了一级用于安装波分复用装置外围电路的阶梯, 可用于安装 PCB版、 控制芯片等电路元件, 这一设计可使所有波分复用装置主要部件都封闭在 波分复用装置主体内部, 进一步优化波分复用装置整体的密封性及形状结 构。 也可根据实际需要调整容纳槽形状, 使其能够完成与波分复用装置安 装表面形状结构匹配、 预留支撑脚高度等功能。
在波分复用装置主体中设置容纳槽进行密封, 相对于在波分复用装置 外部增加外壳, 整体结构更加紧凑, 能够提供更高的密闭性及稳定性, 使 整个波分复用装置结构占用空间更小、 形状更加规则、 安装更加简便、 因 晃动等外界环境因素导致的故障更少, 便于波分复用装置的安装及使用。 实施例 6:
在本实施例的某些应用场景中, 光接口具体为宽带多模光纤 (Wide Band Multi-Mode Fiber, 缩写为 WBMMF)。 宽带多模光纤借鉴了传统单模 光纤的波分复用技术, 能够在一根多模光纤中同时传输 n路不同信号, 提 高了传输带宽。 同时, 将用于传输的多模光纤数降为之前的 1/n, 降低了光 纤传输的成本, 也降低了因光纤故障而导致的通信出错概率。 在实际应用 场景中, n值目前多为 2、 4、 8等。
在该应用场景下, 本实施例中提供的光透镜可根据多模光纤上的信号 数量设置多于 2个分光槽。 当存在 n个针对不同波长的分光槽时, 可同时 对 n路不同波长的光信号进行发送和解析, 满足了宽带多模光纤同时传输 多路光通信数据的需求。 图 9为图 1的部分俯视图, 波分复用装置中设置 4 个分光槽, 每一分光槽位置对应一个可处理相应波长光信号的收 /发元件, 组成 4路光信号收 /发系统。 分光槽及收 /发元件数量及位置可根据实际需要 进行调整。
在本实施例的某些应用场景中, 发射元件具体为垂直空腔表面激光器 ( Vertical Cavity Surface Emitting Laser, 缩写为 VCSEL ), 该类型激光器相 对于传统的边发射激光器, 应用于波分复用装置中是更易于实现二维平面 和光电集成, 易于实现与光纤的有效搞合, 可以实现高速调制, 能够应用 于长距离高速率的光纤通信系统, 有源区尺寸极小, 可是高封装密度和低 阈值电流, 工作温度和电流范围宽, 成本低等优点。 使用面发射激光器可 进一步减小波分复用装置尺寸, 降低波分复用装置成本, 提高波分复用装 置所在光模块传输距离及通信距离。 以上具体实施方式中, 通过对波分复用装置形状及结构的设计改进, 并辅助相应的光学及电子元件, 使得波分复用装置结构更紧凑、 体积更小、 安装更简便、 稳定性及通用性更强, 从而提高了光通信的传输性能, 降低 了光通信的成本, 为光通信提供了高效可靠的波分复用装置。

Claims

权利要求书
1、 一种用于光模块的波分复用装置, 所述波分复用装置设置至少两 个分光槽, 所述分光槽选择性的对指定波长的光信号全反射或全透射; 所述分光槽对应光路输入口和 /或光路输出口位置, 配置为传输相应 位置对应设置的发射元件和 /或接收元件的光信号; 其中, 所述光路输入 口配置为将光信号输入到波分复用装置中; 所述光路输出口配置为将光 信号从波分复用装置中输出。
2、 根据权利要求 1所述用于光模块的波分复用装置, 其中, 对应光 路输入口的分光槽将入射光信号分为反射光与透射光, 所述透射光通过 相应光路输出口射入背光探测器。
3、 根据权利要求 2所述用于光模块的波分复用装置, 其中, 所述用 于光模块的波分复用装置还包括反射面组, 所述透射光经反射面组反射 后通过相应光路输出口射入背光探测器。
4、 根据权利要求 1所述用于光模块的波分复用装置, 其中, 所述用 于光模块的波分复用装置还包含至少两个发射元件, 构成波分复用发射 装置;
或, 还包含至少两个接收元件, 构波分复用接收装置;
或, 还包含至少一个发射元件和至少一个接收元件, 构成波分复用 收发装置;
所述任两个元件发射或接收的光信号波长不同, 且所处理的光信号 波长对应相应位置分光槽传输的光信号波长。
5、 根据权利要求 4所述用于光模块的波分复用装置, 其中, 所述波 分复用装置对应光路输入输出口的面设置容纳槽, 配置为放置发射元件、 接收元件和 /或背光探测器。
6、 根据权利要求 5所述光模块的波分复用装置, 其中, 所述容纳槽 为多层同心阶梯状, 其中内层阶梯容纳发射元件、 接收元件和 /或背光探 测器, 外层阶梯容纳相关外围电路。
7、 根据权利要求 6所述用于光模块的波分复用装置, 其中, 所述容 纳槽开口密闭, 所述发射元件、 接收元件和 /或背光探测器, 及相关外围 电路封装在容纳槽内。
8、 根据权利要求 1-7中任一项所述用于光模块的波分复用装置, 其 中, 所述分光槽中设置有分光片或半透膜, 所述分光片或半透膜选择性 的对指定波长的光信号全反射或全透射。
9、 根据权利要求 8所述用于光模块的波分复用装置, 其中, 所述分 光槽下半部分与所述分光片形状匹配, 上半部分为四棱台, 四棱台下底 面为所述分光槽插入口, 四棱台的上底面与分光槽下半部分相连。
10、一种光模块的波分复用方法,应用于权利要求 1-9中任一项所述 用于光模块的波分复用装置, 对光纤中所传输的光信号进行波分复用。
PCT/CN2019/129740 2019-02-26 2019-12-30 一种用于光模块的波分复用装置和方法 WO2020173215A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910141737.8 2019-02-26
CN201910141737.8A CN109814223A (zh) 2019-02-26 2019-02-26 一种用于光模块的波分复用装置和方法

Publications (1)

Publication Number Publication Date
WO2020173215A1 true WO2020173215A1 (zh) 2020-09-03

Family

ID=66607392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129740 WO2020173215A1 (zh) 2019-02-26 2019-12-30 一种用于光模块的波分复用装置和方法

Country Status (2)

Country Link
CN (1) CN109814223A (zh)
WO (1) WO2020173215A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814223A (zh) * 2019-02-26 2019-05-28 武汉电信器件有限公司 一种用于光模块的波分复用装置和方法
CN110912610A (zh) * 2019-10-29 2020-03-24 中航海信光电技术有限公司 波分复用收发一体光模块、系统及实现方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153433A (zh) * 1996-10-11 1997-07-02 北京大学 波分复用光纤通信波长控制方法和系统
JP2005140960A (ja) * 2003-11-06 2005-06-02 Fujikura Ltd 光デバイス
CN204405900U (zh) * 2014-12-25 2015-06-17 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN106950658A (zh) * 2017-04-26 2017-07-14 华为技术有限公司 光收发组件
CN108732684A (zh) * 2018-07-28 2018-11-02 福建天蕊光电有限公司 一种单纤双向多波长光收发组件
CN109814223A (zh) * 2019-02-26 2019-05-28 武汉电信器件有限公司 一种用于光模块的波分复用装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784701B2 (ja) * 2001-11-20 2006-06-14 株式会社日立製作所 光回路部材および光トランシーバ
CN203084244U (zh) * 2012-12-28 2013-07-24 武汉电信器件有限公司 并行传输的光组件
CN103336340B (zh) * 2013-07-17 2016-05-11 苏州旭创科技有限公司 实现分束能量控制的光组件
CN103984067B (zh) * 2014-06-03 2016-08-17 苏州洛合镭信光电科技有限公司 实现多通道光分束的光器件
CN204790091U (zh) * 2015-07-14 2015-11-18 深圳市源度通信有限公司 光发射组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153433A (zh) * 1996-10-11 1997-07-02 北京大学 波分复用光纤通信波长控制方法和系统
JP2005140960A (ja) * 2003-11-06 2005-06-02 Fujikura Ltd 光デバイス
CN204405900U (zh) * 2014-12-25 2015-06-17 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN106950658A (zh) * 2017-04-26 2017-07-14 华为技术有限公司 光收发组件
CN108732684A (zh) * 2018-07-28 2018-11-02 福建天蕊光电有限公司 一种单纤双向多波长光收发组件
CN109814223A (zh) * 2019-02-26 2019-05-28 武汉电信器件有限公司 一种用于光模块的波分复用装置和方法

Also Published As

Publication number Publication date
CN109814223A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
US7024074B2 (en) System and method for packaging a monitor photodiode with a laser in an optical subassembly
JP4983703B2 (ja) 光伝送システム
US8380075B2 (en) Optical transceiver module
US7702197B2 (en) SOA array optical module
CN107966773B (zh) 光发射次模块及光模块
EP4131801A1 (en) Multi-channel light-receiving module
US20140226988A1 (en) Bidirectional optical data communications module having reflective lens
CN103163594A (zh) 具有多个光源的光学模块
CN109613654B (zh) 多通道并行波分复用/解复用分光组件及其光器件
EP2592454B1 (en) Optical module
WO2018157767A1 (zh) 一种多波长共存光模块
WO2020173215A1 (zh) 一种用于光模块的波分复用装置和方法
US20060013541A1 (en) Optoelectronic module
EP2478401A1 (en) Optoelectronic device for bidirectionally transporting information through optical fibers and method of manufacturing such a device
CN109375315A (zh) 一种四光路波分复用器件
CN212160161U (zh) 光模块
CN116931199A (zh) 光器件及光收发一体化方法
WO2020029739A1 (zh) 光模块
US20230021871A1 (en) Planar bidirectional optical coupler for wavelength division multiplexing
CN113759473B (zh) 一种收发光组件、电子设备和光通信系统
CN112198592B (zh) 一种光学系统
CN210666094U (zh) 一种多波长分波的接收模组
WO2019087872A1 (ja) 光レセプタクル、光モジュールおよび光伝送器
CN107250849B (zh) 集成棱镜和配置集成棱镜的方法
CN220121030U (zh) 一种小型化多通道单边出纤的ccwdm模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917388

Country of ref document: EP

Kind code of ref document: A1