WO2020029739A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2020029739A1
WO2020029739A1 PCT/CN2019/095453 CN2019095453W WO2020029739A1 WO 2020029739 A1 WO2020029739 A1 WO 2020029739A1 CN 2019095453 W CN2019095453 W CN 2019095453W WO 2020029739 A1 WO2020029739 A1 WO 2020029739A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
signal
pcb
prism
Prior art date
Application number
PCT/CN2019/095453
Other languages
English (en)
French (fr)
Inventor
李丹
杜光超
唐永正
傅钦豪
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810898143.7A external-priority patent/CN108873197B/zh
Priority claimed from CN201810905077.1A external-priority patent/CN108919435A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020029739A1 publication Critical patent/WO2020029739A1/zh
Priority to US16/911,897 priority Critical patent/US11616575B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0477Prisms, wedges
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present disclosure relates to an optical module.
  • an optical module is an important device for achieving photoelectric conversion.
  • the optical module includes a receiver, an optical subassembly, a transmitter, an optical subassembly, and a PCB (printed circuit board).
  • the light receiver and the light transmitter can be independently arranged on the PCB, and an electronic circuit is provided on the PCB.
  • the light receiver and the light transmitter are electrically connected to the electronic circuit on the PCB.
  • an optical module may include:
  • a light receiving adapter and a light emitting adapter are provided on one side of the housing,
  • the casing is provided with:
  • a laser array electrically connected to the upper surface of the PCB and configured to convert an electrical signal into a first multi-path optical signal
  • An optical multiplexer the first multi-path optical signal emitted by the laser array is synthesized by the optical multiplexer, and transmitted through the optical transmission adapter;
  • a first displacement prism configured to propagate a light signal from the light receiving adapter toward a lower surface of the PCB
  • An optical demultiplexer configured to divide an optical signal from the first displacement prism into a second multiplex optical signal
  • a reflecting surface configured to reflect a second multi-path optical signal from the optical demultiplexer to an optical receiver array
  • the light receiver array is located on a lower surface of the PCB.
  • an optical module is provided, and the optical module may include:
  • a housing, one end of the ceramic substrate is located inside the housing, and the other end is located outside the housing;
  • a light receiving adapter and a light emitting adapter are provided on one side of the housing,
  • the casing is provided with:
  • a laser array located on the upper surface of the ceramic substrate and configured to convert an electrical signal into a first multi-path optical signal
  • An optical multiplexer wherein the first multi-channel optical signals emitted by the laser array are combined into one channel by the optical multiplexer and transmitted through the optical transmission adapter;
  • a first displacement prism configured to propagate a light signal from the light receiving adapter toward a lower surface of the ceramic substrate
  • An optical demultiplexer configured to divide an optical signal from the first displacement prism into a second multiplex optical signal
  • a reflecting surface configured to reflect a second multiplexed optical signal from the optical demultiplexer toward an optical receiver array
  • the receiver array is located on a lower surface of the ceramic substrate
  • a flexible circuit board, the other end of the ceramic substrate and the PCB are electrically connected through the flexible circuit board.
  • FIG. 1 illustrates a partial structural diagram of an optical module according to some embodiments.
  • FIG. 2 illustrates a structural diagram of a housing for accommodating a light receiver and a light transmitter according to some embodiments.
  • FIG. 3 is a cross-sectional view showing a partial structure of an optical module according to some embodiments.
  • FIG. 4 illustrates a top view of a partial structure of an optical module according to some embodiments.
  • FIG. 5 illustrates a bottom view of a partial structure of an optical module according to some embodiments.
  • FIG. 6 shows a partial enlarged view of a light receiver end of an optical module according to some embodiments.
  • FIG. 7 shows a schematic diagram of an optical path when an optical module receives an optical signal according to some embodiments.
  • FIG. 8 illustrates a cross-sectional view of a partial structure of an optical module according to some embodiments.
  • FIG. 9 shows a schematic explosion diagram of an optical module according to some embodiments.
  • FIG. 10 illustrates a partial structure diagram of a light receiver portion of an optical module according to some embodiments.
  • a first housing 110 and a second housing 120 are respectively provided for the light receiver and the light transmitter.
  • Components in the light receiver are arranged in the first housing 110 and components in the light transmitter.
  • the first case 110 and the second case 120 may protect components in the light receiver and the light transmitter from being damaged.
  • the corresponding spaces inside the first casing 110 and the second casing 120 are relatively small, so it is relatively difficult to arrange the components of the light receiver and the light transmitter in the first casing 110 and the second casing 120, respectively.
  • the first case 110 and the second case 120 are replaced with one case 200.
  • a common arrangement area is provided, and the common arrangement area is divided into an area 210 and an area 220, wherein the area 210 and the area 220 may respectively arrange components of the light receiver and the light transmitter.
  • the space of the housing 200 is equivalent to the sum of the space of the first housing 110 and the space of the second housing 120, it is relatively easy to arrange the components of the light receiver and the light transmitter in the housing 200.
  • the housing 200 provided in FIG. 2 can make the arrangement of the components of the light receiver and the light transmitter easier, but because there is no isolation in the area where the components of the light receiver and the light transmitter are arranged, when the optical module is working, it is easy to cause Crosstalk occurs between the components of the optical receiver and the optical transmitter, which affects the normal operation of the optical module.
  • the components of the optical receiver and the optical transmitter are arranged in the same space, and the size of the optical module is restricted by industry standards. The horizontal dimension of the same space is limited. As the number of channels at the transmitting and receiving ends is increasing, , There is still not enough space to place the device.
  • the optical module includes a housing 1, a PCB 2, a light receiving adapter 3, and a light transmitting adapter 4.
  • One end of the PCB 2 is fixedly connected to the housing 1, and one side of the housing 1 is provided with a light receiving adapter 3 and a light emitting adapter 4.
  • the light receiving adapter 3 and the light emitting adapter 4 are respectively provided with corresponding adjusting sleeves.
  • the light receiving adapter 3 and the light emitting adapter 4 are respectively connected to one end of the corresponding adjusting sleeve through penetration welding, and the other end of the adjusting sleeve is fixed by bottom welding. It is provided on the casing 1.
  • the casing 1 is divided into two upper and lower layers.
  • a partition plate 12 is provided in the casing 1, and the partition plate and the casing can be integrally formed.
  • the partition plate 12 divides the space in the housing 1 into a first chamber and a second chamber, wherein a slot 20 is provided between one side of the first chamber and the partition plate 12, and one end of the PCB 2 is fixedly arranged on the card.
  • a channel 22 (as shown in FIG. 4) is provided at the other end of the partition plate 12 opposite to the card slot 20, and the channel 22 communicates with the first chamber and the second chamber.
  • the light-receiving adapter 3 and the light-emitting adapter 4 are arranged at the same height at positions of the housing 1 corresponding to the first cavity. It should be noted that, in the embodiment of the present disclosure, only one end of the PCB 2 is embedded in the casing 1, and the width of one end of the PCB 2 embedded in the casing 1 is less than or equal to the width of the casing 1.
  • the laser array 5 and the optical multiplexer 6 are disposed in the first chamber, and the laser array 5 and the optical multiplexer 6 are fixedly disposed on the partition plate 12.
  • the electrical signal from the user end is transmitted to the laser array 5 through the electronic circuit on the PCB 2.
  • the laser array 5 converts the transmitted electrical signal into an optical signal, which is focused by the transmitting lens in the laser array 5 and enters the optical multiplexer 6, Finally, the multiple optical signals emitted by the laser array 5 are combined into one channel by the optical multiplexer 6 and transmitted through the optical transmission adapter 4.
  • the optical module further includes a first displacement prism 8 and an optical demultiplexer 9.
  • the displacement prism 8 is fixedly disposed in the channel 22 and is used for transmitting the optical signal from the light receiving adapter 3 to the lower surface of the PCB 2. Since the optical demultiplexer 9 is disposed in the second chamber corresponding to the lower surface area of the PCB 2, and the multiple optical signals transmitted by the light receiving adapter 3 are incident in parallel to the corresponding area on the upper surface of the PCB 2, the directions of the optical signals are The upper surface of the PCB is parallel. In this way, the optical signals transmitted by the light receiving adapter 3 cannot be directly transmitted to the optical demultiplexer 9. Through the first displacement prism 8, the optical signal from the light receiving adapter 3 is propagated toward the lower surface of the PCB 2.
  • the light incident surface of the first displacement prism 8 corresponds to the light exit end of the light receiving adapter 3
  • the light exit surface of the first displacement prism 8 corresponds to the light incident surface of the optical demultiplexer 9.
  • the optical signal is transmitted from the light emitting surface after being transmitted through the first displacement prism 8 and enters the light incident surface of the optical demultiplexer 9.
  • a collimating lens 19 (as shown in FIG. 7) is provided between the light receiving adapter 3 and the first displacement prism 8.
  • the collimating lens 19 is embedded in the side wall of the housing 1 corresponding to the position of the light-receiving adapter adjusting sleeve, and the light-entering surface and light-exiting surface of the collimating lens 19 correspond to the light-exiting end of the light-receiving adapter 3 and the light-entering light of the first displacement prism 8 respectively.
  • the collimating lens 19 is used to collimate the multiple outgoing light signals of the light receiving adapter 3 into one parallel light signal and enter the light incident surface of the first displacement prism 8.
  • the optical demultiplexer 9 includes different diaphragms. After the collimated optical signal enters the optical demultiplexer 9, the optical demultiplexer 9 separates each optical signal according to the wavelength of the light at the time of initial incidence. Emitted from different diaphragms.
  • the optical demultiplexer 9 mentioned in the embodiment of the present disclosure is an optical multiplexing component based on a thin film filter technology.
  • a 4-channel optical demultiplexer is taken as an example for illustration.
  • the 4-way wavelength multiplexed optical demultiplexer includes an oblique prism coated with an antireflection coating and a high-reflection coating on the side, and four thin-film filter membranes mounted on the other side of the oblique prism.
  • optical signals of different wavelengths enter the optical multiplexing component from the anti-reflection coating.
  • the optical signal of the first wavelength comes out of the first thin film filter film
  • the optical signal of the second wavelength is The first thin-film filter film is reflected to the optical multiplexing module, and then reflected by the high-reflection film, and then comes out from the second thin-film filter film of the optical multiplexing module; and so on, the optical signal of the third wavelength is from the AR coating.
  • the incident light comes out from the third thin-film filter film of the optical multiplexing module after 2 times of reentry, and the light signal of the fourth wavelength is incident from the AR coating. Come out.
  • the optical module further includes a light receiver array 7, which is disposed on the lower surface of the PCB 2.
  • the optical module further includes a reflective surface 10 corresponding to the optical receiver array, which is disposed on the lower surface area of the PCB 2 and is used to reflect the optical signal from the optical demultiplexer 9 to the optical receiver array 7.
  • the optical module further includes a second displacement prism 13, which is disposed on the lower surface area of the PCB 2 and is located between the photodemultiplexer 9 and the reflective surface 10.
  • the second displacement prism 13 is used to convert the optical demultiplexer 9
  • the outgoing light signal travels towards the lower surface of the PCB 2.
  • the first displacement prism and the second displacement prism may be prisms whose sides are parallelograms and whose material is glass, and the optical signals may be reflected in the two faces of the prism, thereby playing a role of translating the optical path.
  • the optical demultiplexer 9, the second displacement prism 13, and the reflection surface 10 are sequentially disposed adjacent to each other.
  • the photodemultiplexer 9 is disposed in the second cavity.
  • the second displacement prism 13 and the reflection surface 10 are disposed in the shell.
  • the light incident surface and the light emitting surface of the second displacement prism 13 correspond to the light emitting surface and the reflecting surface 10 of the optical demultiplexer 9, respectively.
  • the reflecting surface 10 in the embodiment may also be a prism, such as a 45 ° prism.
  • the optical demultiplexer 9 processes the optical signal in the collimated optical signal into multiple optical signals of different wavelengths according to different wavelengths, and therefore the optical signal entering the second displacement prism 13 will be transmitted.
  • a first prism 14 is provided between the optical demultiplexer 9 and the second displacement prism 13. Specifically, a recess 11 is formed on the bottom surface of the casing facing the interior of the casing. A first prism 14 is disposed in the recess 11. The first prism 14 is used to focus the multiple output light of the optical demultiplexer 9 to the first. The light incident surface of the two displacement prism 13.
  • a second prism 15 is disposed between the second displacement prism 13 and the reflective surface 10, and the second prism 15 is disposed on the lower surface area of the PCB.
  • the second prism 15 is used to The output light signal of the second displacement prism 13 is further focused into a collimated light signal, and a light spot is formed on the reflection surface 10.
  • both the first prism 14 and the second prism 15 are convex lenses, and have a focusing ability for incident light, and the light focusing ability of the second prism 15 is stronger.
  • the light receiver array 7 is disposed on the lower surface of the PCB 2 on the outside of the housing.
  • the light-receiving surface of the light receiver array 7 corresponds to the reflection surface 10, and the light receiver array 7 is used to couple incident light signals. , Converted into electrical signals.
  • a silicon lens array 16 is disposed between the reflective surface 10 and the light receiver array 7.
  • the silicon lens array 16 is attached to the light incident surface of the light receiver array 7 through a fixing bracket 17.
  • the fixing bracket 17 may be a bench shape or a rectangular block shape, and the material may be glass.
  • the silicon lens array 16 can increase the energy of an incident optical signal incident on the light receiver array 7.
  • the optical signal from the light receiving adapter 3 passes through the collimating lens 19, the first displacement prism 8, the optical demultiplexer 9, the first prism 14, and the second displacement.
  • the prism 13, the second prism 15, the reflecting surface 10 and the silicon lens array 16 are implemented to propagate toward the lower surface of the PCB 2, and are converted into electrical signals in the light receiver array 7.
  • the optical module according to the embodiment of the present disclosure further includes an IC controller.
  • the IC controller is fixed at a position adjacent to the optical receiver array 7 on the lower surface of the PCB.
  • the IC controller is electrically connected to the optical receiver array 7.
  • the optical signal reflected from the reflecting surface 10 enters the optical receiver array 7 after passing through the silicon lens array 16.
  • the optical signal is coupled in the optical receiver array 7 and then converted into an electrical signal.
  • the electrical signal converted by the optical signal is controlled by the IC Transmitter.
  • the optical module further includes a receiving end cover 18, and the second displacement prism 13 and the reflecting surface 10 are fixedly disposed on the receiving end cover 18, and the same second prism 15 also
  • the receiving end cover plate 18 is fixedly disposed at a position between the second displacement prism 13 and the reflective surface 10.
  • the silicon lens array 16 is disposed between the reflective surface 10 and the light receiver array 7.
  • the receiving end cover 18 can protect the optical components such as the second displacement prism 13, the reflecting surface 10, the light receiver array 7, the second prism 15 and the silicon lens array 16, and the receiving end cover 18 To achieve the best coupling state of the receiving components in the optical module.
  • the laser array 5 and the optical multiplexer 6 of the light transmitting end in the present disclosure are disposed in the upper surface area of the PCB 2 in the housing 1, the received optical signal is transmitted to the lower surface of the PCB 2 through the first displacement prism 8, thereby realizing reception
  • the components of the transmitter and the transmitter are located on different sides of the PCB. Therefore, when the optical module is working, crosstalk does not occur between the components on the receiver and the transmitter, and the above arrangement can make full use of the space of the housing 1 and improve Increased shell utilization.
  • some embodiments of the present disclosure relate to an optical module, including: a housing 810, a ceramic substrate 820, a PCB 822, and flexible circuit boards 821, 823; one side of the housing is provided with: The transmitting adapter 840 is used for inputting optical signals; and the light receiving adapter 830 is used for outputting optical signals.
  • the housing 810 is provided with a first displacement prism 880, an optical multiplexer 860, a optical demultiplexer 890, a reflecting surface 811, Laser array 850 and light receiver array 870; one end of the ceramic substrate 820 extends into the housing 810 and the other end is outside the housing 870; the other end of the ceramic substrate 820 and the PCB 822 board are realized by flexible circuit boards 821 and 823 Electrical connection; a laser array 850 is provided on the upper surface of the ceramic substrate 820, and a light receiver array 870 is provided on the lower surface of the ceramic substrate 820; the optical signals emitted by the laser array 850 are combined by the optical multiplexer 860, and passed through the light emission adapter 840
  • the first displacement prism 880 propagates the optical signal from the light receiving adapter 830 toward the lower surface of the ceramic substrate 820.
  • the optical demultiplexer 890 divides the optical signal from the first displacement prism 880 into multiple channels of light. No.; a reflective surface 811 from the multiplexer 890 photolytic optical signal 870 is reflected toward the direction of the light receiver array; array of optical receivers 870 from the reflective surface 811 for multiplexing optical signals into electrical signals.
  • a light receiver array 870 is provided on the lower surface of the ceramic substrate 820, and a laser array 850 is provided on the upper surface of the ceramic substrate 820.
  • the first displacement prism 880 guides the optical signal from the light receiving adapter 830 to the lower surface of the ceramic substrate 820, and the optical demultiplexer 890 implements the optical signal
  • the reflection surface 811 realizes the propagation of optical signals in the direction of the optical receiver array 870, so that the optical receiver array 870 receives the optical signals; the multiple optical signals from the laser array 850 are combined into one by the optical multiplexer 860, and It is emitted through the light emitting adapter 840; the ceramic substrate 820 realizes the electrical connection inside and outside the housing 810, and simultaneously meets the requirements of hermetic sealing.
  • the ceramic substrate 820 is electrically connected to the PCB through flexible circuit boards 821, 823, and PCB 822 is realized. Power is supplied to the
  • an optical module provided by an embodiment of the present disclosure includes a housing 810 and a ceramic substrate 820.
  • One end of the ceramic substrate 820 extends into the inside of the housing 810, and the other end is located outside the housing 810.
  • Circuits are provided on both the upper and lower surfaces of the ceramic substrate 820, and the upper and lower surfaces of the ceramic substrate 820 are carrier bodies for optical devices.
  • a portion of the ceramic substrate protruding into the interior of the housing 810 is provided with a laser array 850 on its upper surface and a light receiver array 870 on its lower surface.
  • the laser array 850 is used to emit multiple optical signals. The wavelengths of the multiple optical signals are different from each other.
  • the laser array 850 is electrically connected to the circuit on the upper surface of the ceramic substrate 820 by wiring, and the circuit on the upper surface of the ceramic substrate 820 is connected to Outside the case.
  • the optical receiver array 870 is used to receive multiple optical signals of different wavelengths, and each optical signal corresponds to a receiver in the optical receiver array 870.
  • the receiver is electrically connected to the circuit on the lower surface of the ceramic substrate 820 by wiring.
  • the ceramic The circuit on the lower surface of the substrate 820 is communicated to the outside of the case.
  • the circuits on the upper and lower surfaces of the ceramic substrate 820 outside the housing are electrically connected to the PCB 822 in the optical module through flexible circuit boards 821 and 823, respectively.
  • the PCB 822 is provided with electrical devices such as MCUs, and the PCB 822 is located outside the housing 810.
  • the ceramic substrate 820 is a laminated structure of a multilayer substrate, and the multilayer substrates can be electrically connected through vias.
  • the upper surface of the ceramic substrate 820 is electrically connected to the upper surface of the PCB through a flexible circuit board 821, and the lower surface of the ceramic substrate 820 is electrically connected to the lower surface of the PCB through a flexible circuit board 823.
  • the upper surface of the ceramic substrate 820 is an entire multilayer
  • the upper surface of the substrate and the lower surface of the ceramic substrate 820 are the lower surfaces of the entire multilayer substrate.
  • a light emitting adapter 840 and a light receiving adapter 830 are provided on one side of the housing 810, and the light signals are transmitted and received through the respective adjusting sleeves.
  • the emitted optical signal and the received optical signal are located on the same plane.
  • the horizontal plane of the optical signal transmitted by the laser array 850 is the same as the horizontal plane of the light received by the light receiving adapter 830. If the optical path of the optical signal transmitted from the light receiving adapter 830 to the housing 810 is not changed, the optical signal will be directed to the laser array 850. propagation.
  • the optical module further includes a first displacement prism 880 for guiding the optical signal to the lower surface of the ceramic substrate 820 so that the light from the light receiving adapter 830 The signal changes the direction of propagation and propagates in the direction of the optical receiver array 870.
  • a first displacement prism 880 for guiding the optical signal to the lower surface of the ceramic substrate 820 so that the light from the light receiving adapter 830 The signal changes the direction of propagation and propagates in the direction of the optical receiver array 870.
  • the optical signal from the optical receiving adapter 830 is a multi-wavelength optical signal.
  • the optical demultiplexer 890 demultiplexes the optical signal into multiple single-wavelength optical signals.
  • the light incident surface of the optical receiver array 870 is perpendicular to the propagation direction of the optical signal passing through the optical demultiplexer 890, and the reflecting surface 811 changes the propagation direction of the optical signal so that the optical signal enters the optical receiver array 870.
  • the reflecting surface 811 may be a mirror or a surface of a plastic body.
  • a light receiving adapter 830 and a light emitting adapter 840 are provided on one side of the housing 810. Specifically, reference may be made to the descriptions of the optical receiving adapter 3 and the transmitting optical fiber adapter 4 in the foregoing embodiments, and details are not described herein again.
  • the optical module in this embodiment includes an upper casing 910 and a lower casing 920.
  • a casing 810, a ceramic substrate 820, a flexible circuit board 821, and a flexible circuit board are wrapped between the upper casing 910 and the lower casing 920. 823 and PCB 822.
  • the flexible circuit boards 821 and 823 are flexible materials and can be bent, while the PCB 822 is a rigid material and cannot be bent.
  • the upper housing 910 and the lower housing 920 are the housings of the entire optical module, and the housing 810 is used to package the laser array 850 and the optical receiver array 870 and other components in the optical module.
  • the housing 810 is located inside the housing of the optical module. The functions and structures of the outer shells 910, 920 and the shell 810 are different.
  • PCB822 is used to carry MCU, resistor and capacitor and other electrical components.
  • the PCB 822 transmits the electric signal to be converted into an optical signal to the laser array 850 in the housing 810, and the driving chip of the laser array 850 drives the laser chip in the laser array 850 to emit light according to the electric signal, so as to realize the conversion of the electric signal into an optical signal.
  • the PCB 822 transmits the electrical signal converted by the optical signal through the optical receiver array 870 to an external upper computer.
  • the photocurrent converted by the optical receiver array 870 is converted into a digital electrical signal by a transimpedance amplifier and a limiting amplifier, and then passes through the gold of the PCB 822. Finger output to external host computer.
  • the first displacement prism 880 is fixedly disposed in the channel 881.
  • the multi-path optical signals transmitted by the light receiving adapter 830 are incident in parallel on the corresponding area on the upper surface of the ceramic substrate 820.
  • the optical demultiplexer 890 in this embodiment is disposed on the lower surface area of the ceramic substrate 820, so the optical signals transmitted by the light receiving adapter 830 cannot be directly transmitted to the optical demultiplexer 890.
  • the first displacement prism 880 transmits a light signal from the light receiving adapter 830 toward the lower surface of the ceramic substrate 820.
  • the light incident surface of the first displacement prism 880 corresponds to the light exit end of the light receiving adapter 830
  • the light exit surface of the first displacement prism 880 corresponds to the light incident surface of the optical demultiplexer 890.
  • Multiple light signals transmitted from the light receiving adapter 830 may appear to be scattered, so a collimating lens is provided between the light receiving adapter 830 and the first displacement prism 880 (refer to the collimating lens 19 in FIG. 7) .
  • the optical receiver array 870 is disposed on the lower surface of the ceramic substrate 820, and a reflective surface 811 is correspondingly provided in the lower surface area of the ceramic substrate 820.
  • the reflective surface 811 reflects the optical signal from the optical demultiplexer 890 toward Light receiver array 870.
  • the optical demultiplexer 890 is configured to divide the collimated optical signal into multiple optical signals of different wavelengths according to different wavelengths and transmit the multiple optical signals of different wavelengths to the reflective surface 811, so The optical signals entering the reflecting surface 811 are scattered and not concentrated.
  • a first prism 814 is further provided between the optical demultiplexer 890 and the reflective surface 811.
  • the first prism 814 reference may be made to the first prism 14 in the foregoing embodiment, and details are not described herein again.
  • the light receiver array 870 is provided on the lower surface of the ceramic substrate 820 inside the housing 810, the light incident surface of the light receiver array 870 corresponds to the reflection surface 811, and the light receiver array 870 is used to couple incident optical signals.
  • a silicon lens array 816 is disposed between the reflecting surface 811 and the light receiver array 870.
  • the silicon lens array 816 is attached to the light incident surface of the light receiver array 870 through a fixing bracket 817.
  • the silicon lens array 816 may Incident light signal energy incident on the optical receiver array 870 is increased.
  • the optical module provided by the embodiment of the present disclosure further includes a transimpedance amplifier.
  • the transimpedance amplifier is located on the lower surface of the ceramic substrate 820 in the housing 810 and is adjacent to the optical receiver array 870.
  • the transimpedance amplifier is electrically connected to the optical receiver array 870.
  • the optical signal reflected from the reflective surface 811 enters the optical receiver array 870 after passing through the silicon lens array 816. After the optical signal is coupled in the optical receiver array 870, it is converted into an electrical signal, and the optical receiver array 870 converts the converted electrical signal.
  • the signal is input to a transimpedance amplifier for signal differential and amplification processing.
  • the transimpedance amplifier is electrically connected to a circuit on the lower surface of the ceramic substrate 820.
  • the optical module in the above embodiment may further be provided with a processor and a memory, the memory stores executable instruction codes, and the processor is configured to read the executable instruction codes in the memory to control the executable components in the optical module.
  • the processor usually controls the overall operation of the optical module, such as signal type processing and signal output.
  • the processor may be a general-purpose processor, for example, a central processing unit (English: central processing unit, abbreviation: CPU), a network processor (English: network processor, abbreviation: NP), or a combination of CPU and NP.
  • the processor may also be a microprocessor (MCU).
  • the processor may also include a hardware chip.
  • the hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field programmable logic gate array (FPGA), or the like.
  • Memory can be implemented by any type of volatile or non-volatile storage devices or combinations thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable Read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable Read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the optical module provided in the foregoing embodiment further includes: a micro power module, which provides power to various power components of the optical module.
  • Micro-power components can include power management systems, one or more power supplies, and other components associated with generating, managing, and distributing power for optical modules;
  • the communication interface provides an interface between each component of the optical module and the peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc .;
  • the communication component is configured for wired or wireless communication between the optical module and other devices.
  • the optical module can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component further includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供一种光模块,包括:印刷电路板PCB;壳体,所述PCB的一端设置在所述壳体内;所述壳体的一侧设置有光接收适配器和光发射适配器,所述壳体内设置有:激光器阵列,所述激光器阵列与所述PCB的上表面电连接,配置为将电信号转换为第一多路光信号;光复用器,所述激光器阵列发出的所述第一多路光信号经所述光复用器合成一路,并通过所述光发射适配器传输出去;第一位移棱镜,配置为将来自所述光接收适配器的光信号向所述PCB的下表面方向传播;和光解复用器,配置为将来自所述第一位移棱镜的光信号分为第二多路光信号;反射面,配置为将来自所述光解复用器的第二多路光信号反射向光接收器阵列;所述光接收器阵列,位于所述PCB板的下表面。

Description

光模块
相关申请的交叉引用
本专利申请要求于2018年8月8日提交的、申请号为2018108981437和2018年8月9日提交的、申请号为2018109050771的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本公开涉及一种光模块。
背景技术
在光通信领域中,光模块是实现光电转换的重要装置。光模块包括光接收器(receiver optical subassembly)、光发射器(transmitter optical subassembly)和PCB(printed circuit board,印刷电路板)。光接收器和光发射器可独立设置在PCB上,PCB上设置有电子电路,光接收器和光发射器均与PCB上的电子电路电连接。
发明内容
根据本公开的第一方面,提供了一种光模块,该光模块可包括:
印刷电路板PCB;
壳体,所述PCB的一端设置在所述壳体内;
所述壳体的一侧设置有光接收适配器和光发射适配器,
所述壳体内设置有:
激光器阵列,所述激光器阵列与所述PCB的上表面电连接,配置为将电信号转换为第一多路光信号;
光复用器,所述激光器阵列发出的所述第一多路光信号经所述光复用器合成一路,并通过所述光发射适配器传输出去;
第一位移棱镜,配置为将来自所述光接收适配器的光信号向所述PCB的下表面方向传播;和
光解复用器,配置为将来自所述第一位移棱镜的光信号分为第二多路光信号;
反射面,配置为将来自所述光解复用器的第二多路光信号反射向光接收器阵列;
所述光接收器阵列,位于所述PCB板的下表面。
根据本公开的第二方面,提供了一种光模块,该光模块可包括:
印刷电路板PCB;
陶瓷基板;
壳体,所述陶瓷基板的一端位于所述壳体内,另一端位于所述壳体外;
所述壳体的一侧设置有光接收适配器和光发射适配器,
所述壳体内设置有:
激光器阵列,位于所述陶瓷基板的上表面,配置为将电信号转换为第一多路光信号;
光复用器,所述激光器阵列发出的所述第一多路光信号经所述光复用器合为一路,并通过所述光发射适配器传输出去;
第一位移棱镜,配置为将来自所述光接收适配器的光信号向所述陶瓷基板的下表面方向传播;
光解复用器,配置为将来自所述第一位移棱镜的光信号分为第二多路光信号;
反射面,配置为将来自所述光解复用器的第二多路光信号反射向光接收器阵列;和
所述接收器阵列,位于所述陶瓷基板的下表面;
柔性电路板,所述陶瓷基板的另一端与所述PCB通过所述柔性电路板实现电连接。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据一些实施例的光模块的部分结构示意图。
图2示出了根据一些实施例的用于容置光接收器和光发射器的壳体的结构示意图。
图3示出了根据一些实施例的一种光模块的部分结构的剖视图。
图4示出了根据一些实施例的一种光模块的部分结构的俯视图。
图5示出了根据一些实施例的一种光模块的部分结构的仰视图。
图6示出了根据一些实施例的一种光模块的光接收器端的局部放大图。
图7示出了根据一些实施例的一种光模块接收光信号时的光路示意图。
图8示出了根据一些实施例的一种光模块的部分结构的剖视图。
图9示出了根据一些实施例的一种光模块爆炸示意图。
图10示出了根据一些实施例的一种光模块的光接收器部分的局部结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了使本技术领域的人员更好地理解本公开实施例中的技术方案,下面结合附图对本公开实施例中技术方案作进一步详细的说明。
如图1所示,对应光接收器和光发射器分别设置第一壳体110和第二壳体120,光接收器中的元器件布置在第一壳体110内,光发射器中的元器件布置在第二壳体120内。第一壳体110和第二壳体120可保护光接收器和光发射器中的元器件不受破坏。但是,第一壳体110和第二壳体120内部对应的空间相对比较狭小,因此在第一壳体110和第二壳体120内分别布置光接收器和光发射器的元器件相对比较困难。
如图2所示,将第一壳体110和第二壳体120替换为一个壳体200。图2中的壳体200内设置了一个公共布置区域,公共布置区域内划分为区域210和区域220,其中,区域210和区域220可以分别布置光接收器和光发射器的元器件。这样,由于壳体200的空间相当于第一壳体110空间与第二壳体120空间的总和,因此在壳体200内布置光接收器和光发射器的元器件时相对比较容易。
图2中提供的壳体200可以使得光接收器和光发射器的元器件布置更加简易,但是由于布置光接收器和光发射器元器件的区域没有任何的隔离,因此当光模块工作时,容易导致光接收器和光发射器的元器件之间发生串扰,影响光模块的正常工作。加之,将光接收器和光发射器的元器件布置在同一空间,而光模块的尺寸受制于行业标准的限制, 同一空间的横向方向尺寸有限,随着发射端及接收端的通道数量越来越多,仍然没有足够的空间放置器件。
本公开的一些实施方式涉及一种光模块。参见图3,光模块包括壳体1、PCB 2、光接收适配器3、光发射适配器4。PCB 2的一端与壳体1固定连接,壳体1的一侧设置有光接收适配器3和光发射适配器4。光接收适配器3和光发射适配器4均设置有对应的调节套筒,光接收适配器3和光发射适配器4分别与对应的调节套筒的一端通过穿透焊连接,调节套筒的另一端通过底焊固定设置在壳体1上。
与图1和图2所示的壳体不同,壳体1分为上下两层,具体地,壳体1内设置有一隔板12,隔板与壳体可一体成型。隔板12将壳体1内的空间划分为第一腔室和第二腔室,其中第一腔室的一侧与隔板12之间设置有卡槽20,PCB 2的一端固定设置在卡槽20内,隔板12相对卡槽20的另一端设置有通道22(如图4所示),通道22连通第一腔室和第二腔室。光接收适配器3和光发射适配器4等高设置在壳体1对应第一腔室的位置。需要指出,在本公开实施例中,PCB 2只是一端嵌设在壳体1内,而且PCB 2嵌入壳体1的一端的宽度小于或等于壳体1的宽度。
参见图4,激光器阵列5和光复用器(optical multiplexer)6设置在第一腔室内,且激光器阵列5和光复用器6固定设置在隔板12上。来自用户端的电信号经PCB 2上的电子电路传输给激光器阵列5,激光器阵列5将传输过来的电信号转换为光信号,经激光器阵列5中的发射端透镜聚焦后进入到光复用器6,最终激光器阵列5发出的多路光信号经所述光复用器6合成一路并通过光发射适配器4传输出去。
为了避免光模块中接收端和发射端的元器件设置在同一壳体内产生串扰,如图3所示,所述光模块还包括第一位移棱镜8和光解复用器(optical demultiplexer)9,第一位移棱镜8固定设置在所述通道22内并用于使来自光接收适配器3的光信号向PCB 2的下表面方向传输。由于光解复用器9设置在对应PCB 2下表面区域的第二腔室内,而光接收适配器3传输过来的多路光信号平行入射到PCB 2上表面对应的区域,因此光信号的方向与PCB 2上表面平行。这样,光接收适配器3传输过来的光信号无法直接传输给光解复用器9。通过第一位移棱镜8,来自所述光接收适配器3的光信号向所述PCB 2的下表面方向传播。
具体地,第一位移棱镜8的入光面对应光接收适配器3的出光端,第一位移棱镜8的出光面对应光解复用器9的入光面。光信号经第一位移棱镜8传输后从出光面射出并进入到光解复用器9的入光面。
从光接收适配器3传输出来的多路光信号可能会出现光线的分散,因此在光接收适配器3与第一位移棱镜8之间设置有准直透镜19(如图7所示),准直透镜19嵌设在壳体1的侧壁内对应光接收适配器调节套筒的位置,准直透镜19的入光面和出光面分别对应光接收适配器3的出光端和第一位移棱镜8的入光面,准直透镜19用于将光接收适配器3的多路出射光信号准直为一路平行光信号入射到第一位移棱镜8的入光面。
光解复用器9包括不同的膜片,准直光信号进入到光解复用器9后,光解复用器9将准直光信号按照初始入射时光的波长,将每路光信号分别从不同的膜片传出。本公开实施例中提到的光解复用器9是一种基于薄膜滤波片技术的光复用组件,这里以4路光解复用器为例说明。4路波长复用的光解复用器包含1个侧面镀有增透膜和高反膜的斜方棱镜,4个贴装在斜方棱镜另一个侧面的薄膜滤波片膜片。工作原理简述如下:不同波长的光信号从增透膜处入射进入光复用组件,其中,第一个波长的光信号从第一薄膜滤波片膜片处出来,第二个波长的光信号被第一薄膜滤波片膜片反射至光复用组件,再经高反膜反射后从光复用组件的第二薄膜滤波片膜片处出来;依次类推,第三个波长的光信号从增透膜处入射经2次折返后从光复用组件的第三薄膜滤波片膜片处出来,第四个波长的光信号从增透膜处入射经3次折返后从光复用组件的第四薄膜滤波片膜片处出来。
如图3所示,光模块还包括光接收器阵列7,其设置在PCB 2的下表面。光模块还包括与光接收器阵列对应的反射面10,其设置在PCB 2的下表面区域,并用于将来自光解复用器9的光信号反射向所述光接收器阵列7。光模块还包括第二位移棱镜13,其设置在PCB 2的下表面区域,并位于光解复用器9和反射面10之间,第二位移棱镜13用于将光解复用器9的出射光信号向PCB 2下表面方向传播。第一位移棱镜和第二位移棱镜可以是侧面为平行四边形、材质为玻璃的棱镜,光信号可以在棱镜的两个面内反射,从而起到平移光路的作用。
参见图6,光解复用器9、第二位移棱镜13和反射面10依次相邻设置,光解复用器9设置在第二腔室内,第二位移棱镜13和反射面10设置在壳体1外侧的PCB 2下表面区域,第二位移棱镜13的入光面和出光面分别对应光解复用器9的出光面和反射面10。由于PCB 2相对靠近第一腔室一侧,第二位移棱镜13和反射面10与光解复用器9不在一个水平面上,因此通过第二位移棱镜13将从光解复用器9出光面传输出来的光信号向PCB 2下表面方向传播。实施例中的反射面10也可以为棱镜,例如45°棱镜。
由上述可知,光解复用器9处理后会将准直光信号中的光信号按照不同的波长分为 多路不同波长的光信号传输出来,因此进入到第二位移棱镜13的光信号会分散不集中。为了使得进入到第二位移棱镜13的光信号能汇聚到一起,因此在光解复用器9与第二位移棱镜13之间设置第一棱镜14。具体地,所述壳体底面面向壳体内部形成一凹槽11,第一棱镜14设置在凹槽11内,第一棱镜14用于将光解复用器9的多路出射光聚焦至第二位移棱镜13的入光面。
为了使得入射至反射面10的光信号进一步汇聚,第二位移棱镜13与反射面10之间设置第二棱镜15,第二棱镜15设置在PCB 2下表面区域上,第二棱镜15用于将第二位移棱镜13的出射光信号进一步聚焦为一准直光信号,在反射面10上形成一光斑。本实施例中第一棱镜14和第二棱镜15均为凸透镜,对入射光线具有聚焦能力,而且第二棱镜15的光线聚焦能力更强。
本实施例中,光接收器阵列7设置在壳体外侧的PCB 2下表面位置,光接收器阵列7的入光面对应反射面10,光接收器阵列7用于将入射光信号进行耦合,转换为电信号。本实施例中反射面10与光接收器阵列7之间设置有硅透镜阵列16,硅透镜阵列16通过一固定支架17贴合在光接收器阵列7的入光面上。固定支架17可为板凳形状或者是长方形块状,材质可为玻璃。硅透镜阵列16可以提高入射到光接收器阵列7的入射光信号能量。
在一些实施例中,如图7所示,来自所述光接收适配器3的光信号,经过准直透镜19、第一位移棱镜8、光解复用器9、第一棱镜14、第二位移棱镜13、第二棱镜15、反射面10和硅透镜阵列16以实现向所述PCB 2的下表面方向传播,并在光接收器阵列7中转换为电信号。
根据本公开实施例的光模块还包括IC控制器,IC控制器固定在PCB 2下表面相邻光接收器阵列7的位置,IC控制器与光接收器阵列7电连接。从反射面10反射出的光信号经硅透镜阵列16后进入到光接收器阵列7,光信号在光接收器阵列7中进行耦合后,转换为电信号,光信号转换的电信号经IC控制器传输出去。
在本实施例前面提到,第二位移棱镜13和反射面10与光解复用器9不在一个水平面上。在本公开提供的另一示意性实施例中,光模块还包括接收端盖板18,第二位移棱镜13和反射面10均固定设置在接收端盖板18上,同样的第二棱镜15也固定设置在接收端盖板18上位于第二位移棱镜13和反射面10之间的位置,在本实施例中,硅透镜阵列16设置在反射面10与光接收器阵列7之间。接收端盖板18的设置既可以对第二位移棱镜13、反射面10、光接收器阵列7、第二棱镜15和硅透镜阵列16等光学元器件 进行保护,还可以通过接收端盖板18实现光模块中接收端组件达到最佳耦合状态。
由于本公开中光发射端的激光器阵列5和光复用器6设置在壳体1内对应PCB 2上表面区域,而接收的光信号经第一位移棱镜8传播到PCB 2的下表面,进而实现接收端的元器件与发射端的元器件位于PCB 2不同侧,因此当光模块工作时,接收端和发射端的元器件之间不会发生串扰,而且上述布置方式,可以充分利用壳体1的空间,提高了壳体利用率。
如图8、图9所示,本公开的一些实施例涉及一种光模块,包括:壳体810、陶瓷基板820、PCB 822及柔性电路板821、823;壳体的一侧设置有:光发射适配器840,用于输入光信号;和光接收适配器830,用于输出光信号;壳体810内设置有:第一位移棱镜880、光复用器860、光解复用器890、反射面811、激光器阵列850及光接收器阵列870;陶瓷基板820的一端伸入壳体810内,另一端位于壳体870外;陶瓷基板820的另一端与PCB 822板之间通过柔性电路板821、823实现电连接;陶瓷基板820的上表面设置有激光器阵列850,陶瓷基板820的下表面设置有光接收器阵列870;激光器阵列850发出的光信号经光复用器860合为一路,通过光发射适配器840射出;第一位移棱镜880将来自光接收适配器830的光信号向陶瓷基板820的下表面方向传播;光解复用器890将来自第一位移棱镜880的光信号分为多路光信号;反射面811将来自光解复用器890的光信号向光接收器阵列870方向反射;光接收器阵列870用于将来自反射面811的多路光信号转换为电信号。
陶瓷基板820的下表面设置有光接收器阵列870,而陶瓷基板820的上表面设置有激光器阵列850,这种上下设计方式与图1和图2示出的光模块相比,增加了布设器件的面积,同时避免激光器阵列850与接收器阵列870之间的干扰;第一位移棱镜880将来自光接收适配器830的光信号导向陶瓷基板820的下表面,光解复用器890实现了光信号的分路,反射面811实现了光信号向光接收器阵列870方向传播,以使光接收器阵列870接收光信号;激光器阵列850发出的多路光信号经光复用器860合为一路,并通过光发射适配器840射出;陶瓷基板820实现了壳体810内外的电连接,同时满足了气密性封装的要求,陶瓷基板820通过柔性电路板821、823与PCB 822电连接,实现了PCB 822向陶瓷基板820供电。
参见图8,本公开实施例提供的光模块包括壳体810和陶瓷基板820,陶瓷基板820的一端伸入壳体810内部,另一端位于壳体810外部。陶瓷基板820上下表面均设置有电路,陶瓷基板820上下表面是光器件的承载体。具体地,伸入壳体810内部的陶瓷基 板部分,其上表面设置有激光器阵列850,其下表面设置有光接收器阵列870。激光器阵列850用于发出多路光信号,多路光信号之间的波长互不相同,激光器阵列850通过打线与陶瓷基板820上表面的电路实现电连接,陶瓷基板820上表面的电路连通至壳体外部。光接收器阵列870用于接收多路不同波长的光信号,每路光信号对应光接收器阵列870中的一个接收器,接收器通过打线与陶瓷基板820下表面的电路实现电连接,陶瓷基板820下表面的电路连通至壳体外部。陶瓷基板820上下表面位于壳体外部的电路分别通过柔性电路板821、823与光模块中的PCB 822电连接,PCB 822上设置有MCU等电器件,PCB 822位于壳体810外部。
具体地,陶瓷基板820为多层基板压合的结构,多层基板之间可以通过过孔实现电连接。
陶瓷基板820的上表面通过柔性电路板821与PCB 822的上表面电连接,陶瓷基板820的下表面通过柔性电路板823与PCB 822的下表面电连接,陶瓷基板820的上表面为整个多层基板的上表面,陶瓷基板820的下表面为整个多层基板的下表面。
具体地,壳体810的一侧设置有光发射适配器840以及光接收适配器830,分别通过各自的调节套筒发射光信号与接收光信号,两个适配器相对于壳体810的下表面等高设置,以与外部的光纤连接器匹配,此时,相对于壳体810的下表面,发射光信号与接收光信号位于同一平面。具体地,激光器阵列850发出的光信号传播的水平面与光接收适配器830进光的水平面相同,如果不对光接收适配器830传入壳体810的光信号进行光路改变,光信号会向激光器阵列850方向传播。为了避免来自光接收适配器830的光信号向激光器阵列850方向传播,所述光模块还包括第一位移棱镜880,用于向陶瓷基板820的下表面引导光信号,使来自光接收适配器830的光信号改变传播方向,向光接收器阵列870的方向传播。第一位移棱镜880的设置可参考图4中第一位移棱镜8的设置,在此不再赘述。
来自光接收适配器830的光信号为一路多波长光信号,在通过第一位移棱镜880后,由光解复用器890将光信号解复用为多路单波长的光信号。
光接收器阵列870的入光面与通过光解复用器890的光信号传播方向垂直,反射面811将光信号的传播方向改变,以使光信号进入光接收器阵列870中。
反射面811可以是反射镜,也可以是塑料体的表面。
壳体810的一侧设置有光接收适配器830和光发射适配器840。具体地,可参照上 述实施例中对于光接收适配器3和发射光纤适配器4的描述,在此不再赘述。
如图9所示,本实施例中的光模块包括上外壳910及下外壳920,在上外壳910与下外壳920之间包裹有壳体810、陶瓷基板820、柔性电路板821、柔性电路板823及PCB 822。柔性电路板821、823为软性材料可以弯折,而PCB 822为硬性材料不可弯折。上外壳910及下外壳920是整个光模块的外壳,而壳体810用于在光模块内封装激光器阵列850及光接收器阵列870等器件,壳体810位于光模块的外壳之内,光模块的外壳910、920与壳体810的作用及结构并不相同。
PCB 822用于承载MCU、电阻及电容等电器件。PCB 822将待转换为光信号的电信号传输给壳体810中的激光器阵列850,激光器阵列850的驱动芯片根据电信号驱动激光器阵列850中的激光芯片发光,以实现电信号转化为光信号。PCB 822将通过光接收器阵列870由光信号转化的电信号传输给外部上位机,光接收器阵列870转换的光电流通过跨阻放大器、限幅放大器转换为数字电信号后通过PCB 822的金手指输出给外部上位机。
与图4所示实施例类似,第一位移棱镜880固定设置在通道881内。光接收适配器830传输过来的多路光信号是平行入射到陶瓷基板820上表面对应的区域。但是,本实施例中的光解复用器890是设置在陶瓷基板820下表面区域,因此光接收适配器830传输过来的光信号无法直接传输给光解复用器890。具体地,对于光解复用器890可参照上述实施例中光解复用器9的相关描述,在此不再赘述。
第一位移棱镜880将来自光接收适配器830的光信号向陶瓷基板820的下表面方向传播。具体地,第一位移棱镜880的入光面对应光接收适配器830的出光端,第一位移棱镜880的出光面对应光解复用器890的入光面。光经第一位移棱镜880传输后从出光面射出的光进入到光解复用器890的入光面。
从光接收适配器830传输出来的多路光信号可能会出现光线的分散,因此在光接收适配器830与第一位移棱镜880之间设置有准直透镜(可参照图7中的准直透镜19)。
本实施例中,光接收器阵列870设置在陶瓷基板820的下表面,在陶瓷基板820的下表面区域,对应设置反射面811,反射面811将来自光解复用器890的光信号反射向光接收器阵列870。
参见图10,由上述可知,光解复用器890用于将准直光信号按照不同的波长分为多路不同波长的光信号并将多路不同波长的光信号传输至反射面811,因此进入到反射面 811的光信号会分散不集中。为了使得进入到反射面811的光信号能汇聚到一起,因此在光解复用器890与反射面811之间还设置有第一棱镜814。第一棱镜814的设置可参考上述实施例中的第一棱镜14,在此不再赘述。
本实施例中,光接收器阵列870设置壳体810内部陶瓷基板820的下表面,光接收器阵列870的入光面对应反射面811,光接收器阵列870用于将入射光信号进行耦合。本实施例中反射面811与光接收器阵列870之间设置有硅透镜阵列816,硅透镜阵列816通过一固定支架817贴合在光接收器阵列870的入光面上,硅透镜阵列816可以提高入射到光接收器阵列870的入射光信号能量。
本公开实施例提供的光模块还包括跨阻放大器,跨阻放大器位于壳体810内陶瓷基板820下表面,邻近光接收器阵列870的位置,跨阻放大器与光接收器阵列870电连接。从反射面811反射出的光信号经硅透镜阵列816后进入到光接收器阵列870,光信号在光接收器阵列870中进行耦合后,转换为电信号,光接收器阵列870将转换的电信号输入跨阻放大器以进行信号差分及放大处理,跨阻放大器与陶瓷基板820下表面的电路电连接。
需要说明的是,对于图8-图10所示实施例中与图3-图7所示实施例中相同的组件,可参考图3-图7所示实施例,在此不再赘述。
上述实施例中的光模块还可设置有处理器和存储器,存储器存储有可执行指令代码,处理器用于读取存储器中的可执行指令代码控制光模块中的可执行组件。
处理器通常是控制光模块的整体操作,例如信号类型的处理、信号输出等。处理器可以是通用处理器,例如,中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器也可以是微处理器(MCU)。处理器还可以包括硬件芯片。上述硬件芯片可以是专用集成电路(ASIC),可编程逻辑器件(PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(CPLD),现场可编程逻辑门阵列(FPGA)等。
存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
上述实施例提供的光模块还包括:微电源组件,微电源组件为光模块的各种用电组 件提供电力。微电源组件可以包括电源管理系统,一个或多个电源,及其他与为光模块生成、管理和分配电力相关联的组件;
通信接口,通信接口为光模块中的各个部件和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等;
通信组件,通信组件被配置为光模块和其他设备之间有线或无线方式的通信。光模块可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述的本公开实施方式并不构成对本公开保护范围的限定。

Claims (17)

  1. 一种光模块,包括:
    印刷电路板PCB;
    壳体,所述PCB的一端设置在所述壳体内;
    所述壳体的一侧设置有光接收适配器和光发射适配器,
    所述壳体内设置有:
    激光器阵列,所述激光器阵列与所述PCB的上表面电连接,配置为将电信号转换为第一多路光信号;
    光复用器,所述激光器阵列发出的所述第一多路光信号经所述光复用器合成一路,并通过所述光发射适配器传输出去;
    第一位移棱镜,配置为将来自所述光接收适配器的光信号向所述PCB的下表面方向传播;和
    光解复用器,配置为将来自所述第一位移棱镜的光信号分为第二多路光信号;
    反射面,配置为将来自所述光解复用器的第二多路光信号反射向光接收器阵列;
    所述光接收器阵列,位于所述PCB板的下表面。
  2. 根据权利要求1所述的光模块,还包括:
    凹槽,所述壳体底面面向所述壳体内部形成一凹槽,配置为将来自所述光解复用器的所述第二多路光信号经由所述凹槽射向所述发射面。
  3. 根据权利要求2所述的光模块,还包括:
    隔板,位于所述壳体内,配置为将所述壳体内部划分为第一腔室和第二腔室;
    所述激光器阵列和所述光复用器固定设置在位于所述隔板的上表面的所述第一腔室内;
    其中,所述第一腔室和第二腔室之间设置有通道,所述第一位移棱镜固定设置在所述通道内。
  4. 根据权利要求3所述的光模板,还包括:
    卡槽,位于所述第一腔室的与所述通道相对的另一侧和所述隔板之间,其中,
    所述PCB的一端固定设置在所述卡槽内。
  5. 根据权利要求1所述的光模块,其中,所述光接收适配器和所述光发射适配器等高设置。
  6. 根据权利要求1所述的光模块,还包括:
    准直透镜,位于所述光接收适配器与所述第一位移棱镜之间,嵌设在所述壳体的侧壁内,配置为将来自所述光接收适配器的光信号准直为一路光信号聚焦至所述第一位移棱镜的入光面。
  7. 根据权利要求6所述的光模块,还包括:
    第二位移棱镜,位于所述光解复用器和所述反射面之间,配置为将来自所述光解复用器的所述第二多路光信号向所述PCB下表面方向传播。
  8. 根据权利要求7所述的光模块,还包括:
    第一棱镜,设置在所述壳体底面面向所述壳体内部形成的凹槽内,配置为将来自所述光解复用器的所述第二多路光信号聚焦至所述第二位移棱镜的入光面。
  9. 根据权利要求8所述的光模块,还包括:
    第二棱镜,位于所述第二位移棱镜与所述反射面之间,配置为将所述第二位移棱镜的出射光信号聚焦至所述反射面。
  10. 根据权利要求9所述的光模块,还包括:
    硅透镜阵列,位于所述反射面与所述光接收器阵列之间,通过固定支架贴合在所述光接收器阵列的入光面上。
  11. 根据权利要求10所述的光模块,还包括:
    接收端盖板,与所述PCB的下表面固定连接,其中,
    所述第二位移棱镜和所述反射面固定在所述接收端盖板上。
  12. 一种光模块,其特征在于,包括
    印刷电路板PCB;
    陶瓷基板;
    壳体,所述陶瓷基板的一端位于所述壳体内,另一端位于所述壳体外;
    所述壳体的一侧设置有光接收适配器和光发射适配器,
    所述壳体内设置有:
    激光器阵列,位于所述陶瓷基板的上表面,配置为将电信号转换为第一多路光信号;
    光复用器,所述激光器阵列发出的所述第一多路光信号经所述光复用器合为一路,并通过所述光发射适配器传输出去;
    第一位移棱镜,配置为将来自所述光接收适配器的光信号向所述陶瓷基板的下表面方向传播;
    光解复用器,配置为将来自所述第一位移棱镜的光信号分为第二多路光信 号;
    反射面,配置为将来自所述光解复用器的第二多路光信号反射向光接收器阵列;和
    所述接收器阵列,位于所述陶瓷基板的下表面;
    柔性电路板,所述陶瓷基板的另一端与所述PCB通过所述柔性电路板实现电连接。
  13. 如权利要求12所述的光模块,其中,所述光发射适配器与所述光接收适配器等高设置。
  14. 根据权利要求12所述的光模块,其中,所述陶瓷基板具有多层板,所述多层板之间通过过孔实现电连接。
  15. 根据权利要求12所述的光模块,还包括:
    准直透镜,位于所述光接收适配器与所述第一位移棱镜之间,嵌设在所述壳体的侧壁内,配置为将来自所述光接收适配器的光信号准直为一路光信号聚焦至所述第一位移棱镜的入光面。
  16. 根据权利要求15所述的光模块,还包括:
    第一棱镜,位于所述光解复用器和所述反射面之间,配置为将来自所述光解复用器的第二多路光信号聚焦至所述反射面的入光面。
  17. 根据权利要求16所述的光模块,还包括:
    硅透镜阵列,位于所述反射面与所述光接收器阵列之间,通过固定支架贴合在所述光接收器阵列的入光面上,配置为提高入射到光接收器阵列的入射光信号能量。
PCT/CN2019/095453 2018-08-08 2019-07-10 光模块 WO2020029739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/911,897 US11616575B2 (en) 2018-08-08 2020-06-25 Optical module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810898143.7 2018-08-08
CN201810898143.7A CN108873197B (zh) 2018-08-08 2018-08-08 一种光模块
CN201810905077.1 2018-08-09
CN201810905077.1A CN108919435A (zh) 2018-08-09 2018-08-09 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,897 Continuation-In-Part US11616575B2 (en) 2018-08-08 2020-06-25 Optical module

Publications (1)

Publication Number Publication Date
WO2020029739A1 true WO2020029739A1 (zh) 2020-02-13

Family

ID=69414470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095453 WO2020029739A1 (zh) 2018-08-08 2019-07-10 光模块

Country Status (2)

Country Link
US (1) US11616575B2 (zh)
WO (1) WO2020029739A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115016074A (zh) * 2021-03-04 2022-09-06 青岛海信宽带多媒体技术有限公司 一种光模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127059A1 (zh) * 2020-12-14 2022-06-23 青岛海信宽带多媒体技术有限公司 一种光模块
US20240146418A1 (en) * 2022-10-31 2024-05-02 Avago Technologies International Sales Pte. Limited Laser with optical signal management capability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744145A (zh) * 2013-12-31 2014-04-23 武汉电信器件有限公司 单光口波分复用/解复用光电收发器件
CN105759371A (zh) * 2016-01-07 2016-07-13 武汉电信器件有限公司 一种用于双链路传输的并行收发光模块和制作方法
CN107045166A (zh) * 2016-02-05 2017-08-15 苏州旭创科技有限公司 光模块
CN108873197A (zh) * 2018-08-08 2018-11-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN108919435A (zh) * 2018-08-09 2018-11-30 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901221B1 (en) 1999-05-27 2005-05-31 Jds Uniphase Corporation Method and apparatus for improved optical elements for vertical PCB fiber optic modules
TWM484713U (zh) * 2014-03-10 2014-08-21 Luxnet Corp 可替換式光發射模組及搭載有可替換式光發射模組的光收發器
US9417413B2 (en) * 2014-04-17 2016-08-16 Cisco Technology, Inc. Compact multiple channel optical receiver assembly package
CN104503044B (zh) * 2014-12-31 2016-08-24 苏州旭创科技有限公司 光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744145A (zh) * 2013-12-31 2014-04-23 武汉电信器件有限公司 单光口波分复用/解复用光电收发器件
CN105759371A (zh) * 2016-01-07 2016-07-13 武汉电信器件有限公司 一种用于双链路传输的并行收发光模块和制作方法
CN107045166A (zh) * 2016-02-05 2017-08-15 苏州旭创科技有限公司 光模块
CN108873197A (zh) * 2018-08-08 2018-11-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN108919435A (zh) * 2018-08-09 2018-11-30 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115016074A (zh) * 2021-03-04 2022-09-06 青岛海信宽带多媒体技术有限公司 一种光模块
CN115016074B (zh) * 2021-03-04 2023-07-14 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
US11616575B2 (en) 2023-03-28
US20200328815A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US6954592B2 (en) Systems, methods and apparatus for bi-directional optical transceivers
CN108873197B (zh) 一种光模块
WO2019105113A1 (zh) 光收发器件
WO2020029739A1 (zh) 光模块
JP2009251375A (ja) 光伝送モジュール及び光伝送システム
CN113009650B (zh) 一种光模块
TW201440443A (zh) 雙向光學資料通訊模組
WO2018157767A1 (zh) 一种多波长共存光模块
WO2020155426A1 (zh) 多路波分复用光接收组件以及光模块
JP2013201473A (ja) 光受信モジュール
CN108919435A (zh) 一种光模块
US20060013541A1 (en) Optoelectronic module
CN115097579A (zh) 光模块
CN209433063U (zh) 多路波分复用光接收组件以及光模块
CN217606135U (zh) 光模块
CN217606136U (zh) 光模块
CN217521402U (zh) 光模块
TWI814267B (zh) 盒型封裝光收發器
JP2004040796A (ja) 検出器ユニットおよび検出器ユニットを複数備えたシステム
CN114895411A (zh) 光模块
CN115016074B (zh) 一种光模块
CN210605098U (zh) 一种小型化的多路波分解复用光接收组件
CN210605101U (zh) 一种基于光波导的多路波分解复用光接收组件
CN113448022B (zh) 光发射机、光模块、光收发设备以及光通信系统
US6396968B2 (en) Optical signal transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848450

Country of ref document: EP

Kind code of ref document: A1