WO2020171594A1 - Apparatus for continuously and automatically measuring fine dust in chimney exhaust gas - Google Patents

Apparatus for continuously and automatically measuring fine dust in chimney exhaust gas Download PDF

Info

Publication number
WO2020171594A1
WO2020171594A1 PCT/KR2020/002409 KR2020002409W WO2020171594A1 WO 2020171594 A1 WO2020171594 A1 WO 2020171594A1 KR 2020002409 W KR2020002409 W KR 2020002409W WO 2020171594 A1 WO2020171594 A1 WO 2020171594A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
exhaust gas
sample
fine dust
particle size
Prior art date
Application number
PCT/KR2020/002409
Other languages
French (fr)
Korean (ko)
Inventor
김근식
Original Assignee
주식회사 정엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 정엔지니어링 filed Critical 주식회사 정엔지니어링
Publication of WO2020171594A1 publication Critical patent/WO2020171594A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Definitions

  • the present invention relates to a continuous automatic measurement device for fine dust of a chimney exhaust gas, and more specifically, when collecting particulate matter such as fine dust from a flue exhaust gas, by sucking a constant velocity suction flow rate equal to the flow rate of the exhaust gas.
  • a constant constant velocity suction flow required for the particle size separation device is introduced into the measurement line.
  • the present invention relates to a continuous automatic measurement device for fine dust of chimney exhaust gas that enables continuous and automatic measurement of fine dust in exhaust gas.
  • harmful substances may include particulate matter, halogenated gas, and combustion gases such as nitrogen oxide, sulfurous acid gas, carbon monoxide, hydrogen chloride, ammonia, and the like.
  • harmful substances When such harmful substances are absorbed and accumulated in the human body, they not only cause various diseases, but also adversely affect the natural environment, which has been proven through various investigations and experiments.
  • TSP Total Suspended Particles
  • the concentration of fine dust must be collected for a long time due to the characteristics of the collection, but due to the characteristics of the flow velocity of the exhaust gas that changes frequently during such a long time, the constant velocity flow condition in the gas sampling step and the constant velocity flow condition in the particle size separation stage are simultaneously A method, apparatus, or system to meet has so far been very poorly developed in the related field.
  • constant velocity suction In order to measure fine dust, constant velocity suction is essential, and in order to separate and measure fine dust in the constant velocity suction process, particles must be separated by passing through a particle size separation device, but in a particle size separation device, a constant velocity suction flow rate must be sucked. It exists in this one process.
  • the present invention is to solve the above problems, the present invention is a chimney exhaust gas that minimizes the error in the measurement of fine dust by sucking through a suction nozzle at a constant flow rate equal to the flow rate of the exhaust gas when collecting a sample of the exhaust gas It is an object to provide a continuous automatic measuring device for fine dust.
  • the present invention controls the opening and closing of the first control valve provided in the control line in branching the sucked exhaust gas sample into the measurement line and the control line so that a constant speed flow rate is supplied to the particle diameter separation device provided in the measurement line. It is an object of the present invention to provide a continuous automatic measurement device for fine dust of flue gas, which enables precise separation of fine dust and continuous automatic measurement accordingly.
  • a continuous automatic measuring device for fine dust of a chimney exhaust gas for solving the above technical problem includes: a sample collecting unit configured to collect a sample of exhaust gas in the chimney; And branching the exhaust gas samples collected from the sample collection unit at one end in the traveling direction of the exhaust gas sample into a plurality of lines, and combining the exhaust gas samples from the plurality of lines at the other end in the traveling direction of the exhaust gas sample. It may include a sample branch / coupling portion configured.
  • the plurality of lines of the sample branching/combining unit may include a measurement line in which a particle size separation device is provided in at least one area, and a control line in which a first control valve is provided in at least one area.
  • the sample collection unit includes a suction pipe configured to suck an exhaust gas sample and transfer it to the sample branch/combination unit, and at one end of the suction pipe, a suction nozzle disposed in the chimney is provided, and of the suction nozzle
  • the cross-sectional area may be dimensionally designed to suck the exhaust gas sample at a flow rate exceeding the constant flow rate required for the particle size separation device.
  • the particle size separation device is implemented as a cascade impactor consisting of a PM10 impactor and a PM2.5 impactor, and accordingly, the constant flow rate required for the particle size separation device may be 16.67 l/min. .
  • the sample branching/combining unit includes: a dividing flow manifold configured to branch the exhaust gas sample collected from the sample collecting unit into the measurement line and the control line; And a combining flow manifold configured to combine the flow rate of the sample from the measurement line and the control line and transmit it to a constant velocity suction control unit at a rear stage.
  • the measurement line further includes a first flow meter configured to measure the flow rate of the exhaust gas sample flowing through the measurement line, and the constant velocity suction control unit has a constant velocity of the exhaust gas sample output from the coupling manifold.
  • a second flow meter configured to measure the suction flow rate may be provided.
  • the first control valve so that the flow rate measured by the first flow meter corresponds to the constant speed flow rate required for the particle size separation device. It may further include a controller configured to control the opening and closing of.
  • the controller is configured to open the first control valve when the flow rate measured by the first flow meter exceeds the constant speed flow rate required for the particle size separation device, and by the first flow meter It may be configured to close the first control valve when the measured flow rate is less than the constant velocity flow rate required for the particle size separation device.
  • the distance between the separation manifold and the first control valve may be adjustable based on the pressure loss in the measurement line and the pressure loss in the control line.
  • the error in the measurement of fine dust is minimized by suctioning at a constant velocity through a suction nozzle equal to the flow rate of the exhaust gas. can do.
  • the continuous automatic measurement device for fine dust of the chimney exhaust gas in branching the sucked exhaust gas sample into the measurement line and the control line, opening and closing of the first control valve provided in the control line By controlling the flow rate to be supplied to the particle size separation device provided in the measurement line, it is possible to precisely separate fine dust and continuous automatic measurement accordingly.
  • FIG. 1 is a schematic block diagram of an apparatus 10 for continuously measuring fine dust of a chimney exhaust gas according to an embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram of a continuous automatic measurement device 10 for fine dust of a chimney exhaust gas according to an embodiment of the present invention.
  • FIG 3 is a conceptual diagram for explaining an embodiment of implementing a constant flow rate of the measurement line 220 by the opening and closing operation of the first control valve 231 according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a variable distance adjustment between the separation manifold 210 and the first control valve 231 according to an embodiment of the present invention.
  • the apparatus 10 for continuous automatic measurement of fine dust of the flue gas according to an embodiment of the present invention includes a sample collection unit 100, a sample branch/combination unit 200, and a pretreatment unit. It may be composed of 300, a gas measurement unit 400, a constant velocity suction control unit 500, a controller 600, and the like.
  • the elements 100, 200, 300, 400, 500, 600 shown in FIG. 1 are the operation, function, etc. of the continuous automatic measurement device 10 for fine dust of the flue gas according to an embodiment of the present invention. It will be apparent that it corresponds to an exemplary element for explaining, and therefore additional elements (eg, a power supply unit, an alarm unit, a monitoring unit, etc.) not shown in FIG. 1 may be further provided.
  • At least a portion of the sample collection unit 100 is disposed in the chimney 1 to collect a sample of exhaust gas in the chimney 1.
  • constant velocity suction is very important, because when the exhaust gas is sucked at a faster rate than the exhaust gas flow rate, the surrounding fine particles are first sucked. This is because when is shown at a lower concentration than the actual concentration, and when suction is performed at a lower velocity than the exhaust gas flow rate, large particles are first sucked by the inertial force, and the result is measured at a higher concentration than the actual value.
  • This constant velocity suction flow condition in the sample collection unit 100 may be implemented by the constant velocity suction control unit 500 according to the control signals i 520 and/or i 530 output from the controller 600, and for this It will be described in more detail in the following.
  • the remaining elements that is, the sample branch/combination unit 200, and the pretreatment unit ( 300), the gas measuring unit 400, the constant velocity suction control unit 500, the controller 600, and the like may be disposed outside the chimney 1.
  • the sample branch/couple 200 provided with the particle diameter separation device 221 is disposed outside the chimney 1 to enable continuous measurement of fine dust, which will be described in more detail below. .
  • the sample branching/combining unit 200 divides the exhaust gas sample collected from the sample collection unit 100 at one end in the traveling direction of the exhaust gas sample into a plurality of lines, and from a plurality of lines at the other end in the traveling direction of the exhaust gas sample.
  • the exhaust gas samples of can be combined.
  • the plurality of lines provided in the sample branching/combining unit 200 may include at least a measurement line 220 (see FIG. 2 below) and a control line 230 (see FIG. 2 below), and the control line 230 ) By controlling the opening and closing of the first control valve 231 (refer to FIG. 2 below) disposed in the particle diameter separation device 221 (refer to FIG. 2 below) disposed in the measurement line 220.
  • 16.67 l/min, etc. may be supplied, and opening and closing of the first control valve 231 may be implemented by a control signal i 231 output from the controller 600.
  • a control signal i 231 output from the controller 600 16.67 l/min, etc.
  • the pretreatment unit 300 may perform a function of removing moisture contained in the exhaust gas output from the sample branch/combination unit 200, and accordingly, the gas measurement unit 400 disposed at the rear end of the exhaust gas progress direction It is possible to protect the constant velocity suction control unit 500. A more detailed description of the operation, function, and the like of the preprocessor 300 will be described later.
  • the gas measuring unit 400 may measure a gas, for example, a gas such as oxygen (O 2 ), carbon dioxide (CO 2 ), and the like.
  • a gas such as oxygen (O 2 ), carbon dioxide (CO 2 ), and the like.
  • the gas measurement unit 400 may include an oxygen sensor, a carbon dioxide sensor, and the like, and a more detailed description of the operation, function, and the like of the gas measurement unit 400 will be described again below.
  • the constant velocity suction control unit 500 may control the opening and closing of the valve and/or the pressure of the pump to satisfy the constant velocity flow suction condition in the sample collection unit 100, which is a control signal output from the controller 600 (i 520 And/or i 530 ). A more detailed description of the operation, function, and the like of the constant velocity suction control unit 500 will be described again below.
  • the controller 600 includes a first control valve 231 in the sample branch/coupler 200 so that the constant velocity suction flow condition in the sample collection unit 100 and the constant velocity suction flow condition in the particle size separation device 221 are satisfied.
  • Open/close control for example, by a control signal (i 231 )
  • valve open/close control and/or pump pressure control in the constant velocity suction control unit 500 for example, control signals (i 520 and/or i 530)
  • the controller 600 may be implemented in other device types such as a micro-controller, a processor, or a micro-processor according to various embodiments or embodiments.
  • the apparatus 10 for continuously measuring fine dust of flue gas includes at least a part of a sample collecting unit disposed inside the chimney 1 ( 100) and a sample branch/combination unit 200 disposed outside the chimney 1, a pretreatment unit 300, a gas measurement unit 400, a constant velocity suction control unit 500, and a controller 600. .
  • the sample collection unit 100 may be configured to collect a sample of exhaust gas in the chimney, and as shown in FIG. 2, the sample collection unit 100 includes a suction tube 110, a Pitot tube 120, and a thermometer 130. Wow, it may be composed of a heating device 140, and the like.
  • the exhaust gas in order to analyze and measure particulate matter such as fine dust in the exhaust gas, it is desirable to collect the exhaust gas from the discharge origin, such as a chimney.This is because the fine dust density condition of the exhaust gas in the chimney is uniform. This is because it is very different from a normal atmosphere. Therefore, since the exhaust gas that deviates from the emission origin such as the chimney is mixed with the general atmosphere and the density is lowered, it is preferable to perform sampling at the emission origin such as the chimney before the exhaust gas is mixed with the general atmosphere.
  • the discharge origin such as a chimney.
  • a pitot tube 120 meeting the standards of the domestic process test method is illustrated as an example.
  • the Pitot tube 120 is a device installed inside the flowing fluid and configured to measure the velocity of the fluid, and a law in which the pressure difference inside/outside the Pitot tube 120 is proportional to the square of the fluid velocity, that is, Bernoulli's law ( The velocity of the fluid can be obtained according to Bernoulli's equation.
  • the suction pipe 110 is provided with a suction nozzle 111 disposed in at least a portion of the chimney 1 at one end thereof, and the other end thereof is a sample branch/combination part 200 and, more specifically, a separation manifold 210 ) And the exhaust gas sample in the chimney may be delivered to the sample branch/coupler 200 through the suction pipe 110.
  • the cross-sectional area of the suction nozzle 111 is characterized in that it is dimensionally designed to suck the exhaust gas sample at a flow rate exceeding the constant flow rate required for the particle size separation device 221.
  • the exhaust gas sample at a flow rate exceeding the constant flow rate required by the particle size separation device 221 may be determined so that the suction nozzle 111 can be sucked at a constant velocity, and the particle diameter separation device 221 is a cascade impactor composed of a PM10 impactor 221a and a PM2.5 impactor 221b.
  • the constant flow rate required for such a cascade-impacter may be 16.67 l/min.
  • the particle size separation device 221 in which the PM10 impactor 221a and the PM2.5 impactor 221b are connected in series is described, but in another embodiment of the present invention, the particle size separation device 221 is Only one of the PM10 impactor 221a and the PM2.5 impactor 221b may be provided, or an additional impactor, for example, a PM1.0 impactor may be further provided.
  • the cross-sectional area of the suction nozzle 111 can be determined to suck the exhaust gas sample at a constant velocity at a flow rate exceeding the constant velocity flow rate required by the particle size separation device 221 based on the design capacity of the chimney 1, etc. Accordingly, a constant flow rate required for particle size separation can be stably supplied to the particle size separation device 221 by a branching operation in the separation manifold 210.
  • the constant velocity suction flow rate (for reference, process test method According to the permissible range of 95% to 110%) can be set to 17.5 l/min to 34 l/min, under these conditions, if the outlet flow rate is 8.5 m/sec and the discharge temperature is 150°C, the constant velocity suction flow rate is 29.2 It can be calculated as l/min.
  • the total flow rate (Q Total ) measured by the second flow meter 510 due to various causes within the chimney is a constant flow rate required for the particle size separation device 221 (eg, 16.67 l/min). May be less than. If the constant velocity flow condition required for the particle size separation device 221 is not satisfied, the particle separation and measurement by the particle size separation device 221 may be regarded as a virtually meaningless operation, so the total flow rate measured by the second flow meter 510 When (Q Total ) falls below a constant flow rate (for example, 16.67 l/min) required for the particle size separation device 221, the controller 600 according to a further embodiment of the present invention is an alarm unit (not shown).
  • the diameter of the suction nozzle 111 may be increased by one level, for example, a suction nozzle 111 having a diameter of 12 mm may be replaced and used.
  • the heating device 140 may be implemented while surrounding at least a portion of the outer circumferential surface of the suction pipe 110, and to prevent condensation of moisture during the transport of the exhaust gas sample, heat from a heat source (not shown) is absorbed by the suction pipe 110. Can be delivered to the sample of exhaust gas inside.
  • thermometer 130 may be additionally disposed in at least a partial region along the longitudinal direction of the suction pipe 110, more preferably near the boundary between the inner region and the outer region of the chimney 1, and the thermometer 130 May measure the temperature of the suction pipe 110 and transmit the measured temperature value to another element, for example, to the controller 600 wirelessly or by wire.
  • the sample collection unit 100 is more specifically configured to measure fine dust by sucking the exhaust gas sample at a constant flow rate equal to the flow rate of the exhaust gas through the suction nozzle 111.
  • the error can be minimized, and the constant velocity flow rate here supplies a flow rate exceeding the constant velocity flow rate required for the particle size separation device 221, and the constant velocity suction flow rate condition in the suction nozzle 111 is provided in the constant velocity suction control unit 500
  • It may be implemented by opening and closing of the second control valve 520 and/or controlling the pressure of the suction pump 530, which is based on the control signals i 520 and/or i 530 output from the controller 600. I can.
  • the suction pump 530 provided in the constant velocity suction control unit 500 generates a constant power.
  • the second control valve 520 By controlling the opening and closing of the second control valve 520 while outputting, or by adjusting the power of the suction pump 530 itself provided in the constant velocity suction control unit 500 (in this case, the second control valve 520 will be omitted. May) It is possible to implement a constant velocity flow rate collection in the sample collection unit 100.
  • a method of simultaneously controlling the pressure of the pump may be used.
  • the sample branching/combining unit 200 diverges the exhaust gas sample retaken from the sample collection unit 100 at one end in the traveling direction of the exhaust gas sample into a plurality of lines, and a plurality of the exhaust gas samples at the other end in the traveling direction of the exhaust gas sample It can be configured to combine the sample of exhaust gas from the line of.
  • the measurement line 220 and the control line 230 are exemplary as a plurality of lines implemented in the sample branch/combination unit 200 in the following specification. Although described, the number of lines constituting a plurality of lines may be different according to various embodiments or implementations.
  • the plurality of lines of the sample branching/combining unit 200 include a measurement line 220 having a particle size separation device 221 in at least one area, It may include a control line 230 in which the first control valve 231 is provided in at least one area, and the sample branching/combining unit 200 is a measurement line for measuring the exhaust gas sample collected from the sample collecting unit 100. It may further include a separation manifold 210 branching to 220 and the control line 230.
  • FIG. 2 exemplarily shows a configuration in which the first control valve 231 is spaced apart from the separation manifold 210 by a predetermined distance. do.
  • FIG. 4 corresponds to a conceptual diagram for explaining the variable distance adjustment between the separation manifold 210 and the first control valve 231 according to an embodiment of the present invention.
  • the separation manifold is based on the actual pressure loss in the measurement line 220 and/or the actual pressure loss in the control line 230, more preferably based on the difference in pressure loss.
  • the distance between the 210 and the first control valve 231 may be adjustable, and in (a) of FIG. 4, the first control valve 231 is approximately equal to the separation manifold 210 and the coupling manifold 240.
  • An example of a configuration disposed in the middle region is shown, and (b) of FIG. 4 exemplarily shows a configuration in which the first control valve 231 is disposed close to the separation manifold 210 side.
  • (c) exemplarily shows a configuration in which the first control valve 231 is disposed distal to the separation manifold 210.
  • the inlet inner diameter of the measurement line 220 is controlled based on the pressure loss in the measurement line 220 and/or the pressure loss in the control line 230. It may be implemented differently from the inner diameter of the inlet portion of the line 230, or an orifice may be installed therein.
  • the measurement line 220 is a line (or path) for separating and measuring fine dust, and may be composed of a particle size separation device 221, a fine dust measurement sensor 222, a first flow meter 223, and the like. have.
  • the particle size separation device 221 may be appropriately selected according to the particulate matter to be measured. For example, when measuring fine dust, the particle size separation device 221 uses the inertial force of the particles and A cyclone using centrifugal force can be used. In addition, it is possible to select PM10, PM2.5, etc. according to the size of the particle diameter to be measured, and in the following specification, the particle diameter separation device 221 is a PM10 impactor (221a) and PM2. An example implemented as a cascade-impacter composed of 5 impactors 221b will be described.
  • the impactor uses the law of inertial collision of particles to rapidly change the direction of fluid flow, the principle that heavy particles go straight to the collection tube and are collected by gravity and inertial force, whereas light particles proceed with the fluid. Because of the use of the fluid inlet speed, device structure, dimensional design, etc. are very important.
  • the fine dust measuring sensor 222 is a device for measuring fine dust, and, for example, a filter for a gravimetric method, a beta-ray sensor, a light scattering sensor, and the like may be applied.
  • the first flow meter 223 is a device for measuring the flow rate in the measurement line 220, for example, a mass flow meter (MFM) may be used.
  • MFM mass flow meter
  • mass is a standard for measurement in which the unit of measurement is not derived from other physical quantities, and forms the basis of all physical measurements along with units such as length, time, etc., and mass flowmeters measure the mass of such an invariant. It has the advantage of being linear without calculation and no correction for fluid properties.
  • the mass flow meter is a flow meter that measures the mass flow rate rather than the volume flow rate of a fluid.
  • direct mass flow meters include thermal mass flow meters, differential pressure mass flow meters, Coriolis mass flow meters, angular momentum mass flow meters, gyro mass flow meters, turbine mass flow meters, and the like.
  • mass flowmeter may be implemented to operate in a digital mode or an analog mode, and an operation mode may be switched between a digital mode and an analog mode, and the switching of such an operation mode is performed by the controller 600 ) Can be implemented by
  • the device 10 for continuous automatic measurement of fine dust of the flue gas is characterized in that a constant flow rate is supplied to the particle size separation device 221, whereby the particle size separation device 221
  • the first flow meter 223 always detects a value of 16.67 L/min as a constant speed flow rate, and when the flow rate value of the first flow meter 223 exceeds or falls below 16.67 L/min, the control line
  • the opening and closing of the first control valve 231 provided in 230 the flow rate value of the first flow meter 223 can be corrected by 16.67 l/min, and this correction/control operation implemented by the controller 600 It will be described in more detail with reference to FIG. 3 below.
  • the control line 230 corresponds to the remaining lines excluding the measurement line 220 from the plurality of lines provided in the sample branch/combination unit 200, and in FIG. 2, one line is illustratively used as the control line 230. Although shown, according to a further embodiment of the present invention, the control line 230 may be implemented as a plurality of lines (eg, two lines, three lines, etc.).
  • the control line 230 may be provided with a first control valve 231, and the distance between the first control valve 231 and the separation manifold 210 is a pressure loss in the measurement line 220 and/or It is already described that it is variably adjustable based on the pressure loss in the control line 230.
  • the first control valve 231 provided in the control line 230, the constant speed flow rate condition of the particle size separation device 221 provided in the measurement line 220 can be satisfied, and the first control valve
  • the opening and closing control control of the 231 may be possible by a control signal i 231 output from the controller 600.
  • FIG. 3 is a conceptual diagram for explaining an embodiment of implementing a constant flow rate of the measurement line 220 by the opening and closing operation of the first control valve 231 according to an embodiment of the present invention.
  • the constant flow rate required for the particle size separation device 221 is 16.67 l/min, and for accurate detection and measurement of fine dust, the constant flow rate condition in the particle size separation device 221 ( 16.67 l/min) must be observed.
  • the summation flow rate (Q Total ) is measured at 20 l/min by the second flow meter 510 provided in the constant velocity suction control unit 500, and the measurement line 220
  • the controller 60 determines that there is a flow rate of 5 L/min in the control line 230. I can.
  • the controller 600 controls 1.67 L/min at the 5 L/min flow rate of the control line 230.
  • the first control valve 231 may be further closed.
  • the summation flow rate (Q Total ) is measured as 20 l/min by the second flow meter 510 provided in the constant velocity suction control unit 500, and the measurement line (
  • the controller 60 has a flow rate of 2 L/min in the control line 230 You can judge that there is.
  • the controller 600 controls 1.33 L/min at the 2 L/min flow rate of the control line 230.
  • the first control valve 231 may be controlled to be further opened.
  • the controller 600 is based on the flow rate measured by the first flow meter 223 and the second flow meter 510 (ie, Q 220 , Q Total ), the first flow meter ( Opening and closing of the first control valve 231 may be controlled so that the flow rate measured by 223 corresponds to a constant speed flow rate (eg, 16.67 L/min) required for the particle size separation device 221.
  • a constant speed flow rate eg, 16.67 L/min
  • the controller 600 opens the first control valve 231 when the flow rate measured by the first flow meter 223 exceeds the constant speed flow rate required for the particle size separation device 221, and the first flow meter When the flow rate measured by 223 is less than the constant speed flow rate required for the particle size separation device 221, the first control valve 231 may be closed.
  • the coupling manifold 240 combines the sample flow rate from the measurement line 220 and the control line 230 and transmits it to the pretreatment unit 300, the gas measurement unit 400, the constant velocity suction control unit 500, etc. Can be configured.
  • the pretreatment unit 300 may be composed of a cooler 310 and a discharge pump 320.
  • the pretreatment unit 300 may perform pretreatment for normal measurement and/or control operation in the gas measurement unit 400 and/or the constant velocity suction control unit 500.
  • the pretreatment unit 300 removes moisture Can be implemented.
  • a gas sensor is used to measure an exhaust gas component in the gas measurement unit 400, and in general, the gas sensor is greatly affected by moisture. Accordingly, in order to reduce measurement errors and failures of the gas sensor due to moisture, the pretreatment unit 300 may remove moisture from the exhaust gas output through the coupling manifold 240. When the exhaust gas containing a large number of moisture passes through the cooler 310, moisture is condensed and converted into water, and the converted water is discharged to the outside through the discharge pump 320, thereby removing moisture from the exhaust gas.
  • the gas measurement unit 400 may include various types of gas sensors, and in this specification, the oxygen sensor 410 and the carbon dioxide sensor 420 are exemplarily described to correct air density in relation to the calculation of the constant velocity suction flow rate. I will do it.
  • the oxygen sensor 410 corresponds to a device for measuring oxygen in the exhaust gas
  • the carbon dioxide sensor 420 corresponds to a device for measuring carbon dioxide in the exhaust gas.
  • sensors such as the oxygen sensor 410 and the carbon dioxide sensor 420 may be removed even if the moisture of the target gas is removed. It can be implemented as a sensor device that conforms to the characteristics of a gas that does not cause overmeasurement errors.
  • the constant velocity suction control unit 500 may control the operation of the second control valve 520 and/or the suction pump 530 in order to satisfy the constant velocity flow rate condition in the sample collection unit 100. For example, based on the flow rate (Q Total ) measured by the second flow meter 510 provided in the constant velocity suction control unit 500, the suction pump 530 provided in the constant velocity suction control unit 500 generates a constant power. By controlling the opening and closing of the second control valve 520 while outputting, or by adjusting the power of the suction pump 530 itself provided in the constant velocity suction control unit 500 (in this case, the second control valve 520 will be omitted. May) It is possible to implement a constant velocity flow rate collection in the sample collection unit 100.
  • the flow rate measured by the second flow meter 510 provided in the constant velocity suction control unit 500 (Q Total ) Based on the method of controlling the opening and closing of the second control valve 520 and simultaneously controlling the pressure of the pump.
  • the second flow meter 510 may be a mass flow meter, or a dry flow meter, which is relatively inexpensive, may be used in general since moisture from the gas is removed from the pretreatment unit 300.
  • the continuous automatic measuring device for fine dust of the flue gas when collecting a sample of the flue gas, fine dust is sucked at a constant velocity through a suction nozzle equal to the flow rate of the exhaust gas. Measurement errors can be minimized.
  • the continuous automatic measurement device for fine dust of the chimney exhaust gas in branching the sucked exhaust gas sample into the measurement line and the control line, opening and closing of the first control valve provided in the control line By controlling the flow rate to be supplied to the particle size separation device provided in the measurement line, it is possible to precisely separate fine dust and continuous automatic measurement accordingly.
  • various embodiments described in the present specification may be implemented by hardware, middleware, microcode, software, and/or a combination thereof.
  • various embodiments include one or more application specific semiconductors (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs). ), processors, controllers, microcontrollers, microprocessors, other electronic units designed to perform the functions presented herein, or a combination thereof.
  • ASICs application specific semiconductors
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, other electronic units designed to perform the functions presented herein, or a combination thereof.
  • various embodiments may be embodied or encoded on a computer-readable medium containing instructions. Instructions embodied or encoded on a computer-readable medium may cause a programmable processor or other processor to perform a method, for example, when the instructions are executed.
  • Computer-readable media includes computer storage media, and computer storage media may be any available media that can be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage medium, magnetic disk storage medium, or other magnetic storage device.
  • Such hardware, software, firmware, and the like may be implemented within the same device or within separate devices to support the various operations and functions described herein. Additionally, components, units, modules, components, and the like described as "units" in the present invention may be implemented together or separately as interoperable logic devices. The description of different features for modules, units, etc. is intended to highlight different functional embodiments, and does not necessarily imply that they must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components or may be integrated within common or separate hardware or software components.
  • sample collection unit 110 suction tube
  • suction nozzle 120 Pitot tube
  • thermometer 140 heating device
  • sample branch/couple 210 separation manifold
  • fine dust measurement sensor 223 first flow meter
  • control line 231 first control valve
  • cooler 320 discharge pump
  • gas measuring unit 410 O 2 sensor
  • suction pump 600 controller

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Disclosed is an apparatus (10) for continuously and automatically measuring fine dust in chimney exhaust gas. The apparatus (10) for continuously and automatically measuring fine dust in chimney exhaust gas may comprise: a sample collection part (100) configured to collect exhaust gas samples in a chimney; and a sample branching/combining part (200) which is configured to, at one end in the travel direction of the exhaust gas samples, branch the exhaust gas samples collected from the sample collection part (100) into a plurality of lines, and, at the other end in the travel direction of the exhaust gas samples, combine the exhaust gas samples from the plurality of lines.

Description

굴뚝 배출가스의 미세먼지 연속자동측정장치Continuous automatic measuring device for fine dust of flue gas
본 발명은 굴뚝 배출가스의 미세먼지 연속자동측정장치에 관한 발명으로서, 보다 구체적으로는 굴뚝 배출가스 중에서 미세먼지 등의 입자성 물질을 채취함에 있어 배출가스의 유속과 동일하게 등속흡인유량을 흡인함으로써 측정 오차를 최소화하고, 등속 흡인된 유량을 측정라인과 제어라인으로 분기하면서 제어라인에 구비된 제1 제어밸브의 개폐를 제어하여 측정라인에는 입경분리장치에 필요한 일정한 정속흡인유량이 투입되도록 함으로써 굴뚝 배출가스 내 미세먼지의 연속 및 자동 측정을 가능하게 하는 굴뚝 배출가스의 미세먼지 연속자동측정장치에 관한 발명이다.The present invention relates to a continuous automatic measurement device for fine dust of a chimney exhaust gas, and more specifically, when collecting particulate matter such as fine dust from a flue exhaust gas, by sucking a constant velocity suction flow rate equal to the flow rate of the exhaust gas. By minimizing measurement errors and controlling the opening and closing of the first control valve provided in the control line while diverging the flow rate sucked at a constant velocity into the measurement line and the control line, a constant constant velocity suction flow required for the particle size separation device is introduced into the measurement line. The present invention relates to a continuous automatic measurement device for fine dust of chimney exhaust gas that enables continuous and automatic measurement of fine dust in exhaust gas.
일반적으로 화석 연료를 태워서 그 화력으로 발전하는 화력 발전소, 산업 폐기물이나 일반 생활 쓰레기를 소각 처리하는 소각장 등에서는 인체에 유해한 다양한 종류의 배출가스가 배출된다. 이러한 유해 물질은 입자상 물질, 할로겐족가스와, 질소산화물, 아황산가스, 일산화탄소, 염화수소, 암모니아, 등의 연소 가스를 포함할 수 있다. 이와 같은 유해 물질은 인체에 흡수된 후에 축적이 되면 각종 질병을 유발할 뿐만 아니라 자연 환경에도 나쁜 영향을 미치는 것으로 각종 조사 및 실험을 통해 입증되고 있다.In general, various types of exhaust gases harmful to the human body are discharged in a thermal power plant that burns fossil fuels to generate power using the thermal power, or an incinerator that incinerates industrial waste or general household waste. Such harmful substances may include particulate matter, halogenated gas, and combustion gases such as nitrogen oxide, sulfurous acid gas, carbon monoxide, hydrogen chloride, ammonia, and the like. When such harmful substances are absorbed and accumulated in the human body, they not only cause various diseases, but also adversely affect the natural environment, which has been proven through various investigations and experiments.
이러한 이유로 전세계적으로 소각장 및 화석 연료를 사용하는 사업장의 경우에는 강력한 법에 의해 유해 물질의 배출량을 규제 받고 있으며, 국내에서도 환경부 고시를 통해서 배출가스에 포함되는 유해 물질의 배출량을 제한하고 있다. For this reason, in the case of incinerators and businesses that use fossil fuels around the world, the emission of harmful substances is regulated by strong laws, and even in Korea, the emission of harmful substances included in the emission gas is limited through a notification from the Ministry of Environment.
지금까지는 화력 발전소, 산업용 공장 등의 굴뚝에서 배출되는 배출가스에 포함된 유해 물질의 측정을 위해 총입자상 물질(TSP; Total Suspended Particles)를 측정 및 관리하는 방식을 사용해왔지만, 정작 인체에 매우 유해한 피해를 초래하는 미세먼지(PM10) 또는 초미세먼지(PM2.5)에 대해서는 정확하게 그리고 신뢰성 있게 측정하지 못하고 있는 실정이다. Until now, a method of measuring and managing Total Suspended Particles (TSP) has been used to measure harmful substances contained in exhaust gases emitted from chimneys such as thermal power plants and industrial plants, but it is very harmful to the human body. It is not possible to accurately and reliably measure fine dust (PM10) or ultrafine dust (PM2.5) that causes a problem.
게다가, 미세먼지의 농도 측정은 채취의 특성상 장시간 채취가 전제되어야 하지만, 그러한 장시간 동안에 수시로 변화하는 배출가스의 유속 특성으로 인해 가스 샘플링 단계에서의 등속유량조건과 입경 분리 단계에서의 정속유량조건을 동시에 충족시키는 방법, 장치, 또는 시스템이 관련 분야에서 지금까지는 개발이 매우 미흡한 실정이다. In addition, the concentration of fine dust must be collected for a long time due to the characteristics of the collection, but due to the characteristics of the flow velocity of the exhaust gas that changes frequently during such a long time, the constant velocity flow condition in the gas sampling step and the constant velocity flow condition in the particle size separation stage are simultaneously A method, apparatus, or system to meet has so far been very poorly developed in the related field.
미세먼지를 측정하기 위해서는 등속 흡인이 필수적이고 등속 흡인의 공정에서 미세먼지를 분리 측정하기 위해서는 입경분리장치를 통과시켜 입자를 분리해야 하지만, 입경분리장치에서는 정속흡인유량을 흡인해야만 하는 서로 모순된 조건이 하나의 공정에서 존재하게 된다.In order to measure fine dust, constant velocity suction is essential, and in order to separate and measure fine dust in the constant velocity suction process, particles must be separated by passing through a particle size separation device, but in a particle size separation device, a constant velocity suction flow rate must be sucked. It exists in this one process.
그러므로, 굴뚝 배출가스 중 미세먼지를 자동으로 그리고 연속으로 측정할 수 있는 새로운 타입의 굴뚝 배출가스의 미세먼지 연속자동측정장치에 관한 필요가 당업계에서 상당히 증가하고 있는 상황이다.Therefore, the need for a new type of continuous automatic measuring device for fine dust in the flue exhaust gas capable of automatically and continuously measuring fine dust in the flue exhaust gas is considerably increasing in the art.
본 발명은 상기의 문제점을 해결하기 위한 것으로서, 본 발명은 굴뚝 배출가스 시료를 채취함에 있어 배출가스의 유속과 동일하게 등속 유량으로 흡인 노즐을 통해 흡인함으로써 미세먼지 측정의 오차를 최소화하는 굴뚝 배출가스의 미세먼지 연속자동측정장치를 제공하는 것을 목적으로 한다. The present invention is to solve the above problems, the present invention is a chimney exhaust gas that minimizes the error in the measurement of fine dust by sucking through a suction nozzle at a constant flow rate equal to the flow rate of the exhaust gas when collecting a sample of the exhaust gas It is an object to provide a continuous automatic measuring device for fine dust.
또한, 본 발명은 흡인된 배출가스 시료를 측정라인과 제어라인으로 분기함에 있어, 제어라인에 구비된 제1 제어밸브의 개폐를 제어함으로써 측정라인에 구비된 입경분리장치에 정속 유량이 공급되도록 하고, 그에 따라 미세먼지의 정밀한 분리 및 연속자동측정을 가능하게 하는 굴뚝 배출가스의 미세먼지 연속자동측정장치를 제공하는 것을 목적으로 한다.In addition, the present invention controls the opening and closing of the first control valve provided in the control line in branching the sucked exhaust gas sample into the measurement line and the control line so that a constant speed flow rate is supplied to the particle diameter separation device provided in the measurement line. It is an object of the present invention to provide a continuous automatic measurement device for fine dust of flue gas, which enables precise separation of fine dust and continuous automatic measurement accordingly.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기한 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치는, 굴뚝 내 배출가스 시료를 채취하도록 구성되는 시료 채취부; 및 상기 배출가스 시료의 진행 방향 일단에서 상기 시료 채취부로부터 채취된 배출가스 시료를 복수의 라인으로 분기하고, 그리고 상기 배출가스 시료의 진행 방향 타단에서 상기 복수의 라인으로부터의 배출가스 시료를 결합하도록 구성되는 시료 분기/결합부를 포함할 수 있다.A continuous automatic measuring device for fine dust of a chimney exhaust gas according to an embodiment of the present invention for solving the above technical problem includes: a sample collecting unit configured to collect a sample of exhaust gas in the chimney; And branching the exhaust gas samples collected from the sample collection unit at one end in the traveling direction of the exhaust gas sample into a plurality of lines, and combining the exhaust gas samples from the plurality of lines at the other end in the traveling direction of the exhaust gas sample. It may include a sample branch / coupling portion configured.
보다 바람직하게는, 상기 시료 분기/결합부의 상기 복수의 라인은, 적어도 일 영역에 입경분리장치가 구비되는 측정라인, 및 적어도 일 영역에 제1 제어밸브가 구비되는 제어라인을 포함할 수 있다.More preferably, the plurality of lines of the sample branching/combining unit may include a measurement line in which a particle size separation device is provided in at least one area, and a control line in which a first control valve is provided in at least one area.
보다 바람직하게는, 상기 시료 채취부는 배출가스 시료를 흡인하여 상기 시료 분기/결합부로 전달하도록 구성되는 흡인관을 포함하고, 상기 흡인관의 일 단에는 굴뚝 내 배치되는 흡인 노즐이 구비되며, 상기 흡인 노즐의 단면적은 상기 입경분리장치에 필요한 정속 유량을 초과하는 유량으로 상기 배출가스 시료를 흡인하도록 치수 설계될 수 있다.More preferably, the sample collection unit includes a suction pipe configured to suck an exhaust gas sample and transfer it to the sample branch/combination unit, and at one end of the suction pipe, a suction nozzle disposed in the chimney is provided, and of the suction nozzle The cross-sectional area may be dimensionally designed to suck the exhaust gas sample at a flow rate exceeding the constant flow rate required for the particle size separation device.
보다 바람직하게는, 상기 입경분리장치는 PM10 임팩터 및 PM2.5 임팩터로 구성되는 캐스케이드-임팩터(cascade impactor)로 구현되고, 그에 따라 상기 입경분리장치에 필요한 상기 정속 유량은 16.67 ℓ/min일 수 있다.More preferably, the particle size separation device is implemented as a cascade impactor consisting of a PM10 impactor and a PM2.5 impactor, and accordingly, the constant flow rate required for the particle size separation device may be 16.67 ℓ/min. .
보다 바람직하게는, 상기 시료 분기/결합부는, 상기 시료 채취부로부터 채취된 배출가스 시료를 상기 측정라인 및 상기 제어라인으로 분기하도록 구성되는 분리매니폴드(dividing flow manifold); 및 상기 측정라인 및 상기 제어라인으로부터의 시료 유량을 결합하여 후단의 등속흡인제어부로 전달하도록 구성되는 결합매니폴드(combining flow manifold)를 포함할 수 있다.More preferably, the sample branching/combining unit includes: a dividing flow manifold configured to branch the exhaust gas sample collected from the sample collecting unit into the measurement line and the control line; And a combining flow manifold configured to combine the flow rate of the sample from the measurement line and the control line and transmit it to a constant velocity suction control unit at a rear stage.
보다 바람직하게는, 상기 측정라인에는 상기 측정라인을 통해 흐르는 배출가스 시료의 유량을 측정하도록 구성되는 제1 유량계가 더 구비되고, 상기 등속흡인제어부에는 상기 결합매니폴드로부터 출력되는 배출가스 시료의 등속흡인유량을 측정하도록 구성되는 제2 유량계가 구비될 수 있다.More preferably, the measurement line further includes a first flow meter configured to measure the flow rate of the exhaust gas sample flowing through the measurement line, and the constant velocity suction control unit has a constant velocity of the exhaust gas sample output from the coupling manifold. A second flow meter configured to measure the suction flow rate may be provided.
보다 바람직하게는, 상기 제1 유량계 및 상기 제2 유량계에 의해서 측정되는 유량에 기초하여, 상기 제1 유량계에 의해 측정되는 유량이 상기 입경분리장치에 필요한 상기 정속 유량에 대응하도록 상기 제1 제어밸브의 개폐를 제어하도록 구성되는 컨트롤러를 더 포함할 수 있다.More preferably, based on the flow rate measured by the first flow meter and the second flow meter, the first control valve so that the flow rate measured by the first flow meter corresponds to the constant speed flow rate required for the particle size separation device. It may further include a controller configured to control the opening and closing of.
보다 바람직하게는, 상기 컨트롤러는, 상기 제1 유량계에 의해 측정되는 유량이 상기 입경분리장치에 필요한 상기 정속 유량을 초과하는 경우 상기 제1 제어밸브를 개방하도록 구성되고, 그리고 상기 제1 유량계에 의해 측정되는 유량이 상기 입경분리장치에 필요한 상기 정속 유량 미만인 경우 상기 제1 제어밸브를 폐쇄하도록 구성될 수 있다.More preferably, the controller is configured to open the first control valve when the flow rate measured by the first flow meter exceeds the constant speed flow rate required for the particle size separation device, and by the first flow meter It may be configured to close the first control valve when the measured flow rate is less than the constant velocity flow rate required for the particle size separation device.
보다 바람직하게는, 상기 측정라인에서의 압력 손실 및 상기 제어라인에서의 압력 손실에 기초하여, 상기 분리매니폴드와 상기 제1 제어밸브 사이의 거리가 조절 가능할 수 있다.More preferably, the distance between the separation manifold and the first control valve may be adjustable based on the pressure loss in the measurement line and the pressure loss in the control line.
본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치에 의하면, 굴뚝 배출가스 시료를 채취함에 있어 배출가스의 유속과 동일하게 흡인 노즐을 통해 등속 흡인함으로써 미세먼지 측정의 오차를 최소화할 수 있다. According to the continuous automatic measurement of fine dust of the flue gas according to an embodiment of the present invention, when collecting a sample of the flue gas, the error in the measurement of fine dust is minimized by suctioning at a constant velocity through a suction nozzle equal to the flow rate of the exhaust gas. can do.
또한, 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치에 의하면, 흡인된 배출가스 시료를 측정라인과 제어라인으로 분기함에 있어, 제어라인에 구비된 제1 제어밸브의 개폐를 제어함으로써 측정라인에 구비된 입경분리장치에 정속 유량이 공급되도록 하고, 그에 따라 미세먼지의 정밀한 분리 및 연속자동측정을 가능하게 할 수 있다.In addition, according to the continuous automatic measurement device for fine dust of the chimney exhaust gas according to an embodiment of the present invention, in branching the sucked exhaust gas sample into the measurement line and the control line, opening and closing of the first control valve provided in the control line By controlling the flow rate to be supplied to the particle size separation device provided in the measurement line, it is possible to precisely separate fine dust and continuous automatic measurement accordingly.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.Brief description of each drawing is provided in order to more fully understand the drawings cited in the detailed description of the present invention.
도 1은 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)의 개략적인 블록도이다.1 is a schematic block diagram of an apparatus 10 for continuously measuring fine dust of a chimney exhaust gas according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)의 세부 구성도이다.2 is a detailed configuration diagram of a continuous automatic measurement device 10 for fine dust of a chimney exhaust gas according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 제1 제어밸브(231)의 개폐 동작에 의해 측정라인(220)의 정속 유량을 구현하는 실시예를 설명하기 위한 개념도이다.3 is a conceptual diagram for explaining an embodiment of implementing a constant flow rate of the measurement line 220 by the opening and closing operation of the first control valve 231 according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 분리매니폴드(210)와 제1 제어밸브(231) 사이의 가변적 거리 조정을 설명하기 위한 개념도이다.4 is a conceptual diagram illustrating a variable distance adjustment between the separation manifold 210 and the first control valve 231 according to an embodiment of the present invention.
이하, 본 발명에 따른 실시예들은 첨부된 도면들을 참조하여 설명한다. 각 도면의 구성요소들에 참조 부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 실시예들을 설명할 것이나, 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있다. Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings. In adding reference numerals to elements of each drawing, it should be noted that the same elements are assigned the same numerals as possible even if they are indicated on different drawings. In addition, in describing an embodiment of the present invention, if it is determined that a detailed description of a related known configuration or function obstructs an understanding of the embodiment of the present invention, the detailed description thereof will be omitted. In addition, embodiments of the present invention will be described below, but the technical idea of the present invention is not limited thereto or is not limited thereto, and may be modified and variously implemented by those skilled in the art.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. Throughout the specification, when a part is said to be "connected" with another part, this includes not only "directly connected" but also "indirectly connected" with another element interposed therebetween. . Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated. In addition, in describing the constituent elements of the embodiment of the present invention, terms such as first, second, A, B, (a), (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
도 1은 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)의 개략적인 블록도이다. 도 1에 도시되는 바와 같이, 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)는 시료 채취부(100)와, 시료 분기/결합부(200)와, 전처리부(300)와, 가스측정부(400)와, 등속흡인제어부(500)와, 컨트롤러(600), 등으로 구성될 수 있다. 참고로, 도 1에 도시되는 엘리먼트(100, 200, 300, 400, 500, 600)는 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)의 동작, 기능, 등을 설명하기 위한 예시적인 엘리먼트에 해당하며, 그러므로 도 1에 도시되지 않은 추가의 엘리먼트(예를 들어, 전원부, 알람부, 모니터링부, 등)이 더 구비될 수 있음은 명백할 것이다.1 is a schematic block diagram of an apparatus 10 for continuously measuring fine dust of a chimney exhaust gas according to an embodiment of the present invention. As shown in Fig. 1, the apparatus 10 for continuous automatic measurement of fine dust of the flue gas according to an embodiment of the present invention includes a sample collection unit 100, a sample branch/combination unit 200, and a pretreatment unit. It may be composed of 300, a gas measurement unit 400, a constant velocity suction control unit 500, a controller 600, and the like. For reference, the elements 100, 200, 300, 400, 500, 600 shown in FIG. 1 are the operation, function, etc. of the continuous automatic measurement device 10 for fine dust of the flue gas according to an embodiment of the present invention. It will be apparent that it corresponds to an exemplary element for explaining, and therefore additional elements (eg, a power supply unit, an alarm unit, a monitoring unit, etc.) not shown in FIG. 1 may be further provided.
시료 채취부(100)의 적어도 일부 영역은 굴뚝(1) 내에 배치되어, 굴뚝(1) 내 배출가스 시료를 채취할 수 있다. 참고로, 미세먼지의 측정을 위해 배출가스 시료를 채취함에 있어 등속 흡인이 매우 중요한데, 왜냐하면 배출가스를 채취함에 있어 배출가스 유속보다 더 빠른 속도로 흡인하게 되면 주변의 미세입자를 우선 흡인하게 되어 결과치가 실제보다 더 낮은 농도로 나타나게 되고, 배출가스 유속보다 더 낮은 속도로 흡인하게 되면 관성력에 의해 큰 입자가 우선 흡인하게 되어 결과치가 실제보다 더 높은 농도로 측정되기 때문이다. 시료 채취부(100)에서의 이러한 등속흡인유량조건은 컨트롤러(600)로부터 출력되는 제어 신호(i520 및/또는 i530)에 따라 등속흡인제어부(500)에 의해 구현될 수 있으며, 이에 대해서는 이하에서 보다 상술하기로 한다. At least a portion of the sample collection unit 100 is disposed in the chimney 1 to collect a sample of exhaust gas in the chimney 1. For reference, in collecting exhaust gas samples for the measurement of fine dust, constant velocity suction is very important, because when the exhaust gas is sucked at a faster rate than the exhaust gas flow rate, the surrounding fine particles are first sucked. This is because when is shown at a lower concentration than the actual concentration, and when suction is performed at a lower velocity than the exhaust gas flow rate, large particles are first sucked by the inertial force, and the result is measured at a higher concentration than the actual value. This constant velocity suction flow condition in the sample collection unit 100 may be implemented by the constant velocity suction control unit 500 according to the control signals i 520 and/or i 530 output from the controller 600, and for this It will be described in more detail in the following.
참고로, 도 1에 도시되는 바와 같이 적어도 일부 영역이 굴뚝(1)의 내부에 배치되는 시료 채취부(100)와는 대조적으로, 나머지 엘리먼트들, 즉 시료 분기/결합부(200), 전처리부(300), 가스측정부(400), 등속흡인제어부(500), 컨트롤러(600), 등은 굴뚝(1)의 외부에 배치될 수 있다. 특히, 입경분리장치(221)가 구비되는 시료 분기/결합부(200)가 굴뚝(1) 외부에 배치됨으로써 미세먼지의 연속적인 측정을 가능하게 하는데, 이에 대해서는 이하에서 보다 상술하게 기술하기로 한다.For reference, as shown in FIG. 1, in contrast to the sample collection unit 100 in which at least a part of the area is disposed inside the chimney 1, the remaining elements, that is, the sample branch/combination unit 200, and the pretreatment unit ( 300), the gas measuring unit 400, the constant velocity suction control unit 500, the controller 600, and the like may be disposed outside the chimney 1. In particular, the sample branch/couple 200 provided with the particle diameter separation device 221 is disposed outside the chimney 1 to enable continuous measurement of fine dust, which will be described in more detail below. .
시료 분기/결합부(200)는 배출가스 시료의 진행 방향 일단에서 시료 채취부(100)로부터 채취된 배출가스 시료를 복수의 라인으로 분기하고, 그리고 배출가스 시료의 진행 방향 타단에서 복수의 라인으로부터의 배출가스 시료를 결합할 수 있다. 시료 분기/결합부(200)에는 구비되는 복수의 라인은, 적어도 측정라인(220, 이하의 도 2 참조)과 제어라인(230, 이하의 도 2 참조)을 포함할 수 있고, 제어라인(230)에 배치된 제1 제어밸브(231, 이하의 도 2 참조)의 개폐를 조절함으로써 측정라인(220)에 배치되는 입경분리장치(221, 이하의 도 2 참조)에 정속 유량(예를 들어, 16.67 ℓ/min, 등)이 공급될 수 있으며, 제1 제어밸브(231)의 개폐는 컨트롤러(600)에서 출력되는 제어 신호(i231)에 의해 구현될 수 있다. 시료 분기/결합부(200)의 동작, 기능, 등에 관한 보다 구체적인 설명은 이하에서 다시 기술하기로 한다. The sample branching/combining unit 200 divides the exhaust gas sample collected from the sample collection unit 100 at one end in the traveling direction of the exhaust gas sample into a plurality of lines, and from a plurality of lines at the other end in the traveling direction of the exhaust gas sample. The exhaust gas samples of can be combined. The plurality of lines provided in the sample branching/combining unit 200 may include at least a measurement line 220 (see FIG. 2 below) and a control line 230 (see FIG. 2 below), and the control line 230 ) By controlling the opening and closing of the first control valve 231 (refer to FIG. 2 below) disposed in the particle diameter separation device 221 (refer to FIG. 2 below) disposed in the measurement line 220. 16.67 ℓ/min, etc.) may be supplied, and opening and closing of the first control valve 231 may be implemented by a control signal i 231 output from the controller 600. A more detailed description of the operation, function, and the like of the specimen branch/coupler 200 will be described later.
전처리부(300)는 시료 분기/결합부(200)로부터 출력되는 배출가스에 포함된 수분을 제거하는 기능을 수행할 수 있고, 그에 따라 배출가스 진행 방향 후단에 배치된 가스측정부(400) 및 등속흡인제어부(500)를 보호할 수 있다. 전처리부(300)의 동작, 기능, 등에 관한 보다 구체적인 설명은 이하에서 다시 기술하기로 한다.The pretreatment unit 300 may perform a function of removing moisture contained in the exhaust gas output from the sample branch/combination unit 200, and accordingly, the gas measurement unit 400 disposed at the rear end of the exhaust gas progress direction It is possible to protect the constant velocity suction control unit 500. A more detailed description of the operation, function, and the like of the preprocessor 300 will be described later.
가스측정부(400)는 가스, 예를 들어 산소(O2), 이산화탄소(CO2), 등의 가스를 측정할 수 있다. 이를 위해, 가스측정부(400)는 산소 센서, 이산화탄소 센서 등을 포함할 수 있으며, 가스측정부(400)의 동작, 기능, 등에 관한 보다 구체적인 설명은 이하에서 다시 기술하기로 한다.The gas measuring unit 400 may measure a gas, for example, a gas such as oxygen (O 2 ), carbon dioxide (CO 2 ), and the like. To this end, the gas measurement unit 400 may include an oxygen sensor, a carbon dioxide sensor, and the like, and a more detailed description of the operation, function, and the like of the gas measurement unit 400 will be described again below.
등속흡인제어부(500)는 시료 채취부(100)에서의 등속유량흡인조건을 충족하도록 밸브의 개폐 및/또는 펌프의 압력을 제어할 수 있으며, 이는 컨트롤러(600)로부터 출력되는 제어 신호(i520 및/또는 i530)에 기초할 수 있다. 등속흡인제어부(500)의 동작, 기능, 등에 관한 보다 구체적인 설명은 이하에서 다시 기술하기로 한다. The constant velocity suction control unit 500 may control the opening and closing of the valve and/or the pressure of the pump to satisfy the constant velocity flow suction condition in the sample collection unit 100, which is a control signal output from the controller 600 (i 520 And/or i 530 ). A more detailed description of the operation, function, and the like of the constant velocity suction control unit 500 will be described again below.
컨트롤러(600)는 시료 채취부(100)에서의 등속흡인유량조건 및 입경분리장치(221)에서의 정속흡인유량조건이 충족될 수 있도록 시료 분기/결합부(200) 내의 제1 제어밸브(231) 개폐 제어(예를 들어, 제어 신호(i231)에 의해), 및 등속흡인제어부(500) 내의 밸브 개폐 제어 및/또는 펌프 압력 제어(예를 들어, 제어 신호(i520 및/또는 i530)에 의해)를 수행할 수 있다. 참고로, 컨트롤러(600)는 다양한 구현예에 따라 또는 실시예에 따라 마이크로컨트롤러(micro-controller), 프로세서(processor), 마이크로프로세서(micro-processor) 등의 다른 장치 타입으로도 구현될 수 있다. The controller 600 includes a first control valve 231 in the sample branch/coupler 200 so that the constant velocity suction flow condition in the sample collection unit 100 and the constant velocity suction flow condition in the particle size separation device 221 are satisfied. ) Open/close control (for example, by a control signal (i 231 )), and valve open/close control and/or pump pressure control in the constant velocity suction control unit 500 (for example, control signals (i 520 and/or i 530) ) By). For reference, the controller 600 may be implemented in other device types such as a micro-controller, a processor, or a micro-processor according to various embodiments or embodiments.
도 2는 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)의 세부 구성도이다. 도 1과 관련하여 이미 기술한 바와 같이, 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)는 적어도 일부 영역이 굴뚝(1)의 내부에 배치되는 시료 채취부(100)와 굴뚝(1)의 외부에 배치되는 시료 분기/결합부(200), 전처리부(300), 가스측정부(400), 등속흡인제어부(500), 컨트롤러(600)로 구성될 수 있다. 2 is a detailed configuration diagram of a continuous automatic measurement device 10 for fine dust of a chimney exhaust gas according to an embodiment of the present invention. As already described with reference to FIG. 1, the apparatus 10 for continuously measuring fine dust of flue gas according to an embodiment of the present invention includes at least a part of a sample collecting unit disposed inside the chimney 1 ( 100) and a sample branch/combination unit 200 disposed outside the chimney 1, a pretreatment unit 300, a gas measurement unit 400, a constant velocity suction control unit 500, and a controller 600. .
시료 채취부(100)는 굴뚝 내 배출가스 시료를 채취하도록 구성될 수 있고, 도 2에 도시되는 바와 같이 시료 채취부(100)는 흡인관(110)과, 피토관(120)과, 온도계(130)와, 가열 장치(140), 등으로 구성될 수 있다. The sample collection unit 100 may be configured to collect a sample of exhaust gas in the chimney, and as shown in FIG. 2, the sample collection unit 100 includes a suction tube 110, a Pitot tube 120, and a thermometer 130. Wow, it may be composed of a heating device 140, and the like.
참고로, 배출가스 내 미세먼지 등의 입자성 물질을 분석하고 측정하기 위해서는 굴뚝 등 배출 원점에서 배출가스를 채취하는 것이 바람직한데, 이는 굴뚝 내 배출가스의 미세먼지 밀도 조건이 미세먼지의 밀도가 균일한 일반 대기와는 매우 상이하기 때문이다. 따라서, 굴뚝 등 배출 원점에서 벗어난 배출가스는 일반 대기와 혼합되어 밀도가 낮아지므로 배출가스가 일반 대기와 혼합되기 이전에 굴뚝 등의 배출 원점에서 시료 채취를 수행하는 것이 바람직하다. For reference, in order to analyze and measure particulate matter such as fine dust in the exhaust gas, it is desirable to collect the exhaust gas from the discharge origin, such as a chimney.This is because the fine dust density condition of the exhaust gas in the chimney is uniform. This is because it is very different from a normal atmosphere. Therefore, since the exhaust gas that deviates from the emission origin such as the chimney is mixed with the general atmosphere and the density is lowered, it is preferable to perform sampling at the emission origin such as the chimney before the exhaust gas is mixed with the general atmosphere.
도 2에서는 굴뚝(1) 내 배출가스 유속을 측정하기 위한 엘리먼트로서 국내공정시험법의 기준에 부합하는 피토관(120; pitot tube)을 예시적으로 도시한다. 참고로, 피토관(120)은 흐르는 유체 내부에 설치되어 유체의 속도를 측정하도록 구성되는 장치로서, 피토관(120) 내/외부의 압력 차이가 유체 속도의 제곱과 비례하는 법칙, 즉 베르누이의 법칙(Bernoulli's equation)에 의거 유체의 속도를 구할 수 있다. In FIG. 2, as an element for measuring the exhaust gas flow rate in the chimney 1, a pitot tube 120 meeting the standards of the domestic process test method is illustrated as an example. For reference, the Pitot tube 120 is a device installed inside the flowing fluid and configured to measure the velocity of the fluid, and a law in which the pressure difference inside/outside the Pitot tube 120 is proportional to the square of the fluid velocity, that is, Bernoulli's law ( The velocity of the fluid can be obtained according to Bernoulli's equation.
본 발명의 다른 실시예에 따르면, 피토관(120)을 대체하여 굴뚝용 질량유량계(MFM; mass flow meter)을 활용하여 굴뚝(1) 내 배출가스 유속을 측정하는 것도 가능하다. According to another embodiment of the present invention, it is possible to measure the exhaust gas flow rate in the chimney 1 using a mass flow meter (MFM) for a chimney in place of the Pitot tube 120.
흡인관(110)은 그 일단에 굴뚝(1) 내 적어도 일부 영역에 배치되는 흡인 노즐(111)이 구비되고, 그 타단이 시료 분기/결합부(200)와, 보다 구체적으로는 분리매니폴드(210)와 결합되며, 흡인관(110)을 통해 굴뚝 내 배출가스 시료가 시료 분기/결합부(200)로 전달될 수 있다. 여기서, 흡인 노즐(111)의 단면적은 입경분리장치(221)에 필요한 정속 유량을 초과하는 유량으로 배출가스 시료를 흡인할 수 있도록 치수 설계되는 것을 특징으로 한다.The suction pipe 110 is provided with a suction nozzle 111 disposed in at least a portion of the chimney 1 at one end thereof, and the other end thereof is a sample branch/combination part 200 and, more specifically, a separation manifold 210 ) And the exhaust gas sample in the chimney may be delivered to the sample branch/coupler 200 through the suction pipe 110. Here, the cross-sectional area of the suction nozzle 111 is characterized in that it is dimensionally designed to suck the exhaust gas sample at a flow rate exceeding the constant flow rate required for the particle size separation device 221.
예를 들어, 굴뚝(1)의 설계 용량, 굴뚝(1)의 가동 정보(유량, 유속, 등), 등에 기초하여 입경분리장치(221)가 필요로 하는 정속 유량을 초과하는 유량으로 배출가스 시료를 등속 흡인할 수 있도록 흡인 노즐(111)의 단면적이 결정될 수 있고, 입경분리장치(221)가 PM10 임팩터(impactor, 221a) 및 PM2.5 임팩터(221b)로 구성되는 캐스케이드-임팩터(cascade impactor)로 구현되는 경우에 그러한 캐스케이드-임팩터에 필요한 정속 유량은 16.67 ℓ/min일 수 있다. For example, based on the design capacity of the chimney 1, operation information (flow rate, flow rate, etc.) of the chimney 1, the exhaust gas sample at a flow rate exceeding the constant flow rate required by the particle size separation device 221 The cross-sectional area of the suction nozzle 111 may be determined so that the suction nozzle 111 can be sucked at a constant velocity, and the particle diameter separation device 221 is a cascade impactor composed of a PM10 impactor 221a and a PM2.5 impactor 221b. In the case of implementation, the constant flow rate required for such a cascade-impacter may be 16.67 l/min.
참고로, 이하의 본 명세서에서는 PM10 임팩터(221a)와 PM2.5 임팩터(221b)가 직렬로 연결된 입경분리장치(221)를 기술하고 있지만, 본 발명의 다른 실시예에서는 입경분리장치(221)가 PM10 임팩터(221a)와 PM2.5 임팩터(221b) 중 어느 하나만을 구비할 수도 있거나, 또는 추가의 임팩터, 예를 들어 PM1.0 임팩터가 더 구비될 수도 있다.For reference, in the following specification, the particle size separation device 221 in which the PM10 impactor 221a and the PM2.5 impactor 221b are connected in series is described, but in another embodiment of the present invention, the particle size separation device 221 is Only one of the PM10 impactor 221a and the PM2.5 impactor 221b may be provided, or an additional impactor, for example, a PM1.0 impactor may be further provided.
따라서, 본 발명에 따르면 굴뚝(1)의 설계 용량 등에 기초하여 입경분리장치(221)가 필요로 하는 정속 유량을 초과하는 유량으로 배출가스 시료를 등속 흡인하도록 흡인 노즐(111)의 단면적이 결정될 수 있고, 그에 따라 분리매니폴드(210)에서의 분기 동작에 의해 입경분리장치(221)에는 입경 분리에 필요한 정속 유량이 안정적으로 공급될 수 있다. Therefore, according to the present invention, the cross-sectional area of the suction nozzle 111 can be determined to suck the exhaust gas sample at a constant velocity at a flow rate exceeding the constant velocity flow rate required by the particle size separation device 221 based on the design capacity of the chimney 1, etc. Accordingly, a constant flow rate required for particle size separation can be stably supplied to the particle size separation device 221 by a branching operation in the separation manifold 210.
예를 들어, 배출구 온도 120℃ ~ 180℃ 범위에서 배출구 유속이 5m/sec ~ 10 m/sec로 가동되는 발전소의 경우에 흡인 노즐의 구경을 10mm로 선정하면 등속흡인유량(참고로, 공정시험법에 따르면 95% 내지 110%의 허용범위)이 17.5 ℓ/min 내지 34 ℓ/min로 설정될 수 있고, 이러한 조건에서 배출구 유속을 8.5m/sec이고 배출 온도를 150℃로 하면 등속흡인유량이 29.2ℓ/min로 산출될 수 있다. 따라서, 배출구 유속 8.5m/sec, 배출 온도 150℃ 및 노즐 구경 10mm의 조건으로 시료 채취부(100)에서 29.2 ℓ/min의 등속흡인유량이 발생하면, 등속흡인제어부(500)의 제어에 따라 측정라인(220)에 16.67 ℓ/min의 정속흡인유량이 흐르게 하고 나머지는 제어라인(230)을 통해 바이패스되도록 하는 것을 특징으로 한다. 이에 대해서는 이하에서 다시 후술하기로 한다. For example, in the case of a power plant operating at an outlet flow rate of 5 m/sec to 10 m/sec in the range of 120°C to 180°C, if the diameter of the suction nozzle is selected as 10 mm, the constant velocity suction flow rate (for reference, process test method According to the permissible range of 95% to 110%) can be set to 17.5 ℓ/min to 34 ℓ/min, under these conditions, if the outlet flow rate is 8.5 m/sec and the discharge temperature is 150°C, the constant velocity suction flow rate is 29.2 It can be calculated as ℓ/min. Therefore, when a constant velocity suction flow of 29.2 L/min occurs in the sample collection unit 100 under the conditions of an outlet flow velocity of 8.5 m/sec, a discharge temperature of 150° C., and a nozzle diameter of 10 mm, the measurement according to the control of the constant velocity suction control unit 500 It is characterized in that the constant velocity suction flow rate of 16.67 L/min flows through the line 220 and the rest is bypassed through the control line 230. This will be described later again.
이와 관련하여, 경우에 따라 굴뚝 내 다양한 원인 등에 의해 제2 유량계(510)에 의해 측정되는 총 유량(QTotal)이 입경분리장치(221)에 필요한 정속 유량(예를 들어, 16.67 ℓ/min) 미만일 수 있다. 입경분리장치(221)에 필요한 정속유량조건을 충족하지 못하게 되면 입경분리장치(221)에 의한 입자 분리 및 측정이 사실상 무의미한 동작으로 간주될 수 있으므로, 제2 유량계(510)에 의해 측정되는 총 유량(QTotal)이 입경분리장치(221)에 필요한 정속 유량(예를 들어, 16.67 ℓ/min) 미만으로 하강하는 경우, 본 발명의 추가 실시예에 따르면 컨트롤러(600)는 알람 유닛(미도시)을 활성화함으로써 정속 유량 미만으로의 하강을 사용자 등에게 통지할 수 있거나, 또는 본 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)의 가동을 일시 중지할 수도 있다. 이러한 문제에 대처하기 위해서, 흡인 노즐(111)의 구경을 한 단계 더 크도록, 예를 들어 직경이 12mm인 흡인 노즐(111)로 교체하여 사용할 수도 있다.In this regard, in some cases, the total flow rate (Q Total ) measured by the second flow meter 510 due to various causes within the chimney is a constant flow rate required for the particle size separation device 221 (eg, 16.67 ℓ/min). May be less than. If the constant velocity flow condition required for the particle size separation device 221 is not satisfied, the particle separation and measurement by the particle size separation device 221 may be regarded as a virtually meaningless operation, so the total flow rate measured by the second flow meter 510 When (Q Total ) falls below a constant flow rate (for example, 16.67 ℓ/min) required for the particle size separation device 221, the controller 600 according to a further embodiment of the present invention is an alarm unit (not shown). By activating, it is possible to notify a user or the like of a drop below the constant flow rate, or the operation of the continuous automatic measurement device 10 for fine dust of the present flue gas may be temporarily suspended. In order to cope with this problem, the diameter of the suction nozzle 111 may be increased by one level, for example, a suction nozzle 111 having a diameter of 12 mm may be replaced and used.
가열 장치(140)는 흡인관(110) 외주면의 적어도 일부 영역을 감싸면서 구현될 수 있고, 배출가스 시료의 이송 중 수분의 응축을 방지하기 위해 열 공급원(미도시)으로부터의 열을 흡인관(110) 내의 배출가스 시료에 전달할 수 있다.The heating device 140 may be implemented while surrounding at least a portion of the outer circumferential surface of the suction pipe 110, and to prevent condensation of moisture during the transport of the exhaust gas sample, heat from a heat source (not shown) is absorbed by the suction pipe 110. Can be delivered to the sample of exhaust gas inside.
또한, 흡인관(110)의 길이 방향을 따라 적어도 일부 영역에, 보다 바람직하게는 굴뚝(1)의 내부 영역 및 외부 영역의 경계면 부근에 온도계(130)가 추가로 배치될 수 있으며, 온도계(130)는 흡인관(110)의 온도를 측정하여 다른 엘리먼트에, 예를 들어 컨트롤러(600)에 측정된 온도에 관한 값을 무선으로 또는 유선으로 송신할 수 있다.In addition, a thermometer 130 may be additionally disposed in at least a partial region along the longitudinal direction of the suction pipe 110, more preferably near the boundary between the inner region and the outer region of the chimney 1, and the thermometer 130 May measure the temperature of the suction pipe 110 and transmit the measured temperature value to another element, for example, to the controller 600 wirelessly or by wire.
이와 관련하여, 본 발명의 일 실시예에 따른 시료 채취부(100)는, 보다 구체적으로 흡인 노즐(111)을 통해 배출가스의 유속과 동일하게 등속 유량으로 배출가스 시료를 흡인함으로써 미세먼지 측정의 오차를 최소화할 수 있고, 여기서의 등속 유량은 입경분리장치(221)에 필요한 정속 유량을 초과하는 유량을 공급하며, 흡인 노즐(111)에서의 등속흡인유량조건은 등속흡인제어부(500)에 구비되는 제2 제어밸브(520)의 개폐 및/또는 흡인 펌프(530)의 압력 제어에 의해 구현될 수 있으며, 이는 컨트롤러(600)로부터 출력되는 제어 신호(i520 및/또는 i530)에 기초할 수 있다.In this regard, the sample collection unit 100 according to an embodiment of the present invention is more specifically configured to measure fine dust by sucking the exhaust gas sample at a constant flow rate equal to the flow rate of the exhaust gas through the suction nozzle 111. The error can be minimized, and the constant velocity flow rate here supplies a flow rate exceeding the constant velocity flow rate required for the particle size separation device 221, and the constant velocity suction flow rate condition in the suction nozzle 111 is provided in the constant velocity suction control unit 500 It may be implemented by opening and closing of the second control valve 520 and/or controlling the pressure of the suction pump 530, which is based on the control signals i 520 and/or i 530 output from the controller 600. I can.
예를 들어, 등속흡인제어부(500)에 구비된 제2 유량계(510)에 의해 측정되는 유량(QTotal)에 기초하여, 등속흡인제어부(500)에 구비된 흡인펌프(530)가 일정한 파워를 출력하면서 제2 제어밸브(520)의 개폐를 제어함으로써, 또는 등속흡인제어부(500)에 구비된 흡인펌프(530) 자체의 파워를 조절함으로써(이 경우, 제2 제어밸브(520)는 생략될 수 있음) 시료 채취부(100)에서의 등속 유량 채취를 구현할 수 있다. 추가로, 본 발명의 추가 실시예에 따르면, 시료 채취부(100)에서의 등속 유량 채취를 구현하기 위해서, 등속흡인제어부(500)에 구비된 제2 유량계(510)에 의해 측정되는 유량(QTotal)에 기초하여 제2 제어밸브(520)의 개폐를 조절할 뿐만 아니라 동시에 펌프의 압력을 조절하는 방식을 활용할 수도 있다. For example, based on the flow rate (Q Total ) measured by the second flow meter 510 provided in the constant velocity suction control unit 500, the suction pump 530 provided in the constant velocity suction control unit 500 generates a constant power. By controlling the opening and closing of the second control valve 520 while outputting, or by adjusting the power of the suction pump 530 itself provided in the constant velocity suction control unit 500 (in this case, the second control valve 520 will be omitted. May) It is possible to implement a constant velocity flow rate collection in the sample collection unit 100. In addition, according to a further embodiment of the present invention, in order to implement a constant velocity flow rate collection in the sample collection unit 100, the flow rate Q measured by the second flow meter 510 provided in the constant velocity suction control unit 500 Total ), as well as controlling the opening and closing of the second control valve 520, a method of simultaneously controlling the pressure of the pump may be used.
상술한 바와 같이 시료 채취부(100)에 의해 시료 채취의 단계에서 배출가스 시료가 등속 유량으로 흡인되면, 그렇게 흡인된 배출가스 시료는 흡인관(110)을 통해 시료 분기/결합부(200)로 전달될 수 있다. 보다 구체적으로, 시료 분기/결합부(200)는 배출가스 시료의 진행 방향 일단에서 시료 채취부(100)로부터 재취된 배출가스 시료를 복수의 라인으로 분기하고 그리고 배출가스 시료의 진행 방향 타단에서 복수의 라인으로부터의 배출가스 시료를 결합하도록 구성될 수 있다. 참고로, 본 발명의 보다 용이한 이해를 보조하기 위해, 이하의 본 명세서에서 시료 분기/결합부(200)에 구현되는 복수의 라인으로서 측정라인(220)과 제어라인(230)을 예시적으로 기술하고 있지만, 다양한 실시예 또는 구현예에 따라 복수 라인을 구성하는 라인의 개수는 상이할 수 있다.As described above, when the exhaust gas sample is sucked at a constant flow rate in the sample collection step by the sample collection unit 100, the exhaust gas sample thus sucked is transferred to the sample branch/combination unit 200 through the suction pipe 110. Can be. More specifically, the sample branching/combining unit 200 diverges the exhaust gas sample retaken from the sample collection unit 100 at one end in the traveling direction of the exhaust gas sample into a plurality of lines, and a plurality of the exhaust gas samples at the other end in the traveling direction of the exhaust gas sample It can be configured to combine the sample of exhaust gas from the line of. For reference, in order to aid in an easier understanding of the present invention, the measurement line 220 and the control line 230 are exemplary as a plurality of lines implemented in the sample branch/combination unit 200 in the following specification. Although described, the number of lines constituting a plurality of lines may be different according to various embodiments or implementations.
도 2에 도시되는 바와 같이, 본 발명의 일 실시예에 따른 시료 분기/결합부(200)의 복수의 라인은, 적어도 일 영역에 입경분리장치(221)가 구비되는 측정라인(220)과, 적어도 일 영역에 제1 제어밸브(231)가 구비되는 제어라인(230)을 포함할 수 있고, 상기 시료 분기/결합부(200)는 시료 채취부(100)로부터 채취된 배출가스 시료를 측정라인(220) 및 제어라인(230)으로 분기하는 분리매니폴드(210)를 더 포함할 수 있다.As shown in FIG. 2, the plurality of lines of the sample branching/combining unit 200 according to an embodiment of the present invention include a measurement line 220 having a particle size separation device 221 in at least one area, It may include a control line 230 in which the first control valve 231 is provided in at least one area, and the sample branching/combining unit 200 is a measurement line for measuring the exhaust gas sample collected from the sample collecting unit 100. It may further include a separation manifold 210 branching to 220 and the control line 230.
여기서, 측정라인(220)에는 입경분리장치(221), 미세먼지 측정센서(222), 제1 유량계(223), 등의 여러 장치가 부착되는 반면, 제어라인(230)에는 단지 제1 제어밸브(231)만이 구비되고, 그에 따라 측정라인(220)에서의 압력 손실이 제어라인(230)에서의 압력 손실보다 더 클 수 있다. 따라서, 동일한 힘이라면 압력 손실이 더 적은 제어라인(230)으로 유체의 이송이 더 클 수 있다. 이러한 측정라인(220) 및 제어라인(230)의 압력 손실 차이에 따라, 도 2에서는 제1 제어밸브(231)가 분리매니폴드(210)와 소정의 거리로 이격 배치된 구성을 예시적으로 도시한다.Here, a number of devices such as a particle size separation device 221, a fine dust measurement sensor 222, a first flow meter 223, and the like are attached to the measurement line 220, whereas only a first control valve is attached to the control line 230. Only 231 is provided, and accordingly, the pressure loss in the measurement line 220 may be greater than the pressure loss in the control line 230. Accordingly, if the force is the same, the transfer of the fluid to the control line 230 having less pressure loss may be greater. According to the difference in pressure loss between the measurement line 220 and the control line 230, FIG. 2 exemplarily shows a configuration in which the first control valve 231 is spaced apart from the separation manifold 210 by a predetermined distance. do.
이와 관련하여, 본 발명의 일 실시예에 따르면, 측정라인(220)에서의 압력 손실 및 제어라인(230)에서의 압력 손실에 기초하여, 분리매니폴드(210)와 제1 제어밸브(231) 사이의 거리가 조절 가능한 것을 특징으로 하는데, 도 4는 본 발명의 일 실시예에 따른 분리매니폴드(210)와 제1 제어밸브(231) 사이의 가변적 거리 조정을 설명하기 위한 개념도에 해당한다. In this regard, according to an embodiment of the present invention, based on the pressure loss in the measurement line 220 and the pressure loss in the control line 230, the separation manifold 210 and the first control valve 231 It is characterized in that the distance between them is adjustable, and FIG. 4 corresponds to a conceptual diagram for explaining the variable distance adjustment between the separation manifold 210 and the first control valve 231 according to an embodiment of the present invention.
본 발명의 일 실시예에 따르면, 측정라인(220)에서의 실제 압력 손실 및/또는 제어라인(230)에서의 실제 압력 손실에 기초하여, 보다 바람직하게는 압력 손실의 차이에 기초하여 분리매니폴드(210)와 제1 제어밸브(231) 사이의 거리가 조절 가능할 수 있는데, 도 4의 (a)는 제1 제어밸브(231)가 분리매니폴드(210)와 결합매니폴드(240)의 대략 중간 영역에 배치되는 구성을 예시적으로 도시하고, 도 4의 (b)는 제1 제어밸브(231)가 분리매니폴드(210) 측에 근접 배치되는 구성을 예시적으로 도시하고, 도 4의 (c)는 제1 제어밸브(231)가 분리매니폴드(210)와 원위 배치되는 구성을 예시적으로 도시한다.According to an embodiment of the present invention, the separation manifold is based on the actual pressure loss in the measurement line 220 and/or the actual pressure loss in the control line 230, more preferably based on the difference in pressure loss. The distance between the 210 and the first control valve 231 may be adjustable, and in (a) of FIG. 4, the first control valve 231 is approximately equal to the separation manifold 210 and the coupling manifold 240. An example of a configuration disposed in the middle region is shown, and (b) of FIG. 4 exemplarily shows a configuration in which the first control valve 231 is disposed close to the separation manifold 210 side. (c) exemplarily shows a configuration in which the first control valve 231 is disposed distal to the separation manifold 210.
측정라인(220)에서의 압력 손실 및/또는 제어라인(230)에서의 압력 손실에 기초하여 분리매니폴드(210)와 제1 제어밸브(231) 사이의 거리를 가변적으로 조정하는 도 4의 실시예에 추가적으로 또는 대체적으로, 본 발명의 다른 실시예에 따르면 측정라인(220)에서의 압력 손실 및/또는 제어라인(230)에서의 압력 손실에 기초하여 측정라인(220)의 유입부 내경을 제어라인(230)의 유입부 내경과 상이하게 구현할 수도 있고, 또는 내부에 오리피스(orifice)를 설치할 수 있다.Implementation of FIG. 4 in which the distance between the separation manifold 210 and the first control valve 231 is variably adjusted based on the pressure loss in the measurement line 220 and/or the pressure loss in the control line 230 In addition to or alternatively to the example, according to another embodiment of the present invention, the inlet inner diameter of the measurement line 220 is controlled based on the pressure loss in the measurement line 220 and/or the pressure loss in the control line 230. It may be implemented differently from the inner diameter of the inlet portion of the line 230, or an orifice may be installed therein.
측정라인(220)은 미세먼지의 분리 및 측정을 위한 라인(또는 경로)으로서, 입경분리장치(221)와, 미세먼지 측정센서(222)와, 제1 유량계(223), 등으로 구성될 수 있다.The measurement line 220 is a line (or path) for separating and measuring fine dust, and may be composed of a particle size separation device 221, a fine dust measurement sensor 222, a first flow meter 223, and the like. have.
입경분리장치(221)는 측정하고자 하는 입자성 물질에 따라 적절하게 선택될 수 있고, 예를 들어 미세먼지를 측정하는 경우 입경분리장치(221)로서 입자의 관성력을 이용하는 임팩터(impactor)와 입자의 원심력을 이용하는 사이클론(cyclone)이 활용될 수 있다. 또한, 측정하고자 하는 입경의 크기에 따라 PM10, PM2.5 등의 선택이 가능하며, 이하의 본 명세서에서는 본 발명의 용이한 이해를 위해서 입경분리장치(221)가 PM10 임팩터(221a) 및 PM2.5 임팩터(221b)로 구성되는 캐스케이드-임팩터로 구현되는 예를 기술하기로 한다. The particle size separation device 221 may be appropriately selected according to the particulate matter to be measured. For example, when measuring fine dust, the particle size separation device 221 uses the inertial force of the particles and A cyclone using centrifugal force can be used. In addition, it is possible to select PM10, PM2.5, etc. according to the size of the particle diameter to be measured, and in the following specification, the particle diameter separation device 221 is a PM10 impactor (221a) and PM2. An example implemented as a cascade-impacter composed of 5 impactors 221b will be described.
참고로, 임팩터는 입자의 관성충돌법칙을 활용하여 유체흐름방향을 급격하게 변화시킬 경우 무거운 입자는 중력과 관성력에 의해 직진성을 갖고 포집관에 출동하여 포집됨에 반해 가벼운 입자는 유체와 함께 진행하는 원리를 이용하므로 유체의 인입 속도, 장치 구조, 치수 설계, 등이 매우 중요하다. For reference, the impactor uses the law of inertial collision of particles to rapidly change the direction of fluid flow, the principle that heavy particles go straight to the collection tube and are collected by gravity and inertial force, whereas light particles proceed with the fluid. Because of the use of the fluid inlet speed, device structure, dimensional design, etc. are very important.
미세먼지 측정센서(222)는 미세먼지를 측정하기 위한 장치로서, 예를 들어 중량법을 위한 필터, 베타레이(Beta-ray) 센서, 광산란 센서 등이 적용될 수 있다. The fine dust measuring sensor 222 is a device for measuring fine dust, and, for example, a filter for a gravimetric method, a beta-ray sensor, a light scattering sensor, and the like may be applied.
제1 유량계(223)는 측정라인(220)에서의 유량을 측정하기 위한 장치로서, 예를 들어 질량유량계(MFM; mass flow meter)를 활용할 수 있다. 참고로, 질량(mass)은 다른 물리량으로부터 측정의 단위가 유도되지 않는 측정의 기준으로서 길이, 시간, 등의 단위와 함께 모든 물리적 측정의 기초를 이루며, 질량유량계는 이러한 불변성의 질량을 측정함으로써 복잡한 계산이 없고 유체 성질에 대한 보정이 없이 직선적이라는 장점이 있다. The first flow meter 223 is a device for measuring the flow rate in the measurement line 220, for example, a mass flow meter (MFM) may be used. For reference, mass is a standard for measurement in which the unit of measurement is not derived from other physical quantities, and forms the basis of all physical measurements along with units such as length, time, etc., and mass flowmeters measure the mass of such an invariant. It has the advantage of being linear without calculation and no correction for fluid properties.
또한, 질량유량계는 유체의 체적(volume) 유량이 아닌 질량(mass) 유량을 측정하는 방식의 유량계로서, 크게 질량 유량에 비례하는 양을 검출하는 방식의 직접형 질량 유량계와, 체적 유량계 및 밀도계를 조합하여 질량 유량을 측정하는 방식의 간접형 질량 유량계로 구분될 수 있다. 예를 들어, 직접형 질량 유량계에는 열식 질량 유량계, 차압식 질량 유량계, 코리올리 질량 유량계, 각운동량식 질량 유량계, 자이로식 질량 유량계, 터빈 질량 유량계, 등이 있다.In addition, the mass flow meter is a flow meter that measures the mass flow rate rather than the volume flow rate of a fluid. A direct mass flow meter, a volume flow meter, and a density meter that detects an amount largely proportional to the mass flow rate. It can be classified as an indirect mass flow meter that measures mass flow by combining it. For example, direct mass flow meters include thermal mass flow meters, differential pressure mass flow meters, Coriolis mass flow meters, angular momentum mass flow meters, gyro mass flow meters, turbine mass flow meters, and the like.
또한, 본 발명의 일 실시예에 따른 질량유량계는 디지털 모드 또는 아날로그 모드로 동작하도록 구현될 수 있고, 디지털 모드와 아날로그 모드 사이에서 동작 모드가 전환될 수 있으며, 그러한 동작 모드의 전환은 컨트롤러(600)에 의해 구현될 수 있다. In addition, the mass flowmeter according to an embodiment of the present invention may be implemented to operate in a digital mode or an analog mode, and an operation mode may be switched between a digital mode and an analog mode, and the switching of such an operation mode is performed by the controller 600 ) Can be implemented by
본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)는 입경분리장치(221)에 정속 유량이 공급되도록 구현하는 것을 특징으로 하는데, 그에 따라 입경분리장치(221)가 캐스케이드-임팩터인 경우 제1 유량계(223)에는 항상 정속 유량으로서 16.67 ℓ/min의 값이 검출되는 것이 바람직하며, 제1 유량계(223)의 유량 값이 16.67 ℓ/min을 초과하거나 미만인 경우 제어라인(230)에 구비된 제1 제어밸브(231)의 개폐 제어에 의해 제1 유량계(223)의 유량 값을 16.67 ℓ/min 보정할 수 있으며, 컨트롤러(600)에 의해 구현되는 이러한 보정/제어 작업에 대해서는 이하의 도 3을 통해 보다 구체적으로 기술하기로 한다.The device 10 for continuous automatic measurement of fine dust of the flue gas according to an embodiment of the present invention is characterized in that a constant flow rate is supplied to the particle size separation device 221, whereby the particle size separation device 221 In case of a cascade-impacter, it is preferable that the first flow meter 223 always detects a value of 16.67 L/min as a constant speed flow rate, and when the flow rate value of the first flow meter 223 exceeds or falls below 16.67 L/min, the control line By controlling the opening and closing of the first control valve 231 provided in 230, the flow rate value of the first flow meter 223 can be corrected by 16.67 ℓ/min, and this correction/control operation implemented by the controller 600 It will be described in more detail with reference to FIG. 3 below.
제어라인(230)은 시료 분기/결합부(200)에 구비되는 복수의 라인에서 측정라인(220)을 제외한 나머지 라인에 해당하며, 도 2에서는 제어라인(230)으로서 하나의 라인을 예시적으로 도시하고 있지만 본 발명의 추가 실시예에 따르면 제어라인(230)이 복수의 라인(예를 들어, 2개 라인, 3개 라인, 등)으로 구현될 수도 있다.The control line 230 corresponds to the remaining lines excluding the measurement line 220 from the plurality of lines provided in the sample branch/combination unit 200, and in FIG. 2, one line is illustratively used as the control line 230. Although shown, according to a further embodiment of the present invention, the control line 230 may be implemented as a plurality of lines (eg, two lines, three lines, etc.).
제어라인(230)에는 제1 제어밸브(231)가 구비될 수 있고, 상기 제1 제어밸브(231)와 분리매니폴드(210) 사이의 거리가 측정라인(220)에서의 압력 손실 및/또는 제어라인(230)에서의 압력 손실에 기초하여 가변적으로 조정 가능하다는 것은 이미 기술한 바와 같다. 또한, 제어라인(230)에 구비되는 제1 제어밸브(231)의 개폐를 조절함으로써 측정라인(220)에 구비된 입경분리장치(221)의 정속유량조건을 충족시킬 수 있으며, 제1 제어밸브(231)의 개폐 조절 제어는 컨트롤러(600)로부터 출력되는 제어 신호(i231)에 의해 가능할 수 있다. The control line 230 may be provided with a first control valve 231, and the distance between the first control valve 231 and the separation manifold 210 is a pressure loss in the measurement line 220 and/or It is already described that it is variably adjustable based on the pressure loss in the control line 230. In addition, by controlling the opening and closing of the first control valve 231 provided in the control line 230, the constant speed flow rate condition of the particle size separation device 221 provided in the measurement line 220 can be satisfied, and the first control valve The opening and closing control control of the 231 may be possible by a control signal i 231 output from the controller 600.
도 3은 본 발명의 일 실시예에 따른 제1 제어밸브(231)의 개폐 동작에 의해 측정라인(220)의 정속 유량을 구현하는 실시예를 설명하기 위한 개념도이다. 입경분리장치(221)가 캐스케이드-임팩터인 경우에 입경분리장치(221)에 필요한 정속 유량은 16.67 ℓ/min이고 미세먼지의 정확한 검출 및 측정을 위해서는 입경분리장치(221)에서의 정속 유량 조건(16.67 ℓ/min)이 반드시 준수되어야만 한다.3 is a conceptual diagram for explaining an embodiment of implementing a constant flow rate of the measurement line 220 by the opening and closing operation of the first control valve 231 according to an embodiment of the present invention. When the particle size separation device 221 is a cascade-impacter, the constant flow rate required for the particle size separation device 221 is 16.67 ℓ/min, and for accurate detection and measurement of fine dust, the constant flow rate condition in the particle size separation device 221 ( 16.67 ℓ/min) must be observed.
도 3의 (a)에 예시되는 바와 같이, 등속흡인제어부(500)에 구비된 제2 유량계(510)에 의해서 합산 유량(QTotal)이 20 ℓ/min로 측정되고, 측정라인(220)에 구비된 제1 유량계(223)에 의해서 입경분리장치(221)의 유량이 15 ℓ/min로 측정되는 경우에, 컨트롤러(60)는 제어라인(230)에 5 ℓ/min의 유량이 있다고 판단할 수 있다.As illustrated in (a) of FIG. 3, the summation flow rate (Q Total ) is measured at 20 ℓ/min by the second flow meter 510 provided in the constant velocity suction control unit 500, and the measurement line 220 When the flow rate of the particle size separation device 221 is measured as 15 L/min by the provided first flow meter 223, the controller 60 determines that there is a flow rate of 5 L/min in the control line 230. I can.
따라서, 캐스케이드-임팩터로 구현되는 입경분리장치(221)에 16.67 ℓ/min의 정속유량조건을 충족시키기 위해서, 컨트롤러(600)는 제어라인(230)의 5 ℓ/min 유량에서 1.67 ℓ/min를 감소시키고 측정라인(220)의 15 ℓ/min 유량에서 1.67 ℓ/min를 증가시키기 위해서 제1 제어밸브(231)를 더 폐쇄하도록 제어할 수 있다.Therefore, in order to meet the constant flow rate condition of 16.67 L/min in the particle size separation device 221 implemented as a cascade-impacter, the controller 600 controls 1.67 L/min at the 5 L/min flow rate of the control line 230. In order to decrease and increase 1.67 L/min at the 15 L/min flow rate of the measurement line 220, the first control valve 231 may be further closed.
유사하게, 도 3의 (b)에 예시되는 바와 같이, 등속흡인제어부(500)에 구비된 제2 유량계(510)에 의해서 합산 유량(QTotal)이 20 ℓ/min로 측정되고, 측정라인(220)에 구비된 제1 유량계(223)에 의해서 입경분리장치(221)의 유량이 18 ℓ/min로 측정되는 경우에, 컨트롤러(60)는 제어라인(230)에 2 ℓ/min의 유량이 있다고 판단할 수 있다.Similarly, as illustrated in (b) of FIG. 3, the summation flow rate (Q Total ) is measured as 20 ℓ/min by the second flow meter 510 provided in the constant velocity suction control unit 500, and the measurement line ( When the flow rate of the particle size separation device 221 is measured as 18 L/min by the first flow meter 223 provided in 220), the controller 60 has a flow rate of 2 L/min in the control line 230 You can judge that there is.
따라서, 캐스케이드-임팩터로 구현되는 입경분리장치(221)에 16.67 ℓ/min의 정속유량조건을 충족시키기 위해서, 컨트롤러(600)는 제어라인(230)의 2 ℓ/min 유량에서 1.33 ℓ/min를 증가시키고 측정라인(220)의 18 ℓ/min 유량에서 1.33 ℓ/min를 감소시키기 위해서 제1 제어밸브(231)를 더 개방하도록 제어할 수 있다.Therefore, in order to meet the constant flow rate condition of 16.67 L/min in the particle size separation device 221 implemented as a cascade-impacter, the controller 600 controls 1.33 L/min at the 2 L/min flow rate of the control line 230. In order to increase and decrease 1.33 L/min at the flow rate of 18 L/min of the measurement line 220, the first control valve 231 may be controlled to be further opened.
정리하면, 본 발명의 일 실시예에 따른 컨트롤러(600)는 제1 유량계(223) 및 제2 유량계(510)에 의해서 측정되는 유량(즉, Q220, QTotal)에 기초하여 제1 유량계(223)에 의해 측정되는 유량이 입경분리장치(221)에 필요한 정속 유량(예를 들어, 16.67 ℓ/min)에 대응하도록 제1 제어밸브(231)의 개폐를 제어할 수 있다. In summary, the controller 600 according to an embodiment of the present invention is based on the flow rate measured by the first flow meter 223 and the second flow meter 510 (ie, Q 220 , Q Total ), the first flow meter ( Opening and closing of the first control valve 231 may be controlled so that the flow rate measured by 223 corresponds to a constant speed flow rate (eg, 16.67 L/min) required for the particle size separation device 221.
보다 구체적으로, 컨트롤러(600)는 제1 유량계(223)에 의해 측정되는 유량이 입경분리장치(221)에 필요한 정속 유량을 초과하는 경우 제1 제어밸브(231)를 개방하고, 그리고 제1 유량계(223)에 의해 측정되는 유량이 입경분리장치(221)에 필요한 정속 유량 미만인 경우 제1 제어밸브(231)를 폐쇄하도록 구성될 수 있다.More specifically, the controller 600 opens the first control valve 231 when the flow rate measured by the first flow meter 223 exceeds the constant speed flow rate required for the particle size separation device 221, and the first flow meter When the flow rate measured by 223 is less than the constant speed flow rate required for the particle size separation device 221, the first control valve 231 may be closed.
참고로, 상기한 바와 같은 복수의 라인의 유량 분기 및 조정을 수행함에 있어서, 측정라인(220) 및/또는 제어라인(230)의 압력 손실을 추가로 고려하는 것 또한 중요하며, 예를 들어 측정라인(220)에서의 압력 손실 및/또는 제어라인(230)에서의 압력 손실에 기초하여 분리매니폴드(210)와 제1 제어밸브(231) 사이의 거리를 가변적으로 조정 가능한 구성은 이미 설명한 바와 같다.For reference, in performing the flow rate branching and adjustment of a plurality of lines as described above, it is also important to additionally consider the pressure loss of the measurement line 220 and/or the control line 230, for example, measurement The configuration in which the distance between the separation manifold 210 and the first control valve 231 can be variably adjusted based on the pressure loss in the line 220 and/or the pressure loss in the control line 230 has already been described. same.
결합매니폴드(240)는 측정라인(220) 및 제어라인(230)으로부터의 시료 유량을 결합하여 후단의 전처리부(300), 가스측정부(400), 등속흡인제어부(500) 등으로 전달하도록 구성될 수 있다.The coupling manifold 240 combines the sample flow rate from the measurement line 220 and the control line 230 and transmits it to the pretreatment unit 300, the gas measurement unit 400, the constant velocity suction control unit 500, etc. Can be configured.
전처리부(300)는 냉각기(310)와 배출펌프(320)로 구성될 수 있다. 전처리부(300)는 가스측정부(400) 및/또는 등속흡인제어부(500)에서의 정상적인 측정 및/또는 제어 동작을 위한 전처리를 수행할 수 있으며, 예를 들어 전처리부(300)는 수분 제거를 구현할 수 있다.The pretreatment unit 300 may be composed of a cooler 310 and a discharge pump 320. The pretreatment unit 300 may perform pretreatment for normal measurement and/or control operation in the gas measurement unit 400 and/or the constant velocity suction control unit 500. For example, the pretreatment unit 300 removes moisture Can be implemented.
예를 들어, 가스측정부(400)에서 배출가스 성분을 측정하기 위해서 가스 센서를 사용하는데, 일반적으로 가스 센서는 수분에 매우 큰 영향을 받는다. 따라서, 수분에 의한 가스 센서의 측정 오차 및 고장을 감소시키기 위해서 전처리부(300)는 결합매니폴드(240)를 통해 출력되는 배출가스의 수분을 제거할 수 있다. 수분이 다수 함유된 배출가스가 냉각기(310)를 통과하면 수분이 응축되면서 물로 변환되고, 변환된 물은 배출펌프(320)를 통해 외부로 배출됨으로써 배출가스로부터 수분이 제거될 수 있다. For example, a gas sensor is used to measure an exhaust gas component in the gas measurement unit 400, and in general, the gas sensor is greatly affected by moisture. Accordingly, in order to reduce measurement errors and failures of the gas sensor due to moisture, the pretreatment unit 300 may remove moisture from the exhaust gas output through the coupling manifold 240. When the exhaust gas containing a large number of moisture passes through the cooler 310, moisture is condensed and converted into water, and the converted water is discharged to the outside through the discharge pump 320, thereby removing moisture from the exhaust gas.
가스측정부(400)는 다양한 종류의 가스 센서를 구비할 수 있으며, 본 명세서에서는 등속 흡인 유량의 계산과 관련하여 공기 밀도 보정을 위해 산소 센서(410)와 이산화탄소 센서(420)를 예시적으로 기술하기로 한다. 산소 센서(410)의 경우 배출가스 내의 산소를 측정하기 위한 장치에 해당하고, 이산화탄소 센서(420)의 경우 배출가스 내의 이산화탄소를 측정하기 위한 장치에 해당한다. 참고로, 가스측정부(400)의 전단에서 전처리부(300)에 의해서 수분 제거가 수행되므로, 산소 센서(410), 이산화탄소 센서(420) 등의 센서는 대상 가스의 수분이 제거될지라도 제거 이전과 측정 오차가 발생하지 않는 가스의 특성에 부합하는 센서 장치로서 구현될 수 있다. The gas measurement unit 400 may include various types of gas sensors, and in this specification, the oxygen sensor 410 and the carbon dioxide sensor 420 are exemplarily described to correct air density in relation to the calculation of the constant velocity suction flow rate. I will do it. The oxygen sensor 410 corresponds to a device for measuring oxygen in the exhaust gas, and the carbon dioxide sensor 420 corresponds to a device for measuring carbon dioxide in the exhaust gas. For reference, since moisture is removed by the pretreatment unit 300 at the front end of the gas measurement unit 400, sensors such as the oxygen sensor 410 and the carbon dioxide sensor 420 may be removed even if the moisture of the target gas is removed. It can be implemented as a sensor device that conforms to the characteristics of a gas that does not cause overmeasurement errors.
등속흡인제어부(500)는 시료 채취부(100)에서의 등속유량조건을 충족시키기 위해서 제2 제어밸브(520) 및/또는 흡인펌프(530)의 동작을 제어할 수 있다. 예를 들어, 등속흡인제어부(500)에 구비된 제2 유량계(510)에 의해 측정되는 유량(QTotal)에 기초하여, 등속흡인제어부(500)에 구비된 흡인펌프(530)가 일정한 파워를 출력하면서 제2 제어밸브(520)의 개폐를 제어함으로써, 또는 등속흡인제어부(500)에 구비된 흡인펌프(530) 자체의 파워를 조절함으로써(이 경우, 제2 제어밸브(520)는 생략될 수 있음) 시료 채취부(100)에서의 등속 유량 채취를 구현할 수 있다. 추가로, 본 발명의 추가 실시예에 따르면, 시료 채취부(100)에서의 등속 유량을 구현하기 위해서, 등속흡인제어부(500)에 구비된 제2 유량계(510)에 의해 측정되는 유량(QTotal)에 기초하여 제2 제어밸브(520)의 개폐를 조절하는 동시에 펌프의 압력을 조절하는 방식을 활용할 수도 있다. The constant velocity suction control unit 500 may control the operation of the second control valve 520 and/or the suction pump 530 in order to satisfy the constant velocity flow rate condition in the sample collection unit 100. For example, based on the flow rate (Q Total ) measured by the second flow meter 510 provided in the constant velocity suction control unit 500, the suction pump 530 provided in the constant velocity suction control unit 500 generates a constant power. By controlling the opening and closing of the second control valve 520 while outputting, or by adjusting the power of the suction pump 530 itself provided in the constant velocity suction control unit 500 (in this case, the second control valve 520 will be omitted. May) It is possible to implement a constant velocity flow rate collection in the sample collection unit 100. In addition, according to a further embodiment of the present invention, in order to implement the constant velocity flow rate in the sample collection unit 100, the flow rate measured by the second flow meter 510 provided in the constant velocity suction control unit 500 (Q Total ) Based on the method of controlling the opening and closing of the second control valve 520 and simultaneously controlling the pressure of the pump.
여기서, 제2 유량계(510)는 질량유량계일 수 있고, 또는 전처리부(300)에서 가스의 수분이 제거되므로 상대적으로 가격이 저렴한 건식유량계가 대체적으로 활용될 수도 있다.Here, the second flow meter 510 may be a mass flow meter, or a dry flow meter, which is relatively inexpensive, may be used in general since moisture from the gas is removed from the pretreatment unit 300.
상술한 바와 같이, 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치에 의하면, 굴뚝 배출가스 시료를 채취함에 있어 배출가스의 유속과 동일하게 흡인 노즐을 통해 등속 흡인함으로써 미세먼지 측정의 오차를 최소화할 수 있다. As described above, according to the continuous automatic measuring device for fine dust of the flue gas according to an embodiment of the present invention, when collecting a sample of the flue gas, fine dust is sucked at a constant velocity through a suction nozzle equal to the flow rate of the exhaust gas. Measurement errors can be minimized.
또한, 본 발명의 일 실시예에 따른 굴뚝 배출가스의 미세먼지 연속자동측정장치에 의하면, 흡인된 배출가스 시료를 측정라인과 제어라인으로 분기함에 있어, 제어라인에 구비된 제1 제어밸브의 개폐를 제어함으로써 측정라인에 구비된 입경분리장치에 정속 유량이 공급되도록 하고, 그에 따라 미세먼지의 정밀한 분리 및 연속자동측정을 가능하게 할 수 있다.In addition, according to the continuous automatic measurement device for fine dust of the chimney exhaust gas according to an embodiment of the present invention, in branching the sucked exhaust gas sample into the measurement line and the control line, opening and closing of the first control valve provided in the control line By controlling the flow rate to be supplied to the particle size separation device provided in the measurement line, it is possible to precisely separate fine dust and continuous automatic measurement accordingly.
한편, 본 명세서에 기재된 다양한 실시예들은 하드웨어, 미들웨어, 마이크로코드, 소프트웨어 및/또는 이들의 조합에 의해 구현될 수 있다. 예를 들어, 다양한 실시예들은 하나 이상의 주문형 반도체(ASIC)들, 디지털 신호 프로세서(DSP)들, 디지털 신호 프로세싱 디바이스(DSPD)들, 프로그램어블 논리 디바이스(PLD)들, 필드 프로그램어블 게이트 어레이(FPGA)들, 프로세서들, 컨트롤러들, 마이크로컨트롤러들, 마이크로프로세서들, 여기서 제시되는 기능들을 수행하도록 설계되는 다른 전자 유닛들 또는 이들의 조합 내에서 구현될 수 있다.Meanwhile, the various embodiments described in the present specification may be implemented by hardware, middleware, microcode, software, and/or a combination thereof. For example, various embodiments include one or more application specific semiconductors (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs). ), processors, controllers, microcontrollers, microprocessors, other electronic units designed to perform the functions presented herein, or a combination thereof.
또한, 예를 들어, 다양한 실시예들은 명령들을 포함하는 컴퓨터-판독가능한 매체에 수록되거나 인코딩될 수 있다. 컴퓨터-판독가능한 매체에 수록 또는 인코딩된 명령들은 프로그램 가능한 프로세서 또는 다른 프로세서로 하여금 예컨대, 명령들이 실행될 때 방법을 수행하게끔 할 수 있다. 컴퓨터-판독가능한 매체는 컴퓨터 저장 매체를 포함하며, 컴퓨터 저장 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수도 있다. 예를 들어, 이러한 컴퓨터-판독가능한 매체는 RAM, ROM, EEPROM, CD-ROM 또는 기타 광학 디스크 저장 매체, 자기 디스크 저장 매체 또는 기타 자기 저장 디바이스를 포함할 수 있다.Further, for example, various embodiments may be embodied or encoded on a computer-readable medium containing instructions. Instructions embodied or encoded on a computer-readable medium may cause a programmable processor or other processor to perform a method, for example, when the instructions are executed. Computer-readable media includes computer storage media, and computer storage media may be any available media that can be accessed by a computer. For example, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage medium, magnetic disk storage medium, or other magnetic storage device.
이러한 하드웨어, 소프트웨어, 펌웨어 등은 본 명세서에 기술된 다양한 동작들 및 기능들을 지원하도록 동일한 디바이스 내에서 또는 개별 디바이스들 내에서 구현될 수 있다. 추가적으로, 본 발명에서 "~부"로 기재된 구성요소들, 유닛들, 모듈들, 컴포넌트들 등은 함께 또는 개별적이지만 상호 운용가능한 로직 디바이스들로서 개별적으로 구현될 수 있다. 모듈들, 유닛들 등에 대한 서로 다른 특징들의 묘사는 서로 다른 기능적 실시예들을 강조하기 위해 의도된 것이며, 이들이 개별 하드웨어 또는 소프트웨어 컴포넌트들에 의해 실현되어야만 함을 필수적으로 의미하지 않는다. 오히려, 하나 이상의 모듈들 또는 유닛들과 관련된 기능은 개별 하드웨어 또는 소프트웨어 컴포넌트들에 의해 수행되거나 또는 공통의 또는 개별의 하드웨어 또는 소프트웨어 컴포넌트들 내에 통합될 수 있다.Such hardware, software, firmware, and the like may be implemented within the same device or within separate devices to support the various operations and functions described herein. Additionally, components, units, modules, components, and the like described as "units" in the present invention may be implemented together or separately as interoperable logic devices. The description of different features for modules, units, etc. is intended to highlight different functional embodiments, and does not necessarily imply that they must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components or may be integrated within common or separate hardware or software components.
특정한 순서로 동작들이 도면에 도시되어 있지만, 이러한 동작들이 원하는 결과를 달성하기 위해 도시된 특정한 순서, 또는 순차적인 순서로 수행되거나, 또는 모든 도시된 동작이 수행되어야 할 필요가 있는 것으로 이해되지 말아야 한다. 임의의 환경에서는, 멀티태스킹 및 병렬 프로세싱이 유리할 수 있다. 더욱이, 상술한 실시예에서 다양한 구성요소들의 구분은 모든 실시예에서 이러한 구분을 필요로 하는 것으로 이해되어서는 안되며, 기술된 구성요소들이 일반적으로 단일 소프트웨어 제품으로 함께 통합되거나 다수의 소프트웨어 제품으로 패키징될 수 있다는 것이 이해되어야 한다.Although the operations are shown in the figures in a specific order, it should not be understood that these operations are performed in the specific order shown, or in a sequential order, or that all illustrated operations need to be performed to achieve the desired result. . In any environment, multitasking and parallel processing can be advantageous. Moreover, the division of various components in the above-described embodiments should not be understood as requiring such division in all embodiments, and the described components are generally integrated together into a single software product or packaged into multiple software products. It should be understood that you can.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, an optimal embodiment has been disclosed in the drawings and specifications. Although specific terms have been used herein, these are only used for the purpose of describing the present invention, and are not used to limit the meaning or the scope of the present invention described in the claims. Therefore, those of ordinary skill in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical scope of the present invention should be determined by the technical spirit of the appended claims.
1: 굴뚝 10: 굴뚝 배출가스의 미세먼지 연속자동측정장치1: chimney 10: continuous automatic measuring device for fine dust of flue gas
100: 시료 채취부 110: 흡인관100: sample collection unit 110: suction tube
111: 흡인 노즐 120: 피토관111: suction nozzle 120: Pitot tube
130: 온도계 140: 가열 장치130: thermometer 140: heating device
200: 시료 분기/결합부 210: 분리매니폴드200: sample branch/couple 210: separation manifold
220: 측정라인 221: 입경분리장치220: measuring line 221: particle size separation device
221a: PM10 임팩터 221b: PM2.5 임팩터221a: PM10 impactor 221b: PM2.5 impactor
222: 미세먼지 측정센서 223: 제1 유량계222: fine dust measurement sensor 223: first flow meter
230: 제어라인 231: 제1 제어밸브230: control line 231: first control valve
240: 결합매니폴드 300: 전처리부240: coupling manifold 300: pretreatment unit
310: 냉각기 320: 배출펌프310: cooler 320: discharge pump
400: 가스측정부 410: O2 센서 400: gas measuring unit 410: O 2 sensor
420: CO2 센서 500: 등속흡인제어부420: CO 2 sensor 500: constant velocity suction control unit
510: 제2 유량계 520: 제2 제어밸브510: second flow meter 520: second control valve
530: 흡인펌프 600: 컨트롤러530: suction pump 600: controller

Claims (9)

  1. 굴뚝 배출가스의 미세먼지 연속자동측정장치(10)로서, As a continuous automatic measurement device 10 for fine dust of flue gas,
    굴뚝 내 배출가스 시료를 채취하도록 구성되는 시료 채취부(100); 및 A sample collection unit 100 configured to collect a sample of exhaust gas in the chimney; And
    상기 배출가스 시료의 진행 방향 일단에서 상기 시료 채취부(100)로부터 채취된 배출가스 시료를 복수의 라인으로 분기하고, 그리고 상기 배출가스 시료의 진행 방향 타단에서 상기 복수의 라인으로부터의 배출가스 시료를 결합하도록 구성되는 시료 분기/결합부(200)를 포함하는, The exhaust gas samples collected from the sample collection unit 100 are branched into a plurality of lines at one end in the traveling direction of the exhaust gas sample, and the exhaust gas samples from the plurality of lines are taken at the other end in the traveling direction of the exhaust gas sample. Including a sample branch / coupling portion 200 configured to be coupled,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 시료 분기/결합부(200)의 상기 복수의 라인은, The plurality of lines of the sample branch/coupler 200,
    적어도 일 영역에 입경분리장치(221)가 구비되는 측정라인(220), 및 A measurement line 220 provided with a particle size separation device 221 in at least one area, and
    적어도 일 영역에 제1 제어밸브(231)가 구비되는 제어라인(230)을 포함하는, Including a control line 230 in which the first control valve 231 is provided in at least one region,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  3. 제 2 항에 있어서,The method of claim 2,
    상기 시료 채취부(100)는 배출가스 시료를 흡인하여 상기 시료 분기/결합부(200)로 전달하도록 구성되는 흡인관(110)을 포함하고, 상기 흡인관(110)의 일 단에는 굴뚝 내 배치되는 흡인 노즐(111)이 구비되며, The sample collection unit 100 includes a suction pipe 110 configured to suck an exhaust gas sample and transfer it to the sample branch/combination unit 200, and at one end of the suction pipe 110, a suction pipe disposed in the chimney A nozzle 111 is provided,
    상기 흡인 노즐(111)의 단면적은 상기 입경분리장치(221)에 필요한 정속 유량을 초과하는 유량으로 상기 배출가스 시료를 흡인하도록 치수 설계되는 것을 특징으로 하는, The cross-sectional area of the suction nozzle 111 is dimensionally designed to suck the exhaust gas sample at a flow rate exceeding the constant flow rate required for the particle size separation device 221,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  4. 제 3 항에 있어서, The method of claim 3,
    상기 입경분리장치(221)는 PM10 임팩터(221a) 및 PM2.5 임팩터(221b)로 구성되는 캐스케이드-임팩터(cascade impactor)로 구현되고, 그에 따라 상기 입경분리장치(221)에 필요한 상기 정속 유량은 16.67 ℓ/min인 것을 특징으로 하는, The particle size separation device 221 is implemented as a cascade impactor consisting of a PM10 impactor 221a and a PM2.5 impactor 221b, and accordingly, the constant flow rate required for the particle size separation device 221 is Characterized in that 16.67 l/min,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  5. 제 3 항에 있어서, The method of claim 3,
    상기 시료 분기/결합부(200)는, The sample branch/combination part 200,
    상기 시료 채취부(100)로부터 채취된 배출가스 시료를 상기 측정라인(220) 및 상기 제어라인(230)으로 분기하도록 구성되는 분리매니폴드(210; dividing flow manifold); 및 A separation manifold (210; dividing flow manifold) configured to branch the exhaust gas sample collected from the sample collection unit 100 into the measurement line 220 and the control line 230; And
    상기 측정라인(220) 및 상기 제어라인(230)으로부터의 시료 유량을 결합하여 후단의 등속흡인제어부(500)로 전달하도록 구성되는 결합매니폴드(240; combining flow manifold)를 포함하는, Including a combining flow manifold (240) configured to combine the flow rate of the sample from the measurement line 220 and the control line 230 and transmit it to the constant velocity suction control unit 500 at the rear end,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  6. 제 5 항에 있어서, The method of claim 5,
    상기 측정라인(220)에는 상기 측정라인(220)을 통해 흐르는 배출가스 시료의 유량을 측정하도록 구성되는 제1 유량계(223)가 더 구비되고, The measurement line 220 is further provided with a first flow meter 223 configured to measure the flow rate of the exhaust gas sample flowing through the measurement line 220,
    상기 등속흡인제어부(500)에는 상기 결합매니폴드(240)로부터 출력되는 배출가스 시료의 등속흡인유량을 측정하도록 구성되는 제2 유량계(510)가 구비되는, The constant velocity suction control unit 500 is provided with a second flow meter 510 configured to measure the constant velocity suction flow rate of the exhaust gas sample output from the coupling manifold 240,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  7. 제 6 항에 있어서, The method of claim 6,
    상기 제1 유량계(223) 및 상기 제2 유량계(510)에 의해서 측정되는 유량에 기초하여, 상기 제1 유량계(223)에 의해 측정되는 유량이 상기 입경분리장치(221)에 필요한 상기 정속 유량에 대응하도록 상기 제1 제어밸브(231)의 개폐를 제어하도록 구성되는 컨트롤러(600)를 더 포함하는, Based on the flow rate measured by the first flow meter 223 and the second flow meter 510, the flow rate measured by the first flow meter 223 is equal to the constant speed flow rate required for the particle size separation device 221 Further comprising a controller 600 configured to control the opening and closing of the first control valve 231 to correspond,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  8. 제 7 항에 있어서, The method of claim 7,
    상기 컨트롤러(600)는, 상기 제1 유량계(223)에 의해 측정되는 유량이 상기 입경분리장치(221)에 필요한 상기 정속 유량을 초과하는 경우 상기 제1 제어밸브(231)를 개방하도록 구성되고, 그리고 상기 제1 유량계(223)에 의해 측정되는 유량이 상기 입경분리장치(221)에 필요한 상기 정속 유량 미만인 경우 상기 제1 제어밸브(231)를 폐쇄하도록 구성되는, The controller 600 is configured to open the first control valve 231 when the flow rate measured by the first flow meter 223 exceeds the constant speed flow rate required for the particle size separation device 221, And configured to close the first control valve 231 when the flow rate measured by the first flow meter 223 is less than the constant speed flow rate required for the particle size separation device 221,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
  9. 제 5 항에 있어서, The method of claim 5,
    상기 측정라인(220)에서의 압력 손실 및 상기 제어라인(230)에서의 압력 손실에 기초하여, 상기 분리매니폴드(210)와 상기 제1 제어밸브(231) 사이의 거리가 조절 가능한 것을 특징으로 하는, Based on the pressure loss in the measurement line 220 and the pressure loss in the control line 230, the distance between the separation manifold 210 and the first control valve 231 is adjustable. doing,
    굴뚝 배출가스의 미세먼지 연속자동측정장치(10).A continuous automatic measuring device for fine dust of the flue gas (10).
PCT/KR2020/002409 2019-02-22 2020-02-19 Apparatus for continuously and automatically measuring fine dust in chimney exhaust gas WO2020171594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0020923 2019-02-22
KR1020190020923A KR102060651B1 (en) 2019-02-22 2019-02-22 An apparatus for continuously and automatically measuring the particulate matter of stack exhaust gas

Publications (1)

Publication Number Publication Date
WO2020171594A1 true WO2020171594A1 (en) 2020-08-27

Family

ID=69051538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002409 WO2020171594A1 (en) 2019-02-22 2020-02-19 Apparatus for continuously and automatically measuring fine dust in chimney exhaust gas

Country Status (2)

Country Link
KR (1) KR102060651B1 (en)
WO (1) WO2020171594A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060651B1 (en) * 2019-02-22 2019-12-31 주식회사 정엔지니어링 An apparatus for continuously and automatically measuring the particulate matter of stack exhaust gas
KR102179129B1 (en) * 2019-12-24 2020-11-18 주식회사 정엔지니어링 An apparatus for integrated measuring stationary sources of stack exhaust gas
KR102199628B1 (en) * 2020-01-23 2021-01-08 주식회사 정엔지니어링 An apparatus for continuously measuring the particulate matter of stack exhaust gas including condensable particulate matter and continuously sampling the dioxins of stack exhaust gas including toxic heavy metals
KR102332142B1 (en) * 2020-02-06 2021-11-30 (주)켄텍 Beta-ray type chimney fine dust measuring device with diffusion pipe
KR102440408B1 (en) * 2020-12-10 2022-09-06 주식회사 제스와이테크 Apparatus for collecting gas of industrial chimney
KR102451787B1 (en) * 2020-12-24 2022-10-12 주식회사 정엔지니어링 An apparatus for measuring fine particulate matter within a stack
KR102260692B1 (en) * 2021-01-26 2021-06-07 한국표준과학연구원 Apparatus for real-time measuring partical matter from stack emission
KR102556940B1 (en) * 2021-03-10 2023-07-20 주식회사 전진엠에스 An apparatus for measuring black-carbon within a ship stack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200378620Y1 (en) * 2004-12-31 2005-03-18 광주과학기술원 A real-time monitor for particulate matter suspended in the air
KR100823947B1 (en) * 2007-07-18 2008-04-22 구성테크닉스 주식회사 Wet dust analyzer system capable of air flow control
KR101219527B1 (en) * 2005-09-14 2013-01-11 고등기술연구원연구조합 Apparatus for measuring the dust density of the high pressure transferring pipe
KR101490328B1 (en) * 2014-09-23 2015-02-16 대한민국 Particle Counter
KR20180076667A (en) * 2016-12-28 2018-07-06 인하대학교 산학협력단 A sampling inlet device for fine particles from stack flue gases
KR102060651B1 (en) * 2019-02-22 2019-12-31 주식회사 정엔지니어링 An apparatus for continuously and automatically measuring the particulate matter of stack exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200378620Y1 (en) * 2004-12-31 2005-03-18 광주과학기술원 A real-time monitor for particulate matter suspended in the air
KR101219527B1 (en) * 2005-09-14 2013-01-11 고등기술연구원연구조합 Apparatus for measuring the dust density of the high pressure transferring pipe
KR100823947B1 (en) * 2007-07-18 2008-04-22 구성테크닉스 주식회사 Wet dust analyzer system capable of air flow control
KR101490328B1 (en) * 2014-09-23 2015-02-16 대한민국 Particle Counter
KR20180076667A (en) * 2016-12-28 2018-07-06 인하대학교 산학협력단 A sampling inlet device for fine particles from stack flue gases
KR102060651B1 (en) * 2019-02-22 2019-12-31 주식회사 정엔지니어링 An apparatus for continuously and automatically measuring the particulate matter of stack exhaust gas

Also Published As

Publication number Publication date
KR102060651B1 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2020171594A1 (en) Apparatus for continuously and automatically measuring fine dust in chimney exhaust gas
CN102998233B (en) Method suitable for online testing of particulate matters in high-pressure gas pipeline
JP3793947B2 (en) Exhaust gas particulate mass measuring device with real-time moisture monitor
CN102967541B (en) Device and method suitable for on-line detection of particulate matters in high-temperature gas pipeline
CN107917736B (en) On-spot detecting system of civil stove flue gas pollutant emission
JP2012529097A5 (en)
US7343782B2 (en) System and method for performing quantifiable release spore testing on bioaerosol detection technologies
KR20180076667A (en) A sampling inlet device for fine particles from stack flue gases
KR102290065B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
CN203011800U (en) Online detection device applicable to particulate matters in high-temperature gas pipeline
CN109164027A (en) air filter performance test system
CN104764631A (en) Portable aerosol sampling device for pollution source dilution channel and fluidization cabin
KR20210100283A (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
CN110068526A (en) A kind of particulate matter on-line dilution sampled measurements system and method
CN106248436A (en) Wholegrain footpath on-line period device
CN107036950A (en) A kind of dynamic dust concentration instrument detecting system and its calibration method
CN203011801U (en) Online detection device applicable to particulate matters in high-pressure gas pipeline
CN206038383U (en) A net multi -point sampling system for monitoring of multi -phase fluid medium composition
KR20030095482A (en) Stack gas sampler using dilution
CN205679426U (en) Wholegrain footpath on-line period device
CN102486440A (en) Flue gas inhalable particle automatic sampling instrument
CN104237090A (en) Method and device for quickly determining dust concentration in flue gas of dust collector
CN114018776A (en) Detection apparatus for particulate matter in high-pressure gas pipeline
CN114018777A (en) Device for detecting concentration of particulate matters in high-temperature gas
KR102451787B1 (en) An apparatus for measuring fine particulate matter within a stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20760192

Country of ref document: EP

Kind code of ref document: A1