WO2020172961A1 - 电源电路 - Google Patents

电源电路 Download PDF

Info

Publication number
WO2020172961A1
WO2020172961A1 PCT/CN2019/082619 CN2019082619W WO2020172961A1 WO 2020172961 A1 WO2020172961 A1 WO 2020172961A1 CN 2019082619 W CN2019082619 W CN 2019082619W WO 2020172961 A1 WO2020172961 A1 WO 2020172961A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power supply
resistor
circuit
supply circuit
Prior art date
Application number
PCT/CN2019/082619
Other languages
English (en)
French (fr)
Inventor
杨勇
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020172961A1 publication Critical patent/WO2020172961A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/305Frequency-control circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the technical field of power supplies, in particular to a power supply circuit.
  • the existing power supply device usually has a fixed operating frequency.
  • the duty cycle of the PWM (pulse width modulation) signal source can only be adjusted to adjust the working state of the power circuit, so that the metal-oxide-semiconductor in the power circuit field-effect transistor) is in the state of hard switching.
  • the temperature and loss of the MOS tube increase, which leads to poor working efficiency and reliability of the power supply circuit.
  • the rapid switching of the MOS tube will cause serious electromagnetic interference, making other electronic devices unable to work normally.
  • the purpose of the present invention is to provide a power supply circuit that can avoid MOS tube loss and electromagnetic interference.
  • the present invention provides a power supply circuit, including: a drive chip, including a frequency input terminal, a drive terminal for connecting a load, and an output terminal for feeding back the load change; a frequency setting circuit connected to the The frequency input terminal is used to set the operating frequency of the drive chip; and a frequency adjustment circuit is connected to the frequency setting circuit, the frequency input terminal and the output terminal, and is used to adjust the frequency setting circuit according to the signal at the output terminal. Describe the operating frequency of the drive chip.
  • the frequency adjustment circuit adjusts the operating frequency of the driving chip to gradually decrease.
  • the frequency adjustment circuit adjusts the operating frequency of the driving chip to gradually increase.
  • the driving terminal is connected to the load through a switch circuit, wherein the switch circuit includes at least one transistor.
  • the frequency setting circuit includes a first resistor, wherein a first terminal of the first resistor is connected to the frequency input terminal, and a second terminal of the first resistor is grounded.
  • the frequency adjustment circuit includes a second resistor and a triode, wherein the second resistor is connected to the output terminal and the base of the triode, and the emitter of the triode is connected The first end of the first resistor and the collector of the triode are grounded.
  • the power supply circuit further includes a third resistor and at least one capacitor, wherein a first end of the third resistor is connected to the output end, and a second end of the third resistor is connected to the at least one capacitor.
  • the anode of the capacitor and the cathode of the at least one capacitor are grounded.
  • the frequency input terminal is an RT pin.
  • the driving terminal is a DRV pin.
  • the output terminal is an SSTCMP pin.
  • the present invention provides a power supply circuit, including: a drive chip, including a frequency input terminal, a drive terminal for connecting a load, and an output terminal for feeding back the load change; a frequency setting circuit connected to the The frequency input terminal is used to set the operating frequency of the drive chip; and a frequency adjustment circuit is connected to the frequency setting circuit, the frequency input terminal and the output terminal, and is used to adjust the frequency setting circuit according to the signal at the output terminal.
  • the operating frequency of the drive chip wherein, when the signal at the output terminal is increased, the frequency adjustment circuit adjusts the operating frequency of the drive chip to gradually decrease; and when the signal at the output terminal decreases, the frequency adjustment circuit adjusts The operating frequency of the driving chip gradually increases.
  • the invention provides a power supply circuit, which can avoid MOS tube loss and electromagnetic interference.
  • Figure 1 is a functional block diagram of a power supply circuit provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the circuit structure according to the embodiment shown in FIG. 1.
  • FIG. 1 is a functional block diagram of a power supply circuit provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the circuit structure according to the embodiment shown in FIG. 1. Please refer to FIGS. 1 and 2 at the same time.
  • the power supply circuit 1 includes a driving chip 10, a frequency setting circuit 12, and a frequency adjustment circuit 13.
  • the driving chip 10 includes a frequency input terminal 100, a driving terminal 101 for connecting a load 11, and an output terminal 102 for feeding back changes in the load 11.
  • the load 11 includes at least one light emitting diode element.
  • the frequency input terminal 100 is a timing resistor (RT)
  • the driving terminal 101 is a boost drive pin (voltage driving (DRV)
  • the output terminal 102 is a soft switching and loop compensation (soft switching and loop compensation, SSTCMP) pin.
  • the frequency setting circuit 12 is connected to the frequency input terminal 100 for setting the operating frequency of the driving chip 10. As shown in FIG. 2, the frequency setting circuit 12 includes a first resistor R1, wherein a first end of the first resistor R1 is connected to the frequency input terminal 100, and a second end of the first resistor R1 is grounded.
  • the frequency adjustment circuit 13 is connected to the frequency setting circuit 12, the frequency input terminal 100 and the output terminal 102, and is used to adjust the operating frequency of the driving chip 10 according to the signal from the output terminal 102.
  • the frequency adjustment circuit 13 includes a second resistor R2 and a transistor T1, wherein the second resistor R2 is connected to the output terminal 102 and the base of the transistor T1, and the emitter of the transistor T1 is connected to the first resistor. The first end of R1 and the collector of transistor T1 are grounded.
  • the signal at the output terminal 102 is a voltage signal
  • the triode T1 is a PNP type triode
  • the frequency adjustment circuit 13 can be equivalent to a variable resistor connected in parallel with the first resistor R1.
  • the frequency adjustment circuit 13 can adjust the operating frequency of the drive chip 10 to gradually decrease; conversely, when the signal at the output terminal 102 decreases, the frequency adjustment circuit 13 can adjust the operating frequency of the drive chip 10 gradually. Elevated. In other words, when the load 11 increases rapidly, the voltage at the output terminal 102 will also increase rapidly, but the operating frequency of the driving chip 10 will gradually decrease; conversely, when the load 11 decreases rapidly, the voltage at the output terminal 102 will also decrease rapidly. , But the operating frequency of the driving chip 10 will gradually increase.
  • the driving terminal 101 is connected to the load 11 through a switch circuit 14, wherein the switch circuit 14 includes at least one transistor Q1.
  • the transistor Q1 is a MOS tube.
  • the power supply circuit 1 further includes a filter circuit 15.
  • the filter circuit 15 includes a third resistor R3 and at least one capacitor C1. The first end of the third resistor R3 is connected to the output terminal 102, the second end of the third resistor R3 is connected to the positive electrode of the capacitor C1, and the negative electrode of the capacitor C1 is grounded.
  • the frequency adjustment circuit 13 adjusts the operating frequency of the driving chip 10 according to the voltage at the output terminal 102 to gradually decrease.
  • the power circuit provided by the present invention, when the power circuit is started or the load changes, the operating frequency of the driving chip can be adjusted in real time and linearly through the frequency adjustment circuit, thereby avoiding MOS transistor loss and electromagnetic interference.
  • the power supply circuit provided by the present invention adjusts the operating frequency of the driving chip in real time and linearly, thereby avoiding MOS tube loss and electromagnetic interference.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electronic Switches (AREA)
  • Amplifiers (AREA)

Abstract

一种电源电路包括: 驱动芯片、频率设定电路及频率调整电路。驱动芯片包括频率输入端、用于连接负载的驱动端及用于反馈负载变化的输出端。频率设定电路连接频率输入端,用于设定驱动芯片的工作频率。频率调整电路连接频率设定电路、频率输入端和输出端,用于根据输出端的信号调整驱动芯片的工作频率。

Description

电源电路 技术领域
本发明涉及电源技术领域,尤其涉及一种电源电路。
背景技术
现有的电源装置通常具有固定的工作频率。当电源电路启动或负载产生变化时,只能通过改变PWM(pulse width modulation)信号源的占空比来调整电源电路的工作状态,如此使得电源电路中的MOS管(metal-oxide-semiconductor field-effect transistor)处于硬开关的状态下。在硬开关的状态下,MOS管的温度及损耗增加,导致电源电路的工作效率及可靠性变差。同时,MOS管的快速切换会带来严重的电磁干扰(electromagnetic interference),使得其他电子设备无法正常工作。
因此,有必要提供一种电源电路,以解决上述问题。
技术问题
在硬开关的状态下,MOS管的温度及损耗增加,导致电源电路的工作效率及可靠性变差。同时,MOS管的快速切换会带来严重的电磁干扰,使得其他电子设备无法正常工作。
技术解决方案
本发明的目的在于提供一种电源电路,可以避免MOS管损耗及电磁干扰。
为实现上述目的,本发明提供一种电源电路,包括:驱动芯片,包括频率输入端、用于连接负载的驱动端及用于反馈所述负载变化的输出端;频率设定电路,连接所述频率输入端,用于设定所述驱动芯片的工作频率;以及频率调整电路,连接所述频率设定电路、所述频率输入端和所述输出端,用于根据所述输出端的信号调整所述驱动芯片的工作频率。
在一些实施例中,当所述输出端的信号增强时,所述频率调整电路调整所述驱动芯片的工作频率逐渐降低。
在一些实施例中,当所述输出端的信号减弱时,所述频率调整电路调整所述驱动芯片的工作频率逐渐升高。
在一些实施例中,所述驱动端通过开关电路连接所述负载,其中所述开关电路包括至少一个晶体管。
在一些实施例中,所述频率设定电路包括第一电阻,其中所述第一电阻的第一端连接所述频率输入端,所述第一电阻的第二端接地。
在一些实施例中,所述频率调整电路包括第二电阻和三极体,其中所述第二电阻连接所述输出端和所述三极体的基极,所述三极体的射极连接所述第一电阻的第一端,所述三极体的集极接地。
在一些实施例中,所述电源电路还包括第三电阻和至少一个电容,其中所述第三电阻的第一端连接所述输出端,所述第三电阻的第二端连接所述至少一个电容的正极,所述至少一个电容的负极接地。
在一些实施例中,所述频率输入端为RT引脚。
在一些实施例中,所述驱动端为DRV引脚。
在一些实施例中,所述输出端为SSTCMP引脚。
为实现上述目的,本发明提供一种电源电路,包括:驱动芯片,包括频率输入端、用于连接负载的驱动端及用于反馈所述负载变化的输出端;频率设定电路,连接所述频率输入端,用于设定所述驱动芯片的工作频率;以及频率调整电路,连接所述频率设定电路、所述频率输入端和所述输出端,用于根据所述输出端的信号调整所述驱动芯片的工作频率;其中,当所述输出端的信号增强时,所述频率调整电路调整所述驱动芯片的工作频率逐渐降低;以及当所述输出端的信号减弱时,所述频率调整电路调整所述驱动芯片的工作频率逐渐升高。
有益效果
本发明提供一种电源电路,可以避免MOS管损耗及电磁干扰。
附图说明
为让本发明的特征以及技术内容能更明显易懂,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考用,并非用来对本发明加以限制。
图1为本发明实施例提供的电源电路的功能框图;
图2为根据图1所示实施例的电路结构示意图。
本发明的实施方式
为了使本发明的目的、技术手段及其效果更加清楚明确,以下将结合附图对本发明作进一步地阐述。应当理解,此处所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,并不用于限定本发明。
图1为本发明实施例提供的电源电路的功能框图。图2为根据图1所示实施例的电路结构示意图。请同时参考图1和图2,电源电路1包括:驱动芯片10、频率设定电路12及频率调整电路13。驱动芯片10包括频率输入端100、用于连接负载11的驱动端101及用于反馈负载11变化的输出端102。在一些实施例中,负载11包括至少一个发光二极体元件。在本实施例中,频率输入端100为定时电阻引脚(timing resistor,RT),驱动端101为升压驱动引脚(voltage driving,DRV),输出端102为软开关回路补偿(soft switching and loop compensation,SSTCMP)引脚。当负载11迅速增加时,输出端102的电压也会迅速增加;反之,当负载11迅速降低时,输出端102的电压也会迅速降低。
频率设定电路12连接频率输入端100,其用于设定驱动芯片10的工作频率。如图2所示,频率设定电路12包括第一电阻R1,其中第一电阻R1的第一端连接频率输入端100,第一电阻R1的第二端接地。
频率调整电路13连接频率设定电路12、频率输入端100和输出端102,其用于根据输出端102的信号调整驱动芯片10的工作频率。如图2所示,频率调整电路13包括第二电阻R2和三极体T1,其中第二电阻R2连接输出端102和三极体T1的基极,三极体T1的射极连接第一电阻R1的第一端,且三极体T1的集极接地。在本实施例中,输出端102的信号为电压信号,三极体T1为PNP型三极体,且频率调整电路13可等效为并联于第一电阻R1的可变电阻。因此,当输出端102的信号增强时,频率调整电路13可以调整驱动芯片10的工作频率逐渐降低;反之,当输出端102的信号减弱时,频率调整电路13可以调整驱动芯片10的工作频率逐渐升高。也就是说,当负载11迅速增加时,输出端102的电压也会迅速增加,但驱动芯片10的工作频率会逐渐降低;反之,当负载11迅速降低时,输出端102的电压也会迅速降低,但驱动芯片10的工作频率会逐渐升高。
如图1、图2所示,驱动端101通过开关电路14连接负载11,其中开关电路14包括至少一个晶体管Q1。在本实施例中,晶体管Q1为MOS管。再者,电源电路1还包括滤波电路15。滤波电路15包括第三电阻R3和至少一个电容C1,其中第三电阻R3的第一端连接输出端102,第三电阻R3的第二端连接电容C1的正极,且电容C1的负极接地。在本实施例中,当电源电路1启动时,电容C1被充电,使得输出端102的电压逐渐上升。随后,频率调整电路13根据输出端102的电压调整驱动芯片10的工作频率逐渐降低。
综上所述,本发明提供的电源电路,当电源电路启动或负载产生变化时,通过频率调整电路即时且线性调整驱动芯片的工作频率,从而避免MOS管损耗及电磁干扰。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
工业实用性
本发明提供的电源电路即时且线性调整驱动芯片的工作频率,从而避免MOS管损耗及电磁干扰。

Claims (18)

  1.     一种电源电路,包括:
    驱动芯片,包括频率输入端、用于连接负载的驱动端及用于反馈所述负载变化的输出端;
    频率设定电路,连接所述频率输入端,用于设定所述驱动芯片的工作频率;以及
    频率调整电路,连接所述频率设定电路、所述频率输入端和所述输出端,用于根据所述输出端的信号调整所述驱动芯片的工作频率。
  2. 如权利要求1所述的电源电路,其中,当所述输出端的信号增强时,所述频率调整电路调整所述驱动芯片的工作频率逐渐降低。
  3. 如权利要求1所述的电源电路,其中,当所述输出端的信号减弱时,所述频率调整电路调整所述驱动芯片的工作频率逐渐升高。
  4. 如权利要求1所述的电源电路,其中,所述驱动端通过开关电路连接所述负载,所述开关电路包括至少一个晶体管。
  5. 如权利要求1所述的电源电路,其中,所述频率设定电路包括第一电阻,所述第一电阻的第一端连接所述频率输入端,所述第一电阻的第二端接地。
  6. 如权利要求5所述的电源电路,其中,所述频率调整电路包括第二电阻和三极体,所述第二电阻连接所述输出端和所述三极体的基极,所述三极体的射极连接所述第一电阻的第一端,所述三极体的集极接地。
  7. 如权利要求1所述的电源电路,还包括第三电阻和至少一个电容,其中所述第三电阻的第一端连接所述输出端,所述第三电阻的第二端连接所述至少一个电容的正极,所述至少一个电容的负极接地。
  8. 如权利要求1所述的电源电路,其中,所述频率输入端为RT引脚。
  9. 如权利要求1所述的电源电路,其中,所述驱动端为DRV引脚。
  10. 如权利要求1所述的电源电路,其中,所述输出端为SSTCMP引脚。
  11. 一种电源电路,包括:
    驱动芯片,包括频率输入端、用于连接负载的驱动端及用于反馈所述负载变化的输出端;
    频率设定电路,连接所述频率输入端,用于设定所述驱动芯片的工作频率;以及
    频率调整电路,连接所述频率设定电路、所述频率输入端和所述输出端,用于根据所述输出端的信号调整所述驱动芯片的工作频率;
    其中,当所述输出端的信号增强时,所述频率调整电路调整所述驱动芯片的工作频率逐渐降低;以及
    当所述输出端的信号减弱时,所述频率调整电路调整所述驱动芯片的工作频率逐渐升高。
  12. 如权利要求11所述的电源电路,其中,所述驱动端通过开关电路连接所述负载,所述开关电路包括至少一个晶体管。
  13. 如权利要求11所述的电源电路,其中,所述频率设定电路包括第一电阻,所述第一电阻的第一端连接所述频率输入端,所述第一电阻的第二端接地。
  14. 如权利要求13所述的电源电路,其中,所述频率调整电路包括第二电阻和三极体,所述第二电阻连接所述输出端和所述三极体的基极,所述三极体的射极连接所述第一电阻的第一端,所述三极体的集极接地。
  15. 如权利要求11所述的电源电路,还包括第三电阻和至少一个电容,其中所述第三电阻的第一端连接所述输出端,所述第三电阻的第二端连接所述至少一个电容的正极,所述至少一个电容的负极接地。
  16. 如权利要求11所述的电源电路,其中,所述频率输入端为RT引脚。
  17. 如权利要求11所述的电源电路,其中,所述驱动端为DRV引脚。
  18. 如权利要求11所述的电源电路,其中,所述输出端为SSTCMP引脚。
PCT/CN2019/082619 2019-02-25 2019-04-15 电源电路 WO2020172961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910136666.2A CN109757007B (zh) 2019-02-25 2019-02-25 电源电路
CN201910136666.2 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020172961A1 true WO2020172961A1 (zh) 2020-09-03

Family

ID=66407654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082619 WO2020172961A1 (zh) 2019-02-25 2019-04-15 电源电路

Country Status (2)

Country Link
CN (1) CN109757007B (zh)
WO (1) WO2020172961A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201639826U (zh) * 2010-01-26 2010-11-17 上海创月能源科技有限公司 Led灯驱动电源电路
CN101932158B (zh) * 2010-08-17 2013-01-23 深圳市洲明科技股份有限公司 Led电路
CN205232038U (zh) * 2015-12-16 2016-05-11 深圳Tcl数字技术有限公司 变频电源电路和电视机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201396582Y (zh) * 2009-03-20 2010-02-03 凹凸电子(武汉)有限公司 可携式照明装置
CN103280190B (zh) * 2013-05-20 2015-11-25 深圳市华星光电技术有限公司 一种背光驱动电路、液晶显示装置和背光驱动方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201639826U (zh) * 2010-01-26 2010-11-17 上海创月能源科技有限公司 Led灯驱动电源电路
CN101932158B (zh) * 2010-08-17 2013-01-23 深圳市洲明科技股份有限公司 Led电路
CN205232038U (zh) * 2015-12-16 2016-05-11 深圳Tcl数字技术有限公司 变频电源电路和电视机

Also Published As

Publication number Publication date
CN109757007B (zh) 2020-08-11
CN109757007A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
JP7345326B2 (ja) 発光素子駆動装置
WO2018133136A1 (zh) 背光控制电路及电子装置
JPWO2005096480A1 (ja) 電源装置および表示装置
CN107182148B (zh) 一种基于pwm调光的dc-dc led驱动电路
TWI669985B (zh) 發光二極體驅動裝置以及發光二極體背光模組
US10210824B2 (en) Digital power supply circuit and liquid crystal driving device
CN105265021A (zh) 偏斜率受控驱动器电路
JP2003068480A (ja) 調光制御回路
TWI593223B (zh) 電源轉換裝置
TWI571055B (zh) 可降低電磁干擾與電源擾動之切換式驅動器
TW201412185A (zh) 發光二極體驅動裝置及其運作方法
WO2016029512A1 (zh) 用于液晶显示设备的led背光源及液晶显示设备
WO2023108650A1 (zh) 像素电路及显示面板
WO2021203649A1 (zh) 一种液晶光阀的驱动电路、液晶光阀以及led灯
US9814107B2 (en) Drive circuit and illumination device comprising the drive circuit
WO2020172961A1 (zh) 电源电路
US20230276550A1 (en) Control circuit and lighting device
TW201251326A (en) Level shifter and booster-driving circuit
KR20170054504A (ko) 액정 디스플레이 장비를 위한 led 백라이트 소스 및 액정 디스플레이 장비
CN111130321A (zh) 单电源负压功率开关管驱动电路
WO2021179769A1 (zh) 驱动电路、功率电路以及投影设备
CN214591137U (zh) 一种开关电源的mos管驱动泄放电路
CN209267439U (zh) 一种高功率因素的开关电源控制电路
CN218976562U (zh) 一种基于bldcm控制器的自适应降压型dc-dc电路
CN103945594B (zh) 改善串联半桥谐振调光闪烁问题的电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917045

Country of ref document: EP

Kind code of ref document: A1