JPS6339811B2 - - Google Patents

Info

Publication number
JPS6339811B2
JPS6339811B2 JP6128181A JP6128181A JPS6339811B2 JP S6339811 B2 JPS6339811 B2 JP S6339811B2 JP 6128181 A JP6128181 A JP 6128181A JP 6128181 A JP6128181 A JP 6128181A JP S6339811 B2 JPS6339811 B2 JP S6339811B2
Authority
JP
Japan
Prior art keywords
air
steam
nozzle
outer cylinder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6128181A
Other languages
Japanese (ja)
Other versions
JPS57175822A (en
Inventor
Takahisa Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6128181A priority Critical patent/JPS57175822A/en
Publication of JPS57175822A publication Critical patent/JPS57175822A/en
Publication of JPS6339811B2 publication Critical patent/JPS6339811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は低発熱量ガスを燃料として用いるガ
スタービン燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to a gas turbine combustor that uses low calorific value gas as fuel.

(従来の技術) 石油資源枯渇対策から石油系燃料に代わる新し
いガスタービン用燃料として、石炭ガスのような
低発熱量ガスの利用が考慮されている。第4図は
この低発熱量ガス燃料を利用したガスタービンa
とこのガスタービンの排熱を利用した蒸気で駆動
される蒸気タービンbとから構成されるコンバイ
ンドサイクルプラントを示すもので、ガスタービ
ンaはそれ自体が空気圧縮機cを駆動するように
なつており、燃焼器dに上記空気圧縮機c、ガス
供給装置eから圧縮空気およびガス燃料fが供給
されて燃焼し、この燃焼ガスでガスタービンaが
駆動され発電機gを回転するようになつている。
このガスタービンaの排気hは排熱回収ボイラi
に導かれ、蒸気発生のための熱源として利用され
る。すなわち、排熱回収ボイラiの内部には節炭
器j、蒸発器k、過熱器lが配設され、給水はこ
れらの機器を通過する間にガスタービン排気と熱
交換し最終的に蒸気化して蒸気タービンbに導か
れ、発電機mを駆動する仕事をした後復水器nで
凝縮されて給水ポンプpで昇圧して再び排熱回収
ボイラiに還流するようになつている。また、こ
のように低発熱量ガス燃料でガスタービンaが駆
動される場合には、低発熱量ガス燃料供給装置e
に加えて高発熱量燃料を供給する補助燃料供給装
置qが付設されている。
(Prior Art) The use of low calorific value gases such as coal gas is being considered as a new fuel for gas turbines to replace petroleum-based fuels in order to combat the depletion of petroleum resources. Figure 4 shows a gas turbine a using this low calorific value gas fuel.
This shows a combined cycle plant consisting of a steam turbine (b) and a steam turbine (b) that is driven by steam using the exhaust heat of the gas turbine.The gas turbine (a) itself drives an air compressor (c). Compressed air and gas fuel f are supplied to the combustor d from the air compressor c and the gas supply device e and are combusted, and this combustion gas drives a gas turbine a and rotates a generator g. .
The exhaust gas h of this gas turbine a is sent to the exhaust heat recovery boiler i
and is used as a heat source for steam generation. That is, inside the exhaust heat recovery boiler i, a economizer j, an evaporator k, and a superheater l are installed, and while the feed water passes through these devices, it exchanges heat with the gas turbine exhaust gas and is finally vaporized. The steam is then guided to a steam turbine b, and after performing the work of driving a generator m, it is condensed in a condenser n, and the pressure is increased by a feed water pump p, and then returned to the exhaust heat recovery boiler i. In addition, when the gas turbine a is driven with low calorific value gas fuel in this way, the low calorific value gas fuel supply device e
In addition to this, an auxiliary fuel supply device q that supplies high calorific value fuel is attached.

上記構成において、低発熱量ガス燃料は発熱量
が約800Kcal/Nm3と、通常ガスタービン燃料に
使用される天然ガス等の発熱量約8500Kcal/N
m3と比べ非常に小さい。このため、燃料がガスタ
ービン排ガス流量中に占める割合は約20%と大き
く、排ガス流量も高発熱量燃料を使用する場合に
比べて大きくなつてしまう。そこで、低発熱量燃
料を使用する場合には、燃焼器dおよびガスター
ビンaを標準機種より大きく設計するか、或いは
空気圧縮機cからの圧縮空気の一部をガス供給装
置eへ送入して石炭ガスの製造に利用するなどの
対応が採られている。
In the above configuration, the low calorific value gas fuel has a calorific value of approximately 800 Kcal/ Nm3 , and the calorific value of natural gas, etc., which is normally used as gas turbine fuel, has a calorific value of approximately 8500 Kcal/N.
Very small compared to m3 . For this reason, the proportion of fuel in the gas turbine exhaust gas flow rate is large, approximately 20%, and the exhaust gas flow rate is also larger than when using high calorific value fuel. Therefore, when using low calorific value fuel, the combustor d and gas turbine a should be designed to be larger than the standard model, or some of the compressed air from the air compressor c should be sent to the gas supply device e. Countermeasures are being taken, such as using coal for the production of coal gas.

(発明が解決しようとする問題点) 上記のように低発熱量ガス燃料を用いるガスタ
ービン燃焼器は、ガス燃料の一次燃焼温度が低
く、また圧損を増加させて燃焼安定性を確保する
必要があることから、燃焼器内筒冷却用空気量を
標準より減少させた設計がなされている。このた
め、高発熱量の補助燃料を用いた場合、冷却空気
量が不足して内筒壁温が許容値以上に上昇し、内
筒材が損傷を受け寿命を縮めることとなる。また
同時に排ガス量の20%を占めるガス燃料が供給さ
れないことになるから、ガスタービンの入口ガス
圧力が低下し、この結果ガスタービンの出力が低
下すると共に効率が低下することになる。
(Problems to be Solved by the Invention) As mentioned above, in a gas turbine combustor that uses low calorific value gas fuel, the primary combustion temperature of the gas fuel is low, and it is necessary to increase pressure drop to ensure combustion stability. For this reason, the design reduces the amount of air for cooling the combustor inner cylinder compared to the standard. For this reason, when auxiliary fuel with a high calorific value is used, the amount of cooling air is insufficient and the inner cylinder wall temperature rises above the allowable value, causing damage to the inner cylinder material and shortening its life. At the same time, gas fuel, which accounts for 20% of the exhaust gas amount, is not supplied, so the gas pressure at the inlet of the gas turbine decreases, resulting in a decrease in the output and efficiency of the gas turbine.

本発明は上記の事情に鑑みてなされたもので、
高発熱量の補助燃料使用時に生ずる燃焼器内筒の
温度上昇を抑制すると共に、ガスタービン出力と
効率の改善を図るガスタービン燃焼器を提供する
ことを目的としている。
The present invention was made in view of the above circumstances, and
It is an object of the present invention to provide a gas turbine combustor that suppresses a temperature rise in the combustor inner cylinder that occurs when using auxiliary fuel with a high calorific value, and improves gas turbine output and efficiency.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、外筒と、この外筒の内周面との間に
空気流路を形成するよう外筒内に設置される内筒
と、この内筒側面に形成された複数の空気孔と、
これら空気孔のうち一部のものと軸心を一致させ
るよう前記外筒に固定され内部に蒸気が導かれる
ようなされたスリーブと、このスリーブ内に可動
に挿入され前記外筒の内側に向けて先細に開口し
たノズルと、さらにこのノズルをスリーブ内に留
めるよう付勢するバネとを備え、蒸気噴射時に前
記ノズルから蒸気を噴射させてこのノズルを外筒
内に前記空気口に係合するまで突出させ、当該空
気口から空気に代えて蒸気を噴射させるようにし
たガスタービン燃焼器である。
(Means for Solving the Problems) The present invention provides an inner cylinder installed in the outer cylinder so as to form an air flow path between the outer cylinder and the inner peripheral surface of the outer cylinder, Multiple air holes formed on the side,
A sleeve is fixed to the outer cylinder so that its axis coincides with some of these air holes and allows steam to be guided inside, and a sleeve is movably inserted into the sleeve and directed toward the inside of the outer cylinder. A tapered nozzle and a spring biasing the nozzle to retain the nozzle within the sleeve, and when injecting steam, inject steam from the nozzle until the nozzle engages the air port within the outer cylinder. This is a gas turbine combustor that is made to protrude and inject steam instead of air from the air port.

(作用) 上記の構成において、燃焼器が低発熱量ガス燃
料に代えて高発熱量燃料で運用されるとき、上記
スリーブを介してノズルから燃焼器内筒内に噴射
される。ノズルは、通常時はバネによつてスリー
ブ内に格納されているが、ノズル内に蒸気が導か
れるとノズルは先細に開口部を形成されているか
ら供給された蒸気の動圧によつてバネ力に抗して
燃焼器外筒から内筒の方向へせり出し、その先端
部で内筒に穿孔された空気口を塞ぐこととなる。
つまり、内筒の空気口からは空気ではなく蒸気が
噴射されるようになる。
(Function) In the above configuration, when the combustor is operated with high calorific value fuel instead of low calorific value gas fuel, fuel is injected into the combustor inner cylinder from the nozzle via the sleeve. Normally, the nozzle is housed in the sleeve by a spring, but when steam is introduced into the nozzle, the nozzle has a tapered opening, so the dynamic pressure of the supplied steam causes the nozzle to spring out. It protrudes from the combustor outer cylinder toward the inner cylinder against the force, and its tip closes the air port bored in the inner cylinder.
In other words, steam instead of air is injected from the air port in the inner cylinder.

この結果、それまで空気口から内筒内に流入し
ていた空気が、内外筒間の空気流路に沿つて内筒
を冷却しつつ流れることになる。これによつて内
筒壁温の温度上昇は抑制される。また空気口から
は蒸気が供給されるので、燃料が変更されたこと
によるガスタービン入口圧力の低下は、この噴射
蒸気の分圧によつて補填されるから、タービン出
力および効率低下を防止することができる。
As a result, the air that had previously flowed into the inner cylinder from the air port now flows along the air flow path between the inner and outer cylinders while cooling the inner cylinder. This suppresses the temperature rise in the inner cylinder wall temperature. Also, since steam is supplied from the air port, any drop in gas turbine inlet pressure due to a change in fuel is compensated for by the partial pressure of this injected steam, thus preventing a drop in turbine output and efficiency. Can be done.

(実施例) 第1図は本発明の一実施例に係るガスタービン
燃焼器を示すもので、有底円筒状の外筒1の内部
には同心状に内筒2が設置され、そして外筒1を
貫いて補助燃料噴射弁3が装着され、この補助燃
料噴射弁3は旋回羽根4を介して内筒2の内部に
向けて開口している。また旋回羽根4の端部には
保炎板5が形成されると共に、外部から低発熱燃
料を供給する燃料導入管6が接続されている。
(Embodiment) Fig. 1 shows a gas turbine combustor according to an embodiment of the present invention, in which an inner cylinder 2 is installed concentrically inside a bottomed cylindrical outer cylinder 1, and an outer cylinder 2 is installed concentrically inside the outer cylinder 1. An auxiliary fuel injection valve 3 is installed through the inner cylinder 1 , and this auxiliary fuel injection valve 3 opens toward the inside of the inner cylinder 2 via a swirl vane 4 . Further, a flame stabilizing plate 5 is formed at the end of the swirling blade 4, and a fuel introduction pipe 6 for supplying low heat generation fuel from the outside is connected.

内筒2の火炉部壁面には、表面が平滑で背面に
縦長のひれを複数個形成された遮熱片7が支持金
具8,9によつて周方向には円筒状に、軸方向に
は階段状に取着されている。この火炉部終端付近
には、軸に対称でかつ円周方向等間隔に複数の空
気口10,11が軸方向に距離をおいて二列にわ
たつて設けられている。さらに、この空気口のう
ち、下流側の列の空気口11に対向する外筒1の
部位には蒸気噴射装置20が装備されている。
On the wall surface of the furnace part of the inner cylinder 2, a heat shielding piece 7 with a smooth surface and a plurality of vertically long fins formed on the back side is formed into a cylindrical shape in the circumferential direction and in the axial direction by the support fittings 8 and 9. It is installed in a stepped manner. Near the end of the furnace section, a plurality of air ports 10 and 11 are provided in two rows symmetrically about the axis and equally spaced in the circumferential direction, spaced apart in the axial direction. Furthermore, among these air ports, a steam injection device 20 is installed at a portion of the outer cylinder 1 that faces the air ports 11 in the downstream row.

この蒸気噴射装置20は、第2図に示すよう
に、空気口11に軸心が一致するよう外筒1に固
定されたスリーブ12と、このスリーブ12内に
可動に挿入され外筒1の内側に向けて先細に開口
したノズル13と、このノズル13を外筒1の外
側に向けて付勢するバネ14とからなり、上記ス
リーブ12を介してノズル13内に蒸気を供給す
る蒸気管15が外部の蒸気系統、たとえば排熱回
収ボイラから接続されている。なお、バネ14は
ノズル13を貫通してスリーブ12の底部に固定
されたロツド16に係止され、またノズル13の
適宜位置およびスリーブ12の先端部にはそれぞ
れ段部17,18が形成されており、ノズル13
をスリーブ12内に引き留めると共に、ノズル1
3がスリーブ12から必要以上に突出しないよう
になつている。
As shown in FIG. 2, this steam injection device 20 includes a sleeve 12 fixed to the outer cylinder 1 so that its axis coincides with the air port 11, and a sleeve 12 movably inserted into the sleeve 12 and inserted inside the outer cylinder 1. A steam pipe 15 that supplies steam into the nozzle 13 through the sleeve 12 is made up of a nozzle 13 that is tapered open toward the outside, and a spring 14 that biases the nozzle 13 toward the outside of the outer cylinder 1. It is connected to an external steam system, such as an exhaust heat recovery boiler. The spring 14 passes through the nozzle 13 and is engaged with a rod 16 fixed to the bottom of the sleeve 12, and stepped portions 17 and 18 are formed at appropriate positions of the nozzle 13 and at the tip of the sleeve 12, respectively. cage, nozzle 13
is retained in the sleeve 12, and the nozzle 1
3 does not protrude from the sleeve 12 more than necessary.

上記構成において、低発熱量ガス燃料が燃料導
入管6から供給されて運転されている場合の内筒
内部に流入する空気51と燃焼ガス53によつて
生ずる内部の流れを第1図に示す。各部から流入
する空気51の流量配分は、旋回羽根4から全体
の約30%、遮熱片7のひれ間隙から全体の約30
%、下部の空気口10,11から残りの約40%と
なるように設計されている。旋回羽根4から流入
する空気51は、旋回羽根4によつて旋回流に変
えられ、第一列の空気口10から流入する空気の
一部と共に、保炎に必要な循環領域を火炉部に形
成する。過熱片7のひれ間隙から流入する空気5
1は遮熱片7を冷却した後、下流の遮熱片表面を
膜状に覆いながら冷却し、そのまま内筒表面に沿
つて下流へと流れる。第一列めの空気口10から
流入する空気51は、対向の空気口10から流入
する空気51と内筒中心にて衝突し、一部は一次
燃焼用として上方へ、他は燃焼ガス冷却用として
下方へ分岐する。第二列の空気口11の場合は、
内筒中央へ噴射された後、第一列の下方分岐流に
より押し流され、燃焼に全く関与しない燃焼ガス
冷却流となる。このような流れを持つ燃焼器で高
発熱量の補助燃料を補助燃料噴射弁3から供給し
て運転した場合には、ガス燃料流量分に相当する
蒸気を排熱回収ボイラ等から抽気し、燃焼に全く
影響を与えない第二列空気口11から蒸気噴射装
置20を介して、燃焼器内へ送入する。その際、
蒸気噴射ノズル13は先細ノズルのため蒸気噴流
の動圧を受け、第3図に示された空気口11を塞
ぐ位置まで移動する。それにより、第二列の空気
口11から流入していた約20%の空気が、他の開
口部へ再配分される。即ち、各部の流量がガス燃
料時よりも20%近くアツプし、燃焼ガス53に対
応した比率からすれば、標準燃焼器の空気流量配
分に非常に近い値となる。そのため、1次燃焼温
度が上昇しても火炉壁面冷却用空気量が標準燃焼
器並に増加しているため、壁温上昇を最小限に押
さえることができる。更に、ガス燃料不足分を蒸
気によつて補うことから、ガスタービン出力や効
率の低下がなく、設計値と変わらない性能を得る
ことができる。尚、蒸気噴射ノズル13は、蒸気
噴射を停止した際、ロツド16とバネ14が作り
出す反力により噴射前の位置へ復帰する。
FIG. 1 shows the internal flow caused by the air 51 and combustion gas 53 flowing into the inner cylinder when the above configuration is operated with low calorific value gas fuel being supplied from the fuel introduction pipe 6. The flow distribution of the air 51 flowing in from each part is approximately 30% of the total from the swirl vane 4 and approximately 30% of the total from the fin gap of the heat shield plate 7.
%, and the remaining approximately 40% comes from the air ports 10 and 11 at the bottom. Air 51 flowing in from the swirling vanes 4 is converted into a swirling flow by the swirling vanes 4, and together with a portion of the air flowing in from the first row of air ports 10, a circulation area necessary for flame stabilization is formed in the furnace section. do. Air 5 flowing in from the fin gap of the heating piece 7
After cooling the heat shielding piece 7, the heat shielding piece 1 cools while covering the surface of the downstream heat shielding piece in the form of a film, and flows downstream along the inner cylinder surface as it is. The air 51 flowing in from the first row of air ports 10 collides with the air 51 flowing in from the opposite air port 10 at the center of the inner cylinder, and some of the air flows upward for primary combustion, while the other air flows for combustion gas cooling. It branches downward as follows. In the case of the second row of air ports 11,
After being injected into the center of the inner cylinder, it is swept away by the downward branch flow of the first row, becoming a combustion gas cooling flow that does not participate in combustion at all. When a combustor with such a flow is operated by supplying auxiliary fuel with a high calorific value from the auxiliary fuel injection valve 3, steam corresponding to the gas fuel flow rate is extracted from the exhaust heat recovery boiler, etc., and the combustion The steam is fed into the combustor through the steam injection device 20 from the second row air port 11, which has no influence on the steam. that time,
Since the steam injection nozzle 13 is a tapered nozzle, it receives the dynamic pressure of the steam jet and moves to a position where it closes the air port 11 shown in FIG. As a result, about 20% of the air that was flowing in from the second row of air ports 11 is redistributed to other openings. That is, the flow rate of each part is increased by nearly 20% compared to when using gas fuel, and from the ratio corresponding to the combustion gas 53, the value is very close to the air flow distribution of a standard combustor. Therefore, even if the primary combustion temperature increases, the amount of air for cooling the furnace wall surface is increased to the same level as in a standard combustor, so the increase in wall temperature can be suppressed to a minimum. Furthermore, since the gas fuel shortage is compensated for by steam, there is no decrease in gas turbine output or efficiency, and the same performance as the design value can be obtained. Incidentally, when steam injection is stopped, the steam injection nozzle 13 returns to the position before injection due to the reaction force generated by the rod 16 and the spring 14.

このように、燃焼に影響を与えない第2列の空
気口11の外周部に蒸気噴射装置を備え付けるこ
とにより、従来問題になつていた事項が全て解決
される。その他、多量の蒸気が排ガス中に含まれ
るが、寒冷期においても煙突からの水蒸気煙はほ
とんど観察されない結果を得ている。また、第2
列空気口の開口面積を変更するだけで、他の低発
熱量ガス燃料にも適用できる利点がある。
In this way, by providing the steam injection device on the outer periphery of the second row of air ports 11 that does not affect combustion, all of the conventional problems are solved. In addition, although a large amount of steam is contained in the exhaust gas, almost no steam smoke is observed from the chimney even during the cold season. Also, the second
It has the advantage that it can be applied to other low calorific value gas fuels by simply changing the opening area of the row air ports.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、低発熱量
ガス燃料用燃焼器の第二列空気口に一致するよう
に蒸気噴射装置を取り付けたことにより、高発熱
量の補助燃料使用にともなう火炉の壁温上昇を最
小限に抑え、ガスタービン出力や効率を維持し、
燃料発熱量の相違の影響が見られない優れたガス
タービン燃焼器を提供することができる。
As explained above, according to the present invention, by installing the steam injection device so as to coincide with the second row air port of the combustor for low calorific value gas fuel, the furnace Minimize wall temperature rise, maintain gas turbine output and efficiency,
It is possible to provide an excellent gas turbine combustor that is not affected by differences in fuel calorific value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るガスタービン
燃焼器の断面図、第2図は蒸気噴射装置の詳細を
示す断面図、第3図は第2図示の蒸気噴射装置の
動作を説明する図、第4図はコンバインドサイク
ルプラントの系統図である。 1……外筒、2……内筒、10,11……空気
口、12……スリーブ、13……ノズル、14…
…バネ、20……蒸気噴射装置。
Fig. 1 is a cross-sectional view of a gas turbine combustor according to an embodiment of the present invention, Fig. 2 is a cross-sectional view showing details of a steam injection device, and Fig. 3 explains the operation of the steam injection device shown in the second figure. Figure 4 is a system diagram of a combined cycle plant. 1... Outer cylinder, 2... Inner cylinder, 10, 11... Air port, 12... Sleeve, 13... Nozzle, 14...
...Spring, 20...Steam injection device.

Claims (1)

【特許請求の範囲】[Claims] 1 外筒と、この外筒の内周面との間に空気流路
を形成するよう外筒内に設置される内筒と、この
内筒側面に形成された複数の空気孔と、これら空
気孔のうち一部のものと軸心を一致させるよう前
記外筒に固定され内部に蒸気が導かれるようなさ
れたスリーブと、このスリーブ内に可動に挿入さ
れ前記外筒の内側に向けて先細に開口したノズル
と、さらにこのノズルをスリーブ内に留めるよう
付勢するバネとを備え、蒸気噴射時に前記ノズル
から蒸気を噴射させてこのノズルを外筒内に前記
空気口に係合するまで突出させ、当該空気口から
空気に代えて蒸気を噴射させるようなしたガスタ
ービン燃焼器。
1. An inner cylinder installed in the outer cylinder so as to form an air flow path between the outer cylinder and the inner circumferential surface of the outer cylinder, a plurality of air holes formed in the side surface of the inner cylinder, and a plurality of air holes formed in the side surface of the inner cylinder, and a sleeve that is fixed to the outer cylinder so that its axis coincides with some of the holes and allows steam to be guided inside; and a sleeve that is movably inserted into the sleeve and tapers toward the inside of the outer cylinder. an open nozzle; and a spring biasing the nozzle to stay within the sleeve; and when injecting steam, the nozzle injects steam to project the nozzle into the outer cylinder until it engages the air port. , a gas turbine combustor in which steam is injected from the air port instead of air.
JP6128181A 1981-04-24 1981-04-24 Combustor for gas turbine Granted JPS57175822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6128181A JPS57175822A (en) 1981-04-24 1981-04-24 Combustor for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128181A JPS57175822A (en) 1981-04-24 1981-04-24 Combustor for gas turbine

Publications (2)

Publication Number Publication Date
JPS57175822A JPS57175822A (en) 1982-10-28
JPS6339811B2 true JPS6339811B2 (en) 1988-08-08

Family

ID=13166659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128181A Granted JPS57175822A (en) 1981-04-24 1981-04-24 Combustor for gas turbine

Country Status (1)

Country Link
JP (1) JPS57175822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110108U (en) * 1989-02-20 1990-09-04

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022449A1 (en) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha Combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110108U (en) * 1989-02-20 1990-09-04

Also Published As

Publication number Publication date
JPS57175822A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
US8393138B2 (en) Oxygen-enriched air assisting system for improving the efficiency of cogeneration system
US9523311B2 (en) Method of operating a gas turbine, and gas turbine with water injection
JP5319018B2 (en) Operation method of mixed firing system
JP3974519B2 (en) Compressed air steam generator for combustion turbine transition.
JP5921630B2 (en) How to operate a co-firing system
JP7039782B2 (en) Thermal power plant, co-firing boiler and boiler modification method
CN110186069B (en) Combustion heater
US20170298817A1 (en) Combustor and gas turbine engine
CA2824119A1 (en) Method for mixing a dilution air in a sequential combustion system of a gas turbine
US7340881B2 (en) Gas turbine combustor
BRPI0616390A2 (en) system for preparing a combustion fuel
TW200427898A (en) System for producing energy at a pulp mill
CA2824124A1 (en) Method for mixing a dilution air in a sequential combustion system of a gas turbine
JP6247503B2 (en) Exhaust gas recirculation combustion control method for equipment equipped with a combustion device
JPH09145057A (en) Gas turbine combustor
JPS6339811B2 (en)
US10386061B2 (en) Method and apparatus for firetube boiler and ultra low NOx burner
JP4018809B2 (en) Additional combustion method using gas turbine exhaust gas and additional burner using this additional combustion method
CN219955285U (en) Water-cooled wall pressure stabilizing system of waste heat boiler of gas turbine
CN219199130U (en) Steam generator
JPS6149486B2 (en)
JP2017138023A (en) Steam injection gas turbine
JP5178790B2 (en) Fuel control method and fuel control apparatus for gas turbine combustor for gas turbine using high humidity air
US20230296253A1 (en) Fuel supply system for a combustor
JPS62111131A (en) Burner of low-calory gas burning gas turbine