WO2020171652A2 - Real-time underwater particle-sensing system using bubbles - Google Patents

Real-time underwater particle-sensing system using bubbles Download PDF

Info

Publication number
WO2020171652A2
WO2020171652A2 PCT/KR2020/002548 KR2020002548W WO2020171652A2 WO 2020171652 A2 WO2020171652 A2 WO 2020171652A2 KR 2020002548 W KR2020002548 W KR 2020002548W WO 2020171652 A2 WO2020171652 A2 WO 2020171652A2
Authority
WO
WIPO (PCT)
Prior art keywords
bubble
real
detection system
time
image
Prior art date
Application number
PCT/KR2020/002548
Other languages
French (fr)
Korean (ko)
Other versions
WO2020171652A3 (en
Inventor
정영수
김지윤
이승현
Original Assignee
숙명여자대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Publication of WO2020171652A2 publication Critical patent/WO2020171652A2/en
Publication of WO2020171652A3 publication Critical patent/WO2020171652A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Definitions

  • the present invention relates to a real-time underwater particle detection system using bubbles.
  • biochemical oxygen demand (BOD) or chemical oxygen demand (COD) has disadvantages such as long analysis time and low reproducibility.
  • BOD biochemical oxygen demand
  • COD chemical oxygen demand
  • the current water quality level cannot be reflected in real time because the water collected at the site is moved to another place when measuring water quality.
  • An object of the present invention is to provide a real-time underwater particle detection system using a bubble capable of qualitative and quantitative analysis since particles inside a bubble can be directly visualized.
  • the present invention is to provide a real-time underwater particle detection system capable of realizing accurate reproducibility by measuring water quality in real time without being subject to temporal and spatial constraints.
  • the present invention provides a bubble generating device for generating a bubble, a light emitting unit for irradiating light to the generated bubble, and collecting the light scattered from the bubble to obtain an image of the bubble. It provides a real-time underwater particle detection system including an image sensor unit.
  • the bubble generating device may generate a bubble having a water film on a liquid surface or a water film in a frame.
  • a bubble bursting device for bursting the bubble, a droplet collecting device for collecting droplets generated when the bubble bursts, and acquiring an image or an electromagnetic signal of the droplets collected by the droplet collecting device It may further include a sensor unit including a droplet sensor.
  • the bubble generating device includes a tube in which the bubble is generated at one end, and an air injection unit that supplies air to the tube to generate the bubble at one end of the tube. can do.
  • a solution containing water and a surfactant may be accommodated inside the tube.
  • a control unit may further include a control unit that detects at least one of the presence or absence of bacteria and concentration in the liquid using the image of the bubble obtained from the image sensor unit.
  • the sensor unit may further include a bubble burst control device configured to rupture the generated bubbles by operating the bubble bursting device according to a preset time or user input.
  • the droplet collecting device includes a sampling mechanism or a sampling plate on which the collected droplets are seated, and the sampling mechanism or the sampling plate may be detachable.
  • the droplet sensor includes a droplet image sensor that acquires a digital image or a fluorescence image of the droplet collected from the droplet collecting device, and a droplet electromagnetic signal sensor that acquires an electromagnetic signal applied to the droplet. can do.
  • the U-shaped tube has a first end in which the bubble is not formed and a second end in which the bubble is formed, but the heights of the first and second ends may be different.
  • the light emitting unit is a light source, a plurality of lenses spaced apart from the light source, and a pinhole disposed between any two lenses selected from among the plurality of lenses, and located on the optical path of the light source. It may include a pinhole plate with a pin hole.
  • the light source may be visible light.
  • the plurality of lenses include first to fourth lenses sequentially spaced apart from the light source, and the first and second lenses are plano convex lenses, but are disposed so that the convex surfaces face each other.
  • the pinhole plate may be positioned between the second and third lenses.
  • the third lens may be disposed to irradiate light parallel to the height of the bubble generated in the tube.
  • the image sensor unit includes: a first camera for photographing an image of a bubble generated in the tube, a fourth lens for condensing light scattered from the generated bubble, and a fourth lens passing through the fourth lens. It may include a second camera to acquire an image.
  • control unit measures the number of black spots and/or white spots extracted from the image of the bubble obtained by the image sensor unit, and exists in the bubble.
  • concentration of the particles may be calculated, but the concentration of the particles may be calculated using information about the time when the bubble was generated.
  • control unit stores spot data including a unique surface energy value for each type of the particle, and the black spot extracted from the image of the bubble obtained by the image sensor unit ) And/or the size, thickness, and period of the light pattern formed around each of the white spots may be applied to the spot data to calculate the particle type data.
  • the control unit measures the survival time of the bubble by using the image of the bubble acquired by the image sensor unit, and stores the time set by the user in a memory to determine the survival time of the bubble.
  • the bubble bursting device is operated to burst the bubble, or the bubble bursting device is operated according to a user's input to burst the bubble, and the thickness of the bubble film can be calculated based on the bursting rate of the bubble. have.
  • the present invention provides a bubble generator for generating a bubble, a transmitter for irradiating an electromagnetic signal to the generated bubble, a receiver for acquiring the electromagnetic signal transmitted through the bubble, and an electromagnetic signal transmitted through the receiver.
  • a real-time underwater particle detection system including a control unit for detecting at least one of the presence or absence and concentration of particles in the liquid.
  • the real-time underwater particle detection system using bubbles enables real-time quantitative analysis of particles through visualization by generating bubbles, and can analyze the type of particles in real time through the surface characteristics and simulation of the particles, and thus detection cost This is low, measurement time is short, and the system can be miniaturized and modularized.
  • the real-time underwater particle detection system using a bubble according to the present invention can predict the concentration of particles in water and the concentration of particles contained in an aerosol generated when the bubble bursts.
  • it can be used to determine the type of particle through statistical analysis or predicting characteristics using image analysis or computer simulation based on the surface characteristics of particles.
  • the present invention can perform the same analysis by creating a thin water film instead of a bubble shape using a ring-like frame, and in this case, a tube and an air injection unit are not required, so that the overall system can be miniaturized.
  • 1 is a diagram showing a step-by-step method of determining the amount and type of bacteria in water in the related art.
  • FIG. 2 is a diagram schematically showing the configuration of a real-time underwater particle detection system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a real-time underwater particle detection system according to an embodiment of the present invention.
  • FIG. 4 is a view showing a tube according to an embodiment of the present invention.
  • FIG. 5 is a view showing an air injection unit according to an embodiment of the present invention.
  • FIG. 6 is a view showing a light emitting unit according to an embodiment of the present invention.
  • FIG. 7 is a view showing an image sensor unit according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining the principle of the real-time underwater particle detection system according to an embodiment of the present invention detects bacteria existing in the water.
  • FIG. 9 is a diagram showing in detail a sensor unit collecting droplets generated when a bubble bursts according to an embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing a method of popping a bubble according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing a curve formed by a surface of a bubble generated according to an embodiment of the present invention and a surface of a particle trapped therein.
  • FIG. 12 is a diagram showing an image of bacteria in a bubble.
  • FIG. 13 is a diagram illustrating an image of bacteria in a water film by forming a thin water film containing fine particles by a bubble generating device using a ring-structured frame according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of a real-time underwater particle detection system according to an embodiment of the present invention
  • FIG. 3 is a configuration diagram of a real-time underwater particle detection system according to an embodiment of the present invention.
  • the real-time underwater particle detection system 100 includes a bubble generating device that generates bubbles, and an outgoing light that irradiates light to the generated bubbles.
  • a bubble generating device that generates bubbles
  • an outgoing light that irradiates light to the generated bubbles.
  • FIGS. 2 and 3 since the components shown in FIGS. 2 and 3 are not essential, a real-time underwater particle detection system having more or fewer components than that can be implemented.
  • particles refer to fine particles, and are not a term that distinguishes between living and inanimate objects, and means small particles ranging in size from several hundred nanometers to several hundred micrometers.
  • it may be expressed as a contaminant including bacteria, viruses, fungi, yeast, red blood cells, white blood cells, cells, algae, spores, microplastics, etc.
  • the bubble generating device is a device for creating a thin water film, for example, a device that generates a bubble with a thin water film on a liquid surface, or a thin water film in the frame using a polygonal or ring-shaped frame. .
  • a description will be made on the basis of a bubble, which is a representative example of a thin water film, but it is not intended to limit the scope of the present invention to a bubble. That is, when a thin liquid film is generated according to an embodiment of the present invention, it is important to know the thickness information of the water film at the time when the particles are detected, which is determined by the speed at which the water film is artificially burst, or Alternatively, it can be determined by analyzing the wavelength of light passing through the water film.
  • the bubble generating device can generate bubbles on the surface of the liquid by injecting gas into a container containing a liquid to generate bubbles.
  • the bubble generating device may include a container 10 for accommodating a liquid and an air injection unit 20 for injecting gas in the liquid.
  • the bubble generating device may generate a thin film of water in the frame by immersing the ring-shaped frame in the container 10 and then removing it, as shown in FIG. 13.
  • the description will be made based on bubbles for easy description of the present invention, but the scope of the present invention is not limited thereto.
  • the container 10 used by the bubble generating device to inject gas to generate bubbles on the liquid surface is not particularly limited in shape or size, but according to a preferred embodiment, shown in FIGS. 3 to 5 As such, it may be a tubular, but may be a U-shaped or J-shaped tube bent so that both ends of the tubular face the same direction.
  • the container 10 containing the liquid therein is provided with the first end so that the gas can be injected into the liquid in the same direction as the second end 12 in which the bubble is formed so that bubbles can be easily generated on the water surface at one end. 2 It is preferable that the first end 11 is formed in the same direction as the end 12, and more preferably the container 10 so that the height of the water surface where bubbles are generated can be easily adjusted using the pressure inside the tube. ) Is preferably a J-shaped.
  • the tube is a preferred embodiment of the container, and the terms tube and container are used interchangeably.
  • the diameter of one end of the container 10 is not particularly limited, but it is preferably formed to be thin so as to correspond to the diameter of the formable bubble.
  • the tube diameter is preferably 1.2 to 2.5 times, preferably 1.5 to 2.5 times the diameter of the generated bubble.
  • the curved portion of the bubble film formed on the water surface was about 2.35 times the average size of 6.38 mm.
  • FIG. 4 is a view showing a tube according to an embodiment of the present invention.
  • the U-shaped tube 13 according to a preferred embodiment of the container 10 has a first end 11 in which bubbles are not formed and a second end 12 in which bubbles are formed.
  • the U-shaped tube 13 is preferably J-shaped so that the first and second ends 11 and 12 have different heights based on the bent portions, as described above.
  • the tube 10 accommodates a liquid therein, but the liquid may be a solution containing water and a surfactant so as to easily form bubbles. At this time, by controlling the concentration of the surfactant contained in the solution, it is possible to control the life time of the bubble.
  • the type of surfactant is not particularly limited, but according to an embodiment, 1 selected from the group consisting of sodium dodecyl sulfate (SDS), dodecanol, and cetrimonium bromide (CTAB). It can be more than a species.
  • the concentration of the surfactant may be a critical micelle concentration (CMC) or higher.
  • FIG. 5 is a view showing an air injection unit according to an embodiment of the present invention.
  • the air injection unit 20 is for supplying outside air or gas in the gas container through a hose (or a nozzle), and according to an embodiment of the present invention, as shown in FIG. 5, air is supplied to supply gas.
  • the discharged hose may include an air pump 21 connected to one end of the U-shaped tube 13.
  • the air pump 21 is driven by a control command generated by the control unit 22 and supplies air to the U-shaped tube 13 filled with a solution in which water and surfactant are dissolved through the hose 25a.
  • bubbles can be generated at the second end 12 of the tube.
  • the control unit 22 continuously generates bubbles while bubbles are formed on the surface of the liquid, but to prevent collisions between bubbles. The formation time of the bubble can be controlled.
  • the size of the bubble formed at the second end 12 may be controlled according to the diameter and/or position of the hose (or nozzle).
  • the syringe 24 can inject the liquid contained therein into the tube 10 through the hose 25b.
  • the syringe ( 24) accommodates distilled water therein, and distilled water may be injected into the U-shaped tube 13.
  • a fluid supplied to the U-shaped tube 13 through a syringe 24 to a hose branched from a point on the hose 25b connected between the syringe 24 and the tube 10 It may include a buffer tank (buffer tank, 23) for accommodating the same type of fluid contained in the syringe (24) to keep the pressure constant.
  • the hose 25b connected to the buffer tank 23 and the syringe 24 is connected to the first end 11 in which no bubbles are generated in the U-shaped tube 13, and is connected to the other end of the U-shaped tube 13. It is possible to maintain a constant height of the bubble. That is, due to the evaporation generated when the bubble bursts, it can be kept constant without changing the height of the regenerated bubble when regenerating the bubble.
  • 3-way valves are provided to allow the fluid in the tube 10 to flow into the syringe 24 and/or It is possible to prevent backflow to the buffer tank 23.
  • the light emitting unit 30 is for irradiating light toward a bubble formed at one end of the tube 10, and may include a light source 31 that emits light.
  • FIG. 6 is a view showing a light emitting unit according to an embodiment of the present invention.
  • the light emitting unit 30 includes a light source 31, a plurality of lenses 32 to 34 spaced apart from the light source 31, and any two lenses selected from among the plurality of lenses. It is disposed between the (33, 34), it may include a pinhole plate 35 having a pin hole (pin hole) located on the light path emitted from the light source 31.
  • the plurality of lenses 32 to 34 may be three, but the number is not particularly limited, as long as the number of the lenses 32 to 34 is clearly acquired, and the type of each lens 32 to 34 is also Not limited.
  • the wavelength range of light emitted by the light source 31 may be visible light of 380 nm to 780 nm, and preferably the optimal wavelength range of light emitted by the light source 31 in order for the image sensor unit 40 to acquire a high-resolution image Is preferably 450nm to 640nm.
  • the type of the plurality of lenses 32 to 34 spaced apart from and arranged in front of the light source 31 is not particularly limited as long as it is for making the optical system described below.
  • the first and second lenses 32 and 33 are planar convex lenses to remove chromatic aberration, but the two convex lenses may be disposed so that the convex surfaces face each other, and the third lens 34 uses the light source 31. It may be a planar concave lens with a flat incident surface facing and a concave exit surface.
  • the light emitting unit 30 may further include a pinhole plate 35 disposed between the second and third lenses 33 and 34 to adjust the focus so that a clear image is formed on the camera, in which case the pinhole A pin hole formed through the plate 35 may be disposed to be positioned on an optical path passing through at least one lens.
  • the light that has passed through the first and second lenses 32 and 33 may pass through the pinhole 35 and then be inverted at the same time as a focal point, and the light that has passed through the pinhole 35 is a third lens ( After entering the plane of 34), the image sensor unit 40 is projected onto the subject bubble by being projected on the concave surface, and focusing through the fourth lens 42 located in front of the image sensor unit 40, the image sensor unit 40 is You can acquire the image of the bubble.
  • the third lens 34 is positioned to correspond to the height of the bubble generated at one end of the tube 10, so that the light that has passed through the third lens 34 can be irradiated at a height parallel to the bubble. It is desirable to do.
  • the real-time underwater particle detection system 100 may include an image sensor unit 40 for acquiring an image of the generated bubble.
  • FIG. 7 is a view showing an image sensor unit according to an embodiment of the present invention.
  • the image sensor unit 40 is a first camera that is spaced apart from the U-shaped tube 13 to obtain an image of the bubble generated in the tube 10. (41), a fourth lens (42) that condenses light scattered from the generated bubble, and a second camera (43) that transmits through the fourth lens (42) to obtain an image of the bubble, which is a subject. It may include.
  • the first camera 41 is not particularly limited, but may be a microscope camera, and the control unit 22 uses the image of the bubble 14 acquired through the first camera 41. The generation and disappearance of the bubble 14 can be checked and recognized. According to an embodiment, when the control unit 22 recognizes that the bubble 14 has burst and disappears, the air pump 21 may be driven and controlled to generate another bubble.
  • the second camera 43 is also not particularly limited, but may be a high speed camera, and the second camera 43 is a camera capable of photographing from the generation of bubbles to the process of exploding and extinguishing. Bacterial movement can be acquired. Likewise, the control unit 22 may check and recognize the generation and disappearance of the bubble 14 using the image of the bubble 14 acquired through the second camera 43.
  • Reference numeral 36 which is not described in FIG. 3, is a schematic diagram of a bacteria image.
  • FIG. 8 is a diagram for explaining a principle in which a real-time underwater particle detection system according to an embodiment of the present invention detects bacteria existing in water.
  • Light that is not refracted by bacteria is collected at one focal point through the first to fourth lenses 32 to 34 and 42, and the second camera 43 acquires a normal image of a bubble, but light refracted by bacteria Since silver cannot be collected in one focus, a black pattern is generated on the image acquired by the second camera 43, and bacteria existing in the water can be detected using the image of the bubble in real time.
  • control unit 60 may detect the presence or absence of bacteria or the concentration of bacteria by using the image obtained by the image sensor unit 40.
  • the control unit 60 may store data on the number of bacteria in bubbles according to the concentration of bacteria in water, and a black spot extracted from the image obtained by the image sensor unit 40 and / Or, by measuring the number of white spots, the concentration of bacteria present in the bubble can be calculated.
  • a spot is a light that is refracted by underwater bacteria captured by a bubble, and the concentration of bacteria can be calculated based on the number of spots.
  • the control unit 60 It is better to calculate the concentration of bacteria using this generated time information.
  • the time information is information that can predict the film thickness of the bubble (because the film thickness of the bubble depends on the survival time of the bubble), and using this, the control unit 60 can predict the actual size of the spot. .
  • the concentration of particles present on the bubble can be calculated using the actual size information and the number of spots measured in this way.
  • the size of the spot may be influenced by the curve formed on the surface 142 of the bubble by the captured bacteria 141 (see FIG. 11). Since the size of the particles that can be trapped in the bubble film depends on the film thickness (h) and contact angle ( ⁇ ) within a certain range (see FIG. 11), the control unit 60 uses the image sensor unit 40 to To calculate the concentration of bacteria by tracking the change in the curve formed by the bacteria 141 trapped on the surface of and measuring the number of spots when the film thickness (h) of the bubble is 0.5 ⁇ m to 100 ⁇ m. good.
  • the film thickness (h) of the bubble gradually decreases after the bubble is created, so the thickness (h) after a predetermined period of time (or a specific lifetime of the bubble) has elapsed. This is because the maximum number of spots can be observed when is the optimum thickness for capturing particles.
  • the film thickness h of the bubble has a thickness from 0.5 ⁇ m to 100 ⁇ m, the optimum particle average size observed in a film of this specific thickness is 5 times the film thickness.
  • control unit 60 may store spot data including a unique surface energy value for each type of underwater particle.
  • a light pattern may be formed around each of the black spots and/or white spots extracted from the image of the bubble obtained by the image sensor unit 40, and the size and thickness of the light pattern And a period (for example, an intensity period) to the spot data, it is possible to calculate the type of underwater particles.
  • a curve may be formed on the surface 142 of the bubble by trapped particles (or bacteria 141), and the curve formed at this time is the size of the trapped particles, the contact angle, and the thickness of the bubble film.
  • the contact angle ⁇ is according to the intrinsic surface energy value, and since it differs according to the type of underwater particles (or bacteria), the control unit 60 provides information on the curve or the light pattern formed around the spot.
  • the type of particle (or bacteria) may be calculated using information (the light pattern varies depending on the contact angle).
  • control unit 60 uses a bubble image, and as shown in FIG. 12, FIG. 12(a) is Bacillus, FIGS. 12(b) and (c) are E. coli, and FIG. 12(d) ) Can distinguish between Pseudomonas bacteria.
  • control unit 60 measures the survival time of the bubble 14 using the sensor unit 50 and/or the image sensor unit 40 that monitors the bubble, and stores the time set by the user in the memory.
  • the survival time of the bubble 14 coincides with the bubble burst control device 52 to which they are connected, the bubble 14 bursts, or the bubble burst control device 52 is operated according to the user's input to quickly bubble the bubble. You can burst (14) to generate droplets.
  • the control unit 60 After bursting the bubbles 14 as described above to generate droplets, the control unit 60 acquires digital images, fluorescence images, and electromagnetic signals of the droplets collected by the liquid crystal collecting device 53 to determine the size and number of droplets. , The content can be analyzed, and the analysis result is compared with the image analysis result of the bubble, thereby verifying the image analysis result of the bubble.
  • the droplet collecting apparatuses 53 and 54 are for collecting droplets scattered by bursting of the bubbles, and may include a sampling mechanism or a sampling plate for seating droplets in order to analyze the collected droplets.
  • the sampling device or the sampling plate included in the droplet collection devices 53 and 54 can be manually or automatically detached and mounted for replacement or cleaning.
  • FIG. 9 is a diagram showing in detail a sensor unit including a droplet collecting device for collecting droplets generated when a bubble bursts according to an embodiment of the present invention.
  • the sensor unit 50 includes a bubble bursting device 51 for bursting bubbles, and a droplet collecting device 53 for collecting droplets generated when the bubble bursts. And, it may include a droplet sensor (54, 55) for acquiring an image or an electromagnetic signal of the droplet from the droplet collecting device 53.
  • droplets generated from bubbles ruptured by the bubble bursting device 51 that bursts the bubbles 14 may be collected (or collected) by the droplet collecting device 53.
  • the droplet collecting device 53 may include a sampling mechanism or a sampling plate, and the sampling mechanism may be, for example, a conductive or non-conductive substrate including glass.
  • the control unit 60 may calculate the presence or absence of bacteria or concentration based on the image of the droplets collected by the droplet collecting device 53. That is, since the droplets collected in the droplet collecting device 53 contain bacteria (or contaminants) trapped in the bubble, the control unit 60 displays an image of the droplets collected in the droplet collecting device 53. Use to calculate the presence or absence of bacteria (or contaminants), or to calculate the concentration using the number.
  • the image acquired by the droplet image sensor 54 may be a general digital camera image, a fluorescence image, or a high magnification image such as a microscope.
  • control unit 60 may obtain an electromagnetic signal applied to the droplets collected by the droplet collecting device 53 by using the droplet electromagnetic field signal sensor 55, and the presence or absence of bacteria using the electromagnetic signal Concentration can be calculated.
  • the control unit 60 is based on the electromagnetic wave material constant according to the species of the bacteria. Presence or concentration can be calculated. Since the terahertz wave transmits well through various materials and is harmless to the human body and food unlike X-rays, the electromagnetic signal is preferably a terahertz wave.
  • the control unit 60 measures the size of the droplets, the number of droplets, and microorganisms or contaminants contained in the droplets by using an image or an electromagnetic signal of the droplets collected in the droplet collecting device 53.
  • the concentration and type of can be analyzed.
  • the light emitting unit 30 emitting light may include a transmitter (not shown) that generates an electromagnetic signal (eg, a terahertz wave) and irradiates it toward the bubble,
  • the sensor unit 50 specifically the droplet electromagnetic field signal sensor 55, obtains the electromagnetic signal transmitted through the bubble, so that the control unit 60 directly controls the presence, number, or concentration of particles contained in the bubble.
  • the type of particle can be determined.
  • FIG. 10 is a diagram schematically showing a method of popping a bubble according to an embodiment of the present invention.
  • the sensor unit 50 may include a bubble bursting device 51 that bursts bubbles, and the bubble bursting device 51 is driven by a control command from the bubble bursting control device 52.
  • the bubble bursting control device 52 may rupture the bubble by driving and controlling the bubble bursting device 51 by a control command of the control unit 60.
  • control unit 60 and/or the sensor unit 50 is an image obtained by the first camera 41 for the interval between the generation time of the bubble and the extinguishing time due to rupture, that is, a life time. It can be calculated using, and when the survival time reaches the survival time of the preset bubble, a control command is transmitted to the bubble bursting device 51 that moves the thin needle, and the needle contacts the bubble to burst and extinguish the bubble. I can.
  • control unit 60 forcibly ruptures the bubble according to the survival time of the bubble, and measures the rupture rate of the bubble, that is, the rate at which the hole increases, so that the thickness of the bubble film is inversely proportional to the square of the rupture rate of the bubble,
  • the thickness of the bubble film can be calculated using the bursting rate of the bubble.
  • the control unit 60 may calculate the size of the particles trapped in the bubble, as described above, using the calculated thickness of the bubble film.
  • FIG. 13 is a diagram illustrating an image of bacteria in the water film by forming a thin water film containing fine particles in the bubble generating apparatus according to an embodiment of the present invention using a ring-structured frame.
  • the real-time underwater particle detection system can image fine particles contained in water in the same manner by forming a thin water film instead of bubbles.
  • FIG. 13(a) is a schematic diagram of a method of generating a water film using a ring-shaped frame instead of a bubble
  • FIG. 13(b) is an image of a liquid film containing fine particles.
  • FIG. 13(b) when particles having a particle size of 2.0 ⁇ m were used, black spots were observed in the area indicated by a square.
  • a spot image photographed with different particle sizes and concentrations is shown in FIG. 13(c). As a result, it was found that the size and number of spots differed according to the size and concentration of the particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a real-time underwater particle-sensing system using bubbles. The real-time underwater particle-sensing system using bubbles according to the present invention can quantitatively analyze bacteria in real time through visualization by generating bubbles and can analyze the surface properties and kinds of bacteria in real time through simulation. Thus, the sensing system is advantageous in terms of low detection cost, short detection time, and possibility for system miniaturization and modularization. In addition, the quantity of bacteria measured through the real-time underwater particle-sensing system using bubbles according to the present invention can be used as information for predicting concentrations of bacteria in water and in aerosols generated upon bursting of bubbles. Furthermore, the system can be used to determine kinds of bacteria through image analysis using surface properties of bacteria, computer-simulated trait prediction, and statistical analysis.

Description

버블을 이용한 실시간 수중 파티클 감지시스템Real-time underwater particle detection system using bubbles
본 발명은 버블을 이용한 실시간 수중 파티클 감지시스템에 관한 것이다.The present invention relates to a real-time underwater particle detection system using bubbles.
아프리카와 같이 경제적으로 어려운 국가에서는 더러운 물로 인한 수인성 질병으로 매일 수 천명의 아이가 목숨을 잃고 있으며, 세균이나 마이크로 플라스틱 등으로 오염된 물로부터 발생한 병원성 에어로졸에 의한 질병 확산이 크게 사회문제화 되고 있다.In economically difficult countries such as Africa, thousands of children die every day due to waterborne diseases caused by dirty water, and the spread of diseases caused by pathogenic aerosols from water contaminated with bacteria or microplastics has become a major social issue.
오염된 물로 인한 수인성 질병과 병원성 에어로졸에 의한 질병 확산을 막기 위해서는, 물속에 존재하는 세균의 양과 종류를 정확히 파악하는 것이 중요하다.In order to prevent the spread of waterborne diseases caused by contaminated water and diseases caused by pathogenic aerosols, it is important to accurately identify the amount and type of bacteria present in the water.
종래 물속의 세균의 양과 종류를 파악하기 위한 방법으로, 도 1에 도시한 바와 같이 여러 단계의 과정이 필요하다.As a method for determining the amount and type of bacteria in water in the related art, several steps are required as shown in FIG. 1.
그러나 이러한 과정은 일반적으로 측정 시간이 길고 비용이 많이 들며, 채취(sampling)와 측정이 이루어지는 시공간이 달라 결과의 신뢰도가 낮으며, 측정에 필요한 장비가 고가이고 소형화, 모듈화가 어렵기 때문에 일반인들이 사용할 수 있는 제품으로 개발하기 어렵다.However, such a process generally requires a long and expensive measurement, and the reliability of the results is low due to the differences in time and space in which sampling and measurement are performed. It is difficult to develop into a product that can be used.
현재 수질측정방안으로 가장 널리 사용되는 지표 중 생물화학적 산소요구량(biochemical oxygen demand; BOD) 또는 화학적 산소요구량(chemical oxygen demand; COD)은 오랜 분석 시간과 낮은 재현성 등의 단점이 있다. 또한, 수질 측정시 현장에서 채취한 물을 다른 장소로 이동하기 때문에, 현재 수질 수준을 실시간으로 반영할 수 없는 문제가 있다.Among the most widely used indicators for measuring water quality, biochemical oxygen demand (BOD) or chemical oxygen demand (COD) has disadvantages such as long analysis time and low reproducibility. In addition, there is a problem in that the current water quality level cannot be reflected in real time because the water collected at the site is moved to another place when measuring water quality.
현재 개발된 실시간 미생물 탐지 기술은 ATP, PCR, 효소발색법 또는 유전영동과 같은 원리를 이용한 것들이 있으나, 앞서 설명한 바와 같이 전처리과정이 필요하고, 정량분석과 정성분석이 동시에 가능한 측정시스템이 존재하지 않으므로 정확한 측정값이라 볼 수 없다.There are currently developed real-time microbial detection technologies that use principles such as ATP, PCR, enzyme coloration, or genophoresis, but as described above, pre-processing is required, and there is no measurement system capable of simultaneous quantitative analysis and qualitative analysis. It is not an accurate measurement.
따라서 물속의 세균의 양과 종류를 실시간 측정할 수 있는 기술에 대한 연구 개발이 시급한 실정이다.Therefore, research and development on a technology that can measure the amount and type of bacteria in water in real time is urgent.
본 발명은 버블 내부의 파티클을 직접적으로 시각화할 수 있으므로 정성분석 및 정량분석이 가능한 버블을 이용한 실시간 수중 파티클 감지시스템을 제공하고자 한다. An object of the present invention is to provide a real-time underwater particle detection system using a bubble capable of qualitative and quantitative analysis since particles inside a bubble can be directly visualized.
또한, 본 발명은 시·공간적 제약을 받지 않아 실시간으로 수질 측정이 가능하여 정확한 재현성을 구현해낼 수 있는 실시간 수중 파티클 감지시스템을 제공하고자 한다.In addition, the present invention is to provide a real-time underwater particle detection system capable of realizing accurate reproducibility by measuring water quality in real time without being subject to temporal and spatial constraints.
상기 과제를 해결하기 위하여 본 발명은, 버블(bubble)을 생성시키는 버블발생장치, 상기 생성된 버블에 광을 조사하는 출광유닛, 및 상기 버블로부터 산란되는 광을 집광하여 상기 버블의 이미지를 획득하는 이미지센서유닛을 포함하는 실시간 수중 파티클 감지시스템을 제공한다.In order to solve the above problems, the present invention provides a bubble generating device for generating a bubble, a light emitting unit for irradiating light to the generated bubble, and collecting the light scattered from the bubble to obtain an image of the bubble. It provides a real-time underwater particle detection system including an image sensor unit.
일 실시예에 따라, 상기 버블발생장치는, 액체 표면 위에 물 막을 가진 버블을 생성시키거나, 프레임 내 물 막을 생성시킬 수 있다.According to an embodiment, the bubble generating device may generate a bubble having a water film on a liquid surface or a water film in a frame.
일 실시예에 따라, 상기 버블을 파열시키는 버블파열장치와, 상기 버블이 터질 때 발생하는 액적을 포집하는 액적수집장치와, 상기 액적수집장치에 의해 수집된 상기 액적의 이미지 또는 전자기신호를 획득하는 액적센서를 포함하는 센서유닛을 더 포함할 수 있다.According to an embodiment, a bubble bursting device for bursting the bubble, a droplet collecting device for collecting droplets generated when the bubble bursts, and acquiring an image or an electromagnetic signal of the droplets collected by the droplet collecting device It may further include a sensor unit including a droplet sensor.
일 실시예에 따라, 상기 버블발생장치는, 일단부에 상기 버블이 생성되는 튜브(tube)와, 상기 튜브에 공기를 공급하여 상기 튜브의 일단부에 상기 버블이 생성되도록 하는 공기주입유닛을 포함할 수 있다.According to an embodiment, the bubble generating device includes a tube in which the bubble is generated at one end, and an air injection unit that supplies air to the tube to generate the bubble at one end of the tube. can do.
일 실시예에 따라, 상기 튜브의 내부에는, 물 및 계면활성제를 함유하는 용액이 수용되어 있을 수 있다.According to an embodiment, a solution containing water and a surfactant may be accommodated inside the tube.
일 실시예에 따라, 상기 이미지센서유닛으로부터 획득된 상기 버블의 이미지를 이용하여 상기 액체 내 세균의 유무 및 농도 중 적어도 어느 하나를 검출하는 제어유닛을 더 포함할 수 있다.According to an exemplary embodiment, a control unit may further include a control unit that detects at least one of the presence or absence of bacteria and concentration in the liquid using the image of the bubble obtained from the image sensor unit.
일 실시예에 따라, 상기 센서유닛은, 미리 설정된 시간이나 사용자의 입력에 따라 상기 버블파열장치를 작동시켜, 상기 생성된 버블을 파열시키도록 하는 버블파열제어장치를 더 포함할 수 있다.According to an embodiment, the sensor unit may further include a bubble burst control device configured to rupture the generated bubbles by operating the bubble bursting device according to a preset time or user input.
일 실시예에 따라, 상기 액적수집장치는, 상기 포집된 액적이 안착하는 샘플링 기구 또는 샘플링 플레이트를 포함하되, 상기 샘플링 기구 또는 샘플링 플레이트는 탈장착 가능할 수 있다.According to an embodiment, the droplet collecting device includes a sampling mechanism or a sampling plate on which the collected droplets are seated, and the sampling mechanism or the sampling plate may be detachable.
일 실시예에 따라, 상기 액적센서는, 상기 액적수집장치로부터 포집된 액적의 디지털 이미지 또는 형광 이미지를 획득하는 액적이미지센서, 및 상기 액적에 인가된 전자기신호를 획득하는 액적전자기신호센서를 포함할 수 있다.According to an embodiment, the droplet sensor includes a droplet image sensor that acquires a digital image or a fluorescence image of the droplet collected from the droplet collecting device, and a droplet electromagnetic signal sensor that acquires an electromagnetic signal applied to the droplet. can do.
일 실시예에 따라, U자형의 상기 튜브는, 상기 버블이 형성되지 않는 제1 단부와, 상기 버블이 형성되는 제2 단부를 갖되, 상기 제1 및 제2 단부의 높이는 상이할 수 있다.According to an embodiment, the U-shaped tube has a first end in which the bubble is not formed and a second end in which the bubble is formed, but the heights of the first and second ends may be different.
일 실시예에 따라, 상기 출광유닛은, 광원, 상기 광원으로부터 이격 배치된 복수의 렌즈들, 및 상기 복수의 렌즈들 중 선택된 어느 두 렌즈들 사이에 배치되되, 상기 광원의 광경로 상에 위치한 핀홀(pin hole)을 가진 핀홀플레이트를 포함할 수 있다.According to an embodiment, the light emitting unit is a light source, a plurality of lenses spaced apart from the light source, and a pinhole disposed between any two lenses selected from among the plurality of lenses, and located on the optical path of the light source. It may include a pinhole plate with a pin hole.
일 실시예에 따라, 상기 광원은 가시광선일 수 있다.According to an embodiment, the light source may be visible light.
일 실시예에 따라, 상기 복수의 렌즈들은, 상기 광원으로부터 순차대로 이격 배치된 제1 내지 제4 렌즈를 포함하고, 상기 제1 및 제2 렌즈는, 평면볼록렌즈이되 볼록면이 서로 마주보도록 배치되며, 상기 핀홀플레이트는, 상기 제2 및 제3 렌즈 사이에 위치할 수 있다.According to an embodiment, the plurality of lenses include first to fourth lenses sequentially spaced apart from the light source, and the first and second lenses are plano convex lenses, but are disposed so that the convex surfaces face each other. And, the pinhole plate may be positioned between the second and third lenses.
일 실시예에 따라, 상기 제3 렌즈는, 상기 튜브에 생성된 버블의 높이와 나란하게 광을 조사하도록 배치될 수 있다.According to an embodiment, the third lens may be disposed to irradiate light parallel to the height of the bubble generated in the tube.
일 실시예에 따라, 상기 이미지센서유닛은, 상기 튜브에 생성된 버블의 이미지를 촬영하는 제1 카메라, 상기 생성된 버블로부터 산란되는 광을 집광하는 제4 렌즈, 및 상기 제4 렌즈를 투과한 이미지를 획득하는 제2 카메라를 포함할 수 있다.According to an embodiment, the image sensor unit includes: a first camera for photographing an image of a bubble generated in the tube, a fourth lens for condensing light scattered from the generated bubble, and a fourth lens passing through the fourth lens. It may include a second camera to acquire an image.
일 실시예에 따라, 상기 제어유닛은, 상기 이미지센서유닛에 의해 획득된 상기 버블의 이미지에서 추출된 검은점(black spot) 및/또는 흰점(white spot)의 개수를 측정하여 상기 버블에 존재하는 상기 파티클의 농도를 산출하되, 상기 버블이 생성된 시간 정보를 사용하여 파티클의 농도를 산출할 수 있다.According to an embodiment, the control unit measures the number of black spots and/or white spots extracted from the image of the bubble obtained by the image sensor unit, and exists in the bubble. The concentration of the particles may be calculated, but the concentration of the particles may be calculated using information about the time when the bubble was generated.
일 실시예에 따라, 상기 제어유닛은, 상기 파티클의 종류별 고유 표면 에너지 값을 포함한 스팟(Spot) 데이터를 저장하되, 상기 이미지센서유닛에 의해 획득된 상기 버블의 이미지에서 추출된 검은점(black spot) 및/또는 흰점(white spot) 각각의 주변에 형성된 광 패턴의 크기, 두께, 및 주기를 상기 스팟 데이터에 적용하여 상기 파티클의 종류 데이터를 산출할 수 있다.According to an embodiment, the control unit stores spot data including a unique surface energy value for each type of the particle, and the black spot extracted from the image of the bubble obtained by the image sensor unit ) And/or the size, thickness, and period of the light pattern formed around each of the white spots may be applied to the spot data to calculate the particle type data.
일 실시예에 따라, 상기 제어유닛은, 상기 이미지센서유닛에 의해 획득된 상기 버블의 이미지를 이용하여 상기 버블의 생존 시간을 측정하고, 사용자가 설정한 시간을 메모리에 저장하여 상기 버블의 생존 시간과 일치될 때 상기 버블파열장치를 작동시켜 상기 버블을 터뜨리거나, 사용자의 입력에 따라 상기 버블파열장치를 작동시켜 상기 버블을 터뜨려, 상기 버블의 파열 속도를 근거로 상기 버블 막의 두께를 산출할 수 있다.According to an embodiment, the control unit measures the survival time of the bubble by using the image of the bubble acquired by the image sensor unit, and stores the time set by the user in a memory to determine the survival time of the bubble. When matched with, the bubble bursting device is operated to burst the bubble, or the bubble bursting device is operated according to a user's input to burst the bubble, and the thickness of the bubble film can be calculated based on the bursting rate of the bubble. have.
또한, 본 발명은, 버블(bubble)을 생성시키는 버블발생장치, 상기 생성된 버블에 전자기신호를 조사하는 송신기, 상기 버블을 투과한 상기 전자기신호를 획득하는 수신기, 및 상기 수신기를 투과한 전자기신호를 이용하여, 상기 액체 내 파티클의 유무 및 농도 중 적어도 어느 하나를 검출하는 제어유닛을 포함하는 실시간 수중 파티클 감지시스템을 제공한다.In addition, the present invention provides a bubble generator for generating a bubble, a transmitter for irradiating an electromagnetic signal to the generated bubble, a receiver for acquiring the electromagnetic signal transmitted through the bubble, and an electromagnetic signal transmitted through the receiver. Using, it provides a real-time underwater particle detection system including a control unit for detecting at least one of the presence or absence and concentration of particles in the liquid.
본 발명에 따른 버블을 이용한 실시간 수중 파티클 감지시스템은 버블을 생성하여 시각화를 통해 파티클의 실시간 정량분석이 가능하며, 파티클의 표면 특성과 시뮬레이션을 통해 실시간으로 파티클의 종류를 분석할 수 있어, 검출비용이 낮고, 측정시간이 짧으며, 시스템의 소형화·모듈화가 가능한 장점이 있다.The real-time underwater particle detection system using bubbles according to the present invention enables real-time quantitative analysis of particles through visualization by generating bubbles, and can analyze the type of particles in real time through the surface characteristics and simulation of the particles, and thus detection cost This is low, measurement time is short, and the system can be miniaturized and modularized.
또한, 본 발명에 따른 버블을 이용한 실시간 수중 파티클 감지시스템은, 물속 파티클의 농도와 버블이 터질 때 발생하는 에어로졸 속에 포함된 파티클의 농도를 예측할 수 있다.In addition, the real-time underwater particle detection system using a bubble according to the present invention can predict the concentration of particles in water and the concentration of particles contained in an aerosol generated when the bubble bursts.
또한, 파티클의 표면 특성을 근거로 이미지 분석이나 컴퓨터 시뮬레이션을 이용하여 특성 예측 또는 통계 분석을 통해 파티클의 종류를 파악하는데 사용할 수 있다.In addition, it can be used to determine the type of particle through statistical analysis or predicting characteristics using image analysis or computer simulation based on the surface characteristics of particles.
또한, 버블을 터뜨려 액적을 수집한 뒤 이미지 분석 결과 및 광패턴과 전자기적 신호를 통해 분석된 파티클의 양과 종류 등을 검증하는데 사용할 수 있다.In addition, after bursting bubbles to collect droplets, it can be used to verify the image analysis result and the amount and type of particles analyzed through optical patterns and electromagnetic signals.
또는, 본 발명은 링과 같은 형태의 프레임을 이용하여 버블의 형태가 아닌 얇은 물 막을 생성하여 동일한 분석이 가능하고, 이 경우 튜브 및 공기주입유닛을 반드시 요구하지 않아 전체 시스템의 소형화할 수 있다.Alternatively, the present invention can perform the same analysis by creating a thin water film instead of a bubble shape using a ring-like frame, and in this case, a tube and an air injection unit are not required, so that the overall system can be miniaturized.
도 1은 종래 물속의 세균의 양과 종류를 파악하는 방법을 단계별로 나타낸 도면이다.1 is a diagram showing a step-by-step method of determining the amount and type of bacteria in water in the related art.
도 2는 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템의 구성을 개략적으로 나타낸 도면이다.2 is a diagram schematically showing the configuration of a real-time underwater particle detection system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예 따른 실시간 수중 파티클 감지시스템의 구성도이다.3 is a block diagram of a real-time underwater particle detection system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예 따른 튜브를 나타낸 도면이다.4 is a view showing a tube according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예 따른 공기주입유닛을 나타낸 도면이다.5 is a view showing an air injection unit according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예 따른 출광유닛을 나타낸 도면이다.6 is a view showing a light emitting unit according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예 따른 이미지센서유닛을 나타낸 도면이다.7 is a view showing an image sensor unit according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템이 수중에 존재하는 세균을 감지하는 원리를 설명하기 위한 도면이다.8 is a view for explaining the principle of the real-time underwater particle detection system according to an embodiment of the present invention detects bacteria existing in the water.
도 9는 본 발명의 일 실시예 따라 버블이 터질 때 발생하는 액적을 수집하는 센서유닛을 구체적으로 나타낸 도면이다.9 is a diagram showing in detail a sensor unit collecting droplets generated when a bubble bursts according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예 따라 버블을 터뜨리는 방식을 도식화하여 나타낸 도면이다.10 is a diagram schematically showing a method of popping a bubble according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따라 생성된 버블의 표면과 이에 포획된 파티클의 표면이 이루는 곡선을 나타낸 도면이다.11 is a diagram showing a curve formed by a surface of a bubble generated according to an embodiment of the present invention and a surface of a particle trapped therein.
도 12는 버블 속 박테리아 이미지를 나타낸 도면이다.12 is a diagram showing an image of bacteria in a bubble.
도 13은 본 발명의 일 실시예에 따라 버블생성장치가 링 구조의 프레임을 이용하여 미세 입자가 포함된 얇은 물 막을 형성시켜 물 막 속 박테리아 이미지를 나타낸 도면이다.13 is a diagram illustrating an image of bacteria in a water film by forming a thin water film containing fine particles by a bubble generating device using a ring-structured frame according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.In the present invention, various modifications may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description.
그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to a specific embodiment, it is to be understood to include all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, terms such as "comprises" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
또한, 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.In addition, the accompanying drawings in the present invention should be understood as being enlarged or reduced for convenience of description.
도 2는 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템의 구성을 개략적으로 나타낸 도면이고, 도 3은 본 발명의 일 실시예 따른 실시간 수중 파티클 감지시스템의 구성도이다.2 is a diagram schematically showing the configuration of a real-time underwater particle detection system according to an embodiment of the present invention, and FIG. 3 is a configuration diagram of a real-time underwater particle detection system according to an embodiment of the present invention.
도 2 및 3에 도시한 바와 같이, 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템(100)은, 버블(bubble)을 생성시키는 버블발생장치와, 상기 생성된 버블에 광을 조사하는 출광유닛(30)과, 상기 버블로부터 산란되는 광을 집광하여 상기 버블의 이미지를 획득하는 이미지센서유닛(40)을 포함하여, 수중 세균의 종류나 농도 등을 실시간으로 분석할 수 있다.As shown in Figs. 2 and 3, the real-time underwater particle detection system 100 according to an embodiment of the present invention includes a bubble generating device that generates bubbles, and an outgoing light that irradiates light to the generated bubbles. By including the unit 30 and the image sensor unit 40 to acquire an image of the bubble by condensing the light scattered from the bubble, it is possible to analyze the type or concentration of bacteria in the water in real time.
다만, 도 2 및 3에 도시한 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 갖거나 그보다 적은 구성요소들을 갖는 실시간 수중 파티클 감지시스템이 구현될 수 있음은 물론이다.However, since the components shown in FIGS. 2 and 3 are not essential, a real-time underwater particle detection system having more or fewer components than that can be implemented.
한편, 본 명세서에서 사용하는 용어 중 파티클(particle)은 미세입자를 가리키는 것으로서, 생물과 무생물을 구분하는 용어가 아니며 크기가 수백 나노미터에서 수백 마이크로미터에 이르는 작은 입자를 의미하여, 본 명세서에서는 용이한 설명을 위해 대표적인 예로서 세균, 바이러스, 곰팡이, 효모, 적혈구, 백혈구, 세포, 조류, 포자, 미세플라스틱을 포함한 오염물질 등으로 표현할 수 있으나, 본 발명의 범위를 이에 한정하고자 하는 의도는 아니다.Meanwhile, among the terms used in this specification, particles refer to fine particles, and are not a term that distinguishes between living and inanimate objects, and means small particles ranging in size from several hundred nanometers to several hundred micrometers. For illustrative purposes, it may be expressed as a contaminant including bacteria, viruses, fungi, yeast, red blood cells, white blood cells, cells, algae, spores, microplastics, etc.
버블발생장치는 얇은 물 막을 생성하기 위한 장치로서, 일 예로, 액체 표면 위에 얇은 물 막을 가진 버블(bubble)을 생성시키거나, 다각형 또는 링형의 프레임을 이용하여 그 프레임 내 얇은 물 막을 생성시키는 장치이다.The bubble generating device is a device for creating a thin water film, for example, a device that generates a bubble with a thin water film on a liquid surface, or a thin water film in the frame using a polygonal or ring-shaped frame. .
본 명세서에서는 본 발명의 설명을 용이하게 하기 위해 얇은 물 막에 대한 대표적인 예인 버블(bubble)을 기준으로 설명하기로 하나, 본 발명의 범위를 버블에 한정하고자 하는 의도는 아니다. 즉, 본 발명의 일 실시예에 따라 얇은 물 막(liquid film)을 생성하였을 때 파티클이 감지될 당시의 물 막의 두께 정보를 알고 있는 것이 중요하며, 이는 물 막을 인위적으로 터뜨려 터지는 속도로 파악하거나, 또는 물 막을 통과하는 빛의 파장을 분석하여 파악할 수 있다.In the present specification, in order to facilitate the description of the present invention, a description will be made on the basis of a bubble, which is a representative example of a thin water film, but it is not intended to limit the scope of the present invention to a bubble. That is, when a thin liquid film is generated according to an embodiment of the present invention, it is important to know the thickness information of the water film at the time when the particles are detected, which is determined by the speed at which the water film is artificially burst, or Alternatively, it can be determined by analyzing the wavelength of light passing through the water film.
버블발생장치는 버블을 생성하기 위해 액체를 수용하고 있는 용기 내에 기체를 주입하여, 액체의 표면 상에 기포를 발생시킬 수 있다. 이에 따라 상기 버블발생장치는 액체를 수용하는 용기(10)와 상기 액체 내 기체를 주입시키기 위한 공기주입유닛(20)을 포함할 수 있다.The bubble generating device can generate bubbles on the surface of the liquid by injecting gas into a container containing a liquid to generate bubbles. Accordingly, the bubble generating device may include a container 10 for accommodating a liquid and an air injection unit 20 for injecting gas in the liquid.
물론, 다른 실시예에 따라 상기 버블발생장치는, 도 13에 도시한 바와 같이, 링 형의 프레임을 용기(10) 내에 담군 후 빼는 동작을 통해 프레임 내 얇은 물 막이 생성되도록 할 수도 있다. 다만, 전술한 바와 같이, 본 발명에 대한 용이한 설명을 위해 버블을 기준으로 설명하기로 하나, 본 발명의 범위를 이에 한정하지는 않는다.Of course, according to another embodiment, the bubble generating device may generate a thin film of water in the frame by immersing the ring-shaped frame in the container 10 and then removing it, as shown in FIG. 13. However, as described above, the description will be made based on bubbles for easy description of the present invention, but the scope of the present invention is not limited thereto.
한편, 버블발생장치가 기체를 주입하여 액체 표면 상에 기포를 발생시키기 위해 사용하는 용기(10)는 그 형상이나 크기를 특별히 한정하지 않으나, 바람직한 일 실시예에 따라, 도 3 내지 5에 도시한 바와 같이, 관형이되 관형의 양단부가 동일한 방향을 향하도록 절곡된 U자형 또는 J자형의 튜브일 수 있다.On the other hand, the container 10 used by the bubble generating device to inject gas to generate bubbles on the liquid surface is not particularly limited in shape or size, but according to a preferred embodiment, shown in FIGS. 3 to 5 As such, it may be a tubular, but may be a U-shaped or J-shaped tube bent so that both ends of the tubular face the same direction.
즉, 내부에 액체를 수용한 용기(10)는 일단부측 수면상에 버블을 용이하게 발생시킬 수 있도록 버블이 형성되는 제2 단부(12)와 같은 방향으로 기체가 액체 내 주입될 수 있도록 상기 제2 단부(12)와 같은 방향으로 제1 단부(11)가 형성되는 것이 바람직하며, 더욱 바람직하게는 관 내부의 압력을 이용하여 버블이 발생하는 수면의 높이를 용이하게 조절할 수 있도록 상기 용기(10)는 J자형인 것이 바람직하다.That is, the container 10 containing the liquid therein is provided with the first end so that the gas can be injected into the liquid in the same direction as the second end 12 in which the bubble is formed so that bubbles can be easily generated on the water surface at one end. 2 It is preferable that the first end 11 is formed in the same direction as the end 12, and more preferably the container 10 so that the height of the water surface where bubbles are generated can be easily adjusted using the pressure inside the tube. ) Is preferably a J-shaped.
본 명세서에서 사용하는 용어 중 튜브는 상기 용기의 바람직한 일 실시예로서, 튜브와 용기 두 용어는 혼용하기로 한다.Among the terms used herein, the tube is a preferred embodiment of the container, and the terms tube and container are used interchangeably.
또한, 상기 용기(10)의 일단부의 관경은 특별히 한정하지 않으나 바람직하게는 형성 가능한 버블의 직경과 상응하도록 가느다랗게 형성되는 것이 바람직하다.In addition, the diameter of one end of the container 10 is not particularly limited, but it is preferably formed to be thin so as to correspond to the diameter of the formable bubble.
바람직한 일 실시예에 따라 상기 관경은 생성되는 버블 직경의 1.2 ~ 2.5배, 바람직하게는 1.5 ~ 2.5배인 것이 좋다. 본 발명에 따른 실험예에서는 15mm의 관경을 사용하였을 때 수면 위에 생성된 버블 필름의 곡면부는 평균 6.38 mm 크기로 약 2.35배이었다.According to a preferred embodiment, the tube diameter is preferably 1.2 to 2.5 times, preferably 1.5 to 2.5 times the diameter of the generated bubble. In the experimental example according to the present invention, when a tube diameter of 15 mm was used, the curved portion of the bubble film formed on the water surface was about 2.35 times the average size of 6.38 mm.
도 4는 본 발명의 일 실시예 따른 튜브를 나타낸 도면이다.4 is a view showing a tube according to an embodiment of the present invention.
도 4에 도시한 바와 같이, 용기(10)의 바람직한 일 실시예에 따른 U자형 튜브(13)는 버블이 형성되지 않는 제1 단부(11)와, 버블이 형성되는 제2 단부(12)를 포함할 수 있고, 이때 U자형 튜브(13)는 전술한 바와 같이, 제1 및 제2 단부(11, 12)가 절곡부를 기준으로 서로 다른 높이를 가지도록 J자형인 것이 바람직하다.As shown in Figure 4, the U-shaped tube 13 according to a preferred embodiment of the container 10 has a first end 11 in which bubbles are not formed and a second end 12 in which bubbles are formed. In this case, the U-shaped tube 13 is preferably J-shaped so that the first and second ends 11 and 12 have different heights based on the bent portions, as described above.
튜브(10)는 내부에 액체를 수용하되, 상기 액체는 버블을 용이하게 형성할 수 있도록 물과 계면활성제가 함유된 용액일 수 있다. 이때 용액에 함유된 계면활성제의 농도를 조절함으로써 버블의 형성 시간(life time)을 제어할 수 있다.The tube 10 accommodates a liquid therein, but the liquid may be a solution containing water and a surfactant so as to easily form bubbles. At this time, by controlling the concentration of the surfactant contained in the solution, it is possible to control the life time of the bubble.
계면활성제의 종류는 특별히 한정하지 않으나, 일 실시예에 따라 황산도 실나트륨(Sodium dodecyl sulfate, SDS), 도데칸올(Dodecanol) 및 세트리모늄브로마이드(Cetrimonium bromide, CTAB)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 계면활성제의 농도는 임계 미셀 농도(critical micelle concentration, CMC) 또는 그 이상일 수 있다.The type of surfactant is not particularly limited, but according to an embodiment, 1 selected from the group consisting of sodium dodecyl sulfate (SDS), dodecanol, and cetrimonium bromide (CTAB). It can be more than a species. The concentration of the surfactant may be a critical micelle concentration (CMC) or higher.
또한, 상기 계면활성제와 함께 글리세린(Glycerin)과 같은 첨가제를 추가하여 버블의 형성 시간을 제어할 수 있다. 상기와 같이 튜브 내의 버블의 형성 시간을 제어함으로써 관측이 필요한 미생물 또는 미세 입자에 따른 버블 생존 시간을 확보함으로써 버블의 선명한 스팟 이미지를 획득할 수 있다.In addition, it is possible to control the formation time of bubbles by adding an additive such as glycerin together with the surfactant. By controlling the formation time of bubbles in the tube as described above, a clear spot image of bubbles can be obtained by securing a bubble survival time according to microorganisms or fine particles requiring observation.
도 5는 본 발명의 일 실시예 따른 공기주입유닛을 나타낸 도면이다. 5 is a view showing an air injection unit according to an embodiment of the present invention.
공기주입유닛(20)은 외기나 가스용기 내 기체를 호스(또는 노즐)을 통해 공급하기 위한 것으로, 본 발명의 일 실시예에 따라, 도 5에 도시한 바와 같이, 가스를 공급하기 위해 공기가 배출되는 호스가 U자형 튜브(13)의 어느 일 단부에 연결된 에어펌프(air pump, 21)를 포함할 수 있다.The air injection unit 20 is for supplying outside air or gas in the gas container through a hose (or a nozzle), and according to an embodiment of the present invention, as shown in FIG. 5, air is supplied to supply gas. The discharged hose may include an air pump 21 connected to one end of the U-shaped tube 13.
에어펌프(21)는 제어유닛(22)에 의해 생성된 제어명령에 의해 구동되어, 호스(25a)를 통해 물 및 계면활성제가 용해된 용액이 충진되어 있는 U자형 튜브(13)로 공기를 공급하여 튜브의 제2 단부(12)에 버블을 발생토록 할 수 있으며, 바람직하게 상기 제어유닛(22)은 버블이 액체의 표면에 형성되는 동안 연속적으로 버블이 발생토록 하되 버블 간 충돌을 방지하기 위해 버블의 형성 시간을 제어할 수 있다.The air pump 21 is driven by a control command generated by the control unit 22 and supplies air to the U-shaped tube 13 filled with a solution in which water and surfactant are dissolved through the hose 25a. Thus, bubbles can be generated at the second end 12 of the tube. Preferably, the control unit 22 continuously generates bubbles while bubbles are formed on the surface of the liquid, but to prevent collisions between bubbles. The formation time of the bubble can be controlled.
이때, 상기 호스(또는 노즐)의 직경 및/또는 위치에 따라 제2 단부(12)에 형성되는 버블의 크기를 제어할 수 있다.In this case, the size of the bubble formed at the second end 12 may be controlled according to the diameter and/or position of the hose (or nozzle).
시린지(24)는 내부에 수용된 액체를 호스(25b)를 통해 튜브(10)에 주입할 수 있으며, 일 실시예에 따라 상기 튜브(10)가 물을 함유한 액체를 수용하고 있는 경우 상기 시린지(24)는 내부에 증류수를 수용하여, 상기 U자형 튜브(13)에 증류수를 주입할 수 있다.The syringe 24 can inject the liquid contained therein into the tube 10 through the hose 25b. According to an embodiment, when the tube 10 contains a liquid containing water, the syringe ( 24) accommodates distilled water therein, and distilled water may be injected into the U-shaped tube 13.
이때 바람직한 일 실시예에 따라 상기 시린지(24)와 상기 튜브(10) 간에 연결된 호스(25b) 상의 어느 일 지점으로부터 분지된 호스에는 시린지(24)를 통해 상기 U자형 튜브(13)에 공급되는 유체의 압력을 일정하게 유지하기 위해 상기 시린지(24) 내 수용된 동종의 유체를 수용하고 있는 버퍼 탱크(buffer tank, 23)를 포함할 수 있다.At this time, according to a preferred embodiment, a fluid supplied to the U-shaped tube 13 through a syringe 24 to a hose branched from a point on the hose 25b connected between the syringe 24 and the tube 10 It may include a buffer tank (buffer tank, 23) for accommodating the same type of fluid contained in the syringe (24) to keep the pressure constant.
버퍼 탱크(23) 및 시린지(24)와 연결된 호스(25b)는 U자형 튜브(13)에서 버블이 생성되지 않는 제1 단부(11)와 연결되어, 상기 U자형 튜브(13)의 타단부에 버블의 생성 높이가 일정하게 유지되도록 할 수 있다. 즉 버블이 터지면서 생기는 증발로 인하여 버블 재생성시 재생성된 버블의 높이 변화 없이 일정하게 유지토록 할 수 있다.The hose 25b connected to the buffer tank 23 and the syringe 24 is connected to the first end 11 in which no bubbles are generated in the U-shaped tube 13, and is connected to the other end of the U-shaped tube 13. It is possible to maintain a constant height of the bubble. That is, due to the evaporation generated when the bubble bursts, it can be kept constant without changing the height of the regenerated bubble when regenerating the bubble.
또한, 상기 호스(25b) 상 일 지점의 분지점에는, 도 3 및 5에 도시한 바와 같이, 3방 밸브(3-way valves)가 마련되어 튜브(10) 내 유체가 시린지(24) 및/또는 버퍼탱크(23)로 역류하는 것을 방지할 수 있다.In addition, at the branch point of one point on the hose 25b, as shown in Figs. 3 and 5, 3-way valves are provided to allow the fluid in the tube 10 to flow into the syringe 24 and/or It is possible to prevent backflow to the buffer tank 23.
출광유닛(30)은 튜브(10)의 일단부에 형성된 버블을 향하여 광을 조사하기 위한 것으로, 빛을 발하는 광원(31)을 포함할 수 있다.The light emitting unit 30 is for irradiating light toward a bubble formed at one end of the tube 10, and may include a light source 31 that emits light.
도 6은 본 발명의 일 실시예 따른 출광 유닛을 나타낸 도면이다.6 is a view showing a light emitting unit according to an embodiment of the present invention.
도 6에 도시한 바와 같이, 출광유닛(30)은 광원(31)과, 광원(31)으로부터 이격 배치된 복수의 렌즈들(32~34)과, 상기 복수의 렌즈들 중 선택된 어느 두 렌즈들(33, 34) 사이에 배치되되, 상기 광원(31)으로부터 발광된 광경로 상에 위치한 핀홀(pin hole)을 가진 핀홀플레이트(35)를 포함할 수 있다.As shown in FIG. 6, the light emitting unit 30 includes a light source 31, a plurality of lenses 32 to 34 spaced apart from the light source 31, and any two lenses selected from among the plurality of lenses. It is disposed between the (33, 34), it may include a pinhole plate 35 having a pin hole (pin hole) located on the light path emitted from the light source 31.
상기 복수의 렌즈들(32~34)은 3개일 수 있으나, 생성된 버블에 대한 이미지를 선명하게 획득하기 위한 것이면, 그 수를 특별히 한정하지 않으며, 각 렌즈들(32~34)의 종류 역시 특별히 한정하지 않는다.The plurality of lenses 32 to 34 may be three, but the number is not particularly limited, as long as the number of the lenses 32 to 34 is clearly acquired, and the type of each lens 32 to 34 is also Not limited.
광원(31)이 발광하는 빛의 파장 범위는 380nm 내지 780nm인 가시광선일 수 있으며, 바람직하게 이미지센서유닛(40)이 고해상도의 이미지를 획득하기 위해 상기 광원(31)이 발광하는 빛의 최적 파장 범위는 450nm 내지 640nm인 것이 좋다.The wavelength range of light emitted by the light source 31 may be visible light of 380 nm to 780 nm, and preferably the optimal wavelength range of light emitted by the light source 31 in order for the image sensor unit 40 to acquire a high-resolution image Is preferably 450nm to 640nm.
상기 광원(31)의 전방에는 이격되어 배치된 복수의 렌즈들(32~34)은 하기 기술한 광학계를 만들기 위한 것이면 그 종류를 특별히 한정하지 않는다.The type of the plurality of lenses 32 to 34 spaced apart from and arranged in front of the light source 31 is not particularly limited as long as it is for making the optical system described below.
즉, 광원(31)으로부터 출사된 빛이 상기 복수의 렌즈들을 통해 피사체인 버블에 투사되어 카메라에 상을 맺었을 때, 카메라가 버블에 대한 선명한 이미지를 획득하기 위해, 본 발명의 일 실시예에 따라 제1 및 제2 렌즈(32, 33)는 색수차를 제거할 수 있도록 평면볼록렌즈이되 두 볼록렌즈는 볼록면이 서로 마주보도록 배치될 수 있고, 제3 렌즈(34)는 광원(31)을 향한 입사면이 납작하고 출사면이 오목한 평면오목렌즈일 수 있다.That is, when the light emitted from the light source 31 is projected onto a bubble as a subject through the plurality of lenses and imaged on the camera, in order for the camera to obtain a clear image of the bubble, according to an embodiment of the present invention. Accordingly, the first and second lenses 32 and 33 are planar convex lenses to remove chromatic aberration, but the two convex lenses may be disposed so that the convex surfaces face each other, and the third lens 34 uses the light source 31. It may be a planar concave lens with a flat incident surface facing and a concave exit surface.
또, 상기 출광유닛(30)은 선명한 상이 카메라에 맺히도록 초점을 조절하기 위해 제2 및 제3 렌즈(33, 34) 사이에 배치된 핀홀플레이트(35)를 더 포함할 수 있으며, 이때 상기 핀홀플레이트(35)에 관통형성된 핀홀(pin hole)은 적어도 하나의 렌즈를 투과하여 지나가는 광경로상에 위치하도록 배치될 수 있다.In addition, the light emitting unit 30 may further include a pinhole plate 35 disposed between the second and third lenses 33 and 34 to adjust the focus so that a clear image is formed on the camera, in which case the pinhole A pin hole formed through the plate 35 may be disposed to be positioned on an optical path passing through at least one lens.
제1 및 제2 렌즈(32, 33)를 투과한 빛은 상기 핀홀(35)을 통과한 후 한 초점으로 모임과 동시에 도립할 수 있으며, 상기 핀홀(35)을 투과한 광은 제3 렌즈(34)의 평면에 입사된 후 오목면으로 출사되어 피사체인 버블에 투사되고, 이미지센서유닛(40)의 앞에 위치한 제4 렌즈(42)를 통해 초점이 모여 이미지센서유닛(40)은 상기 피사체인 버블의 이미지를 획득할 수 있다.The light that has passed through the first and second lenses 32 and 33 may pass through the pinhole 35 and then be inverted at the same time as a focal point, and the light that has passed through the pinhole 35 is a third lens ( After entering the plane of 34), the image sensor unit 40 is projected onto the subject bubble by being projected on the concave surface, and focusing through the fourth lens 42 located in front of the image sensor unit 40, the image sensor unit 40 is You can acquire the image of the bubble.
따라서, 상기 제3 렌즈(34)는 튜브(10)의 일단부에 생성된 버블의 높이와 상응하도록 위치하여, 상기 제3 렌즈(34)를 투과한 빛이 버블을 나란한 높이에서 조사될 수 있도록 하는 것이 바람직하다.Therefore, the third lens 34 is positioned to correspond to the height of the bubble generated at one end of the tube 10, so that the light that has passed through the third lens 34 can be irradiated at a height parallel to the bubble. It is desirable to do.
본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템(100)은 생성된 버블의 이미지를 획득하기 위한 이미지센서유닛(40)을 포함할 수 있다.The real-time underwater particle detection system 100 according to an embodiment of the present invention may include an image sensor unit 40 for acquiring an image of the generated bubble.
도 7은 본 발명의 일 실시예 따른 이미지센서유닛을 나타낸 도면이다.7 is a view showing an image sensor unit according to an embodiment of the present invention.
도 7에 도시한 바와 같이, 본 발명의 일 실시예에 따른 이미지센서유닛(40)은 U자형 튜브(13)로부터 이격 배치되어 튜브(10)에 생성된 버블에 대한 이미지를 획득하는 제1 카메라(41)와, 상기 생성된 버블로부터 산란되는 광을 집광하는 제4 렌즈(42)와, 상기 제4 렌즈(42)를 투과하여 피사체인 상기 버블에 대한 이미지를 획득하는 제2 카메라(43)를 포함할 수 있다.As shown in FIG. 7, the image sensor unit 40 according to an embodiment of the present invention is a first camera that is spaced apart from the U-shaped tube 13 to obtain an image of the bubble generated in the tube 10. (41), a fourth lens (42) that condenses light scattered from the generated bubble, and a second camera (43) that transmits through the fourth lens (42) to obtain an image of the bubble, which is a subject. It may include.
제1 카메라(41)는 특별히 한정하는 것은 아니나, 현미경용 카메라(microscope camera)일 수 있으며, 제어유닛(22)은 상기 제1 카메라(41)를 통해 획득한 버블(14)의 이미지를 이용하여 버블(14)의 생성 및 소멸을 확인하여 인식할 수 있다. 일 실시예에 따라 제어유닛(22)은 버블(14)이 터져 소멸되었음을 인식하면, 또 다른 버블이 생성되도록 에어펌프(21)를 구동제어할 수 있다.The first camera 41 is not particularly limited, but may be a microscope camera, and the control unit 22 uses the image of the bubble 14 acquired through the first camera 41. The generation and disappearance of the bubble 14 can be checked and recognized. According to an embodiment, when the control unit 22 recognizes that the bubble 14 has burst and disappears, the air pump 21 may be driven and controlled to generate another bubble.
제2 카메라(43) 역시 특별히 한정하는 것은 아니나, 고속 카메라(high speed camera)일 수 있으며, 제2 카메라(43)은 버블의 생성부터 터져 소멸하는 과정까지 촬영이 가능한 카메라이며, 버블 또는 버블 속의 세균 움직임을 획득할 수 있다. 마찬가지로 제어유닛(22)은 상기 제2 카메라(43)를 통해 획득한 버블(14)의 이미지를 이용하여 버블(14)의 생성 및 소멸을 확인하여 인식할 수 있다. The second camera 43 is also not particularly limited, but may be a high speed camera, and the second camera 43 is a camera capable of photographing from the generation of bubbles to the process of exploding and extinguishing. Bacterial movement can be acquired. Likewise, the control unit 22 may check and recognize the generation and disappearance of the bubble 14 using the image of the bubble 14 acquired through the second camera 43.
도 3의 미설명 도면부호 36은 박테리아 이미지를 도식화한 것이다. Reference numeral 36, which is not described in FIG. 3, is a schematic diagram of a bacteria image.
한편, 도 8은 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템이 수중에 존재하는 세균을 감지하는 원리를 설명하기 위한 도면이다.Meanwhile, FIG. 8 is a diagram for explaining a principle in which a real-time underwater particle detection system according to an embodiment of the present invention detects bacteria existing in water.
도 8에 도시한 바와 같이, 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템(100)은, 광원(31)으로부터 나아가는 광이 버블(14) 속에 있는 세균에 굴절되어 광경로가 전환될 수 있다. As shown in FIG. 8, in the real-time underwater particle detection system 100 according to an embodiment of the present invention, light traveling from the light source 31 is refracted by the bacteria in the bubble 14, so that the light path can be switched. have.
세균에 의해 굴절되지 않은 빛은 제1 내지 제4 렌즈(32~34, 42)를 통해 하나의 초점에 모여 제2 카메라(43)는 정상적인 버블의 이미지를 획득하게 되지만, 세균에 의해 굴절된 빛은 하나의 초점에 모이지 못하게 되어 제2 카메라(43)가 획득한 이미지 상에는 검은 무늬가 발생하게 되어, 실시간으로 버블에 대한 이미지를 이용하여 수중에 존재하는 세균을 감지할 수 있다.Light that is not refracted by bacteria is collected at one focal point through the first to fourth lenses 32 to 34 and 42, and the second camera 43 acquires a normal image of a bubble, but light refracted by bacteria Since silver cannot be collected in one focus, a black pattern is generated on the image acquired by the second camera 43, and bacteria existing in the water can be detected using the image of the bubble in real time.
즉, 제어유닛(60)은 상기 이미지센서유닛(40)에서 획득한 이미지를 이용하여 세균의 유무나 세균의 농도를 검출할 수 있다.That is, the control unit 60 may detect the presence or absence of bacteria or the concentration of bacteria by using the image obtained by the image sensor unit 40.
본 발명의 일 실시예에 따른 제어유닛(60)은 수중 세균의 농도에 따른 버블 의 균수 데이터를 저장할 수 있고, 이미지센서유닛(40)에 의해 획득된 이미지에서 추출된 검은점(black spot) 및/또는 흰점(white spot)의 개수를 측정하여 버블에 존재하는 세균의 농도를 산출할 수 있다.The control unit 60 according to an embodiment of the present invention may store data on the number of bacteria in bubbles according to the concentration of bacteria in water, and a black spot extracted from the image obtained by the image sensor unit 40 and / Or, by measuring the number of white spots, the concentration of bacteria present in the bubble can be calculated.
즉 스팟(spot)은 버블에 의해 포획된 수중 세균에 의해 빛이 굴절되어 나타나는 것으로, 스팟(spot)의 개수를 근거로 세균의 농도를 산출할 수 있으며, 이때 바람직하게 제어유닛(60)은 버블이 생성된 시간 정보를 이용하여 세균의 농도를 산출하는 것이 좋다.That is, a spot is a light that is refracted by underwater bacteria captured by a bubble, and the concentration of bacteria can be calculated based on the number of spots. In this case, preferably, the control unit 60 It is better to calculate the concentration of bacteria using this generated time information.
여기서, 시간 정보는 버블의 막 두께를 예측할 수 있는 정보(왜냐하면, 버블의 막 두께는 버블의 생존시간에 따르기 때문이다)로서, 이를 이용하여 제어유닛(60)은 스팟의 실제 크기를 예측할 수 있다. 이렇게 측정된 스팟의 실제 크기 정보와 개수 정보를 이용하여 버블 위에 존재하는 파티클의 농도를 계산할 수 있다. Here, the time information is information that can predict the film thickness of the bubble (because the film thickness of the bubble depends on the survival time of the bubble), and using this, the control unit 60 can predict the actual size of the spot. . The concentration of particles present on the bubble can be calculated using the actual size information and the number of spots measured in this way.
스팟(spot)의 크기는 포획된 세균(141)에 의해 버블의 표면(142)에 형성되는 곡선에 의해 좌우될 수 있다(도 11 참조). 버블 막에 포획될 수 있는 입자의 크기는 특정 범위 내의 막 두께(h) 및 접촉각(θ)에 따르기 때문에(도 11 참조), 제어유닛(60)은 이미지센서유닛(40)을 이용하여 상기 버블의 표면에 포획된 세균(141)에 의해 형성되는 곡선의 변화를 추적하고 버블의 막 두께(h)가 0.5㎛ ~ 100㎛이었을 때 스팟(spot)의 개수를 측정하여 세균의 농도를 산출하는 것이 좋다. 왜냐하면, 세균을 포획한 버블은 표면에 곡선이 형성되고 버블의 막 두께(h)는 버블이 생성된 이후 점차 얇아지기 때문에, 소정시간(또는 버블의 특정 수명시간 대) 경과 후 그 두께(h)가 파티클을 포획할 수 있는 최적의 두께가 되었을 때 스팟(spot)의 최대 개수를 관찰할 수 있기 때문이다. 버블의 막 두께(h)가 0.5㎛에서 100㎛의 두께를 가질 때, 이 특정 두께의 막에서 관찰되는 최적의 입자 평균 크기는 막 두께의 5배이다.The size of the spot may be influenced by the curve formed on the surface 142 of the bubble by the captured bacteria 141 (see FIG. 11). Since the size of the particles that can be trapped in the bubble film depends on the film thickness (h) and contact angle (θ) within a certain range (see FIG. 11), the control unit 60 uses the image sensor unit 40 to To calculate the concentration of bacteria by tracking the change in the curve formed by the bacteria 141 trapped on the surface of and measuring the number of spots when the film thickness (h) of the bubble is 0.5 μm to 100 μm. good. This is because a bubble that traps bacteria forms a curve on the surface, and the film thickness (h) of the bubble gradually decreases after the bubble is created, so the thickness (h) after a predetermined period of time (or a specific lifetime of the bubble) has elapsed. This is because the maximum number of spots can be observed when is the optimum thickness for capturing particles. When the film thickness h of the bubble has a thickness from 0.5 µm to 100 µm, the optimum particle average size observed in a film of this specific thickness is 5 times the film thickness.
또한, 제어유닛(60)은 수중 파티클의 종류별 고유 표면 에너지 값을 포함한 스팟(spot) 데이터를 저장할 수 있다. 이미지센서유닛(40)에 의해 획득된 상기 버블의 이미지에서 추출된 검은점(black spot) 및/또는 흰점(white spot) 각각의 주변에는 광 패턴이 형성될 수 있으며, 상기 광 패턴의 크기, 두께 및 주기(일 예로 intensity의 주기)를 스팟 데이터에 적용함으로써 수중 파티클의 종류를 산출할 수 있다.In addition, the control unit 60 may store spot data including a unique surface energy value for each type of underwater particle. A light pattern may be formed around each of the black spots and/or white spots extracted from the image of the bubble obtained by the image sensor unit 40, and the size and thickness of the light pattern And a period (for example, an intensity period) to the spot data, it is possible to calculate the type of underwater particles.
한편, 전술한 바와 같이, 버블의 표면(142)에는 포획된 파티클(또는 세균(141))에 의해 곡선이 형성될 수 있으며, 이때 형성되는 상기 곡선은 포획된 파티클의 크기, 접촉각, 버블 막의 두께로 결정될 수 있다. 이 중 접촉각(θ)은 고유 표면 에너지 값에 따른 것으로, 수중 파티클(또는 세균)의 종류에 따라 상이하기 때문에, 상기 제어유닛(60)은 상기 곡선에 대한 정보 또는 스팟 주변에 형성된 광 패턴에 대한 정보(상기 광 패턴은 상기 접촉각에 따라 달라짐)를 이용하여 파티클(또는 세균)의 종류를 산출할 수 있다. Meanwhile, as described above, a curve may be formed on the surface 142 of the bubble by trapped particles (or bacteria 141), and the curve formed at this time is the size of the trapped particles, the contact angle, and the thickness of the bubble film. Can be determined as Among them, the contact angle θ is according to the intrinsic surface energy value, and since it differs according to the type of underwater particles (or bacteria), the control unit 60 provides information on the curve or the light pattern formed around the spot. The type of particle (or bacteria) may be calculated using information (the light pattern varies depending on the contact angle).
일 예로, 제어유닛(60)은 버블 이미지를 이용하여, 도 12에 도시한 바와 같이, 도 12(a)는 Bacillus, 도 12(b) 및 (c)는 E.coli, 그리고 도 12(d)는 Pseudomonas의 박테리아를 구분 판단할 수 있다.For example, the control unit 60 uses a bubble image, and as shown in FIG. 12, FIG. 12(a) is Bacillus, FIGS. 12(b) and (c) are E. coli, and FIG. 12(d) ) Can distinguish between Pseudomonas bacteria.
또한, 제어유닛(60)은 버블을 모니터링하는 센서유닛(50) 및/또는 이미지센서유닛(40)을 이용하여 버블(14)의 생존 시간을 측정하고, 사용자가 설정한 시간을 메모리에 저장하여 버블(14)의 생존 시간과 일치될 때 이들이 연결된 버블파열제어장치(52)를 작동시켜 버블(14)을 터뜨리거나, 사용자의 입력에 따라 상기 버블파열제어장치(52)를 작동시켜 신속하게 버블(14)을 터뜨려 액적을 발생시킬 수 있다.In addition, the control unit 60 measures the survival time of the bubble 14 using the sensor unit 50 and/or the image sensor unit 40 that monitors the bubble, and stores the time set by the user in the memory. When the survival time of the bubble 14 coincides with the bubble burst control device 52 to which they are connected, the bubble 14 bursts, or the bubble burst control device 52 is operated according to the user's input to quickly bubble the bubble. You can burst (14) to generate droplets.
상기와 같이 버블(14)을 터뜨려 액적을 발생시킨 후에 제어유닛(60)은, 액정수집장치(53)에서 수집된 액적의 디지털 이미지, 형광 이미지, 전자기적 신호 등을 획득하여 액적의 크기, 수, 내용물을 분석할 수 있고, 그 분석결과를 상기 버블에 대한 이미지 분석결과와 비교함으로써, 상기 버블에 대한 이미지 분석결과를 검증할 수 있다.After bursting the bubbles 14 as described above to generate droplets, the control unit 60 acquires digital images, fluorescence images, and electromagnetic signals of the droplets collected by the liquid crystal collecting device 53 to determine the size and number of droplets. , The content can be analyzed, and the analysis result is compared with the image analysis result of the bubble, thereby verifying the image analysis result of the bubble.
액적수집장치(53, 54)는 버블이 파열됨으로써 비산하는 액적을 포집하기 위한 것으로, 상기 포집된 액적을 분석하기 위해 액적을 안착시키기 위한 샘플링 기구 또는 샘플링 플레이트를 포함할 수 있다.The droplet collecting apparatuses 53 and 54 are for collecting droplets scattered by bursting of the bubbles, and may include a sampling mechanism or a sampling plate for seating droplets in order to analyze the collected droplets.
다만, 분석 이후 새로운 액적을 수집하기 위해 액적수집장치(53, 54)에 포함된 샘플링 기구나 샘플링 플레이트는 교체나 세척 등을 위해 수동 또는 자동으로 탈착 및 장착이 가능한 것이 바람직하다.However, in order to collect new droplets after analysis, it is preferable that the sampling device or the sampling plate included in the droplet collection devices 53 and 54 can be manually or automatically detached and mounted for replacement or cleaning.
도 9는 본 발명의 일 실시예 따라 버블이 파열될 때 발생하는 액적을 포집하는 액적수집장치를 포함한 센서유닛을 구체적으로 나타낸 도면이다.9 is a diagram showing in detail a sensor unit including a droplet collecting device for collecting droplets generated when a bubble bursts according to an embodiment of the present invention.
도 9에 도시한 바와 같이, 본 발명의 일 실시예에 따른 센서유닛(50)은 버블을 파열시키는 버블파열장치(51)와, 버블이 터질 때 발생하는 액적을 수집하는 액적수집장치(53)와, 액적수집장치(53)로부터 액적의 이미지 또는 전자기신호를 획득하는 액적센서(54, 55)를 포함할 수 있다.As shown in Fig. 9, the sensor unit 50 according to an embodiment of the present invention includes a bubble bursting device 51 for bursting bubbles, and a droplet collecting device 53 for collecting droplets generated when the bubble bursts. And, it may include a droplet sensor (54, 55) for acquiring an image or an electromagnetic signal of the droplet from the droplet collecting device 53.
구체적으로, 버블(14)을 터뜨리는 버블파열장치(51)에 의해 파열된 버블로부터 발생하는 액적은 액적수집장치(53)에 포집(또는 수집)될 수 있다. 액적수집장치(53)는 샘플링 기구 또는 샘플링 플레이트를 포함할 수 있고, 상기 샘플링 기구는, 일 예로, 유리를 포함한 전도성 또는 비전도성 기판이 될 수 있다.Specifically, droplets generated from bubbles ruptured by the bubble bursting device 51 that bursts the bubbles 14 may be collected (or collected) by the droplet collecting device 53. The droplet collecting device 53 may include a sampling mechanism or a sampling plate, and the sampling mechanism may be, for example, a conductive or non-conductive substrate including glass.
제어유닛(60)은 액적수집장치(53)에 수집된 액적에 대한 이미지를 근거로 세균의 유무 또는 농도를 산출할 수 있다. 즉, 액적수집장치(53)에 포집된 액적에는 버블에 포획된 세균(또는 오염물질)을 포함하고 있기 때문에, 제어유닛(60)은 상기 액적수집장치(53)에 포집된 액적에 대한 이미지를 이용하여 세균(또는 오염물질)의 유무를 산출하거나, 그 개수를 이용하여 농도를 산출할 수 있다.The control unit 60 may calculate the presence or absence of bacteria or concentration based on the image of the droplets collected by the droplet collecting device 53. That is, since the droplets collected in the droplet collecting device 53 contain bacteria (or contaminants) trapped in the bubble, the control unit 60 displays an image of the droplets collected in the droplet collecting device 53. Use to calculate the presence or absence of bacteria (or contaminants), or to calculate the concentration using the number.
액적이미지센서(54)에 의해 획득된 이미지는 일반 디지털 카메라 이미지이거나 형광 이미지, 또는 현미경과 같은 고배율 이미지일 수 있다.The image acquired by the droplet image sensor 54 may be a general digital camera image, a fluorescence image, or a high magnification image such as a microscope.
또한, 제어유닛(60)은 액적전자기장신호센서(55)를 이용하여 액적수집장치(53)에 의해 포집된 액적에 인가된 전자기신호를 획득할 수 있고, 상기 전자기신호를 이용하여 세균의 유무나 농도를 산출할 수 있다.In addition, the control unit 60 may obtain an electromagnetic signal applied to the droplets collected by the droplet collecting device 53 by using the droplet electromagnetic field signal sensor 55, and the presence or absence of bacteria using the electromagnetic signal Concentration can be calculated.
구체적으로 테라헤르츠파(terahertz wave)를 액적에 통과시켜 액적전자기장신호센서(55)에 의해 획득한 결과 신호를 이용하여, 제어유닛(60)은 세균의 종에 따른 전자파 물질상수를 기반으로 세균의 유무나 농도를 산출할 수 있다. 테라헤르츠파는 다양한 물질을 잘 투과하면서도 X-레이와 달리 인체 및 식품에 무해하기 때문에, 상기 전자기신호는 테라헤르츠파인 것이 좋다.Specifically, using a result signal obtained by the droplet electromagnetic field signal sensor 55 by passing a terahertz wave through the droplet, the control unit 60 is based on the electromagnetic wave material constant according to the species of the bacteria. Presence or concentration can be calculated. Since the terahertz wave transmits well through various materials and is harmless to the human body and food unlike X-rays, the electromagnetic signal is preferably a terahertz wave.
제어유닛(60)은 액적수집장치(53)에 포집된 액적에 대한 이미지나 전자기적신호를 이용하여 액적의 크기, 액적의 수, 액적 속에 포함된 미생물 또는 오염물질을 측정함으로써, 버블에 존재하는 세균의 농도와 종류를 분석할 수 있다.The control unit 60 measures the size of the droplets, the number of droplets, and microorganisms or contaminants contained in the droplets by using an image or an electromagnetic signal of the droplets collected in the droplet collecting device 53. The concentration and type of can be analyzed.
한편, 본 발명의 또 다른 실시예에 따라 발광하는 상기 출광유닛(30)은 전자기신호(일 예로 테라헤르츠파 등)를 발생하여 상기 버블을 향해 조사하는 송신기(미도시)를 포함할 수 있고, 이에 상응하여 센서유닛(50), 구체적으로 액적전자기장신호센서(55)는 상기 버블을 투과한 상기 전자기신호를 획득함으로써, 상기 제어유닛(60)은 직접 버블에 포함된 파티클의 유무, 개수나 농도 또는 파티클의 종류 등을 판별할 수도 있다.Meanwhile, the light emitting unit 30 emitting light according to another embodiment of the present invention may include a transmitter (not shown) that generates an electromagnetic signal (eg, a terahertz wave) and irradiates it toward the bubble, Correspondingly, the sensor unit 50, specifically the droplet electromagnetic field signal sensor 55, obtains the electromagnetic signal transmitted through the bubble, so that the control unit 60 directly controls the presence, number, or concentration of particles contained in the bubble. Alternatively, the type of particle can be determined.
도 10은 본 발명의 일 실시예에 따라 버블을 터뜨리는 방식을 도식화하여 나타낸 도면이다.10 is a diagram schematically showing a method of popping a bubble according to an embodiment of the present invention.
도 10에 도시한 바와 같이, 센서유닛(50)은 버블을 터뜨리는 버블파열장치(51)를 포함할 수 있고, 버블파열장치(51)는 버블파열제어장치(52)의 제어명령에 의해 구동제어가능하여, 제어유닛(60)의 제어명령에 의해 상기 버블파열제어장치(52)는 상기 버블파열장치(51)를 구동제어하여 버블을 파열시킬 수 있다.As shown in FIG. 10, the sensor unit 50 may include a bubble bursting device 51 that bursts bubbles, and the bubble bursting device 51 is driven by a control command from the bubble bursting control device 52. As a result, the bubble bursting control device 52 may rupture the bubble by driving and controlling the bubble bursting device 51 by a control command of the control unit 60.
이때, 제어유닛(60) 및/또는 센서유닛(50)은 버블의 생성시간과 파열에 의한 소멸시간 사이의 간격, 즉 생존 시간(life time)을 상기 제1 카메라(41)에 의해 획득한 이미지를 이용하여 산정할 수 있고, 생존 시간이 기 설정된 버블의 생존 시간에 도달하면 가는 니들(needle)을 움직이는 버블파열장치(51)에 제어명령을 전달하여 니들을 버블에 접촉시켜 버블을 터뜨려 소멸시킬 수 있다.At this time, the control unit 60 and/or the sensor unit 50 is an image obtained by the first camera 41 for the interval between the generation time of the bubble and the extinguishing time due to rupture, that is, a life time. It can be calculated using, and when the survival time reaches the survival time of the preset bubble, a control command is transmitted to the bubble bursting device 51 that moves the thin needle, and the needle contacts the bubble to burst and extinguish the bubble. I can.
즉 제어유닛(60)은 버블의 생존시간에 따라 버블을 강제적으로 파열시켜 버블의 파열 속도, 즉 홀(hole)이 커지는 속도를 측정함으로써, 버블 막의 두께는 버블의 파열 속도 제곱에 반비례하기 때문에, 버블의 파열 속도를 이용하여 버블 막의 두께를 산출할 수 있다. 이때 제어유닛(60)은 산출된 버블 막의 두께를 이용하여, 전술한 바와 같이, 버블에 포획된 파티클의 크기를 산출할 수 있다.That is, the control unit 60 forcibly ruptures the bubble according to the survival time of the bubble, and measures the rupture rate of the bubble, that is, the rate at which the hole increases, so that the thickness of the bubble film is inversely proportional to the square of the rupture rate of the bubble, The thickness of the bubble film can be calculated using the bursting rate of the bubble. In this case, the control unit 60 may calculate the size of the particles trapped in the bubble, as described above, using the calculated thickness of the bubble film.
한편, 도 13은 본 발명의 일 실시예에 따라 버블생성장치가 링 구조의 프레임을 이용하여 미세 입자가 포함된 얇은 물 막을 형성시켜 물 막 속 박테리아 이미지를 나타낸 도면이다.Meanwhile, FIG. 13 is a diagram illustrating an image of bacteria in the water film by forming a thin water film containing fine particles in the bubble generating apparatus according to an embodiment of the present invention using a ring-structured frame.
도 13에 도시한 바와 같이, 본 발명의 일 실시예에 따른 실시간 수중 파티클 감지시스템은, 버블 대신 얇은 물 막을 형성시켜 동일하게 물 속에 포함된 미세 입자를 이미지화할 수 있음을 알 수 있다.As shown in FIG. 13, it can be seen that the real-time underwater particle detection system according to an embodiment of the present invention can image fine particles contained in water in the same manner by forming a thin water film instead of bubbles.
도 13(a)는 버블 대신 물 막을 링 형의 프레임을 이용하여 생성시키는 방법을 도식화한 것이고, 도 13(b)는 미세 입자가 포함된 액체 막을 촬영한 이미지이다. 도 13(b)에서 도시한 바와 같이, 입자크기 2.0 ㎛의 파티클을 사용하였을 때, 사각형으로 표시한 부분 안에 검은 스팟이 관찰됨을 알 수 있다. 입자크기와 농도를 달리하여 촬영한 스팟 이미지를 도 13(c)에 도시하였다. 그 결과 입자의 크기와 농도에 따라 상이한 스팟의 크기와 개수가 나타남을 알 수 있었다.FIG. 13(a) is a schematic diagram of a method of generating a water film using a ring-shaped frame instead of a bubble, and FIG. 13(b) is an image of a liquid film containing fine particles. As shown in FIG. 13(b), when particles having a particle size of 2.0 μm were used, black spots were observed in the area indicated by a square. A spot image photographed with different particle sizes and concentrations is shown in FIG. 13(c). As a result, it was found that the size and number of spots differed according to the size and concentration of the particles.

Claims (19)

  1. 버블(bubble)을 생성시키는 버블발생장치;A bubble generating device for generating a bubble;
    상기 생성된 버블에 광을 조사하는 출광유닛; 및A light output unit that irradiates light to the generated bubbles; And
    상기 버블로부터 산란되는 광을 집광하여 상기 버블의 이미지를 획득하는 이미지센서유닛;An image sensor unit collecting the light scattered from the bubble to obtain an image of the bubble;
    을 포함하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 버블발생장치는, 액체 표면 위에 물 막을 가진 버블을 생성시키거나, 프레임 내 물 막을 생성시키는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.The bubble generating device is a real-time underwater particle detection system, characterized in that for generating a bubble with a water film on the liquid surface or a water film in the frame.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 버블을 파열시키는 버블파열장치와, 상기 버블이 터질 때 발생하는 액적을 포집하는 액적수집장치와, 상기 액적수집장치에 의해 수집된 상기 액적의 이미지 또는 전자기신호를 획득하는 액적센서를 포함하는 센서유닛;A sensor comprising a bubble bursting device for bursting the bubble, a droplet collecting device for collecting droplets generated when the bubble bursts, and a droplet sensor for acquiring an image or an electromagnetic signal of the droplets collected by the droplet collecting device unit;
    을 더 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system, characterized in that it further comprises.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 버블발생장치는,The bubble generating device,
    일단부에 상기 버블이 생성되는 튜브(tube)와, 상기 튜브에 공기를 공급하여 상기 튜브의 일단부에 상기 버블이 생성되도록 하는 공기주입유닛을 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.A real-time underwater particle detection system comprising: a tube in which the bubble is generated at one end, and an air injection unit that supplies air to the tube to generate the bubble at one end of the tube.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 튜브의 내부에는, 물 및 계면활성제를 함유하는 용액이 수용되어 있는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.A real-time underwater particle detection system, characterized in that a solution containing water and a surfactant is accommodated inside the tube.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 이미지센서유닛으로부터 획득된 상기 버블의 이미지를 이용하여 상기 액체 내 파티클의 유무 및 농도 중 적어도 어느 하나를 검출하는 제어유닛;A control unit that detects at least one of the presence or absence and concentration of particles in the liquid using the image of the bubble obtained from the image sensor unit;
    을 더 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system, characterized in that it further comprises.
  7. 제 3 항에 있어서,The method of claim 3,
    상기 센서유닛은,The sensor unit,
    미리 설정된 시간이나 사용자의 입력에 따라 상기 버블파열장치를 작동시켜, 상기 생성된 버블을 파열시키도록 하는 버블파열제어장치;A bubble burst control device configured to rupture the generated bubbles by operating the bubble bursting device according to a preset time or user input;
    를 더 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system, characterized in that it further comprises.
  8. 제 3 항에 있어서,The method of claim 3,
    상기 액적수집장치는, 상기 포집된 액적이 안착하는 샘플링 기구 또는 샘플링 플레이트를 포함하되, 상기 샘플링 기구 또는 샘플링 플레이트는 탈장착 가능한 것을 특징으로 하는 실시간 수중 파티클 감지시스템.The droplet collecting device comprises a sampling mechanism or a sampling plate on which the collected droplets are seated, wherein the sampling mechanism or the sampling plate is detachable.
  9. 제 3 항에 있어서,The method of claim 3,
    상기 액적센서는,The droplet sensor,
    상기 액적수집장치로부터 포집된 액적의 디지털 이미지 또는 형광 이미지를 획득하는 액적이미지센서; 및A droplet image sensor for acquiring a digital image or a fluorescence image of the droplets collected from the droplet collecting device; And
    상기 액적에 인가된 전자기신호를 획득하는 액적전자기신호센서;A droplet electromagnetic signal sensor for obtaining an electromagnetic signal applied to the droplet;
    를 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system comprising a.
  10. 제 4 항에 있어서,The method of claim 4,
    U자형의 상기 튜브는, 상기 버블이 형성되지 않는 제1 단부와, 상기 버블이 형성되는 제2 단부를 갖되,The U-shaped tube has a first end where the bubble is not formed and a second end where the bubble is formed,
    상기 제1 및 제2 단부의 높이는 상이한 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system, characterized in that the heights of the first and second ends are different.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 출광유닛은,The light emitting unit,
    광원;Light source;
    상기 광원으로부터 이격 배치된 복수의 렌즈들; 및A plurality of lenses spaced apart from the light source; And
    상기 복수의 렌즈들 중 선택된 어느 두 렌즈들 사이에 배치되되, 상기 광원의 광경로 상에 위치한 핀홀(pin hole)을 가진 핀홀플레이트;A pinhole plate disposed between any two lenses selected from among the plurality of lenses and having a pin hole positioned on an optical path of the light source;
    를 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system comprising a.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 광원은 가시광선인 것을 특징으로 하는 실시간 수중 파티클 감지시스템.The light source is a real-time underwater particle detection system, characterized in that the visible light.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 복수의 렌즈들은, 상기 광원으로부터 순차대로 이격 배치된 제1 내지 제4 렌즈를 포함하고,The plurality of lenses include first to fourth lenses sequentially spaced apart from the light source,
    상기 제1 및 제2 렌즈는, 평면볼록렌즈이되 볼록면이 서로 마주보도록 배치되며,The first and second lenses are planar convex lenses, but are disposed so that the convex surfaces face each other
    상기 핀홀플레이트는, 상기 제2 및 제3 렌즈 사이에 위치하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.The pinhole plate is a real-time underwater particle detection system, characterized in that located between the second and third lenses.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 제3 렌즈는,The third lens,
    상기 튜브에 생성된 버블의 높이와 나란하게 광을 조사하도록 배치되는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system, characterized in that arranged to irradiate light parallel to the height of the bubble generated in the tube.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 이미지센서유닛은,The image sensor unit,
    상기 튜브에 생성된 버블의 이미지를 촬영하는 제1 카메라;A first camera that photographs an image of bubbles generated in the tube;
    상기 생성된 버블로부터 산란되는 광을 집광하는 제4 렌즈; 및A fourth lens condensing light scattered from the generated bubble; And
    상기 제4 렌즈를 투과한 이미지를 획득하는 제2 카메라;A second camera acquiring an image transmitted through the fourth lens;
    를 포함하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system comprising a.
  16. 제 6 항에 있어서,The method of claim 6,
    상기 제어유닛은, The control unit,
    상기 이미지센서유닛에 의해 획득된 상기 버블의 이미지에서 추출된 검은점(black spot) 및/또는 흰점(white spot)의 개수를 측정하여 상기 버블에 존재하는 상기 파티클의 농도를 산출하되, 상기 버블이 생성된 시간 정보를 사용하여 파티클의 농도를 산출하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.The concentration of the particles present in the bubble is calculated by measuring the number of black spots and/or white spots extracted from the image of the bubble obtained by the image sensor unit, wherein the bubble is Real-time underwater particle detection system, characterized in that calculating the concentration of particles using the generated time information.
  17. 제 6 항에 있어서,The method of claim 6,
    상기 제어유닛은, The control unit,
    상기 파티클의 종류별 고유 표면 에너지 값을 포함한 스팟(Spot) 데이터를 저장하되,Stores spot data including a specific surface energy value for each type of the particle,
    상기 이미지센서유닛에 의해 획득된 상기 버블의 이미지에서 추출된 검은점(black spot) 및/또는 흰점(white spot) 각각의 주변에 형성된 광 패턴의 크기, 두께, 및 주기를 상기 스팟 데이터에 적용하여 상기 파티클의 종류 데이터를 산출하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.By applying the size, thickness, and period of the light pattern formed around each of the black spots and/or white spots extracted from the image of the bubble obtained by the image sensor unit to the spot data Real-time underwater particle detection system, characterized in that calculating the type data of the particle.
  18. 제 6 항에 있어서,The method of claim 6,
    상기 제어유닛은,The control unit,
    상기 이미지센서유닛에 의해 획득된 상기 버블의 이미지를 이용하여 상기 버블의 생존 시간을 측정하고,Measuring the survival time of the bubble using the image of the bubble acquired by the image sensor unit,
    사용자가 설정한 시간을 메모리에 저장하여 상기 버블의 생존 시간과 일치될 때 상기 버블파열장치를 작동시켜 상기 버블을 터뜨리거나, 사용자의 입력에 따라 상기 버블파열장치를 작동시켜 상기 버블을 터뜨려, 상기 버블의 파열 속도를 근거로 상기 버블 막의 두께를 산출하는 것을 특징으로 하는 실시간 수중 파티클 감지시스템.When the time set by the user is stored in a memory, and the bubble bursting device is operated when it matches the survival time of the bubble, the bubble bursting device is operated to burst the bubble, or Real-time underwater particle detection system, characterized in that calculating the thickness of the bubble film based on the bursting rate of the bubble.
  19. 버블(bubble)을 생성시키는 버블발생장치;A bubble generating device for generating a bubble;
    상기 생성된 버블에 전자기신호를 조사하는 송신기;A transmitter for irradiating an electromagnetic signal to the generated bubble;
    상기 버블을 투과한 상기 전자기신호를 획득하는 수신기; 및A receiver for acquiring the electromagnetic signal transmitted through the bubble; And
    상기 수신기를 투과한 전자기신호를 이용하여, 상기 액체 내 파티클의 유무 및 농도 중 적어도 어느 하나를 검출하는 제어유닛;A control unit for detecting at least one of the presence or absence and concentration of particles in the liquid by using the electromagnetic signal transmitted through the receiver;
    을 포함하는 실시간 수중 파티클 감지시스템.Real-time underwater particle detection system comprising a.
PCT/KR2020/002548 2019-02-21 2020-02-21 Real-time underwater particle-sensing system using bubbles WO2020171652A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190020701 2019-02-21
KR10-2019-0020701 2019-02-21

Publications (2)

Publication Number Publication Date
WO2020171652A2 true WO2020171652A2 (en) 2020-08-27
WO2020171652A3 WO2020171652A3 (en) 2020-10-15

Family

ID=72144340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002548 WO2020171652A2 (en) 2019-02-21 2020-02-21 Real-time underwater particle-sensing system using bubbles

Country Status (2)

Country Link
KR (1) KR102279585B1 (en)
WO (1) WO2020171652A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053534A1 (en) * 2021-03-02 2022-09-07 Damann, Volker Method and watercraft for locating areas of a body of water having an increased particle concentration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114818519B (en) * 2022-06-30 2022-10-11 湖南工商大学 Method, system and computer readable medium for predicting bubble collapse of a foam material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060025792A (en) * 2004-09-17 2006-03-22 한국표준과학연구원 System for measuring number of bacteria in sample water and method of forming a device for the system
KR100923461B1 (en) * 2007-10-31 2009-10-27 전자부품연구원 A sample analysis appparatus for a micro-plate
KR101792787B1 (en) * 2016-04-27 2017-11-02 한국기계연구원 System and method for analyzing microbubble
KR101957693B1 (en) * 2016-08-22 2019-03-14 청주대학교 산학협력단 Apparatus and method for measuring surfactant concentration in a water using microbubbles
JP6888289B2 (en) * 2016-12-12 2021-06-16 株式会社リコー Droplet forming device, droplet forming method, and dispensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053534A1 (en) * 2021-03-02 2022-09-07 Damann, Volker Method and watercraft for locating areas of a body of water having an increased particle concentration
WO2022184778A1 (en) * 2021-03-02 2022-09-09 Damann, Volker Method and water vehicle for locating regions of a body of water which have an increased particle concentration

Also Published As

Publication number Publication date
KR20200102382A (en) 2020-08-31
KR102279585B1 (en) 2021-07-21
KR102279585B9 (en) 2022-12-27
WO2020171652A3 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2020171652A2 (en) Real-time underwater particle-sensing system using bubbles
US5521699A (en) Imaging flow cytometer and imaging method having plural optical paths of different magnification power
EP0501007B1 (en) Flow imaging cytometer
US7307721B2 (en) Particle imaging system with a varying flow rate
US10651009B2 (en) Method for inspecting a sample using an assembly comprising a scanning electron microscope and a light microscope
US5428441A (en) Apparatus for analyzing particle images
US20070159627A1 (en) Method and system for counting particles in a laminar flow with an imaging device
JPH04270940A (en) Flow image sight meter
JP2019215321A (en) System and method for inspecting refractive power and thickness of ophthalmic lens immersed in solution
CN111948118B (en) Liquid drop delay calculating device and calculating method thereof
US7217937B2 (en) Automatic identification of suspended particles
JPS61159135A (en) Particle analyzing device
US20220091011A1 (en) Method of Detecting an Infection Using Negative Sorting
WO2022114897A1 (en) Turbidimeter
JPH0929474A (en) Laser beam machine
EP4047364A1 (en) System and method for measuring water characteristics in a water facility
US20120057019A1 (en) Dynamic In-Situ Feature Imager Apparatus and Method
JPH06102152A (en) Standard solution for flow type particle picture analyzing instrument
RU2375699C2 (en) Improved detector
WO2022059829A1 (en) Water quality inspection device
CN219302303U (en) Dust detection device and optical imaging device of camera lens
JPH07270302A (en) Imaging flow sight meter
RU2296991C2 (en) Device for finding and registering defects on moving fabric
CN114660079A (en) Side-view observation method for realizing pipe diameter defect detection
JPH07181126A (en) Particle analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759490

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759490

Country of ref document: EP

Kind code of ref document: A2