WO2020172763A1 - 力感应装置、力阵列感应模块及其力感应元件 - Google Patents

力感应装置、力阵列感应模块及其力感应元件 Download PDF

Info

Publication number
WO2020172763A1
WO2020172763A1 PCT/CN2019/076027 CN2019076027W WO2020172763A1 WO 2020172763 A1 WO2020172763 A1 WO 2020172763A1 CN 2019076027 W CN2019076027 W CN 2019076027W WO 2020172763 A1 WO2020172763 A1 WO 2020172763A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
force sensing
substrate
layer
array
Prior art date
Application number
PCT/CN2019/076027
Other languages
English (en)
French (fr)
Inventor
苏瑞尧
卢元立
柯文清
刘昌和
赖勇诚
Original Assignee
原见精机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原见精机股份有限公司 filed Critical 原见精机股份有限公司
Priority to PCT/CN2019/076027 priority Critical patent/WO2020172763A1/zh
Publication of WO2020172763A1 publication Critical patent/WO2020172763A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Definitions

  • the invention relates to a sensing element, and in particular to a force sensing device, a force array sensing module and a force sensing element thereof.
  • the force sensing element mainly detects the external force that causes the element to produce strain.
  • Force array sensing technology can be used to identify changes in pressure distribution and geometric gradients when components are under pressure.
  • the coordinated operation of the robotic arm and the human can improve the work efficiency of highly complex or highly flexible manufacturing processes, but also increase the risk of operators. Therefore, how to standardize the range of motion of the robotic arm and design an operation mode that allows personnel to interact with the robotic arm to avoid possible injury to the operator caused by the high-speed moving robotic arm is really important.
  • the present invention relates to a force sensing device, a force array sensing module and a force sensing element thereof, which are used to detect the external force or pressure distribution applied to the force sensing element, and can pass through the force sensing device arranged on or around the robot arm To detect whether a touch signal occurs or as a human-machine operation interface, and the force sensing device can send a force sensing signal to the robotic arm when a touch occurs to control the robotic arm to stop or start the robotic arm.
  • a force sensing device which includes a force array sensing module, a substrate, at least one protrusion, and a protective layer.
  • the force array sensing module has at least one force sensing element.
  • the substrate is used to abut the force array sensor module.
  • the at least one protrusion corresponds to the position of the at least one force sensing element.
  • the protective layer at least covers the periphery of the force array sensor module and the substrate, and at least one protrusion is disposed on at least one of the substrate and the protective layer.
  • a force sensing element which includes two film layers, two electrode layers, at least one sensing layer, and at least one gap layer.
  • the two film layers have a first inner surface and a second inner surface opposite to each other.
  • the two electrode layers are respectively arranged on the first inner surface and the second inner surface, and there is a gap between the two electrode layers.
  • At least one sensing layer is disposed on at least one of the two electrode layers.
  • At least one gap layer is arranged between the two film layers to maintain a gap between the two electrode layers.
  • a force array sensing module which includes a plurality of force sensing elements, wherein the force sensing elements share the two film layers and are arranged in an array; and a sealant layer is provided on the two film layers. Between the film layers, the force sensing elements are sealed.
  • FIG. 1A is a schematic diagram of a force sensing device according to an embodiment of the invention.
  • FIG. 1B is a schematic cross-sectional view of the force sensing device of FIG. 1A along the line A-A;
  • FIG. 1C is a schematic diagram of a force sensing element according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram of a force array sensing module according to an embodiment of the invention.
  • FIG. 3 is a schematic diagram of a force array sensing module according to an embodiment of the invention.
  • FIG. 4A is a schematic diagram of a force sensing device according to an embodiment of the invention.
  • FIG. 4B is a schematic diagram of a force sensing device according to another embodiment of the invention.
  • FIG. 5 is a schematic diagram of a force sensing device installed on a robotic arm according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram of a force sensing device assembled around a robot arm according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram of a force array sensing module assembled on a substrate with grooves according to an embodiment of the present invention.
  • a force sensor device 100 includes a force array sensor module 110, a substrate 112, at least one protrusion 113, and a protective layer 114.
  • the substrate 112 is used to abut the force array sensor module 110.
  • the force array sensing module 110 has at least one force sensing element 120.
  • At least one protruding portion 113 is disposed on the substrate 112 for abutting under the at least one force sensing element 120.
  • This embodiment only illustrates four protrusions 113 and seven force sensing elements 120, where the number of protrusions 113 and the number of force sensing elements 120 may be the same or different, and the positions of the protrusions 113 and The positions of the force sensing elements 120 can be arranged up and down correspondingly or staggered up and down.
  • each protrusion 113 is located directly below the force sensing element 120, or each protrusion 113 is located corresponding to at least two force sensing elements 120.
  • each protrusion 113 is correspondingly located below two adjacent force sensing elements 120, which is not limited in the present invention.
  • the force sensing element 120 located above the protrusion 113 bears a greater downward pressure relative to the surrounding force sensing element 120, thereby increasing the sensitivity of pressing.
  • the force sensing element 120 located between the protrusions 113 has a larger amount of deformation relative to the surrounding force sensing element 120, which can also increase The sensitivity of the press.
  • the user can simultaneously press the multiple force sensing elements 120 located above the multiple protrusions 113 to make the multiple force sensing elements 120 conduct at the same time.
  • the force sensing device 100 can also transmit the pressing signal to an external processing unit (not shown in the figure) for identifying the force distribution or gradient when the force sensing device 100 is pressed, and then analyzing the force area or shape.
  • the material of the protective layer 114 is, for example, a waterproof material such as silicone or rubber, which is heated to soften by means of thermoplastic molding, and is wrapped around the force sensing device 100 by means of air pressure difference or vacuum.
  • the protective layer 114 covers at least the upper side of the force array sensor module 110, at least two side surfaces S1, S2 of the substrate 112, and a bottom surface S3 of the substrate 112. The protective layer 114 can prevent water or moisture from entering the force array. Inside the sensing module 110 to avoid affecting the electrical characteristics of the force sensing element 120.
  • a force sensing element 120 includes two film layers 121, 122, two electrode layers 123, 124, at least one sensing layer 125, and at least one gap layer 126.
  • the two film layers 121 and 122 have a first inner surface 1211 and a second inner surface 1221 opposite to each other.
  • the two electrode layers 123 and 124 are respectively disposed on the first inner surface 1211 and the second inner surface 1221, and the two electrode layers 123 and 124 are separated by a gap.
  • At least one sensing layer 125 is disposed on at least one of the two electrode layers 123 and 124.
  • At least one gap layer 126 is disposed between the two film layers 121 and 122 to maintain a predetermined gap between the two electrode layers 123 and 124, such as keeping the gap G between 10 microns and 100 microns, such as about 30 microns or Lower.
  • the film layer may be a flexible substrate
  • the electrode layer may be a metal such as copper or other highly conductive materials
  • the electrode layer may be fabricated separately to be formed on the first inner surfaces 1211 of the two film layers 121 and 122 With the second inner surface 1221.
  • the sensing layer 125 is formed on the two electrode layers 123 and 124 or on one of the electrode layers, for example, by coating or printing.
  • the sensing layer 125 includes, for example, two pressure sensitive materials (Pressure Sensitive Material) 1251 and 1252, which are respectively covered on the two electrode layers 123 and 124. The pressure-sensitive material maintains an appropriate gap G through the gap layer 126 under normal conditions and does not conduct electricity.
  • the distance between the two electrode layers 123, 124 becomes shorter and is located in the pressure-sensitive material 1251, 1252
  • the conductive materials 1253 are pressed and contact each other to form a conductive path between the two electrode layers 123 and 124. Therefore, the pressure-sensitive materials 1251 and 1252 also change the conductivity due to the conductive paths formed inside. In an embodiment, when the pressure continues to increase, the conductive paths in the pressure-sensitive materials 1251 and 1252 will also increase, which makes the pressure-sensitive materials 1251 and 1252 more conductive.
  • the conductive material 1253 in the pressure-sensitive materials 1251 and 1252 is, for example, carbon black powder or metal powder, which can be mixed with high molecular polymers to be uniformly distributed in the pressure-sensitive materials 1251 and 1252.
  • the pressure-sensitive materials 1251 and 1252 can change the conductivity by changing the internal resistance value, the induced capacitance value or the induced inductance value, and the material is selected from, for example, piezoresistive materials, capacitive sensing materials, inductive materials or piezoelectric materials. The present invention does not impose restrictions on materials, etc.
  • the gap layer 126 disposed between the two film layers 121 and 122 may be a single layer of gap material or a combination of two gap materials 1261 and 1262 joined by two layers.
  • the two gap materials 1261, 1262 are respectively arranged on the two pressure-sensitive materials 1251, 1252, and are separated between the two pressure-sensitive materials 1251, 1252, and then the two upper and lower film layers 121, 122
  • the two gap materials 1261 and 1262 are stacked and bonded, and a predetermined gap is maintained between the two electrode layers 123 and 124.
  • the two upper and lower film layers 121, 122 can also be joined through a single layer of gap material, and a predetermined gap is maintained between the two electrode layers 123, 124 .
  • the gap material 1261 and 1262 can separate the two electrode layers 123 and 124 and the sensing layer 126 between the two film layers 121 and 122.
  • the gap materials 1261 and 1262 may be photosensitive gap materials, and the height and width of the gap materials can be precisely controlled through steps such as exposure, development, and baking.
  • the height of the gap layer 126 ie, the gap G
  • the gap G is, for example, between 10 ⁇ m and 100 ⁇ m, for example, 30 ⁇ m or less.
  • the force array sensing module 110 includes at least one force sensing element 120 and an adhesive layer 130.
  • This embodiment only illustrates two force sensing elements 120, where the force sensing element 120 shares two film layers 121, 122, and is arranged in a one-dimensional array or a two-dimensional array between the two film layers 121, 122 between.
  • the sealant layer 130 is disposed between the two film layers 121 and 122 to seal the force sensing elements 120.
  • the height H of the sealant layer 130 is, for example, between 5 ⁇ m and 50 mm, for example, 350 ⁇ m or less.
  • the force sensing element 120 is separated by a gap layer 126 to ensure that the gap between the two electrode layers 123 and 124 of each force sensing element 120 remains consistent, so that each force sensing element 120 has consistent electrical characteristics.
  • the sealant layer 130 can prevent water or moisture from entering the force sensing element 120 to avoid affecting the electrical characteristics of the force sensing element 120.
  • the force array sensing module 110 is not limited to be applied to a flat substrate, and can also be applied to substrates of other shapes (for example, arc-shaped).
  • the gap between the two electrode layers 123 and 124 of each force sensing element 120 can still be kept consistent by the gap layer 126, which can avoid excessive bending and affecting the force sensing element 120. Electrical characteristics.
  • the protrusion 113 is formed integrally with the substrate 112 to become a part of the substrate 112, that is, a recess is formed by removing part of the material of the substrate 112, and the unremoved protrusion is the protrusion. ⁇ 113.
  • the protrusion 113 is, for example, a surface structure layer coated or attached to the flat substrate 112, that is, the protrusion 113 can be combined with the substrate 112 to achieve The effect of abutting between the force array sensor module 110 and the substrate 112.
  • the protrusion 117 may also be provided above the force array sensing module 110.
  • the raised portion 117 is integrally formed with the protective layer 114 to become a part of the protective layer 114, or the raised portion 117 is a surface structure layer coated or attached to the protective layer 114, which abuts Above the force array sensing module 110, the function is the same as that of the protrusion 113.
  • the raised portion 117 can be used in conjunction with the raised portion 113, so that the upper and lower sides of the force array sensing module 110 can abut the raised portion 117 and the raised portion 113, respectively.
  • the raised portion 117 and the raised portion 113 can also be used. For individual use, the present invention does not limit this.
  • the substrate 112 is composed of two semicircular plates that can be relatively combined, and the combined substrate 112 has a hollow cylindrical shape and has at least one outlet for connecting to The exit of the signal line (not shown in the figure) of the force array sensing module 110.
  • the two force array sensing modules 110 of the above-mentioned embodiment can be respectively arranged on a semicircular plate and connected to a processing module through a signal line (not shown in the figure).
  • the combined substrate 112 can be fixed on the robot arm 101, and the force array sensor module 110 provided on the substrate 112 can be used to detect whether a collision occurs, or the force array sensor module 110 can be used as a human
  • the machine operation interface allows the user to intuitively teach the robot arm 101 and record the movement track of the robot arm 101.
  • the end 102 of the robot arm 101 is provided with a flange joint 142, a circuit control unit 143, and a force sensing device 100, for example.
  • the hollow cylindrical substrate 112 and the circuit control unit 143 of the force sensing device 100 can be fixed on the flange joint 142 by screws, and the circuit control unit 143 can be sleeved on the upper periphery of the substrate 112 of the force sensing device 100 with a hollow cylinder
  • a force array sensing module 110 can be provided on the lower periphery of the shaped substrate 112 as a man-machine operation interface.
  • the force sensing device 100 is, for example, installed in a ring form at the end (ie, the end 102) of a robotic arm.
  • circuit control unit 143 is disposed on the upper part of the hollow cylindrical substrate 112 and can be connected to the force sensing device 100 through a signal line to receive force sensing signals to detect whether a collision occurs or switch to a human-machine operation mode To receive instructions entered by the operator.
  • At least one force sensing device 100 may be assembled around the robot arm 101.
  • the force sensing device 100 please refer to the description of the above-mentioned embodiment, which will not be repeated here.
  • This embodiment only illustrates five force sensing devices 100 as an example.
  • Each force sensing device 100 is fixed to the end 102 of the robot arm 101 by a movable bracket 104, and surrounds the end 102 of the robot arm 101, for example.
  • the force sensing device 100 can be connected to a hub via a wired manner, and then connected to an external processing module via a transmission line of the hub.
  • the force sensing device 100 can also perform signal transmission with an external processing module through wireless communication, which is not limited in the present invention.
  • the end 102 of the robotic arm 101 is provided with a tool 106, such as a clamp, a welding tool, a drilling tool or a cutting tool, etc.
  • a tool 106 such as a clamp, a welding tool, a drilling tool or a cutting tool, etc.
  • the force sensing device 100 can be used to detect whether a collision occurs. . Therefore, it is possible to prevent an external force collision or avoid possible injury to the operator caused by the robot arm 101 moving at a high speed.
  • the force sensing device 100 may also be installed on a surface of a robot arm, such as the surface of the upper and lower movable arms and/or the surface of the support base.
  • the force array sensing module 110 has, for example, a signal outlet terminal 111.
  • the signal outlet For example, there are two slots T1 and T2 on both sides of the end 111. The two slots T1 and T2 can separate the signal outlet end 111 from the area where the force sensing element 120 is located, so as to reduce the stress interference of the force sensing element 120.
  • the substrate 112 includes a groove 115 for accommodating the signal output terminal 111 so that the height of the signal output terminal 111 is lower than the height of the surface of the substrate 112 on which the force array sensor module 110 rests. In this way, the signal outlet terminal 111 bent into the groove 115 will not affect the electrical characteristics of the force sensing element 120.
  • the bottom of the groove 115 has an opening 116 (ie, an outlet), and the signal outlet 111 can be connected to the signal line through the substrate 112 through the opening 116, or the signal line can pass through the substrate 112 through the opening 116. Connect to the signal outlet terminal 111.
  • the force sensing element, the force array sensing module and the force sensing device using the force sensing element disclosed in the above embodiments of the present invention are used to detect the external force or pressure distribution applied to the force sensing element, and can be arranged on or around the robot arm Force sensing device to detect whether a touch signal occurs or the force array sensing module is used as a man-machine operation interface, and the force sensing device can send a force sensing signal to the robotic arm when a touch occurs to control the robotic arm to stop or Start the robotic arm.
  • the present invention can be applied to electronic devices related to tactile sensing, including man-machine operation interfaces of robotic arms, smart skins, electronic skins, anti-collision warning systems, and tactile sensing arrays. It has a wide range of applications and practicality. good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种力感应装置(100),包括一力阵列感应模块(110)、一基板(112)、至少一凸起部(113、117)以及一保护层(114)。力阵列感应模块(110)具有至少一力感应元件(120)。基板(112)用以抵靠力阵列感应模块(110)。至少一凸起部(113、117)与至少一力感应元件(120)的位置相对应。保护层至少覆盖力阵列感应模块(110)及基板(112)的周围。

Description

力感应装置、力阵列感应模块及其力感应元件 技术领域
本发明涉及一种感应元件,且特别是涉及一种力感应装置、力阵列感应模块及其力感应元件。
背景技术
力感应元件主要是检测使元件产生应变的外力。力阵列感应技术可用于辨识元件受压时的压力分布、几何梯度等变化。此外,在机械手臂加工系统中,通过机械手臂与人的协同运作,可提升复杂度高或需要高度弹性的制作工艺的工作效率,但也提高操作人员的危险性。因此,如何规范机械手臂的运动范围,并设计可供人员与机械手臂互动的操作模式,以避免高速运动的机械手臂对操作人员可能造成的伤害,实为重要。
发明内容
本发明有关于一种力感应装置、力阵列感应模块及其力感应元件,用以检测施加于力感应元件的外力或压力分布,并可通过设置于机械手臂上或机械手臂周围的力感应装置来检测是否发生一触碰信号或作为人机操作界面,并且力感应装置可于触碰发生时通过发出一力感应信号至机械手臂,以控制机械手臂停止或启动机械手臂。
根据本发明的一方面,提出一种力感应装置,包括一力阵列感应模块、一基板、至少一凸起部以及一保护层。力阵列感应模块具有至少一力感应元件。基板用以抵靠力阵列感应模块。至少一凸起部与至少一力感应元件的位置相对应。保护层至少覆盖力阵列感应模块及基板的周围,其中至少一凸起部设置于基板及保护层中的至少一者上。
根据本发明的一方面,提出一种力感应元件,包括两个膜层、两个电极层、至少一感应层以及至少一间隙层。此两个膜层具有相对的一第一内表面与一第二内表面。两个电极层分别设置于第一内表面与第二内表面上,且此两个电极层之间相隔一间隙。至少一感应层设置于两个电极层的至少一者上。至少一间隙层设置于两个膜层之间,以使两个电极层之间保持间隙。
根据本发明的一方面,提出一种力阵列感应模块,包括多个力感应元件,其中此些力感应元件共用该两个膜层,并以阵列形式排列;以及一封胶层,设置于两个膜层之间,用以密封此些力感应元件。
为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附的附图详细说明如下:
附图说明
图1A为本发明一实施例的力感应装置的示意图;
图1B为图1A的力感应装置沿着A-A线的剖面示意图;
图1C分别为本发明一实施例的力感应元件的示意图;
图2分别为本发明一实施例的力阵列感应模块的示意图;
图3分别为本发明一实施例的力阵列感应模块的示意图;
图4A为本发明一实施例的力感应装置的示意图;
图4B为本发明另一实施例的力感应装置的示意图;
图5为本发明一实施例的力感应装置装设在机械手臂上的示意图;
图6为本发明一实施例的力感应装置组装于机械手臂周围的示意图;
图7为本发明一实施例的力阵列感应模块组装于具有凹槽的基板上的示意图。
符号说明
100:力感应装置
101:机械手臂
102:端部
104:活动式支架
106:工具
110:力阵列感应模块
111:信号出线端
112:基板
113、117:凸起部
114:保护层
115:凹槽
116:开口
120:力感应元件
121、122:膜层
1211:第一内表面
1221:第二内表面
123、124:电极层
125:感应层
1251、1252:压敏材料
1253:导电物质
126:间隙层
1261、1262:间隙材料
130:封胶层
142:法兰片接头
143:电路控制单元
G:间隙
H:高度
S1、S2:侧面
S3:底面
T1、T2:开槽
具体实施方式
以下提出实施例进行详细说明,实施例仅用以作为范例说明,并非用以限缩本发明欲保护的范围。以下是以相同/类似的符号表示相同/类似的元件做说明。
请参照图1A及图1B,依照本发明一实施例的力感应装置100包括一力阵列感应模块110、一基板112、至少一凸起部113以及一保护层114。基板112用以抵靠力阵列感应模块110。力阵列感应模块110具有至少一力感应元件120。至少一凸起部113设置于基板112上,用以抵靠于至少一力感应元件120的下方。本实施例仅示例性地绘示四个凸起部113以及七个力感应元件120,其中,凸起部113与力感应元件120的数量可相同或不相同,且凸起部113的位置与力感应元件120的位置可上下对应或上下交错排列,例如,每一个凸起部113对应位于力感应元件120的正下方,或者,每一个凸起部113对应位于至少两个力感应元件120的正下方,或者,每一个凸起部113对应位于两相邻的力感应元件120之间 的下方,本发明对此不加以限制。
当使用者按压的位置正对凸起部113的位置时,位于凸起部113上方的力感应元件120相对于周围的力感应元件120承受较大的下压力,因而可增加按压的灵敏度。或者,使用者按压的位置位于两相邻的凸起部113之间时,位于凸起部113之间的力感应元件120相对于周围的力感应元件120具有较大的变形量,同样可增加按压的灵敏度。当然,使用者可同时按压位于多个凸起部113上方的多个力感应元件120,以使多个力感应元件120同时导通。同时,力感应装置100还可将按压信号传送到外部的处理单元(图未绘示),以供辨识力感应装置100受压时的力分布或梯度等,进而分析受力面积或形状。
此外,保护层114的材质例如为硅胶或橡胶之类的防水材料,以热塑成型的方式加热至软化并以气压差或抽真空的方式包覆在力感应装置100的周围。在一实施例中,保护层114例如至少覆盖力阵列感应模块110上方、基板112的至少两个侧面S1、S2与基板112的一底面S3,保护层114可避免水气或湿气进入力阵列感应模块110内,以避免影响力感应元件120的电性特性。
请参照图1C,依照本发明一实施例的力感应元件120包括两个膜层121、122、两个电极层123、124、至少一感应层125以及至少一间隙层126。此两个膜层121、122具有相对的一第一内表面1211与一第二内表面1221。两个电极层123、124分别设置于第一内表面1211与第二内表面1221上,且此两个电极层123、124之间相隔一间隙。至少一感应层125设置于两个电极层123、124的至少一者上。至少一间隙层126设置于两个膜层121、122之间,以使两个电极层123、124之间保持预定间隙,例如保持间隙G在10微米~100微米之间,例如30微米左右或更低。
在一实施例中,膜层可为软性基板,电极层例如为铜之类的金属或其他高导电材料,电极层可分别制作而形成于两个膜层121、122的第一内表面1211与第二内表面1221上。感应层125例如以涂布或印刷的方式形成于两个电极层123、124上或其中一电极层上。在一实施例中,感应层125例如包括两个压敏材料(Pressure Sensitive Material)1251、1252,分别覆盖于两个电极层123、124上。压敏材料于常态下通过间隙层126保持适当的间隙G而不导电,一旦压敏材料受到压力时,两个电极层123、124之间的距离变短,且位于压敏材料1251、1252内的导电物质1253受压而相互接触,以形成一导电通路于两个电极层123、124之间。因此,压敏材料1251、1252也因为内部形成导电通路而改变导电性。在一实 施例中,当压力不断增加,压敏材料1251、1252内的导电通路也会增加,而使得压敏材料1251、1252的导电性更好。
在一实施例中,位于压敏材料1251、1252内的导电物质1253例如为碳黑(carbon black)粉末或金属粉末,可与高分子聚合物混合而均匀分布于压敏材料1251、1252中。在一实施例中,压敏材料1251、1252可通过内部电阻值、感应电容值或感应电感值的改变而改变导电性,其材质例如选自压阻材料、电容感应材料、电感材料或压电材料等,本发明对此不加以限制。
在一实施例中,设置于两个膜层121、122之间的间隙层126可为单一层的间隙材料或由两个层堆叠接合的两个间隙材料1261、1262组合而成。在未组合之前,两个间隙材料1261、1262分别设置于两个压敏材料1251、1252上,且分隔于两个压敏材料1251、1252之间,接着,上下的两个膜层121、122经由两个间隙材料1261、1262堆叠接合,并保持预定的间隙于两个电极层123、124之间。同样地,当力感应元件120只有单一层的间隙材料时,上下的两个膜层121、122也能经由单一层的间隙材料接合,并保持预定的间隙于两个电极层123、124之间。当上下的两个膜层121、122组合之后,间隙材料1261、1262可将两个电极层123、124及感应层126分隔于两个膜层121、122之间。在一实施例中,间隙材料1261、1262可为感光型间隙材料,其高度及宽度可通过曝光、显影及烘烤等步骤得到精确的控制。在一实施例中,间隙层126的高度(即间隙G)例如在10微米~100微米之间,例如30微米或更低。
请参照图2,依照本发明一实施例的力阵列感应模块110包括至少一力感应元件120以及一封胶层130。本实施例仅示例性地绘示两个力感应元件120,其中力感应元件120共用两个膜层121、122,并以一维阵列或二维阵列形式排列于两个膜层121、122之间。此外,封胶层130设置于两个膜层121、122之间,用以密封此些力感应元件120。封胶层130的高度H例如在5微米~50毫米之间,例如350微米或更低。另外,力感应元件120通过间隙层126分隔,以确保各个力感应元件120的两个电极层123、124之间的间隙保持一致,以使各个力感应元件120具有一致的电性特性。有关力感应元件120,请参照上述实施例的说明,在此不再赘述。封胶层130可避免水气或湿气进入力感应元件120内,以避免影响力感应元件120的电性特性。
请参照图3,在一实施例中,力阵列感应模块110不限定应用于平面基板上,也可应用于其他外型(例如圆弧形)的基板上。当力阵列感应模块110呈弯曲状 时,各个力感应元件120的两个电极层123、124之间的间隙仍可通过间隙层126保持一致,可避免弯曲程度过大而影响力感应元件120的电性特性。
请参照图1B,凸起部113例如与基板112一体成形而成为基板112的一部分,也就是说,通过移除基板112部分材料而形成凹口,而未移除的凸出部分即为凸起部113。接着,请参照图4A,在一实施例中,凸起部113例如为涂布或贴附在平面基板112上的一表面结构层,也就是说,凸起部113可与基板112结合而达到抵接于力阵列感应模块110与基板112之间的功效。
接着,在另一实施例中,除了设置凸起部113在力阵列感应模块110的下方之外,也可设置凸起部117于力阵列感应模块110的上方。请参照图4B,凸起部117例如与保护层114一体成形而成为保护层114的一部分,或者,凸起部117为涂布或贴附在保护层114上的一表面结构层,其抵接于力阵列感应模块110的上方,功能与凸起部113相同。凸起部117可与凸起部113配合使用,可使力阵列感应模块110的上方与下方分别抵接凸起部117与凸起部113,然而,凸起部117与凸起部113也可个别使用,本发明对此不加以限制。
请参照图5,在一实施例中,基板112例如由两片可相对结合的半圆形板材所组成,组合后的基板112具有一中空圆柱形,且具有至少一出线口,以作为连接至力阵列感应模块110的信号线(图未绘示)的出口。此外,上述实施例的两个力阵列感应模块110可分别设置在半圆形板材上,并通过信号线(图未绘示)连接至一处理模块。在一实施例中,组合后的基板112可固设在机械手臂101上,并通过设置于基板112上的力阵列感应模块110来检测是否发生碰撞的情形,或以力阵列感应模块110作为人机操作界面,以供使用者对机械手臂101进行直觉式教导并记录机械手臂101的移动轨迹。
请参照图5,在一实施例中,机械手臂101的端部102例如设有一法兰片接头142、一电路控制单元143以及一力感应装置100。力感应装置100的中空圆柱形的基板112与电路控制单元143可通过螺丝固定在法兰片接头142上,且电路控制单元143可套设在力感应装置100的基板112的上部外围,中空圆柱形的基板112的下部外围可设有力阵列感应模块110,以作为人机操作界面。力感应装置100例如以环状形式装设于一机械手臂末端(即端部102)。此外,电路控制单元143设置于中空圆柱形的基板112的上部且可通过信号线连接至力感应装置100,用以接收力感应信号,以检测是否发生碰撞的情形,或切换至人机操作模式以接收操作人员输入的指令。
请参照图6,在一实施例中,至少一力感应装置100可组装于机械手臂101周围。有关力感应装置100,请参照上述实施例的说明,在此不再赘述。本实施例仅示例性地绘示五个力感应装置100。各个力感应装置100例如通过活动式支架104固定在机械手臂101的端部102上,并围绕在机械手臂101的端部102的周围。力感应装置100可通过有线方式连接至一集线盘,再经由集线盘的传输线连接至外部的处理模块。当然,力感应装置100也可通过无线通讯方式与外部的处理模块进行信号传输,本发明对此不加以限制。此外,机械手臂101的端部102上设有一工具106,例如是夹具、焊接工具、钻孔工具或切割工具等,当机械手臂101活动时,可通过力感应装置100来检测是否发生碰撞的情形。因此,可预防外力碰撞或避免高速运动的机械手臂101对操作人员可能造成的伤害。请参照图6,在一实施例中,力感应装置100也可装设在一机械手臂表面,例如上、下活动臂表面及/或支撑座表面等任一表面。
请参照图7,依照本发明一实施例的力阵列感应模块110例如具有一信号出线端111,为了避免信号出线端111弯折时产生的应变力影响力感应元件120的电性特性,信号出线端111的两侧例如具有两个开槽T1、T2,此两个开槽T1、T2可使信号出线端111与力感应元件120所在的区域分隔,以减少力感应元件120的信号受到应力干扰。此外,基板112包括一凹槽115,此凹槽115用以容纳信号出线端111,使信号出线端111的高度低于力阵列感应模块110所承靠的基板112表面的高度。如此,弯折至凹槽115中的信号出线端111不会影响力感应元件120的电性特性。
此外,在一实施例中,凹槽115底部具有一开口116(即出线口),信号出线端111可经由开口116通过基板112而连接至信号线,或信号线可经由开口116通过基板112而连接至信号出线端111。
本发明上述实施例所揭露的力感应元件及应用其的力阵列感应模块及力感应装置,用以检测施加于力感应元件的外力或压力分布,并可通过设置于机械手臂上或机械手臂周围的力感应装置来检测是否发生一触碰信号或以力阵列感应模块作为人机操作界面,并且力感应装置可于触碰发生时通过发出一力感应信号至机械手臂,以控制机械手臂停止或启动机械手臂。根据上述的说明,本发明可应用在触觉感应相关的电子装置上,包括机械手臂的人机操作界面、智能皮肤、电子皮肤、防碰撞预警系统以及触觉感应阵列等领域,应用范围广且实用性佳。
综上所述,虽然结合以上实施例公开了本发明,然而其并非用以限定本发明。 本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作各种的更动与润饰。因此,本发明的保护范围应当以附上的权利要求所界定的为准。

Claims (12)

  1. 一种力感应装置,其特征在于,包括:
    力阵列感应模块,具有至少一力感应元件;
    基板,用以抵靠该力阵列感应模块,
    至少一凸起部,与该至少一力感应元件的位置相对应;以及
    保护层,至少覆盖该力阵列感应模块及该基板的周围,其中该至少一凸起部设置于该基板及该保护层中的至少一者上。
  2. 如权利要求1所述的力感应装置,其中至少一凸起部与该基板及该保护层中的至少一者一体成形,或为涂布或贴附在基板及该保护层中的至少一者上的一表面结构层。
  3. 如权利要求1所述的力感应装置,其中该力阵列感应模块包括一信号出线端,该基板包括一凹槽,该凹槽用以容纳该信号出线端,使该信号出线端的高度低于该力阵列感应模块所承靠的该基板表面的高度,其中该凹槽底部具有一开口,对应至该信号出线端。
  4. 如权利要求3所述的力感应装置,其中该信号出线端的两侧具有两个开槽,该两个开槽使该信号出线端与该至少一力感应元件分隔。
  5. 如权利要求3所述的力感应装置,其中该基板包括两个半圆形板材,且该两个半圆形板材分别具有一出线口,对应至该信号出线端。
  6. 如权利要求1所述的力感应装置,其中该力感应装置装设于一机械手臂表面。
  7. 如权利要求1所述的力感应装置,其中该力感应装置以环状形式装设于一机械手臂末端。
  8. 如权利要求1所述的力感应装置,其中该力感应装置装通过一活动式支架固定在该机械手臂的周围。
  9. 一种力感应元件,其特征在于,包括:
    两个膜层,具有相对的一第一内表面与一第二内表面;
    两个电极层,分别设置于该第一内表面与该第二内表面上,且该两个电极层之间相隔一间隙;
    至少一感应层,设置于该两个电极层的至少一者上;以及
    至少一间隙层,设置于该两个膜层之间,以使该两个电极层之间保持该间隙。
  10. 如权利要求9所述的力感应元件,其中该至少一感应层包括覆盖在该两个电极层其中之一上的一压敏材料,或分别覆盖于该两个电极层上的两个压敏材料,该压敏材料内包含至少一导电物质。
  11. 如权利要求9所述的力感应元件,其中该至少一间隙层包括单一层的间隙材料或堆叠接合的两个间隙材料,该间隙材料设置于该至少一感应层上且位于该两个电极层之间。
  12. 一种力阵列感应模块,其特征在于,包括:
    多个如权利要求7至9其中之一所述的力感应元件,其中该些力感应元件共用该两个膜层,并以阵列形式排列;以及
    封胶层,设置于该两个膜层之间,用以密封该些力感应元件。
PCT/CN2019/076027 2019-02-25 2019-02-25 力感应装置、力阵列感应模块及其力感应元件 WO2020172763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076027 WO2020172763A1 (zh) 2019-02-25 2019-02-25 力感应装置、力阵列感应模块及其力感应元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076027 WO2020172763A1 (zh) 2019-02-25 2019-02-25 力感应装置、力阵列感应模块及其力感应元件

Publications (1)

Publication Number Publication Date
WO2020172763A1 true WO2020172763A1 (zh) 2020-09-03

Family

ID=72238244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076027 WO2020172763A1 (zh) 2019-02-25 2019-02-25 力感应装置、力阵列感应模块及其力感应元件

Country Status (1)

Country Link
WO (1) WO2020172763A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102144205A (zh) * 2008-08-26 2011-08-03 摩托罗拉移动公司 多点触摸力感应触摸屏装置和方法
US20140331412A1 (en) * 2008-03-15 2014-11-13 Stryker Corporation Force sensing sheet
CN105739784A (zh) * 2016-02-01 2016-07-06 京东方科技集团股份有限公司 触控基板、触控显示面板和显示装置
CN106289588A (zh) * 2015-05-27 2017-01-04 鸿富锦精密工业(深圳)有限公司 压力传感装置、具有该压力传感装置的机械手及机器人
CN106370327A (zh) * 2016-10-08 2017-02-01 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN206039467U (zh) * 2016-07-01 2017-03-22 南昌欧菲光科技有限公司 压力感应器件及触摸显示装置
CN107527391A (zh) * 2017-05-26 2017-12-29 纳智源科技(唐山)有限责任公司 客车乘客人数监测系统
CN208140284U (zh) * 2018-05-25 2018-11-23 北京京东方技术开发有限公司 一种压力感应器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331412A1 (en) * 2008-03-15 2014-11-13 Stryker Corporation Force sensing sheet
CN102144205A (zh) * 2008-08-26 2011-08-03 摩托罗拉移动公司 多点触摸力感应触摸屏装置和方法
CN106289588A (zh) * 2015-05-27 2017-01-04 鸿富锦精密工业(深圳)有限公司 压力传感装置、具有该压力传感装置的机械手及机器人
CN105739784A (zh) * 2016-02-01 2016-07-06 京东方科技集团股份有限公司 触控基板、触控显示面板和显示装置
CN206039467U (zh) * 2016-07-01 2017-03-22 南昌欧菲光科技有限公司 压力感应器件及触摸显示装置
CN106370327A (zh) * 2016-10-08 2017-02-01 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN107527391A (zh) * 2017-05-26 2017-12-29 纳智源科技(唐山)有限责任公司 客车乘客人数监测系统
CN208140284U (zh) * 2018-05-25 2018-11-23 北京京东方技术开发有限公司 一种压力感应器件

Similar Documents

Publication Publication Date Title
JP5681808B2 (ja) タッチパネルスタックアップ
CN106778691B (zh) 声波式指纹识别装置及其制作方法以及应用其的电子装置
KR102562373B1 (ko) 표시장치 및 이의 제조방법
TWI534962B (zh) 具有外觀隱藏的耦合電極之近接式感測器及其製造方法
CN107256101B (zh) 一种触控显示面板及显示装置
CN113386158B (zh) 一种全打印仿生超感知柔性机器人皮肤
JP2015164038A (ja) ワイヤレス制御システム、接触検知モジュール、及び接触検知モジュールの製造方法
TWI664510B (zh) 力感應裝置、力陣列感應模組及其力感應元件
TWI625998B (zh) 行動裝置之機殼上的一體成型的接觸特徵部
CN208780370U (zh) 一种平面阵列式剪切力触觉传感器
Gruebele et al. A stretchable capacitive sensory skin for exploring cluttered environments
WO2020172763A1 (zh) 力感应装置、力阵列感应模块及其力感应元件
CN111883556B (zh) 柔性触觉传感器及其制备方法
JP6257088B2 (ja) 静電容量式3次元センサ及びその製造方法
KR102442242B1 (ko) 전자 장치
JP7113146B2 (ja) 湾曲した機能フィルム構造およびその作製方法
CN210036760U (zh) 双模传感单元和双模传感器
TWI668608B (zh) 壓力觸控感測結構、觸控顯示裝置及壓力觸控感測方法
CN116352763A (zh) 应用于机器人碰撞检测的大面积电子皮肤感知系统及方法
US11269435B1 (en) Three-dimensional sensing panel and method of manufacturing the same and electronic apparatus
CN102483362A (zh) 压力检测单元
WO2021053977A1 (ja) 圧力センサ
US20200335288A1 (en) Waterproof button module and electronic device
CN113176837A (zh) 三维触控传感器及显示装置
US20210396612A1 (en) Sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916580

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916580

Country of ref document: EP

Kind code of ref document: A1