WO2020170622A1 - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
WO2020170622A1
WO2020170622A1 PCT/JP2020/000220 JP2020000220W WO2020170622A1 WO 2020170622 A1 WO2020170622 A1 WO 2020170622A1 JP 2020000220 W JP2020000220 W JP 2020000220W WO 2020170622 A1 WO2020170622 A1 WO 2020170622A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
sub
air
combustion
steam
Prior art date
Application number
PCT/JP2020/000220
Other languages
French (fr)
Japanese (ja)
Inventor
貴澄 寺原
森 匡史
龍太 中村
英輝 天野
Original Assignee
三菱重工マリンマシナリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マリンマシナリ株式会社 filed Critical 三菱重工マリンマシナリ株式会社
Priority to CN202080015151.8A priority Critical patent/CN113439180B/en
Priority to EP20760113.9A priority patent/EP3913283B1/en
Priority to KR1020217026029A priority patent/KR102551979B1/en
Priority to DK20760113.9T priority patent/DK3913283T3/en
Publication of WO2020170622A1 publication Critical patent/WO2020170622A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/04Heat supply by installation of two or more combustion apparatus, e.g. of separate combustion apparatus for the boiler and the superheater respectively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B13/00Steam boilers of fire-box type, i.e. the combustion of fuel being performed in a chamber or fire-box with subsequent flue(s) or fire tube(s), both chamber or fire-box and flues or fire tubes being built-in in the boiler body
    • F22B13/06Locomobile, traction-engine, steam-roller, or locomotive boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/08Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air liquid and gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • F22B21/04Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • F22B21/04Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
    • F22B21/08Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged sectionally in groups or in banks, e.g. bent over at their ends
    • F22B21/081Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged sectionally in groups or in banks, e.g. bent over at their ends involving a combustion chamber, placed at the side and built-up from water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts

Definitions

  • the present invention relates to a boiler.
  • Patent Document 1 discloses a marine boiler mounted on a marine vessel.
  • the boiler disclosed in the same document can cope with a large capacity to a small capacity by providing a small capacity burner in addition to the large capacity burner.
  • a main engine boiler used as a power source for driving a propeller for propulsion.
  • an auxiliary boiler used as an auxiliary power source for operating various devices mounted on a ship and driving a lightning generator.
  • the auxiliary boiler may require one for generating high-pressure steam for high-load equipment and another for generating low-pressure steam for low-load equipment. As a result, the number of facilities on the ship is increased. Further, since the auxiliary boiler requires time for pressurization, it is necessary to keep warm-up operation in order to quickly supply steam to the equipment. For this reason, an increase in fuel consumption by warming up the auxiliary boiler that generates high-pressure steam is an issue.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a boiler that can cool a small capacity burner when a large capacity main burner is operating.
  • a boiler includes a combustion container that forms a combustion chamber, a main burner that is provided in the combustion container, and a downstream side of a flame that is provided in the combustion container and that is formed by the main burner. And a sub-burner having a smaller capacity than the main burner, a sub-burner wind box that accommodates the sub-burner and is attached to the combustion container, and an air supply that supplies air to the sub-burner wind box. Means and a control unit for controlling the air supply unit, the control unit driving the air supply unit when the main burner is operating and when the sub-burner is not operating.
  • a secondary burner is provided downstream of the flame formed by the main burner. Therefore, when the main burner is operating and the sub-burner is not operating, if the combustion air is not supplied to the sub-burner, the sub-burner may be damaged by the radiant heat due to the flame of the main burner. Therefore, even when the sub-burner is not operating, the sub-burner is cooled by supplying air from the sub-burner air fan. Further, since the air is supplied so that the pressure in the sub-burner wind box is higher than the pressure in the combustion container, the sub-burner and the sub-burner wind box are provided for the combustion chamber in the pressurized state. Can be sealed.
  • the control unit controls the air supply unit so that the pressure in the auxiliary burner air box is higher than the pressure in the combustion container when the main burner is operating and the sub-burner is not operating. You may do it.
  • a boiler according to an aspect of the present disclosure includes a cooling steam supply unit that supplies cooling steam that cools the sub-burner.
  • the sub-burner includes an oil injection nozzle that injects oil fuel as combustion fuel into the combustion chamber, and the oil injection nozzle is a part of the cooling steam supply unit. It is said that.
  • the oil injection nozzle of the sub-burner does not supply oil when it is not operating, so we decided to make the oil injection nozzle part of the cooling steam supply part and supply cooling steam from the oil injection nozzle. Since the oil injection nozzle injects the cooling steam from the tip of the sub-burner toward the combustion chamber, the sub-burner can be effectively protected from radiant heat.
  • a steam supply nozzle is provided as a part of the cooling steam supply unit in the auxiliary burner air box.
  • a steam supply nozzle as part of the cooling steam supply unit in the auxiliary burner air box.
  • the sub-burner housed in the sub-burner air box can be cooled.
  • a path for supplying the cooling steam can be provided separately from the fuel nozzle of the auxiliary burner, the cooling steam can be supplied regardless of the operation of the auxiliary burner.
  • the steam supply nozzle for example, a steam ring nozzle that is a ring-shaped nozzle surrounding the sub-burner can be used.
  • the sub-burner includes a gas injection nozzle that injects a gas fuel as combustion fuel into the combustion chamber, and the gas injection nozzle is a part of the cooling steam supply unit. It is said that.
  • the sub-burner is equipped with a gas injection nozzle so that gas fuel can be used in addition to oil fuel.
  • the gas injection nozzle is part of the cooling steam supply unit, and the cooling steam is supplied from the gas injection nozzle. Since the gas injection nozzle injects the cooling steam from the tip of the sub-burner toward the combustion chamber, the sub-burner can be effectively protected from radiant heat.
  • the cooling steam supply unit supplies the cooling steam toward the downstream side of the flame formed by the main burner.
  • a main burner air box that houses the main burner and is attached to the combustion container, a main burner air fan that supplies air to the main burner air box, and An air supply pipe for supplying air from the main burner air fan to the sub-burner air box.
  • a damper that opens and closes a flow path is provided at the outlet of the air supply unit.
  • the air is supplied from the air supply means, so the sub-burner can be cooled.
  • FIG. 2 is a transverse sectional view taken along the line AA of FIG. 1. It is a cross-sectional view showing a schematic configuration of a sub-burner. It is the side view which showed the state which connected the air fan with respect to the boiler. It is the schematic block diagram which showed the fuel oil path and steam path of the auxiliary burner applied to the boiler which concerns on 2nd Embodiment. It is a transverse cross section showing the boiler concerning a 3rd embodiment.
  • FIG. 7 is a front view showing the steam ring nozzle of FIG. 6.
  • the boiler of the present embodiment is described as a marine boiler mounted on a ship. Specifically, it is explained as a case where the boiler is used as an auxiliary boiler that generates miscellaneous steam for driving a steam turbine or the like for a cargo oil pump, for example.
  • the boiler is not limited to the auxiliary boiler, and in the case of a ship, for example, it can be used as a main engine boiler that serves as a power source during navigation or an auxiliary boiler that operates a machine mounted on the ship.
  • the boiler is not limited to the one for marine vessels, and can be used for boilers for various purposes.
  • the boiler 10 includes a combustion container 11, a main burner 12, a sub-burner 13, an evaporator 14, and a control unit 15.
  • the combustion container 11 has a box shape and has a combustion chamber 24 formed therein.
  • the combustion chamber 24 is pressurized when the main burner 12 or the sub-burner 13 is operating.
  • the operation of the burners 12 and 13 means that a flame is being formed, and the non-operation of the burners 12 and 13 means that a flame is not being formed.
  • the combustion container 11 has a ceiling portion 11a, a bottom portion 11b, a front wall portion 11c (see FIG. 2), a rear wall portion 11d (see FIG. 2), and a pair of side wall portions 11e and 11f.
  • a gas outlet 22 is formed in the ceiling portion 11a.
  • the bottom portion 11b is provided so as to face the ceiling portion 11a.
  • the front wall portion 11c, the rear wall portion 11d, and the pair of side wall portions 11e and 11f extend so as to connect the ceiling portion 11a and the bottom portion 11b.
  • the ceiling portion 11a, the bottom portion 11b, the front wall portion 11c, the rear wall portion 11d, and the side wall portion 11e form a combustion chamber 24.
  • the combustion chamber 24 is configured by being partitioned by a ceiling portion 11a, a bottom portion 11b, a front wall portion 11c, a rear wall portion 11d, a side wall portion 11e, and a front bank tube 28 described later.
  • the main burner 12 and the sub-burner 13 face the combustion chamber 24.
  • the combustion container 11 is provided with an exhaust chamber 33 defined by a ceiling portion 11a, a bottom portion 11b, a front wall portion 11c, a rear wall portion 11d, a side wall portion 11f, and an evaporation pipe 25 described later.
  • the gas outlet 22 communicates with the exhaust chamber 33.
  • the combustion container 11 is provided with a partition plate 29 near the center of the evaporator 14 and the front bank tube 28 in the height direction (vertical direction in FIG. 1).
  • the partition plate 29 forms the gas outlet side passage 23 with the bottom portion 11b in the region where the evaporator 14 and the front bank tube 28 are arranged.
  • the gas outlet side passage 23 is a passage for the combustion gas G that mainly flows from the combustion chamber 24 to the exhaust chamber 33.
  • the main burner 12 is provided on the side wall 11e side of the ceiling 11a at a position separated from the gas outlet 22.
  • the number of the main burners 12 is one in the present embodiment, the number of the main burners 12 may be plural.
  • the main burner 12 is connected to the fuel supply line and the air supply line.
  • the main burner 12 has an igniter (not shown). The main burner 12 burns the fuel gas in the combustion chamber 24 surrounded by the ceiling portion 11a, the bottom portion 11b, and the side wall portion 11e, and forms the flame F1 toward the bottom portion 11b side.
  • one sub-burner 13 is provided on the front wall 11c.
  • the sub-burner 13 is connected to a fuel supply line and an air supply line different from the main burner 12.
  • the sub-burner 13 has an igniter (not shown) different from the main burner 12.
  • the sub-burner 13 burns fuel oil and/or fuel gas in the combustion chamber 24 to form a flame F2 extending from the front wall portion 11c to the rear wall portion 11d, as shown in FIG.
  • the sub-burner 13 has a smaller capacity than the main burner 12. In the present embodiment, the capacity of the sub-burner 13 is, for example, 1/5 times or more and 1/3 times or less that of the main burner 12.
  • the sub-burner 13 is housed in an air box 40 for the sub-burner as shown in FIG.
  • the sub-burner wind box 40 is provided so as to project outward from the front wall portion 11c.
  • the sub-burner air box 40 is supplied with the sub-burner air AR1.
  • the sub-burner air AR1 is used as combustion air for the sub-burner 13, and is also used as sealing air and cooling air as described later.
  • the sub-burner 13 includes an oil injection nozzle 13a for injecting oil fuel and a gas injection nozzle 13b for injecting gas fuel.
  • the oil injection nozzle 13 a is located at the center of the cross section of the auxiliary burner 13.
  • a plurality of gas injection nozzles 13b are provided at predetermined angular intervals centered on the oil injection nozzle 13a.
  • Around the oil injection nozzle 13a and the gas injection nozzle 13b is a flow path through which the sub-burner air AR1 (see FIG. 2) flows.
  • the numbers of the oil injection nozzles 13a and the gas injection nozzles 13b are not limited to those shown in FIG. 3, and a plurality of oil injection nozzles 13a may be provided, or more gas injection nozzles 13b may be provided.
  • the sub-burner 13 is provided on the front wall 11c on the bottom 11b side of the combustion container 11 with respect to the main burner 12. As shown in FIG. 1, the sub-burner 13 is provided at a position near the lower end which is the downstream side of the flame F1 formed by the main burner 12, and is capable of supplying air to the lower end of the flame F1. More specifically, as an example, the sub-burner 13 is provided in the center portion of the front bank tube 28 and the wall tube (not shown) provided in the side wall portion 11e in the width direction of the combustion chamber 24 (left-right direction in FIG. 1). Has been.
  • the sub-burner 13 is provided in the central portion of the gas outlet side passage 23 in the height direction of the combustion chamber 24 (vertical direction in FIG. 1 ).
  • the sub-burner 13 may be provided near the center of the wall bank (not shown) provided on the side wall 11e and the front bank tube 28, or may be provided near the center of the gas outlet side passage 23. ..
  • the evaporator 14 is laterally composed of an evaporation tube group in which a plurality of evaporation tubes 25 are bundled.
  • the plurality of evaporation tubes 25 are arranged in the combustion container 11 along the fuel gas ejection direction of the main burner 12.
  • the lower ends of the plurality of evaporation pipes 25 are connected to a water drum 26 supported by the bottom 11b, and the upper ends thereof are connected to a steam drum 27 supported by the ceiling 11a.
  • the evaporator 14 is arranged as a front bank tube 28 by arranging a part of the evaporation pipes 25 so as to be bent toward the front wall portion 11c.
  • the combustion chamber 24, the front bank tube 28, the evaporator 14, and the exhaust chamber 33 are arranged in this order from the main burner 12 and the sub-burner 13 toward the gas outlet 22.
  • a plurality of wall tubes (furnace wall tubes) (not shown) as heat exchangers are provided on each wall surface of the combustion container 11.
  • a superheater may be provided between the evaporator 14 and the front bank tube 28 to superheat the steam in the steam drum 27 to generate superheated steam.
  • the main burner 12 or the sub-burner 13 injects fuel into the combustion chamber 24 for combustion to form a flame F1 or a flame F2, and a combustion gas G is generated.
  • the generated combustion gas G flows from the side wall 11e side of the combustion container 11 to the side wall 11f side.
  • the combustion gas G sequentially passes through the region where the front bank tube 28 is arranged and the region where the evaporator 14 is arranged from the combustion chamber 24 to the exhaust chamber 33.
  • the combustion gas G passes through the front bank tube 28 and the evaporator 14 mainly through the lower region in FIG. 1 partitioned by the partition plate 29, that is, the gas outlet side passage 23. Then, the combustion gas G mainly changes its direction to flow into the upper region in FIG.
  • the front bank tube 28 and the evaporator 14 are heat exchangers, respectively, that perform heat exchange with the combustion gas G when the combustion gas G passes through, recover the heat of the combustion gas G, and store it inside. Raises the temperature of circulating water or steam (heat medium).
  • the front bank tube 28 is arranged on the main burner 12 side and the sub-burner 13 side of the combustion container 11, that is, in a region where the temperature inside the combustion container 11 is high.
  • the front bank tube 28 is connected to the water drum 26 and the steam drum 27, and water and steam circulate inside.
  • the front bank tube 28 recovers the heat of the combustion gas G by exchanging heat between the combustion gas G and water or steam to raise the temperature of the water or steam and lower the temperature of the combustion gas G.
  • the evaporator 14 has a plurality of evaporation pipes 25 and is arranged closer to the gas outlet 22 than the front bank tube 28 in the combustion container 11.
  • the combustion gas G that has passed through the nodule in which the front bank tube 28 is arranged passes through the evaporator 14.
  • a water drum 26 and a steam drum 27 are connected to respective ends of a plurality of evaporation pipes 25, and water and steam are circulated in each evaporation pipe 25.
  • the evaporator 14 collects the heat of the combustion gas G by exchanging heat with the combustion gas G and water or steam when flowing from the water drum 26 through each evaporation pipe 25 to the steam drum 27.
  • the temperature of the steam is raised and the temperature of the combustion gas G is lowered. That is, the combustion gas G heats the water and steam in each evaporation pipe 25, so that only the steam rises and reaches the steam drum 27.
  • the heat of the combustion gas G that has passed through the evaporator 14 is recovered, the temperature of the combustion gas G drops, and the temperature of the combustion gas G reaches the exhaust chamber 33.
  • a pressure sensor (not shown) is provided in each of the combustion container 11 and the wind box 40. The output of each pressure sensor is transmitted to the control unit 15.
  • the control unit 15 controls the operation of the boiler such as the main burner 12 and the sub-burner 13 described above.
  • the control unit includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for implementing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing/arithmetic processing.
  • the program is installed in a ROM or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or delivered via a wired or wireless communication unit. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • a sub-burner air fan 44 is connected to the sub-burner wind box 40 via a sub-burner air duct 42.
  • the sub-burner air fan 44 supplies the sub-burner air AR1 (see FIG. 2) into the sub-burner air box 40.
  • Starting and stopping of the sub-burner air fan 44 are controlled by the control unit 15 (see FIG. 1). Further, the control unit 15 may control the rotation speed of the sub-burner air fan 44 to adjust the air flow rate.
  • a damper 46 that opens and closes the flow path is provided at the outlet of the sub-burner air fan 44.
  • the opening and closing of the damper 46 is controlled by a command from the control unit 15.
  • One end of an air supply pipe 48 is connected to the downstream side of the damper 46 and at an intermediate position of the auxiliary burner air duct 42.
  • the other end of the air supply pipe 48 is connected to an intermediate position of the main burner air duct 50.
  • the air supply pipe 48 is provided with an open/close valve 49.
  • the on-off valve 49 is controlled by the controller 15.
  • a main burner air fan 52 is connected to the upstream end of the main burner air duct 50.
  • the start and stop of the main burner air fan 52 is controlled by the control unit 15 (see FIG. 1). Further, the control unit 15 may control the rotation speed of the main burner air fan 52 to adjust the air flow rate.
  • a main burner wind box 54 is connected to the downstream end of the main burner air duct 50.
  • the main burner 12 (see FIG. 1) is housed in the main burner wind box 54.
  • the air supplied to the main burner wind box 54 is used as combustion air for the main burner 12.
  • the control unit 15 regulates the combustion by the main burner 12 and the sub-burner 13 according to the load of the use destination of the steam generated in the boiler 10, and adjusts the operating load of the boiler 10.
  • the control unit 15 does not operate the main burner 12 and does not operate when a low load less than a predetermined value is required, for example, when the steam turbine for the cargo oil pump is not driven. That is, combustion by the main burner 12 is not performed.
  • the boiler 10 is warmed up by the auxiliary burner 13.
  • the controller 15 operates only the sub-burner 13 to burn the fuel oil and/or the fuel gas.
  • the boiler 10 is warmed up by the small-capacity auxiliary burner 13 without using the high-capacity main burner 12 to suppress the fuel consumption, and when the steam turbine needs to be driven, for example, By operating the burner 12, steam can be quickly supplied from the boiler 10.
  • the control unit 15 increases the load of the steam turbine (when the steam turbine for the cargo oil pump needs to be driven at a high load of a predetermined value or more, for example, when the steam turbine for the cargo oil pump needs to be driven).
  • the amount of fuel oil and/or fuel gas supplied to the main burner 12 is gradually increased according to the increase in load.
  • the control unit 15 causes the sub-burner air fan 44 to supply air so as to cool the sub-burner 13. At this time, fuel oil and fuel gas are not supplied to the sub-burner 13.
  • the control unit 15 controls the sub-burner air fan 44 so that the pressure in the sub-burner wind box 40 is higher than the pressure in the combustion container 11.
  • the air supplied to the auxiliary burner wind box 40 is supplied to the vicinity of the lower end of the flame F1 formed by the main burner 12 after cooling the auxiliary burner 13. As a result, the flame is cooled in the vicinity of the lower end of the flame F1, and the amount of NOx produced by combustion by the main burner 12 is reduced.
  • ⁇ Operation when the auxiliary burner air fan 44 fails> When the auxiliary burner air fan 44 fails and air cannot be supplied to the auxiliary burner air box 40, the following operation is performed.
  • the control unit 15 detects the failure of the auxiliary burner air fan 44, the control unit 15 operates the opening/closing valve 49 provided in the air supply pipe 48 from the fully closed state to the fully opened state. As a result, a part of the air supplied from the main burner air fan 52 is supplied to the auxiliary burner wind box 40 via the air supply pipe 48 and the auxiliary burner air duct 42. At this time, the control unit 15 operates the damper 46 from fully open to fully closed. This prevents the air from flowing back to the auxiliary burner air fan 44.
  • the failure of the sub-burner air fan 44 can be detected by monitoring the fan rotation speed.
  • An auxiliary burner 13 is provided on the downstream side of the flame F1 formed by the main burner 12. Therefore, when the main burner 12 is operating and the sub-burner 13 is not operating, if the combustion air is not supplied to the sub-burner 13, the sub-burner 13 may be damaged by the radiant heat from the flame F1 of the main burner 12. is there. Therefore, even when the sub-burner 13 is not operating, the sub-burner 13 is cooled by supplying air from the sub-burner air fan 44. Further, since the air is supplied so that the pressure in the auxiliary burner wind box 40 is higher than the pressure in the combustion container 11, the auxiliary burner 13 and the auxiliary burner are supplied to the combustion chamber 24 in the pressurized state. The air duct 40 can be sealed. As a result, when the pressure in the auxiliary burner wind box 40 is lower than the pressure in the combustion container 11, it is possible to avoid the possibility that the combustion gas of the main burner 12 enters the auxiliary burner 13 (backflow).
  • the air supply pipe 48 is used to supply air from the main burner air fan 52 to the auxiliary burner wind box 40. As a result, even if the auxiliary burner air fan 44 fails, the cooling air can be supplied to the auxiliary burner air box 40. Not only the failure of the auxiliary burner air fan 44, but also when the amount of air supplied from the auxiliary burner air fan 44 is insufficient, air is supplied from the main burner air fan 52 to the auxiliary burner wind box 40. You may do it.
  • a damper 46 has been installed at the outlet of the sub-burner air fan 44.
  • the damper 46 when the sub-burner air fan 44 is stopped, the air introduced from the main-burner air fan 52 via the air supply pipe 48 is directed to the sub-burner air fan 44 side. Backflow can be prevented.
  • FIG. 5 shows a system for supplying fuel oil to the oil injection nozzle 13a (see FIG. 3) provided in the sub burner 13.
  • a fuel oil supply path 60 and a steam supply path (cooling steam supply section) 62 are connected to the oil injection nozzle 13a.
  • An oil tank and an oil supply pump (not shown) are connected to the upstream side of the fuel oil supply path 60.
  • a control valve 64 is provided in the fuel oil supply path 60. The control valve 64 is controlled by the control unit 15.
  • a steam source (not shown) is connected to the upstream side of the steam supply path 62.
  • the steam supply path 62 is branched into an atomized steam supply path 62a and a purge steam supply path 62b.
  • the atomized steam supply path 62a is connected to the oil injection nozzle 13a.
  • a control valve 66 and a check valve 67 controlled by the controller 15 are provided in the atomized steam supply path 62a.
  • the steam supplied from the atomizing steam supply path 62a is originally used for atomizing the fuel oil. However, in the present embodiment, it can be used as cooling steam.
  • the downstream end of the purge steam supply path 62b is connected to the fuel oil supply path 60.
  • the purge vapor supply path 62b is provided with a control valve 68 and a check valve 69 controlled by the controller 15.
  • the steam supplied from the purge steam supply path 62b is originally used to purge the path through which the fuel oil flows with steam. However, in the present embodiment, it can be used as cooling steam.
  • Steam cooling of the sub-burner 13 is performed as follows.
  • the control valve 64 of the fuel oil supply path 60 is closed and the supply of fuel oil is stopped, the sub-burner 13 is deactivated.
  • the control unit 15 causes the oil injection nozzle 13 a to inject steam using the steam supply path 62.
  • the control valve 66 of the atomized steam supply path 62a is opened and the control valve 68 of the purge steam supply path 62b is opened to guide the steam to the oil injection nozzle 13a.
  • the auxiliary burner 13 is protected from the radiant heat emitted from the flame F1 formed in the combustion chamber 24.
  • the swirler and the gas nozzle attached to the oil injection nozzle 13a are cooled easily by radiation heat of the flame of the main burner 12 It can be shielded by steam, and the auxiliary burner 13 can be protected more effectively.
  • Oil is not supplied to the oil injection nozzle 13a of the sub-burner 13 when it is not operating. Therefore, the oil injection nozzle 13a is made a part of the cooling steam supply unit and the cooling steam is supplied from the oil injection nozzle 13a. .. Since the oil injection nozzle 13a injects the cooling steam from the tip of the sub-burner 13 toward the inside of the combustion chamber 24, the sub-burner 13 can be effectively protected from the radiant heat.
  • steam By injecting steam from the oil injection nozzle 13a of the sub-burner 13, steam can be supplied to the downstream side of the flame F1 of the main burner 12. As a result, the temperature of the flame F1 can be lowered to reduce the thermal NOx. Further, if steam is supplied to the root of the flame F1, the mixture of fuel and air is hindered and combustion becomes unstable. On the downstream side of the flame F1 (the tip of the flame F1), the combustion reaction is near the end, and since much air is not required, there is no risk of unstable combustion.
  • the gas injection nozzle 13b can be part of the cooling steam supply unit, and the cooling steam can be supplied from the gas injection nozzle 13b. Since the gas injection nozzle 13b injects the cooling steam from the tip of the auxiliary burner 13 toward the inside of the combustion chamber 24, the auxiliary burner 13 can be effectively protected from radiant heat. Further, the gas injection nozzle 13b protruding into the combustion chamber 24 can be effectively cooled.
  • a steam ring nozzle (steam supply nozzle) 72 is provided in the wind box 40 for the sub-burner.
  • the steam ring nozzle 72 is connected to a steam source (not shown), and injects the steam from the auxiliary burner wind box 40 into the combustion chamber 24.
  • the steam ring nozzle 72 has a ring-shaped pipe, and a plurality of injection holes 72a are formed in the pipe at predetermined intervals.
  • the steam ring nozzle 72 is installed so as to surround the base end portion of the auxiliary burner 13.
  • a steam ring nozzle 72 is provided in the sub-burner wind box 40 as a part of the cooling steam supply unit.
  • the sub-burner 13 housed in the sub-burner wind box 40 can be cooled.
  • the cooling steam can be supplied to the entire sub-burner 13 by the steam ring nozzle 72, it is possible to effectively cool the swirler, the gas injection nozzle 13b, and the like, which are easily damaged by the flame of the main burner 12. Further, the flame cooling effect due to the steam injection is wide, and NOx can be reduced.
  • a path for supplying cooling steam can be provided separately from the oil injection nozzle 13a and the gas injection nozzle 13b of the sub burner 13, the cooling steam can be supplied regardless of the operation of the sub burner 13. By blowing steam during the operation of the sub-burner 13, it is possible to reduce the NOx of the sub-burner 13 itself.
  • the steam can be supplied to the downstream side of the flame F1 of the main burner 12.
  • the temperature of the flame F1 can be lowered to reduce the thermal NOx.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Provided is a boiler such that even if a large-capacity main burner is operating and a small-capacity sub-burner is not operating, it is possible to cool the sub-burner. The boiler comprises: a combustion vessel (11) that forms a combustion chamber (24); a main burner that is disposed in the combustion vessel (11); a sub-burner (13) that is disposed in the combustion vessel (11), disposed downstream of the flame formed by the main burner, and has a smaller capacity than the main burner; a sub-burner wind box (40) that accommodates the sub-burner (13) and is attached to the combustion vessel (11); a sub-burner air fan (44) that supplies air to the sub-burner wind box (40); and a control unit that controls the sub-burner air fan (44). The control unit controls the sub-burner air fan (44) so that the pressure in the sub-burner wind box (40) becomes higher than the pressure in the combustion vessel (11), when the main burner is operating and the sub burner (13) is not operating.

Description

ボイラboiler
 本発明は、ボイラに関するものである。 The present invention relates to a boiler.
 バーナによって燃焼室内で火炎を形成し、蒸気を生成するボイラが知られている。下記特許文献1には、船舶に搭載される舶用ボイラが開示されている。同文献に開示されたボイラは、大容量のバーナの他に小容量のバーナを設けることで、大容量から小容量まで対応できるようになっている。 ㆍ It is known that the burner creates a flame in the combustion chamber and produces steam. The following Patent Document 1 discloses a marine boiler mounted on a marine vessel. The boiler disclosed in the same document can cope with a large capacity to a small capacity by providing a small capacity burner in addition to the large capacity burner.
実開昭57-81999号公報Japanese Utility Model Publication No. 57-81999
 船舶に搭載されるボイラとしては、推進用プロペラを駆動させるための動力源として用いられる主機ボイラがある。主機ボイラよりも容量が小さいボイラとして、船舶に搭載される各種装置を稼動させたり、発雷機を駆動させたりする補助動力源として用いられる補助ボイラがある。 As a boiler mounted on a ship, there is a main engine boiler used as a power source for driving a propeller for propulsion. As a boiler having a smaller capacity than the main engine boiler, there is an auxiliary boiler used as an auxiliary power source for operating various devices mounted on a ship and driving a lightning generator.
 補助ボイラは、高負荷機器用の高圧蒸気を生成するためのものと、低負荷機器用の低圧蒸気を生成するためのものとが、それぞれ必要となる場合がある。その結果、船舶の設備点数の増加を招いてしまう。また、補助ボイラは、昇圧に時間を要するため、蒸気を機器に速やかに供給するためには、暖機運転を継続しておく必要もある。このため、特に高圧蒸気を生成する補助ボイラを暖機運転することによる燃料消費量の増加が間題となる。 The auxiliary boiler may require one for generating high-pressure steam for high-load equipment and another for generating low-pressure steam for low-load equipment. As a result, the number of facilities on the ship is increased. Further, since the auxiliary boiler requires time for pressurization, it is necessary to keep warm-up operation in order to quickly supply steam to the equipment. For this reason, an increase in fuel consumption by warming up the auxiliary boiler that generates high-pressure steam is an issue.
 そこで、特許文献1のように容量の異なるバーナを設けることで、大容量から小容量まで対応させて高ターンダウン化を図ることが考えられる。 Therefore, by providing burners with different capacities as in Patent Document 1, it is conceivable to cope with large capacities to small capacities to achieve high turndown.
 しかし、大容量のバーナの運転時には、小容量のバーナが停止しており、大容量の主バーナの火炎の輻射熱により小容量の副バーナが損傷するおそれがある。 However, when operating a large capacity burner, the small capacity burner is stopped, and the radiant heat of the flame of the large capacity main burner may damage the small capacity sub-burner.
 本開示は、このような事情に鑑みてなされたものであって、大容量の主バーナが動作しているときに小容量のバーナを冷却することができるボイラを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object thereof is to provide a boiler that can cool a small capacity burner when a large capacity main burner is operating.
 本開示の一態様に係るボイラは、燃焼室を形成する燃焼容器と、前記燃焼容器に設けられた主バーナと、前記燃焼容器に設けられ、前記主バーナによって形成される火炎の下流側に設けられるとともに該主バーナよりも小容量とされた副バーナと、前記副バーナを収容するとともに前記燃焼容器に取り付けられた副バーナ用風箱と、前記副バーナ用風箱に空気を供給する空気供給手段と、前記空気供給手段を制御する制御部と、を備え、前記制御部は、前記主バーナの動作時でかつ前記副バーナの非動作時に、前記空気供給手段を駆動する。 A boiler according to an aspect of the present disclosure includes a combustion container that forms a combustion chamber, a main burner that is provided in the combustion container, and a downstream side of a flame that is provided in the combustion container and that is formed by the main burner. And a sub-burner having a smaller capacity than the main burner, a sub-burner wind box that accommodates the sub-burner and is attached to the combustion container, and an air supply that supplies air to the sub-burner wind box. Means and a control unit for controlling the air supply unit, the control unit driving the air supply unit when the main burner is operating and when the sub-burner is not operating.
 主バーナによって形成される火炎の下流側に副バーナが設けられている。このため、主バーナの動作時でかつ副バーナの非動作時には、副バーナに燃焼用空気が供給されていないと、主バーナによる火炎による輻射熱で副バーナが損傷するおそれがある。そこで、副バーナの非動作時であっても、副バーナ用空気ファンから空気を供給するようにして副バーナを冷却するようにした。また、燃焼容器内の圧力よりも副バーナ用風箱内の圧力が高くなるように空気を供給することとしたので、加圧状態にある燃焼室に対して副バーナ及び副バーナ用風箱をシールすることができる。  A secondary burner is provided downstream of the flame formed by the main burner. Therefore, when the main burner is operating and the sub-burner is not operating, if the combustion air is not supplied to the sub-burner, the sub-burner may be damaged by the radiant heat due to the flame of the main burner. Therefore, even when the sub-burner is not operating, the sub-burner is cooled by supplying air from the sub-burner air fan. Further, since the air is supplied so that the pressure in the sub-burner wind box is higher than the pressure in the combustion container, the sub-burner and the sub-burner wind box are provided for the combustion chamber in the pressurized state. Can be sealed.
 前記制御部は、前記主バーナの動作時でかつ前記副バーナの非動作時に、前記燃焼容器内の圧力よりも前記副バーナ用風箱内の圧力が高くなるように前記空気供給手段を制御するようにしても良い。 The control unit controls the air supply unit so that the pressure in the auxiliary burner air box is higher than the pressure in the combustion container when the main burner is operating and the sub-burner is not operating. You may do it.
 本開示の一態様に係るボイラでは、前記副バーナを冷却する冷却蒸気を供給する冷却蒸気供給部を備えている。 A boiler according to an aspect of the present disclosure includes a cooling steam supply unit that supplies cooling steam that cools the sub-burner.
 さらに冷却蒸気を供給することとしたので、輻射熱による副バーナの損傷を抑えることができる。 Since it is decided to supply cooling steam, damage to the sub-burner due to radiant heat can be suppressed.
 本開示の一態様に係るボイラでは、前記副バーナは、燃焼用燃料として油燃料を前記燃焼室に噴射する油噴射ノズルを備えており、前記油噴射ノズルは、前記冷却蒸気供給部の一部とされている。 In the boiler according to one aspect of the present disclosure, the sub-burner includes an oil injection nozzle that injects oil fuel as combustion fuel into the combustion chamber, and the oil injection nozzle is a part of the cooling steam supply unit. It is said that.
 副バーナの油噴射ノズルは、非動作時には油が供給されることはないので、油噴射ノズルを冷却蒸気供給部の一部とし、油噴射ノズルから冷却蒸気を供給することとした。油噴射ノズルは、副バーナの先端から燃焼室内に向けて冷却蒸気を噴射するので、副バーナを輻射熱から効果的に保護することができる。  The oil injection nozzle of the sub-burner does not supply oil when it is not operating, so we decided to make the oil injection nozzle part of the cooling steam supply part and supply cooling steam from the oil injection nozzle. Since the oil injection nozzle injects the cooling steam from the tip of the sub-burner toward the combustion chamber, the sub-burner can be effectively protected from radiant heat.
 本開示の一態様に係るボイラでは、前記副バーナ用風箱内に、前記冷却蒸気供給部の一部として蒸気供給ノズルが設けられている。 In the boiler according to an aspect of the present disclosure, a steam supply nozzle is provided as a part of the cooling steam supply unit in the auxiliary burner air box.
 副バーナ用風箱内に、冷却蒸気供給部の一部として蒸気供給ノズルを設けることとした。これにより、副バーナ用風箱内に収容された副バーナを冷却することができる。また、副バーナの燃料ノズルとは別に冷却蒸気を供給する経路を設けることができるので、副バーナの動作に関係なく冷却蒸気を供給することができる。
 蒸気供給ノズルとしては、例えば、副バーナを囲むリング形状のノズルとされた蒸気リングノズルとすることができる。
It was decided to install a steam supply nozzle as part of the cooling steam supply unit in the auxiliary burner air box. As a result, the sub-burner housed in the sub-burner air box can be cooled. Further, since a path for supplying the cooling steam can be provided separately from the fuel nozzle of the auxiliary burner, the cooling steam can be supplied regardless of the operation of the auxiliary burner.
As the steam supply nozzle, for example, a steam ring nozzle that is a ring-shaped nozzle surrounding the sub-burner can be used.
 本開示の一態様に係るボイラでは、前記副バーナは、燃焼用燃料としてガス燃料を前記燃焼室に噴射するガス噴射ノズルを備えており、前記ガス噴射ノズルは、前記冷却蒸気供給部の一部とされている。 In the boiler according to one aspect of the present disclosure, the sub-burner includes a gas injection nozzle that injects a gas fuel as combustion fuel into the combustion chamber, and the gas injection nozzle is a part of the cooling steam supply unit. It is said that.
 副バーナは、油燃料に加えてガス燃料も使用できるようにガス噴射ノズルを備えている。ガス噴射ノズルを冷却蒸気供給部の一部とし、ガス噴射ノズルから冷却蒸気を供給することとした。ガス噴射ノズルは、副バーナの先端から燃焼室内に向けて冷却蒸気を噴射するので、副バーナを輻射熱から効果的に保護することができる。 ◇The sub-burner is equipped with a gas injection nozzle so that gas fuel can be used in addition to oil fuel. The gas injection nozzle is part of the cooling steam supply unit, and the cooling steam is supplied from the gas injection nozzle. Since the gas injection nozzle injects the cooling steam from the tip of the sub-burner toward the combustion chamber, the sub-burner can be effectively protected from radiant heat.
 本開示の一態様に係るボイラでは、前記冷却蒸気供給部は、前記主バーナによって形成された火炎の下流側に向けて冷却蒸気を供給する。 In the boiler according to the aspect of the present disclosure, the cooling steam supply unit supplies the cooling steam toward the downstream side of the flame formed by the main burner.
 主バーナの火炎の下流側に蒸気を供給することで、火炎温度を低下させてサーマルNOxを低減することができる。 By supplying steam to the downstream side of the flame of the main burner, it is possible to lower the flame temperature and reduce thermal NOx.
 本開示の一態様に係るボイラでは、前記主バーナを収容するとともに前記燃焼容器に取り付けられた主バーナ用風箱と、前記主バーナ用風箱に空気を供給する主バーナ用空気ファンと、前記主バーナ用空気ファンから前記副バーナ用風箱に空気を供給する空気供給管と、を備えている。 In a boiler according to an aspect of the present disclosure, a main burner air box that houses the main burner and is attached to the combustion container, a main burner air fan that supplies air to the main burner air box, and An air supply pipe for supplying air from the main burner air fan to the sub-burner air box.
 主バーナ用空気ファンから副バーナ用風箱に空気を供給することとした。これにより、万が一、副バーナ用空気ファンが故障しても、副バーナ用風箱に冷却空気を供給することができる。
 なお、主バーナ用空気ファンから副バーナ用風箱への空気供給は、制御部によって制御される。つまり、副バーナ用空気ファンが故障していない場合は、空気の流れを止めるように制御部が開閉弁等を制御する。副バーナ用空気ファンが故障した場合は、空気が流れるように制御部が開閉弁等を制御する。なお、副バーナ用空気ファンの故障に限らず、副バーナ用空気ファンから供給される空気量が不足した場合に、主バーナ用ファンから副バーナ用風箱に空気を供給するようにしても良い。
It was decided to supply air from the main burner air fan to the auxiliary burner air box. Thus, even if the sub-burner air fan fails, cooling air can be supplied to the sub-burner air box.
The air supply from the main burner air fan to the auxiliary burner air box is controlled by the controller. That is, when the sub-burner air fan has not failed, the control unit controls the on-off valve and the like to stop the air flow. When the sub-burner air fan fails, the control unit controls the on-off valve and the like so that the air flows. Not only the failure of the sub-burner air fan, but also when the amount of air supplied from the sub-burner air fan is insufficient, air may be supplied from the main burner fan to the sub-burner wind box. ..
 本開示の一態様に係るボイラでは、前記空気供給手段の出口に、流路を開閉するダンパが設けられている。 In the boiler according to one aspect of the present disclosure, a damper that opens and closes a flow path is provided at the outlet of the air supply unit.
 空気供給手段の出口にダンパを設けることとした。これにより、空気供給手段が停止している場合にダンパを閉じることで、主バーナ用空気ファンから空気供給管を介して導かれた空気が空気供給手段側に逆流することを防止できる。  It was decided to install a damper at the outlet of the air supply means. Thus, by closing the damper when the air supply means is stopped, it is possible to prevent the air guided from the main burner air fan via the air supply pipe from flowing back to the air supply means side.
 主バーナが動作しているときに副バーナが非動作とされている場合であっても、空気供給手段から空気を供給するようにしたので、副バーナを冷却することができる。 Even if the sub-burner is not operating when the main burner is operating, the air is supplied from the air supply means, so the sub-burner can be cooled.
第1実施形態に係るボイラを示した縦断面図である。It is a longitudinal section showing the boiler concerning a 1st embodiment. 図1のA-A線における横断面図である。FIG. 2 is a transverse sectional view taken along the line AA of FIG. 1. 副バーナの概略構成を示した横断面図である。It is a cross-sectional view showing a schematic configuration of a sub-burner. ボイラに対して空気ファンを接続した状態を示した側面図である。It is the side view which showed the state which connected the air fan with respect to the boiler. 第2実施形態に係るボイラに適用される副バーナの燃料油経路と蒸気経路を示した概略構成図である。It is the schematic block diagram which showed the fuel oil path and steam path of the auxiliary burner applied to the boiler which concerns on 2nd Embodiment. 第3実施形態に係るボイラを示した横断面図である。It is a transverse cross section showing the boiler concerning a 3rd embodiment. 図6の蒸気リングノズルを示した正面図である。FIG. 7 is a front view showing the steam ring nozzle of FIG. 6.
 以下に、本開示にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本開示の第1実施形態について説明する。
 本実施形態のボイラは、船舶に搭載された舶用ボイラとして説朋する。具体的には、ボイラを、例えばカーゴオイルポンプ用の蒸気タービン等を駆動させるための雑用蒸気を生成する補助ボイラとして用いる場合として説朋する。但し、ボイラは、補助ボイラに限定されず、例えば、船舶の場合、航行時の動力源となる主機ボイラや、船舶に搭載されている機械を稼動させる補助ボイラとしても用いることができる。ボイラは、舶用に限定されず、種々の用途のボイラに用いることができる。
Embodiments according to the present disclosure will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, the first embodiment of the present disclosure will be described.
The boiler of the present embodiment is described as a marine boiler mounted on a ship. Specifically, it is explained as a case where the boiler is used as an auxiliary boiler that generates miscellaneous steam for driving a steam turbine or the like for a cargo oil pump, for example. However, the boiler is not limited to the auxiliary boiler, and in the case of a ship, for example, it can be used as a main engine boiler that serves as a power source during navigation or an auxiliary boiler that operates a machine mounted on the ship. The boiler is not limited to the one for marine vessels, and can be used for boilers for various purposes.
<ボイラの全体構成>
 図1に示されているように、ボイラ10は、燃焼容器11と、主バーナ12と、副バーナ13と、蒸発器14と、制御部15とを備えている。
<Overall structure of boiler>
As shown in FIG. 1, the boiler 10 includes a combustion container 11, a main burner 12, a sub-burner 13, an evaporator 14, and a control unit 15.
 燃焼容器11は、箱形形状とされており、内部に燃焼室24を形成している。燃焼室24は、主バーナ12又は副バーナ13の動作時には加圧状態とされる。なお、バーナ12,13の動作時とは火炎を形成している状態を意味し、非動作時とは火炎を形成していない状態を意味する。 The combustion container 11 has a box shape and has a combustion chamber 24 formed therein. The combustion chamber 24 is pressurized when the main burner 12 or the sub-burner 13 is operating. The operation of the burners 12 and 13 means that a flame is being formed, and the non-operation of the burners 12 and 13 means that a flame is not being formed.
 燃焼容器11は、天井部11aと、底部11bと、前壁部11c(図2参照)と、後壁部11d(図2参照)と、一対の側壁部11e,11fとを有する。天井部11aには、ガス出口22が形成されている。底部11bは、天井部11aと対向して設けられている。前壁部11c、後壁部11dおよび一対の側壁部11e,11fは、天井部11aと底部11bとの間を接続するように延在している。天井部11aと底部11bと前壁部11cと後壁部11dと側壁部11eとは、燃焼室24を形成する。燃焼室24は、天井部11aと底部11bと前壁部11cと後壁部11dと側壁部11eと後述するフロントバンクチューブ28とにより区画されて構成されている。燃焼室24に向けて主バーナ12および副バーナ13が臨んでいる。 The combustion container 11 has a ceiling portion 11a, a bottom portion 11b, a front wall portion 11c (see FIG. 2), a rear wall portion 11d (see FIG. 2), and a pair of side wall portions 11e and 11f. A gas outlet 22 is formed in the ceiling portion 11a. The bottom portion 11b is provided so as to face the ceiling portion 11a. The front wall portion 11c, the rear wall portion 11d, and the pair of side wall portions 11e and 11f extend so as to connect the ceiling portion 11a and the bottom portion 11b. The ceiling portion 11a, the bottom portion 11b, the front wall portion 11c, the rear wall portion 11d, and the side wall portion 11e form a combustion chamber 24. The combustion chamber 24 is configured by being partitioned by a ceiling portion 11a, a bottom portion 11b, a front wall portion 11c, a rear wall portion 11d, a side wall portion 11e, and a front bank tube 28 described later. The main burner 12 and the sub-burner 13 face the combustion chamber 24.
 燃焼容器11は、天井部11aと底部11bと前壁部11cと後壁部11dと側壁部11fと後述する蒸発管25とにより区画された排気室33が設けられている。排気室33には、ガス出口22が連通している。燃焼容器11は、蒸発器14およびフロントバンクチューブ28の高さ方向(図1の上下方向)の中央部近辺に、仕切り板29が設けられている。仕切り板29は、蒸発器14及びフロントバンクチューブ28が配置された領域において、底部11bとの間でガス出口側通路23を形成する。ガス出口側通路23は、燃焼室24から排気室33へと主として流れる燃焼ガスGの通路である。 The combustion container 11 is provided with an exhaust chamber 33 defined by a ceiling portion 11a, a bottom portion 11b, a front wall portion 11c, a rear wall portion 11d, a side wall portion 11f, and an evaporation pipe 25 described later. The gas outlet 22 communicates with the exhaust chamber 33. The combustion container 11 is provided with a partition plate 29 near the center of the evaporator 14 and the front bank tube 28 in the height direction (vertical direction in FIG. 1). The partition plate 29 forms the gas outlet side passage 23 with the bottom portion 11b in the region where the evaporator 14 and the front bank tube 28 are arranged. The gas outlet side passage 23 is a passage for the combustion gas G that mainly flows from the combustion chamber 24 to the exhaust chamber 33.
 主バーナ12は、天井部11aの側壁部11e側で、ガス出口22から離間した位置に1つ設けられている。なお、本実施形態において主バーナ12は1つとされているが、複数であっても良い。主バーナ12は、燃料供給ラインおよび空気供給ラインに接続されている。主バーナ12は、図示しないイグナイタを有する。主バーナ12は、天井部11aと底部11bと側壁部11eとに囲まれた燃焼室24内で燃料ガスを燃焼させ、底部11b側に向かう火炎F1を形成する。 The main burner 12 is provided on the side wall 11e side of the ceiling 11a at a position separated from the gas outlet 22. In addition, although the number of the main burners 12 is one in the present embodiment, the number of the main burners 12 may be plural. The main burner 12 is connected to the fuel supply line and the air supply line. The main burner 12 has an igniter (not shown). The main burner 12 burns the fuel gas in the combustion chamber 24 surrounded by the ceiling portion 11a, the bottom portion 11b, and the side wall portion 11e, and forms the flame F1 toward the bottom portion 11b side.
 副バーナ13は、図2に示すように、前壁部11cに1つ設けられている。なお、本実施形態において副バーナ13は1つとされているが、複数であっても良い。副バーナ13は、主バーナ12とは異なる燃料供給ラインおよび空気供給ラインに接続されている。副バーナ13は、主バーナ12とは異なる図示しないイグナイタを有する。副バーナ13は、燃焼室24内で燃料油及び/又は燃料ガスを燃焼させ、図2に示すように、前壁部11cから後壁部11dに向かう火炎F2を形成する。副バーナ13は、主バーナ12よりも小容量とされている。本実施形態において、副バーナ13の容量は、例えば、主バーナ12の容量の1/5倍以上1/3倍以下とされている。 As shown in FIG. 2, one sub-burner 13 is provided on the front wall 11c. Although the number of the sub-burners 13 is one in this embodiment, it may be plural. The sub-burner 13 is connected to a fuel supply line and an air supply line different from the main burner 12. The sub-burner 13 has an igniter (not shown) different from the main burner 12. The sub-burner 13 burns fuel oil and/or fuel gas in the combustion chamber 24 to form a flame F2 extending from the front wall portion 11c to the rear wall portion 11d, as shown in FIG. The sub-burner 13 has a smaller capacity than the main burner 12. In the present embodiment, the capacity of the sub-burner 13 is, for example, 1/5 times or more and 1/3 times or less that of the main burner 12.
 副バーナ13は、図2に示すように、副バーナ用風箱40内に収容されている。副バーナ用風箱40は、前壁部11cから外方に突出するように設けられている。副バーナ用風箱40内には、副バーナ用空気AR1が供給されるようになっている。副バーナ用空気AR1は、副バーナ13の燃焼用空気として用いられるとともに、後述するように、シール空気や冷却空気としても用いられる。 The sub-burner 13 is housed in an air box 40 for the sub-burner as shown in FIG. The sub-burner wind box 40 is provided so as to project outward from the front wall portion 11c. The sub-burner air box 40 is supplied with the sub-burner air AR1. The sub-burner air AR1 is used as combustion air for the sub-burner 13, and is also used as sealing air and cooling air as described later.
 副バーナ13は、図3に示されているように、油燃料を噴射する油噴射ノズル13aと、ガス燃料を噴射するガス噴射ノズル13bとを備えている。油噴射ノズル13aは、副バーナ13の横断面における中心に位置している。ガス噴射ノズル13bは、油噴射ノズル13aを中心として所定角度間隔をおいて複数設けられている。油噴射ノズル13a及びガス噴射ノズル13bの周囲は、副バーナ用空気AR1(図2参照)が流れる流路となっている。なお、油噴射ノズル13aとガス噴射ノズル13bの個数は、図3に限定されるものではなく、油噴射ノズル13aが複数であっても良いし、ガス噴射ノズル13bをさらに多く設けても良い。 As shown in FIG. 3, the sub-burner 13 includes an oil injection nozzle 13a for injecting oil fuel and a gas injection nozzle 13b for injecting gas fuel. The oil injection nozzle 13 a is located at the center of the cross section of the auxiliary burner 13. A plurality of gas injection nozzles 13b are provided at predetermined angular intervals centered on the oil injection nozzle 13a. Around the oil injection nozzle 13a and the gas injection nozzle 13b is a flow path through which the sub-burner air AR1 (see FIG. 2) flows. The numbers of the oil injection nozzles 13a and the gas injection nozzles 13b are not limited to those shown in FIG. 3, and a plurality of oil injection nozzles 13a may be provided, or more gas injection nozzles 13b may be provided.
 副バーナ13は、図1および図2に示すように、主バーナ12よりも燃焼容器11の底部11b側で、前壁部11cに設けられている。副バーナ13は、図1に示すように、主バーナ12が形成する火炎F1の下流側である下端近傍の位置に設けられ、火炎F1の下端に空気を供給可能とされている。より詳細には、副バーナ13は、一例として、燃焼室24の幅方向(図1の左右方向)において、側壁部11eに設けられた図示しないウォールチューブとフロントバンクチューブ28との中央部に設けられている。副バーナ13は、一例として、燃焼室24の高さ方向(図1の上下方向)において、ガス出口側通路23の中央部に設けられている。なお、副バーナ13は、側壁部11eに設けられた図示しないウォールチューブとフロントバンクチューブ28との中央部近傍に設けられてもよく、ガス出口側通路23の中央部近傍に設けられてもよい。 As shown in FIGS. 1 and 2, the sub-burner 13 is provided on the front wall 11c on the bottom 11b side of the combustion container 11 with respect to the main burner 12. As shown in FIG. 1, the sub-burner 13 is provided at a position near the lower end which is the downstream side of the flame F1 formed by the main burner 12, and is capable of supplying air to the lower end of the flame F1. More specifically, as an example, the sub-burner 13 is provided in the center portion of the front bank tube 28 and the wall tube (not shown) provided in the side wall portion 11e in the width direction of the combustion chamber 24 (left-right direction in FIG. 1). Has been. As an example, the sub-burner 13 is provided in the central portion of the gas outlet side passage 23 in the height direction of the combustion chamber 24 (vertical direction in FIG. 1 ). The sub-burner 13 may be provided near the center of the wall bank (not shown) provided on the side wall 11e and the front bank tube 28, or may be provided near the center of the gas outlet side passage 23. ..
 蒸発器14は、複数の蒸発管25が束状になった蒸発管群により横成されている。複数の蒸発管25は、燃焼容器11内で主バーナ12の燃料ガス噴出方向に沿って配置される。複数の蒸発管25は、下端部が底部11bに支持された水ドラム26に連結され、上端部が天井部11aに支持された蒸気ドラム27に連結されている。蒸発器14は、一部の蒸発管25が前壁部11c側に屈曲して配置されることで、フロントバンクチューブ28として配置される。 The evaporator 14 is laterally composed of an evaporation tube group in which a plurality of evaporation tubes 25 are bundled. The plurality of evaporation tubes 25 are arranged in the combustion container 11 along the fuel gas ejection direction of the main burner 12. The lower ends of the plurality of evaporation pipes 25 are connected to a water drum 26 supported by the bottom 11b, and the upper ends thereof are connected to a steam drum 27 supported by the ceiling 11a. The evaporator 14 is arranged as a front bank tube 28 by arranging a part of the evaporation pipes 25 so as to be bent toward the front wall portion 11c.
 ボイラ10は、主バーナ12および副バーナ13からガス出口22に向けて、燃焼室24、フロントバンクチューブ28、蒸発器14、排気室33がこの順で配置されている。なお、燃焼容器11の各壁面には、熱交換器としての図示しないウォールチューブ(炉壁管)が複数設けられている。蒸発器14とフロントバンクチューブ28との間に、蒸気ドラム27内の蒸気を過熱して過熱蒸気を生成するための過熱器が設けられても良い。 In the boiler 10, the combustion chamber 24, the front bank tube 28, the evaporator 14, and the exhaust chamber 33 are arranged in this order from the main burner 12 and the sub-burner 13 toward the gas outlet 22. A plurality of wall tubes (furnace wall tubes) (not shown) as heat exchangers are provided on each wall surface of the combustion container 11. A superheater may be provided between the evaporator 14 and the front bank tube 28 to superheat the steam in the steam drum 27 to generate superheated steam.
 ボイラ10は、主バーナ12または副バーナ13が燃焼室24に燃料を噴射して燃焼させることで火炎F1または火炎F2が形成され、燃焼ガスGが生成される。生成された燃焼ガスGは、燃焼容器11の側壁部11e側から側壁部11f側に流動する。このとき、燃焼ガスGは、燃焼室24からフロントバンクチューブ28が配置された領域、蒸発器14が配置された領域を順次通過して排気室33に至る。燃焼ガスGは、主として仕切り板29により区切られた図1における下側の領域、すなわちガス出口側通路23を介してフロントバンクチューブ28、蒸発器14を通過する。そして、燃焼ガスGは、主として、排気室33において仕切り板29により区切られた図1における上側の領域へと向きを変えて流れ、再び蒸発器14を通過し、ガス出口22へと至る。フロントバンクチューブ28と、蒸発器14は、それぞれ熱交換器であり、燃焼ガスGが通過する際に燃焼ガスGとの間で熱交換を行い、この燃焼ガスGの熱を回収して内部に流通する水や蒸気(熱媒)の温度を上昇させる。 In the boiler 10, the main burner 12 or the sub-burner 13 injects fuel into the combustion chamber 24 for combustion to form a flame F1 or a flame F2, and a combustion gas G is generated. The generated combustion gas G flows from the side wall 11e side of the combustion container 11 to the side wall 11f side. At this time, the combustion gas G sequentially passes through the region where the front bank tube 28 is arranged and the region where the evaporator 14 is arranged from the combustion chamber 24 to the exhaust chamber 33. The combustion gas G passes through the front bank tube 28 and the evaporator 14 mainly through the lower region in FIG. 1 partitioned by the partition plate 29, that is, the gas outlet side passage 23. Then, the combustion gas G mainly changes its direction to flow into the upper region in FIG. 1 partitioned by the partition plate 29 in the exhaust chamber 33, passes through the evaporator 14 again, and reaches the gas outlet 22. The front bank tube 28 and the evaporator 14 are heat exchangers, respectively, that perform heat exchange with the combustion gas G when the combustion gas G passes through, recover the heat of the combustion gas G, and store it inside. Raises the temperature of circulating water or steam (heat medium).
 フロントバンクチューブ28は、燃焼容器11における主バーナ12および副バーナ13側、つまり、燃焼容器11内の温度が高い領域に配置されている。フロントバンクチューブ28は、水ドラム26及び蒸気ドラム27に連結されており、内部に水や蒸気が流通している。フロントバンクチューブ28は、燃焼ガスGと水や蒸気との熱交換で燃焼ガスGの熱を回収することで、水や蒸気の温度を上昇させ、燃焼ガスGの温度を低下させる。 The front bank tube 28 is arranged on the main burner 12 side and the sub-burner 13 side of the combustion container 11, that is, in a region where the temperature inside the combustion container 11 is high. The front bank tube 28 is connected to the water drum 26 and the steam drum 27, and water and steam circulate inside. The front bank tube 28 recovers the heat of the combustion gas G by exchanging heat between the combustion gas G and water or steam to raise the temperature of the water or steam and lower the temperature of the combustion gas G.
 蒸発器14は、複数の蒸発管25を有し、燃焼容器11におけるフロントバンクチューブ28よりもガス出口22側に配置されている。蒸発器14は、フロントバンクチューブ28が配置された頷域を通過した燃焼ガスGが通過する。蒸発器14は、複数の蒸発管25の各端部に水ドラム26と蒸気ドラム27がそれぞれ連結されており、各蒸発管25内に水や蒸気が流通している。蒸発器14は、水ドラム26から各蒸発管25を通過して蒸気ドラム27に流動するとき、燃焼ガスGと水や蒸気との熱交換で燃焼ガスGの熱を回収することで、水や蒸気の温度を上昇させ、燃焼ガスGの温度を低下させる。即ち、燃焼ガスGにより各蒸発管25内の水や蒸気が加熱されることで、蒸気だけが上昇して蒸気ドラム27に至る。 The evaporator 14 has a plurality of evaporation pipes 25 and is arranged closer to the gas outlet 22 than the front bank tube 28 in the combustion container 11. The combustion gas G that has passed through the nodule in which the front bank tube 28 is arranged passes through the evaporator 14. In the evaporator 14, a water drum 26 and a steam drum 27 are connected to respective ends of a plurality of evaporation pipes 25, and water and steam are circulated in each evaporation pipe 25. The evaporator 14 collects the heat of the combustion gas G by exchanging heat with the combustion gas G and water or steam when flowing from the water drum 26 through each evaporation pipe 25 to the steam drum 27. The temperature of the steam is raised and the temperature of the combustion gas G is lowered. That is, the combustion gas G heats the water and steam in each evaporation pipe 25, so that only the steam rises and reaches the steam drum 27.
 蒸発器14を通過した燃焼ガスGは、熱が回収されて温度が低下して排気室33に至り、排ガス(燃焼ガスG)となってガス出口22から外部に排出される。 The heat of the combustion gas G that has passed through the evaporator 14 is recovered, the temperature of the combustion gas G drops, and the temperature of the combustion gas G reaches the exhaust chamber 33.
 燃焼容器11と風箱40には、それぞれ、図示しない圧力センサが設けられている。各圧力センサの出力は、制御部15へ送信される。 A pressure sensor (not shown) is provided in each of the combustion container 11 and the wind box 40. The output of each pressure sensor is transmitted to the control unit 15.
 制御部15は、上述した主バーナ12や副バーナ13など、ボイラの動作を制御する。制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control unit 15 controls the operation of the boiler such as the main burner 12 and the sub-burner 13 described above. The control unit includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. A series of processes for implementing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing/arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or delivered via a wired or wireless communication unit. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
<副バーナ13の冷却構造>
 次に、図4を用いて、副バーナ13の冷却構造について説明する。
 副バーナ用風箱40には、副バーナ用空気ダクト42を介して、副バーナ用空気ファン44が接続されている。副バーナ用空気ファン44によって、副バーナ用空気AR1(図2参照)が副バーナ用風箱40内に供給される。副バーナ用空気ファン44の起動及び停止は、制御部15(図1参照)によって制御される。また、制御部15によって副バーナ用空気ファン44の回転数を制御して空気流量を調整するようにしても良い。
<Cooling structure of the sub-burner 13>
Next, the cooling structure of the sub-burner 13 will be described with reference to FIG.
A sub-burner air fan 44 is connected to the sub-burner wind box 40 via a sub-burner air duct 42. The sub-burner air fan 44 supplies the sub-burner air AR1 (see FIG. 2) into the sub-burner air box 40. Starting and stopping of the sub-burner air fan 44 are controlled by the control unit 15 (see FIG. 1). Further, the control unit 15 may control the rotation speed of the sub-burner air fan 44 to adjust the air flow rate.
 副バーナ用空気ファン44の出口には、流路を開閉するダンパ46が設けられている。ダンパ46の開閉は、制御部15の指令によって制御される。ダンパ46の下流側でかつ副バーナ用空気ダクト42の途中位置には、空気供給管48の一端が接続されている。空気供給管48の他端は、主バーナ用空気ダクト50の途中位置に接続されている。空気供給管48には、開閉弁49が設けられている。開閉弁49は、制御部15によって制御される。 A damper 46 that opens and closes the flow path is provided at the outlet of the sub-burner air fan 44. The opening and closing of the damper 46 is controlled by a command from the control unit 15. One end of an air supply pipe 48 is connected to the downstream side of the damper 46 and at an intermediate position of the auxiliary burner air duct 42. The other end of the air supply pipe 48 is connected to an intermediate position of the main burner air duct 50. The air supply pipe 48 is provided with an open/close valve 49. The on-off valve 49 is controlled by the controller 15.
 主バーナ用空気ダクト50の上流端には、主バーナ用空気ファン52が接続されている。主バーナ用空気ファン52の起動及び停止は、制御部15(図1参照)によって制御される。また、制御部15によって主バーナ用空気ファン52の回転数を制御して空気流量を調整するようにしても良い。
 主バーナ用空気ダクト50の下流端には、主バーナ用風箱54が接続されている。主バーナ用風箱54内に、主バーナ12(図1参照)が収容されている。主バーナ用風箱54に供給された空気が、主バーナ12の燃焼用空気として用いられる。
A main burner air fan 52 is connected to the upstream end of the main burner air duct 50. The start and stop of the main burner air fan 52 is controlled by the control unit 15 (see FIG. 1). Further, the control unit 15 may control the rotation speed of the main burner air fan 52 to adjust the air flow rate.
A main burner wind box 54 is connected to the downstream end of the main burner air duct 50. The main burner 12 (see FIG. 1) is housed in the main burner wind box 54. The air supplied to the main burner wind box 54 is used as combustion air for the main burner 12.
<ボイラ10の運転方法>
 次に、ボイラ10の運転方法について説朋する。制御部15は、ボイラ10で生成された蒸気の利用先の負荷に応じて、主バーナ12および副バーナ13による燃焼を詞整し、ボイラ10の運転負荷を調整する。
<How to operate the boiler 10>
Next, the operating method of the boiler 10 will be explained. The control unit 15 regulates the combustion by the main burner 12 and the sub-burner 13 according to the load of the use destination of the steam generated in the boiler 10, and adjusts the operating load of the boiler 10.
 制御部15は、例えばカーゴオイルポンプ用の蒸気タービンを駆動しない場合のように所定値未満の低負荷が要求された場合、主バーナ12を動作させずに非動作とする。すなわち主バーナ12による燃焼は行われない。このとき、ボイラ10は、副バーナ13によって暖機運転される。制御部15は、副バーナ13のみを動作させて燃料油及び/又は燃料ガスを燃焼させる。これにより、高容量の主バーナ12を用いることなく小容量の副バーナ13でボイラ10を暖機運転させて燃料消費を抑制しつつ、例えば蒸気タービンの駆動が必要となった場合などには主バーナ12を動作させて速やかにボイラ10から蒸気を供給することができる。 The control unit 15 does not operate the main burner 12 and does not operate when a low load less than a predetermined value is required, for example, when the steam turbine for the cargo oil pump is not driven. That is, combustion by the main burner 12 is not performed. At this time, the boiler 10 is warmed up by the auxiliary burner 13. The controller 15 operates only the sub-burner 13 to burn the fuel oil and/or the fuel gas. As a result, the boiler 10 is warmed up by the small-capacity auxiliary burner 13 without using the high-capacity main burner 12 to suppress the fuel consumption, and when the steam turbine needs to be driven, for example, By operating the burner 12, steam can be quickly supplied from the boiler 10.
 制御部15は、例えばカーゴオイルポンプ用の蒸気タービンの駆動が必要となった場合のように所定値以上の高負荷が要求された場合、蒸気タービンの負荷の増加(ボイラ10に要求される運転負荷の増加)に応じて、主バーナ12ヘの燃料油及び/又は燃料ガスの供給量を徐々に増加させる。このように、制御部15は、主バーナ12のみを用いて燃焼を行うとき、副バーナ13を冷却するように副バーナ用空気ファン44から空気を供給させる。このとき、副バーナ13へは燃料油及び燃料ガスは供給されない。制御部15は、燃焼容器11内の圧力よりも副バーナ用風箱40内の圧力が高くなるように副バーナ用空気ファン44を制御する。 The control unit 15 increases the load of the steam turbine (when the steam turbine for the cargo oil pump needs to be driven at a high load of a predetermined value or more, for example, when the steam turbine for the cargo oil pump needs to be driven). The amount of fuel oil and/or fuel gas supplied to the main burner 12 is gradually increased according to the increase in load. As described above, when the combustion is performed using only the main burner 12, the control unit 15 causes the sub-burner air fan 44 to supply air so as to cool the sub-burner 13. At this time, fuel oil and fuel gas are not supplied to the sub-burner 13. The control unit 15 controls the sub-burner air fan 44 so that the pressure in the sub-burner wind box 40 is higher than the pressure in the combustion container 11.
 副バーナ用風箱40に供給された空気は、副バーナ13を冷却した後、主バーナ12により形成される火炎F1の下端近傍へと供給される。その結果、火炎F1の下端近傍において火炎が冷却されることで、主バーナ12による燃焼のNOx生成量が低減される。 The air supplied to the auxiliary burner wind box 40 is supplied to the vicinity of the lower end of the flame F1 formed by the main burner 12 after cooling the auxiliary burner 13. As a result, the flame is cooled in the vicinity of the lower end of the flame F1, and the amount of NOx produced by combustion by the main burner 12 is reduced.
<副バーナ用空気ファン44の故障時の動作>
 副バーナ用空気ファン44が故障して副バーナ用風箱40へ空気を供給できない場合には、以下の動作を行う。
 制御部15が副バーナ用空気ファン44の故障を検出すると、制御部15は、空気供給管48に設けた開閉弁49を全閉から全開へと動作させる。これにより、主バーナ用空気ファン52から供給される空気の一部が、空気供給管48及び副バーナ用空気ダクト42を介して、副バーナ用風箱40へと供給される。このとき、制御部15は、ダンパ46を全開から全閉へと動作させる。これにより、空気が副バーナ用空気ファン44へ逆流することが防止される。なお、副バーナ用空気ファン44の故障は、ファン回転数をモニタすること等によって検知することができる。
<Operation when the auxiliary burner air fan 44 fails>
When the auxiliary burner air fan 44 fails and air cannot be supplied to the auxiliary burner air box 40, the following operation is performed.
When the control unit 15 detects the failure of the auxiliary burner air fan 44, the control unit 15 operates the opening/closing valve 49 provided in the air supply pipe 48 from the fully closed state to the fully opened state. As a result, a part of the air supplied from the main burner air fan 52 is supplied to the auxiliary burner wind box 40 via the air supply pipe 48 and the auxiliary burner air duct 42. At this time, the control unit 15 operates the damper 46 from fully open to fully closed. This prevents the air from flowing back to the auxiliary burner air fan 44. The failure of the sub-burner air fan 44 can be detected by monitoring the fan rotation speed.
 本実施形態によれば、以下の作用効果を奏する。
 主バーナ12によって形成される火炎F1の下流側に副バーナ13が設けられている。このため、主バーナ12の動作時でかつ副バーナ13の非動作時には、副バーナ13に燃焼用空気が供給されていないと、主バーナ12による火炎F1による輻射熱で副バーナ13が損傷するおそれがある。そこで、副バーナ13の非動作時であっても、副バーナ用空気ファン44から空気を供給するようにして副バーナ13を冷却するようにした。また、燃焼容器11内の圧力よりも副バーナ用風箱40内の圧力が高くなるように空気を供給することとしたので、加圧状態にある燃焼室24に対して副バーナ13及び副バーナ用風箱40をシールすることができる。これにより、副バーナ用風箱40内の圧力が燃焼容器11内の圧力より低い場合、主バーナ12の燃焼ガスが副バーナ13に侵入(逆流)するおそれを回避することができる。
According to this embodiment, the following operational effects are exhibited.
An auxiliary burner 13 is provided on the downstream side of the flame F1 formed by the main burner 12. Therefore, when the main burner 12 is operating and the sub-burner 13 is not operating, if the combustion air is not supplied to the sub-burner 13, the sub-burner 13 may be damaged by the radiant heat from the flame F1 of the main burner 12. is there. Therefore, even when the sub-burner 13 is not operating, the sub-burner 13 is cooled by supplying air from the sub-burner air fan 44. Further, since the air is supplied so that the pressure in the auxiliary burner wind box 40 is higher than the pressure in the combustion container 11, the auxiliary burner 13 and the auxiliary burner are supplied to the combustion chamber 24 in the pressurized state. The air duct 40 can be sealed. As a result, when the pressure in the auxiliary burner wind box 40 is lower than the pressure in the combustion container 11, it is possible to avoid the possibility that the combustion gas of the main burner 12 enters the auxiliary burner 13 (backflow).
 空気供給管48を用いて、主バーナ用空気ファン52から副バーナ用風箱40に空気を供給することとした。これにより、万が一、副バーナ用空気ファン44が故障しても、副バーナ用風箱40に冷却空気を供給することができる。
 なお、副バーナ用空気ファン44の故障に限らず、副バーナ用空気ファン44から供給される空気量が不足した場合に、主バーナ用空気ファン52から副バーナ用風箱40に空気を供給するようにしても良い。
The air supply pipe 48 is used to supply air from the main burner air fan 52 to the auxiliary burner wind box 40. As a result, even if the auxiliary burner air fan 44 fails, the cooling air can be supplied to the auxiliary burner air box 40.
Not only the failure of the auxiliary burner air fan 44, but also when the amount of air supplied from the auxiliary burner air fan 44 is insufficient, air is supplied from the main burner air fan 52 to the auxiliary burner wind box 40. You may do it.
 副バーナ用空気ファン44の出口にダンパ46を設けることとした。これにより、副バーナ用空気ファン44が停止している場合にダンパ46を閉じることで、主バーナ用空気ファン52から空気供給管48を介して導かれた空気が副バーナ用空気ファン44側に逆流することを防止できる。 A damper 46 has been installed at the outlet of the sub-burner air fan 44. Thus, by closing the damper 46 when the sub-burner air fan 44 is stopped, the air introduced from the main-burner air fan 52 via the air supply pipe 48 is directed to the sub-burner air fan 44 side. Backflow can be prevented.
[第2実施形態]
 次に、本発明の第2実施形態について説明する。本実施形態は、第1実施形態に加えて、蒸気を用いて副バーナ13を冷却する構成を備えている点で相違する。したがって、以下では、第1実施形態に対して相違する構成について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. The present embodiment is different from the first embodiment in that the sub-burner 13 is cooled using steam. Therefore, the configuration different from that of the first embodiment will be described below.
 図5には、副バーナ13に設けた油噴射ノズル13a(図3参照)に燃料油を供給する系統が示されている。油噴射ノズル13aには、燃料油供給経路60と、蒸気供給経路(冷却蒸気供給部)62とが接続されている。 FIG. 5 shows a system for supplying fuel oil to the oil injection nozzle 13a (see FIG. 3) provided in the sub burner 13. A fuel oil supply path 60 and a steam supply path (cooling steam supply section) 62 are connected to the oil injection nozzle 13a.
 燃料油供給経路60の上流側には、図示しない油タンク及び油供給ポンプが接続されている。燃料油供給経路60には、制御弁64が設けられている。制御弁64は、制御部15によって制御される。 An oil tank and an oil supply pump (not shown) are connected to the upstream side of the fuel oil supply path 60. A control valve 64 is provided in the fuel oil supply path 60. The control valve 64 is controlled by the control unit 15.
 蒸気供給経路62の上流側には、図示しない蒸気源が接続されている。蒸気供給経路62は、アトマイズ蒸気供給経路62aと、パージ蒸気供給経路62bとに分岐されている。 A steam source (not shown) is connected to the upstream side of the steam supply path 62. The steam supply path 62 is branched into an atomized steam supply path 62a and a purge steam supply path 62b.
 アトマイズ蒸気供給経路62aは、油噴射ノズル13aに接続されている。アトマイズ蒸気供給経路62aには、制御部15によって制御される制御弁66及び逆止弁67が設けられている。アトマイズ蒸気供給経路62aから供給される蒸気は、本来的には、燃料油をアトマイズするために用いられる。ただし、本実施形態では、冷却蒸気として用いることができるようになっている。 The atomized steam supply path 62a is connected to the oil injection nozzle 13a. A control valve 66 and a check valve 67 controlled by the controller 15 are provided in the atomized steam supply path 62a. The steam supplied from the atomizing steam supply path 62a is originally used for atomizing the fuel oil. However, in the present embodiment, it can be used as cooling steam.
 パージ蒸気供給経路62bの下流端は、燃料油供給経路60に接続されている。パージ蒸気供給経路62bには、制御部15によって制御される制御弁68及び逆止弁69が設けられている。パージ蒸気供給経路62bから供給される蒸気は、本来的には、燃料油が流れる経路を蒸気でパージするために用いられる。ただし、本実施形態では、冷却蒸気として用いることができるようになっている。 The downstream end of the purge steam supply path 62b is connected to the fuel oil supply path 60. The purge vapor supply path 62b is provided with a control valve 68 and a check valve 69 controlled by the controller 15. The steam supplied from the purge steam supply path 62b is originally used to purge the path through which the fuel oil flows with steam. However, in the present embodiment, it can be used as cooling steam.
 本実施形態による副バーナ13の蒸気冷却は、以下のように行われる。
 燃料油供給経路60の制御弁64が閉とされて燃料油の供給が停止されると、副バーナ13が非動作となる。このとき、主バーナ12が動作時とされている場合、制御部15は、蒸気供給経路62を用いて油噴射ノズル13aから蒸気を噴射させる。具体的には、アトマイズ蒸気供給経路62aの制御弁66を開とするとともに、パージ蒸気供給経路62bの制御弁68を開として、蒸気を油噴射ノズル13aへと導く。油噴射ノズル13aから蒸気が噴霧されることによって、燃焼室24内で形成された火炎F1から放射される輻射熱から副バーナ13を保護する。
 油噴射ノズル13aの先端部から放射状(笠状)に冷却蒸気を噴霧することで、油噴射ノズル13aに取り付けられたスワラーやガスノズルなどの、主バーナ12の火炎の輻射熱により損傷しやすい箇所を冷却蒸気で遮ることができ、より効果的に副バーナ13を保護できる。
Steam cooling of the sub-burner 13 according to the present embodiment is performed as follows.
When the control valve 64 of the fuel oil supply path 60 is closed and the supply of fuel oil is stopped, the sub-burner 13 is deactivated. At this time, when the main burner 12 is in operation, the control unit 15 causes the oil injection nozzle 13 a to inject steam using the steam supply path 62. Specifically, the control valve 66 of the atomized steam supply path 62a is opened and the control valve 68 of the purge steam supply path 62b is opened to guide the steam to the oil injection nozzle 13a. By spraying the steam from the oil injection nozzle 13a, the auxiliary burner 13 is protected from the radiant heat emitted from the flame F1 formed in the combustion chamber 24.
By spraying the cooling steam radially (shade-like) from the tip of the oil injection nozzle 13a, the swirler and the gas nozzle attached to the oil injection nozzle 13a are cooled easily by radiation heat of the flame of the main burner 12 It can be shielded by steam, and the auxiliary burner 13 can be protected more effectively.
 本実施形態によれば、以下の作用効果を奏する。
 副バーナ13の油噴射ノズル13aは、非動作時には油が供給されることはないので、油噴射ノズル13aを冷却蒸気供給部の一部とし、油噴射ノズル13aから冷却蒸気を供給することとした。油噴射ノズル13aは、副バーナ13の先端から燃焼室24内に向けて冷却蒸気を噴射するので、副バーナ13を輻射熱から効果的に保護することができる。
According to this embodiment, the following operational effects are exhibited.
Oil is not supplied to the oil injection nozzle 13a of the sub-burner 13 when it is not operating. Therefore, the oil injection nozzle 13a is made a part of the cooling steam supply unit and the cooling steam is supplied from the oil injection nozzle 13a. .. Since the oil injection nozzle 13a injects the cooling steam from the tip of the sub-burner 13 toward the inside of the combustion chamber 24, the sub-burner 13 can be effectively protected from the radiant heat.
 副バーナ13の油噴射ノズル13aから蒸気を噴射することで、主バーナ12の火炎F1の後流側に蒸気を供給することができる。これにより、火炎F1の温度を低下させてサーマルNOxを低減することができる。また、仮に火炎F1の根元に蒸気を供給すると燃料と空気との混合が阻害されて燃焼が不安定になる。火炎F1の後流側(火炎F1の先端部)でれば燃焼反応は終わりに近く、多くの空気も必要無いので、燃焼が不安定となるおそれがない。 By injecting steam from the oil injection nozzle 13a of the sub-burner 13, steam can be supplied to the downstream side of the flame F1 of the main burner 12. As a result, the temperature of the flame F1 can be lowered to reduce the thermal NOx. Further, if steam is supplied to the root of the flame F1, the mixture of fuel and air is hindered and combustion becomes unstable. On the downstream side of the flame F1 (the tip of the flame F1), the combustion reaction is near the end, and since much air is not required, there is no risk of unstable combustion.
 なお、油噴射ノズル13aから蒸気を噴射することに代えて、又は油噴射ノズル13aから蒸気を噴射することに加えて、副バーナ13のガス噴射ノズル13b(図3参照)から蒸気を供給するようにしても良い。これにより、ガス噴射ノズル13bを冷却蒸気供給部の一部とし、ガス噴射ノズル13bから冷却蒸気を供給することができる。ガス噴射ノズル13bは、副バーナ13の先端から燃焼室24内に向けて冷却蒸気を噴射するので、副バーナ13を輻射熱から効果的に保護することができる。また、燃焼室24内に突出したガス噴射ノズル13bを効果的に冷却できる。 Instead of injecting steam from the oil injection nozzle 13a, or in addition to injecting steam from the oil injection nozzle 13a, the gas is injected from the gas injection nozzle 13b (see FIG. 3) of the sub-burner 13. You can Accordingly, the gas injection nozzle 13b can be part of the cooling steam supply unit, and the cooling steam can be supplied from the gas injection nozzle 13b. Since the gas injection nozzle 13b injects the cooling steam from the tip of the auxiliary burner 13 toward the inside of the combustion chamber 24, the auxiliary burner 13 can be effectively protected from radiant heat. Further, the gas injection nozzle 13b protruding into the combustion chamber 24 can be effectively cooled.
[第3実施形態]
 次に、本発明の第3実施形態について説明する。本実施形態は、第1実施形態に加えて、蒸気を用いて副バーナ13を冷却する構成を備えている点で相違する。したがって、以下では、第1実施形態に対して相違する構成について説明する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. The present embodiment is different from the first embodiment in that the sub-burner 13 is cooled using steam. Therefore, the configuration different from that of the first embodiment will be described below.
 図6に示すように、副バーナ用風箱40内に、蒸気リングノズル(蒸気供給ノズル)72が設けられている。蒸気リングノズル72は、図示しない蒸気源に接続されており、蒸気を副バーナ用風箱40から燃焼室24内に向けて蒸気を噴射する。蒸気リングノズル72は、図7に示されているように、リング状のパイプを有しており、このパイプに対して複数の噴射孔72aが所定間隔を空けて形成されている。蒸気リングノズル72は、副バーナ13の基端部を包囲するように設置されている。 As shown in FIG. 6, a steam ring nozzle (steam supply nozzle) 72 is provided in the wind box 40 for the sub-burner. The steam ring nozzle 72 is connected to a steam source (not shown), and injects the steam from the auxiliary burner wind box 40 into the combustion chamber 24. As shown in FIG. 7, the steam ring nozzle 72 has a ring-shaped pipe, and a plurality of injection holes 72a are formed in the pipe at predetermined intervals. The steam ring nozzle 72 is installed so as to surround the base end portion of the auxiliary burner 13.
 本実施形態によれば、以下の作用効果を奏する。
 副バーナ用風箱40内に、冷却蒸気供給部の一部として蒸気リングノズル72を設けることとした。これにより、副バーナ用風箱40内に収容された副バーナ13を冷却することができる。
 また、蒸気リングノズル72によって、副バーナ13全体に冷却蒸気を供給できるので、スワラーやガス噴射ノズル13bなどの、主バーナ12の火炎により損傷しやすい箇所を効果的に冷却できる。また、蒸気吹き込みによる火炎冷却効果も広範囲におよび、NOx低減が可能になる。
 また、副バーナ13の油噴射ノズル13aやガス噴射ノズル13bとは別に冷却蒸気を供給する経路を設けることができるので、副バーナ13の動作に関係なく冷却蒸気を供給することができる。副バーナ13の動作時に蒸気を吹き込むことで、副バーナ13自身のNOx低減が可能になる。
According to this embodiment, the following operational effects are exhibited.
A steam ring nozzle 72 is provided in the sub-burner wind box 40 as a part of the cooling steam supply unit. As a result, the sub-burner 13 housed in the sub-burner wind box 40 can be cooled.
Further, since the cooling steam can be supplied to the entire sub-burner 13 by the steam ring nozzle 72, it is possible to effectively cool the swirler, the gas injection nozzle 13b, and the like, which are easily damaged by the flame of the main burner 12. Further, the flame cooling effect due to the steam injection is wide, and NOx can be reduced.
Further, since a path for supplying cooling steam can be provided separately from the oil injection nozzle 13a and the gas injection nozzle 13b of the sub burner 13, the cooling steam can be supplied regardless of the operation of the sub burner 13. By blowing steam during the operation of the sub-burner 13, it is possible to reduce the NOx of the sub-burner 13 itself.
 また、蒸気リングノズル72から蒸気を燃焼室24内に向けて供給することで、主バーナ12の火炎F1の下流側に蒸気を供給することができる。これにより、火炎F1の温度を低下させてサーマルNOxを低減することができる。 Further, by supplying the steam from the steam ring nozzle 72 toward the inside of the combustion chamber 24, the steam can be supplied to the downstream side of the flame F1 of the main burner 12. As a result, the temperature of the flame F1 can be lowered to reduce the thermal NOx.
10 ボイラ
11 燃焼容器
12 主バーナ
13 副バーナ
13a 油噴射ノズル
13b ガス噴射ノズル
14 蒸発器
15 制御部
22 ガス出口
24 燃焼室
26 水ドラム
27 蒸気ドラム
29 仕切り板
33 排気室
40 副バーナ用風箱
42 副バーナ用空気ダクト
44 副バーナ用空気ファン(空気供給手段)
46 ダンパ
48 空気供給管
49 開閉弁
50 主バーナ用空気ダクト
52 主バーナ用空気ファン
54 主バーナ用風箱
60 燃料油供給経路
62 蒸気供給経路
62a アトマイズ蒸気供給経路
62b パージ蒸気供給経路
64 制御弁
66 制御弁
67 逆止弁
68 制御弁
69 逆止弁
72 蒸気リングノズル(蒸気供給ノズル)
AR1 副バーナ用空気
F1,F2 火炎
G 燃焼ガス
10 Boiler 11 Combustion Container 12 Main Burner 13 Sub Burner 13a Oil Injection Nozzle 13b Gas Injection Nozzle 14 Evaporator 15 Control Unit 22 Gas Outlet 24 Combustion Chamber 26 Water Drum 27 Steam Drum 29 Partition Plate 33 Exhaust Chamber 40 Sub Burner Wind Box 42 Secondary burner air duct 44 Secondary burner air fan (air supply means)
46 Damper 48 Air Supply Pipe 49 Opening/Closing Valve 50 Main Burner Air Duct 52 Main Burner Air Fan 54 Main Burner Air Box 60 Fuel Oil Supply Path 62 Steam Supply Path 62a Atomized Steam Supply Path 62b Purge Steam Supply Path 64 Control Valve 66 Control valve 67 Check valve 68 Control valve 69 Check valve 72 Steam ring nozzle (steam supply nozzle)
AR1 auxiliary burner air F1, F2 flame G combustion gas

Claims (9)

  1.  燃焼室を形成する燃焼容器と、
     前記燃焼容器に設けられた主バーナと、
     前記燃焼容器に設けられ、前記主バーナによって形成される火炎の下流側に設けられるとともに該主バーナよりも小容量とされた副バーナと、
     前記副バーナを収容するとともに前記燃焼容器に取り付けられた副バーナ用風箱と、
     前記副バーナ用風箱に空気を供給する空気供給手段と、
     前記空気供給手段を制御する制御部と、
    を備え、
     前記制御部は、前記主バーナの動作時でかつ前記副バーナの非動作時に、前記空気供給手段を駆動するボイラ。
    A combustion vessel forming a combustion chamber,
    A main burner provided in the combustion vessel,
    A sub-burner provided in the combustion container, provided on the downstream side of the flame formed by the main burner, and having a smaller capacity than the main burner,
    An air box for the sub-burner that is attached to the combustion container while accommodating the sub-burner,
    Air supply means for supplying air to the auxiliary burner wind box,
    A control unit for controlling the air supply unit,
    Equipped with
    The said control part is a boiler which drives the said air supply means when the said main burner is operating, and when the said sub-burner is non-operating.
  2.  前記制御部は、前記燃焼容器内の圧力よりも前記副バーナ用風箱内の圧力が高くなるように前記空気供給手段を制御する請求項1に記載のボイラ。 The boiler according to claim 1, wherein the control unit controls the air supply unit so that the pressure in the auxiliary burner air box is higher than the pressure in the combustion container.
  3.  前記副バーナを冷却する冷却蒸気を供給する冷却蒸気供給部を備えている請求項1に記載のボイラ。 The boiler according to claim 1, further comprising a cooling steam supply unit that supplies cooling steam for cooling the sub-burner.
  4.  前記副バーナは、燃焼用燃料として油燃料を前記燃焼室に噴射する油噴射ノズルを備えており、
     前記油噴射ノズルは、前記冷却蒸気供給部の一部とされている請求項3に記載のボイラ。
    The sub-burner includes an oil injection nozzle that injects oil fuel into the combustion chamber as combustion fuel,
    The boiler according to claim 3, wherein the oil injection nozzle is a part of the cooling steam supply unit.
  5.  前記副バーナ用風箱内に、前記冷却蒸気供給部の一部として蒸気供給ノズルが設けられている請求項3に記載のボイラ。 The boiler according to claim 3, wherein a steam supply nozzle is provided as a part of the cooling steam supply unit in the air box for the sub-burner.
  6.  前記副バーナは、燃焼用燃料としてガス燃料を前記燃焼室に噴射するガス噴射ノズルを備えており、
     前記ガス噴射ノズルは、前記冷却蒸気供給部の一部とされている請求項3又は4に記載のボイラ。
    The sub-burner includes a gas injection nozzle that injects gas fuel into the combustion chamber as combustion fuel,
    The boiler according to claim 3 or 4, wherein the gas injection nozzle is part of the cooling steam supply unit.
  7.  前記冷却蒸気供給部は、前記主バーナによって形成された火炎の下流側に向けて冷却蒸気を供給する請求項3に記載のボイラ。 The boiler according to claim 3, wherein the cooling steam supply unit supplies the cooling steam toward a downstream side of a flame formed by the main burner.
  8.  前記主バーナを収容するとともに前記燃焼容器に取り付けられた主バーナ用風箱と、
     前記主バーナ用風箱に空気を供給する主バーナ用空気ファンと、
     前記主バーナ用空気ファンから前記副バーナ用風箱に空気を供給する空気供給管と、
    を備えている請求項1又は2に記載のボイラ。
    An air box for the main burner that accommodates the main burner and is attached to the combustion container,
    An air fan for the main burner that supplies air to the wind box for the main burner,
    An air supply pipe for supplying air from the main burner air fan to the sub-burner wind box,
    The boiler according to claim 1 or 2, further comprising:
  9.  前記空気供給手段の出口に、流路を開閉するダンパが設けられている請求項8に記載のボイラ。 The boiler according to claim 8, wherein a damper that opens and closes the flow path is provided at the outlet of the air supply means.
PCT/JP2020/000220 2019-02-22 2020-01-08 Boiler WO2020170622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080015151.8A CN113439180B (en) 2019-02-22 2020-01-08 boiler
EP20760113.9A EP3913283B1 (en) 2019-02-22 2020-01-08 Boiler
KR1020217026029A KR102551979B1 (en) 2019-02-22 2020-01-08 Boiler
DK20760113.9T DK3913283T3 (en) 2019-02-22 2020-01-08 KETTLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030836A JP7292898B2 (en) 2019-02-22 2019-02-22 boiler
JP2019-030836 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170622A1 true WO2020170622A1 (en) 2020-08-27

Family

ID=72144409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000220 WO2020170622A1 (en) 2019-02-22 2020-01-08 Boiler

Country Status (6)

Country Link
EP (1) EP3913283B1 (en)
JP (1) JP7292898B2 (en)
KR (1) KR102551979B1 (en)
CN (1) CN113439180B (en)
DK (1) DK3913283T3 (en)
WO (1) WO2020170622A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523870A (en) * 1978-08-10 1980-02-20 Babcock Hitachi Kk Burner unit
JPS5747107A (en) * 1980-09-01 1982-03-17 Babcock Hitachi Kk Boiler generating low nox exhaust gas
JPS5781999U (en) 1980-11-07 1982-05-20
JPS58122804U (en) * 1982-02-09 1983-08-20 日立造船株式会社 boiler combustion equipment
JPS59170601A (en) * 1983-03-18 1984-09-26 三菱重工業株式会社 Boiler
JPS62172905U (en) * 1986-04-16 1987-11-02
JPH01121612A (en) * 1987-11-05 1989-05-15 Mitsubishi Heavy Ind Ltd Burner apparatus for boiler
JPH09210325A (en) * 1996-02-07 1997-08-12 Asahi Chem Ind Co Ltd Burner unit and method for operating burner
JP2005233483A (en) * 2004-02-18 2005-09-02 Volcano Co Ltd Combustion control method of burner
JP2008014574A (en) * 2006-07-06 2008-01-24 Kashima Oil Co Ltd Combustion method, heating method, and steam reforming furnace
WO2009078191A1 (en) * 2007-12-17 2009-06-25 Mitsubishi Heavy Industries, Ltd. Boiler structure for vessel
KR20130001432A (en) * 2011-06-27 2013-01-04 강림중공업 주식회사 Two drum type marine boiler
JP2016194408A (en) * 2016-07-11 2016-11-17 ボルカノ株式会社 Burner device for mixed combustion, and boiler
JP2018141585A (en) * 2017-02-28 2018-09-13 三菱重工業株式会社 Boiler, vessel with boiler, and method for generating inert gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308239A (en) * 1992-02-04 1994-05-03 Air Products And Chemicals, Inc. Method for reducing NOx production during air-fuel combustion processes
JPH09264516A (en) * 1996-03-28 1997-10-07 Hitachi Zosen Corp Fuel two stage supply type low nox burner
US20070224556A1 (en) * 2006-03-10 2007-09-27 Springstead Michael L Diffuser plate for boiler burner feed assembly
CN201193825Y (en) * 2007-11-26 2009-02-11 单忠民 Oil-gas combined type low NOx combustor
JP6010489B2 (en) * 2013-03-12 2016-10-19 三菱日立パワーシステムズ株式会社 Thermoelectric variable cogeneration system
CN105841183A (en) * 2016-05-25 2016-08-10 上海华之邦科技股份有限公司 Mist/vapor injection system for reducing NOx emissions

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523870A (en) * 1978-08-10 1980-02-20 Babcock Hitachi Kk Burner unit
JPS5747107A (en) * 1980-09-01 1982-03-17 Babcock Hitachi Kk Boiler generating low nox exhaust gas
JPS5781999U (en) 1980-11-07 1982-05-20
JPS58122804U (en) * 1982-02-09 1983-08-20 日立造船株式会社 boiler combustion equipment
JPS59170601A (en) * 1983-03-18 1984-09-26 三菱重工業株式会社 Boiler
JPS62172905U (en) * 1986-04-16 1987-11-02
JPH01121612A (en) * 1987-11-05 1989-05-15 Mitsubishi Heavy Ind Ltd Burner apparatus for boiler
JPH09210325A (en) * 1996-02-07 1997-08-12 Asahi Chem Ind Co Ltd Burner unit and method for operating burner
JP2005233483A (en) * 2004-02-18 2005-09-02 Volcano Co Ltd Combustion control method of burner
JP2008014574A (en) * 2006-07-06 2008-01-24 Kashima Oil Co Ltd Combustion method, heating method, and steam reforming furnace
WO2009078191A1 (en) * 2007-12-17 2009-06-25 Mitsubishi Heavy Industries, Ltd. Boiler structure for vessel
KR20130001432A (en) * 2011-06-27 2013-01-04 강림중공업 주식회사 Two drum type marine boiler
JP2016194408A (en) * 2016-07-11 2016-11-17 ボルカノ株式会社 Burner device for mixed combustion, and boiler
JP2018141585A (en) * 2017-02-28 2018-09-13 三菱重工業株式会社 Boiler, vessel with boiler, and method for generating inert gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913283A4

Also Published As

Publication number Publication date
JP2020134069A (en) 2020-08-31
KR20210114501A (en) 2021-09-23
CN113439180B (en) 2023-12-01
CN113439180A (en) 2021-09-24
KR102551979B1 (en) 2023-07-05
EP3913283A1 (en) 2021-11-24
JP7292898B2 (en) 2023-06-19
EP3913283B1 (en) 2022-12-28
DK3913283T3 (en) 2023-01-16
EP3913283A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
KR20140040737A (en) Exhaust heat recovery boiler and electricity generation plant
JP5665621B2 (en) Waste heat recovery boiler and power plant
WO2020170622A1 (en) Boiler
JP2942080B2 (en) Boiler combustion control device
JP4489307B2 (en) Fossil fuel once-through boiler
KR20130004401A (en) Fuel gas supply system of the direct heat exchange form using boiler steam
CN105387441B (en) Anti-dry water-storing device and anti-dry boiler
KR102370798B1 (en) Boiler
JP5642834B2 (en) Heat exchanger heat storage mechanism
KR102286089B1 (en) Boiler and vessel equipped with boiler, and method of generating inert gas
JP2000265856A (en) Hybrid combuster
JP2005273952A (en) Desuperheater
KR101259951B1 (en) Waste heat supply system and ship with the system
KR102663870B1 (en) Ammonia vaporization system, power generation system including the same, and control method of the power generation system
KR101500895B1 (en) Exhaust heat recovery boiler, and power generation plant
KR102314907B1 (en) Boilers and boiler systems and how they operate
JP2024037403A (en) Suit blower operation control device, combustion system, and suit blower operation control method
JPS6339811B2 (en)
JP2019120476A (en) Marine boiler
JPH0989223A (en) High-temperature air burner
KR20220099120A (en) Steam generators, plants and methods of controlling steam generators
CN114459051A (en) Treatment system and treatment method for thermal deviation of heated surfaces of boiler furnace and tail flue
JP2021008963A (en) Boiler, electric power generation plant including the same and control method for boiler
JP3694910B2 (en) Furnace bottom structure of pressurized fluidized bed boiler
JPH1114007A (en) Reheat steam temperature controller of boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026029

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020760113

Country of ref document: EP

Effective date: 20210819