WO2020171039A1 - Novel fluorene compound - Google Patents

Novel fluorene compound Download PDF

Info

Publication number
WO2020171039A1
WO2020171039A1 PCT/JP2020/006175 JP2020006175W WO2020171039A1 WO 2020171039 A1 WO2020171039 A1 WO 2020171039A1 JP 2020006175 W JP2020006175 W JP 2020006175W WO 2020171039 A1 WO2020171039 A1 WO 2020171039A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
bis
benzofluorene
group
crystal
Prior art date
Application number
PCT/JP2020/006175
Other languages
French (fr)
Japanese (ja)
Inventor
大地 佐久間
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to CN202080010121.8A priority Critical patent/CN113329989A/en
Priority to JP2021501999A priority patent/JP7415110B2/en
Priority to KR1020217023482A priority patent/KR20210132006A/en
Publication of WO2020171039A1 publication Critical patent/WO2020171039A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/72Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings and other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • C07C69/712Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings

Definitions

  • the present invention relates to a novel fluorene compound. Specifically, it relates to a novel fluorene compound having a 2,3-benzofluorene skeleton.
  • a compound group having a fluorene skeleton such as 9,9-bis(4-hydroxyphenyl)fluorene exhibits excellent functions in heat resistance, optical properties, etc.
  • a thermoplastic synthetic resin raw material such as a polycarbonate resin
  • thermosetting resins such as epoxy resins, raw materials for antioxidants, raw materials for thermosensitive recording materials, and raw materials for photosensitive resists.
  • the following chemical formula A resin produced from 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene represented by the following is noted as having excellent optical properties (for example, Patent Document 1).
  • "diol component” has been actively developed as a resin raw material, and many proposals for "diol component” according to desired resin performance have been made.
  • the present invention has been made under the circumstances described above, has high versatility as a "dicarboxylic acid component" of a resin raw material, has a high refractive index, and also has excellent solubility in an organic solvent.
  • An object is to provide a novel fluorene compound having a 2,3-benzofluorene skeleton.
  • the present inventor has conducted extensive studies to solve the above-mentioned problems, and found that a fluorene compound having a 2,3-benzofluorene skeleton such as 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene It is a novel compound, and because of its chemical structure, it has high versatility as a "dicarboxylic acid component" of a resin raw material, has a high refractive index, and further has excellent solubility in organic solvents.
  • the present invention has been completed.
  • a fluorene compound represented by the following general formula (1) (In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkali metal atom, an alkaline earth metal atom, and R 3 and R 4 are independently carbon atoms.
  • An alkyl group having 1 to 6 atoms, a phenyl group, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon (Indicated by an alkoxy group having 1 to 6 atoms and an aryl group having 6 to 12 carbon atoms, a, b and c are each independently an integer of 0 to 4 and d is an integer of 0 to 6.)
  • a new resin raw material is provided as a new “dicarboxylic acid component” having a chemical structure having two carboxylic acids/carboxylic acid esters at the terminals. be able to.
  • the compound of the present invention is a compound having a high refractive index, by using it as a “dicarboxylic acid component” of a resin raw material, a resin having a high refractive index can be obtained, and a resin having excellent optical properties can be obtained. It can be expected as a raw material.
  • the "dicarboxylic acid component" that can be used as a resin raw material for optical applications is a new fluorene compound of the present invention because of its optical properties, heat resistance, solvent solubility, etc. It is considered to be a novel compound that is very useful in applications.
  • FIG. 3 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 1.
  • DSC differential scanning calorimetry
  • FIG. 3 is a diagram showing a differential thermal/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 3.
  • FIG. 6 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 4.
  • FIG. 7 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 7.
  • FIG. 8 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 8.
  • FIG. 9 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 9.
  • FIG. 6 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 10.
  • novel fluorene of the present invention is a compound represented by the following general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkali metal atom, an alkaline earth metal atom, and R 3 and R 4 are independently carbon atoms.
  • An alkyl group having 1 to 6 atoms, a phenyl group, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon (Indicated by an alkoxy group having 1 to 6 atoms and an aryl group having 6 to 12 carbon atoms, a, b and c are each independently an integer of 0 to 4 and d is an integer of 0 to 6.)
  • a preferable alkyl group is a linear or branched chain having 1 carbon atom.
  • Alkyl groups of 4 to 4 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group.
  • a preferable alkenyl group is a linear or branched alkenyl group having 2 to 4 carbon atoms, Specific examples thereof include a vinyl group, a 1-methylethenyl group, a propenyl group, a butenyl group, an isobutenyl group, a pentenyl group and a hexenyl group.
  • a preferable alkoxy group is a linear or branched alkoxy group having 1 to 4 carbon atoms, Specific examples thereof include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group and t-butoxy group.
  • R 5 and R 6 are an aryl group having 6 to 12 carbon atoms, a phenyl group and a naphthyl group are preferable.
  • R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkali metal atom, and each independently being a hydrogen atom or 1 to 4 carbon atoms.
  • a lithium atom, a potassium atom and a sodium atom are more preferable, and a hydrogen atom, a methyl group and an ethyl group are each independently preferable.
  • both R 1 and R 2 are hydrogen atoms.
  • R 3 and R 4 are preferably each independently an alkyl group having 1 to 4 carbon atoms or a phenyl group, and more preferably each independently a methyl group or a phenyl group.
  • Each of a and b is preferably 0, 1, 2, or 3, independently, more preferably 0 or 1, and particularly preferably both a and b are 0.
  • the substitution position of R 3 and R 4 is preferably 2-position, 3-position or 5-position, and more preferably 3-position and/or 5-position.
  • R 5 and R 6 are each independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms. , Phenyl group and naphthyl group are preferred. It is preferable that c and d are independently 0 and 1, and it is more preferable that both c and d are 0.
  • fluorene compound represented by the above general formula (1) include 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene represented by the following chemical formula, potassium salts and sodium salts thereof. , Methyl ester and ethyl ester.
  • Other preferred compounds include 9,9-bis[(4-carboxymethoxy-3-methyl)phenyl]-2,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy -2-Methyl)phenyl]-2,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy-3,5-dimethyl)phenyl]-2 ,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy-2,5-dimethyl)phenyl]-2,3-benzofluorene and its potassium salt Salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy-3-phenyl)phenyl]-2,3-
  • the method for synthesizing the fluorene compound represented by the above general formula (1) of the present invention is not particularly limited, and includes, for example, 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorenes and halogenated compounds. It can be obtained by an etherification reaction in which an alkyl acetate or the like is reacted under alkaline conditions.
  • the reaction formula of the etherification reaction for obtaining the compound of the present invention, 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene, is shown below.
  • 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene the known method for producing a compound having a fluorene skeleton such as 9,9-bis(4-hydroxyphenyl)fluorene can be applied.
  • 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene is prepared by using phenol and 2,3-benzo-9-fluorenone as raw materials and using them as an acid catalyst as shown in the following reaction formula. It can be obtained by a condensation reaction of reacting in the presence of ⁇ Reaction formula of condensation reaction>
  • Specific acid catalysts include, for example, inorganic acids such as hydrochloric acid, hydrogen chloride gas, 60 to 98% sulfuric acid, 85% phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid or triacetic acid. Examples thereof include organic acids such as fluoroacetic acid and solid acids such as heteropolyacid. Hydrogen chloride gas is preferred.
  • the amount of such an acid catalyst used varies depending on the reaction conditions, but in the case of hydrogen chloride gas, for example, after replacing the air in the reaction system with an inert gas such as nitrogen gas, blowing in hydrogen chloride gas, It is preferable that the concentration of hydrogen chloride gas in the gas phase in the reaction vessel is 75 to 100% by volume and the concentration of hydrogen chloride in the reaction solution is saturated. In the case of 35% hydrochloric acid, it is used in an amount of 5 to 70 parts by weight, preferably 10 to 40 parts by weight, more preferably 20 to 30 parts by weight, based on 100 parts by weight of phenol. In the reaction, a cocatalyst may be used together with the acid catalyst, if necessary.
  • thiols when hydrogen chloride gas is used as a catalyst, the reaction rate can be accelerated by using thiols as a co-catalyst.
  • thiols include alkyl mercaptans and mercapto carboxylic acids, preferably alkyl mercaptans having 1 to 12 carbon atoms and mercapto carboxylic acids having 1 to 12 carbon atoms, such as methyl mercaptan and ethyl.
  • alkali metal salts such as mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and their sodium salts, thioacetic acid, ⁇ -mercaptopropionic acid and the like.
  • the amount of thiols used as a cocatalyst is usually in the range of 1 to 30 mol% and preferably in the range of 2 to 10 mol% based on 2,3-benzo-9-fluorenone as a raw material.
  • a reaction solvent may not be used in the reaction, but may be used for reasons such as operability in industrial production and improvement of reaction rate.
  • the reaction solvent is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature and is inert to the reaction, but examples thereof include aromatic hydrocarbons such as toluene and xylene, methanol, ethanol, 1-propanol and 2- Examples thereof include lower aliphatic alcohols such as propanol, organic solvents such as saturated aliphatic hydrocarbons such as hexane, heptane and cyclohexane, water, or a mixture thereof. Of these, aromatic hydrocarbons are preferably used.
  • the reaction temperature varies depending on the type of raw material phenol or acid catalyst, but when hydrogen chloride gas is used as the acid catalyst, it is usually in the range of 10 to 60° C., preferably 25 to 50° C.
  • the reaction pressure is usually under normal pressure, but depending on the boiling point of the organic solvent which may be used, it may be carried out under pressure or under reduced pressure so that the reaction temperature falls within the above range.
  • the reaction time varies depending on the reaction conditions such as the raw material phenol and the type of acid catalyst and the reaction temperature, but it is usually completed in about 1 to 30 hours.
  • the end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis.
  • the end point of the reaction is preferably the time point at which the unreacted 2,3-benzo-9-fluorenone disappears and no increase in the target substance is observed.
  • ⁇ Post-treatment of raw material synthesis reaction> After the completion of the reaction, known post-treatment methods can be applied.
  • an alkaline aqueous solution such as an aqueous solution of sodium hydroxide or an aqueous solution of ammonia is added to the reaction completed liquid to neutralize the acid catalyst.
  • the neutralized reaction mixture is allowed to stand, a solvent that separates from water is added if necessary, and the aqueous layer is separated and removed. Distilled water is added to the obtained oil layer if necessary, and after stirring and washing with water, the operation of separating and removing the water layer is repeated once or more times to remove the neutralized salt, and the excess oil is obtained from the obtained oil layer. Phenol is removed by vacuum distillation.
  • a solvent such as an aromatic hydrocarbon that separates from water is added to the obtained residue to form a uniform solution, which is cooled to separate the precipitated crystal to obtain a crude crystal.
  • halogenated alkyl acetate to be reacted with 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene examples include, for example, methyl chloroacetate, ethyl chloroacetate, n-propyl chloroacetate, isopropyl chloroacetate and chloroacetic acid.
  • Examples include n-butyl, isobutyl chloroacetate, tert-butyl chloroacetate, methyl bromoacetate, ethyl bromoacetate, n-propyl bromoacetate, isopropyl bromoacetate, n-butyl bromoacetate, isobutyl bromoacetate, tert-butyl bromoacetate, etc.
  • methyl chloroacetate or ethyl chloroacetate is preferable.
  • the charged molar ratio of the alkyl halide to the 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene is not particularly limited as long as it is the theoretical value (2.0) or more.
  • the reaction is carried out in the presence of a base, and examples of the base used include triethylamine, pyridine, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like. Of these, sodium carbonate and potassium carbonate are preferable.
  • the molar ratio of the charged base is usually 0.8 to 4 times, preferably 0.85 to 3 times, and more preferably 0.9 to 2 times the molar amount of alkyl halide. The range of quantity.
  • a catalyst may be used, for example, alkali metal bromide such as sodium bromide or potassium bromide, alkali metal iodide salt such as sodium iodide or potassium iodide, ammonium bromide or ammonium iodide, etc. Is mentioned.
  • the amount of the catalyst used is usually in the range of 0.1 to 100% by weight, preferably in the range of 0.1 to 20% by weight, based on 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene. , And more preferably 0.1 to 10% by weight.
  • a reaction solvent may not be used in the reaction, but it is preferably used for reasons such as operability in industrial production and improvement of reaction rate.
  • the reaction solvent is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature and is inert to the reaction.
  • the reaction temperature is usually 25 to 120°C, preferably 40 to 110°C, more preferably 50 to 100°C. If the reaction temperature is high, the yield decreases due to hydrolysis of the produced ester compound, and if the reaction temperature is low, the reaction rate becomes slow, which is not preferable.
  • the reaction pressure is usually under normal pressure, but depending on the boiling point of the organic solvent used, it may be carried out under pressure or under reduced pressure so that the reaction temperature falls within the above range. The end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis.
  • the end point of the reaction is preferably the time point at which the unreacted 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene disappears and no increase in the target substance is observed.
  • the reaction time varies depending on the reaction conditions such as the reaction temperature, but it is usually completed in about 1 to 30 hours.
  • the target product is an ester compound such as 9,9-bis(4-methoxycarbonylmethoxyphenyl)-2,3-benzofluorene
  • the target ester compound is purified from the reaction product mixture. It is preferably isolated, and can be obtained, for example, by performing a post-treatment operation such as neutralization, washing with water, crystallization, filtration, distillation, and separation by column chromatography according to a conventional method. In order to further increase the purity, distillation, recrystallization, or purification by column chromatography may be performed according to a conventional method.
  • the target product is a carboxylic acid salt such as 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene
  • post-reaction treatment such as neutralization and water washing is performed.
  • the carboxylic acid salt can be obtained by subjecting the obtained ester compound to alkaline hydrolysis according to a conventional method without purification of the obtained ester compound as it is as a crude product.
  • the alkali compound used for the alkali hydrolysis is not particularly limited, but for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferable, and the concentration is usually 12 to 60% by weight. It is used as an aqueous solution of.
  • such an alkali compound is usually 2 mol or more, preferably 2. mol, relative to 1 mol of the ester compound such as 9,9-bis(4-methoxycarbonylmethoxyphenyl)-2,3-benzofluorene. It is used in the range of 1 to 10 mol.
  • water is used as a reaction solvent in the hydrolysis reaction, but if necessary, an organic solvent such as an alcohol or a ketone that is miscible with water at an arbitrary ratio, or a mixture of such an organic solvent and water. Solvents are also used. It is also possible to continue to use the reaction solvent used for the above etherification reaction, such as methyl isobutyl ketone or acetonitrile.
  • the reaction temperature for hydrolysis is usually 30 to 100° C., preferably 50 to 90° C., and under such reaction conditions, it is usually completed in about 3 to 5 hours.
  • an alkali metal salt of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene can be obtained.
  • the hydrolysis reaction product is treated with concentrated hydrochloric acid or the like and then treated with water.
  • Immiscible organic solvents for example, aromatic hydrocarbons such as toluene, xylene and benzene, aliphatic hydrocarbons having 5 or more carbon atoms such as hexane, heptane and cyclohexane, and 5 or more carbon atoms such as methyl isobutyl ketone After washing with an aliphatic ketone or the like, it is preferable to purify and isolate. In order to further increase the purity, distillation, recrystallization, and purification by column chromatography may be performed according to a conventional method.
  • novel fluorene compound of the present invention has excellent properties such as high refractive index, high heat resistance, and high solubility in a wide range of organic solvents, and is suitable for resin raw materials (monomers), reaction components of derivatives, etc. Can be used. Therefore, the novel fluorene compound or its derivative of the present invention, or the resin using the novel fluorene compound as a resin raw material (monomer) is, for example, a film (for example, an optical film, a liquid crystal film, an organic EL (electroluminescence) film, or EMI).
  • a film for example, an optical film, a liquid crystal film, an organic EL (electroluminescence) film, or EMI.
  • lens eg pickup lens etc.
  • protective film eg electronic device, protective film for liquid crystal member etc.
  • electric/electronic material carrier transport material, light emitter, organic photoconductor, organic photosensitizer
  • Body thermosensitive recording material, hologram recording material, photochromic material, etc.
  • electric/electronic parts or devices for example, optical disc, ink jet printer, digital paper, organic semiconductor laser, dye-sensitized solar cell, EMI shield film, organic EL element) , Color filters, etc.
  • mechanical parts or devices automobiles, aerospace materials, sensors, sliding members, etc. and the like.
  • the resin of the present invention which is the novel fluorene compound, is excellent in optical properties, and thus is useful for forming a molded article for optical use.
  • a molded article for optics include an optical film.
  • the optical film a polarizing film (and a polarizing element and a polarizing plate protective film constituting the same), a retardation film, an alignment film (alignment film), a viewing angle widening (compensation) film, a diffusion plate (film), a light guide plate, Brightness enhancement film, near infrared absorption film, reflection film, antireflection (AR) film, reflection reduction (LR) film, antiglare (AG) film, transparent conductive (ITO) film, anisotropic conductive film (ACF), electromagnetic wave Examples include a shielding (EMI) film, an electrode substrate film, a barrier film, a color filter layer, a black matrix layer, and an adhesive layer or a release layer between optical films.
  • EMI shielding
  • an electrode substrate film a barrier film,
  • the film is useful as an optical film used for display of equipment.
  • a display member or display
  • an FPD device for example, LCD, monitor, personal computer monitor, television, mobile phone, car navigation, touch panel, etc.
  • PDP touch panel
  • ⁇ Analysis method> Differential scanning calorimetry (DSC) The crystals (2 to 3 mg) were weighed in an aluminum pan and measured using a differential scanning calorimeter (manufactured by Shimadzu Corporation: DSC-60) under the following operating conditions with aluminum oxide as a control. (Operating conditions) Temperature rising rate: 10°C/min Measuring temperature range: 30-260°C Measurement atmosphere: Open, nitrogen 50mL/min 2.
  • Differential thermal and thermogravimetric analysis 8 to 12 mg of the crystal was weighed in an aluminum pan and measured using a differential thermal/thermogravimetric analyzer (DTG-60A manufactured by Shimadzu Corporation) under the following operating conditions. (Operating conditions) Temperature rising rate: 10°C/min Measurement temperature range: 30 ⁇ 300°C Measurement atmosphere: Open, nitrogen 50 mL/min 3.
  • Refractive Index Device Kyoto Denshi Kogyo Co., Ltd.
  • Refractometer RA-500N With respect to the compound to be measured, 3 samples of THF solutions having arbitrary concentrations were prepared, and the refractive index of each solution was measured. The relationship between the concentration and the refractive index was derived from the obtained value, and the value when the concentration was 100% was calculated by extrapolation, and this value was used as the refractive index of the compound.
  • Distilled water was added to the obtained oil layer, and the mixture was stirred, allowed to stand and then the operation of removing the water layer was repeated twice to remove neutralized salts, and excess phenol was removed by vacuum distillation.
  • 1009 g of toluene was added to form a uniform solution, which was cooled to precipitate crystals. Then, the mixture was cooled to 25° C., and the precipitated crystals were filtered off to obtain 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene, which was a target substance.
  • Example 1 Synthesis of 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3-benzofluorene 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene 40.0 g (0.1 mol), 120 g of acetonitrile, 31.7 g of potassium carbonate, and 4.0 g of potassium iodide were charged into a four-necked flask, heated to 70° C., and stirred at the same temperature for 1 hour. Then, 34.3 g (0.28 mol) of ethyl chloroacetate was added dropwise while maintaining the temperature of the reaction solution at 70 to 80°C.
  • Example 2 Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bispotassium salt 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3 obtained in Example 1 above -A solution of 40.0 g of benzofluorene in 120 g of acetonitrile was maintained at 70 to 80°C, 80.1 g of 35% aqueous potassium hydroxide solution was added dropwise, and the mixture was stirred at the same temperature for 2 hours.
  • the reaction solution was cooled to 25° C., and the obtained crystals were separated by filtration and dried to obtain 56.5 g of crystals of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bispotassium salt. did.
  • Example 3 Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene (1) Method for synthesizing seed crystal 9,9-bis(4-carboxymethoxyphenyl)-obtained in Example 2 above 3.0 g of methyl isobutyl ketone and 1 g of concentrated hydrochloric acid were added to 1.0 g of 2,3-benzofluorene bispotassium salt, the temperature was raised to 80° C., and the aqueous layer was removed. To the obtained solution, 6.0 g of heptane was added, cooled and the precipitate was filtered to obtain seed crystals.
  • the target product is various general-purpose solvents for industrial use, specifically, for example, ketone solvents such as acetone and methyl isobutyl ketone (MIBK), alcohol solvents such as methanol and butanol, tetrahydrofuran (THF), cyclopentyl.
  • MIBK acetone and methyl isobutyl ketone
  • alcohol solvents such as methanol and butanol
  • THF tetrahydrofuran
  • cyclopentyl cyclopentyl.
  • ether solvents such as methyl ether (CPME), amide solvents such as N-methylpyrrolidone (NMP), and ester solvents such as ethyl acetate and butyl acetate.
  • NMP N-methylpyrrolidone
  • ester solvents such as ethyl acetate and butyl acetate.
  • the solubility of the obtained 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene in an adduct crystal containing methyl isobutyl ketone in a solvent is shown in Table 1 below. "O" in Table 1 indicates that a 10 wt% solution can be easily prepared at room temperature.
  • Example 5 Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bis sodium salt 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3 obtained in Example 1 above.
  • -A solution of 10.0 g of benzofluorene in 30 g of acetonitrile was maintained at 70 to 80°C, 5.0 g of water and 7.3 g of 48% aqueous sodium hydroxide solution were added dropwise, and the mixture was stirred at the same temperature for 2 hours.
  • the reaction system was returned to normal pressure with nitrogen, and then 405 g (3.3 mol) of ethyl chloroacetate was added dropwise while maintaining the temperature of the reaction solution at 90 to 100°C. After stirring at the same temperature for 18 hours, 1900 g of water was added and the temperature was raised to 80° C., and then the aqueous layer was removed. 2200 g of methyl isobutyl ketone was added to the reaction solution, and then 333 g of a 48% sodium hydroxide aqueous solution was added dropwise while maintaining the temperature of the reaction solution at 70 to 80° C., and the mixture was stirred at the same temperature for 5 hours.
  • Example 7 Since adduct crystals were obtained in Example 3 above, crystalline polymorphs of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene were examined in Examples 7 to 10 below.
  • TMG differential thermal analysis/thermogravimetric analysis
  • Example 8> 2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above, 8.0 g of toluene and 1.0 g of water were added, and the mixture was stirred with heating under reflux for 1 hour. Crystals were obtained by cooling to °C and filtering.
  • FIG. 6 shows a diagram showing a differential thermal and thermogravimetric analysis (DTG) curve of the obtained crystal. From the differential thermal/thermogravimetric analysis (DTG) curve shown in FIG. 6, it was confirmed that the crystal had a single peak top at 202° C., and the adduct crystal containing the methyl isobutyl ketone obtained in Example 3 was used. In contrast, no weight loss was observed at the melting point, so it is considered to be a single crystal.
  • TMG thermogravimetric analysis
  • Example 9 > 2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above and 4.0 g of butyl acetate were stirred at 90° C. for 1 hour to form a uniform solution. After that, 4.0 g of heptane was added and the mixture was cooled to 25° C. and filtered to obtain crystals.
  • FIG. 7 shows a diagram showing a differential thermal and thermogravimetric analysis (DTG) curve of the obtained crystal. From the differential thermal/thermogravimetric analysis (DTG) curve shown in FIG.
  • Example 7 it was confirmed that the crystal had a single peak top at 198° C., and the adduct crystal containing the methyl isobutyl ketone obtained in Example 3 was obtained. In contrast, no weight loss was observed at the melting point, so it is considered to be a single crystal.
  • Example 10 After 2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above and 8.0 g of acetonitrile were stirred at 80° C. for 1 hour, a uniform solution was obtained. Crystals were obtained by cooling to 25° C. and filtering.
  • FIG. 8 shows a diagram showing a differential thermal and thermogravimetric analysis (DTG) curve of the obtained crystal. From the differential thermal/thermogravimetric analysis (DTG) curve shown in FIG. 8, it was confirmed that the crystals had peak tops at 94° C. and 145° C. It was also confirmed that acetonitrile was released from the adduct at the peak top of 94°C.
  • TMG thermogravimetric analysis
  • ketone-based solvents such as acetone and methyl isobutyl ketone (MIBK), methanol, butanol, etc.
  • MIBK acetone and methyl isobutyl ketone
  • methanol methanol
  • butanol methanol
  • excellent solubility in alcoholic solvents, tetrahydrofuran (THF), ether solvents such as cyclopentyl methyl ether (CPME), amide solvents such as N-methylpyrrolidone (NMP), ester solvents such as ethyl acetate and butyl acetate Was confirmed.
  • Table 2 shows the solubility of a single crystal of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in a solvent.
  • "O" in Table 2 indicates that a 10 wt% solution can be easily prepared at room temperature. From the results of Table 1 and Table 2, it was confirmed that the fluorene compound represented by the general formula (1) of the present invention has no difference in solubility in a solvent between a single crystal and an adduct crystal. It is considered that this is largely related to the solvent solubility of the fluorene compound itself represented by the general formula (1) of the present invention.

Abstract

This invention addresses the problem of providing a novel fluorene compound, which has a 2,3-benzofluorene skeleton, is highly versatile as a "dicarboxylic acid component" of a resin starting material, has a high refractive index, and is highly soluble in organic solvents. This problem can be solved by a fluorene compound represented by general formula (1).

Description

新規フルオレン化合物New fluorene compound
 本発明は、新規フルオレン化合物に関する。詳しくは、2,3-ベンゾフルオレン骨格を有する新規フルオレン化合物に関する。 The present invention relates to a novel fluorene compound. Specifically, it relates to a novel fluorene compound having a 2,3-benzofluorene skeleton.
 従来、9,9-ビス(4-ヒドロキシフェニル)フルオレン等のフルオレン骨格を有する化合物群は、耐熱性や光学特性等において優れた機能を発揮することから、ポリカーボネート樹脂等の熱可塑性合成樹脂原料、エポキシ樹脂等の熱硬化性樹脂原料、酸化防止剤原料、感熱記録体原料、感光性レジスト原料などの用途で用いられている。中でも、下記化学式
Figure JPOXMLDOC01-appb-C000002
で表される9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンから製造される樹脂は、光学特性に優れるとして着目されている(例えば、特許文献1等)。
 この9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンや、これに近年汎用されているヒドロキシエトキシ基を導入した化合物、例えば、9,9-ビス{4-(2-ヒドロキシエトキシ)フェニル}-2,3-ベンゾフルオレンは、「ジオール成分」として、ポリカーボネート樹脂原料の他、ポリエステル樹脂やポリアリーレート樹脂などの樹脂原料として利用または注目されている。
 これら化合物の例のように、樹脂原料として「ジオール成分」の開発は盛んに行われ、望む樹脂性能に応じた「ジオール成分」の提案は多くなされている。
 一方、ポリエステル樹脂やポリアリーレート樹脂などの樹脂原料として、「ジオール成分」と「ジカルボン酸成分」の2成分が必要であるにも関わらず、「ジカルボン酸成分」の開発は遅れており、選択できる「ジカルボン酸成分」の種類は少ないという問題があった。
Conventionally, a compound group having a fluorene skeleton such as 9,9-bis(4-hydroxyphenyl)fluorene exhibits excellent functions in heat resistance, optical properties, etc., and therefore, a thermoplastic synthetic resin raw material such as a polycarbonate resin, It is used in applications such as raw materials for thermosetting resins such as epoxy resins, raw materials for antioxidants, raw materials for thermosensitive recording materials, and raw materials for photosensitive resists. Among them, the following chemical formula
Figure JPOXMLDOC01-appb-C000002
A resin produced from 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene represented by the following is noted as having excellent optical properties (for example, Patent Document 1).
This 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene or a compound in which a hydroxyethoxy group widely used in recent years is introduced, for example, 9,9-bis{4-(2-hydroxy) Ethoxy)phenyl}-2,3-benzofluorene has been utilized or attracted attention as a "diol component" as a resin raw material such as a polyester resin and a polyarylate resin in addition to a polycarbonate resin raw material.
Like the examples of these compounds, "diol component" has been actively developed as a resin raw material, and many proposals for "diol component" according to desired resin performance have been made.
On the other hand, the development of the “dicarboxylic acid component” has been delayed due to the fact that two components, a “diol component” and a “dicarboxylic acid component”, are required as raw materials for resins such as polyester resin and polyarylate resin. There is a problem that there are few kinds of "dicarboxylic acid components" that can be formed.
特開2017-036249号公報JP, 2017-036249, A
 本発明は、上述した事情を背景としてなされたものであって、樹脂原料の「ジカルボン酸成分」として汎用性が高く、高い屈折率を有し、さらに、有機溶媒に対する優れた溶解性をも有する2,3-ベンゾフルオレン骨格を有する新規なフルオレン化合物の提供を課題とする。 The present invention has been made under the circumstances described above, has high versatility as a "dicarboxylic acid component" of a resin raw material, has a high refractive index, and also has excellent solubility in an organic solvent. An object is to provide a novel fluorene compound having a 2,3-benzofluorene skeleton.
 本発明者は、上述の課題解決のために鋭意検討した結果、9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン等の2,3-ベンゾフルオレン骨格を有するフルオレン化合物が、新規化合物であり、その化学構造から樹脂原料の「ジカルボン酸成分」として汎用性が高いことはもとより、高屈折率を有すること、さらには、有機溶媒に対する優れた溶解性をも有することを見出し、本発明を完成した。 The present inventor has conducted extensive studies to solve the above-mentioned problems, and found that a fluorene compound having a 2,3-benzofluorene skeleton such as 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene It is a novel compound, and because of its chemical structure, it has high versatility as a "dicarboxylic acid component" of a resin raw material, has a high refractive index, and further has excellent solubility in organic solvents. The present invention has been completed.
 本発明は以下の通りである。
1.下記一般式(1)で表されるフルオレン化合物。
Figure JPOXMLDOC01-appb-C000003
(式中、RおよびRは、各々独立して水素原子、炭素原子数1~6のアルキル基、アルカリ金属原子、アルカリ土類金属原子、RおよびRは、各々独立して炭素原子数1~6のアルキル基、フェニル基、RおよびRは、各々独立して水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基、炭素原子数6~12のアリール基を示し、a、bおよびcは各々独立して0~4の整数、dは0~6の整数を示す。)
The present invention is as follows.
1. A fluorene compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkali metal atom, an alkaline earth metal atom, and R 3 and R 4 are independently carbon atoms. An alkyl group having 1 to 6 atoms, a phenyl group, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon (Indicated by an alkoxy group having 1 to 6 atoms and an aryl group having 6 to 12 carbon atoms, a, b and c are each independently an integer of 0 to 4 and d is an integer of 0 to 6.)
 本発明によれば、上記一般式(1)で表されるとおり、末端に2つのカルボン酸/カルボン酸エステルを有する化学構造を有する新規な「ジカルボン酸成分」として、新たな樹脂原料を提供することができる。
 後述するとおり、本発明化合物は高屈折率を有する化合物であることから、樹脂原料の「ジカルボン酸成分」として使用することにより、高屈折率な樹脂を得ることができ、光学特性に優れた樹脂原料として期待できる。
 特に、光学用途の樹脂原料として使用できる「ジカルボン酸成分」は、その種類が少ない状況を鑑みると、本発明の新規フルオレン化合物は、その光学特性、耐熱性、溶媒溶解性などの性能から、工業用途において非常に有用な新規化合物であると考えられる。
According to the present invention, as represented by the above general formula (1), a new resin raw material is provided as a new “dicarboxylic acid component” having a chemical structure having two carboxylic acids/carboxylic acid esters at the terminals. be able to.
As will be described later, since the compound of the present invention is a compound having a high refractive index, by using it as a “dicarboxylic acid component” of a resin raw material, a resin having a high refractive index can be obtained, and a resin having excellent optical properties can be obtained. It can be expected as a raw material.
In particular, the "dicarboxylic acid component" that can be used as a resin raw material for optical applications is a new fluorene compound of the present invention because of its optical properties, heat resistance, solvent solubility, etc. It is considered to be a novel compound that is very useful in applications.
実施例1で得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。FIG. 3 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 1. 実施例3で得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。6 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 3. FIG. 実施例3で得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。FIG. 3 is a diagram showing a differential thermal/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 3. 実施例4で得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。FIG. 6 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 4. 実施例7で得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。FIG. 7 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 7. 実施例8で得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。FIG. 8 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 8. 実施例9で得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。FIG. 9 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 9. 実施例10で得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。FIG. 6 is a diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the crystal obtained in Example 10.
 以下、本発明を詳細に説明する。
 本発明の新規フルオレンは下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、RおよびRは、各々独立して水素原子、炭素原子数1~6のアルキル基、アルカリ金属原子、アルカリ土類金属原子、RおよびRは、各々独立して炭素原子数1~6のアルキル基、フェニル基、RおよびRは、各々独立して水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基、炭素原子数6~12のアリール基を示し、a、bおよびcは各々独立して0~4の整数、dは0~6の整数を示す。)
Hereinafter, the present invention will be described in detail.
The novel fluorene of the present invention is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkali metal atom, an alkaline earth metal atom, and R 3 and R 4 are independently carbon atoms. An alkyl group having 1 to 6 atoms, a phenyl group, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon (Indicated by an alkoxy group having 1 to 6 atoms and an aryl group having 6 to 12 carbon atoms, a, b and c are each independently an integer of 0 to 4 and d is an integer of 0 to 6.)
 一般式(1)において、R~Rのいずれか1つ以上が炭素原子数1~6のアルキル基である場合、好ましいアルキル基としては、直鎖状または分岐鎖状の炭素原子数1~4のアルキル基であり、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。
 R、Rの1つまたは両方が炭素原子数2~6のアルケニル基である場合、好ましいアルケニル基としては、直鎖状または分岐鎖状の炭素原子数2~4のアルケニル基であり、具体的には、ビニル基、1-メチルエテニル基、プロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基が挙げられる。
 R、Rの1つまたは両方が炭素原子数1~6のアルコキシ基である場合、好ましいアルコキシ基としては、直鎖状または分岐鎖状の炭素原子数1~4のアルコキシ基であり、具体的には、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基が挙げられる。
 R、Rの1つまたは両方が炭素原子数6~12のアリール基である場合、フェニル基、ナフチル基が好ましい。
In the general formula (1), when any one or more of R 1 to R 6 is an alkyl group having 1 to 6 carbon atoms, a preferable alkyl group is a linear or branched chain having 1 carbon atom. Alkyl groups of 4 to 4, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group. To be
When one or both of R 5 and R 6 is an alkenyl group having 2 to 6 carbon atoms, a preferable alkenyl group is a linear or branched alkenyl group having 2 to 4 carbon atoms, Specific examples thereof include a vinyl group, a 1-methylethenyl group, a propenyl group, a butenyl group, an isobutenyl group, a pentenyl group and a hexenyl group.
When one or both of R 5 and R 6 is an alkoxy group having 1 to 6 carbon atoms, a preferable alkoxy group is a linear or branched alkoxy group having 1 to 4 carbon atoms, Specific examples thereof include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group and t-butoxy group.
When one or both of R 5 and R 6 are an aryl group having 6 to 12 carbon atoms, a phenyl group and a naphthyl group are preferable.
 一般式(1)において、RおよびRは、各々独立して水素原子、炭素原子数1~6のアルキル基、アルカリ金属原子が好ましく、各々独立して水素原子、炭素原子数1~4のアルキル基、リチウム原子、カリウム原子、ナトリウム原子がより好ましく、各々独立して水素原子、メチル基、エチル基がさらに好ましい。中でも、RおよびRが共に水素原子であることが特に好ましい。
 一般式(1)において、RおよびRは、各々独立して炭素原子数1~4のアルキル基、フェニル基が好ましく、各々独立してメチル基、フェニル基であることがより好ましい。aおよびbは各々独立して0、1、2、3が好ましく、各々独立して0、1がより好ましく、中でもa、b共に0であることが特に好ましい。また、RとRの置換位置は、2位、3位又は5位が好ましく、3位または/及び5位がより好ましい。
 一般式(1)において、RおよびRは、各々独立してハロゲン原子、炭素原子数1~4のアルキル基、炭素原子数2~4のアルケニル基、炭素原子数1~4のアルコキシ基、フェニル基、ナフチル基が好ましい。cおよびdは各々独立して0、1が好ましく、中でもc、d共に0であることがより好ましい。
In the general formula (1), R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkali metal atom, and each independently being a hydrogen atom or 1 to 4 carbon atoms. Is more preferable, a lithium atom, a potassium atom and a sodium atom are more preferable, and a hydrogen atom, a methyl group and an ethyl group are each independently preferable. Among them, it is particularly preferable that both R 1 and R 2 are hydrogen atoms.
In the general formula (1), R 3 and R 4 are preferably each independently an alkyl group having 1 to 4 carbon atoms or a phenyl group, and more preferably each independently a methyl group or a phenyl group. Each of a and b is preferably 0, 1, 2, or 3, independently, more preferably 0 or 1, and particularly preferably both a and b are 0. Further, the substitution position of R 3 and R 4 is preferably 2-position, 3-position or 5-position, and more preferably 3-position and/or 5-position.
In the general formula (1), R 5 and R 6 are each independently a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms. , Phenyl group and naphthyl group are preferred. It is preferable that c and d are independently 0 and 1, and it is more preferable that both c and d are 0.
 上記一般式(1)で表されるフルオレン化合物の好ましい例として、下記化学式で表される9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステルが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 その他の好ましい化合物としては、
 9,9-ビス[(4-カルボキシメトキシ-3-メチル)フェニル]-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステル
 9,9-ビス[(4-カルボキシメトキシ-2-メチル)フェニル]-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステル
 9,9-ビス[(4-カルボキシメトキシ-3、5-ジメチル)フェニル]-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステル
 9,9-ビス[(4-カルボキシメトキシ-2,5-ジメチル)フェニル]-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステル
 9,9-ビス[(4-カルボキシメトキシ-3-フェニル)フェニル]-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステル
 9,9-ビス[(4-カルボキシメトキシ-2-フェニル)フェニル]-2,3-ベンゾフルオレンや、そのカリウム塩、ナトリウム塩、メチルエステル、エチルエステル
が挙げられる。
Preferred examples of the fluorene compound represented by the above general formula (1) include 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene represented by the following chemical formula, potassium salts and sodium salts thereof. , Methyl ester and ethyl ester.
Figure JPOXMLDOC01-appb-C000005
Other preferred compounds include
9,9-bis[(4-carboxymethoxy-3-methyl)phenyl]-2,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy -2-Methyl)phenyl]-2,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy-3,5-dimethyl)phenyl]-2 ,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy-2,5-dimethyl)phenyl]-2,3-benzofluorene and its potassium salt Salt, sodium salt, methyl ester, ethyl ester 9,9-bis[(4-carboxymethoxy-3-phenyl)phenyl]-2,3-benzofluorene, its potassium salt, sodium salt, methyl ester, ethyl ester 9 , 9-bis[(4-carboxymethoxy-2-phenyl)phenyl]-2,3-benzofluorene, its potassium salt, sodium salt, methyl ester and ethyl ester.
<合成方法について>
 本発明の上記一般式(1)で表されるフルオレン化合物の合成方法については、特に制限はなく、例えば、9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレン類とハロゲン化酢酸アルキル等を、アルカリ条件下で反応させるエーテル化反応により得られる。
 本発明化合物である9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンを得るエーテル化反応の反応式を、下記に示す。
<エーテル化反応の反応式>
Figure JPOXMLDOC01-appb-C000006
 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレン類は、公知の9,9-ビス(4-ヒドロキシフェニル)フルオレン等のフルオレン骨格を有する化合物の製造方法を適用できるが、例えば、9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンは、下記反応式に示すように、フェノールと2,3-ベンゾ-9-フルオレノンとを原料とし、これらを酸触媒の存在下に反応させる縮合反応により得ることができる。
<縮合反応の反応式>
Figure JPOXMLDOC01-appb-C000007
<About synthesis method>
The method for synthesizing the fluorene compound represented by the above general formula (1) of the present invention is not particularly limited, and includes, for example, 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorenes and halogenated compounds. It can be obtained by an etherification reaction in which an alkyl acetate or the like is reacted under alkaline conditions.
The reaction formula of the etherification reaction for obtaining the compound of the present invention, 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene, is shown below.
<Reaction formula of etherification reaction>
Figure JPOXMLDOC01-appb-C000006
For 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene, the known method for producing a compound having a fluorene skeleton such as 9,9-bis(4-hydroxyphenyl)fluorene can be applied. For example, 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene is prepared by using phenol and 2,3-benzo-9-fluorenone as raw materials and using them as an acid catalyst as shown in the following reaction formula. It can be obtained by a condensation reaction of reacting in the presence of
<Reaction formula of condensation reaction>
Figure JPOXMLDOC01-appb-C000007
<原料合成の1例について-縮合反応->
 まずは、本発明化合物の原料合成の1例として、フェノールと2,3-ベンゾ-9-フルオレノンとの縮合反応による、9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンの合成方法について説明する。
 2,3-ベンゾ-9-フルオレノンに対するフェノールの仕込みモル比は、理論値(2.0)以上であれば、特に限定されるものではないが、通常2~20倍モル量の範囲、好ましくは3~10倍モル量の範囲で用いられる。
 使用する酸触媒は特に制限されず、公知の酸触媒を使用することができる。具体的な酸触媒としては、例えば、塩酸、塩化水素ガス、60~98%硫酸、85%リン酸等の無機酸、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、蟻酸、トリクロロ酢酸またはトリフルオロ酢酸等の有機酸、ヘテロポリ酸等の固体酸等を挙げることができる。好ましくは 塩化水素ガスである。このような酸触媒の使用量は反応条件によって好適な量は異なるが、例えば塩化水素ガスの場合は、反応系の空気を窒素ガス等の不活性ガスで置換した後、塩化水素ガスを吹き込み、反応容器内の気相中の塩化水素ガス濃度を75~100容量%とし、反応液中の塩化水素濃度を飽和濃度にするのがよい。35%塩酸の場合はフェノール100重量部に対して、5~70重量部の範囲、好ましくは、10~40重量部の範囲、より好ましくは20~30重量部の範囲で用いられる。
 反応に際して、酸触媒と共に必要に応じて助触媒を用いてもよい。例えば、塩化水素ガスを触媒として用いる場合、助触媒としてチオール類を用いることによって、反応速度を加速させることができる。このようなチオール類としては、アルキルメルカプタン類やメルカプトカルボン酸類が挙げられ、好ましくは、炭素数1~12のアルキルメルカプタン類や炭素数1~12のメルカプトカルボン酸類であり、例えば、メチルメルカプタン、エチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン等やそれらのナトリウム塩等のようなアルカリ金属塩、チオ酢酸、β-メルカプトプロピオン酸等が挙げられる。また、これらは単独または二種類以上の組み合わせで使用できる。助触媒としてのチオール類の使用量は、原料の2,3-ベンゾ-9-フルオレノンに対し通常1~30モル%の範囲、好ましくは2~10モル%の範囲で用いられる。
<One Example of Raw Material Synthesis-Condensation Reaction->
First, as an example of raw material synthesis of the compound of the present invention, synthesis of 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene by condensation reaction of phenol and 2,3-benzo-9-fluorenone The method will be described.
The molar ratio of the phenol charged to 2,3-benzo-9-fluorenone is not particularly limited as long as it is the theoretical value (2.0) or more, but it is usually in the range of 2 to 20 times the molar amount, preferably It is used in the range of 3 to 10 times the molar amount.
The acid catalyst used is not particularly limited, and a known acid catalyst can be used. Specific acid catalysts include, for example, inorganic acids such as hydrochloric acid, hydrogen chloride gas, 60 to 98% sulfuric acid, 85% phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid or triacetic acid. Examples thereof include organic acids such as fluoroacetic acid and solid acids such as heteropolyacid. Hydrogen chloride gas is preferred. The amount of such an acid catalyst used varies depending on the reaction conditions, but in the case of hydrogen chloride gas, for example, after replacing the air in the reaction system with an inert gas such as nitrogen gas, blowing in hydrogen chloride gas, It is preferable that the concentration of hydrogen chloride gas in the gas phase in the reaction vessel is 75 to 100% by volume and the concentration of hydrogen chloride in the reaction solution is saturated. In the case of 35% hydrochloric acid, it is used in an amount of 5 to 70 parts by weight, preferably 10 to 40 parts by weight, more preferably 20 to 30 parts by weight, based on 100 parts by weight of phenol.
In the reaction, a cocatalyst may be used together with the acid catalyst, if necessary. For example, when hydrogen chloride gas is used as a catalyst, the reaction rate can be accelerated by using thiols as a co-catalyst. Examples of such thiols include alkyl mercaptans and mercapto carboxylic acids, preferably alkyl mercaptans having 1 to 12 carbon atoms and mercapto carboxylic acids having 1 to 12 carbon atoms, such as methyl mercaptan and ethyl. Examples thereof include alkali metal salts such as mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and their sodium salts, thioacetic acid, β-mercaptopropionic acid and the like. Moreover, these can be used individually or in combination of 2 or more types. The amount of thiols used as a cocatalyst is usually in the range of 1 to 30 mol% and preferably in the range of 2 to 10 mol% based on 2,3-benzo-9-fluorenone as a raw material.
 反応に際して反応溶媒は使用しなくてもよいが、工業的生産時の操作性や反応速度の向上などの理由で使用してもよい。反応溶媒としては、反応温度において反応容器から留出せず、反応に不活性であれば特に制限はないが、例えば、トルエン、キシレン等の芳香族炭化水素、メタノール、エタノール、1-プロパノール、2-プロパノール等の低級脂肪族アルコール、ヘキサン、ヘプタン、シクロヘキサン等の飽和脂肪族炭化水素類等の有機溶媒や水またはこれらの混合物が挙げられる。これらのうち、芳香族炭化水素が好ましく用いられる。
 反応温度は、原料のフェノールや酸触媒の種類により異なるが、酸触媒として塩化水素ガスを使用する場合は、通常10~60℃、好ましくは25~50℃の範囲である。反応圧力は、通常、常圧下で行われるが、用いてもよい有機溶媒の沸点によっては、反応温度が前記範囲内になるように、加圧または減圧下で行ってもよい。
 反応時間は、原料のフェノール、酸触媒の種類や、反応温度等の反応条件により異なるが、通常1~30時間程度で終了する。
 反応の終点は、液体クロマトグラフィーまたはガスクロマトグラフィー分析にて確認することができる。未反応の2,3-ベンゾ-9-フルオレノンが消失し、目的物の増加が認められなくなった時点を反応の終点とするのが好ましい。
A reaction solvent may not be used in the reaction, but may be used for reasons such as operability in industrial production and improvement of reaction rate. The reaction solvent is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature and is inert to the reaction, but examples thereof include aromatic hydrocarbons such as toluene and xylene, methanol, ethanol, 1-propanol and 2- Examples thereof include lower aliphatic alcohols such as propanol, organic solvents such as saturated aliphatic hydrocarbons such as hexane, heptane and cyclohexane, water, or a mixture thereof. Of these, aromatic hydrocarbons are preferably used.
The reaction temperature varies depending on the type of raw material phenol or acid catalyst, but when hydrogen chloride gas is used as the acid catalyst, it is usually in the range of 10 to 60° C., preferably 25 to 50° C. The reaction pressure is usually under normal pressure, but depending on the boiling point of the organic solvent which may be used, it may be carried out under pressure or under reduced pressure so that the reaction temperature falls within the above range.
The reaction time varies depending on the reaction conditions such as the raw material phenol and the type of acid catalyst and the reaction temperature, but it is usually completed in about 1 to 30 hours.
The end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis. The end point of the reaction is preferably the time point at which the unreacted 2,3-benzo-9-fluorenone disappears and no increase in the target substance is observed.
<原料合成反応の後処理について>
 反応の終了後に、公知の後処理方法を適用することができる。例えば、反応終了液に、酸触媒を中和するために、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液を加えて、酸触媒を中和する。中和した反応混合液を静置し、必要に応じて水と分離する溶媒を加えて、水層を分離除去する。必要に応じて得られた油層に蒸留水を加え、撹拌して水洗した後、水層を分離除去する操作を1回乃至複数回繰り返し行い中和塩を除去し、得られた油層から余剰のフェノールを減圧蒸留により除去する。得られた残渣に、水と分離する芳香族炭化水素等の溶媒を加えて均一の溶液とし、冷却して析出した結晶を分離して粗結晶を得ることができる。
<Post-treatment of raw material synthesis reaction>
After the completion of the reaction, known post-treatment methods can be applied. For example, in order to neutralize the acid catalyst, an alkaline aqueous solution such as an aqueous solution of sodium hydroxide or an aqueous solution of ammonia is added to the reaction completed liquid to neutralize the acid catalyst. The neutralized reaction mixture is allowed to stand, a solvent that separates from water is added if necessary, and the aqueous layer is separated and removed. Distilled water is added to the obtained oil layer if necessary, and after stirring and washing with water, the operation of separating and removing the water layer is repeated once or more times to remove the neutralized salt, and the excess oil is obtained from the obtained oil layer. Phenol is removed by vacuum distillation. A solvent such as an aromatic hydrocarbon that separates from water is added to the obtained residue to form a uniform solution, which is cooled to separate the precipitated crystal to obtain a crude crystal.
<本発明化合物の合成例について-エーテル化反応->
 次いで、本発明化合物の合成例として、9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンから、9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンを得るエーテル化反応について説明する。
 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンと反応させるハロゲン化酢酸アルキルとしては、例えば、クロロ酢酸メチル、クロロ酢酸エチル、クロロ酢酸n-プロピル、クロロ酢酸イソプロピル、クロロ酢酸n-ブチル、クロロ酢酸イソブチル、クロロ酢酸ターシャリーブチル、ブロモ酢酸メチル、ブロモ酢酸エチル、ブロモ酢酸n-プロピル、ブロモ酢酸イソプロピル、ブロモ酢酸n-ブチル、ブロモ酢酸イソブチル、ブロモ酢酸ターシャリーブチル等が挙げられる。中でも、クロロ酢酸メチルまたはクロロ酢酸エチルが好ましい。
 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンに対するハロゲン化酢酸アルキルの仕込みモル比は、理論値(2.0)以上であれば、特に限定されるものではないが、通常2~20倍モル量の範囲、好ましくは2~10倍モル量の範囲、より好ましくは2~6倍モル量の範囲で用いられる。
 反応は塩基存在下で行うが、使用する塩基としては、トリエチルアミン、ピリジン、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどが挙げられる。中でも、炭酸ナトリウムや炭酸カリウムが好ましい。塩基の仕込みモル比は、ハロゲン化酢酸アルキルに対して、通常0.8~4倍モル量の範囲、好ましくは0.85~3倍モル量の範囲、より好ましくは0.9~2倍モル量の範囲である。
 また、触媒を使用してもよく、例えば、臭化ナトリウムや臭化カリウム等の臭化アルカリ金属塩、ヨウ化ナトリウムやヨウ化カリウム等のヨウ化アルカリ金属塩、臭化アンモニウムやヨウ化アンモニウム等が挙げられる。触媒の使用量は、9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンに対して、通常0.1~100重量%の範囲、好ましくは0.1~20重量%の範囲、より好ましくは0.1~10重量%の範囲である。
<Synthesis Examples of Compounds of the Present Invention-Etherification Reaction->
Next, as a synthesis example of the compound of the present invention, 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene was prepared from 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene. The etherification reaction to be obtained will be described.
Examples of the halogenated alkyl acetate to be reacted with 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene include, for example, methyl chloroacetate, ethyl chloroacetate, n-propyl chloroacetate, isopropyl chloroacetate and chloroacetic acid. Examples include n-butyl, isobutyl chloroacetate, tert-butyl chloroacetate, methyl bromoacetate, ethyl bromoacetate, n-propyl bromoacetate, isopropyl bromoacetate, n-butyl bromoacetate, isobutyl bromoacetate, tert-butyl bromoacetate, etc. To be Of these, methyl chloroacetate or ethyl chloroacetate is preferable.
The charged molar ratio of the alkyl halide to the 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene is not particularly limited as long as it is the theoretical value (2.0) or more. It is usually used in a range of 2 to 20 times the molar amount, preferably in the range of 2 to 10 times the molar amount, and more preferably in the range of 2 to 6 times the molar amount.
The reaction is carried out in the presence of a base, and examples of the base used include triethylamine, pyridine, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like. Of these, sodium carbonate and potassium carbonate are preferable. The molar ratio of the charged base is usually 0.8 to 4 times, preferably 0.85 to 3 times, and more preferably 0.9 to 2 times the molar amount of alkyl halide. The range of quantity.
Further, a catalyst may be used, for example, alkali metal bromide such as sodium bromide or potassium bromide, alkali metal iodide salt such as sodium iodide or potassium iodide, ammonium bromide or ammonium iodide, etc. Is mentioned. The amount of the catalyst used is usually in the range of 0.1 to 100% by weight, preferably in the range of 0.1 to 20% by weight, based on 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene. , And more preferably 0.1 to 10% by weight.
 反応に際して反応溶媒は使用しなくてもよいが、工業的生産時の操作性や反応速度の向上などの理由で使用することが好ましい。反応溶媒としては、反応温度において反応容器から留出せず、反応に不活性であれば特に制限はないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で用いてもよいし、また、極性を調整するために適宜2種以上を併用してもよい。中でも、メチルイソブチルケトン、アセトニトリルが好ましい。
 反応温度は、通常25~120℃、好ましくは40~110℃の範囲、より好ましくは50~100℃の範囲である。反応温度が高いと、生成したエステル化合物の加水分解等により収率が低下するし、反応温度が低いと反応速度が遅くなり好ましくない。反応圧力は、通常、常圧下で行われるが、使用する有機溶媒の沸点によっては、反応温度が前記範囲内になるように、加圧または減圧下で行ってもよい。
 反応の終点は、液体クロマトグラフィーまたはガスクロマトグラフィー分析にて確認することができる。未反応の9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンが消失し、目的物の増加が認められなくなった時点を反応の終点とするのが好ましい。反応時間は、反応温度等の反応条件により異なるが、通常1~30時間程度で終了する。
A reaction solvent may not be used in the reaction, but it is preferably used for reasons such as operability in industrial production and improvement of reaction rate. The reaction solvent is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature and is inert to the reaction. For example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones, tetrahydrofuran, 1,4- Examples thereof include ethers such as dioxane, 1,3-dioxane and diethoxyethane, aprotic polar solvents such as acetonitrile, dimethylsulfoxide, dimethylformamide and N-methylpyrrolidone. These organic solvents may be used alone or in combination of two or more kinds in order to adjust the polarity. Of these, methyl isobutyl ketone and acetonitrile are preferable.
The reaction temperature is usually 25 to 120°C, preferably 40 to 110°C, more preferably 50 to 100°C. If the reaction temperature is high, the yield decreases due to hydrolysis of the produced ester compound, and if the reaction temperature is low, the reaction rate becomes slow, which is not preferable. The reaction pressure is usually under normal pressure, but depending on the boiling point of the organic solvent used, it may be carried out under pressure or under reduced pressure so that the reaction temperature falls within the above range.
The end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis. The end point of the reaction is preferably the time point at which the unreacted 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene disappears and no increase in the target substance is observed. The reaction time varies depending on the reaction conditions such as the reaction temperature, but it is usually completed in about 1 to 30 hours.
 目的物が9,9-ビス(4-メトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレン等のエステル化合物である場合には、エーテル化反応終了後、反応生成混合物から目的とするエステル化合物を精製、単離するのが好ましく、例えば常法に従い、反応終了後、中和、水洗、晶析、ろ過、蒸留、カラムクロマトグラフィーによる分離などの後処理操作を行うことで、得ることができる。さらに純度を高めるため、常法に従い蒸留や再結晶、カラムクロマトグラフィーによる精製を行ってもよい。
 また、目的物が9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン等のカルボン酸塩である場合には、エーテル化反応終了後、中和、水洗等の反応後処理を行い、得られたエステル化合物を精製することなく、粗生成物のまま、定法に従いアルカリ加水分解することにより、カルボン酸塩を得ることができる。ここに、アルカリ加水分解に使用するアルカリ化合物は、特に、限定されるものではないが、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が好ましく、通常、12~60重量%濃度の水溶液として用いられる。また、このようなアルカリ化合物は、9,9-ビス(4-メトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレン等のエステル化合物1モルに対して、通常、2モル以上、好ましくは、2.1~10モルの範囲で用いられる。通常、加水分解反応は水を反応溶媒として用いられるが、必要に応じて、水と任意の割合で混和するアルコールやケトンのような有機溶媒や、また、このような有機溶媒と水との混合溶媒も用いられる。また、上記エーテル化反応に使用した、メチルイソブチルケトンやアセトニトリル等の反応溶媒を引き続き利用することも可能である。加水分解の反応温度は、通常、30~100℃、好ましくは、50~90℃の範囲の温度で行われ、このような反応条件の下では、通常、3~5時間程度で完了する。この加水分解反応により、9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンのアルカリ金属塩を得ることができる。
When the target product is an ester compound such as 9,9-bis(4-methoxycarbonylmethoxyphenyl)-2,3-benzofluorene, after the etherification reaction is completed, the target ester compound is purified from the reaction product mixture. It is preferably isolated, and can be obtained, for example, by performing a post-treatment operation such as neutralization, washing with water, crystallization, filtration, distillation, and separation by column chromatography according to a conventional method. In order to further increase the purity, distillation, recrystallization, or purification by column chromatography may be performed according to a conventional method.
When the target product is a carboxylic acid salt such as 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene, after the etherification reaction, post-reaction treatment such as neutralization and water washing is performed. The carboxylic acid salt can be obtained by subjecting the obtained ester compound to alkaline hydrolysis according to a conventional method without purification of the obtained ester compound as it is as a crude product. Here, the alkali compound used for the alkali hydrolysis is not particularly limited, but for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferable, and the concentration is usually 12 to 60% by weight. It is used as an aqueous solution of. In addition, such an alkali compound is usually 2 mol or more, preferably 2. mol, relative to 1 mol of the ester compound such as 9,9-bis(4-methoxycarbonylmethoxyphenyl)-2,3-benzofluorene. It is used in the range of 1 to 10 mol. Usually, water is used as a reaction solvent in the hydrolysis reaction, but if necessary, an organic solvent such as an alcohol or a ketone that is miscible with water at an arbitrary ratio, or a mixture of such an organic solvent and water. Solvents are also used. It is also possible to continue to use the reaction solvent used for the above etherification reaction, such as methyl isobutyl ketone or acetonitrile. The reaction temperature for hydrolysis is usually 30 to 100° C., preferably 50 to 90° C., and under such reaction conditions, it is usually completed in about 3 to 5 hours. By this hydrolysis reaction, an alkali metal salt of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene can be obtained.
 目的物が9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン等のカルボン酸である場合には、上記加水分解反応生成物を、濃塩酸等により処理した後、水と混和しない有機溶媒、例えば、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭素原子数5以上の脂肪族炭化水素類、メチルイソブチルケトン等の炭素原子数5以上の脂肪族ケトン類等を用いて洗浄後、精製し単離することが好ましい。さらに純度を高めるため、常法に従い、蒸留、再結晶、カラムクロマトグラフィーによる精製を行ってもよい。 When the target product is a carboxylic acid such as 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene, the hydrolysis reaction product is treated with concentrated hydrochloric acid or the like and then treated with water. Immiscible organic solvents, for example, aromatic hydrocarbons such as toluene, xylene and benzene, aliphatic hydrocarbons having 5 or more carbon atoms such as hexane, heptane and cyclohexane, and 5 or more carbon atoms such as methyl isobutyl ketone After washing with an aliphatic ketone or the like, it is preferable to purify and isolate. In order to further increase the purity, distillation, recrystallization, and purification by column chromatography may be performed according to a conventional method.
 本発明の新規フルオレン化合物は、高い屈折率、高い耐熱性、広範な有機溶媒に対する高い溶解性などの優れた特性を有しており、樹脂の原料(モノマー)、誘導体の反応成分などに好適に用いることができる。そのため、本発明の新規フルオレン化合物若しくはその誘導体、又は新規フルオレン化合物を樹脂原料(モノマー)とする樹脂は、例えば、フィルム(例えば、光学フィルム、液晶用フィルム、有機EL(エレクトロルミネッセンス)用フィルム、EMIシールドフィルムなど)、レンズ(例えば、ピックアップレンズなど)、保護膜(例えば、電子機器、液晶部材用などの保護膜など)、電気・電子材料(キャリア輸送剤、発光体、有機感光体、有機感光体、感熱記録材料、ホログラム記録材料、フォトクロミック材料など)、電気・電子部品又は機器(例えば、光ディスク、インクジェットプリンタ、デジタルペーパ 、有機半導体レーザ、色素増感型太陽電池、EMIシールドフィルム、有機EL素子、カラーフィルタなど)、機械部品又は機器(自動車、航空・宇宙材料、センサ、摺動部材など)などに好適に利用できる。特に、本発明の新規フルオレン化合物とする樹脂は、光学特性に優れているため、光学用途の成形体を構成するのに有用である。このような光学用成形体としては、光学フィルムなどが挙げられる。光学フィルムとしては、偏光フィルム(及びそれを構成する偏光素子と偏光板保護フィルム)、位相差フィルム、配向膜(配向フィルム)、視野角拡大(補償)フィルム、拡散板(フィルム)、導光板、輝度向上フィルム、近赤外吸収フィルム 、反射フィルム、反射防止(AR)フィルム、反射低減(LR)フィルム、アンチグレア(AG)フィルム、透明導電(ITO)フィルム、異方導電性フィルム(ACF)、電磁波遮蔽(EMI)フィルム、電極基板用フィルム、バリアフィルム、カラーフィルタ層、 ブラックマトリクス層、光学フィルム同士の接着層もしくは離型層などが挙げられる。とりわけ、前記フィルムは、機器のディスプレイに用いる光学フィルムとして有用である。このような前記光学フィルムを備えたディスプレイ用部材(又はディスプレイ)としては 、具体的には、パーソナル・コンピュータのモニタ、テレビジョン、携帯電話、カー・ナビゲーション、タッチパネルなどのFPD装置(例えば、LCD、PDPなど)などが挙げられる。 INDUSTRIAL APPLICABILITY The novel fluorene compound of the present invention has excellent properties such as high refractive index, high heat resistance, and high solubility in a wide range of organic solvents, and is suitable for resin raw materials (monomers), reaction components of derivatives, etc. Can be used. Therefore, the novel fluorene compound or its derivative of the present invention, or the resin using the novel fluorene compound as a resin raw material (monomer) is, for example, a film (for example, an optical film, a liquid crystal film, an organic EL (electroluminescence) film, or EMI). Shield film etc.), lens (eg pickup lens etc.), protective film (eg electronic device, protective film for liquid crystal member etc.), electric/electronic material (carrier transport material, light emitter, organic photoconductor, organic photosensitizer) Body, thermosensitive recording material, hologram recording material, photochromic material, etc., electric/electronic parts or devices (for example, optical disc, ink jet printer, digital paper, organic semiconductor laser, dye-sensitized solar cell, EMI shield film, organic EL element) , Color filters, etc.), mechanical parts or devices (automobiles, aerospace materials, sensors, sliding members, etc.) and the like. In particular, the resin of the present invention, which is the novel fluorene compound, is excellent in optical properties, and thus is useful for forming a molded article for optical use. Examples of such a molded article for optics include an optical film. As the optical film, a polarizing film (and a polarizing element and a polarizing plate protective film constituting the same), a retardation film, an alignment film (alignment film), a viewing angle widening (compensation) film, a diffusion plate (film), a light guide plate, Brightness enhancement film, near infrared absorption film, reflection film, antireflection (AR) film, reflection reduction (LR) film, antiglare (AG) film, transparent conductive (ITO) film, anisotropic conductive film (ACF), electromagnetic wave Examples include a shielding (EMI) film, an electrode substrate film, a barrier film, a color filter layer, a black matrix layer, and an adhesive layer or a release layer between optical films. In particular, the film is useful as an optical film used for display of equipment. As a display member (or display) provided with such an optical film, specifically, an FPD device (for example, LCD, monitor, personal computer monitor, television, mobile phone, car navigation, touch panel, etc.) PDP etc.) and the like.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 分析方法は以下の通りである。
<分析方法>
1.示差走査熱量測定(DSC)
 結晶体2~3mgをアルミパンに秤量し、示差走査熱量測定装置((株)島津製作所製:DSC-60)を用いて、酸化アルミニウムを対照として下記操作条件により測定した。
(操作条件)
 昇温速度  :10℃/min
 測定温度範囲:30~260℃
 測定雰囲気 :開放、窒素50mL/min
2.示差熱・熱重量分析(DTG)
 結晶体8~12mgをアルミパンに秤量し、示差熱・熱重量分析装置((株)島津製作所製:DTG-60A)を用いて、下記操作条件により測定した。
(操作条件)
 昇温速度:10℃/min
 測定温度範囲:30~300℃
 測定雰囲気:開放、窒素50mL/min
3.反応終点の確認と純度測定
 装置      :株式会社島津製作所製ProminenceUFLC(液体クロマト
          グラフィー)
 ポンプ     :LC-20AD
 カラムオーブン :CTO-20A
 検出器     :SPD-20A
 カラム     :HALO C18 内径3mm、長さ75mm
 オーブン温度  :50℃
 流量      :0.7ml/min
 移動相     :(A)0.1重量%リン酸水溶液、(B)アセトニト
          リル
 グラジエント条件:(A)体積%(分析開始からの時間)
 <反応液分析>
 70%(0min)→100%(12min)→100%(15min)
 <結晶分析>
 70%(0min)→100%(12min)→100%(15min)
 試料注入量:5μl
 検出波長 :254nm
4.屈折率
 装置:京都電子工業株式会社製 屈折計RA-500N
 測定する化合物について、任意の濃度のTHF溶液を3サンプル作成し、各溶液の屈折率を測定した。得られた値に対し濃度と屈折率の関係を導き、濃度100%時の値を外挿により算出し、この値を化合物の屈折率とした。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
The analysis method is as follows.
<Analysis method>
1. Differential scanning calorimetry (DSC)
The crystals (2 to 3 mg) were weighed in an aluminum pan and measured using a differential scanning calorimeter (manufactured by Shimadzu Corporation: DSC-60) under the following operating conditions with aluminum oxide as a control.
(Operating conditions)
Temperature rising rate: 10°C/min
Measuring temperature range: 30-260°C
Measurement atmosphere: Open, nitrogen 50mL/min
2. Differential thermal and thermogravimetric analysis (DTG)
8 to 12 mg of the crystal was weighed in an aluminum pan and measured using a differential thermal/thermogravimetric analyzer (DTG-60A manufactured by Shimadzu Corporation) under the following operating conditions.
(Operating conditions)
Temperature rising rate: 10°C/min
Measurement temperature range: 30~300℃
Measurement atmosphere: Open, nitrogen 50 mL/min
3. Confirmation of reaction end point and purity measurement device: Shimadzu Corporation Prominence UFLC (liquid chromatography)
Pump: LC-20AD
Column oven: CTO-20A
Detector: SPD-20A
Column: HALO C18 inner diameter 3mm, length 75mm
Oven temperature: 50℃
Flow rate: 0.7 ml/min
Mobile phase: (A) 0.1 wt% phosphoric acid aqueous solution, (B) acetonitryl gradient condition: (A) volume% (time from the start of analysis)
<Reaction solution analysis>
70% (0min) → 100% (12min) → 100% (15min)
<Crystal analysis>
70% (0min) → 100% (12min) → 100% (15min)
Sample injection volume: 5 μl
Detection wavelength: 254nm
4. Refractive Index Device: Kyoto Denshi Kogyo Co., Ltd. Refractometer RA-500N
With respect to the compound to be measured, 3 samples of THF solutions having arbitrary concentrations were prepared, and the refractive index of each solution was measured. The relationship between the concentration and the refractive index was derived from the obtained value, and the value when the concentration was 100% was calculated by extrapolation, and this value was used as the refractive index of the compound.
<合成例>
9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンの合成
 温度計、撹拌機、冷却管を備えた1リットル4つ口フラスコ内を窒素置換し、フェノール119g(1.2モル)を仕込み、塩化水素ガスを吹き込んでフラスコ内を塩化水素ガスにより置換した。そこに、15%メチルメルカプタンナトリウム塩水溶液13gを滴下し、次いで2,3-ベンゾ-9-フルオレノン145g(0.63モル)、フェノール119g(1.2モル)、トルエン58gの混合液を1時間かけて滴下し、反応温度40℃において3時間撹拌した。液体クロマトグラフィー分析により原料消失を確認し、反応終了とした。反応混合液に水酸化ナトリウム水溶液を加えて反応液を中和し、トルエン60gを加えて静置後、水層を除去した。得られた油層に蒸留水を加えて撹拌し、静置後水層を除去する操作を2回繰り返して中和塩を除去し、余剰のフェノールを減圧蒸留により除去した。この蒸留残渣にトルエンを1009g加えて均一な溶液とし、冷却して結晶を析出させた。その後、25℃まで冷却して析出した結晶を濾別し、目的物である9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンを得た。
<Synthesis example>
Synthesis of 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene A 1 liter four-necked flask equipped with a thermometer, a stirrer, and a condenser was replaced with nitrogen to give 119 g of phenol (1.2 mol). ) Was charged, and hydrogen chloride gas was blown into the flask to replace the inside of the flask with hydrogen chloride gas. 13 g of a 15% methylmercaptan sodium salt aqueous solution was added dropwise thereto, and then a mixed solution of 145 g (0.63 mol) of 2,3-benzo-9-fluorenone, 119 g (1.2 mol) of phenol and 58 g of toluene was added for 1 hour. It dripped over, and stirred at reaction temperature 40 degreeC for 3 hours. The disappearance of the raw materials was confirmed by liquid chromatography analysis, and the reaction was completed. Aqueous sodium hydroxide solution was added to the reaction mixture to neutralize the reaction solution, 60 g of toluene was added and the mixture was allowed to stand, and the aqueous layer was removed. Distilled water was added to the obtained oil layer, and the mixture was stirred, allowed to stand and then the operation of removing the water layer was repeated twice to remove neutralized salts, and excess phenol was removed by vacuum distillation. To this distillation residue, 1009 g of toluene was added to form a uniform solution, which was cooled to precipitate crystals. Then, the mixture was cooled to 25° C., and the precipitated crystals were filtered off to obtain 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene, which was a target substance.
<実施例1>
9,9-ビス(4-エトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレンの合成
 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレン40.0g(0.1モル)、アセトニトリル120g、炭酸カリウム31.7g、ヨウ化カリウム4.0gを4つ口フラスコに仕込み、70℃まで昇温し、同温で1時間撹拌した。次いでクロロ酢酸エチル34.3g(0.28モル)を反応液の温度を70~80℃に保ちながら滴下した。6時間撹拌後、水100gを加え70℃まで昇温した後、水層を除去した。その後常圧でアセトニトリルを留去し、エタノールを800g加え70℃まで昇温した後、25℃まで冷却して結晶を析出させた。結晶を濾別、乾燥し目的物である9,9-ビス(4-エトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレンを42.5g取得した。得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図1に示す。
 純度  99.2%(高速液体クロマトグラフィー)
 プロトン核磁気共鳴スペクトル(400MHz、溶媒CDCl、標準TMS)
 化学シフト(シグナル形状、プロトン数):1.26ppm(t, 6H)、4.23ppm(q, 4H)、4.54ppm(s, 4H)、6.73-6.78ppm(m, 4H)、7.14-7.19ppm(m, 4H)、7.28-7.33ppm(m, 1H)、7.36-7.47ppm(m, 4H)、7.75ppm(d, 2H)、7.88-7.92ppm(m,2H)、8.17(s, 1H).
 図1に示す示差走査熱量測定(DSC)曲線から、96℃、176℃にピークトップを持つ結晶であることを確認した。屈折率は1.620であった。
<Example 1>
Synthesis of 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3-benzofluorene 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene 40.0 g (0.1 mol), 120 g of acetonitrile, 31.7 g of potassium carbonate, and 4.0 g of potassium iodide were charged into a four-necked flask, heated to 70° C., and stirred at the same temperature for 1 hour. Then, 34.3 g (0.28 mol) of ethyl chloroacetate was added dropwise while maintaining the temperature of the reaction solution at 70 to 80°C. After stirring for 6 hours, 100 g of water was added and the temperature was raised to 70° C., and then the aqueous layer was removed. After that, acetonitrile was distilled off under normal pressure, 800 g of ethanol was added, the temperature was raised to 70° C., and the mixture was cooled to 25° C. to precipitate crystals. The crystals were separated by filtration and dried to obtain 42.5 g of the target product, 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3-benzofluorene. The figure which shows the differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG.
Purity 99.2% (high performance liquid chromatography)
Proton nuclear magnetic resonance spectrum (400 MHz, solvent CDCl 3 , standard TMS)
Chemical shift (signal shape, number of protons): 1.26 ppm (t, 6H), 4.23 ppm (q, 4H), 4.54 ppm (s, 4H), 6.73-6.78 ppm (m, 4H), 7.14-7.19 ppm (m, 4H), 7.28-7.33 ppm (m, 1H), 7.36-7.47 ppm (m, 4H), 7.75 ppm (d, 2H), 7. 88-7.92 ppm (m, 2H), 8.17 (s, 1H).
From the differential scanning calorimetry (DSC) curve shown in FIG. 1, it was confirmed that the crystal had a peak top at 96° C. and 176° C. The refractive index was 1.620.
<実施例2>
9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン・ビスカリウム塩の合成
 上記実施例1で得られた9,9-ビス(4-エトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレン40.0gのアセトニトリル120g溶液を70~80℃に維持し、35%水酸化カリウム水溶液80.1gを滴下し、同温度で2時間撹拌した。反応液を25℃まで冷却して、得られた結晶を濾別、乾燥し9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン・ビスカリウム塩の結晶を56.5g取得した。
 純度  99.6%(高速液体クロマトグラフィー)
 プロトン核磁気共鳴スペクトル(400MHz、溶媒DO)
 化学シフト(シグナル形状、プロトン数):4.37ppm(s, 4H)、6.75-6.83ppm(m, 4H)、7.04-7.13ppm(m, 4H)、7.25-7.47ppm(m, 5H)、7.63-7.73ppm(m, 2H)、7.83-7.95ppm(m, 2H)、8.12-8.23ppm(m,1H).
 得られた結晶のFT-IRより、カルボン酸のカルボニル部位に見られる1700cm-1付近のピークが消失し、カルボン酸塩に見られる1600cm-1付近及び1400cm-1、のピークの存在を確認した。
<Example 2>
Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bispotassium salt 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3 obtained in Example 1 above -A solution of 40.0 g of benzofluorene in 120 g of acetonitrile was maintained at 70 to 80°C, 80.1 g of 35% aqueous potassium hydroxide solution was added dropwise, and the mixture was stirred at the same temperature for 2 hours. The reaction solution was cooled to 25° C., and the obtained crystals were separated by filtration and dried to obtain 56.5 g of crystals of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bispotassium salt. did.
Purity 99.6% (high performance liquid chromatography)
Proton nuclear magnetic resonance spectrum (400 MHz, solvent D 2 O)
Chemical shift (signal shape, number of protons): 4.37 ppm (s, 4H), 6.75-6.83 ppm (m, 4H), 7.04-7.13 ppm (m, 4H), 7.25-7 .47 ppm (m, 5H), 7.63-7.73 ppm (m, 2H), 7.83-7.95 ppm (m, 2H), 8.12-8.23 ppm (m, 1H).
From the resulting FT-IR of a crystal, disappeared peak around 1700 cm -1 observed in carbonyl moiety of the carboxylic acid, confirmed the presence of around 1600 cm -1 observed in carboxylate and 1400 cm -1, the peak ..
<実施例3>
9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの合成
(1)種晶の合成方法
 上記実施例2で得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン・ビスカリウム塩1.0gにメチルイソブチルケトン3.0g、濃塩酸1gを加え、80℃に昇温した後水層を除去した。得られた溶液にヘプタン6.0gを加え、冷却し析出物をろ過し種晶を取得した。
(2)種晶を利用した合成方法
 上記実施例2で得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン・ビスカリウム塩50.0g、メチルイソブチルケトン250g、濃塩酸25.0gを加え、80℃で30分間撹拌した。水層を除去し、得られた油層に水を加え撹拌して水層を除去する水洗操作を複数回行い、残存する塩酸分を除去した。得られた溶液にヘプタン100.0gを加え、75℃にて上記(1)により得られた種晶50mgを添加し、10℃/時間の冷却速度で25℃まで冷却しろ過した。次いで乾燥を行い9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの粉末を39.6g取得した。得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図2に、差熱・熱重量分析(DTG)曲線を示す図を図3に示す。
 収率  86.6%(実施例1~3の3工程通しての収率)
 純度  99.8%(高速液体クロマトグラフィー)
 プロトン核磁気共鳴スペクトル(400MHz、溶媒MeOH-d、標準TMS)
 化学シフト(シグナル形状、プロトン数):4.51ppm(s, 4H)、6.71ppm(d, 4H)、7.07ppm(d, 4H)、7.22ppm(dt, 1H)、7.31-7.35ppm(m, 3H)、7.38ppm(dt, 1H)、7.65-7.69ppm(m, 2H)、7.86-7.90ppm(m, 2H)、8.18(s, 1H).
 屈折率は1.658であった。
 図2に示す示差走査熱量測定(DSC)曲線から、176℃、186℃にピークトップを持つ結晶であることを確認した。図3に示すDTG分析の結果から、融点における重量減少が存在することから、得られた結晶は2.0wt%のメチルイソブチルケトンを含有するアダクト晶であると推察される。
 NMR分析の結果、カルボン酸のOHピークは観測されなかったものの、FT-IRの結果から、カルボニル基特有の1700cm-1付近のピーク、水酸基特有の3200cm-1付近のピークが観測された。これらのことから、得られた結晶は目的物であることを確認した。
 また、目的物は、工業用途における種々の汎用溶媒、具体的には、例えば、アセトン、メチルイソブチルケトン(MIBK)等のケトン系溶媒、メタノール、ブタノール等のアルコール系溶媒、テトラヒドロフラン(THF)、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒、N-メチルピロリドン(NMP)等のアミド系溶媒、酢酸エチルや酢酸ブチル等のエステル系溶媒に対する溶解性に優れていることが確認された。その1例として、得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンのメチルイソブチルケトンを含有するアダクト晶に関する溶媒に対する溶解性を、下記表1に示す。表1中の「〇」は、室温において10重量%溶液を容易に作成できることを示す。
<Example 3>
Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene (1) Method for synthesizing seed crystal 9,9-bis(4-carboxymethoxyphenyl)-obtained in Example 2 above 3.0 g of methyl isobutyl ketone and 1 g of concentrated hydrochloric acid were added to 1.0 g of 2,3-benzofluorene bispotassium salt, the temperature was raised to 80° C., and the aqueous layer was removed. To the obtained solution, 6.0 g of heptane was added, cooled and the precipitate was filtered to obtain seed crystals.
(2) Synthetic method using seed crystals 50.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bispotassium salt obtained in Example 2 above, 250 g of methyl isobutyl ketone, 25.0 g of concentrated hydrochloric acid was added, and the mixture was stirred at 80° C. for 30 minutes. The aqueous layer was removed, water was added to the obtained oil layer, and the mixture was stirred to remove the aqueous layer. The water washing operation was repeated several times to remove the residual hydrochloric acid content. 100.0 g of heptane was added to the obtained solution, 50 mg of the seed crystal obtained in (1) above was added at 75° C., cooled to 25° C. at a cooling rate of 10° C./hour, and filtered. Then, it was dried to obtain 39.6 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene powder. A diagram showing a differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG. 2, and a diagram showing a differential thermogravimetric analysis (DTG) curve is shown in FIG.
Yield 86.6% (yield through 3 steps of Examples 1 to 3)
Purity 99.8% (high performance liquid chromatography)
Proton nuclear magnetic resonance spectrum (400 MHz, solvent MeOH-d 4 , standard TMS)
Chemical shift (signal shape, number of protons): 4.51 ppm (s, 4H), 6.71 ppm (d, 4H), 7.07 ppm (d, 4H), 7.22 ppm (dt, 1H), 7.31- 7.35 ppm (m, 3H), 7.38 ppm (dt, 1H), 7.65-7.69 ppm (m, 2H), 7.86-7.90 ppm (m, 2H), 8.18 (s, 1H).
The refractive index was 1.658.
From the differential scanning calorimetry (DSC) curve shown in FIG. 2, it was confirmed that the crystal had a peak top at 176° C. and 186° C. From the result of the DTG analysis shown in FIG. 3, since there is a weight loss at the melting point, it is presumed that the obtained crystal is an adduct crystal containing 2.0 wt% of methyl isobutyl ketone.
Results of NMR analysis, although OH peak of carboxylic acid was not observed, from the results of FT-IR, the peak in the vicinity of specific carbonyl group 1700 cm -1, the peak near the hydroxyl group-specific 3200 cm -1 were observed. From these facts, it was confirmed that the obtained crystal was the target product.
In addition, the target product is various general-purpose solvents for industrial use, specifically, for example, ketone solvents such as acetone and methyl isobutyl ketone (MIBK), alcohol solvents such as methanol and butanol, tetrahydrofuran (THF), cyclopentyl. It was confirmed that the compound has excellent solubility in ether solvents such as methyl ether (CPME), amide solvents such as N-methylpyrrolidone (NMP), and ester solvents such as ethyl acetate and butyl acetate. As one example, the solubility of the obtained 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene in an adduct crystal containing methyl isobutyl ketone in a solvent is shown in Table 1 below. "O" in Table 1 indicates that a 10 wt% solution can be easily prepared at room temperature.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例4>
9,9-ビス(4-メトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレンの合成
 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレン15.0g(0.037モル)、アセトニトリル45.0g、炭酸カリウム11.9g、ヨウ化カリウム1.5gを4つ口フラスコに仕込み、70℃まで昇温し、同温で1時間撹拌した。次いでクロロ酢酸メチル11.4g(0.11モル)を反応液の温度を70~80℃に保ちながら滴下した。6時間撹拌後、水300gを加え70℃まで昇温した後25℃まで冷却して結晶を析出させた。結晶を濾別、乾燥し目的物である9,9-ビス(4-メトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレンを16.3g取得した。得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図4に示す。
 純度  99.7%(高速液体クロマトグラフィー)
 プロトン核磁気共鳴スペクトル(400MHz、溶媒CDCl、標準TMS)
 化学シフト(シグナル形状、プロトン数):3.77ppm(s, 6H)、4.56ppm(s, 4H)、6.72-6.77ppm(m, 4H)、7.14-7.19ppm(m, 4H)、7.28-7.32ppm(m, 1H)、7.36-7.47ppm(m, 4H)、7.75ppm(d, 2H)、7.87-7.92ppm(m,2H)、8.17(s, 1H).
 図4に示す示差走査熱量測定(DSC)曲線から、155℃にピークトップを持つ結晶であることを確認した。屈折率は1.621であった。
<Example 4>
Synthesis of 9,9-bis(4-methoxycarbonylmethoxyphenyl)-2,3-benzofluorene 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene 15.0 g (0.037 mol), Acetonitrile (45.0 g), potassium carbonate (11.9 g) and potassium iodide (1.5 g) were charged into a four-necked flask, heated to 70° C., and stirred at the same temperature for 1 hour. Then, 11.4 g (0.11 mol) of methyl chloroacetate was added dropwise while maintaining the temperature of the reaction solution at 70 to 80°C. After stirring for 6 hours, 300 g of water was added and the temperature was raised to 70° C. and then cooled to 25° C. to precipitate crystals. The crystals were separated by filtration and dried to obtain 16.3 g of the target product, 9,9-bis(4-methoxycarbonylmethoxyphenyl)-2,3-benzofluorene. The figure which shows the differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG.
Purity 99.7% (high performance liquid chromatography)
Proton nuclear magnetic resonance spectrum (400 MHz, solvent CDCl 3 , standard TMS)
Chemical shift (signal shape, number of protons): 3.77 ppm (s, 6H), 4.56 ppm (s, 4H), 6.72-6.77 ppm (m, 4H), 7.14-7.19 ppm (m , 4H), 7.28-7.32ppm (m, 1H), 7.36-7.47ppm (m, 4H), 7.75ppm (d, 2H), 7.87-7.92ppm (m, 2H) ), 8.17 (s, 1H).
From the differential scanning calorimetry (DSC) curve shown in FIG. 4, it was confirmed that the crystal had a peak top at 155°C. The refractive index was 1.621.
<実施例5>
9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン・ビスナトリウム塩の合成
 上記実施例1で得られた9,9-ビス(4-エトキシカルボニルメトキシフェニル)-2,3-ベンゾフルオレン10.0gのアセトニトリル30g溶液を70~80℃に維持し、水5.0g、48%水酸化ナトリウム水溶液7.3gを滴下し、同温度で2時間撹拌した。反応液を25℃まで冷却して、得られた結晶を濾別、乾燥し9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン・ビスナトリウム塩の結晶を8.5g取得した。
 純度  99.6%(高速液体クロマトグラフィー)
 プロトン核磁気共鳴スペクトル(400MHz、溶媒DO)
 化学シフト(シグナル形状、プロトン数):4.37ppm(s, 4H)、6.75-6.87ppm(m, 4H)、7.05-7.13ppm(m, 4H)、7.30-7.52ppm(m, 5H)、7.70-7.78ppm(m, 2H)、7.93-8.01ppm(m, 2H)、8.27ppm(s,1H).
 得られた結晶のFT-IRより、カルボン酸のカルボニル部位に見られる1700cm-1付近のピークが消失し、カルボン酸塩に見られる1600cm-1付近及び1400cm-1、のピークの存在を確認した。
<Example 5>
Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bis sodium salt 9,9-bis(4-ethoxycarbonylmethoxyphenyl)-2,3 obtained in Example 1 above. -A solution of 10.0 g of benzofluorene in 30 g of acetonitrile was maintained at 70 to 80°C, 5.0 g of water and 7.3 g of 48% aqueous sodium hydroxide solution were added dropwise, and the mixture was stirred at the same temperature for 2 hours. The reaction solution was cooled to 25° C., and the obtained crystals were separated by filtration and dried to obtain 8.5 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene bis sodium salt crystals. did.
Purity 99.6% (high performance liquid chromatography)
Proton nuclear magnetic resonance spectrum (400 MHz, solvent D 2 O)
Chemical shift (signal shape, number of protons): 4.37 ppm (s, 4H), 6.75-6.87 ppm (m, 4H), 7.05-7.13 ppm (m, 4H), 7.30-7 0.52 ppm (m, 5H), 7.70-7.78 ppm (m, 2H), 7.93-8.01 ppm (m, 2H), 8.27 ppm (s, 1H).
From the resulting FT-IR of a crystal, disappeared peak around 1700 cm -1 observed in carbonyl moiety of the carboxylic acid, confirmed the presence of around 1600 cm -1 observed in carboxylate and 1400 cm -1, the peak ..
<実施例6>
9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの合成(反応溶媒:MIBK)
 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレン400g(1.0モル)、メチルイソブチルケトン1500g、炭酸カリウム370g、ヨウ化カリウム12gを4つ口フラスコに仕込み、減圧下95℃でメチルイソブチルケトンを700g留去した。反応系内を窒素で常圧に戻し、次いでクロロ酢酸エチル405g(3.3モル)を反応液の温度を90~100℃に保ちながら滴下した。同温で18時間撹拌後、水1900gを加え80℃まで昇温した後、水層を除去した。反応液にメチルイソブチルケトンを2200g加え、次いで48%水酸化ナトリウム水溶液333gを反応液の温度を70~80℃に保ちながら滴下し、同温で5時間撹拌した。次いで減圧下、70~80℃でメチルイソブチルケトンを1200g留去させ、水1000g、濃塩酸520gを加え70~80℃で1時間撹拌した。
 水層を除去し、得られた油層に水を加え撹拌して水層を除去する水洗操作を複数回行い、残存する塩酸分を除去した。得られた溶液から減圧下メチルイソブチルケトン750gを留去させ、残渣にヘプタン500gを加え、73℃にて種晶50mgを添加し10℃/時間の冷却速度で25℃まで冷却しろ過し、9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの粗結晶を749.6g取得した。得られた粗結晶710g、トルエン1420g、水710gを四つ口フラスコに仕込み、加熱還流下2時間撹拌した後、10℃/時間の冷却速度で25℃まで冷却しろ過、乾燥を行い、9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの結晶を432.6g取得した。純度は99.6%、収率は83.7%であった。
<Example 6>
Synthesis of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene (reaction solvent: MIBK)
400 g (1.0 mol) of 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene, 1500 g of methyl isobutyl ketone, 370 g of potassium carbonate and 12 g of potassium iodide were charged in a four-necked flask, and the pressure was reduced to 95 700 g of methyl isobutyl ketone was distilled off at ℃. The reaction system was returned to normal pressure with nitrogen, and then 405 g (3.3 mol) of ethyl chloroacetate was added dropwise while maintaining the temperature of the reaction solution at 90 to 100°C. After stirring at the same temperature for 18 hours, 1900 g of water was added and the temperature was raised to 80° C., and then the aqueous layer was removed. 2200 g of methyl isobutyl ketone was added to the reaction solution, and then 333 g of a 48% sodium hydroxide aqueous solution was added dropwise while maintaining the temperature of the reaction solution at 70 to 80° C., and the mixture was stirred at the same temperature for 5 hours. Then, 1200 g of methyl isobutyl ketone was distilled off under reduced pressure at 70 to 80° C., 1000 g of water and 520 g of concentrated hydrochloric acid were added, and the mixture was stirred at 70 to 80° C. for 1 hour.
The aqueous layer was removed, water was added to the obtained oil layer, and the mixture was stirred to remove the aqueous layer. The water washing operation was repeated several times to remove the residual hydrochloric acid content. 750 g of methyl isobutyl ketone was distilled off from the resulting solution under reduced pressure, 500 g of heptane was added to the residue, 50 mg of seed crystals were added at 73° C., the mixture was cooled to 25° C. at a cooling rate of 10° C./hour, and filtered. 749.6 g of crude crystals of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene were obtained. The obtained crude crystals (710 g), toluene (1420 g) and water (710 g) were placed in a four-necked flask, stirred for 2 hours under heating under reflux, cooled to 25° C. at a cooling rate of 10° C./hour, filtered and dried. 432.6 g of crystals of 9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene were obtained. The purity was 99.6% and the yield was 83.7%.
 上記実施例3においてアダクト晶が得られたことから、9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの結晶多形について、以下実施例7~10において検討した。
<実施例7>
 上記実施例3で得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン2.0g、トルエン8.0gを90℃で1時間撹拌し、25℃まで冷却し濾別することで結晶を取得した。得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図5に示す。
 図5に示す結晶の示差熱・熱重量分析(DTG)曲線から、200℃に単一のピークトップを持つ結晶であることを確認し、実施例3で得られたメチルイソブチルケトンを含有するアダクト晶と異なり、融点での重量減少は見られなかったことから、単一結晶であると考えられる。
Since adduct crystals were obtained in Example 3 above, crystalline polymorphs of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene were examined in Examples 7 to 10 below.
<Example 7>
2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above and 8.0 g of toluene were stirred at 90° C. for 1 hour, cooled to 25° C., and filtered. Crystals were obtained by separating. A diagram showing a differential thermal analysis/thermogravimetric analysis (DTG) curve of the obtained crystal is shown in FIG.
From the differential thermal and thermogravimetric analysis (DTG) curve of the crystal shown in FIG. 5, it was confirmed that the crystal had a single peak top at 200° C., and the adduct containing the methyl isobutyl ketone obtained in Example 3 was obtained. Unlike crystals, no weight loss was observed at the melting point, so it is considered to be a single crystal.
<実施例8>
 上記実施例3で得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン2.0g、トルエン8.0g、水1.0gを加え加熱還流下1時間撹拌し25℃まで冷却し濾別することで結晶を取得した。得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図6に示す。
 図6に示す示差熱・熱重量分析(DTG)曲線から、202℃に単一のピークトップを持つ結晶であることを確認し、実施例3で得られたメチルイソブチルケトンを含有するアダクト晶と異なり、融点での重量減少は見られなかったことから、単一結晶であると考えられる。
<Example 8>
2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above, 8.0 g of toluene and 1.0 g of water were added, and the mixture was stirred with heating under reflux for 1 hour. Crystals were obtained by cooling to ℃ and filtering. FIG. 6 shows a diagram showing a differential thermal and thermogravimetric analysis (DTG) curve of the obtained crystal.
From the differential thermal/thermogravimetric analysis (DTG) curve shown in FIG. 6, it was confirmed that the crystal had a single peak top at 202° C., and the adduct crystal containing the methyl isobutyl ketone obtained in Example 3 was used. In contrast, no weight loss was observed at the melting point, so it is considered to be a single crystal.
<実施例9>
 上記実施例3で得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン2.0g、酢酸ブチル4.0gを90℃で1時間撹拌し、均一な溶液とした後ヘプタン4.0gを加え25℃まで冷却し濾別することで結晶を取得した。得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図7に示す。
 図7に示す示差熱・熱重量分析(DTG)曲線から、198℃に単一のピークトップを持つ結晶であることを確認し、実施例3で得られたメチルイソブチルケトンを含有するアダクト晶と異なり、融点での重量減少は見られなかったことから、単一結晶であると考えられる。
<Example 9>
2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above and 4.0 g of butyl acetate were stirred at 90° C. for 1 hour to form a uniform solution. After that, 4.0 g of heptane was added and the mixture was cooled to 25° C. and filtered to obtain crystals. FIG. 7 shows a diagram showing a differential thermal and thermogravimetric analysis (DTG) curve of the obtained crystal.
From the differential thermal/thermogravimetric analysis (DTG) curve shown in FIG. 7, it was confirmed that the crystal had a single peak top at 198° C., and the adduct crystal containing the methyl isobutyl ketone obtained in Example 3 was obtained. In contrast, no weight loss was observed at the melting point, so it is considered to be a single crystal.
<実施例10>
 上記実施例3で得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレン2.0g、アセトニトリル8.0gを80℃で1時間撹拌し、均一な溶液とした後25℃まで冷却し濾別することで結晶を取得した。得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図8に示す。
 図8に示す示差熱・熱重量分析(DTG)曲線から、94℃、145℃にピークトップを持つ結晶であることを確認した。また、94℃のピークトップにおいて、アダクト晶からアセトニトリルが放出されることも確認された。
<Example 10>
After 2.0 g of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in Example 3 above and 8.0 g of acetonitrile were stirred at 80° C. for 1 hour, a uniform solution was obtained. Crystals were obtained by cooling to 25° C. and filtering. FIG. 8 shows a diagram showing a differential thermal and thermogravimetric analysis (DTG) curve of the obtained crystal.
From the differential thermal/thermogravimetric analysis (DTG) curve shown in FIG. 8, it was confirmed that the crystals had peak tops at 94° C. and 145° C. It was also confirmed that acetonitrile was released from the adduct at the peak top of 94°C.
 実施例7~9において得られた単一結晶についても同様に、工業用途における種々の汎用溶媒、具体的には、例えば、アセトン、メチルイソブチルケトン(MIBK)等のケトン系溶媒、メタノール、ブタノール等のアルコール系溶媒、テトラヒドロフラン(THF)、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒、N-メチルピロリドン(NMP)等のアミド系溶媒、酢酸エチルや酢酸ブチル等のエステル系溶媒に対する溶解性に優れていることが確認された。その1例として、得られた9,9-ビス(4-カルボキシメトキシフェニル)-2,3-ベンゾフルオレンの単一結晶に関する溶媒に対する溶解性を、下記表2に示す。表2中の「〇」は、室温において10重量%溶液を容易に作成できることを示す。
 表1と表2の結果より、本発明の一般式(1)で表されるフルオレン化合物に関しては、単一結晶とアダクト晶における溶媒に対する溶解性には、差異が無いことが確認された。これは、本発明の一般式(1)で表されるフルオレン化合物自体の溶媒溶解性が大きく関与しているものと考える。
Similarly, for the single crystals obtained in Examples 7 to 9, various general-purpose solvents for industrial use, specifically, ketone-based solvents such as acetone and methyl isobutyl ketone (MIBK), methanol, butanol, etc. Excellent solubility in alcoholic solvents, tetrahydrofuran (THF), ether solvents such as cyclopentyl methyl ether (CPME), amide solvents such as N-methylpyrrolidone (NMP), ester solvents such as ethyl acetate and butyl acetate Was confirmed. As one example thereof, Table 2 below shows the solubility of a single crystal of 9,9-bis(4-carboxymethoxyphenyl)-2,3-benzofluorene obtained in a solvent. "O" in Table 2 indicates that a 10 wt% solution can be easily prepared at room temperature.
From the results of Table 1 and Table 2, it was confirmed that the fluorene compound represented by the general formula (1) of the present invention has no difference in solubility in a solvent between a single crystal and an adduct crystal. It is considered that this is largely related to the solvent solubility of the fluorene compound itself represented by the general formula (1) of the present invention.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 フルオレン骨格を有する化合物群は、反応溶媒や精製に使用する溶媒との間でアダクト晶を形成することが知られている一方で、アダクト晶から溶媒を除去するためには高温と多大な時間を要するために、工業的規模で適用することは困難であるほか、溶媒とのアダクト晶を形成したフルオレン骨格を有する化合物は、エポキシ樹脂、ポリエステル等の製造原料やその他の用途において工業的に使用するには問題があることも知られている。さらに、アダクト晶中に含まれる有機溶媒等の化合物の引火点や発火点によっては、当該アダクト晶の輸送や保管時における防災上の懸念もある。これらを考慮すると、アダクト晶ではない単一結晶の一般式(1)で表されるフルオレン化合物を得る手法も、工業用途において非常に有用であると考える。 Compounds having a fluorene skeleton are known to form adduct crystals with a reaction solvent or a solvent used for purification, but in order to remove the solvent from the adduct crystals, a high temperature and a large amount of time are required. Therefore, it is difficult to apply it on an industrial scale, and the compound having a fluorene skeleton that forms an adduct with a solvent is industrially used as a raw material for manufacturing epoxy resins, polyesters, and other applications. Is also known to have problems. Furthermore, depending on the flash point or ignition point of a compound such as an organic solvent contained in the adduct crystal, there is a risk of disaster prevention during transportation or storage of the adduct crystal. Considering these, it is considered that the method of obtaining a fluorene compound represented by the general formula (1) which is not an adduct crystal is also very useful in industrial applications.

Claims (1)

  1.  下記一般式(1)で表されるフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRは、各々独立して水素原子、炭素原子数1~6のアルキル基、アルカリ金属原子、アルカリ土類金属原子、RおよびRは、各々独立して炭素原子数1~6のアルキル基、フェニル基、RおよびRは、各々独立して水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基、炭素原子数6~12のアリール基を示し、a、bおよびcは各々独立して0~4の整数、dは0~6の整数を示す。)
    A fluorene compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkali metal atom, an alkaline earth metal atom, and R 3 and R 4 are independently carbon atoms. An alkyl group having 1 to 6 atoms, a phenyl group, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon (Indicated by an alkoxy group having 1 to 6 atoms and an aryl group having 6 to 12 carbon atoms, a, b and c are each independently an integer of 0 to 4 and d is an integer of 0 to 6.)
PCT/JP2020/006175 2019-02-21 2020-02-18 Novel fluorene compound WO2020171039A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080010121.8A CN113329989A (en) 2019-02-21 2020-02-18 Novel fluorene compound
JP2021501999A JP7415110B2 (en) 2019-02-21 2020-02-18 New fluorene compound
KR1020217023482A KR20210132006A (en) 2019-02-21 2020-02-18 Novel fluorene compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-029267 2019-02-21
JP2019029267 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020171039A1 true WO2020171039A1 (en) 2020-08-27

Family

ID=72144605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006175 WO2020171039A1 (en) 2019-02-21 2020-02-18 Novel fluorene compound

Country Status (5)

Country Link
JP (1) JP7415110B2 (en)
KR (1) KR20210132006A (en)
CN (1) CN113329989A (en)
TW (1) TW202041494A (en)
WO (1) WO2020171039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054309A1 (en) * 2019-09-20 2021-03-25 本州化学工業株式会社 Production method for aromatic bisether compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274271A (en) * 2007-04-06 2008-11-13 Mitsubishi Chemicals Corp Bisphenylfluorenedicarboxylic acid-based compound and polyester resin, and retardation film using this polyester resin, liquid crystal panel, and image displaying instrument
JP2009067681A (en) * 2007-09-10 2009-04-02 Mitsubishi Chemicals Corp Method for producing bisphenylfluorenedicarboxylic acid diester and polymer produced by polymerizing the same
JP2009227603A (en) * 2008-03-21 2009-10-08 Osaka Gas Co Ltd Method of manufacturing polycarboxylic acid having fluorene skeleton
JP2017178918A (en) * 2016-03-29 2017-10-05 大阪ガスケミカル株式会社 Novel fluorene compound and manufacturing method therefor
JP2018059074A (en) * 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 Polyester resin having fluorene skeleton
JP2018177887A (en) * 2017-04-06 2018-11-15 帝人株式会社 Thermoplastic resin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047106A1 (en) * 2011-09-30 2013-04-04 三菱瓦斯化学株式会社 Resin having fluorene structure and underlayer film-forming material for lithography
JP5502969B2 (en) * 2012-11-08 2014-05-28 国立大学法人東京工業大学 New dibenzofluorene compounds
JP6436878B2 (en) 2015-08-12 2018-12-12 富士フイルム株式会社 Compound production method and mixed crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274271A (en) * 2007-04-06 2008-11-13 Mitsubishi Chemicals Corp Bisphenylfluorenedicarboxylic acid-based compound and polyester resin, and retardation film using this polyester resin, liquid crystal panel, and image displaying instrument
JP2009067681A (en) * 2007-09-10 2009-04-02 Mitsubishi Chemicals Corp Method for producing bisphenylfluorenedicarboxylic acid diester and polymer produced by polymerizing the same
JP2009227603A (en) * 2008-03-21 2009-10-08 Osaka Gas Co Ltd Method of manufacturing polycarboxylic acid having fluorene skeleton
JP2017178918A (en) * 2016-03-29 2017-10-05 大阪ガスケミカル株式会社 Novel fluorene compound and manufacturing method therefor
JP2018059074A (en) * 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 Polyester resin having fluorene skeleton
JP2018177887A (en) * 2017-04-06 2018-11-15 帝人株式会社 Thermoplastic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054309A1 (en) * 2019-09-20 2021-03-25 本州化学工業株式会社 Production method for aromatic bisether compound

Also Published As

Publication number Publication date
JPWO2020171039A1 (en) 2021-12-23
KR20210132006A (en) 2021-11-03
JP7415110B2 (en) 2024-01-17
CN113329989A (en) 2021-08-31
TW202041494A (en) 2020-11-16

Similar Documents

Publication Publication Date Title
WO2020171039A1 (en) Novel fluorene compound
JP6859079B2 (en) New fluorene compound and its manufacturing method
WO2021010363A1 (en) Method for producing binaphthyls
TW202112735A (en) Crystal of 2,2&#39;-bis (ethoxycarbonylmethoxy)-1,1&#39;-binaphthyl
JP5642364B2 (en) Novel heterocycle-containing compound having fluorene skeleton and method for producing the same
CN108586205B (en) Preparation of 9, 9-bis (6-hydroxynaphthalene-2-yl) fluorene crystal free from residual solvent in complex form
JP7379770B2 (en) Crystalline form of bisfluorene compound
JP6778213B2 (en) Bisphenol compounds and aromatic polycarbonate
TWI770014B (en) Novel dihydroxy compound
JP2009107991A (en) New hydroxymethyl-substituted or alkoxymethyl-substituted bisphenol compound
WO2017170094A1 (en) Novel dihydroxy compound
JP7358696B2 (en) Crystalline mixture of bisfluorene compounds
WO2020004207A1 (en) Crystalline body of 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene
CN112384492B (en) Polyacyloxymethyl-4, 4&#39; -acyloxybiphenyl compounds
CN116829526A (en) Novel triallyl ether compound having triphenylalkane skeleton
JP2014208635A (en) Trisphenol compound
JP4125263B2 (en) Trioxymethylcarboxylic acids of trisphenols and their tertiary cyclopentyl esters
JP2022104623A (en) Method for producing fluorene derivatives and raw materials thereof
TW201833079A (en) Novel alkoxymethyl substituted bisphenol compound
JP2019026627A (en) Novel bisphenol compound
WO2017170096A1 (en) Method for producing novel dihydroxy compound
JP2005220300A (en) Method for manufacturing epoxy resin
JP2015093862A (en) Fluorene-based diol compound and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758585

Country of ref document: EP

Kind code of ref document: A1