WO2020173147A1 - 墨水屏阅读设备及其屏幕驱动方法、存储介质 - Google Patents

墨水屏阅读设备及其屏幕驱动方法、存储介质 Download PDF

Info

Publication number
WO2020173147A1
WO2020173147A1 PCT/CN2019/118915 CN2019118915W WO2020173147A1 WO 2020173147 A1 WO2020173147 A1 WO 2020173147A1 CN 2019118915 W CN2019118915 W CN 2019118915W WO 2020173147 A1 WO2020173147 A1 WO 2020173147A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature value
ink screen
value
temperature
handwriting
Prior art date
Application number
PCT/CN2019/118915
Other languages
English (en)
French (fr)
Inventor
程超
朱文志
Original Assignee
掌阅科技股份有限公司
深圳市掌阅科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 掌阅科技股份有限公司, 深圳市掌阅科技有限公司 filed Critical 掌阅科技股份有限公司
Priority to US17/296,128 priority Critical patent/US11373606B2/en
Publication of WO2020173147A1 publication Critical patent/WO2020173147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the present disclosure relates to the field of computer technology, in particular to an ink screen reading device, a screen driving method thereof, and a storage medium.
  • Ink screen devices refer to electronic devices that use electronic ink screens (E-ink). Some ink screen devices have handwriting functions, and are also called handwriting reading devices or handwriting readers.
  • the electronic ink screen is a screen that does not emit light but relies on external reflection to achieve a display effect. Its display effect is very similar to that of paper materials, so it is comparable to the experience of reading paper materials.
  • the ink screen is composed of many microcapsules, and each microcapsule contains multiple black particles and multiple white particles, both of which have opposite charges.
  • black content needs to be displayed on the screen, the black particles are driven by voltage to move up to the top of the screen (that is, from the bottom to the screen direction), when white content is displayed, the white particles are driven by voltage to move up to the top of the screen (that is, Move from the bottom to the screen).
  • the existing e-book readers also provide 16 grayscale colors, that is, 16 grayscale colors (light gray, dark gray, etc.) from white to black. The black particles are moved up to different positions by voltage control. The corresponding gray scale display.
  • the LUT table is a voltage drive table, which records the correspondence between different gray levels and drive waveforms.
  • the drive waveform is mainly composed of the waveform amplitude ( It corresponds to the size of the drive voltage), pulse width, and pulse times.
  • the longer the distance the particles are driven to move the greater the driving voltage, the greater the pulse width, and the greater the number of pulses.
  • the black particles move the longest distance (from the bottom to the top of the screen).
  • the moving distance of black particles is second, and light gray is the second.
  • the material properties of the ink screen itself will cause particles to produce higher "viscosity" in low temperature environments, resulting in insufficient particle movement distance.
  • the distance between the black particles and the top of the screen after moving in a low temperature environment is greater than that in a high temperature environment, resulting in a lighter gray scale displayed.
  • the driving voltage has a certain value range, and its effect on particle movement compensation is relatively limited.
  • the movement compensation is mainly achieved by increasing the pulse width and the number of pulses.
  • this method will increase the time-consuming of screen refreshing.
  • the ink screen itself has the characteristics of low refresh speed. In low temperature environments, further reducing the refresh speed will affect the use of users. The experience has a serious impact.
  • the present disclosure is proposed to provide an ink screen reading device, a screen driving method thereof, and a storage medium that overcome or at least partially solve the above-mentioned problems.
  • a screen driving method of an ink screen reading device including:
  • an ink screen reading device including: an ink screen, a temperature sensor, a processor, a memory, a communication interface, and a communication bus.
  • the ink screen, a temperature sensor, a processor, a memory and a communication interface pass through The communication bus completes mutual communication;
  • the memory is used to store at least one executable instruction, and the executable instruction causes the processor to perform the following operations:
  • non-volatile computer-readable storage medium stores at least one executable instruction, and the executable instruction causes a processor to perform the following operations :
  • a computer program product which includes a computer program stored on the aforementioned non-volatile computer-readable storage medium.
  • the screen driving method of the ink screen reading device by comparing the current temperature of the screen with a preset first temperature value, when the current temperature of the screen is low, a higher second temperature value is used to check The table determines the driving waveform of the screen. Because the second temperature value is higher than the current temperature, a driving waveform with a shorter refresh time can be obtained, thereby increasing the refresh speed.
  • FIG. 1 shows a schematic flowchart of a screen driving method of an ink screen reading device according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic flowchart of a screen driving method of an ink screen reading device according to another embodiment of the present disclosure
  • FIG. 3 shows a schematic flowchart of a screen driving method of an ink screen reading device according to another embodiment of the present disclosure
  • FIG. 4 shows a schematic flowchart of a screen driving method of an ink screen reading device according to another embodiment of the present disclosure
  • FIG. 5 shows a schematic flowchart of a screen driving method of an ink screen reading device according to another embodiment of the present disclosure
  • FIG. 6 shows a schematic flowchart of a screen driving method of an ink screen reading device according to another embodiment of the present disclosure
  • FIG. 7 shows a schematic flowchart of a screen driving method of an ink screen reading device according to another embodiment of the present disclosure
  • FIG. 8 is a schematic diagram showing the structure of an ink screen reading device provided by an embodiment of the present disclosure.
  • FIG. 1 shows a schematic flowchart of an ink screen driving method of an ink screen reading device provided by an embodiment of the present disclosure, and the method is applied to the ink screen reading device. As shown in Figure 1, the method includes the following steps:
  • Step 101 Obtain the current temperature of the ink screen.
  • the current temperature of the ink screen can be detected by a temperature detection device in the ink screen reading device, such as a temperature sensor, and then the detected current temperature of the ink screen can be obtained.
  • This temperature is mainly affected by the external environment temperature.
  • the ink screen of the ink screen reading device is generally an ink screen, and the following embodiments of the present disclosure all take the ink screen as an example for description.
  • Step 102 Determine whether the current temperature is less than the preset first temperature value, if yes, go to step 103, otherwise, go to step 104.
  • Step 103 Determine the second temperature value, and look up the table to determine the driving waveform of the ink screen according to the second temperature value and the gray value of the content to be displayed in the LUT table.
  • the second temperature value is a preset value, which is greater than or equal to the first temperature value.
  • the first temperature value and the second temperature value can be artificially set fixed values.
  • the first temperature value is set to the appropriate display temperature of the ink screen, such as between 24-70 degrees, or between 30-70 degrees.
  • the temperature value is set as the first temperature value increased by a certain degree, for example, the second temperature value is set as the first temperature value plus 3 degrees.
  • the first temperature value is 24 degrees and the second temperature value is 27 degrees. In another embodiment, the first temperature value is 27 degrees and the second temperature value is 30 degrees.
  • the LUT table is the correspondence table of temperature, gray value and driving waveform.
  • the lower the temperature the larger the driving voltage of the driving waveform, the larger the waveform width, the more pulse times, and the slower the refresh speed.
  • the refresh speed will be slower, and then determine a second temperature value greater than or equal to the first temperature value as the lookup table According to the table, determine the driving waveform. In this way, since the current temperature is less than the first temperature value, and the second temperature value is greater than or equal to the first temperature value, the second temperature value is greater than the current temperature. Use a temperature value higher than the current temperature to look up the table to get the refresh time Shorter driving waveform, thereby increasing the refresh speed.
  • Step 104 According to the current temperature and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • the current temperature is not less than the preset first temperature value, it means that the temperature is suitable for the ink screen display. Using the current temperature to look up the table will not result in a slow refresh rate, so look up the table based on the current temperature to determine the drive waveform.
  • Step 105 Use the driving waveform determined by the look-up table to drive the ink screen to display the content to be displayed.
  • the embodiment of the present disclosure compares the current temperature of the ink screen with a preset first temperature value.
  • a higher second temperature value is used to determine the driving waveform of the ink screen.
  • the second temperature value is higher than the current temperature, so a driving waveform with a shorter refresh time can be obtained, thereby increasing the refresh speed.
  • FIG. 2 shows a schematic flowchart of an ink screen driving method for an ink screen reading device according to another embodiment of the present disclosure, and the method is applied to the ink screen reading device .
  • the method includes the following steps:
  • Step 200 Pre-establish a correspondence table of gray value and temperature based on the driving waveform.
  • the establishment of the correspondence table can be done in the following ways:
  • Step 201 Obtain the current temperature of the ink screen.
  • Step 202 Determine whether the current temperature is less than the preset first temperature value, if yes, perform step 203a, otherwise, perform step 204.
  • Step 203a preset an initial temperature value not lower than the first temperature value.
  • the initial temperature value is a preset value, which is greater than or equal to the first temperature value.
  • the first temperature value and the initial temperature value can be artificially set fixed values.
  • the first temperature value is set to the appropriate display temperature of the ink screen, such as between 24-70 degrees, or between 30-70 degrees, the initial temperature value
  • the first temperature value is set to increase by a certain number of degrees, for example, the initial temperature value is set to the first temperature value plus 3 degrees.
  • the first temperature value is 24 degrees
  • the initial temperature value is 27 degrees.
  • the initial temperature value is 30 degrees.
  • Step 203b Obtain the actual gray value of each pixel in the content to be displayed, and adjust the actual gray value to a corrected gray value according to a preset correction rule.
  • the corrected gray value is smaller than the actual gray value.
  • the actual gray value is adjusted to the corrected gray value according to the preset correction rule, and the actual gray value can be adjusted to the corrected gray value based on the gray loss ratio.
  • the gray loss ratio is set according to the actual situation, the higher the ratio, the better the gray reduction, but the slower the refresh speed. The lower the ratio, the opposite is true. As long as the gray loss ratio is not set to 100%, the refresh speed will be improved. However, in actual use, in order to ensure the user's visual experience, the ratio is generally not set too low. This solution aims to find a balance between gray scale restoration and refresh speed.
  • the grayscale loss ratio can be set to 64%, that is, the display grayscale should not be lower than 64% of the original grayscale.
  • the grayscale loss ratio can be set to 64%, that is, the display grayscale should not be lower than 64% of the original grayscale.
  • the actual gray value is adjusted to the corrected gray value according to the preset correction rule, and the gray level of the content to be displayed can also be reduced by N gray levels to obtain the corrected gray value, where N is a natural number.
  • N is a natural number.
  • the user can choose different line thicknesses, considering that the thinner the line is, the more sensitive the grayscale loss is, so the grayscale loss ratio corresponding to different line thickness parameters can be established. Generally, the thinner the line, the greater the gray loss ratio can be set. For example, the gray loss ratio is inversely proportional to the thickness of the stylus line.
  • the grayscale of the content to be displayed can be directly reduced by one to two grayscales to obtain the corrected grayscale value.
  • the higher the gray scale the smaller the improvement effect brought by the reduction. Therefore, for too high gray scales, it is more suitable to adjust the actual gray value to the corrected gray value based on the gray loss ratio.
  • Step 203c Find the temperature corresponding to the corrected gray value in the correspondence table as the corrected temperature value.
  • Step 203d Determine whether the corrected temperature value is greater than the initial temperature value, if yes, execute step 203e, otherwise, execute step 203f.
  • Step 203e Determine the initial temperature value as the second temperature value.
  • Step 203f Determine the corrected temperature value as the second temperature value.
  • the essential idea of the above steps 203d-203f is that if the initial temperature value is higher than the corrected temperature value, the corrected temperature value is used; if the initial temperature value is not higher than the corrected temperature value, the initial temperature value is used. This can avoid the use of too high temperature to look up the table, resulting in too high refresh speed and too light gray display.
  • Step 203g In the LUT table, according to the second temperature value and the gray value of the content to be displayed, look up the table to determine the driving waveform of the ink screen.
  • Step 204 According to the current temperature and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 205 Use the driving waveform determined by the look-up table to drive the ink screen to display the content to be displayed.
  • This embodiment first determines an initial temperature value (the initial temperature value is equivalent to the second temperature value of the previous embodiment), and then by reducing the gray value to an acceptable value, the determination is determined based on the reduced gray value by looking up the table Corresponding corrected temperature value.
  • the corrected temperature value is the temperature to ensure that the display gray scale is not too shallow.
  • the table look-up temperature should not be higher than this temperature. If it is higher than this temperature, the refresh rate will be too high and the gray scale will be displayed. Too shallow.
  • the initial temperature value is higher than the corrected temperature value, use the lower corrected temperature value to look up the table; if the initial temperature value is not higher than the corrected temperature value, use the lower initial temperature value to look up the table. This can avoid the use of too high temperature to look up the table, resulting in too high refresh speed and too light gray display.
  • the gray scale refreshed according to the foregoing embodiment is lighter than the gray scale refreshed according to the actual temperature. Therefore, you can choose a time when the user is not sensitive to delay to do a compensation refresh, and brush the gray scale to the standard Grayscale. Since the user is not sensitive to the saving time when saving the note page, he can choose to refresh it at this time.
  • the page is generally not saved after refreshing.
  • the user draws a line with a stylus, and it will not be saved after being displayed.
  • the content data parameter of each handwritten pixel can be further saved.
  • the current note page for example, when the user clicks the save control command received, or automatically saves when exiting the current note page
  • the current note page is global Refresh, refresh each pixel to the standard gray value, thereby eliminating grayscale loss.
  • FIG. 3 shows a schematic flowchart of an ink screen driving method of an ink screen reading device according to another embodiment of the present disclosure, and the method is applied to the ink screen reading device. As shown in Figure 3, the method includes the following steps:
  • Step 301 During the handwriting operation, save the content data parameters of the pixels of the handwriting.
  • the content data parameters include pixel coordinates and pixel standard gray values.
  • the content parameters of each handwriting line drawn by the user in the current note page are saved.
  • the standard gray value of the pixel is the gray value that the pixel should display. Because the actual refresh time is shortened, the actual gray value displayed is smaller than the standard gray value. Save the pixel coordinates and the standard gray value of the pixel for global refresh, that is, use the standard gray value to perform a global refresh of the entire page again.
  • Step 302 After completing the handwriting operation on the current page, clear the current page display content of the ink screen.
  • the black and white particles are first returned to the initial position by applying voltage, and the content displayed on the current page is erased.
  • Step 303 Determine the driving waveform of the ink screen in the LUT table according to the pixel coordinates, the standard gray value of the pixel and the current temperature.
  • Step 304 Use the driving waveform determined by the look-up table to drive the ink screen to display the cleared page display content to perform a global refresh.
  • the page content includes the book/notebook ID of the book/notebook, the page number of the page in the book or notebook, the coordinates of each pixel on the page, the corresponding gray value, and the inserted picture
  • the gray value of each handwritten line corresponding to the pixel of the overlap is superimposed as the standard gray value of the pixel.
  • the superimposed gray value can be determined by adding the number of steps. If the number of steps added exceeds 16, the sixteen-level grayscale is used as the standard gray value (ie black ).
  • This embodiment selects the time when the user is not very sensitive to the time delay, and brushes the gray scale to the standard gray scale to realize the compensation refresh.
  • the second temperature value can also be dynamically adjusted according to the user's usage situation, so as to better balance the relationship between grayscale loss and refresh speed in combination with usage requirements.
  • FIG. 4 shows a schematic flowchart of an ink screen driving method of an ink screen reading device according to another embodiment of the present disclosure, and the method is applied to the ink screen reading device. As shown in Figure 4, the method for adjusting the second temperature value according to the handwriting speed includes the following steps:
  • Step 400 preset a first mapping table of handwriting speed and a second temperature value.
  • the handwriting speed has a positive correlation with the second temperature value, that is, the handwriting speed is fast, and the refresh speed is given priority.
  • the second temperature value in the first mapping relationship table under the premise that it is not lower than the first temperature value, as the handwriting speed increases, it can increase cumulatively in steps of 1 degree or 2 degrees.
  • Step 401 Obtain the current temperature of the ink screen.
  • Step 402 Determine whether the current temperature is less than the preset first temperature value, if yes, perform step 403a, otherwise, perform step 404.
  • Step 403a When detecting that the pen tip has not left the ink screen, obtain the handwriting speed in each time window in real time.
  • the pen tip does not leave the ink screen, so when it is detected that the pen tip does not leave the ink screen, the handwriting speed under each time window is obtained in real time through the system interface.
  • Step 403b Determine the second temperature value in the first mapping table according to the handwriting speed look-up table.
  • Step 403c According to the second temperature value and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 404 According to the current temperature and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 405 Use the driving waveform determined by the look-up table to drive the ink screen to display the content to be displayed.
  • the second temperature value is determined according to the handwriting speed.
  • the refresh speed is guaranteed first to better balance the relationship between grayscale loss and refresh speed.
  • the second temperature value can also be dynamically adjusted according to the user's usage situation, so as to better balance the relationship between grayscale loss and refresh speed in combination with usage requirements.
  • FIG. 5 shows a schematic flowchart of an ink screen driving method of an ink screen reading device according to another embodiment of the present disclosure, and the method is applied to the ink screen reading device. As shown in FIG. 5, the method adjusts the second temperature value according to the handwriting pressure, and the method includes the following steps:
  • Step 500 Preset a second mapping relationship table between the handwritten pressure and the second temperature value.
  • the handwriting pressure has a negative correlation with the second temperature value, that is, the greater the handwriting pressure, the priority is given to the grayscale display.
  • the second temperature value in the second mapping relationship table As the handwriting pressure increases, it can be accumulated and decreased in steps of 1 degree or 2 degrees.
  • Step 501 Obtain the current temperature of the ink screen.
  • Step 502 Determine whether the current temperature is less than the preset first temperature value, if yes, perform step 503a, otherwise, perform step 504.
  • Step 503a When detecting that the pen tip has not left the ink screen, obtain the handwriting pressure in each time window in real time.
  • the pen tip does not leave the ink screen, so when it is detected that the pen tip does not leave the ink screen, the handwriting pressure under each time window (that is, the stroke pressure value can be read by the ink screen in the device) through the system interface. Detected by the pressure sensor).
  • Step 503b Determine the second temperature value in the second mapping table according to the handwritten pressure look-up table.
  • Step 503c According to the second temperature value and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 504 According to the current temperature and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 505 Use the driving waveform determined by the look-up table to drive the ink screen to display the content to be displayed.
  • the second temperature value may be lower than the first temperature value, but if it is lower than the actual temperature value, the actual temperature value is used to look up the table.
  • the embodiment of the present disclosure determines the second temperature value according to the handwriting pressure. The greater the handwriting pressure, the priority is given to the gray-scale display, and the relationship between gray-scale loss and refresh speed is better balanced.
  • the second temperature value can also be dynamically adjusted according to the user's usage situation, so as to better balance the relationship between grayscale loss and refresh speed in combination with usage requirements.
  • FIG. 6 shows a schematic flowchart of an ink screen driving method of an ink screen reading device according to another embodiment of the present disclosure, and the method is applied to the ink screen reading device. As shown in FIG. 6, the method adjusts the second temperature value according to the handwriting speed and the handwriting pressure. The method includes the following steps:
  • Step 600 Preset a third mapping table of handwriting speed, handwriting pressure and second temperature value.
  • the handwriting speed has a positive correlation with the second temperature value, that is, the handwriting speed is fast, and the refresh speed is given priority.
  • the second temperature value in the first mapping relationship table under the premise that it is not lower than the first temperature value, as the handwriting speed increases, it can increase cumulatively in steps of 1 degree or 2 degrees.
  • the handwriting pressure has a negative correlation with the second temperature value, that is, the greater the handwriting pressure, the priority is given to the grayscale display.
  • the second temperature value in the second mapping relationship table as the handwriting pressure increases, it can be accumulated and decreased in steps of 1 degree or 2 degrees.
  • Step 601 Obtain the current temperature of the ink screen.
  • Step 602 Determine whether the current temperature is less than the preset first temperature value, if yes, perform step 603a, otherwise, perform step 604.
  • Step 603a When it is detected that the pen tip has not left the ink screen, obtain the handwriting speed and handwriting pressure in each time window in real time.
  • the pen tip does not leave the ink screen, so when it is detected that the pen tip does not leave the ink screen, the handwriting speed and handwriting pressure in each time window are obtained in real time through the system interface.
  • Step 603b Determine the second temperature value according to the handwriting speed and handwriting pressure in the third mapping table.
  • Step 603c According to the second temperature value and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 604 According to the current temperature and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 605 Use the driving waveform determined by the look-up table to drive the ink screen to display the content to be displayed.
  • the second temperature value may be lower than the first temperature value, but if it is lower than the actual temperature value, the actual temperature value is used to look up the table.
  • the embodiments of the present disclosure jointly determine the second temperature value according to the handwriting speed and the handwriting pressure.
  • the refresh speed is given priority.
  • the greater the handwriting pressure the priority is given to the grayscale display, which better balances the grayscale loss and The relationship between refresh speed.
  • the refresh scenarios involved in the embodiments of the present disclosure include: general page content refresh (for example, page turning, switching to a setting interface, etc.), and refresh in a handwriting scenario.
  • general page content refresh for example, page turning, switching to a setting interface, etc.
  • refresh in a handwriting scenario In the latter scenario, the ink screen reading device receives any content written on the ink screen by the user using the electromagnetic pen. As the pen tip moves on the ink screen, the ink screen reading device needs to be refreshed frequently to dynamically display continuous changes in handwritten lines. Therefore, the handwriting scene is more sensitive to the refresh rate of the ink screen.
  • FIG. 7 shows a schematic flowchart of an ink screen driving method of an ink screen reading device according to another embodiment of the present disclosure, and the method is applied to the ink screen reading device. As shown in Figure 7, the method includes the following steps:
  • Step 701 Obtain the current temperature of the ink screen.
  • Step 702 Receive an ink screen refresh instruction.
  • Step 703 Determine whether the refresh command is triggered by the stylus, if yes, execute step 704a, otherwise, execute step 705.
  • the ink screen reading device has a built-in electromagnetic handwriting tablet for use with an electromagnetic pen (stylus pen).
  • an electromagnetic pen stylus pen
  • the distance between the stylus pen tip and the electromagnetic handwriting tablet is close enough that the electromagnetic handwriting tablet can detect LC
  • the electromagnetic signal generated by the oscillating circuit transmits the relevant information of the electromagnetic signal to the operating system.
  • the relevant information includes the signal type (for example, the electromagnetic signal), the strength of the signal, and the coordinate position of the signal on the screen.
  • the ink screen reading device also provides a touch function. A capacitive touch pad is added between the ink screen and the electromagnetic handwriting board on the hardware.
  • the capacitive signal triggered by the infrared rays of the finger can be detected. Then transfer the relevant information of the capacitance signal to the operating system.
  • Related information includes signal type (such as capacitive signal), touch type (such as click, long press, slide, etc.), and the coordinate position of the signal on the screen.
  • the operating system transmits the relevant information of the operation instruction to the processor of the reading device, and the processor can determine that the refresh instruction is triggered by the stylus or finger according to the signal type therein.
  • Step 704a Determine whether the current temperature is less than the preset first temperature value, if yes, perform step 704b, otherwise, perform step 704c.
  • Step 704b Determine the second temperature value.
  • the LUT table according to the second temperature value and the gray value of the content to be displayed, look up the table to determine the driving waveform of the ink screen.
  • the second temperature value is a preset value, which is greater than or equal to the first temperature value
  • the LUT table is a corresponding relationship table of temperature, gray value and driving waveform.
  • Step 704c According to the current temperature and the gray value of the content to be displayed in the LUT table, look up the table to determine the driving waveform of the ink screen.
  • Step 705 Obtain the current temperature of the ink screen, and look up the table to determine the driving waveform of the ink screen according to the current temperature and the gray value of the content to be displayed in the LUT table.
  • Step 706 Use the driving waveform determined by the look-up table to drive the ink screen to display the content to be displayed.
  • steps 704a-704c are the same as the steps 102-104 of the foregoing embodiment, and the specific implementation process can refer to the foregoing embodiment, which will not be repeated here.
  • steps 704a-704c can also be replaced with steps 202-204 in the foregoing embodiment, or steps 301-303 can be added, or replaced with steps 402-404, 502-504 or 602-604 in the foregoing embodiment. , I will not describe them one by one here.
  • a judging step is added to determine whether the refresh command is triggered by a stylus. If the refresh command is triggered by a stylus (for example, an electromagnetic signal), the ink screen driving process of the foregoing embodiment is executed. If the refresh command is triggered by a finger, Page turning and other triggers (such as capacitance signal trigger), use the current actual temperature to look up the table.
  • a stylus for example, an electromagnetic signal
  • Page turning and other triggers such as capacitance signal trigger
  • the embodiments of the present disclosure also provide a non-volatile computer-readable storage medium, the non-volatile computer-readable storage medium stores at least one executable instruction, and the executable instruction causes the processor to perform the following operations:
  • the executable instruction causes the processor to perform the following operations: pre-establishing a correspondence table of gray value and temperature based on the driving waveform;
  • Determining the second temperature value further includes:
  • adjusting the actual gray value to the corrected gray value according to a preset correction rule further includes:
  • the gray level of the content to be displayed is reduced by N gray levels to obtain the corrected gray value, where N is a natural number.
  • the executable instruction causes the processor to perform the following operations: setting the gray loss ratio to be inversely proportional to the thickness of the stylus line.
  • executable instructions cause the processor to perform the following operations:
  • the content data parameters include pixel coordinates and pixel standard gray values
  • storing the content data parameters of the pixels of the handwriting handwriting further includes:
  • the gray value of each handwritten line corresponding to the pixel of the overlap is superimposed as the standard gray value of the pixel.
  • the executable instruction causes the processor to perform the following operations: preset a first mapping table of handwriting speed and the second temperature value, where the handwriting speed and the second temperature value are in a positive correlation; determine;
  • the second temperature value further includes:
  • the executable instruction causes the processor to perform the following operations: preset a second mapping table of handwriting pressure and the second temperature value, where the handwriting pressure and the second temperature value are in a negative correlation; determining the second temperature value further includes:
  • the second temperature value is determined according to the handwritten pressure look-up table.
  • FIG. 8 is a schematic diagram showing the structure of an ink screen reading device provided by an embodiment of the present disclosure.
  • the ink screen reading device 800 may include: an ink screen 801, a temperature sensor 803, a processor (processor) 802, a memory (memory) 804, a communication interface (Communications Interface) 806, and a communication bus 808.
  • the ink screen 801, the temperature sensor 803, the processor 802, the memory 804, and the communication interface 806 communicate with each other through the communication bus 806.
  • the temperature sensor 803 is used to obtain the current temperature of the ink screen.
  • the communication interface 806 is used to communicate with other devices such as network elements such as clients or other servers.
  • the processor 802 is configured to execute the program 810, and specifically can execute the relevant steps in the embodiment of the screen driving method of the ink screen reading device.
  • the program 810 may include program code, and the program code includes computer operation instructions.
  • the processor 802 may be a central processing unit CPU, or an ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present disclosure.
  • the ink screen reading device includes one or more processors, which can be the same type of processor, such as one or more CPUs, or different types of processors, such as one or more CPUs and one or more ASICs.
  • the memory 804 is used to store the program 810.
  • the memory 804 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • the program 810 may be specifically used to cause the processor 802 to perform the following operations:
  • executable instructions enable the processor 802 to perform the following operations: pre-establish a correspondence table of gray value and temperature based on the driving waveform;
  • Determining the second temperature value further includes:
  • adjusting the actual gray value to the corrected gray value according to a preset correction rule further includes:
  • the gray level of the content to be displayed is reduced by N gray levels to obtain the corrected gray value, where N is a natural number.
  • the executable instruction causes the processor 802 to perform the following operations: set the gray loss ratio to be inversely proportional to the thickness of the stylus pen line.
  • the executable instructions cause the processor 802 to perform the following operations:
  • the content data parameters include pixel coordinates and pixel standard gray values
  • storing the content data parameters of the pixels of the handwriting handwriting further includes:
  • the gray value of each handwritten line corresponding to the pixel of the overlap is superimposed as the standard gray value of the pixel.
  • the executable instruction causes the processor 802 to perform the following operations: preset a first mapping table of handwriting speed and the second temperature value, wherein the handwriting speed and the second temperature value are in a positive correlation; Determining the second temperature value further includes:
  • the executable instructions enable the processor 802 to perform the following operations: preset a second mapping table of handwriting pressure and a second temperature value, where the handwriting pressure and the second temperature value are in a negative correlation; determining the second temperature value further includes:
  • the second temperature value is determined according to the handwritten pressure look-up table.
  • modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features or processes or units are mutually exclusive, any combination can be used to compare all the features disclosed in this specification (including the accompanying claims, abstract, and drawings) and any method or device thus disclosed. All processes or units are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种墨水屏阅读设备及其屏幕驱动方法、存储介质。该方法包括:获取墨水屏的当前温度(101);判断当前温度是否小于预设的第一温度值(102);若是,则确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形(103),其中,第二温度值大于或等于第一温度值;否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形(104);使用查表确定的驱动波形驱动墨水屏显示待显示内容(105)。

Description

墨水屏阅读设备及其屏幕驱动方法、存储介质
相关申请的交叉参考
本申请要求于2019年2月26日提交中国专利局、申请号为2019101426095、名称为“墨水屏阅读设备及其屏幕驱动方法、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及计算机技术领域,具体涉及一种墨水屏阅读设备及其屏幕驱动方法、存储介质。
背景技术
墨水屏设备是指使用电子墨水屏(E-ink)的电子设备,有的墨水屏设备具备手写功能,也称为手写阅读设备或手写阅读器。电子墨水屏是一种本身不发光而依靠外界反光实现显示效果的屏幕,其显示效果与纸质材料极为类似,因此可比拟纸质材料阅读的体验。
墨水屏由许多微囊组成,每个微囊里包含多个黑色粒子和多个白色粒子,两者各带相反电荷。当需要在屏幕上显示黑色内容时,通过电压驱动黑色粒子向上移动到屏幕顶部(也即从底部向屏幕方向移动),当显示白色内容时,通过电压驱动白色粒子向上移动到屏幕顶部(也即从底部向屏幕方向移动)。此外,现有的电子书阅读器还提供16灰阶颜色,即从白色到黑色的16级灰度颜色(浅灰、深灰等),通过电压控制黑色粒子向上移动到不同的位置,来实现相应灰度的显示。
墨水屏提供商一般需提供显示查找(Look-Up-Table,LUT)表,LUT表为电压驱动表,其中记录有不同灰度与驱动波形(waveform)的对应关系,驱动波形主要由波形幅度(其对应驱动电压大小)、脉冲宽度、脉冲次数形成。原则上,驱动粒子移动的距离越长,要求驱动电压越大、脉冲宽度越大、脉冲次数越多。例如当显示黑色内容时,黑色粒子移动距离最长(从底部到屏幕顶部),显示深灰内容时黑色粒子的移动距离次之,浅灰更次之。
墨水屏本身的材料特性会使低温环境下粒子产生更高的“粘性”,导致粒子移动距离不足。例如在使用相同驱动波形驱动黑色粒子移动时,低温环境下黑色粒子移动后与屏幕顶部的距离,相比高温环境下更大,导致显示出来的灰度变浅。为克服此问题,现有技术在查LUT表时,不仅需要参考显示内容的灰度,还要进一步参考当前的墨水屏温度。原则上,当显示相同灰阶内容时,温度越低,驱动波形的驱动电压越大、波形宽度越大、脉冲次数越多,这样才能使粒子充分移动到相应位置上,也即需要对低温环境下的粒子移动进行补偿。
发明人发现,现有技术中至少存在以下问题:驱动电压有一定的取值范围,对粒子移动补偿的作用比较有限,低温环境下,主要靠增加脉冲宽度和脉冲次数实现移动补偿。但是这种方式会增加屏幕刷新的耗时,相对液晶显 示(Liquid Crystal Display,LCD)屏而言,墨水屏本身就具有刷新速度低的特点,低温环境下进一步降低刷新速度,会对用户的使用体验造成严重影响。
发明内容
鉴于上述问题,提出了本公开以便提供一种克服上述问题或者至少部分地解决上述问题的墨水屏阅读设备及其屏幕驱动方法、存储介质。
根据本公开的一个方面,提供了一种墨水屏阅读设备的屏幕驱动方法,包括:
获取墨水屏的当前温度;
判断当前温度是否小于预设的第一温度值;
若是,则确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形,其中,第二温度值大于或等于第一温度值;否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示待显示内容。
根据本公开的又一方面,提供了一种墨水屏阅读设备,包括:墨水屏、温度传感器、处理器、存储器、通信接口和通信总线,墨水屏、温度传感器、处理器、存储器和通信接口通过通信总线完成相互间的通信;
存储器用于存放至少一可执行指令,可执行指令使处理器执行以下操作:
通过温度传感器获取墨水屏的当前温度;
判断当前温度是否小于预设的第一温度值;
若是,则确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形,其中,第二温度值大于或等于第一温度值;否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示待显示内容。
根据本公开的又一方面,提供了一种非易失性计算机可读存储介质,该非易失性计算机可读存储介质中存储有至少一可执行指令,可执行指令使处理器执行以下操作:
获取墨水屏的当前温度;
判断当前温度是否小于预设的第一温度值;
若是,则确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形,其中,第二温度值大于或等于第一温度值;否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示待显示内容。根据本公开的再一方面,还提供了一种计算机程序产品,该计算机程序产品包括存储在上述 非易失性计算机可读存储介质上的计算机程序。
在本公开提供的墨水屏阅读设备的屏幕驱动方法中,通过将屏幕的当前温度与预设的第一温度值比较,当屏幕的当前温度较低时,使用一较高的第二温度值查表确定屏幕的驱动波形,因该第二温度值高于当前温度,因此可以获得刷新时间更短的驱动波形,从而提高刷新速度。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图概述
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本公开一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图2示出了本公开另一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图3示出了本公开又一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图4示出了本公开再一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图5示出了本公开另一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图6示出了本公开另一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图7示出了本公开另一个实施例提供的墨水屏阅读设备的屏幕驱动方法的流程示意图;
图8是示出了本公开实施例提供的墨水屏阅读设备的结构示意图。
本公开的较佳实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1示出了本公开一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图1所示,该方法包括以下步骤:
步骤101:获取墨水屏的当前温度。
可通过墨水屏阅读设备内的温度检测装置检测墨水屏的当前温度,例如温度传感器,然后获取检测到的墨水屏的当前温度。该温度主要受外界环境温度影响。墨水屏阅读设备的墨水屏一般为墨水屏,本公开下述实施例均以墨水屏为例进行说明。
步骤102:判断当前温度是否小于预设的第一温度值,若是,执行步骤103,否则,执行步骤104。
步骤103:确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形。
其中,第二温度值为预设值,其大于或等于第一温度值。第一温度值和第二温度值可以为人为设定的固定值,一般第一温度值设置为墨水屏的适宜显示温度,例如24-70度之间,或者30-70度之间,第二温度值设定为第一温度值增加一定的度数,例如第二温度值设定为第一温度值加3度。在一个实施例中,第一温度值为24度,第二温度值为27度。在另一实施例中,第一温度值为27度,第二温度值为30度。
LUT表为温度、灰度值和驱动波形的对应关系表。一般而言,LUT表中,当显示相同灰度值时,温度越低,驱动波形的驱动电压越大、波形宽度越大、脉冲次数越多,刷新速度也越慢。
若当前温度小于预设的第一温度值,此时用当前温度查表,因温度较低,将导致刷新速度较慢,则确定一大于或等于第一温度值的第二温度值作为查表依据,查表确定驱动波形。这样,由于当前温度小于第一温度值,而第二温度值大于或等于第一温度值,因此第二温度值是大于当前温度的,使用高于当前温度的温度值查表,可以获得刷新时间更短的驱动波形,从而提高刷新速度。
步骤104:在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
若当前温度不小于预设的第一温度值,说明此时温度为适宜墨水屏显示的温度,用当前温度查表不会导致刷新速度较慢,则还是根据当前温度查表确定驱动波形。
步骤105:使用查表确定的驱动波形驱动墨水屏显示待显示内容。
本公开实施例通过将墨水屏的当前温度与预设的第一温度值比较,当墨水屏的当前温度较低时,使用一较高的第二温度值查表确定墨水屏的驱动波形,因该第二温度值高于当前温度,因此可以获得刷新时间更短的驱动波形,从而提高刷新速度。
进一步地,为了避免提高刷新速度导致显示灰度过浅,图2示出了本公开另一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图2所示,该方法包括以下步骤:
步骤200:基于驱动波形预先建立灰度值和温度的对应关系表。
对应关系表的建立可通过如下方式:
首先,通过查询LUT表确定各灰度值与驱动波形的对应关系。然后,基于驱动波形,通过查询LUT表建立各灰度值与温度的对应关系。
步骤201:获取墨水屏的当前温度。
步骤202:判断当前温度是否小于预设的第一温度值,若是,执行步骤203a,否则,执行步骤204。
步骤203a:预设一不低于第一温度值的初始温度值。
其中,初始温度值为预设值,其大于或等于第一温度值。第一温度值和初始温度值可以为人为设定的固定值,一般第一温度值设置为墨水屏的适宜显示温度,例如24-70度之间,或者30-70度之间,初始温度值设定为第一温度值增加一定的度数,例如初始温度值设定为第一温度值加3度。在一个实施例中,第一温度值为24度,初始温度值为27度。在另一实施例中,第一温度值为27度,初始温度值为30度。
步骤203b:获取待显示内容中每个像素点的实际灰度值,根据预设修正规则将实际灰度值调整为修正灰度值。
其中,修正灰度值小于实际灰度值。根据预设修正规则将实际灰度值调整为修正灰度值,可以基于灰度损失比将实际灰度值调整为修正灰度值。该灰度损失比根据实际情况设置,比例越高灰度还原度越好,但刷新速度越慢。比例越低则相反。上述灰度损失比只要不设置为100%,刷新速度就会有所改善。但实际使用中,为了保障用户视觉体验,一般不将该比例设置的过低。通过该方案旨在灰度还原度和刷新速度之间找到一个平衡点。例如,可将灰度损失比设置为64%,也即显示灰度不应低于原灰度的64%,刷新时,从待显示内容的数据信息中读取每个像素点的灰度值,将该灰度值乘以64%,获得修正灰度值。
根据预设修正规则将实际灰度值调整为修正灰度值,还可以将待显示内容的灰阶降阶N个灰阶,获得修正灰度值,其中,N为自然数。在手写场景下,用户可以选择不同的线条粗细,考虑线条越细对灰度损失越敏感,因此可以建立不同线条粗细参数对应的灰度损失比。一般线条越细,可设置灰度损失比越大,例如设定灰度损失比与手写笔线条的粗细成反比。例如,对于使用十六阶灰度、八阶灰度等离散灰度值墨水屏阅读设备,可以直接将待显示内容的灰阶向下降阶一到两个灰阶,得到修正灰阶值。灰阶越高,降阶带来的改善效果越小,因此对于太高阶的灰阶,更适合基于灰度损失比将实际灰度值调整为修正灰度值的方式。
步骤203c:在对应关系表中查找对应修正灰度值的温度,作为修正温度值。
步骤203d:判断修正温度值是否大于初始温度值,若是,执行步骤203e,否则,执行步骤203f。
步骤203e:将初始温度值确定为第二温度值。
步骤203f:将修正温度值确定为第二温度值。
上述步骤203d-203f的实质思路是,若初始温度值高于修正温度值,使用修正温度值;若初始温度值不高于修正温度值,使用初始温度值。这样可避免使用过高的温度查表,导致刷新速度过高,显示灰度过浅。
步骤203g:在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤204:在LUT表中根据当前温度及待显示内容的灰度值,查表确定 墨水屏的驱动波形。
步骤205:使用查表确定的驱动波形驱动墨水屏显示待显示内容。
本实施例首先确定一个初始温度值(该初始温度值相当于前述实施例的第二温度值),然后通过将灰度值降低至可接受的值,基于该降低后的灰度值查表确定对应的修正温度值,此时该修正温度值为确保显示灰度不会过浅的温度,一般查表温度不应高于该温度,若高于该温度则导致刷新速度过高,显示灰度过浅。若初始温度值高于修正温度值,使用较低的修正温度值查表;若初始温度值不高于修正温度值,使用较低的初始温度值查表。这样可避免使用过高的温度查表,导致刷新速度过高,显示灰度过浅。
手写过程中,按照前述实施例刷新出来的灰度比按照实际温度刷新出来的灰度要浅,因此可选择一个用户对时延不太敏感的时机做一次补偿刷新,把灰度刷到标准的灰度上。由于保存笔记页时用户对保存时长并不敏感,因此可选择在这个时候做补偿刷新。
现有技术中,页面刷新完后一般不再保存,例如用户通过手写笔画了一条线,显示后将不再保存。在本公开一些实施例中,手写场景下,除按照上述方法刷新显示手写内容(也即笔记内容)外,还可以进一步将每个手写像素点的内容数据参数进行保存。在保存当前笔记页时(例如根据接收到的用户点击保存控件的指令时保存,或者退出当前笔记页时自动保存),根据保存的每一个像素点标准灰度值,对当前笔记页进行一次全局刷新,将每个像素点刷新到标准灰度值,由此消除灰度损失。图3示出了本公开又一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图3所示,该方法包括以下步骤:
步骤301:在手写操作过程中,保存手写笔迹的像素点的内容数据参数。
其中,内容数据参数包括像素点坐标和像素点标准灰度值。本步骤将用户在当前笔记页中画的每一个笔迹线条的内容参数均予以保存。其中像素点标准灰度值为像素点应该显示的灰度值,由于实际刷新时间缩短,所以实际显示的灰度值比标准灰度值小。保存像素点坐标和像素点标准灰度值是用于全局刷新,也即利用标准灰度值重新做一次整页的全局刷新。
步骤302:在完成当前页面手写操作后,清除墨水屏的当前页面显示内容。
在刷新时,先通过施加电压使黑白粒子回归到初始位置上,将当前页面显示的内容抹除。
步骤303:在LUT表中根据像素点坐标、像素点标准灰度值和当前温度查表确定墨水屏的驱动波形。
步骤304:使用查表确定的驱动波形驱动墨水屏显示被清除的页面显示内容,以进行全局刷新。
刷新后,保存刷新后的页面内容,该页面内容包括书籍/笔记本的书籍/笔记本ID、页面在书籍或笔记本中的页码、该页中每一个像素点的坐标、对应的灰度值、插入图片的链接、位置、尺寸等参数。
当手写线条之间存在重叠部分时,将重叠部分的像素点对应的每个手写线条的灰度值进行叠加,作为该像素点的标准灰度值。例如对于十六阶灰度 墨水屏阅读设备,可以按照阶数相加的方式确定叠加后的灰度值,阶数相加超过16的,以十六阶灰度为标准灰度值(即黑色)。
本实施例选择用户对时延不太敏感的时机,把灰度刷到标准的灰度上,实现补偿刷新。
在一些实施例中,在手写过程中,还可以根据用户的使用情况动态调整第二温度值,以结合使用需求更好的平衡灰度损失和刷新速度之间的关系。图4示出了本公开再一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图4所示,该方法根据手写速度调整第二温度值,包括以下步骤:
步骤400:预设手写速度与第二温度值的第一映射关系表。
其中手写速度与第二温度值成正相关关系,即手写速度快,对刷新速度做优先保证。对于第一映射关系表中第二温度值的设定,在不低于第一温度值的前提下,可以随着手写速度的提高,以1度或2度的步长,累加增长。
步骤401:获取墨水屏的当前温度。
步骤402:判断当前温度是否小于预设的第一温度值,若是,执行步骤403a,否则,执行步骤404。
步骤403a:检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写速度。
在进行线条滑动的过程中,笔尖不离开墨水屏,因此在检测到笔尖未离开墨水屏时,通过系统接口实时获取每一时间窗口下的手写速度。
步骤403b:在第一映射关系表中根据手写速度查表确定第二温度值。
步骤403c:在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤404:在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤405:使用查表确定的驱动波形驱动墨水屏显示待显示内容。
本公开实施例根据手写速度确定第二温度值,手写速度快时,对刷新速度做优先保证,更好的平衡灰度损失和刷新速度之间的关系。
在一些实施例中,在手写过程中,还可以根据用户的使用情况动态调整第二温度值,以结合使用需求更好的平衡灰度损失和刷新速度之间的关系。图5示出了本公开另一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图5所示,该方法根据手写压力调整第二温度值,该方法包括以下步骤:
步骤500:预设手写压力与第二温度值的第二映射关系表。
其中手写压力与第二温度值成负相关关系,即手写压力越大,对灰度显示做优先保证。对于第二映射关系表中第二温度值的设定,可以随着手写压力的提高,以1度或2度的步长,累加递减。
步骤501:获取墨水屏的当前温度。
步骤502:判断当前温度是否小于预设的第一温度值,若是,执行步骤503a,否则,执行步骤504。
步骤503a:检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写压力。
在进行线条滑动的过程中,笔尖不离开墨水屏,因此在检测到笔尖未离开墨水屏时,通过系统接口实时获取每一时间窗口下的手写压力(即笔触压力值,可由墨水屏阅读设备内的压力传感器检测得到)。
步骤503b:在第二映射关系表中根据手写压力查表确定第二温度值。
步骤503c:在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤504:在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤505:使用查表确定的驱动波形驱动墨水屏显示待显示内容。
在一些实施例中,第二温度值可低于第一温度值,但若低于实际温度值,则以实际温度值查表。
本公开实施例根据手写压力确定第二温度值,手写压力越大,对灰度显示做优先保证,更好的平衡灰度损失和刷新速度之间的关系。
在一些实施例中,在手写过程中,还可以根据用户的使用情况动态调整第二温度值,以结合使用需求更好的平衡灰度损失和刷新速度之间的关系。图6示出了本公开另一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图6所示,该方法根据手写速度和手写压力共同调整第二温度值,该方法包括以下步骤:
步骤600:预设手写速度、手写压力与第二温度值的第三映射关系表。
其中手写速度与第二温度值成正相关关系,即手写速度快,对刷新速度做优先保证。对于第一映射关系表中第二温度值的设定,在不低于第一温度值的前提下,可以随着手写速度的提高,以1度或2度的步长,累加增长。手写压力与第二温度值成负相关关系,即手写压力越大,对灰度显示做优先保证。对于第二映射关系表中第二温度值的设定,可以随着手写压力的提高,以1度或2度的步长,累加递减。
步骤601:获取墨水屏的当前温度。
步骤602:判断当前温度是否小于预设的第一温度值,若是,执行步骤603a,否则,执行步骤604。
步骤603a:检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写速度和手写压力。
在进行线条滑动的过程中,笔尖不离开墨水屏,因此在检测到笔尖未离开墨水屏时,通过系统接口实时获取每一时间窗口下的手写速度和手写压力。
步骤603b:在第三映射关系表中根据手写速度和手写压力查表确定第二温度值。
步骤603c:在LUT表中根据第二温度值及待显示内容的灰度值,查表 确定墨水屏的驱动波形。
步骤604:在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤605:使用查表确定的驱动波形驱动墨水屏显示待显示内容。
在一些实施例中,第二温度值可低于第一温度值,但若低于实际温度值,则以实际温度值查表。
本公开实施例根据手写速度和手写压力共同确定第二温度值,手写速度快时,对刷新速度做优先保证,手写压力越大,对灰度显示做优先保证,更好的平衡灰度损失和刷新速度之间的关系。
本公开实施例涉及的刷新场景包括:一般情况下的页面内容刷新(例如翻页、切换到设置界面等),以及手写场景下的刷新。后一场景中,墨水屏阅读设备接收用户使用电磁笔在墨水屏上随意书写的任何内容,随着笔尖在墨水屏上的移动,墨水屏阅读设备需要频繁刷新以动态显示手写线条的连续变化。因此,手写场景对墨水屏刷新速度的敏感性更强。图7示出了本公开另一个实施例提供的墨水屏阅读设备的墨水屏驱动方法的流程示意图,该方法应用于墨水屏阅读设备中。如图7所示,该方法包括以下步骤:
步骤701:获取墨水屏的当前温度。
步骤702:接收墨水屏刷新指令。
步骤703:判断刷新指令是否由手写笔触发,若是,执行步骤704a,否则,执行步骤705。
墨水屏阅读设备内置有配合电磁笔(手写笔)使用的电磁手写板,当使用手写笔在屏幕上书写笔迹时,手写笔笔尖与电磁手写板之间距离足够近以致电磁手写板能够检测到LC震荡电路产生的电磁信号,并将电磁信号的相关信息传递至操作系统,相关信息包括信号类型(例如电磁信号)、信号强弱、信号在屏幕上的坐标位置。另外,墨水屏阅读设备还提供触控功能,硬件上在墨水屏与电磁手写板之间加设一层电容触控板,当用户手指触控屏幕时可以检测到由手指红外线触发的电容信号,然后将该电容信号的相关信息传递给操作系统。相关信息包括信号类型(例如电容信号)、触控类型(例如点击、长按、滑动等)、信号在屏幕上的坐标位置。
当屏幕产生指令操作时,操作系统会将操作指令的相关信息传递给阅读设备的处理器,处理器根据其中的信号类型即可判断刷新指令是由手写笔或手指触发。
步骤704a:判断当前温度是否小于预设的第一温度值,若是,执行步骤704b,否则,执行步骤704c。
步骤704b:确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形。
其中,第二温度值为预设值,其大于或等于第一温度值,LUT表为温度、灰度值和驱动波形的对应关系表。
步骤704c:在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
步骤705:获取墨水屏的当前温度,在LUT表中根据当前温度及待显示 内容的灰度值,查表确定墨水屏的驱动波形。
步骤706:使用查表确定的驱动波形驱动墨水屏显示待显示内容。
可以理解的是,上述步骤704a-704c与前述实施例的步骤102-104相同,具体实现过程可参考前述实施例,此处不再赘述。当然,上述步骤704a-704c还可以替换为前述实施例中的步骤202-204,或者还可以增加步骤301-303,或者替换为前述实施例中的步骤402-404、502-504或者602-604,此处不再一一描述。
本实施例通过增加判断步骤,判断刷新指令是否由手写笔触发,若刷新指令由手写笔触发(例如电磁信号触发),则执行前述实施例的墨水屏驱动过程,若刷新指令由手指点击控件、翻页等触发(例如电容信号触发),则使用当前实际温度查表。
本公开实施例还提供了一种非易失性计算机可读存储介质,该非易失性计算机可读存储介质中存储有至少一可执行指令,可执行指令使处理器执行以下操作:
获取墨水屏的当前温度;
判断当前温度是否小于预设的第一温度值;
若是,则确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形,其中,第二温度值大于或等于第一温度值;否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示待显示内容。
在一种可选的方式中,可执行指令使所述处理器执行以下操作:基于驱动波形预先建立灰度值和温度的对应关系表;
确定第二温度值,进一步包括:
预设一不低于第一温度值的初始温度值;
获取待显示内容中每个像素点的实际灰度值,根据预设修正规则将实际灰度值调整为修正灰度值,修正灰度值小于实际灰度值;
在对应关系表中查找对应修正灰度值的温度,作为修正温度值;
判断修正温度值是否大于初始温度值;
若是,将初始温度值确定为第二温度值;否则,将修正温度值确定为第二温度值。
在一种可选的方式中,根据预设修正规则将实际灰度值调整为修正灰度值,进一步包括:
基于灰度损失比将实际灰度值调整为修正灰度值;或者,
将待显示内容的灰阶降阶N个灰阶,获得修正灰度值,其中,N为自然数。
在一种可选的方式中,在手写场景下,可执行指令使处理器执行以下操作:设定灰度损失比与手写笔线条的粗细成反比。
在一种可选的方式中,可执行指令使处理器执行以下操作:
在手写操作过程中,保存手写笔迹的像素点的内容数据参数,其中,内容数据参数包括像素点坐标和像素点标准灰度值;
在完成当前页面手写操作后,清除墨水屏的当前页面显示内容;
在LUT表中根据像素点坐标、像素点标准灰度值和当前温度查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示被清除的页面显示内容,以进行全局刷新。
在一种可选的方式中,保存手写笔迹的像素点的内容数据参数,进一步包括:
当手写线条之间存在重叠部分时,将重叠部分的像素点对应的每个手写线条的灰度值进行叠加,作为该像素点的标准灰度值。
在一种可选的方式中,可执行指令使处理器执行以下操作:预设手写速度与所述第二温度值的第一映射关系表,其中手写速度与第二温度值成正相关关系;确定第二温度值,进一步包括:
检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写速度;
在第一映射关系表中根据手写速度查表确定第二温度值;
或者,
可执行指令使处理器执行以下操作:预设手写压力与第二温度值的第二映射关系表,其中手写压力与第二温度值成负相关关系;确定第二温度值,进一步包括:
检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写压力;
在第二映射关系表中根据手写压力查表确定第二温度值。
在一种可选的方式中,
获取墨水屏的当前温度之后,进一步包括;
接收墨水屏刷新指令;
判断刷新指令是否由手写笔触发;
若是,则执行判断当前温度是否小于预设的第一温度值的步骤;
否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
图8是示出了本公开实施例提供的墨水屏阅读设备的结构示意图。如图8所示,该墨水屏阅读设备800可以包括:墨水屏801、温度传感器803、处理器(processor)802、存储器(memory)804、通信接口(Communications Interface)806以及通信总线808。
其中:墨水屏801、温度传感器803、处理器802、存储器804以及通信接口806通过通信总线806完成相互间的通信。温度传感器803用于获取墨水屏的当前温度。通信接口806,用于与其它设备比如客户端或其它服务器等的网元通信。处理器802,用于执行程序810,具体可以执行上述墨水屏阅读设备的屏幕驱动方法实施例中的相关步骤。
具体地,程序810可以包括程序代码,该程序代码包括计算机操作指令。
处理器802可能是中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开实施例的一个或多个集成电路。墨水屏阅读设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器804,用于存放程序810。存储器804可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
程序810具体可以用于使得处理器802执行以下操作:
通过温度传感器获取墨水屏的当前温度;
判断当前温度是否小于预设的第一温度值;
若是,则确定第二温度值,在LUT表中根据第二温度值及待显示内容的灰度值,查表确定墨水屏的驱动波形,其中,第二温度值大于或等于第一温度值;否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示待显示内容。
在一种可选的方式中,可执行指令使所述处理器802执行以下操作:基于驱动波形预先建立灰度值和温度的对应关系表;
确定第二温度值,进一步包括:
预设一不低于第一温度值的初始温度值;
获取待显示内容中每个像素点的实际灰度值,根据预设修正规则将实际灰度值调整为修正灰度值,修正灰度值小于实际灰度值;
在对应关系表中查找对应修正灰度值的温度,作为修正温度值;
判断修正温度值是否大于初始温度值;
若是,将初始温度值确定为第二温度值;否则,将修正温度值确定为第二温度值。
在一种可选的方式中,根据预设修正规则将实际灰度值调整为修正灰度值,进一步包括:
基于灰度损失比将实际灰度值调整为修正灰度值;或者,
将待显示内容的灰阶降阶N个灰阶,获得修正灰度值,其中,N为自然数。
在一种可选的方式中,在手写场景下,可执行指令使处理器802执行以下操作:设定灰度损失比与手写笔线条的粗细成反比。
在一种可选的方式中,在手写场景下,可执行指令使处理器802执行以下操作:
在手写操作过程中,保存手写笔迹的像素点的内容数据参数,其中,内容数据参数包括像素点坐标和像素点标准灰度值;
在完成当前页面手写操作后,清除墨水屏的当前页面显示内容;
在LUT表中根据所述像素点坐标、像素点标准灰度值和当前温度查表确定墨水屏的驱动波形;
使用查表确定的驱动波形驱动墨水屏显示被清除的页面显示内容,以进行全局刷新。
在一种可选的方式中,保存手写笔迹的像素点的内容数据参数,进一步包括:
当手写线条之间存在重叠部分时,将重叠部分的像素点对应的每个手写线条的灰度值进行叠加,作为该像素点的标准灰度值。
在一种可选的方式中,可执行指令使处理器802执行以下操作:预设手写速度与所述第二温度值的第一映射关系表,其中手写速度与第二温度值成正相关关系;确定第二温度值,进一步包括:
检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写速度;
在第一映射关系表中根据手写速度查表确定第二温度值;
或者,
可执行指令使处理器802执行以下操作:预设手写压力与第二温度值的第二映射关系表,其中手写压力与第二温度值成负相关关系;确定第二温度值,进一步包括:
检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写压力;
在第二映射关系表中根据手写压力查表确定第二温度值。
在一种可选的方式中,获取墨水屏的当前温度之后,进一步包括;
接收墨水屏刷新指令;
判断刷新指令是否由手写笔触发;
若是,则执行判断当前温度是否小于预设的第一温度值的步骤;
否则,在LUT表中根据当前温度及待显示内容的灰度值,查表确定墨水屏的驱动波形。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本公开也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本公开的内容,并且上面对特定语言所做的描述是为了披露本公开的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以 把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本公开进行说明而不是对本公开进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (18)

  1. 一种墨水屏阅读设备的屏幕驱动方法,其特征在于,包括:
    获取墨水屏的当前温度;
    判断所述当前温度是否小于预设的第一温度值;
    若是,则确定第二温度值,在LUT表中根据所述第二温度值及待显示内容的灰度值,查表确定所述墨水屏的驱动波形,其中,所述第二温度值大于或等于第一温度值;否则,在所述LUT表中根据所述当前温度及待显示内容的灰度值,查表确定所述墨水屏的驱动波形;
    使用查表确定的所述驱动波形驱动所述墨水屏显示待显示内容。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:基于驱动波形预先建立灰度值和温度的对应关系表;
    所述确定第二温度值,进一步包括:
    预设一不低于所述第一温度值的初始温度值;
    获取所述待显示内容中每个像素点的实际灰度值,根据预设修正规则将所述实际灰度值调整为修正灰度值,所述修正灰度值小于所述实际灰度值;
    在所述对应关系表中查找对应所述修正灰度值的温度,作为修正温度值;
    判断所述修正温度值是否大于初始温度值;
    若是,将所述初始温度值确定为所述第二温度值;否则,将所述修正温度值确定为所述第二温度值。
  3. 根据权利要求2所述的方法,其特征在于,所述根据预设修正规则将所述实际灰度值调整为修正灰度值,进一步包括:
    基于灰度损失比将所述实际灰度值调整为修正灰度值;或者,
    将所述待显示内容的灰阶降阶N个灰阶,获得修正灰度值,其中,所述N为自然数。
  4. 根据权利要求1所述的方法,其特征在于,在手写场景下,设定灰度损失比与手写笔线条的粗细成反比。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在手写操作过程中,保存手写笔迹的像素点的内容数据参数,其中,所述内容数据参数包括像素点坐标和像素点标准灰度值;
    在完成当前页面手写操作后,清除墨水屏的当前页面显示内容;
    在所述LUT表中根据所述像素点坐标、所述像素点标准灰度值和当前温度查表确定所述墨水屏的驱动波形;
    使用查表确定的所述驱动波形驱动所述墨水屏显示被清除的页面显示内容,以进行全局刷新。
  6. 根据权利要求5所述的方法,其特征在于,所述保存手写笔迹的像素点的内容数据参数,进一步包括:
    当手写线条之间存在重叠部分时,将重叠部分的像素点对应的每个手写线条的灰度值进行叠加,作为该像素点的标准灰度值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:预设手写速度与所述第二温度值的第一映射关系表,其中所述手写速度与所述第二温度值成正相关关系;所述确定第二温度值,进一步包括:
    检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写速度;
    在所述第一映射关系表中根据所述手写速度查表确定所述第二温度值;
    或者,
    所述方法还包括:预设手写压力与所述第二温度值的第二映射关系表,其中所述手写压力与所述第二温度值成负相关关系;所述确定第二温度值,进一步包括:
    检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写压力;
    在所述第二映射关系表中根据所述手写压力查表确定所述第二温度值。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述获取墨水屏的当前温度之后,进一步包括;
    接收墨水屏刷新指令;
    判断所述刷新指令是否由手写笔触发;
    若是,则执行所述判断所述当前温度是否小于预设的第一温度值的步骤;
    否则,在LUT表中根据所述当前温度及待显示内容的灰度值,查表确定所述墨水屏的驱动波形。
  9. 一种墨水屏阅读设备,其特征在于,包括:墨水屏、温度传感器、处理器、存储器、通信接口和通信总线,所述墨水屏、所述温度传感器、所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
    所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行以下操作:
    通过所述温度传感器获取所述墨水屏的当前温度;
    判断所述当前温度是否小于预设的第一温度值;
    若是,则确定第二温度值,在LUT表中根据所述第二温度值及待显示内容的灰度值,查表确定所述墨水屏的驱动波形,其中,所述第二温度值大 于或等于第一温度值;否则,在所述LUT表中根据所述当前温度及待显示内容的灰度值,查表确定所述墨水屏的驱动波形;
    使用查表确定的所述驱动波形驱动所述墨水屏显示待显示内容。
  10. 根据权利要求9所述的墨水屏阅读设备,其特征在于,所述可执行指令使所述处理器执行以下操作:基于驱动波形预先建立灰度值和温度的对应关系表;
    所述确定第二温度值,进一步包括:
    预设一不低于所述第一温度值的初始温度值;
    获取所述待显示内容中每个像素点的实际灰度值,根据预设修正规则将所述实际灰度值调整为修正灰度值,所述修正灰度值小于所述实际灰度值;
    在所述对应关系表中查找对应所述修正灰度值的温度,作为修正温度值;
    判断所述修正温度值是否大于初始温度值;
    若是,将所述初始温度值确定为所述第二温度值;否则,将所述修正温度值确定为所述第二温度值。
  11. 根据权利要求10所述的墨水屏阅读设备,其特征在于,所述根据预设修正规则将所述实际灰度值调整为修正灰度值,进一步包括:
    基于灰度损失比将所述实际灰度值调整为修正灰度值;或者,
    将所述待显示内容的灰阶降阶N个灰阶,获得修正灰度值,其中,所述N为自然数。
  12. 根据权利要求9所述的墨水屏阅读设备,其特征在于,在手写场景下,所述可执行指令使所述处理器执行以下操作:设定灰度损失比与手写笔线条的粗细成反比。
  13. 根据权利要求9所述的墨水屏阅读设备,其特征在于,所述可执行指令使所述处理器执行以下操作:
    在手写操作过程中,保存手写笔迹的像素点的内容数据参数,其中,所述内容数据参数包括像素点坐标和像素点标准灰度值;
    在完成当前页面手写操作后,清除墨水屏的当前页面显示内容;
    在所述LUT表中根据所述像素点坐标、所述像素点标准灰度值和当前温度查表确定所述墨水屏的驱动波形;
    使用查表确定的所述驱动波形驱动所述墨水屏显示被清除的页面显示内容,以进行全局刷新。
  14. 根据权利要求13所述的墨水屏阅读设备,其特征在于,所述保存手写笔迹的像素点的内容数据参数,进一步包括:
    当手写线条之间存在重叠部分时,将重叠部分的像素点对应的每个手写线条的灰度值进行叠加,作为该像素点的标准灰度值。
  15. 根据权利要求9-14任一项所述的墨水屏阅读设备,其特征在于,所述可执行指令使所述处理器执行以下操作:预设手写速度与所述第二温度值的第一映射关系表,其中所述手写速度与所述第二温度值成正相关关系;所述确定第二温度值,进一步包括:
    检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写速度;
    在所述第一映射关系表中根据所述手写速度查表确定所述第二温度值;
    或者,
    所述可执行指令使所述处理器执行以下操作:预设手写压力与所述第二温度值的第二映射关系表,其中所述手写压力与所述第二温度值成负相关关系;所述确定第二温度值,进一步包括:
    检测到笔尖未离开墨水屏时,实时获取每一时间窗口下的手写压力;
    在所述第二映射关系表中根据所述手写压力查表确定所述第二温度值。
  16. 根据权利要求9-14任一项所述的墨水屏阅读设备,其特征在于,所述获取墨水屏的当前温度之后,进一步包括;
    接收墨水屏刷新指令;
    判断所述刷新指令是否由手写笔触发;
    若是,则执行所述判断所述当前温度是否小于预设的第一温度值的步骤;
    否则,在LUT表中根据所述当前温度及待显示内容的灰度值,查表确定所述墨水屏的驱动波形。
  17. 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质中存储有至少一可执行指令,所述可执行指令用于使处理器执行前述任一权利要求1-8所述的墨水屏阅读设备的屏幕驱动方法。
  18. 一种计算机程序产品,该计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,该计算机程序包括程序指令,当该程序指令被处理器执行时,使该处理器执行前述任一权利要求1-8所述的墨水屏阅读设备的屏幕驱动方法。
PCT/CN2019/118915 2019-02-26 2019-11-15 墨水屏阅读设备及其屏幕驱动方法、存储介质 WO2020173147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/296,128 US11373606B2 (en) 2019-02-26 2019-11-15 Ink screen reading device, screen driving method thereof and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910142609.5A CN109697961B (zh) 2019-02-26 2019-02-26 墨水屏阅读设备及其屏幕驱动方法、存储介质
CN201910142609.5 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020173147A1 true WO2020173147A1 (zh) 2020-09-03

Family

ID=66233647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118915 WO2020173147A1 (zh) 2019-02-26 2019-11-15 墨水屏阅读设备及其屏幕驱动方法、存储介质

Country Status (3)

Country Link
US (1) US11373606B2 (zh)
CN (1) CN109697961B (zh)
WO (1) WO2020173147A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109697961B (zh) * 2019-02-26 2020-09-11 掌阅科技股份有限公司 墨水屏阅读设备及其屏幕驱动方法、存储介质
CN110471608B (zh) * 2019-08-02 2020-12-22 掌阅科技股份有限公司 手写笔迹显示方法、手写阅读设备及计算机存储介质
WO2021056786A1 (zh) * 2019-09-25 2021-04-01 掌阅科技股份有限公司 手写阅读设备及其报点数据处理方法、计算机存储介质
CN111326118B (zh) * 2020-02-07 2021-07-20 掌阅科技股份有限公司 一种设置显示参数的装置、方法及计算机可读存储介质
CN113704164B (zh) * 2020-05-20 2024-05-31 掌阅科技股份有限公司 彩屏阅读器的刷新方法、彩屏阅读器及计算机存储介质
CN111752063B (zh) * 2020-06-08 2021-04-30 掌阅科技股份有限公司 可变换显示模式的方法、阅读终端及计算机存储介质
CN112000905B (zh) * 2020-08-26 2023-12-08 连尚(北京)网络科技有限公司 信息的显示方法和装置
CN112992082B (zh) * 2021-03-11 2022-03-11 青岛海信移动通信技术股份有限公司 电子设备及其电子墨水屏的刷新方法
CN114023270B (zh) * 2021-10-20 2022-07-05 广州文石信息科技有限公司 一种电子墨水屏驱动方法、装置、设备及存储介质
CN113920952B (zh) * 2021-10-20 2023-03-14 京东方科技集团股份有限公司 一种电子纸调试的方法、电子纸、调试系统及设备
CN114153417B (zh) * 2021-12-10 2022-10-28 广州文石信息科技有限公司 屏幕更新方法、装置、存储介质及计算机设备
US11830449B2 (en) * 2022-03-01 2023-11-28 E Ink Corporation Electro-optic displays
CN114647298A (zh) * 2022-03-21 2022-06-21 掌阅科技股份有限公司 控制墨水屏阅读器进入休眠模式的方法及电子设备
CN115620681B (zh) * 2022-11-09 2023-07-28 广州文石信息科技有限公司 屏幕驱动方法、装置、存储介质及墨水屏设备
CN116504189B (zh) * 2023-04-28 2024-01-05 广州文石信息科技有限公司 电子墨水屏驱动方法、装置、设备及可读存储介质
CN116543711B (zh) * 2023-05-12 2023-11-03 广州文石信息科技有限公司 墨水屏的清屏显示方法、装置、设备以及存储介质
CN117437891B (zh) * 2023-11-20 2024-04-26 广州文石信息科技有限公司 墨水屏的清屏显示方法、装置、电子设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090256868A1 (en) * 2008-04-11 2009-10-15 Yun Shon Low Time-Overlapping Partial-Panel Updating Of A Bistable Electro-Optic Display
CN102411902A (zh) * 2010-09-21 2012-04-11 北京凡达讯科技有限公司 一种电子纸显示优化方法
JP5257181B2 (ja) * 2009-03-23 2013-08-07 セイコーエプソン株式会社 電気泳動表示装置及び電子機器
CN105895032A (zh) * 2016-03-03 2016-08-24 深圳市国华光电科技有限公司 一种温度自匹配的电泳电子纸驱动方法及系统
CN109213224A (zh) * 2018-08-14 2019-01-15 汉王科技股份有限公司 电子墨水屏的温度控制方法及装置、显示设备
CN109697961A (zh) * 2019-02-26 2019-04-30 掌阅科技股份有限公司 墨水屏阅读设备及其屏幕驱动方法、存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557676C (zh) * 2003-09-12 2009-11-04 皇家飞利浦电子股份有限公司 补偿电泳显示器驱动方案的温度依赖性的方法
JP2009020340A (ja) * 2007-07-12 2009-01-29 Renesas Technology Corp 表示装置及び表示装置駆動回路
KR101114779B1 (ko) * 2009-01-07 2012-03-05 삼성전자주식회사 Epd 구동 방법 및 장치
JP2015184514A (ja) * 2014-03-25 2015-10-22 セイコーエプソン株式会社 電気泳動表示装置、電子機器及び電気泳動表示装置の制御方法
KR102412107B1 (ko) * 2015-10-29 2022-06-24 엘지디스플레이 주식회사 휘도 제어장치와 이를 포함하는 표시장치
EP3420553B1 (en) * 2016-02-23 2020-03-25 E Ink Corporation Methods and apparatus for driving electro-optic displays
US10444592B2 (en) * 2017-03-09 2019-10-15 E Ink Corporation Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090256868A1 (en) * 2008-04-11 2009-10-15 Yun Shon Low Time-Overlapping Partial-Panel Updating Of A Bistable Electro-Optic Display
JP5257181B2 (ja) * 2009-03-23 2013-08-07 セイコーエプソン株式会社 電気泳動表示装置及び電子機器
CN102411902A (zh) * 2010-09-21 2012-04-11 北京凡达讯科技有限公司 一种电子纸显示优化方法
CN105895032A (zh) * 2016-03-03 2016-08-24 深圳市国华光电科技有限公司 一种温度自匹配的电泳电子纸驱动方法及系统
CN109213224A (zh) * 2018-08-14 2019-01-15 汉王科技股份有限公司 电子墨水屏的温度控制方法及装置、显示设备
CN109697961A (zh) * 2019-02-26 2019-04-30 掌阅科技股份有限公司 墨水屏阅读设备及其屏幕驱动方法、存储介质

Also Published As

Publication number Publication date
CN109697961B (zh) 2020-09-11
US20210312873A1 (en) 2021-10-07
US11373606B2 (en) 2022-06-28
CN109697961A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2020173147A1 (zh) 墨水屏阅读设备及其屏幕驱动方法、存储介质
JP5163113B2 (ja) 表示する手書き線幅を変えるシステム及び線幅変更方法
Henzen et al. 32.4: An electronic ink low latency drawing tablet
CN108762652B (zh) 智能终端的显示控制方法、装置、存储介质及智能终端
US9502001B2 (en) Display control method and apparatus for power saving
US9823753B2 (en) System and method for using a side camera for free space gesture inputs
TWI576771B (zh) 透明顯示裝置及其透明度調整方法
KR102251686B1 (ko) 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
US20080309636A1 (en) Pen Tracking and Low Latency Display Updates on Electronic Paper Displays
US9390682B2 (en) Adjustment of display intensity
US8497843B2 (en) Controller driver, display device, and control method therefor
US10817071B2 (en) Selectively reducing reflectivity of a display
WO2021218445A1 (zh) 笔迹处理方法、笔迹处理装置、存储介质
US20180046345A1 (en) Method and system for erasing an enclosed area on an interactive display
US10395583B1 (en) Driving a display for presenting electronic content
CN110703939B (zh) 手写阅读设备及其报点数据处理方法、计算机存储介质
WO2021056786A1 (zh) 手写阅读设备及其报点数据处理方法、计算机存储介质
Xu et al. Design of electronic shelf label based on electronic paper display
US10755029B1 (en) Evaluating and formatting handwritten input in a cell of a virtual canvas
US20220391084A1 (en) Information display method, reader, computer storage medium, ink screen reading device and screen projection display system
TWI828210B (zh) 電子紙顯示器及其驅動方法
US11688356B2 (en) Electronic paper display and driving method thereof
CN103324915A (zh) 一种少数民族文字图像采集系统
US11978413B1 (en) Look-up table activation for an electrophoretic panel
KR102320771B1 (ko) 데이터 구동회로 및 이를 이용한 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917071

Country of ref document: EP

Kind code of ref document: A1