WO2020171081A1 - 信号処理装置、信号処理方法及びプログラム - Google Patents

信号処理装置、信号処理方法及びプログラム Download PDF

Info

Publication number
WO2020171081A1
WO2020171081A1 PCT/JP2020/006341 JP2020006341W WO2020171081A1 WO 2020171081 A1 WO2020171081 A1 WO 2020171081A1 JP 2020006341 W JP2020006341 W JP 2020006341W WO 2020171081 A1 WO2020171081 A1 WO 2020171081A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
error
speaker
signal processing
error microphone
Prior art date
Application number
PCT/JP2020/006341
Other languages
English (en)
French (fr)
Inventor
翔一 小山
勇登 伊東
夏樹 植野
洋 猿渡
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2020171081A1 publication Critical patent/WO2020171081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase

Definitions

  • the present invention relates to a signal processing device, a signal processing method, and a signal processing program relating to active noise control.
  • ANC Active Noise Control
  • a microphone is arranged at or near the controlled object position, the observed sound pressure is fed back to update the adaptive filter, and the drive signal of the speaker is sequentially obtained.
  • ANC When ANC is applied to spatial control, it is called a multipoint control method (MPC) that extends the one-dimensional adaptive filter theory and suppresses sound pressure at multiple control points arranged in the target area.
  • MPC multipoint control method
  • a method is known (for example, nonpatent literature 1).
  • the placement positions of a plurality of error microphones placed in the target area become a plurality of control points for suppressing sound pressure.
  • the multipoint control method described above the squared l 2 norm of the observation signal of the error microphone arranged in the target region is used as the objective function, and the optimization problem is solved so as to minimize this, so that the filter coefficient of the adaptive filter is Will be updated. That is, the multipoint control method is based on an optimization problem that minimizes only the sound pressure at a finite number of control points. Therefore, the multi-point control method is effective in suppressing the sound pressure at the placement position of each error microphone (that is, each control point) placed in the target region, but the sound pressure is sufficiently reduced in the entire target region. The pressure may not be suppressed.
  • an object of the present invention is to provide a signal processing device, a signal processing method, and a program that realize space active noise control capable of suppressing noise in the entire continuous space.
  • a signal processing device minimizes an objective function based on sound pressure of one or more error microphones, one or more speakers, and an entire target area determined based on an observation signal in the error microphones.
  • the control unit for controlling the update of the filter coefficient of the adaptive filter, which is used for generating the drive signal of the speaker, is provided.
  • the filter coefficient is updated so that the objective function based on the sound pressure of the entire target region is minimized, in the feedforward type spatial active noise control, not only the placement position of the error microphone, The sound pressure of the entire target area can be reduced.
  • control unit controls an update of the filter coefficient by using an algorithm based on a weight matrix, and the weight matrix is determined based on a relative relationship between the positions of the error microphones. Good.
  • the filter coefficient is updated by a predetermined algorithm using a weight matrix based on the relative relationship between the positions of the error microphones. Therefore, in the feedforward type spatial active noise control, not only the placement position of the error microphone but also the sound pressure of the entire target region can be reduced.
  • the control unit sets the filter coefficient to Update using Where A is the weighting matrix in the frequency domain, e is the observed signal in the error microphone in the frequency domain, and x is the observed signal in one or more reference microphones in the frequency domain. , Or a pseudo reference microphone signal defined based on the observed signal in the error microphone and the transfer function from the speaker to the error microphone and the drive signal, and G is from the speaker in the frequency domain.
  • control unit may set the filter coefficient to an observation signal in one or more reference microphones in a time domain, or the observation signal in the error microphone and a transfer function from the speaker to the error microphone, and the drive. It may be updated based on a pseudo reference microphone signal in the time domain defined based on a signal, the weight matrix in the time domain, and the observed signal in the error microphone in the time domain. ..
  • a signal processing device minimizes one or more error microphones, one or more speakers, and an objective function based on the sound pressure of the entire target region determined based on an observation signal in the error microphones. To control the updating of the drive signal of the speaker based on the observation signal in the error microphone.
  • the driving signals of the plurality of speakers are updated so that the objective function based on the sound pressure of the entire target area is minimized, in the feedback type spatial active noise control, only the placement position of the error microphone is Instead, the sound pressure of the entire target area can be reduced.
  • control unit controls updating of the drive signal using an algorithm based on a weight matrix, and the weight matrix may be determined based on a relative relationship between positions of the error microphones. Good.
  • the drive signal is updated by a predetermined algorithm using a weight matrix based on the relative relationship between the positions of the error microphones. Therefore, in feedback-type spatial active noise control, not only the position where the error microphone is arranged, but also the sound pressure of the entire target region can be reduced.
  • control unit controls the drive signal to Update using
  • A is the weighting matrix in the frequency domain
  • e is the observation signal in the error microphone in the frequency domain
  • G is the output sound from the speaker in the frequency domain.
  • ( ⁇ ) H means Hermitian transposition
  • ⁇ and ⁇ 0 are predetermined constants
  • n is an index of a time frame. May be
  • the filter coefficient is updated by the NLMS algorithm using the above weight matrix. Therefore, in feedback-type spatial active noise control, not only the position where the error microphone is arranged, but also the sound pressure of the entire target region can be reduced.
  • a signal processing method includes a step of acquiring an observation signal in one or more error microphones, and an objective function based on the sound pressure of the entire target region determined based on the observation signal in the error microphone. Controlling the updating of the filter coefficients of the adaptive filter used to generate the drive signal of the one or more speakers so as to minimize, and outputting a sound from the speaker based on the drive signal. ..
  • a program obtains an observation signal in one or more error microphones and minimizes an objective function based on the sound pressure of the entire target region determined based on the observation signal in the error microphone.
  • a signal processing device a signal processing method, and a signal processing program that realize space active noise control capable of suppressing noise in the entire continuous space.
  • FIG 3 is a flowchart showing an example of the operation of the signal processing device according to the first exemplary embodiment. It is a figure which shows an example of arrangement
  • the spatial active noise control is active space control (ANC) in which a predetermined space (for example, a two-dimensional space or a three-dimensional space) is a target area (also referred to as a control area).
  • ANC active space control
  • the feedforward space ANC (first embodiment) and the feedback space ANC (second embodiment) will be described below.
  • FIG. 1 is a diagram showing an example of an arrangement in the space ANC according to the first embodiment.
  • a plurality of error microphones 11A to 11I in the feedforward space ANC, a plurality of error microphones 11A to 11I, a plurality of loudspeakers (Loudspeaker) 12A to 12J, and a plurality of reference microphones 13A to 13L. And may be used.
  • the error microphones 11A to 11I are arranged in a substantially annular shape so as to surround a target region ⁇ which is a region where sound pressure is to be suppressed.
  • the speakers 12A to 12J are arranged in a substantially annular shape so as to surround the error microphones 11A to 11I.
  • reference microphones 13A to 13L are arranged in a substantially ring shape so as to surround the speakers 12A to 12J.
  • noise propagates from the source (noise source) N1 to N3 to the target area ⁇ .
  • the noise is the sound to be suppressed (cancelling) in the target area ⁇ .
  • the noise propagation path from the noise sources N1 to N3 to the error microphones 11A to 11I is also called a primary path or the like.
  • the speakers 12A to 12J can suppress the sound pressure in the target region ⁇ (that is, noise can be reduced or canceled) by outputting a sound that cancels the noise propagating from the noise sources N1 to N3.
  • the propagation path between the error microphones 11A to 11I of the sound output from the speakers 12A to 12J is also called a secondary path or the like.
  • an adaptive filter may be used to suppress the sound pressure in the target area ⁇ .
  • the filter coefficient H of the adaptive filter may be updated (calculated) based on the observation signal x in the reference microphones 13A to 13L and the observation signal e in the error microphones 11A to 11I.
  • a predetermined algorithm for example, NLMS (Normalized Least Mean Square) algorithm, LMS (Least Mean Square) algorithm, Filtered-X LMS algorithm, etc.
  • NLMS Normalized Least Mean Square
  • LMS Least Mean Square
  • Filtered-X LMS algorithm etc.
  • the observation signal x in the reference microphones 13A to 13L is a signal (also referred to as a reference signal or the like) obtained by picking up sound by the reference microphones 13A to 13L, and mainly from the noise sources N1 to N3.
  • a noise component may be included.
  • the observation signal e in the error microphones 11A to 11I is a signal (also referred to as an error signal) obtained by collecting sound by the error microphones 11A to 11I, and is mainly output from the speakers 12A to 12J. The difference between the sound component and the noise components from the noise sources N1 to N3 may be shown.
  • the filtering process for the observation signal x in the reference microphones 13A to 13L is performed using the filter coefficient H updated as described above. Sounds based on the signals obtained by the filtering process are output from the speakers 12A to 12J, and the noises from the noise sources N1 to N3 are reduced by the sounds.
  • the error microphones 11A to 11I, the speakers 12A to 12J, the reference microphones 13A to 13L, and the noise sources N1 to N3 are particularly distinguished, they are collectively referred to as the error microphone 11, the speaker 12, the reference microphone 13, and the noise source N.
  • the target area ⁇ may be called a control area ⁇ or the like.
  • the position r of the error microphone 11 may be called a control point or the like.
  • the number and arrangement of the error microphone 11, the speaker 12, and the reference microphone 13 shown in FIG. 1 are merely examples, and are not limited to those shown.
  • the relationship between the error microphone 11, the speaker 12, and the reference microphone 13 does not have to be 1:1 as shown in FIG. 1, but may be 1:1. Further, the number of error microphones 11, the speaker 12, and the reference microphone 13 may be one or more, respectively.
  • FIG. 2 is a diagram showing an example of the configuration of the signal processing device according to the first embodiment.
  • the signal processing device 10 includes an error microphone 11, a speaker 12, a reference microphone 13, an adaptive filter unit 14, a filter coefficient updating unit 15, and a weight matrix calculating unit 16. Good.
  • the signal processing device 10 does not include the error microphone 11, the speaker 12, and the reference microphone 13, but includes an adaptive filter unit 14, a filter coefficient updating unit 15, and a weight matrix calculating unit 16. May be done. Further, the error microphone 11, the speaker 12, and the reference microphone 13 are one or more, respectively, and may be arranged as described in FIG. 1.
  • the reference microphone 13 shown in FIG. 2 observes a sound (also called noise) from a sound source (for example, a noise source N) and generates an observation signal x. Specifically, the reference microphone 13 may generate the observation signal x based on the input signal (for example, frequency) from the noise source N and output the generated observation signal x to the adaptive filter unit 14. The observation signal x output to the adaptive filter unit 14 may be one transformed from the time domain to the frequency domain.
  • the adaptive filter unit 14 performs a filtering process on the observation signal x in the reference microphone 13 to generate a driving signal d for the speaker 12. Specifically, the adaptive filter unit 14 may perform the filtering process of the observation signal x using the filter coefficient H updated by the filter coefficient updating unit 15 described later. The adaptive filter unit 14 may output the generated drive signal d to the speaker 12.
  • H(n) is the filter coefficient of the index n of the time frame in the frequency domain
  • x(n) is the observed signal at the reference microphone 13 of the index n of the time frame in the frequency domain.
  • the drive signal d output to the speaker 12 may be converted from the frequency domain into the time domain.
  • the speaker 12 outputs sound (noise canceling sound) based on the drive signal d input from the adaptive filter unit 14.
  • the sound signal output from the speaker 12 passes through the secondary path and is observed by the error microphone 11.
  • the error microphone 11 generates an observation signal e by observing the output sound from the sound source (for example, the noise source N and the speaker 12). Specifically, the error microphone 11 performs observation based on a signal in which the output sound from the noise source N changes through the primary path and a signal in which the output sound from the speaker 12 changes through the secondary path. The signal e may be generated. The error microphone 11 may output the generated observation signal e to the filter coefficient updating unit 15. The observation signal e output to the filter coefficient updating unit 15 may be the one converted from the time domain into the frequency domain. It should be noted that the error microphone 11 may be input with the observation signal x from the reference microphone 13 instead of the signal obtained by changing the output sound from the noise source N through the primary path.
  • x( ⁇ ) ⁇ C K is an observation signal in the frequency domain of the reference microphone 13
  • d( ⁇ ) ⁇ C L is a drive signal of the speaker 12
  • e( ⁇ ) ⁇ C M is an observation signal of the error microphone 11.
  • is an angular frequency, and since ⁇ can be independently discussed, ⁇ will be omitted hereinafter.
  • the observed signal e in the error microphone 11 in the frequency domain may be represented by the following equation (1).
  • u e is a signal transmitted from the noise source N to the error microphone 11.
  • G is the transfer function of the secondary path.
  • H is a filter coefficient.
  • the transfer function between the noise source N and the error microphone 11, the transfer function between the noise source N and the reference microphone 13, and the transfer function G of the secondary path are assumed to be stationary. ..
  • the transfer function G of the secondary path is assumed to be known by the measurement in advance.
  • the filter coefficient updating unit 15 updates the filter coefficient H used in the adaptive filter unit 14.
  • the filter coefficient update unit 15 controls the update of the filter coefficient H so as to minimize the objective function L based on the sound pressure of the entire target region ⁇ determined based on the observation signal e in one or more error microphones 11. Functions as a control unit.
  • the filter coefficient H is updated by setting the squared l 2 norm of the observed signal e of the error microphone 11 as the objective function and solving the optimization problem so as to minimize it.
  • the filter coefficient H in each iteration is updated by the following equation (2).
  • e is an observation signal in the error microphone 11 in the frequency domain
  • x is an observation signal in the reference microphone 13 in the frequency domain.
  • G is a transfer function of a secondary path which is a propagation path up to the error microphone 11 of the output sound from the speaker 12 in the frequency domain.
  • H means Hermitian transposition.
  • ⁇ >0 is a regularization parameter for preventing the divergence of the filter coefficient H, and if the signal of the noise source N is piecewise stationary, the convergence is guaranteed in the range of 0 ⁇ 0 ⁇ 2.
  • n is an index of the time frame.
  • the filter coefficient H is updated by solving the optimization problem so as to minimize only the sound pressure on the error microphone 11 (a finite number of control points)
  • the target area ⁇ away from the error microphone 11 is At the inner position, the sound pressure cannot be suppressed sufficiently.
  • the filter coefficient updating unit 15 updates the filter coefficient H by solving the optimization problem so as to minimize the estimated value of the sound pressure of the entire target region ⁇ . Specifically, the filter coefficient updating unit 15 sets the filter coefficient H by solving the optimization problem that minimizes the integral value of the squared absolute value of the sound pressure of the entire target region ⁇ as the objective function L. You may update.
  • the objective function L is expressed by the following equation (3), for example.
  • This matrix A is called a weight matrix.
  • the filter coefficient updating unit 15 may update the filter coefficient H using the NLMS algorithm shown in the following Expression (4).
  • A is a weight matrix in the frequency domain
  • e is an observed signal in the error microphone 11 in the frequency domain
  • x is an observed signal in the reference microphone 13 in the frequency domain.
  • G is a transfer function of a secondary path which is a propagation path up to the error microphone 11 of the output sound from the speaker 12 in the frequency domain.
  • H means Hermitian transposition.
  • ⁇ 0 and ⁇ are predetermined constants.
  • ⁇ >0 is a regularization parameter that prevents the divergence of the filter coefficient H, and if the signal of the noise source N is piecewise stationary, convergence may be guaranteed in the range of 0 ⁇ 0 ⁇ 2.
  • n is an index of the time frame.
  • the filter coefficient updating unit 15 updates the filter coefficient H so as to minimize the objective function L based on the weight matrix A. That is, it can be said that the filter coefficient updating unit 15 updates the filter coefficient H using the NLMS algorithm based on the weight matrix A. As shown in the above equation (2), the weight matrix A is not considered in the general NLMS algorithm.
  • the weight matrix calculating unit 16 calculates the weight matrix A based on the positions of the plurality of error microphones 11. Specifically, the weight matrix calculating unit 16 determines the relative relationship between the positions of the plurality of error microphones 11 (arrangement of the plurality of error microphones 11, relative positions of the plurality of error microphones 11, K, etc.). And the wave number k controlled by the target area ⁇ , the weight matrix A may be calculated. When the target area ⁇ is a circular area, the weight series A may be calculated based on the relative relationship K between the positions of the plurality of error microphones 11, the wave number k, and the radius R of the circular area. .. The weight matrix may be calculated by numerical integration.
  • the weight matrix calculating unit 16 can calculate the weight matrix A in the frequency domain as follows.
  • the position r in the target region ⁇ is estimated as in Expression (5) by the kernel-induced sound field interpolation of the sound field.
  • the sound field kernel interpolation method is a kernel that restricts that the function to be estimated follows the Helmholtz equation in the problem of estimating a continuous sound pressure distribution in the target region ⁇ from a plurality of distributed error microphones 11. This is an interpolation method based on ridge regression.
  • ( ⁇ ) T means transposition.
  • I is an M ⁇ M identity matrix
  • is a regularization parameter ( ⁇ >0).
  • K and ⁇ (r) in the above equation (5) are given by the following equations (6) and (7), respectively.
  • J 0 (•) is a 0th-order Bessel function of the first kind.
  • r m (m ⁇ 1,..., M ⁇ ) is the position of the m-th error microphone 11 in M pieces.
  • k is the wave number.
  • K in the equation (6) is a function based on the relative relationship K between the positions r m of the plurality of error microphones 11.
  • the kernel functions shown in the above equations (6) and (7) are merely examples, and the invention is not limited to these.
  • the kernel function may be a Gauss kernel, a sigmoid kernel, or the like, which is generally used in machine learning or the like.
  • the weight matrix A is expressed by the following equation (9) when P ⁇ (K+ ⁇ I) ⁇ 1 .
  • I is an M ⁇ M identity matrix
  • is a regularization parameter.
  • (•) * means complex conjugate.
  • this weight matrix A can be calculated by numerical integration. In this way, the weight matrix A is determined based on the relative relationship K and the wave number k between the positions of the error microphones (M error microphone positions r m ( m ⁇ ⁇ 1,..., M ⁇ ). Good.
  • the objective function expressed by the equation (3) can be expressed by the following equation (18).
  • the weight matrix A has a relative relationship between the positions of the error microphones (M error microphone positions r m (m ⁇ 1,..., M ⁇ ).
  • K, wave number k And may be determined based on the radius R of the target area ⁇ .
  • G is a transfer function from the speaker 12 to the error microphone 11. Therefore, if the arrangement of the error microphone 11 and the speaker 12 and the target area are determined, the value of G H A can be calculated in advance for each wave number to be controlled. Therefore, the amount of calculation for each iteration is the same between the conventional method and the proposed method.
  • S and ⁇ are linear operators having infinite dimensions, but they may be truncated at an appropriate size.
  • the weight matrix A may be expressed by the following equations (19) to (21).
  • I is an M ⁇ M identity matrix
  • is a regularization parameter.
  • Numerical integration is used for integration in the target area ⁇ .
  • j 0 (•) is the zeroth-order spherical Bessel function of the first kind.
  • ( ⁇ ) * means complex conjugate.
  • the kernel functions shown in the above equations (20) and (21) are merely examples, and the invention is not limited to these.
  • the kernel function may be a Gauss kernel, a sigmoid kernel, or the like, which is generally used in machine learning or the like.
  • FIG. 3 is a diagram showing a physical configuration of the signal processing device according to the first embodiment.
  • the signal processing device 10 includes a CPU (Central Processing Unit) 10a corresponding to a calculation unit, a RAM (Random Access Memory) 10b corresponding to a storage unit, a ROM (Read Only Memory) 10c corresponding to a storage unit, and a communication unit. It has 10d, an input unit 10e, and a display unit 10f. These respective components are connected to each other via a bus so that data can be transmitted and received.
  • the signal processing device 10 may be realized by combining a plurality of computers.
  • the configuration shown in FIG. 2 is an example, and the signal processing device 10 may have a configuration other than these, or may not have some of these configurations.
  • the CPU 10a is a control unit that controls the execution of programs stored in the RAM 10b or the ROM 10c, calculates data, and processes the data.
  • the CPU 10a is a calculation unit that executes a program that controls updating of the filter coefficient H so as to minimize the objective function L based on the sound pressure of the entire target region ⁇ .
  • the CPU 10a receives various data from the input unit 10e and the communication unit 10d, displays the calculation result of the data on the display unit 10f, and stores it in the RAM 10b.
  • the RAM 10b is a rewritable part of data in the storage unit, and may be composed of, for example, a semiconductor storage element.
  • the RAM 10b may store the program executed by the CPU 10a, the weight matrix A, the filter coefficient H, and the like. Note that these are merely examples, and data other than these may be stored in the RAM 10b, or some of these may not be stored.
  • the ROM 10c is capable of reading data from the storage unit, and may be composed of, for example, a semiconductor storage element.
  • the ROM 10c may store, for example, a signal processing program or data that is not rewritten.
  • the communication unit 10d is an interface that connects the signal processing device 10 to another device.
  • the communication unit 10d may be connected to a communication network such as the Internet.
  • the input unit 10e receives data input from the user, and may include, for example, a keyboard and a touch panel.
  • the display unit 10f visually displays the calculation result by the CPU 10a, and may be composed of, for example, an LCD (Liquid Crystal Display).
  • the display unit 10f may display the waveform of the subject's voice or the waveform of the synthesized voice.
  • the signal processing program may be provided by being stored in a computer-readable storage medium such as the RAM 10b or the ROM 10c, or may be provided via a communication network connected by the communication unit 10d.
  • the CPU 10a executes the signal processing program, so that the various operations described with reference to FIG. 1 are realized. It should be noted that these physical configurations are mere examples and may not necessarily be independent configurations.
  • the signal processing device 10 may include an LSI (Large-Scale Integration) in which the CPU 10a and the RAM 10b and the ROM 10c are integrated.
  • the target area ⁇ is a circular area with a radius of 1.0 m around the origin
  • the number M of error microphones 11 and the number K of reference microphones 13 is 22, and the number L of speakers 12 is 11.
  • the error microphone 11, the reference microphone 13, and the speaker 12 are omnidirectional, and the observed signal noise (SN) ratio is 40 dB.
  • the position of the error microphone 11 is determined from the uniform distribution of [1.0, 1.4] m in the radial direction in the polar coordinate expression, and the angular direction is [- ⁇ /2M, ⁇ /2M] from the equidistant arrangement. It is decided by shifting according to the uniform distribution of, and distributed arrangement is performed.
  • the radial directions of the positions of the speaker 12 and the reference microphone 13 are determined from the uniform distributions of [2.0, 2.4]m and [3.0, 3.4]m, respectively, and the angular directions are It was determined by shifting from an evenly spaced arrangement according to a uniform distribution of [- ⁇ /2L, ⁇ /2L] and [- ⁇ /2K, ⁇ /2K].
  • FIGS. 4A and 4B are diagrams showing a first example of the sound pressure distribution in the target region of the signal processing device and the conventional method according to the first embodiment.
  • the signals of the noise source N are stationary signals with amplitudes of 10.0, 5.0, and 15.0, respectively, and each point in the target region in the 3000th iteration when the frequency is set to 200 Hz.
  • FIG. 5 is a figure which shows an example of the sound pressure suppression amount of each repetition in the signal processing apparatus which concerns on 1st Embodiment.
  • the signal processing device 10 (Proposed) according to the first embodiment exhibits excellent performance as compared with the conventional method (MPC).
  • FIG. 6 is a diagram illustrating an example of the sound pressure suppression amount of each frequency in the signal processing device according to the first embodiment.
  • the signal processing device 10 (Proposed) according to the first embodiment exhibits superior performance to the conventional method (MPC) except for 100 Hz.
  • ⁇ Second example> 7A and 7B are diagrams showing a second example of the sound pressure distribution in the target region of the signal processing device according to the first embodiment and the conventional method.
  • the signal of the noise source N is determined according to a complex Gaussian signal whose amplitude is 10.0, 5.0, and 15.0, respectively, and the target region in the 500th iteration when the frequency is set to 200 Hz. It is a plot of the sound pressure at each point inside. 7A and 7B, “x” indicates the position of the error microphone 11, “ ⁇ ” indicates the position of the speaker 12, and the broken line indicates the boundary of the target area ⁇ .
  • FIG. 8 is a figure which shows an example of the sound pressure suppression amount of each repetition in the signal processing apparatus which concerns on 1st Embodiment. As shown in FIG. 8, the value of the sound pressure suppression amount P red at each iteration, the signal processing apparatus 10 according to the first embodiment (a Proposed), as compared with the conventional method (MPC), superior performance Showing.
  • FIG. 9 is a flowchart showing an example of the operation of the signal processing device according to the first embodiment.
  • the signal processing device 10 acquires the observation signal x at the reference microphone 13 (step S101).
  • the signal processing device 10 acquires the observation signal e in the error microphone 11 (step S102).
  • the signal processing device 10 may update the filter coefficient H so as to minimize the objective function based on the sound pressure of the entire target region ⁇ determined based on the observation signal e in the error microphone 11 (step S103). .. Specifically, the signal processing device 10 estimates the sound pressure at the position r of the error microphone 11 based on the observation signal e in the error microphone 11 by the kernel interpolation method of the sound field (for example, Expression (5)), The filter coefficient H may be updated so as to minimize the objective function L (for example, Expression (3)) by the integrated value of the estimated squared absolute value of the sound pressure.
  • the kernel interpolation method of the sound field for example, Expression (5)
  • the signal processing device 10 may update the filter coefficient H by a predetermined algorithm using the weight matrix A (for example, the NLMS algorithm, see formula (4)).
  • the weight matrix A may be based on the relative relationship K of the position r of the error microphone 11 and the wave number k (for example, Expressions (6), (7), and (8)).
  • the signal processing device 10 performs a filtering process on the observation signal x in the reference microphone 13 using the filter coefficient H to obtain the driving signal d of the speaker 12 (step S104).
  • the signal processing device 10 outputs a sound from the speaker 12 based on the drive signal d of the speaker 12 (step S105).
  • the signal processing device 10 determines whether or not to end the process (step S106), and when the process is not to be ended, returns to step S101.
  • the sound of the entire target region ⁇ is calculated by the predetermined algorithm using the weighting matrix A based on the relative relationship K of the positions r of the plurality of error microphones 11 and the wave number k.
  • the filter coefficient H is updated so that the pressure-based objective function is minimized. Therefore, in the feedforward space ANC, not only the position where the error microphone 11 is arranged, but also the sound pressure of the entire target region ⁇ can be reduced.
  • FIG. 10 is a diagram showing an example of arrangement in the space ANC according to the second embodiment.
  • the feedback type space ANC includes a plurality of error microphones 11A to 11I and a plurality of speakers 12A to 12J, but does not include a plurality of reference microphones 13A to 13L. It is different from the feed-forward type space ANC shown.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • the error microphones 11A to 11I are arranged in a substantially annular shape so as to surround the target area ⁇ which is the area where the sound pressure is to be suppressed.
  • the speakers 12A to 12J are arranged in a substantially annular shape so as to surround the error microphones 11A to 11I.
  • the drive signal d of the speaker 12 is updated based on the observation signal e of the error microphone 11.
  • a sound based on the drive signal d is output from the speaker 12, and the noise from the noise source N is reduced by the sound.
  • a predetermined algorithm eg, NLMS algorithm, LMS algorithm, Filtered-X LMS algorithm, etc. may be used to update the drive signal d.
  • the numbers and arrangements of the error microphones 11, the speakers 12, and the reference microphones 13 shown in FIG. 10 are merely examples, and are not limited to those shown.
  • the relationship between the error microphone 11 and the speaker 12 does not have to be 1:1 as shown in FIG. 10, but may be 1:1.
  • FIG. 11 is a diagram showing an example of the configuration of the signal processing device 20 used in the spatial ANC according to the second embodiment.
  • the signal processing device 20 may include an error microphone 11, a speaker 12, a weight matrix calculation unit 16, and a drive signal calculation unit 21.
  • the error microphone 11, the speaker 12, and the weight matrix calculation unit 16 are as described in the first embodiment.
  • the observation signal e output to the drive signal calculation unit 21 may be one converted from the time domain into the frequency domain.
  • the signal processing device 20 may be configured to include the weighting matrix calculation unit 16 and the drive signal calculation unit 21 without including the error microphone 11 and the speaker 12.
  • the number of error microphones 11 and the number of speakers 12 are each one or more, and may be arranged as described in FIG.
  • the drive signal calculator 21 generates a drive signal d for the speaker 12 based on the observation signal e from the error microphone 11.
  • each signal is represented in the frequency domain by using a short-time Fourier transform or the like.
  • d ⁇ C L is a drive signal of the speaker 12
  • e ⁇ C M is an observation signal of the error microphone 11
  • the transfer function from the speaker 12 to the error microphone 11 is known by prior measurement or the like.
  • G ⁇ C M ⁇ L be the function in the frequency domain.
  • the drive signal calculation unit 21 may update the drive signal d of the speaker 12 in the frequency domain using the following formula (23).
  • ⁇ 0 and ⁇ may be predetermined constants.
  • n is an index of the time frame.
  • the drive signal calculation unit 21 updates the drive signal d of the speaker 12 based on the weight matrix A.
  • the drive signal calculation unit 21 controls the update of the drive signal d so as to minimize the objective function L based on the sound pressure of the entire target region ⁇ determined based on the observation signal e in one or more error microphones 11. Functions as a control unit.
  • the weight matrix calculation unit 16 calculates the weight matrix A as described in the first embodiment.
  • the signal processing device 20 has a physical configuration similar to that of FIG.
  • the CPU 10a of the signal processing device 20 is an arithmetic unit that executes a program that controls updating of the drive signal d of the speaker 12 so as to minimize the objective function L based on the sound pressure of the entire target region ⁇ .
  • FIG. 12 is a flowchart showing an example of the operation of the signal processing device according to the second embodiment. As shown in FIG. 12, the signal processing device 20 acquires the observation signal e in the error microphone 11 (step S201).
  • the signal processing device 20 may update the drive signal d of the speaker 12 so as to minimize the objective function based on the sound pressure of the entire target area ⁇ (step S202). Specifically, the signal processing device 20 estimates the sound pressure at the position r of the error microphone 11 based on the observation signal e in the error microphone 11 by the kernel interpolation method of the sound field (for example, Expression (5)), The drive signal d of the speaker 12 may be updated so as to minimize the objective function L (for example, Expression (3)) by the integrated value of the estimated squared absolute value of the sound pressure.
  • the objective function L for example, Expression (3)
  • the signal processing device 20 may update the drive signal d by a predetermined algorithm using the weight matrix A (see, for example, equations (23) and (24)).
  • the weight matrix A may be based on the relative relationship K and the wave number k between the positions r of the error microphones 11 (for example, equations (6), (7) and (8)).
  • the signal processing device 20 outputs sound from the speaker 12 based on the drive signal d of the speaker 12 (step S203).
  • the signal processing device 20 determines whether or not to end the process (step S204), and when the process is not to be ended, returns to step S201.
  • the sound pressure of the entire target region ⁇ is determined by the predetermined algorithm using the weighting matrix A based on the relative relationship K of the position r of the error microphone 11 and the wave number k.
  • the drive signal d of the speaker 12 is updated such that the objective function based on it is minimized. Therefore, also in the feedback type space ANC, not only the placement position of the error microphone 11 but also the sound pressure of the entire target region ⁇ can be reduced.
  • the weight matrix A in the first and second embodiments does not consider the directivity of the noise source N (that is, diffuse noise is assumed), the weight matrix A does not indicate the directivity of the noise source N. Can also be taken into account (ie directional noise is assumed).
  • the weight matrix calculation unit 16 may calculate the weight matrix A based on kernel ridge regression.
  • a priori knowledge of the approximate direction of the noise source n may be incorporated into the interpolation of the sound pressure U e (r) at the position r.
  • the a priori information is an approximate power distribution in each direction of the noise source.
  • the estimated value of the sound pressure at the position r from the observed signal e in the error microphone 11 based on the kernel ridge regression may be expressed by the following equation (24).
  • ( ⁇ ) T means transposition.
  • I is a unit matrix of size M, and ⁇ is a regularization parameter ( ⁇ >0).
  • r m (m ⁇ 1,...,M ⁇ ) is the position of the m-th error microphone. It can be said that K in the equation (24) is a function based on the relative relationship K between the positions r m of the plurality of error microphones 11.
  • the weight matrix A is expressed by the following equation (28), where P ⁇ (K+ ⁇ I) ⁇ 1 .
  • I is a unit matrix of size M
  • is a regularization parameter.
  • (•) * means complex conjugate.
  • this weight matrix A can be calculated by numerical integration.
  • the weight matrix A may be determined based on the relative relationship K between the placement of the error microphones (M error microphone positions r m (m ⁇ 1,..., M ⁇ ).
  • the interpolation formula in the above formula (24) may be derived by solving the following optimization problem.
  • u is the estimated sound field (sound pressure distribution), and is a mapping from the target area ⁇ to the complex value C.
  • H is a norm derived from the inner product of the Hilbert space H.
  • the inner product of the solution space U of u and the Hilbert space H and the reproduction kernel of H are set in order to perform the kernel ridge regression based on the reproduction kernel Hilbert space after taking in the information that the object to be interpolated is the sound field. Just do it.
  • e m is the observed signal at the m-th error microphone 11.
  • H is a reconstructed kernel Hilbert space constituted by the inner product ⁇ , ⁇ > H and the reconstructed kernel ⁇ ⁇ , ⁇ >.
  • the solution space U may be represented by equation (30) in the case of a two-dimensional sound field.
  • L 2 means a space of a square-integrable function.
  • e jkTr is a plane wave function in the arrival direction defined as the unit vector ⁇ .
  • k is a wave number vector k ⁇ k ⁇ at a wave number k ⁇ /c and a sound velocity c.
  • S is a unit circle.
  • Each element in U may represent a plane wave decomposition of the sound field that satisfies the homogeneous Helmholtz equation shown in equation (31).
  • Formula (31) ( ⁇ +k 2 )u 0
  • is a Laplacian operator.
  • plane wave decomposition In plane wave decomposition,
  • the inner product ⁇ , ⁇ > H and the norm (norm) for H may be set as in the following equations (32) and (33).
  • w( ⁇ ) is a directional weighting function (directional weighting term) and may be defined by the following equation (34).
  • ⁇ >0 is a constant parameter
  • is the angle of the arrival direction ⁇ .
  • the kernel function (reproduction kernel in the Hilbert space in which the inner product based on the weighting function is defined) ⁇ (r1,r2) may be set in Expression (35).
  • ⁇ (r, r m) , ( ⁇ rm, u) as the kappa rm (r) is represented by the formula (36). Therefore, ⁇ (r1,r2) is the regenerating nucleus of H.
  • ⁇ (r1,r2) is the regenerating nucleus of H.
  • the estimation of the sound pressure u e (r) at the position r in the above equation (24) by the kernel function of the above equation (37) is based on the relative relationship between the observation signal e in the error microphone 11 and the positions of the error microphone 11 ( Relative position), and only prior information of the initial noise direction ⁇ is required. Therefore, the weight matrix A can be calculated in advance by setting the position r m (m ⁇ 1,..., M ⁇ ) of the m-th error microphone 11, the target region ⁇ , and the angle ⁇ .
  • the solution space U may be expressed by Expression (38) for the purpose of interpolating the sound field.
  • L 2 means the space of the square integrable function.
  • e jkTr is a plane wave function in the arrival direction defined as a unit vector ⁇ .
  • k is the wave number vector k ⁇ k ⁇ at the wave number k ⁇ /c and the sound velocity c.
  • S is a unit circle.
  • Each element in U may represent a plane wave decomposition of a sound field that satisfies the homogeneous Helmholtz equation shown in equation (31) above. In plane wave decomposition,
  • the inner product ⁇ , ⁇ > H and the norm (norm) for H may be set as in the following equations (39) and (40).
  • w( ⁇ ) is a directivity weighting function (weighting term regarding direction), and may be defined by the following equation (41). This is a weighted natural extension in a two-dimensional sound field due to directional noise.
  • the reproduction kernel (kernel function) ⁇ (r1, r2) in the Hilbert space in which the inner product based on this weight is defined may be set in Expression (42).
  • ⁇ (r, r m) , ( ⁇ rm, u) as the kappa rm (r) is represented by the formula (43).
  • ⁇ (r1,r2) is the regenerating nucleus of H.
  • the weight matrix calculating unit 16 causes the observation signal e in the error microphone 11 and the position of the error microphone 11 to be different from each other.
  • the weight matrix A may be determined based on the relative relationship (relative position) and the prior information on the initial noise direction ⁇ .
  • the reproduction kernel ⁇ (r1, r2) may be represented by the following equations (45) and (46), respectively.
  • the filtering process is performed in the frequency domain using the updated filter coefficient H in the frequency domain, but the present invention is not limited to this.
  • the filtering process may be performed in the time domain using the filter coefficient updated in the time domain.
  • the index of the time samples as t the observed signal at M number of m-th error microphone 11 e m (t) (m ⁇ ⁇ 1, ..., M ⁇ ) , X n (t) (n ⁇ 1,..., N ⁇ ) of the observed signal in the n-th reference microphone 13 among the N, and d l (t)(l ⁇ 1,...,L ⁇ ).
  • H ln (t) be a filter coefficient (also called an adaptive filter) and K be the filter order.
  • Filter coefficient updating unit 15 the filter coefficients of the time frame i + 1 H ln the (i + 1, t), the filter coefficients of the time frame i H ln (i, t) and the transfer function G ml (t from the speaker 12 to the error microphone 11 ) And may be updated using the following equation (47).
  • a m1m2 (k) is a weighting coefficient (also called a weighting matrix).
  • is a step size parameter.
  • the adaptive filter unit 14 may calculate the drive signal d l (t) of the speaker 12 using the adaptive filter H ln (t) and the observation signal x n (t) of the reference microphone 11.
  • the drive signal d l (t) may be calculated using, for example, the equation (48).
  • H lm (t) be the filter coefficient (also called adaptive filter) and K be the filter order.
  • d l (t) (l ⁇ ⁇ 1, ..., L ⁇ ) and H lm (t) are the respective time domain.
  • false reference microphone signal x m (t) is the observed signal e m in the error microphone 11 (t), the transfer function G ml from the speaker 12 to the error microphone 11 (t) (the filter order J) And are expressed by equation (49).
  • the filter coefficient updating unit 15 of FIG. 13 to be described later uses the filter coefficient H lm of the time frame i+1. (I+1,t) may be updated using the following equation (50) based on the filter coefficient H lm (i,t) of the time frame i and the pseudo reference microphone signal x m (t).
  • a m1m2 (k) is a weighting coefficient (also called a weighting matrix).
  • is a step size parameter.
  • the adaptive filter unit 14 may calculate the drive signal d l (t) of the speaker 12 using the adaptive filter H lm (t) and the pseudo reference microphone signal x m (t).
  • the drive signal d l (t) may be calculated using, for example, the equation (51).
  • the feedforward type (for example, see FIG. 2) and the feedback type (for example, see FIG. 11 or FIG. 13) weight matrix calculation units 16 have the same definition as in the case of the frequency domain (first and second embodiments). It may be used to calculate cm (t, r) by the equation (52). However, F ⁇ 1 represents the inverse Fourier transform, and [ ⁇ ] m represents the m-th element of the vector. Note that K and ⁇ (r) are the same as in the frequency domain.
  • the weighting matrix calculating unit 16 may calculate the weighting matrix A m1m2 by Expression (53).
  • FIG. 13 is a diagram showing an example of the configuration of the signal processing device according to the third modification.
  • the drive signal calculation unit 21 updates the drive signal d of the speaker 12, but in FIG. 13, the drive signal d of the speaker 12 is updated by the filter coefficient update unit 15 and the adaptive filter unit 14.
  • the signal processing device 20 may include an error microphone 11, a speaker 12, an adaptive filter unit 14, a filter coefficient updating unit 15, and a weight matrix calculating unit 16.
  • the error microphone 11, the speaker 12, and the weight matrix calculation unit 16 are as described in the first embodiment.
  • the signal processing device 20 may include the adaptive microphone unit 14, the filter coefficient updating unit 15, and the weight matrix calculating unit 16 without including the error microphone 11 and the speaker 12.
  • the number of error microphones 11 and the number of speakers 12 are each one or more, and may be arranged as described in FIG.
  • each signal is represented in the frequency domain by using short-time Fourier transform or the like.
  • d ⁇ C L is a driving signal of the speaker 12
  • e ⁇ C M is an observation signal of the error microphone 11
  • G ⁇ C M ⁇ L be the function in the frequency domain.
  • the pseudo reference microphone signal x may be used.
  • the pseudo reference microphone signal x may be defined based on the observation signal e of the error microphone 11, the transfer function G from the speaker 12 to the error microphone 11, and the drive signal d of the speaker 12.
  • the pseudo reference microphone signal x may be represented as in equation (54).
  • Formula (54) x(n) e(n)-Gd(n)
  • the adaptive filter unit 14 in FIG. 13 may perform a filtering process on the pseudo reference microphone signal x to generate the drive signal d for the speaker 12.
  • the generation of the drive signal d of the speaker 12 is similar to that of the feedforward type (for example, see the adaptive filter unit 14 in FIG. 2).
  • the filter coefficient updating unit 15 in FIG. 13 updates the filter coefficient H used in the adaptive filter unit 14.
  • the filter coefficient updating unit 15 controls the update of the filter coefficient H so as to minimize the objective function L based on the sound pressure of the entire target region ⁇ determined based on the observation signal e in one or more error microphones 11.
  • Functions as a control unit instead of the observed signal x(n) of the reference microphone 13, the pseudo reference microphone signal x(n) may be used to update the filter coefficient H using the feedforward type equation (4). (For example, see the filter coefficient updating unit 15 in FIG. 2).
  • the filter coefficient updating unit 15 in FIG. 13 may update the filter coefficient H in the frequency domain, or may update the filter coefficient H in the time domain using the above equation (50).
  • the plurality of error microphones 11, the plurality of speakers 12, and the plurality of reference microphones 13 are arranged in a substantially annular shape, but the present invention is not limited to this.
  • the plurality of error microphones 11 and the plurality of speakers 12 are arranged in a substantially annular shape, but the invention is not limited to this.
  • the plurality of error microphones 11, the plurality of speakers 12, and the plurality of reference microphones 13 may be arranged in a linear shape, or each may have a rectangular shape. May be located at.
  • the error microphone 11, the speaker 12, and the reference microphone 13 may be arranged in this order near the target region ⁇ .
  • the error microphone 11 and the speaker 12 may be arranged in this order near the target area ⁇ .
  • the target area ⁇ may have any shape such as a circular area or an elliptical area.
  • the feedforward type and the feedback type NLMS are exemplified as the adaptive filter for minimizing the weighted error, but the configuration of the adaptive filter is not limited to the above. I can't.
  • the adaptive filter various adaptive filters such as LMS, Filtered-X LMS, and an adaptive filter based on the recursive least-square method may be used, and the configuration of the adaptive filter is illustrated. Not limited to things.
  • 10 Signal processing device, 10a... CPU, 10d... Communication part, 10e... Input part, 10f... Display part, 11... Error microphone, 12... Speaker, 13... Reference microphone, 14... Adaptive filter part, 15... Filter coefficient update Unit, 16... Weighting matrix calculation unit, 20... Signal processing device, 21... Driving signal calculation unit, N1 to N3... Noise source

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

連続的な空間全体における騒音を抑制可能な空間能動騒音制御を実現する。信号処理装置は、一以上の誤差マイクロフォンと、一以上のスピーカと、前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、前記スピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御する制御部と、を備える。

Description

信号処理装置、信号処理方法及びプログラム 関連出願の相互参照
 本出願は、2019年2月18日に出願された米国仮出願62/806921に基づくもので、ここにその記載内容を援用する。
 本発明は、能動騒音制御に関する信号処理装置、信号処理方法及び信号処理プログラムに関する。
 従来、二次音源(スピーカ)を用いて対象位置の音圧を抑制する能動騒音制御(Active Noise Control:ANC)が知られている。多くの場合、制御対象位置またはその近傍にマイクロフォンを配置し、観測された音圧をフィードバックすることで適応フィルタを更新し、スピーカの駆動信号を逐次的に求めるという手法が用いられる。
 ANCを空間的な制御に適用する場合、一次元の適応フィルタ理論を拡張し、対象領域に複数配置した制御点上での音圧を抑制する多点制御法(Multipoint pressure control:MPC)と呼ばれる方法が知られている(例えば、非特許文献1)。多点制御法では、当該対象領域に配置される複数の誤差マイクロフォン(Error microphone)の配置位置が、音圧抑制のための複数の制御点となる。
S.J.Elliott, I.M.Stothers, and P.A.Nelson, "A multiple error LMS algorithm and its application to the active control of sound and vibration," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.35, no.10, pp.1423-1434, 1987
 上記多点制御法では、対象領域に配置される誤差マイクロフォンの観測信号の2乗lノルムを目的関数とし、これを最小化するように最適化問題を解くことで、適応フィルタのフィルタ係数が更新される。すなわち、上記多点制御法は、有限個の制御点での音圧のみを最小化する最適化問題をベースとしている。このため、多点制御法は、対象領域に配置される各誤差マイクロフォンの配置位置(すなわち、各制御点)での音圧の抑制には有効であるが、当該対象領域全体では、十分に音圧を抑制できない恐れがある。
 そこで、本発明は、連続的な空間全体における騒音を抑制可能な空間能動騒音制御を実現する信号処理装置、信号処理方法及びプログラムを提供することを目的の一つとする。
 本発明の一態様に係る信号処理装置は、一以上の誤差マイクロフォンと、一以上のスピーカと、前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、前記スピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御する制御部と、を備える。
 この態様によれば、対象領域全体の音圧に基づく目的関数が最小化されるようにフィルタ係数が更新されるので、フィードフォワード型の空間能動騒音制御において、誤差マイクロフォンの配置位置だけではなく、対象領域全体の音圧を低減できる。
 上記態様において、前記制御部は、重み行列に基づくアルゴリズムを用いて、前記フィルタ係数の更新を制御し、前記重み行列は、前記誤差マイクロフォンの位置間の相対的な関係に基づいて決定されてもよい。
 この態様によれば、誤差マイクロフォンの位置間の相対的な関係に基づく重み行列を用いた所定のアルゴリズムによりフィルタ係数が更新される。したがって、フィードフォワード型の空間能動騒音制御において、誤差マイクロフォンの配置位置だけではなく、対象領域全体の音圧を低減できる。
 上記態様において、前記制御部は、前記フィルタ係数を、
Figure JPOXMLDOC01-appb-M000003
 を用いて更新し、
 ここで、Aは、周波数領域での前記重み行列であり、eは、前記周波数領域での前記誤差マイクロフォンにおける前記観測信号であり、xは、前記周波数領域での一以上の参照マイクロフォンにおける観測信号、又は、前記誤差マイクロフォンにおける前記観測信号と前記スピーカから前記誤差マイクロフォンまでの伝達関数と前記駆動信号に基づいて定義される擬似参照マイクロフォン信号であり、Gは、前記周波数領域での前記スピーカからの出力音の前記誤差マイクロフォンまでの間の伝播経路である二次経路の伝達関数であり、(・)は、エルミート転置を意味し、β及びμは、所定の定数である、nは、時間フレームのインデックスであってもよい。
 上記態様において、前記制御部は、前記フィルタ係数を、時間領域での一以上の参照マイクロフォンにおける観測信号、又は、前記誤差マイクロフォンにおける前記観測信号と前記スピーカから前記誤差マイクロフォンまでの伝達関数と前記駆動信号に基づいて定義される前記時間領域での擬似参照マイクロフォン信号と、前記時間領域での前記重み行列と、前記時間領域での前記誤差マイクロフォンにおける前記観測信号と、に基づいて更新してもよい。
 本発明の他の態様に係る信号処理装置は、一以上の誤差マイクロフォンと、一以上のスピーカと、前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、前記誤差マイクロフォンにおける前記観測信号に基づく前記スピーカの駆動信号の更新を制御する制御部と、を備える。
 この態様によれば、対象領域全体の音圧に基づく目的関数が最小化されるように複数のスピーカの駆動信号が更新されるので、フィードバック型の空間能動騒音制御において、誤差マイクロフォンの配置位置だけではなく、対象領域全体の音圧を低減できる。
 上記態様において、前記制御部は、重み行列に基づくアルゴリズムを用いて、前記駆動信号の更新を制御し、前記重み行列は、前記誤差マイクロフォンの位置間の相対的な関係に基づいて決定されてもよい。
 この態様によれば、誤差マイクロフォンの位置間の相対的な関係に基づく重み行列を用いた所定のアルゴリズムにより駆動信号が更新される。したがって、フィードバック型の空間能動騒音制御において、誤差マイクロフォンの配置位置だけではなく、対象領域全体の音圧を低減できる。
 上記態様において、前記制御部は、前記駆動信号を、
Figure JPOXMLDOC01-appb-M000004
 を用いて更新し、
 ここで、Aは、周波数領域での前記重み行列であり、eは、前記周波数領域での前記誤差マイクロフォンにおける前記観測信号であり、Gは、前記周波数領域での前記スピーカからの出力音の前記誤差マイクロフォンまでの間の伝播経路である二次経路の伝達関数であり、(・)は、エルミート転置を意味し、β及びμは、所定の定数である、nは、時間フレームのインデックスであってもよい。
 この態様によれば、上記重み行列を用いたNLMSアルゴリズムによりフィルタ係数が更新される。したがって、フィードバック型の空間能動騒音制御において、誤差マイクロフォンの配置位置だけではなく、対象領域全体の音圧を低減できる。
 本発明の他の態様に係る信号処理方法は、一以上の誤差マイクロフォンにおける観測信号を取得するステップと、前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、一以上のスピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御するステップと、前記駆動信号に基づいて、前記スピーカから音を出力するステップと、を有する。
 本発明の他の態様に係るプログラムは、一以上の誤差マイクロフォンにおける観測信号を取得することと、前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、一以上のスピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御することと、前記駆動信号に基づいて、前記スピーカから音を出力することと、を信号処理装置に実行させる。
 本発明によれば、連続的な空間全体における騒音を抑制可能な空間能動騒音制御を実現する信号処理装置、信号処理方法及び信号処理プログラムを提供する。
第1の実施形態に係る空間ANCにおける配置の一例を示す図である。 第1の実施形態に係る信号処理装置の構成の一例を示す図である。 第1の実施形態に係る信号処理装置の物理的構成を示す図である。 第1の実施形態に係る信号処理装置の対象領域内の音圧分布の第1の例を示す図である。 第1の実施形態に係る従来法の対象領域内の音圧分布の第1の例を示す図である。 本第1の実施形態に係る信号処理装置における各反復の音圧抑制量の一例を示す図である。 第1の実施形態に係る信号処理装置における各周波数の音圧抑制量の一例を示す図である。 第1の実施形態に係る信号処理装置の対象領域内の音圧分布の第2の例を示す図である。 第1の実施形態に係る従来法の対象領域内の音圧分布の第2の例を示す図である。 第1の実施形態に係る信号処理装置における各反復の音圧抑制量の一例を示す図である。 第1の実施形態に係る信号処理装置の動作の一例を示すフローチャートである。 第2の実施形態に係る空間ANCにおける配置の一例を示す図である。 第2の実施形態に係る信号処理装置の構成の一例を示す図である。 第2の実施形態に係る信号処理装置の動作の一例を示すフローチャートである。 第3の変更例に係る信号処理装置の構成の一例を示す図である。
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。本実施形態において、空間能動騒音制御(空間ANC)とは、所定空間(例えば、2次元空間又は3次元空間)を対象領域(制御領域ともいう)とする能動空間制御(ANC)である。以下では、フィードフォワード型の空間ANC(第1の実施形態)と、フィードバック型の空間ANC(第2の実施形態)と、について説明する。
(第1の実施形態)
 図1は、第1の実施形態に係る空間ANCにおける配置の一例を示す図である。図1に示すように、フィードフォワード型の空間ANCでは、複数の誤差マイクロフォン(Error microphone)11A~11Iと、複数のスピーカ(Loudspeaker)12A~12Jと、複数の参照マイクロフォン(Reference microphone)13A~13Lとが、用いられてもよい。
 例えば、図1では、音圧の抑制対象となる領域である対象領域(target region)Ωを囲むように、誤差マイクロフォン11A~11Iが略環状に配置される。また、誤差マイクロフォン11A~11Iを囲むように、スピーカ12A~12Jが略環状に配置される。また、スピーカ12A~12Jを囲むように、参照マイクロフォン13A~13Lが略環状に配置される。
 図1において、ノイズ(音)は、発生源(ノイズ源)N1~N3から、対象領域Ωに伝播する。当該ノイズが、対象領域Ωにおける抑制(キャンセリング)の対象となる音である。当該ノイズ源N1~N3から誤差マイクロフォン11A~11Iまでのノイズの伝播経路は、一次経路等とも呼ばれる。
 スピーカ12A~12Jは、ノイズ源N1~N3から伝播するノイズを打ち消すような音を出力することで、対象領域Ωにおける音圧を抑制できる(すなわち、ノイズを低減又はキャンセルできる)。スピーカ12A~12Jから出力された音の誤差マイクロフォン11A~11Iまでの間の伝播経路は、二次経路等とも呼ばれる。
 ノイズ源N1~N3から伝播するノイズは既知ではないため、対象領域Ωにおける音圧抑制には、適応フィルタが用いられてもよい。適応フィルタのフィルタ係数Hは、参照マイクロフォン13A~13Lにおける観測信号xと、誤差マイクロフォン11A~11Iにおける観測信号eとに基づいて、更新(算出)されてもよい。当該フィルタ係数Hの更新には、所定のアルゴリズム(例えば、NLMS(Normalized Least Mean Square)アルゴリズム、LMS(Least Mean Square)アルゴリズム、Filtered-X LMSアルゴリズム等)が用いられてもよい。
 ここで、参照マイクロフォン13A~13Lにおける観測信号xは、参照マイクロフォン13A~13Lにより音を収音することにより得られる信号(参照信号等ともいう)であり、主に、ノイズ源N1~N3からのノイズの成分を含んでもよい。一方、誤差マイクロフォン11A~11Iにおける観測信号eは、誤差マイクロフォン11A~11Iにより音を収音することにより得られる信号(誤差信号等ともいう)であり、主に、スピーカ12A~12Jから出力された音の成分と、ノイズ源N1~N3からのノイズの成分との差分を示してもよい。
 上記の通り更新されるフィルタ係数Hを用いて、参照マイクロフォン13A~13Lにおける観測信号xに対するフィルタリング処理を行われる。当該フィルタリング処理により得られた信号に基づく音がスピーカ12A~12Jから出力され、当該音によりノイズ源N1~N3からのノイズが低減される。
 以下、誤差マイクロフォン11A~11I,スピーカ12A~12J、参照マイクロフォン13A~13L、ノイズ源N1~N3を特に区別しない場合は、誤差マイクロフォン11、スピーカ12、参照マイクロフォン13、ノイズ源Nと総称するものとする。また、対象領域Ωは、制御領域Ω等と呼ばれてもよい。また、誤差マイクロフォン11の位置rは、制御点等と呼ばれてもよい。
 なお、図1に示す誤差マイクロフォン11、スピーカ12、参照マイクロフォン13の数及び配置は、例示にすぎず、図示するものに限られない。誤差マイクロフォン11、スピーカ12、参照マイクロフォン13の関係は、図1に示すように、1対1でなくともよいし、1対1であってもよい。また、誤差マイクロフォン11、スピーカ12及び参照マイクロフォン13は、それぞれ、一以上であればよい。
 図2は、第1の実施形態に係る信号処理装置の構成の一例を示す図である。図2に示すように、信号処理装置10は、誤差マイクロフォン11と、スピーカ12と、参照マイクロフォン13と、適応フィルタ部14と、フィルタ係数更新部15と、重み行列算出部16と、を備えてもよい。
 なお、図示しないが、信号処理装置10は、誤差マイクロフォン11、スピーカ12、参照マイクロフォン13を含まず、適応フィルタ部14と、フィルタ係数更新部15と、重み行列算出部16と、を含んで構成されてもよい。また、誤差マイクロフォン11、スピーカ12、参照マイクロフォン13は、それぞれ、一以上であり、図1で説明したように配置されてもよい。
 図2に示す参照マイクロフォン13は、音源(例えば、ノイズ源N)からの音(騒音ともいう)を観測して、観測信号xを生成する。具体的には、参照マイクロフォン13は、ノイズ源Nからの入力信号(例えば、周波数)に基づいて観測信号xを生成し、生成した観測信号xを適応フィルタ部14に出力してもよい。適応フィルタ部14に出力される観測信号xは、時間領域から周波数領域に変換されたものであってもよい。
 適応フィルタ部14は、参照マイクロフォン13における観測信号xに対してフィルタリング処理を行い、スピーカ12の駆動信号dを生成する。具体的には、適応フィルタ部14は、後述するフィルタ係数更新部15により更新されるフィルタ係数Hを用いて、上記観測信号xのフィルタリング処理を行ってもよい。適応フィルタ部14は、生成した駆動信号dをスピーカ12に出力してもよい。この場合、周波数領域での時間フレームのインデックスnの駆動信号d(n)は、d(n)=H(n)x(n)で示されてもよい。ここで、H(n)は、周波数領域での時間フレームのインデックスnのフィルタ係数であり、x(n)は周波数領域での時間フレームのインデックスnの参照マイクロフォン13における観測信号である。なお、スピーカ12に出力される駆動信号dは、周波数領域から時間領域に変換されたものであってもよい。
 スピーカ12は、適応フィルタ部14から入力された駆動信号dに基づいて音(ノイズキャンセル用の音)を出力する。スピーカ12から出力された音の信号は、二次経路を経て、誤差マイクロフォン11で観測される。
 誤差マイクロフォン11は、音源(例えば、ノイズ源N及びスピーカ12)からの出力音の観測により観測信号eを生成する。具体的には、誤差マイクロフォン11は、ノイズ源Nからの出力音が一次経路を通って変化した信号と、スピーカ12からの出力音が二次経路を通って変化した信号とに基づいて、観測信号eを生成してもよい。誤差マイクロフォン11は、生成した観測信号eを、フィルタ係数更新部15に出力してもよい。フィルタ係数更新部15に出力される観測信号eは、時間領域から周波数領域に変換されたものであってもよい。なお、誤差マイクロフォン11には、ノイズ源Nからの出力音が一次経路を通って変化した信号の代わりに、参照マイクロフォン13における観測信号xが入力されてもよい。
 例えば、x(ω)∈Cを参照マイクロフォン13における周波数領域の観測信号とし、d(ω)∈Cをスピーカ12の駆動信号とし、e(ω)∈Cを誤差マイクロフォン11の観測信号とする。ここで、ωは、角周波数であり、ω毎に独立に議論ができるため、以降ωを省略する。この場合、周波数領域での誤差マイクロフォン11における観測信号eは、下記式(1)により示されてもよい。
 式(1)
    e=ue+Gd=ue+GHx
 式(1)において、ueは、ノイズ源Nから誤差マイクロフォン11に伝達する信号である。Gは、二次経路の伝達関数である。Hは、フィルタ係数である。本明細書では、ノイズ源Nと誤差マイクロフォン11と間の伝達関数、ノイズ源Nと参照マイクロフォン13との間の伝達関数、及び、上記二次経路の伝達関数Gは、定常であると仮定する。また、二次経路の伝達関数Gは、事前の測定により既知であるものとする。
 フィルタ係数更新部15は、適応フィルタ部14で用いられるフィルタ係数Hを更新する。フィルタ係数更新部15は、一以上の誤差マイクロフォン11における観測信号eに基づいて決定される対象領域Ω全体の音圧に基づく目的関数Lを最小化するように、フィルタ係数Hの更新を制御する制御部として機能する。
 従来法では、誤差マイクロフォン11の観測信号eの2乗lノルムを目的関数とし、これを最小化するように最適化問題を解くことで、フィルタ係数Hが更新される。このとき、NLMSアルゴリズムを用いると、下記式(2)により、各反復におけるフィルタ係数Hが更新される。
Figure JPOXMLDOC01-appb-M000005
 ここで、eは、周波数領域での誤差マイクロフォン11における観測信号であり、xは、周波数領域での参照マイクロフォン13における観測信号である。Gは、周波数領域でのスピーカ12からの出力音の誤差マイクロフォン11までの間の伝播経路である二次経路の伝達関数である。(・)は、エルミート転置を意味する。β>0はフィルタ係数Hの発散を防ぐ正則化パラメータであり、ノイズ源Nの信号が区分的に定常であれば、0<μ<2の範囲で収束が保証される。また、nは、時間フレームのインデックスである。
 このように、誤差マイクロフォン11(有限個の制御点)上での音圧のみを最小化するように最適化問題を解くことでフィルタ係数Hを更新する場合、誤差マイクロフォン11から離れた対象領域Ω内の位置において、十分な音圧の抑制ができない。
 一方、本実施形態に係るフィルタ係数更新部15は、対象領域Ω全体の音圧の推定値を最小化するように最適化問題を解くことで、フィルタ係数Hを更新する。具体的には、フィルタ係数更新部15は、対象領域Ω全体の音圧の2乗絶対値の積分値を目的関数Lとし、これを最小化する最適化問題を解くことで、フィルタ係数Hを更新してもよい。当該目的関数Lは、例えば、下記式(3)のように示される。
Figure JPOXMLDOC01-appb-M000006
 上記目的関数Lは、後述するように、フィルタ係数Hによらない行列Aを用いてL=eAeと書ける。この行列Aを重み行列と称する。このとき、フィルタ係数更新部15は、下記式(4)に示すNLMSアルゴリズムを用いて、フィルタ係数Hを更新してもよい。
Figure JPOXMLDOC01-appb-M000007
 ここで、Aは、周波数領域での重み行列であり、eは、周波数領域での誤差マイクロフォン11における観測信号であり、xは、周波数領域での参照マイクロフォン13における観測信号である。Gは、周波数領域でのスピーカ12からの出力音の誤差マイクロフォン11までの間の伝播経路である二次経路の伝達関数である。(・)は、エルミート転置を意味する。μ及びβは、所定の定数である。例えば、β>0はフィルタ係数Hの発散を防ぐ正則化パラメータであり、ノイズ源Nの信号が区分的に定常であれば、0<μ<2の範囲で収束が保証されてもよい。また、nは、時間フレームのインデックスである。
 このように、フィルタ係数更新部15は、重み行列Aに基づく目的関数Lを最小化するように、フィルタ係数Hを更新する。すなわち、フィルタ係数更新部15は、重み行列Aに基づくNLMSアルゴリズムを用いてフィルタ係数Hを更新するともいえる。上記式(2)に示すように、一般的なNLMSアルゴリズムでは、重み行列Aは考慮されない。
 重み行列算出部16は、複数の誤差マイクロフォン11の位置に基づいて、重み行列Aを算出する。具体的には、重み行列算出部16は、複数の誤差マイクロフォン11の位置間の相対的な関係(複数の誤差マイクロフォン11の配置、複数の誤差マイクロフォン11の相対位置(relative positions)、Κ等ともいう)と、対象領域Ωで制御される波数kとに基づいて、重み行列Aを算出してもよい。対象領域Ωが円領域である場合、複数の誤差マイクロフォン11の位置間の相対的な関係Κと、波数kと、当該円領域の半径Rに基づいて、当該重み系列Aを算出してもよい。当該重み行列は、数値積分によって計算されてもよい。
 例えば、対象領域Ωが2次元空間である場合、重み行列算出部16は、周波数領域での重み行列Aを以下のように算出することができる。対象領域Ω内の位置rは、音場のカーネル補間法(kernel-induced sound field interpolation)により、式(5)のように推定される。なお、音場のカーネル補間法とは、分散配置した複数の誤差マイクロフォン11から対象領域Ω内の連続的な音圧分布を推定する問題において、推定する関数がヘルムホルツ方程式に従うことを制約とするカーネルリッジ回帰に基づく補間手法である。
Figure JPOXMLDOC01-appb-M000008
 ここで、(・)は、転置を意味する。Iは、M×Mの単位行列、λは正則化パラメータ(λ>0)を示す。
 また、上記式(5)におけるΚ及びκ(r)は、それぞれ、以下の式(6)及び(7)により与えられる。
Figure JPOXMLDOC01-appb-M000009
 ここで、J(・)は、0次の第1種Bessel関数である。r(m∈{1,…,M})は、M個中のm番目の誤差マイクロフォン11の位置である。kは、波数である。式(6)におけるΚは、複数の誤差マイクロフォン11の位置r間の相対的な関係Κに基づく関数ともいえる。なお、上記式(6)(7)に示すカーネル関数は例示にすぎず、これらに限られない。カーネル関数は、ガウスカーネルやシグモイドカーネル等、機械学習等で一般的に用いられるものでもよい。
 上記式(6)及び(7)を上記式(5)に代入すると、下記式(8)の通りとなる。
Figure JPOXMLDOC01-appb-M000010
 ここで、重み行列Aは、P≡(Κ+λI)-1としたとき、下記式(9)で示される。なお、Iは、M×Mの単位行列、λは正則化パラメータである。
Figure JPOXMLDOC01-appb-M000011
 ここで、(・)は、複素共役を意味する。一般に、この重み行列Aは、数値積分によって計算することができる。このように、重み行列Aは、誤差マイクロフォンの配置(M個の誤差マイクロフォンの位置r(m∈{1,…,M})間の相対的な関係Κ及び波数kに基づいて決定されてもよい。
 また、対象領域Ωを半径Rの円領域とすると、(r,φ)をrの極座標表現とし、Bessel関数に関するGrafの加法定理を用いると、上記κ(r)を式(10)(11)のように書くことができる。
Figure JPOXMLDOC01-appb-M000012
 ここで、(r,φ)は、rの極座標表現である、Jμ(・)は、μ次の第1種Bessel関数である。上記式(10)を上記式(7)に代入すると、κ(r)は以下の式(11)のように書くことができる。
 式(11)
            κ(r)=Sφ(r)
 ここで、φ(r)及びSは、それぞれ、以下の式(12)及び(13)で与えられる。したがって、式(14)が導かれる。
Figure JPOXMLDOC01-appb-M000013
 Bessel関数の直行性より、式(14)の積分部分はさらに計算することができて、式(15)となる。
Figure JPOXMLDOC01-appb-M000014
 結局、式(3)で表される目的関数は、以下の式(18)のように表現できる。
Figure JPOXMLDOC01-appb-M000015
 このように、対象領域Ωを円領域とする場合、重み行列Aは、誤差マイクロフォンの配置(M個の誤差マイクロフォンの位置r(m∈{1,…,M})間の相対的な関係Κ、波数k
及び対象領域Ωの半径Rに基づいて決定されてもよい。Gは、スピーカ12から誤差マイクロフォン11への伝達関数である。よって、誤差マイクロフォン11及びスピーカ12の配置及び対象領域を決定すれば、制御する波数ごとに事前にGAの値を計算しておくことができる。したがって、従来手法と提案手法の間で、反復ごとの計算量は一致する。また、S及びΓは無限の次元を持つ線形作用素であるが、適当なサイズで打ち切ってもよい。
 また、対象領域Ωが3次元空間である場合、重み行列Aは、下記式(19)~(21)で示されてもよい。
Figure JPOXMLDOC01-appb-M000016
 Iは、M×Mの単位行列、λは正則化パラメータを示す。対象領域Ωでの積分には数値積分を用いる。また、j(・)は0次の第1種球ベッセル関数である。また、(・)は、複素共役を意味する。なお、上記式(20)(21)に示すカーネル関数は例示にすぎず、これらに限られない。カーネル関数は、ガウスカーネルやシグモイドカーネル等、機械学習等で一般的に用いられるものでもよい。
 図3は、第1の実施形態に係る信号処理装置の物理的構成を示す図である。信号処理装置10は、演算部に相当するCPU(Central Processing Unit)10aと、記憶部に相当するRAM(Random Access Memory)10bと、記憶部に相当するROM(Read only Memory)10cと、通信部10dと、入力部10eと、表示部10fと、を有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。なお、本例では信号処理装置10が一台のコンピュータで構成される場合について説明するが、信号処理装置10は、複数のコンピュータが組み合わされて実現されてもよい。また、図2で示す構成は一例であり、信号処理装置10はこれら以外の構成を有してもよいし、これらの構成のうち一部を有さなくてもよい。
 CPU10aは、RAM10b又はROM10cに記憶されたプログラムの実行に関する制御やデータの演算、加工を行う制御部である。CPU10aは、対象領域Ω全体の音圧に基づく目的関数Lを最小化するようにフィルタ係数Hの更新を制御するプログラムを実行する演算部である。CPU10aは、入力部10eや通信部10dから種々のデータを受け取り、データの演算結果を表示部10fに表示したり、RAM10bに格納したりする。
 RAM10bは、記憶部のうちデータの書き換えが可能なものであり、例えば半導体記憶素子で構成されてよい。RAM10bは、CPU10aが実行するプログラム、重み行列A、フィルタ係数H等を記憶してよい。なお、これらは例示であって、RAM10bには、これら以外のデータが記憶されていてもよいし、これらの一部が記憶されていなくてもよい。
 ROM10cは、記憶部のうちデータの読み出しが可能なものであり、例えば半導体記憶素子で構成されてよい。ROM10cは、例えば信号処理プログラムや、書き換えが行われないデータを記憶してよい。
 通信部10dは、信号処理装置10を他の機器に接続するインターフェースである。通信部10dは、インターネット等の通信ネットワークに接続されてよい。
 入力部10eは、ユーザからデータの入力を受け付けるものであり、例えば、キーボード及びタッチパネルを含んでよい。
 表示部10fは、CPU10aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)により構成されてよい。表示部10fは、対象者の音声の波形を表示したり、合成音声の波形を表示したりしてよい。
 信号処理プログラムは、RAM10bやROM10c等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部10dにより接続される通信ネットワークを介して提供されてもよい。信号処理装置10では、CPU10aが信号処理プログラムを実行することにより、図1を用いて説明した様々な動作が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、信号処理装置10は、CPU10aとRAM10bやROM10cが一体化したLSI(Large-Scale Integration)を備えていてもよい。
 次に、図4から及び図8を参照し、第1の実施形態に係る信号処理装置を用いた音圧分布と、従来法(MPC)を用いた音圧分布と、を説明する。図4から図8では、対象領域Ωを、原点を中心とする半径1.0mの円領域とし、誤差マイクロフォン11の数M及び参照マイクロフォン13の数Kを22とし、スピーカ12の数Lを11とした。誤差マイクロフォン11、参照マイクロフォン13及びスピーカ12を無指向性であると仮定し、観測信号雑音(Signal Noise:SN)比は40dBであるものとした。
 誤差マイクロフォン11の位置は、極座標表現における動径方向を[1.0,1.4]mの一様分布からそれぞれ決定し、角度方向は等間隔配置から[-π/2M、π/2M]の一様分布にしたがってそれぞれずらすことにより決定し、分散配置を行うものとする。同様に、スピーカ12及び参照マイクロフォン13の位置の動径方向をそれぞれ[2.0,2.4]m、[3.0,3.4]mの一様分布からそれぞれ決定し、角度方向は等間隔配置から[-π/2L,π/2L],[-π/2K,π/2K]の一様分布にしたがってそれぞれずらすことにより決定した。
 また、3つの点音源をノイズ源とし、極座標表現における位置を(10.0m,π/2rad),(10.0m,7π/6rad),(10.0m,11π/6rad)とした。行列Γのサイズを41×41とし、行列積が定義できるようにSのサイズを定めた。正則化パラメータは、β=10-2、λ=10-4とした。
 定量的な評価指標として、対象領域Ω内における0.01m間隔のグリッド上の各点rにおける音圧、及び、以下の式(22)に定義する音圧抑制量を用いるものとする。
Figure JPOXMLDOC01-appb-M000017
 ここで、u(n)(r)をn回目の反復における位置rの音圧とし、n=0の場合、開始時のノイズ源Nのみによって作られる原音源を指すこととする。
 <第1の例>
 図4A及び4Bは、第1の実施形態に係る信号処理装置及び従来法の対象領域内の音圧分布の第1の例を示す図である。図4A及び4Bでは、ノイズ源Nの信号を振幅がそれぞれ10.0、5.0、15.0の定常信号とし、周波数を200Hzに設定したときの3000回目の反復における対象領域内の各点の音圧をプロットしたものである。また、図4A及び4B内の“×”は、誤差マイクロフォン11の位置であり、“●”は、スピーカ12の位置であり、破線は対象領域Ωの境界を示す。
 従来法では、図4Bに示すように、対象領域Ωの境界付近でのみ高い性能を示している。これに対して、第1の実施形態に係る信号処理装置10では、図4Aに示すように、対象領域Ω全体にわたって音圧抑制を実現していることがわかる。
 図5は、第1の実施形態に係る信号処理装置における各反復の音圧抑制量の一例を示す図である。図5では、周波数を200Hzに設定したときの各反復における音圧抑制量Predの値である。図5に示すように、第1の実施形態に係る信号処理装置10(Proposed)では、従来法(MPC)と比較して、優れた性能を示している。
 図6は、第1の実施形態に係る信号処理装置における各周波数の音圧抑制量の一例を示す図である。図6では、周波数を100Hzから600Hzまで変化させたときの各周波数における500回目の反復における音圧抑制量Predの値である。図6に示すように、第1の実施形態に係る信号処理装置10(Proposed)では、従来法(MPC)よりも100Hzを除いて優れた性能を示している。
 <第2の例>
 図7A及び7Bは、第1の実施形態に係る信号処理装置及び従来法の対象領域内の音圧分布の第2の例を示す図である。図7A及び7Bでは、ノイズ源Nの信号を振幅がそれぞれ10.0、5.0、15.0となる複素ガウス信号に従って決定し、周波数を200Hzに設定したときの500回目の反復における対象領域内の各点の音圧をプロットしたものである。また、図7A及び7B内の“×”は、誤差マイクロフォン11の位置であり、“●”は、スピーカ12の位置であり、破線は対象領域Ωの境界を示す。
 従来法では、図7Bに示すように、対象領域Ωの境界付近でのみ高い性能を示している。これに対して、第1の実施形態に係る信号処理装置10では、図7Aに示すように、対象領域Ω全体にわたって音圧抑制を実現していることがわかる。
 図8は、第1の実施形態に係る信号処理装置における各反復の音圧抑制量の一例を示す図である。図8に示すように、各反復における音圧抑制量Predの値は、第1の実施形態に係る信号処理装置10(Proposed)では、従来法(MPC)と比較して、優れた性能を示している。
 図9は、第1の実施形態に係る信号処理装置の動作の一例を示すフローチャートである。図9に示すように、信号処理装置10は、参照マイクロフォン13における観測信号xを取得する(ステップS101)。信号処理装置10は、誤差マイクロフォン11における観測信号eを取得する(ステップS102)。
 信号処理装置10は、誤差マイクロフォン11における観測信号eに基づいて決定される対象領域Ω全体の音圧に基づく目的関数を最小化するように、フィルタ係数Hを更新してもよい(ステップS103)。具体的には、信号処理装置10は、音場のカーネル補間法により、誤差マイクロフォン11における観測信号eに基づいて誤差マイクロフォン11の位置rにおける音圧を推定し(例えば、式(5))、推定した音圧の2乗絶対値の積分値を目的関数L(例えば、式(3))を最小化するように、フィルタ係数Hを更新してもよい。
 例えば、信号処理装置10は、重み行列Aを用いた所定アルゴリズム(例えば、NLMSアルゴリズム、式(4)参照)により、上記フィルタ係数Hを更新してもよい。当該重み行列Aは、誤差マイクロフォン11の位置rの相対的な関係Κ及び波数kに基づいてもよい(例えば、式(6)、(7)及び(8))。
 信号処理装置10は、参照マイクロフォン13における観測信号xに対して、フィルタ係数Hを用いてフィルタリング処理を行い、スピーカ12の駆動信号dを取得する(ステップS104)。信号処理装置10は、スピーカ12の駆動信号dに基づいて、スピーカ12から音を出力する(ステップS105)。
 信号処理装置10は、処理を終了するか否かを判定し(ステップS106)、処理を終了しない場合、ステップS101に戻る。
 以上のように、第1の実施形態によれば、複数の誤差マイクロフォン11の位置rの相対的な関係Κ及び波数kに基づく重み行列Aを用いた所定のアルゴリズムにより、対象領域Ω全体の音圧に基づく目的関数が最小化されるように、フィルタ係数Hが更新される。したがって、フィードフォワード型の空間ANCにおいて、誤差マイクロフォン11の配置位置だけでなく、対象領域Ω全体の音圧を低減できる。
(第2の実施形態)
 図10は、第2の実施形態に係る空間ANCにおける配置の一例を示す図である。図10に示すように、フィードバック型の空間ANCでは、複数の誤差マイクロフォン11A~11Iと、複数のスピーカ12A~12Jとを備えるが、複数の参照マイクロフォン13A~13Lを備えない点で、図1に示すフィードフォワード型の空間ANCと異なる。以下、第2の実施形態では、第1の実施形態との相違点を中心に説明する。
 例えば、図10では、音圧の抑制対象となる領域である対象領域Ωを囲むように、誤差マイクロフォン11A~11Iが略環状に配置される。また、誤差マイクロフォン11A~11Iを囲むように、スピーカ12A~12Jが略環状に配置される。
 フィードバック型の空間ANCでは、誤差マイクロフォン11の観測信号eに基づいてスピーカ12の駆動信号dが更新される。当該駆動信号dに基づく音がスピーカ12から出力され、当該音によりノイズ源Nからのノイズが低減される。駆動信号dの更新には、所定のアルゴリズム(例えば、NLMSアルゴリズム、LMSアルゴリズム、Filtered-X LMSアルゴリズム等)が用いられてもよい。
 なお、図10に示す誤差マイクロフォン11、スピーカ12、参照マイクロフォン13の数及び配置は、例示にすぎず、図示するものに限られない。誤差マイクロフォン11、スピーカ12の関係は、図10に示すように、1対1でなくともよいし、1対1であってもよい。
 図11は、第2の実施形態に係る空間ANCに用いられる信号処理装置20の構成の一例を示す図である。図11に示すように、信号処理装置20は、誤差マイクロフォン11と、スピーカ12と、重み行列算出部16と、駆動信号算出部21と、を備えてもよい。なお、誤差マイクロフォン11、スピーカ12、重み行列算出部16については、第1の実施形態で説明した通りである。なお、駆動信号算出部21に出力される観測信号eは、時間領域から周波数領域に変換されたものであってもよい。
 なお、図示しないが、信号処理装置20は、誤差マイクロフォン11、スピーカ12を含まず、重み行列算出部16及び駆動信号算出部21、を含んで構成されてもよい。また、誤差マイクロフォン11、スピーカ12は、それぞれ、一以上であり、図2で説明したように配置されてもよい。
 駆動信号算出部21は、誤差マイクロフォン11における観測信号eに基づいて、スピーカ12の駆動信号dを生成する。ここで、L個のスピーカ12、M個の誤差マイクロフォン11を用いる場合、短時間フーリエ変換などを用いて各信号を周波数領域で表現することとする。また、d∈Cをスピーカ12の駆動信号とし、e∈Cを誤差マイクロフォン11の観測信号とし、スピーカ12から誤差マイクロフォン11までの伝達関数が事前の測定等により既知であるとし、当該伝達関数を周波数領域でG∈CM×Lとする。このとき、駆動信号算出部21は、下記式(23)を用いて、周波数領域においてスピーカ12の駆動信号dを更新してもよい。
Figure JPOXMLDOC01-appb-M000018
 ここで、μ及びβは所定の定数であればよい。また、nは、時間フレームのインデックスである。
 このように、駆動信号算出部21は、重み行列Aに基づいてスピーカ12の駆動信号dを更新する。駆動信号算出部21は、一以上の誤差マイクロフォン11における観測信号eに基づいて決定される対象領域Ω全体の音圧に基づく目的関数Lを最小化するように、駆動信号dの更新を制御する制御部として機能する。重み行列算出部16は、第1の実施形態で説明したように、当該重み行列Aを算出する。
 また、信号処理装置20は、図3と同様の物理的構成を有する。信号処理装置20のCPU10aは、対象領域Ω全体の音圧に基づく目的関数Lを最小化するようにスピーカ12の駆動信号dの更新を制御するプログラムを実行する演算部である。
 図12は、第2の実施形態に係る信号処理装置の動作の一例を示すフローチャートである。図12に示すように、信号処理装置20は、誤差マイクロフォン11における観測信号eを取得する(ステップS201)。
 信号処理装置20は、対象領域Ω全体の音圧に基づく目的関数を最小化するように、スピーカ12の駆動信号dを更新してもよい(ステップS202)。具体的には、信号処理装置20は、音場のカーネル補間法により、誤差マイクロフォン11における観測信号eに基づいて誤差マイクロフォン11の位置rにおける音圧を推定し(例えば、式(5))、推定した音圧の2乗絶対値の積分値を目的関数L(例えば、式(3))を最小化するように、スピーカ12の駆動信号dを更新してもよい。
 例えば、信号処理装置20は、重み行列Aを用いた所定アルゴリズム(例えば、式(23)(24)参照)により、上記駆動信号dを更新してもよい。当該重み行列Aは、誤差マイクロフォン11の位置r間の相対的な関係Κ及び波数kに基づいてもよい(例えば、式(6)、(7)及び(8))。
 信号処理装置20は、スピーカ12の駆動信号dに基づいて、スピーカ12から音を出力する(ステップS203)。信号処理装置20は、処理を終了するか否かを判定し(ステップS204)、処理を終了しない場合、ステップS201に戻る。
 以上のように、第2の実施形態によれば、誤差マイクロフォン11の位置rの相対的な関係Κ及び波数kに基づく重み行列Aを用いた所定のアルゴリズムにより、対象領域Ω全体の音圧に基づく目的関数が最小化されるように、スピーカ12の駆動信号dが更新される。したがって、フィードバック型の空間ANCにおいても、誤差マイクロフォン11の配置位置だけでなく、対象領域Ω全体の音圧を低減できる。
(第1の変更例)
 第1及び第2の実施形態における重み行列Aは、ノイズ源Nの指向性を考慮していない(すなわち、拡散性雑音を想定している)が、当該重み行列Aは、ノイズ源Nの指向性を考慮する(すなわち、方向性雑音を想定する)こともできる。具体的には、第1及び第2の実施形態に係る重み行列算出部16は、カーネルリッジ回帰(kernel ridge regression)に基づいて、重み行列Aを算出してもよい。このとき、ノイズ源nのおおよその方向(approximate direction)の事前情報(a priori knowledge)を、位置rにおける音圧U(r)の補間に取り入れ(incorporate)てもよい。これにより、指向性で重み付けされたカーネル関数を用いることができる。ここで、事前情報とは、ノイズ源の各方向のおおよそのパワー分布である。
 カーネルリッジ回帰に基づいて、誤差マイクロフォン11における観測信号eからの位置rにおける音圧の推定値は、下記式(24)で示されてもよい。
Figure JPOXMLDOC01-appb-M000019
 ここで、(・)は、転置を意味する。Iは、サイズMの単位行列、λは正則化パラメータ(λ>0)を示す。
 また、上記式(24)におけるΚ及びκ(r)は、それぞれ、以下の式(25)及び(26)により与えられる。
Figure JPOXMLDOC01-appb-M000020
 ここで、r(m∈{1,…,M})は、m番目の誤差マイクロフォンの位置である。式(24)におけるΚは、複数の誤差マイクロフォン11の位置r間の相対的な関係Κに基づく関数ともいえる。
 このとき、目的関数Lは、下記式(27)の通りとなる。
Figure JPOXMLDOC01-appb-M000021
 ここで、重み行列Aは、P≡(Κ+λI)-1としたとき、下記式(28)で示される。なお、Iは、サイズMの単位行列、λは正則化パラメータである。
Figure JPOXMLDOC01-appb-M000022
 ここで、(・)は、複素共役を意味する。一般に、この重み行列Aは、数値積分によって計算することができる。このように、重み行列Aは、誤差マイクロフォンの配置(M個の誤差マイクロフォンの位置r(m∈{1,…,M})間の相対的な関係Κに基づいて決定されてもよい。
 上記式(24)における補間式は、以下の最適化問題を解くことによって導出されてもよい。
Figure JPOXMLDOC01-appb-M000023
 ここで、uは、推定された音場(音圧分布)であり、対象領域Ωから複素数値Cへの写像である。||・||は、Hilbert空間Hの内積から誘導されるノルムである。補間する対象が音場であるという情報を取り入れた上で、再生核Hilbert空間に基づくカーネルリッジ回帰を行うために、uの解空間U及びHilbert空間Hの内積、及びHの再生核が設定されればよい。eは、m番目の誤差マイクロフォン11における観測信号である。ここで、Hは、内積<・,・>及び再生カーネルκ<・,・>で再生核ヒルベルト空間を構成したものである。
 音場の補間のために、2次元音場の場合、解空間Uが式(30)で示されてもよい。
Figure JPOXMLDOC01-appb-M000024
 ここで、Lは、二乗可積分関数(square-integrable function)の空間を意味する。ここで、ejkTrは、単位ベクトルηとして定義される到来方向(arrival direction)での平面波関数(plane wave function)である。kは、波数k≡ω/c、音速(sound velocity)cでの波数ベクトルk≡-kηである。Sは、単位円(unit circle)である。Uにおける各要素は、式(31)に示す同次のヘルムホルツ方程式(homogeneous Helmholtz equation)を満たす音場の平面波分解(plane wave decomposition)を示してもよい。
 式(31)
   (Δ+k)u=0
 ここで、Δは、ラプラシアン演算子(Laplacian operator)である。平面波分解において、
Figure JPOXMLDOC01-appb-M000025
 内積<・,・>及びHに対するノルム(norm)は、下記式(32)及び(33)のように設定されてもよい。
Figure JPOXMLDOC01-appb-M000026
 ここで、w(η)は、指向性重み関数(directional weighting function)(方向に関する重み項)であり、下記式(34)で定義されてもよい。
Figure JPOXMLDOC01-appb-M000027
 ここで、β>0は定数パラメータであり、θは、到来方向ηの角度である。この関数は、円の連続確率分布(continuous probability distribution)であるフォン・ミーゼス分布(von Mises distribution)から導出されてもよい。この重みは、θ=φにおいて最大となり、θ=φ+πにおいて最小値を取る。βを大きくすると、音の到来方向に関する分布が鋭くなる。
 上記式(34)の重み関数を用いることにより、初期ノイズ源φのおおよその方向で事前情報(prior information)を利用(exploit)できる。ノルム||u||が大きくなるとβcos(θ―φ)は小さくなるためである。すなわち、式(29)における正則化項は、実際の到来方向θと事前の到来方向φとの差が大きくなるほど、大きくなる。このように、指向性重み付けは、上記式(34)の重み付け関数を用いて実現される。
 カーネル関数(上記重み関数に基づく内積が定義されたHilbert空間における再生核)κ(r1,r2)は、式(35)に設定されてもよい。
Figure JPOXMLDOC01-appb-M000028
 ここで、κ(r,r),(κrm,u)としてのκrm(r)は、式(36)で示される。
Figure JPOXMLDOC01-appb-M000029
 したがって、κ(r1,r2)は、Hの再生核である。上記式(34)を式(35)に代入することによって、特定のκ(r1,r2)を下記式(37)のように、得ることができる。
Figure JPOXMLDOC01-appb-M000030
 ここで、(x12,y12≡r-rであり、αは定数であり、J(・)は、0次の第1種Bessel関数である。I.Gradshteyn and I.Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 2007内のいくつかの式は、式(37)の導出に用いられる。なお、β=0とすると拡散性雑音による2次元音場における結果と一致する。
 第1及び第2の実施形態等で用いられるカーネル関数は、ノイズ源の到来方向が均一であると想定して導出される。β=0を設定することにより、カーネル関数が第1及び第2の実施形態で用いられるものに相当することがわかっている。このことは、拡散音場(diffused field)の共分散行列(covariance matrix)に等しいグラム行列Κを導く。
 上記式(37)のカーネル関数での上記式(24)における位置rの音圧u(r)の推定は、誤差マイクロフォン11における観測信号e、誤差マイクロフォン11の位置間の相対的な関係(相対位置)、及び、初期ノイズ方向φの事前情報のみを要求する。したがって、重み行列Aは、m番目の誤差マイクロフォン11の位置r(m∈{1,…,M})、対象領域Ω、角度θを設定することにより、事前に計算され得る。
 目的関数Lは、J=eAeと同形式であり、式(27)における重み行列Aは、スピーカ12の駆動信号dとは独立しているので、上記式(23)における重み付けNLMSアルゴリズムが適用され得る。したがって、従来手法と提案手法の間で、計算量は一致する。
 一方、音場の補間のために、3次元音場の場合、解空間Uが式(38)で示されてもよい。
Figure JPOXMLDOC01-appb-M000031
 ここで、Lは、二乗可積分関数の空間を意味する。ここで、ejkTrは、単位ベクトルηとして定義される到来方向での平面波関数である。kは、波数k≡ω/c、音速cでの波数ベクトルk≡-kηである。Sは、単位円である。Uにおける各要素は、上記式(31)に示す同次のヘルムホルツ方程式を満たす音場の平面波分解を示してもよい。平面波分解において、
Figure JPOXMLDOC01-appb-M000032
 内積<・,・>及びHに対するノルム(norm)は、下記式(39)及び(40)のように設定されてもよい。
Figure JPOXMLDOC01-appb-M000033
 ここで、w(η)は、指向性重み関数(方向に関する重み項)であり、下記式(41)で定義されてもよい。
Figure JPOXMLDOC01-appb-M000034
 これは、方向性雑音による2次元音場における重みな自然な拡張となっている。この重みに基づく内積が定義されたHilbert空間における再生核(カーネル関数)κ(r1,r2)は、式(42)に設定されてもよい。
Figure JPOXMLDOC01-appb-M000035
 ここで、κ(r,r),(κrm,u)としてのκrm(r)は、式(43)で示される。
Figure JPOXMLDOC01-appb-M000036
 したがって、κ(r1,r2)は、Hの再生核である。上記式(41)を式(42)に代入することによって、特定のκ(r1,r2)を下記式(44)のように、得ることができる。
Figure JPOXMLDOC01-appb-M000037
 なお、β=0とすると拡散性雑音による3次元音場における結果と一致する。
 このように、第1の変更例では、方向性雑音による2次元音場又は3次元音場の場合において、重み行列算出部16は、誤差マイクロフォン11における観測信号e、誤差マイクロフォン11の位置間の相対的な関係(相対位置)、及び、初期ノイズ方向φの事前情報に基づいて、重み行列Aを決定してもよい。
 なお、拡散性雑音による2次元音場及び3次元音場の場合、上記再生核κ(r1,r2)は、それぞれ、下記式(45)及び(46)で示されてもよい。
Figure JPOXMLDOC01-appb-M000038
(第2の変更例)
 第1及び第2の実施形態では、周波数領域において更新されたフィルタ係数Hを用いて周波数領域においてフィルタリング処理が行われるものとするが、これに限られない。時間領域で更新されたフィルタ係数を用いて時間領域においてフィルタリング処理が行われてもよい。
 フィードフォワード型の場合(例えば、図2参照)、時間サンプルのインデックスをtとして,M個中m番目の誤差マイクロフォン11における観測信号をe(t)(m∈{1,…,M})、N個中n番目の参照マイクロフォン13における観測信号をx(t)(n∈{1,…,N})、L個中l番目のスピーカ12の駆動信号をd(t)(l∈{1,…,L})とする。フィルタ係数(適応フィルタとも呼ばれる)をHln(t)とし、フィルタ次数はKとする。なお、e(t)(m∈{1,…,M})、x(t)(n∈{1,…,N})、d(t)(l∈{1,…,L})及びHln(t)は、それぞれ時間領域である。
 フィルタ係数更新部15は、時間フレームi+1のフィルタ係数Hln(i+1,t)を、時間フレームiのフィルタ係数Hln(i,t)とスピーカ12から誤差マイクロフォン11までの伝達関数Gml(t)とに基づいて、下記式(47)を用いて更新してもよい。
Figure JPOXMLDOC01-appb-M000039
 ここで、Am1m2(k)は重み係数(重み行列とも呼ばれる)である。μはステップサイズパラメータである。
 適応フィルタ部14は、適応フィルタHln(t)と参照マイクロフォン11の観測信号x(t)を用いてスピーカ12の駆動信号d(t)を算出してもよい。駆動信号d(t)は、例えば、式(48)を用いて算出されてもよい。
Figure JPOXMLDOC01-appb-M000040
 フィードバック型の場合(例えば、図11又は後述する図13参照)、時間サンプルのインデックスをtとして,M個中m番目の誤差マイクロフォン11における観測信号をe(t)(m∈{1,…,M})、L個中l番目のスピーカ12の駆動信号をd(t)(l∈{1,…,L})とする。フィルタ係数(適応フィルタとも呼ばれる)をHlm(t)とし、フィルタ次数はKとする。なお、e(t)(m∈{1,…,M})、d(t)(l∈{1,…,L})及びHlm(t)は、それぞれ時間領域である。
 フィードバック型の場合、疑似参照マイクロフォン信号x(t)は、誤差マイクロフォン11における観測信号e(t)と、スピーカ12から誤差マイクロフォン11までの伝達関数Gml(t)(フィルタ次数をJ)とにより、式(49)のように示される。後述する図13のフィルタ係数更新部15は、時間フレームi+1のフィルタ係数Hlm
(i+1,t)を、時間フレームiのフィルタ係数Hlm(i,t)と、疑似参照マイクロフォン信号x(t)とに基づいて、下記式(50)を用いて更新してもよい。
Figure JPOXMLDOC01-appb-M000041
 ここで、Am1m2(k)は重み係数(重み行列とも呼ばれる)である。μはステップサイズパラメータである。
 適応フィルタ部14は、適応フィルタHlm(t)と疑似参照マイクロフォン信号x(t)を用いてスピーカ12の駆動信号d(t)を算出してもよい。駆動信号d(t)は、例えば、式(51)を用いて算出されてもよい。
Figure JPOXMLDOC01-appb-M000042
 フィードフォワード型(例えば、図2参照)及びフィードバック型(例えば、図11又は図13参照)それぞれの重み行列算出部16は、周波数領域の場合(第1及び第2実施形態)と同様の定義を用いて、式(52)により、c(t,r)を算出してもよい。ただし、F-1は、逆フーリエ変換を表し、[・]は、ベクトルの第m要素を示す。なお、Κ及びκ(r)は、周波数領域の場合と同様である。
Figure JPOXMLDOC01-appb-M000043
 次に、重み行列算出部16は、式(53)により、重み行列Am1m2を算出してもよい。
Figure JPOXMLDOC01-appb-M000044
(第3の変更例)
 第3の変更例では、第2の実施形態、第1及び第2の変更例に係るフィードバック型の信号処理装置20の別の構成について説明する。図13は、第3の変更例に係る信号処理装置の構成の一例を示す図である。図11では、駆動信号算出部21がスピーカ12の駆動信号dを更新するが、図13では、スピーカ12の駆動信号dは、フィルタ係数更新部15及び適応フィルタ部14により更新される。
 図13に示すように、信号処理装置20は、誤差マイクロフォン11と、スピーカ12と、適応フィルタ部14と、フィルタ係数更新部15と、重み行列算出部16と、を備えてもよい。なお、誤差マイクロフォン11、スピーカ12、重み行列算出部16については、第1の実施形態で説明した通りである。なお、図示しないが、信号処理装置20は、誤差マイクロフォン11、スピーカ12を含まず、適応フィルタ部14と、フィルタ係数更新部15、及び、重み行列算出部16を含んで構成されてもよい。また、誤差マイクロフォン11、スピーカ12は、それぞれ、一以上であり、図10で説明したように配置されてもよい。
 対象領域をΩとして、L個のスピーカ12、M個の誤差マイクロフォン11を図11のように設置する場合、短時間フーリエ変換などを用いて各信号を周波数領域で表現することとする。また、d∈Cをスピーカ12の駆動信号とし、e∈Cを誤差マイクロフォン11の観測信号とし、スピーカ12から誤差マイクロフォン11までの伝達関数が事前の測定等により既知であるとし、当該伝達関数を周波数領域でG∈CM×Lとする。フィードバック型制御では、参照マイクロフォン13が設けられないため、擬似参照マイクロフォン信号xが用いられてもよい。
 疑似参照マイクロフォン信号xは、誤差マイクロフォン11の観測信号eと、スピーカ12から誤差マイクロフォン11までの伝達関数Gと、スピーカ12の駆動信号dに基づいて定義されてもよい。例えば、疑似参照マイクロフォン信号xは、式(54)のように示されてもよい。
 式(54)
    x(n)=e(n)-Gd(n)
 図13の適応フィルタ部14は、上記疑似参照マイクロフォン信号xに対してフィルタリング処理を行い、スピーカ12の駆動信号dを生成してもよい。スピーカ12の駆動信号dの生成については、フィードフォワード型と同様である(例えば、図2の適応フィルタ部14参照)。
 また、図13のフィルタ係数更新部15は、適応フィルタ部14で用いられるフィルタ係数Hを更新する。フィルタ係数更新部15は、一以上の誤差マイクロフォン11における観測信号eに基づいて決定される対象領域Ω全体の音圧に基づく目的関数Lを最小化するように、フィルタ係数Hの更新を制御する制御部として機能する。例えば、参照マイクロフォン13の観測信号x(n)の代わりに、上記疑似参照マイクロフォン信号x(n)を用いて、フィードフォワード型の上記式(4)を用いてフィルタ係数Hを更新してもよい(例えば、図2のフィルタ係数更新部15参照)。このように、図13のフィルタ係数更新部15は、周波数領域でフィルタ係数Hを更新してもよいし、上記式(50)を用いた時間領域でフィルタ係数Hを更新してもよい。
(その他)
 なお、上記第1の実施形態では、複数の誤差マイクロフォン11、複数のスピーカ12、複数の参照マイクロフォン13がそれぞれ略環状に配置されるが、これに限られない。同様に、第2の実施形態では、複数の誤差マイクロフォン11及び複数のスピーカ12がそれぞれ略環状に配置されるが、これに限られない。例えば、複数の誤差マイクロフォン11、複数のスピーカ12及び複数の参照マイクロフォン13(又は、複数の誤差マイクロフォン11及び複数のスピーカ12)は、それぞれ直線形状に配置されてもよいし、又は、それぞれ矩形形状に配置されてもよい。このように、フィードフォワード型の空間ANCでは、誤差マイクロフォン11、スピーカ12及び参照マイクロフォン13の順番で、対象領域Ωに近く配置されればよい。また、フィードバック型の空間ANCでは、誤差マイクロフォン11、スピーカ12の順番で、対象領域Ωに近く配置されればよい。
 また、対象領域Ωは、例えば、円領域、楕円領域など、どのような形状であってもよい。
 また、上記第1及び第2の実施形態では、重み付きの誤差を最小化するための適応フィルタとして、フィードフォワード型及びフィードバック型のNLMSを例示したが、適応フィルタの構成は上記のものに限られない。例えば、当該適応フィルタとしては、LMS、Filtered-X LMS、最小二乗法(recursive least-square)等に基づいた適応フィルタ等、種々の適応フィルタが用いられてもよく、適応フィルタの構成は図示したものに限られない。
以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
10…信号処理装置、10a…CPU、10d…通信部、10e…入力部、10f…表示部、11…誤差マイクロフォン、12…スピーカ、13…参照マイクロフォン、14…適応フィルタ部、15…フィルタ係数更新部、16…重み行列算出部、20…信号処理装置、21…駆動信号算出部、N1~N3…ノイズ源

Claims (9)

  1.  一以上の誤差マイクロフォンと、
     一以上のスピーカと、
     前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、前記スピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御する制御部と、
     を備える信号処理装置。
  2.  前記制御部は、重み行列に基づくアルゴリズムを用いて、前記フィルタ係数の更新を制御し、
     前記重み行列は、前記誤差マイクロフォンの位置間の相対的な関係に基づいて決定される、
     請求項1に記載の信号処理装置。
  3.  前記制御部は、前記フィルタ係数を、
    Figure JPOXMLDOC01-appb-M000001
     を用いて更新し、
     ここで、
     Aは、周波数領域での前記重み行列であり、
     eは、前記周波数領域での前記誤差マイクロフォンにおける前記観測信号であり、
     xは、前記周波数領域での一以上の参照マイクロフォンにおける観測信号、又は、前記誤差マイクロフォンにおける前記観測信号と前記スピーカから前記誤差マイクロフォンまでの伝達関数と前記駆動信号に基づいて定義される擬似参照マイクロフォン信号であり、
     Gは、前記周波数領域での前記スピーカからの出力音の前記誤差マイクロフォンまでの間の伝播経路である二次経路の伝達関数であり、
     (・)は、エルミート転置を意味し、
     β及びμは、所定の定数である、
     nは、時間フレームのインデックスである、
     請求項2に記載の信号処理装置。
  4.  前記制御部は、前記フィルタ係数を、時間領域での一以上の参照マイクロフォンにおける観測信号、又は、前記誤差マイクロフォンにおける前記観測信号と前記スピーカから前記誤差マイクロフォンまでの伝達関数と前記駆動信号に基づいて定義される前記時間領域での擬似参照マイクロフォン信号と、前記時間領域での前記重み行列と、前記時間領域での前記誤差マイクロフォンにおける前記観測信号と、に基づいて更新する、
     請求項2に記載の信号処理装置。
  5.  一以上の誤差マイクロフォンと、
     一以上のスピーカと、
     前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、前記誤差マイクロフォンにおける前記観測信号に基づく前記スピーカの駆動信号の更新を制御する制御部と、
     を備える信号処理装置。
  6.  前記制御部は、重み行列に基づくアルゴリズムを用いて、前記駆動信号の更新を制御し、
     前記重み行列は、前記誤差マイクロフォンの位置間の相対的な関係に基づいて決定される、
     請求項5に記載の信号処理装置。
  7.  前記制御部は、前記駆動信号を、
    Figure JPOXMLDOC01-appb-M000002
     を用いて更新し、
     ここで、
     Aは、周波数領域での前記重み行列であり、
     eは、前記周波数領域での前記誤差マイクロフォンにおける前記観測信号であり、
     Gは、前記周波数領域での前記スピーカからの出力音の前記誤差マイクロフォンまでの間の伝播経路である二次経路の伝達関数であり、
     (・)は、エルミート転置を意味し、
     β及びμは、所定の定数である、
     nは、時間フレームのインデックスである、
     請求項6に記載の信号処理装置。
  8.  一以上の誤差マイクロフォンにおける観測信号を取得するステップと、
     前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、一以上のスピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御するステップと、
     前記駆動信号に基づいて、前記スピーカから音を出力するステップと、
     を有する信号処理方法。
  9.  一以上の誤差マイクロフォンにおける観測信号を取得することと、
     前記誤差マイクロフォンにおける観測信号に基づいて決定される対象領域全体の音圧に基づく目的関数を最小化するように、一以上のスピーカの駆動信号の生成に用いる、適応フィルタのフィルタ係数の更新を制御することと、
     前記駆動信号に基づいて、前記スピーカから音を出力することと、
     を信号処理装置に実行させるプログラム。
     
PCT/JP2020/006341 2019-02-18 2020-02-18 信号処理装置、信号処理方法及びプログラム WO2020171081A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962806921P 2019-02-18 2019-02-18
US62/806,921 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020171081A1 true WO2020171081A1 (ja) 2020-08-27

Family

ID=72143517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006341 WO2020171081A1 (ja) 2019-02-18 2020-02-18 信号処理装置、信号処理方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2020171081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234822A1 (ja) * 2021-05-06 2022-11-10 国立大学法人東京大学 信号処理装置、信号処理方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207990A1 (ja) * 2013-06-27 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 制御装置、及び、制御方法
JP2016220032A (ja) * 2015-05-20 2016-12-22 アルパイン株式会社 音場再現システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207990A1 (ja) * 2013-06-27 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 制御装置、及び、制御方法
JP2016220032A (ja) * 2015-05-20 2016-12-22 アルパイン株式会社 音場再現システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234822A1 (ja) * 2021-05-06 2022-11-10 国立大学法人東京大学 信号処理装置、信号処理方法及びプログラム

Similar Documents

Publication Publication Date Title
EP3338466B1 (en) A multi-speaker method and apparatus for leakage cancellation
WO2018163810A1 (ja) 信号処理装置および方法、並びにプログラム
JP5189679B2 (ja) 能動型振動騒音制御装置
Shi et al. An active noise control casing using the multi-channel feedforward control system and the relative path based virtual sensing method
Iwai et al. Multichannel feedforward active noise control system combined with noise source separation by microphone arrays
Akhtar et al. Improving robustness of filtered-x least mean p-power algorithm for active attenuation of standard symmetric-α-stable impulsive noise
Koyama et al. Spatial active noise control based on kernel interpolation of sound field
KR102557002B1 (ko) 대각화 필터 행렬을 이용한 능동 잡음 소거 시스템
Shi et al. Understanding multiple-input multiple-output active noise control from a perspective of sampling and reconstruction
WO2020171081A1 (ja) 信号処理装置、信号処理方法及びプログラム
Liu et al. Kernel filtered-x LMS algorithm for active noise control system with nonlinear primary path
Dong et al. Distributed wave-domain active noise control based on the diffusion adaptation
Akhtar et al. Online secondary path modeling in multichannel active noise control systems using variable step size
Zhang et al. Spatial active noise control in rooms using higher order sources
Xiao et al. Spatially selective active noise control systems
WO2020085117A1 (ja) 信号処理装置および方法、並びにプログラム
Yin et al. Selective fixed-filter active noise control based on frequency response matching in headphones
Haasjes et al. An efficient offline scheme to compute an FIR controller for active reduction of acoustic reflections in an anechoic chamber
JP6399864B2 (ja) 制御器設計装置、制御器設計方法及びプログラム
Pasco et al. Interior sound field control using generalized singular value decomposition in the frequency domain
Huang et al. Feedforward active noise global control using a linearly constrained beamforming approach
US20210152938A1 (en) Sound reproduction
WO2022234822A1 (ja) 信号処理装置、信号処理方法及びプログラム
JP7252086B2 (ja) 適応同定システム、適応同定装置、及び適応同定方法
Liu et al. A relative path based virtual sensing method for the active feedback headrest system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP