WO2020170620A1 - Device and method for removing deposits - Google Patents

Device and method for removing deposits Download PDF

Info

Publication number
WO2020170620A1
WO2020170620A1 PCT/JP2020/000130 JP2020000130W WO2020170620A1 WO 2020170620 A1 WO2020170620 A1 WO 2020170620A1 JP 2020000130 W JP2020000130 W JP 2020000130W WO 2020170620 A1 WO2020170620 A1 WO 2020170620A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
ejection
discharge
hole
predetermined
Prior art date
Application number
PCT/JP2020/000130
Other languages
French (fr)
Japanese (ja)
Inventor
正俊 望月
豊 吉野
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202080015300.0A priority Critical patent/CN113439017B/en
Publication of WO2020170620A1 publication Critical patent/WO2020170620A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies

Definitions

  • the present invention relates to a removing device and method for removing deposits adhering around the strands or the discharge holes of an extruder die when the resin composition is extruded into strands using an extruder.
  • the resin composition When extruding the resin composition into a strand using an extruder, some components of the resin composition may adhere to the periphery of the discharge holes of the extruder die depending on the resin composition. Such deposits are sometimes referred to as “meyani” and have various adverse effects. For example, if the resin composition is continuously extruded in a state in which the resin is attached to the periphery of the discharge hole, the resin may grow and become entangled with the strands. If such an eyelid is left as it is, it may be mixed in the product, and there is a concern that the quality may be deteriorated due to the mixture of the eyelid in the product. Alternatively, the strands may be cut as the grown eyelids leave the extruder die. This occurs several times per hour at a high frequency, so it is necessary to constantly monitor and remove the eyebrow if necessary, but it is necessary to cut the strands of the discharge holes to be removed and carry out the operation. Will be lost.
  • Patent Documents 1 and 2 disclose an extruder die having a mechanism for blowing gas near a discharge hole through which a resin is extruded to blow away the main body.
  • the extruder dies disclosed in Patent Documents 1 and 2 have a configuration in which gas is simply blown onto the eyebrows, and may not be sufficiently removed if the eyebrows are firmly attached. Then, in order to sufficiently remove such a body, it is necessary to continue jetting the gas for a long time or increase the pressure of the jetted gas. These can cause strand breaks. Further, although it is conceivable that the gas to be sprayed is heated and sprayed on the adhering material in the state of hot air, it cannot be sufficiently removed by itself.
  • the present invention has been made in view of the above conventional problems. And the object is to provide a deposit removing device and method capable of sufficiently removing a deposit of a molten resin discharged from an extruder die or a periphery of a resin discharge hole of a die in a short time. It is in.
  • the deposit removing device removes the deposit of molten resin discharged from the discharge hole formed on the discharge surface of the die and/or the deposit generated around the discharge hole. It is for removing, and includes a jetting means for jetting gas so that an air flow whose strength fluctuates temporally and/or spatially hits the periphery of the discharge hole so as to remove the deposit.
  • the ejection unit includes a nozzle that ejects gas, and a driving unit that can control the position and/or direction of the nozzle, and the driving unit has a temporal and/or spatially varying intensity around the ejection hole.
  • the nozzle may be driven to perform a predetermined operation with respect to its position and/or direction so as to be hit by the air flow.
  • the driving means may control the position of the nozzle so that the nozzle operates with a predetermined distance from the ejection surface.
  • the driving unit may control the position of the nozzle so that the nozzle operates while varying the distance from the ejection surface.
  • the driving unit may control the nozzle direction so as to have a predetermined angle with respect to the ejection surface.
  • the predetermined operation may include a rocking operation in which the nozzle is rocked in the position and/or the direction so that the air flow whose strength fluctuates temporally and/or spatially hits the circumference of the predetermined discharge hole.
  • the ejection means may include two or more nozzles that can simultaneously apply airflow around one discharge hole from different directions.
  • the driving unit may further include a support base that supports the two or more nozzles, and the driving unit may drive the two or more nozzles via the support base.
  • the support may be capable of adjusting the distance between the two or more nozzles and the orientation of the two or more nozzles.
  • a plurality of discharge holes may be formed in a row in the horizontal direction on the discharge surface, and the driving means may control the position of the nozzle so as to perform a predetermined operation along the discharge holes in one row.
  • the predetermined operation may include a translational operation of translating the nozzle from a position corresponding to the predetermined ejection hole in the ejection hole to a position corresponding to another ejection hole.
  • the injection means is rotatable about a predetermined axis and may include a nozzle for injecting gas.
  • the nozzle may be rotatable about a predetermined axis over a predetermined angular range that includes the direction of adjacent ejection holes.
  • the nozzle is rotatable around a predetermined axis along the discharge surface, covers a rotatable range of the nozzle on the discharge surface, and rotates the nozzle at a predetermined angle including adjacent discharge holes in the circumferential direction. It may further include a hood that is opened only in the range and guides the gas injected from the nozzle to the opened range.
  • the ejection means may include a pipe extending along the ejection surface and having an ejection hole for ejecting gas, and the pipe may be movable along the ejection surface.
  • the pipe may extend in one direction, and the pipe may be movable along the one direction.
  • the pipe may be swung so that the gas jetted from the jet holes impinges on the periphery of a predetermined discharge hole an air flow whose intensity varies temporally and/or spatially.
  • the injecting means may inject a predetermined amount of gas. It may further include gas supply means for supplying gas to the injection means. It may further include pressure adjusting means for adjusting the pressure of the gas supplied to the injection means. It may further include gas heating means for heating the gas supplied to the injection means.
  • the deposit removing method is for removing a strand of molten resin discharged from a discharge hole formed on a discharge surface of a die and/or a deposit generated around the discharge hole,
  • An injection step of injecting a gas may be included so that an airflow having a temporally and/or spatially varying intensity hits the periphery of the discharge hole so that the deposit is removed.
  • the injecting step controls the position and/or direction of the nozzle that injects the gas, so that the nozzle is controlled so that an air flow having a temporally and/or spatially varying intensity hits a predetermined ejection hole around the ejection hole. It may include a driving step for driving to perform a predetermined operation with respect to position and/or direction.
  • the nozzle In the jetting step, the nozzle may be driven so as to have a predetermined distance from the discharge surface.
  • the driving step may drive the nozzle so that the distance to the ejection surface varies.
  • the driving step may drive the nozzle so as to have a predetermined angle with respect to the ejection surface.
  • the driving step may include a rocking step of rocking the nozzle in position and/or direction so that an air flow whose strength fluctuates temporally and/or spatially hits a predetermined discharge hole.
  • a plurality of ejection holes may be formed in a row in the horizontal direction on the ejection surface, and the driving step may drive the nozzles along the ejection holes in one row.
  • the driving step includes a swinging step of swinging the nozzle in a position and/or a direction so that an airflow whose intensity fluctuates temporally and/or spatially hits the predetermined discharge hole, and a predetermined discharge hole.
  • the translation step of translating the nozzle from the corresponding position to the position corresponding to another ejection hole may be alternately repeated.
  • the injecting step may include a driving step for driving to rotate a nozzle that injects a gas that is rotatable around a predetermined axis over a predetermined angle range including a direction of an adjacent ejection hole.
  • the injection step is covered by a hood that is rotatable around a predetermined axis along the discharge surface and that is open only within a predetermined angle range that includes circumferentially adjacent discharge holes that are rotatable on the discharge surface.
  • a driving step of driving the nozzle for injecting the gas to rotate the nozzle may be included.
  • the injecting step may include a driving step of driving the pipe, which extends along the ejection surface and has an ejection hole for ejecting a gas that is movable along the ejection surface, to move.
  • the driving step may include an oscillating step of oscillating the pipe so that the gas jetted from the jet holes impinges an air flow whose intensity varies temporally and/or spatially around a predetermined discharge hole.
  • the injection step may inject a predetermined amount of gas.
  • the injecting step may further include a gas supplying step of supplying a gas to be injected.
  • the injecting step may further include a pressure adjusting step of adjusting the pressure of the gas to be injected.
  • the injection step may further include a gas heating step of heating the gas to be injected.
  • the deposit removing apparatus and method according to the present embodiment removes a strand of molten resin discharged from a discharge hole formed on a discharge surface of a die and/or a deposit generated around the discharge hole. ..
  • the deposit removing apparatus and method according to the present embodiment can be applied to a die having a single discharge hole or a plurality of discharge holes. However, in the following description, a single discharge hole will be used for convenience. Description will be given separately for a die having the same and a die having a plurality of ejection holes.
  • FIG. 1 is a diagram showing an adhered substance removing device of the present embodiment applied to a die having a single discharge hole.
  • FIG. 1A is a perspective view of the deposit removing device
  • FIG. 1B is a front view of the deposit removing device
  • FIG. 1C is a left side view of the deposit removing device.
  • a single discharge hole 12 having a predetermined diameter is formed at a substantially center of a discharge surface 11 extending in a substantially vertical direction.
  • the molten resin strands 100 are discharged from the discharge holes 12 at a predetermined linear velocity.
  • the deposit removing device has one nozzle 1 for injecting gas at a predetermined flow rate.
  • the nozzle 1 is driven by a driving unit (not shown), has a predetermined space from the ejection surface 11 of the die 10, and has a predetermined position and/or direction with respect to the ejection hole 12 formed in the ejection surface 11.
  • a driving unit not shown
  • the driving means of the nozzle 1 may be constituted by a suitable actuator or a robot arm.
  • the nozzle 1 is located on the upper left side of the ejection surface 11 of the die 10 toward the ejection hole 12, faces the ejection surface 11 at a predetermined interval, and forms a predetermined angle with the ejection surface 11.
  • the first position P1 for injecting the gas downward and the first position P1 are at substantially the same height as the first position P1 and are located on the upper right side toward the ejection holes 12 of the ejection surface 11 at a predetermined interval. It has and opposes and oscillates between the discharge surface 11 and the second position P2 that makes a predetermined angle and injects gas downward. By such an oscillating operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially around the ejection holes 12 of the ejection surface 11.
  • the nozzle 1 that injects gas at a predetermined flow rate oscillates between the first position P1 and the second position P2, so that the discharge hole 12 of the discharge surface 11
  • the surroundings may be exposed to an air flow whose intensity varies temporally and/or spatially. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
  • the distance between the ejection surface 11 and the nozzle 1 may be 2 to 30 mm.
  • the distance between the ejection surface 11 and the nozzle 1 is the distance a between the tip of the nozzle 1 shown in FIG.
  • the distance a between the tip of the nozzle 1 and the position where the gas actually hits the ejection surface 11 is referred to.
  • the deposit removing device of the present embodiment may have a gas supply means for supplying a predetermined type of gas to the nozzle 1.
  • the gas supply means may be a compressor that supplies compressed gas.
  • the gas may be air or a non-oxidizing gas.
  • the deposit removing device of the present embodiment may have a pressure adjusting means for adjusting the pressure so as to inject a gas having a predetermined pressure from the nozzle 1.
  • the pressure adjusting means may be a pressure reducing valve provided in an air supply pipe for supplying gas from the gas supply means to the nozzle 1.
  • the deposit removing device of the present embodiment may have a gas heating means for heating the gas injected from the nozzle 1 to a predetermined temperature.
  • the gas heating means may be a heater provided in the air supply pipe or the nozzle 1.
  • the temperature of the heated gas supplied to the nozzle 1 may be in the range of 20 to 800°C, preferably 20 to 600°C.
  • the temperature of the air flow ejected from the nozzle 1 and hitting the periphery of the discharge hole 12 is lower than the temperature of the heated gas supplied to the nozzle 1.
  • the temperature of the air flow that hits the periphery of the discharge hole 12 has influential factors such as the heater set temperature, the gas flow rate, the inner diameter/length of the nozzle 1, the distance between the tip of the nozzle 1 and the discharge surface 11, etc. It suffices to select the conditions suitable for the product.
  • FIG. 2 is a diagram explaining the swinging operation of the adhered substance removing device applied to a die having a single discharge hole.
  • the nozzle 1 moves from the first position P1 at the upper left toward the ejection hole 12 of the ejection surface 11 toward the ejection hole 12 of the ejection surface 11 of the die 10.
  • One cycle is to move forward in the substantially horizontal direction to the second position P2 located on the upper right side and move forward in the substantially horizontal direction, and then move in the reverse direction from the second position P2 to the first position P1 in the substantially horizontal direction and return. Then, this cycle is repeated a predetermined number of times.
  • the nozzle 1 that injects gas at a predetermined flow rate swings between the first position P1 and the second position P2, so that the discharge surface 11 is surrounded by the discharge holes 12.
  • the air flow whose intensity fluctuates temporally and/or spatially can be applied. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
  • the nozzle 1 is not limited to the order of the illustrated operation, and may be operated in the reverse order.
  • the operation of advancing from the second position P2 to the first position P1 and returning from the first position P1 to the second position P2 may be one cycle. .. The same applies below.
  • the nozzle 1 In the swinging operation of the second mode shown in FIG. 2B, the nozzle 1 is directly above the ejection hole 12 of the ejection surface 11 and faces the ejection surface 11 at a predetermined interval.
  • the 0th position P0 which makes a predetermined angle with 11 and injects gas downward is made into the starting point. Then, the nozzle 1 moves in the forward direction in a substantially horizontal direction from the 0th position P0 at the starting point to the second position P2 in the upper right direction toward the discharge hole 12 of the discharge surface 11, and then proceeds from the second position P2 to the second position P2.
  • the operation of moving to the 0 position P0 in a substantially horizontal direction in the opposite direction and returning is referred to as a first cycle.
  • the nozzle 1 moves in a reverse direction in a substantially horizontal direction from the 0th position P0 at the starting point to the first position P1 at the upper left toward the discharge hole 12 of the discharge surface 11, and then proceeds from the first position P1 to the first position P1.
  • the operation of moving to the 0 position P0 in the substantially horizontal direction in the forward direction and returning to the 0 position P0 is referred to as a second cycle.
  • the operation in which the first cycle and the second cycle are combined is defined as one cycle, and this cycle is repeated a predetermined number of times.
  • the combined amplitude of the first cycle and the second cycle of the motion of the second mode is first. This corresponds to the amplitude of one cycle of the swinging motion of the embodiment. Further, the sum of the periods of the first cycle and the second cycle of the rocking motion of the second mode corresponds to the period of one cycle of the rocking motion of the first mode. Furthermore, the sum of the number of times of the first cycle and the second cycle of the swing motion of the second mode corresponds to twice the number of times of one cycle of the corresponding motion of the first mode.
  • the nozzle 1 that injects gas at a predetermined flow rate swings between the first position P1 and the second position P2 starting from the 0th position P0, so that the discharge surface 11 It is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the discharge hole 12. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
  • the nozzle 1 is driven between the 0th position P0 and the first position P1 in the first cycle in which the nozzle 1 is driven between the 0th position P0 and the second position P2.
  • the second cycle to be driven can be individually controlled. Therefore, it is possible to individually control the strength of the airflow that strikes the ejection holes 12 from the right side and the left side toward the ejection surface 11. Therefore, even when the amounts of the adhered substances generated on the left and right sides of the discharge hole 12 are different, it is possible to deal with the situation by individually adjusting the intensities of the air currents that hit the discharge hole 12 from the right side and the left side.
  • the swinging operation corresponding to the discharge hole 12 may be performed with an amplitude of 0.5 to 3 times the diameter of the discharge hole 12. Further, the cycle of the rocking operation corresponding to the single ejection hole 12 may be 0.5 to 3 seconds. The number of times of rocking with respect to the ejection hole 12 may be 2 to 4 times.
  • the distance between the ejection surface 11 of the die 10 and the nozzle 1 may not be a constant distance.
  • the distance between the ejection surface 11 and the nozzle 1 may be controlled so as to change in a predetermined operation of the nozzle 1 by the driving unit.
  • FIG. 3 is a conceptual diagram illustrating a series of manufacturing processes to which an adhered matter removing device is applied.
  • the deposit removing device according to the present embodiment is applied to the die 10 attached to the extruder 40, and is formed around the molten resin strand 100 discharged from the discharge hole 12 of the die 10 and/or around the discharge hole 12. Removed deposits.
  • the strand 100 from which the deposits have been removed is put into the water bath 50 and cooled by the cooling water 51. After that, the pellets 110 are conveyed to the cutter 60 and cut into a predetermined length to form pellets 110.
  • a deposit removing device is installed above the discharge surface 11 of the die 10.
  • the extruder 40 is not particularly limited as long as it has an extrusion screw, and examples thereof include a single-screw extruder, different-direction twin-screw extruder, and same-direction twin-screw extruder. Then, in the extruder 40, since the removal operation is performed by the deposit removing device, it is possible to suppress the growth of deposits around the discharge holes 12 of the die 10. Therefore, the deposits generated around the discharge holes 12 at the time of extrusion are removed, and the deposits are mixed in the final product, and the maintenance work frequency for cutting the strands 100 and removing the deposits due to the deposits is reduced. It can be reduced.
  • the resin composition forming the strand 100 is manufactured by charging at least the resin and the additive into the extruder 40 and discharging the resin from the die 10.
  • the resin used in this embodiment is not particularly limited, and may be a general-purpose resin or an engineering resin. A plurality of these resins may be mixed.
  • the additive used is not limited, and various stabilizers, various function-imparting agents, various physical property enhancers and the like can be used.
  • the deposit removing device according to the present embodiment is particularly effective for producing a resin composition that is likely to generate deposits.
  • the resin composition for example, at least a polyacetal resin and a graft copolymer having a main chain of polyethylene and a side chain of an acrylonitrile-styrene copolymer are charged into an extruder 40, and then a die 10 is used.
  • a polyacetal resin composition can be obtained by discharging.
  • an adhered matter derived from the graft copolymer tends to be generated around the discharge hole 12 of the die 10.
  • deposits are reduced, and it is possible to suppress inclusion of deposits in the final product and cutting of the strand 100.
  • the adhering substance removing apparatus can sufficiently adhere the adhering substances generated around the resin strands 100 and/or the ejection holes 12 ejected from the ejection holes 12 of the die 10 in a short time. It has been removed. Therefore, the strand 100 will not be cut due to the generation of deposits, and the manufacturing efficiency can be improved. Further, since the deposits are sufficiently removed from the strand 100, the quality of the pellet 110 produced by cutting the strand 100 can be improved.
  • FIG. 4 is a diagram showing an adhered substance removing device of the present embodiment applied to a die having a plurality of discharge holes.
  • FIG. 4A is a perspective view of the deposit removing device
  • FIG. 4B is a front view of the deposit removing device
  • FIG. 4C is a left side view of the deposit removing device.
  • the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction. Of the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction. From the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
  • the deposit removing device of the present embodiment has a nozzle 1 for injecting gas at a predetermined flow rate.
  • the nozzle 1 is driven by a driving unit (not shown) and has a predetermined interval with respect to the ejection surface 11 of the die 10, and has a first ejection hole 13, a second ejection hole 14, and a third ejection hole formed in the ejection surface 11.
  • a driving unit not shown
  • the first discharge hole 13, the second discharge hole 14, the third discharge hole 15 and the fourth discharge hole 16 are surrounded. It is driven so that it is hit by an air flow whose intensity varies temporally and/or spatially.
  • the nozzle 1 is located on the upper left side of the ejection surface 11 of the die 10 toward the first ejection hole 13, faces the ejection surface 11 at a predetermined interval, and forms a predetermined angle with the ejection surface 11.
  • the first position P1 for injecting the gas downward and at substantially the same height as the first position P1 is located on the upper right side of the first discharge hole 13 of the discharge surface 11 and on the second discharge hole 14.
  • a second position P2 which is on the upper left side and faces the ejection surface 11 with a predetermined interval, injects gas downward at a predetermined angle with the ejection surface 11, and a first position.
  • the third position P3 which has and faces the ejection surface 11 at a predetermined angle with respect to the ejection surface 11 and has the same height as the first position P1, the second position P2, and the third position P3.
  • the upper surface of the discharge surface 11 faces the third discharge hole 15 and the upper surface of the discharge surface 11 faces the fourth discharge hole 16, and faces the discharge surface 11 with a predetermined space.
  • the fifth position P5 which is on the upper right side of the fourth discharge hole 16 and faces the discharge surface 11 at a predetermined interval and injects gas downward at a predetermined angle with the discharge surface 11.
  • a predetermined operation is performed along a line of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16. This operation is performed so that the airflow whose strength fluctuates temporally and/or spatially is applied to the periphery of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. It includes a swinging motion.
  • the nozzles 1 for injecting gas at a predetermined flow rate are arranged along a row of the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16. And swings between the first position P1, the second position P2, the third position P3, the fourth position P4, and the fifth position P5. For example, you may swing about the suitable folding
  • the die 10 to which the deposit removing device of the present embodiment is applied is not limited to the one having four ejection holes.
  • the deposit removing device according to the present embodiment can be applied to the die 10 having two or more ejection holes on the ejection surface 11 as the die 10 having a plurality of ejection holes.
  • FIG. 5 is a diagram for explaining the operation of the deposit removing device applied to a die having a plurality of discharge holes.
  • the starting point of the swinging motion corresponding to a predetermined discharge hole is shown as the upper left of the corresponding discharge hole toward the discharge surface 11 as shown as the swinging motion of the first mode in FIG.
  • the starting point of the swing motion corresponding to a predetermined discharge hole is set directly above the corresponding discharge hole toward the discharge surface 11. Good.
  • the swing operation is performed for each of the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16.
  • the first discharge is performed toward the discharge surface 11 from the first position P1 which is the starting point of the swing motion corresponding to the first discharge hole 13 toward the second position P2.
  • the nozzle 1 moves forward in a substantially horizontal direction beyond just above the hole 13 to a predetermined turnaround end point and moves in a reverse direction in a substantially horizontal direction from the turnaround end point to the first position P1.
  • the operation is the first cycle, and the first cycle is repeated a predetermined number of times.
  • the nozzle 1 is advanced from the first position P1 to the second position P2 which is the starting point of the swinging motion corresponding to the second ejection hole 14.
  • the nozzle is translated in terms of moving the nozzle from a position corresponding to a predetermined discharge hole to a position corresponding to another discharge hole. Subsequent to such a translational motion, as a swinging motion corresponding to the second discharge hole 14, the nozzle 1 moves the second discharge hole 14 from the second position P2 toward the third position P3 toward the discharge surface 11.
  • the second cycle is an operation of a predetermined amplitude that moves forward in a substantially horizontal direction to a predetermined turnaround end point over just above and then moves in a reverse direction in a substantially horizontal direction from the turnaround end point to a second position P2. ,
  • the second cycle is repeated a predetermined number of times.
  • the nozzle 1 is translated from the second position P2 to the third position P3, which is the starting point of the swing motion corresponding to the third ejection hole 15. Subsequent to such a translational motion, as a swinging motion corresponding to the third discharge hole 15, the nozzle 1 moves from the third position P3 to the fourth position P4 toward the discharge surface 11 toward the discharge surface 11 so that the third discharge hole 15 moves.
  • An operation of a predetermined amplitude is defined as a third cycle, in which the operation proceeds in a forward direction in a substantially horizontal direction beyond just above to a predetermined turnaround end point and proceeds, and moves in a reverse direction in a substantially horizontal direction from the turnaround end point to a third position P3.
  • the third cycle is repeated a predetermined number of times.
  • the swing operation corresponding to the third discharge hole 15 is the starting point.
  • the nozzle 1 is translated from the third position P3 to the fourth position P4 which is the starting point of the swinging motion corresponding to the fourth ejection hole 16. Subsequent to such a translational movement, as a swinging operation corresponding to the fourth ejection hole 16, the nozzle 1 moves toward the ejection surface 11 from the fourth position P4 to the fifth position P5 toward the ejection surface 11 so that the fourth ejection hole 16 moves.
  • the fourth cycle is an operation with a predetermined amplitude, which goes forward and moves in a substantially horizontal direction forward to a predetermined turnaround end point, and moves in a reverse direction in a substantially horizontal direction from the turnaround end point to the fourth position P4. ,
  • the fourth cycle is repeated a predetermined number of times.
  • the nozzle 1 may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first discharge hole 13.
  • the first cycle, the second cycle, the third cycle, and the fourth cycle of a predetermined number of times may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
  • the nozzle 1 that injects the gas at a predetermined flow rate has the first cycle starting from the first position P1 corresponding to the first discharge hole 13, and the second position corresponding to the second discharge hole 14.
  • a second cycle starting from P2 a third cycle starting from a third position P3 corresponding to the third discharge hole 15, and a fourth cycle starting from a fourth position P4 corresponding to the fourth discharge hole 16
  • the strength around the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 is temporally and/or spatially.
  • a fluctuating air flow can be applied.
  • the four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 on the discharge surface 11 are blown off by an air flow whose strength fluctuates, and these deposits are attached.
  • the kimono can be sufficiently removed in a short time.
  • the nozzle 1 starts the first cycle starting from the first position P1 corresponding to the first discharge hole 13 and the second cycle starting from the second position P2 corresponding to the second discharge hole 14.
  • Two cycles, the third cycle starting from the third position P3 corresponding to the third discharge hole 15 and the fourth cycle starting from the fourth position P4 corresponding to the fourth discharge hole 16 are individually controlled. can do. Therefore, it is possible to individually control the strength of the airflow impinging around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11.
  • two ejection holes such as the first ejection hole 13 and the second ejection hole 14, and the third ejection hole 15 and the fourth ejection hole 16, are formed.
  • the rocking motion is performed for each as a set.
  • the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14 from the first position P1 which is the starting point of the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14 to the third position P3.
  • the nozzle 1 moves forward in a substantially horizontal direction beyond the first discharge hole 13 and the second discharge hole 14 to a predetermined turnaround end point, and advances from the turnaround end point to the predetermined turnaround end point.
  • the operation of a predetermined amplitude that moves to the first position P1 in a substantially horizontal direction in the reverse direction and returns is defined as a first cycle, and the first cycle is repeated a predetermined number of times.
  • the first discharge hole 13 is provided. And a nozzle from the first position P1 which is the starting point of the swinging motion corresponding to the second discharge hole 14 to the third position P3 which is the starting point of the swinging motion corresponding to the third discharge hole 15 and the fourth discharge hole 16.
  • the nozzle 1 moves toward the ejection surface 11 from the third position P3 to the fifth position P5 as a swinging operation corresponding to the third ejection hole 15 and the fourth ejection hole 16.
  • the nozzle 1 moves forward in the substantially horizontal direction beyond just above the third discharge hole 15 and the fourth discharge hole 16 to a predetermined folding end point, and moves in the reverse direction from the folding end point to the third position P3 in the substantially horizontal direction.
  • the operation of a predetermined amplitude that moves in the direction and returns is defined as a second cycle, and the second cycle is repeated a predetermined number of times.
  • the nozzles may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first ejection hole 13 and the second ejection hole 14.
  • the predetermined number of times of the first cycle and the second cycle may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
  • the swinging operation of the second cycle starting from the third position P3 corresponding to the fourth discharge hole 16 the first discharge hole 13, the second discharge hole 14, the third discharge hole 15 of the discharge surface 11, and An air flow whose intensity fluctuates temporally and/or spatially can be applied to the periphery of the fourth discharge hole 16.
  • the four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 on the discharge surface 11 are blown off by an air flow whose strength fluctuates, and these deposits are attached.
  • the kimono can be sufficiently removed in a short time.
  • the first cycle in which the nozzle 1 starts from the first position P1 corresponding to the first ejection hole 13 and the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 It is possible to individually control the swinging operation of the second cycle starting from the third position P3 corresponding to. Therefore, it is possible to individually control the intensities of the airflows that impinge around the first ejection holes 13 and the second ejection holes 14 of the ejection surface 11, and the third ejection holes 15 and the fourth ejection holes 16.
  • the first ejection hole 13 and the second ejection hole 14 and the third ejection hole 15 and the fourth ejection hole 16 can be dealt with by individually adjusting the intensities of the air currents that hit the peripheries of the holes 14 and the third and fourth ejection holes 15 and 16.
  • one cycle is the first position where the nozzle 1 is the starting point of the swinging operation corresponding to the first ejection hole 13. From P1, it corresponds to the second position P2, which is the starting point of the rocking operation corresponding to the second ejection hole 14, the third position P3, which is the starting point of the rocking operation corresponding to the third ejection hole 15, and the fourth ejection hole 16.
  • the predetermined operation of the nozzle 1 including the swinging operation and the translational operation becomes simpler, and the operation of the predetermined operation is reduced.
  • the cycle of one cycle is also shortened.
  • two ejection holes such as the first ejection hole 13 and the second ejection hole 14, and the third ejection hole 15 and the fourth ejection hole 16, are respectively set as a set.
  • the swinging operation may be performed for each set of two or more discharge holes. The same applies below.
  • the four ejection holes of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 are collectively swung. I do.
  • the swing motion corresponding to the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the third ejection hole 15
  • the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the third ejection hole 15 from the first position P1 which is the starting point of the swinging operation corresponding to the fourth ejection hole 16 toward the fifth position P5 toward the ejection surface 11.
  • the nozzle 1 moves forward in the substantially horizontal direction beyond just above the fourth discharge hole 16 to a predetermined folding end point, and moves in the reverse direction in the substantially horizontal direction from the folding end point to the first position P1 and returns.
  • the operation with a predetermined amplitude is defined as one cycle, and this cycle is repeated a predetermined number of times. Due to such swinging operation, the airflow whose strength fluctuates temporally and/or spatially around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. Can be hit.
  • the nozzle 1 for injecting gas at a predetermined flow rate has the first position P1 corresponding to the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16.
  • the strength is temporal and/or temporal around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. It is possible to impinge a spatially varying air flow.
  • the four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 on the discharge surface 11 are blown off by an air flow whose strength fluctuates, and these deposits are attached.
  • the kimono can be sufficiently removed in a short time.
  • one cycle is the starting point of the swinging operation in which the nozzle 1 corresponds to the first ejection hole 13.
  • the second position P2 which is the starting point of the rocking motion corresponding to the second ejection hole 14
  • the third position P3 which is the starting point of the rocking motion corresponding to the third ejection hole 15, and the fourth ejection hole.
  • 16 translational motions such as translating to the fourth position P4 which is the starting point of the swing motion corresponding to 16 and then translating to the first position P1.
  • one cycle is From the first position P1 at which the nozzle 1 is the starting point of the rocking operation corresponding to the first ejection hole 13 and the second ejection hole 14, to the starting point of the rocking operation corresponding to the third ejection hole 15 and the fourth ejection hole 16.
  • the operation of the third aspect is different in that the translational motion is not included. doing. Therefore, in the operation of the third aspect, as compared with the operations of the first aspect and the second aspect, the step of the translation operation does not exist, so that the predetermined operation of the nozzle 1 including the swinging operation becomes easier and the predetermined operation is performed.
  • the cycle of 1 cycle is also shortened.
  • FIG. 6 is a view showing an adhered substance removing device of a first modified example applied to a die having a single discharge hole.
  • 6A is a perspective view of the first modification
  • FIG. 6B is a front view of the first modification
  • FIG. 1C is a left side view of the first modification.
  • a single discharge hole 12 having a predetermined diameter is formed at a substantially center of a discharge surface 11 extending in a substantially vertical direction.
  • the molten resin strands 100 are discharged from the discharge holes 12 at a predetermined linear velocity.
  • the adhered matter removing device of the first modification has two nozzles, a first nozzle 2 and a second nozzle 3 which inject gas at a predetermined flow rate.
  • the first nozzle 2 and the second nozzle 3 are driven by a driving unit (not shown) via a support base 8 that supports the first nozzle 2 and the second nozzle 3, and a predetermined amount with respect to the ejection surface 11 of the die 10.
  • a predetermined operation with respect to the position and/or the direction of the discharge holes 12 formed on the discharge surface 11 having a space, the strength varies temporally and/or spatially around the discharge holes 12. It is swung so as to hit the air flow.
  • the two nozzles of the first nozzle 2 and the second nozzle 3 allow the airflow whose strength fluctuates temporally and/or spatially to hit the ejection hole 12 of the ejection surface 11. can do. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
  • the two nozzles of the first nozzle 2 and the second nozzle 3 simultaneously apply the airflow from the different directions to the periphery of the ejection hole 12 of the ejection surface 11 to reliably remove the adhering matter. can do.
  • the present embodiment is not limited to the two nozzles.
  • the present embodiment can be similarly applied to three or more nozzles as a plurality of nozzles.
  • FIG. 7 is a perspective view showing a support base for two nozzles of a first modified example.
  • the support base 8 supports the first nozzle 2 and the second nozzle 3 so that the angles and heights of the first nozzle 2 and the distance between the second nozzle 3 can be adjusted.
  • the first nozzle 2 and the second nozzle 3 may be set by the support base 8 so that the air streams of the gas jetted from the respective nozzles merge at one point, for example. In addition, it may be set so that the air streams of the gas jetted from each do not join.
  • the angles and heights of the first nozzle 2 and the second nozzle 3, the mutual distances, and the like can be appropriately adjusted based on the position of the support base 8 with respect to the ejection holes of the ejection surface 11 of the die 10.
  • the first nozzle 2 and the second nozzle 3 are located on the upper left side of the ejection surface 11 of the die 10 toward the ejection hole 12 and face the ejection surface 11 with a predetermined interval.
  • the discharge surface 11 is opposed to the discharge surface 11 at a predetermined interval, and swings between the discharge surface 11 and a second position P2 that makes a predetermined angle and injects gas downward.
  • the swinging motion of the first nozzle 2 and the second nozzle 3 in the first modification is as shown in FIG. 2A for one nozzle 1 as the swinging motion of the first mode.
  • the second nozzle 3 is forward in a substantially horizontal direction from a first position P1 located on the upper left side of the ejection surface 11 of the ejection surface 11 to a second position P2 located on the upper right side of the ejection hole 12 of the ejection surface 11 of the die 10.
  • the cycle may be repeated a predetermined number of times, with one cycle being an operation of moving to and moving from the second position P2 to the first position P1 in the reverse direction in the substantially horizontal direction.
  • the swinging motion of the first nozzle 2 and the second nozzle 3 in the first modified example is the same as the one nozzle 1 shown in FIG. 2B as the swinging motion of the second mode.
  • the second nozzle 2 and the second nozzle 3 are directly above the ejection hole 12 of the ejection surface 11 and face the ejection surface 11 with a predetermined interval, and face the ejection surface 11 downward at a predetermined angle. From the position P0 for injecting the gas toward the discharge hole 12 of the discharge surface 11 to the second position P2 at the upper right in a substantially horizontal forward direction, and then proceed, and then from the second position to the position P0 in a substantially horizontal direction.
  • the operation of moving in the opposite direction and returning is defined as the first cycle, and moves in the substantially horizontal direction in the opposite direction from the position P0 to the first position P1 located on the upper left side toward the ejection hole 12 of the ejection surface 11 and then proceeds.
  • the operation of moving from the first position P1 to the position P0 in the substantially horizontal direction in the forward direction and returning is referred to as the second cycle, and the operation in which the first cycle and the second cycle are combined is defined as one cycle, and this cycle is repeated a predetermined number of times. It may be one.
  • FIG. 8 is a view showing an adhered matter removing device of a first modified example applied to a die having a plurality of discharge holes.
  • 8A is a perspective view of the first modification
  • FIG. 8B is a front view of the first modification
  • FIG. 8C is a left side view of the first modification.
  • the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction. Of the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction. From the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
  • the adhered matter removing device of the first modification has two nozzles, a first nozzle 2 and a second nozzle 3 which inject gas at a predetermined flow rate.
  • the first nozzle 2 and the second nozzle 3 are driven by a driving unit (not shown) via a support base 8 that supports the first nozzle 2 and the second nozzle 3, and have a predetermined distance from the ejection surface 11 of the die 10.
  • the first ejection hole 13, the second ejection hole 14, the third ejection hole 15 and the fourth ejection hole 16 formed on the ejection surface 11 By performing a predetermined operation with respect to the position and direction of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15 and the fourth ejection hole 16 formed on the ejection surface 11, The first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 are swung so that an air flow whose strength fluctuates temporally and/or spatially is hit.
  • the starting point of the rocking operation corresponding to a predetermined ejection hole is shown as the rocking operation of the first mode in FIG.
  • the upper left of the corresponding discharge hole toward the discharge surface 11 will be described, but as shown in FIG. 2B as the swing motion of the second mode, the start point of the swing motion corresponding to a predetermined discharge hole. May be directly above the corresponding ejection hole toward the ejection surface 11.
  • the first nozzle 2 and the second nozzle 3 are located on the upper left side of the ejection surface 11 of the die 10 toward the first ejection hole 13 and face the ejection surface 11 at a predetermined interval.
  • the first position P1 at which the gas is jetted downward at a predetermined angle with the discharge surface 11 is at substantially the same height as the first position P1, and is located at the upper right side toward the first discharge hole 13 of the discharge surface 11.
  • a second upper left side of the second discharge hole 14 that faces the discharge surface 11 at a predetermined interval and injects gas downward at a predetermined angle with the discharge surface 11.
  • the position P2 is at substantially the same height as the first position P1 and the second position P2, and is on the upper right side toward the second ejection hole 14 of the ejection surface 11 and on the upper left side toward the third ejection hole 15,
  • the fourth position P4 that makes a predetermined angle with the ejection surface 11 and injects the gas downward, and the first position P1, the second position P2, the third position P3, and the fourth position P4 have substantially the same height.
  • the discharge surface 11 is located on the upper right side of the fourth discharge hole 16 and faces the discharge surface 11 with a predetermined space, and forms a predetermined angle with the discharge surface 11 toward the lower side.
  • a predetermined operation is performed along the row of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 with respect to the fifth position P5 for ejecting.
  • This operation is performed so that the airflow whose strength fluctuates temporally and/or spatially is applied to the periphery of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. It includes a swinging motion.
  • the first nozzle 2, the second nozzle 3, and the second nozzle 3 are used to form the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11.
  • An airflow whose intensity varies temporally and/or spatially can be applied to the surroundings of the.
  • the first strand 101, the second strand 102, the third strand 103, and the fourth strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 The deposits generated around the strands 104 or the first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 of the discharge surface 11 are blown off by an air current whose strength varies, and these deposits Can be sufficiently removed in a short time. Further, in the first modified example, the first nozzle 2, the second nozzle 3, the second nozzle 3, the second nozzle 14, the third nozzle 15, and the fourth nozzle 15 are used by the two nozzles of the first nozzle 2 and the second nozzle 3. By simultaneously applying air currents to the periphery of 16 from different directions, it is possible to reliably remove the deposits.
  • the operation of the first nozzle 2 and the second nozzle 3 in the first modified example is the same as that of the single nozzle 1 as the operation of the first mode in FIG.
  • the swing motion may be performed for each of the hole 14, the third discharge hole 15, and the fourth discharge hole 16.
  • the discharge surface 11 is moved from the first position P1 which is the starting point of the swing motion corresponding to the first discharge hole 13 to the second position P2.
  • the first nozzle 2 and the second nozzle 3 move in the forward direction in a substantially horizontal direction beyond just above the first discharge hole 13 to a predetermined folding end point, and proceed substantially horizontally from the folding end point to the first position P1.
  • the operation of a predetermined amplitude that moves in the opposite direction and returns is defined as the first cycle, and the first cycle is repeated a predetermined number of times.
  • the first cycle is repeated a predetermined number of times.
  • the first nozzle 2 and the second nozzle 3 are translated to the second position P2 which is defined as follows, and as a swinging motion corresponding to the second discharge hole 14, the discharge surface 11 is moved from the second position P2 to the third position P3.
  • the amplitude operation is the second cycle, and the second cycle is repeated a predetermined number of times.
  • the swinging motion corresponding to the third discharge hole 15 is started from the second position P2 which was the starting point of the swinging motion corresponding to the second discharge hole 14.
  • the first nozzle 2 and the second nozzle 3 are translated to the third position P3 which is defined as follows, and as a swinging motion corresponding to the third discharge hole 15, the discharge surface 11 is moved from the third position P3 to the fourth position P4.
  • the amplitude operation is the third cycle, and the third cycle is repeated a predetermined number of times.
  • the rocking motion corresponding to the third ejection hole 15 the starting point of the rocking motion corresponding to the fourth ejection hole 16 from the third position P3, which was the starting point of the rocking motion corresponding to the third ejection hole 15.
  • the first nozzle 2 and the second nozzle 3 are translated to the fourth position P4 which becomes, and as the swinging motion corresponding to the fourth discharge hole 16, the discharge surface 11 is moved from the fourth position P4 to the fifth position P5.
  • the amplitude operation is the fourth cycle, and the fourth cycle is repeated a predetermined number of times.
  • the first nozzle 2 and the second nozzle 3 may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first ejection hole 13.
  • the first cycle, the second cycle, the third cycle, and the fourth cycle of a predetermined number of times may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
  • the operation of the first nozzle 2 and the second nozzle 3 in the first modified example is the same as that of the single nozzle 1 as the operation of the second mode in FIG.
  • two ejection holes may be set as one set and the swinging operation may be performed for each.
  • the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14 from the first position P1 which is the starting point of the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14.
  • the first nozzle 2 and the second nozzle 3 are arranged in a substantially horizontal direction toward the ejection surface 11 beyond just above the first ejection hole 13 and the second ejection hole 14 to a predetermined folding end point.
  • the first cycle is an operation of a predetermined amplitude in which the first cycle is repeated by moving in the direction, moving from the folding end point to the first position P1, and moving in the reverse direction in the substantially horizontal direction in the reverse direction.
  • the first nozzle 2 and the second nozzle 3 are translated to the third position P3 which is the starting point of the swinging motion corresponding to the third discharge hole 15 and the fourth discharge hole 16, and the third discharge hole 15 and the fourth discharge hole 16 are caused to move.
  • the third position P3 to the fifth position P5 in a substantially horizontal direction toward the ejection surface 11 beyond just above the third ejection hole 15 and the fourth ejection hole 16 to a predetermined folding end point.
  • the operation of a predetermined amplitude is moved to the forward direction, moves to the third position P3 from the folding end point in the reverse direction in the substantially horizontal direction, and returns to the second cycle.
  • the second cycle is repeated a predetermined number of times.
  • the first nozzle 2 and the second nozzle 3 may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first ejection hole 13 and the second ejection hole 14. ..
  • the predetermined number of times of the first cycle and the second cycle may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
  • the operations of the first nozzle 2 and the second nozzle 3 in the first modified example are the same as those of the single nozzle 1 as the operation of the third aspect in FIG.
  • the swing operation may be performed by collectively using the four discharge holes of the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16.
  • the rocking motion corresponding to the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 is the first ejection hole 13, the second ejection hole 14, and the third ejection hole.
  • the first nozzle 2 and the second nozzle 3 move forward in a substantially horizontal direction from the first position P1 to the fifth position P5, which is the starting point of the swinging motion corresponding to the discharge holes 15 and the fourth discharge holes 16, to proceed in the forward direction.
  • the operation of a predetermined amplitude that moves in the reverse direction from the fifth position P5, which is the turn-back end point, to the first position P1 and returns substantially horizontally is defined as one cycle, and this cycle is repeated a predetermined number of times.
  • FIG. 9 is a perspective view showing an adhering matter removing device according to a second modified example.
  • the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction.
  • the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction.
  • the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 have predetermined lines. Discharged at a speed.
  • the adhered matter removing device of the second modified example has five nozzles of a first nozzle 21, a second nozzle 22, a third nozzle 23, a fourth nozzle 24, and a fifth nozzle 25 which inject gas at a predetermined flow rate. doing.
  • the first nozzle 21 is located on the upper left side of the ejection surface 11 of the die 10 toward the first ejection hole 13, faces the ejection surface 11 with a predetermined interval, and forms a predetermined angle with the ejection surface 11 to form a gas. Is in the first position P1 for injecting.
  • the second nozzle 22 is located at substantially the same height as the first position P1, is located on the upper right side of the ejection surface 11 toward the first ejection hole 13, and is located on the upper left side of the second ejection hole 14 on the ejection surface 11.
  • a second position P2 which is opposed to the discharge surface 11 at a predetermined interval and injects gas at a predetermined angle with the discharge surface 11.
  • the third nozzle 23 is located at substantially the same height as the first position P1 and the second position P2, and is located on the upper right side toward the second ejection hole 14 of the ejection surface 11 and on the upper left side toward the third ejection hole 15.
  • the third position P3 is opposed to the ejection surface 11 at a predetermined interval and injects gas at a predetermined angle with the ejection surface 11.
  • the fourth nozzle 24 is at substantially the same height as the first position P1, the second position P2, and the third position P3, and is located on the upper right side of the third ejection hole 15 of the ejection surface 11 and with respect to the fourth ejection hole 16. It is located on the upper left side, faces the ejection surface 11 at a predetermined interval, and is in a fourth position P4 for ejecting gas at a predetermined angle with the ejection surface 11.
  • the fifth nozzle 25 is located at substantially the same height as the first position P1, the second position P2, the third position P3, and the fourth position P4, and is located on the upper right side of the ejection surface 11 toward the fourth ejection hole 16. It is located at a fifth position P5, which is opposed to the ejection surface 11 with a predetermined interval and injects gas at a predetermined angle with the ejection surface 11.
  • Each of the first nozzle 21, the second nozzle 22, the third nozzle 23, the fourth nozzle 24, and the fifth nozzle 25 is driven by a driving unit (not shown) around a predetermined axis, and is located at the first position P1.
  • Reference numeral 21 denotes an angular range including the directions of the adjacent first ejection holes 13
  • second nozzle 22 at the second position P2 has an angular range including the adjacent first ejection holes 13 and second ejection holes 14, and a third position.
  • the third nozzle 23 at P3 is in an angular range including the adjacent second ejection hole 14 and the third ejection hole 15, and the fourth nozzle 24 at the fourth position P4 is the adjacent third ejection hole 15 and the fourth ejection hole.
  • the fifth nozzle 25 at the fifth position P5 rotates so as to oscillate at a predetermined rotation speed in the angle range including the adjacent fourth ejection hole 16.
  • the first nozzle 21, the second nozzle 22, the third nozzle 23, the fourth nozzle 24, and the fifth nozzle 25 are used to form the first ejection hole 13 of the ejection surface 11 and the second nozzle
  • An air flow whose strength fluctuates temporally and/or spatially can be applied to the periphery of the ejection holes 14, the third ejection holes 15, and the fourth ejection holes 16.
  • the first strand 101, the second strand 102, the third strand 103, and the fourth strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 The deposits generated around the strands 104 or the first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 of the discharge surface 11 are blown off by an air current whose strength varies, and these deposits Can be sufficiently removed in a short time. Further, in the second modified example, the first nozzle 21 and the second nozzle 22 are discharged to the first discharge hole 13, the second nozzle 22 and the third nozzle 23 are discharged to the second discharge hole 14, and the third discharge is performed.
  • the first ejection hole 13 of the ejection surface 11 corresponds.
  • a sufficient flow rate of airflow is supplied from different directions around the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, and the deposit can be reliably removed.
  • FIG. 10 is a diagram showing an adhering matter removing device according to a third modified example.
  • FIG. 10A is a perspective view of the third modification
  • FIG. 10B is a cross-sectional view taken along the section line XX of FIG. 10A of the third modification.
  • a single discharge hole 12 having a predetermined diameter is formed at a position slightly below the center of the discharge surface 11 extending in the substantially vertical direction.
  • the molten resin strands 100 are discharged from the discharge holes 12 at a predetermined linear velocity.
  • the adhered matter removing device of the third modified example is located on the discharge surface 11 immediately above the discharge hole 12 and rotates along the discharge surface 11 around a predetermined axis 30 at a predetermined rotation speed to discharge gas.
  • a hood 32 provided with an opening 33 over the angular range of.
  • the gas sprayed from the nozzle 31 is guided so as to be sprayed from the opening 33 of the hood 32 in the hood 32 covering the nozzle 31.
  • an air flow having a strength that temporally and/or spatially varies depending on the rotation of the nozzle 31 and includes a predetermined discharge hole 12 of the discharge surface 11 in the circumferential direction of the rotation of the nozzle 31. It is possible to make the air flow, which is jetted within the angular range and whose strength varies temporally and/or spatially, around the ejection holes 12 of the ejection surface 11.
  • the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
  • the temporal and/or spatial variation in the strength of the air flow ejected from the opening 33 of the hood 32 due to the rotation of the nozzle 31 is secured. Therefore, in the third modification, the adhering matter can be reliably removed by the sufficient fluctuation of the air flow.
  • FIG. 11 is a perspective view showing an adhering matter removing device of a fourth modified example.
  • the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction.
  • the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction.
  • the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
  • the adhered matter removing device of the fourth modified example has a predetermined interval above the ejection surface 11 from the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 arranged in a row. Therefore, the pipe 35 is arranged so as to extend in a substantially horizontal direction along this one row. A gas having a predetermined pressure is supplied to the pipe 35, and a first injection hole 35A and a second injection hole 35B are formed at predetermined positions below the pipe 35 so as to inject the gas in a predetermined direction. There is.
  • a first injection hole 35A for injecting gas in the lower right direction toward the ejection surface 11 and a second injection hole 35B for injecting gas in the lower left direction toward the ejection surface 11 are formed. They are formed alternately.
  • the first ejection hole 13, the second ejection hole 14, the third ejection hole 14, the third ejection hole 15, and the third ejection hole 15 of the ejection surface 11 are provided above the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16.
  • a pair of first injection holes 35A and second injection holes 35B are formed so that the airflows hit the discharge holes 15 and the fourth discharge holes 16, respectively.
  • the pipe 35 is swung at a predetermined distance along a direction in which the pipe 35 extends at a predetermined cycle.
  • the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11 each have a pair of first ejections formed in the upper pipe 35.
  • Gas is ejected from the holes 35A and the second ejection holes 35B, and the strength is temporal and/or temporal around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 on the ejection surface. It is possible to impinge a spatially varying air flow.
  • the first strand 101, the second strand 102, the third strand 103 and the fourth strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15 and the fourth discharge hole 16 of the discharge surface 11 The deposits generated around the strands 104 or the first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 of the discharge surface 11 are blown off by an air flow whose strength changes, and these deposits are generated. Can be sufficiently removed in a short time.
  • driving is easy. Further, even when applied to the die 10 having a different number of discharge holes, it can be easily dealt with by changing the length of the pipe 35.
  • Example 1 Polyacetal resin (polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt mass flow rate (measured according to ISO 1133 at a temperature of 190° C.
  • the extrusion rate was 350 kg/h, and the extruded strands were conveyed to the cutter 60 through the water bath 50 as shown in Fig. 3.
  • the discharge surface 11 was in a line. Twenty-four circular discharge holes having a diameter of 4.0 mm arranged side by side were installed.
  • the one of the first modified example having two nozzles was used as the deposit removing device. Air is sent to a heater with a preset temperature of 350°C at a flow rate of 30 L/min using a compressor for heating, and then this is supplied to a nozzle with a cylindrical cross section with an inner diameter of 2 mm and a length of 50 mm, and is jetted from the tip of the nozzle to the vicinity of the discharge hole. Let The distance between the tip of the nozzle and the resin ejection surface was 5 mm. The temperature of the gas in the vicinity of the discharge hole is lower than the set temperature of 350° C. of the heater depending on the gas flow rate, the shape of the nozzle, the distance between the nozzle tip and the resin discharge surface, and the like.
  • Each of the ejection holes was rocked twice with the center distance of the adjacent ejection hole as the amplitude, and then translated to the rocking start position of the adjacent ejection hole. The extrusion was continued for 60 hours, but during that period, the operation for removing the deposit was unnecessary.
  • Table 1 shows the conditions of Example 1 and the results of removing the deposits. Table 1 also shows the following Examples 2 to 4 and Comparative Example 1.
  • Example 2 The same operation as in Example 1 was performed, except that the swinging of the adhered matter removing device was performed not for the respective discharge holes but for the entire discharge holes by continuously swinging the discharge holes at the intervals of the both ends. went. It was necessary to perform the deposit removal operation during extrusion once every 30 hours.
  • Example 3 The same operation as in Example 1 was performed except that the air sent to the nozzle of the deposit removing device was not heated. It was necessary to perform the deposit removal operation during extrusion once every 8 hours.
  • Example 4 The same operation as in Example 1 was performed, except that the air sent to the nozzle of the adhered matter removing device was not heated and the rocking with the interval between the discharge holes at both ends as the amplitude was continued. It was necessary to perform the deposit removal operation during extrusion once every 5 hours.
  • Example 1 Extrusion similar to that of Example 1 was carried out without using the deposit removing device. The deposit removal operation during extrusion had to be performed once every 20 minutes.
  • Example 5 100 parts by weight of polybutylene terephthalate resin (intrinsic viscosity (measured in o-chlorophenol at a temperature of 35° C.): 0.69 dL/g) and 45 parts by weight of glass fiber having a fiber diameter of 13 ⁇ m were combined with a twin-screw extruder ( It was put into TEX65 manufactured by Japan Steel Works and extruded at a barrel setting temperature: 250° C., a die setting temperature: 270° C., a screw rotation speed: 280 rpm, and an extrusion rate: 350 kg/h. Further, the extruded strands were conveyed to the cutter 60 via the water bath 50 as shown in FIG. On the discharge surface 11, 21 circular discharge holes having a diameter of 4.0 mm arranged in a line were installed.
  • the one of the first modified example having two nozzles was used as the deposit removing device. Air is sent to a heater with a preset temperature of 350°C at a flow rate of 30 L/min using a compressor for heating, and then this is supplied to a nozzle with a cylindrical cross section with an inner diameter of 2 mm and a length of 50 mm, and is jetted from the tip of the nozzle to the vicinity of the discharge hole. Let The distance between the tip of the nozzle and the resin ejection surface was 5 mm. The temperature of the gas in the vicinity of the discharge hole is lower than the set temperature of 350° C. of the heater depending on the gas flow rate, the shape of the nozzle, the distance between the nozzle tip and the resin discharge surface, and the like.
  • Each of the ejection holes was rocked twice with the center distance of the adjacent ejection hole as the amplitude, and then translated to the rocking start position of the adjacent ejection hole. The extrusion was continued for 60 hours, but during that period, the operation for removing the deposit was unnecessary.
  • Table 2 shows the conditions of Example 5 and the results of removing deposits. Table 2 also shows the following Examples 6 to 8 and Comparative Example 2.
  • Example 6 The same operation as in Example 5 was performed except that the swinging of the adhered matter removing device was performed not for the respective discharge holes but for the entire discharge holes by continuously swinging the discharge holes at the intervals of the both ends. went. It was necessary to carry out the operation for removing eye blemishes during extrusion once every 25 hours.
  • Example 7 The same operation as in Example 5 was performed except that the air sent to the nozzle of the deposit removing device was not heated. It was necessary to perform the deposit removal operation during extrusion once every 7 hours.
  • Example 8 The same operation as in Example 5 was performed, except that the air sent to the nozzle of the adhered matter removing device was not heated and the rocking with the interval between the discharge holes at both ends as the amplitude was continued. The deposit removal operation during extrusion had to be performed once every 4.5 hours.
  • Example 2 Extrusion similar to that of Example 5 was carried out without using the deposit removing device. It was necessary to carry out the operation for removing the eye tarpaulin during the extrusion once every 20 minutes.

Abstract

This device for removing deposits includes an injecting means for injecting a gas so that a gas flow having strength varying temporally and/or spatially around a discharge hole 12 so as to remove deposits. The injecting means includes a nozzle 1 for injecting the gas, and a driving means capable of controlling the position and direction of the nozzle 1. The driving means drives the nozzle 1 so that the nozzle performs a predetermined operation with respect to the position and/or direction such that the gas flow having strength varying temporally and/or spatially around a discharge hole 12, and thereby sufficiently removing deposits in a short period of time, the deposits being created around a strand 100 of a molten resin discharged from the die 10 and/or the discharge hole 12 of the die 10.

Description

付着物除去装置及び方法Adhesion removal device and method
 本発明は、押出機を用いて樹脂組成物をストランド状に押し出す際に、ストランド又は押出機用ダイの吐出孔の周囲に付着する付着物を除去するための除去装置及び方法に関する。 The present invention relates to a removing device and method for removing deposits adhering around the strands or the discharge holes of an extruder die when the resin composition is extruded into strands using an extruder.
 押出機を用いて樹脂組成物をストランド状に押し出す際、樹脂組成物によっては、その一部の成分が押出機用ダイの吐出孔の周囲に付着することがある。このような付着物は、メヤニと呼ばれることがあり種々の悪影響を及ぼす。例えば、吐出孔の周囲にメヤニが付着した状態で樹脂組成物の押し出しを続けると、メヤニが成長してストランドに絡まりつくことがある。そのようなメヤニを放置すると製品に混入することがあり、製品へのメヤニの混入により品質低下が懸念される。あるいは、成長したメヤニが押出機用ダイから離脱する際にストランドが切断されることがある。これは1時間当たり数回高頻度で発生するため、常に監視し、必要に応じてメヤニの除去が必要となるが、除去を行う吐出孔のストランドを切断し実施する必要があり、除去操作間の吐出分はロスとなる。 When extruding the resin composition into a strand using an extruder, some components of the resin composition may adhere to the periphery of the discharge holes of the extruder die depending on the resin composition. Such deposits are sometimes referred to as “meyani” and have various adverse effects. For example, if the resin composition is continuously extruded in a state in which the resin is attached to the periphery of the discharge hole, the resin may grow and become entangled with the strands. If such an eyelid is left as it is, it may be mixed in the product, and there is a concern that the quality may be deteriorated due to the mixture of the eyelid in the product. Alternatively, the strands may be cut as the grown eyelids leave the extruder die. This occurs several times per hour at a high frequency, so it is necessary to constantly monitor and remove the eyebrow if necessary, but it is necessary to cut the strands of the discharge holes to be removed and carry out the operation. Will be lost.
 そのため、押出機用ダイから吐出する溶融樹脂のストランド又は吐出孔の周囲に生じるメヤニを除去するため、従来、種々の検討がなされている(例えば、特許文献1、2)。特許文献1、2には、樹脂が押し出される吐出孔の付近に気体を吹き付けてメヤニを吹き飛ばすための機構を有する押出機用ダイが開示されている。 Therefore, in order to remove the melted resin strands discharged from the extruder die or the mesiness around the discharge holes, various studies have been conventionally performed (for example, Patent Documents 1 and 2). Patent Documents 1 and 2 disclose an extruder die having a mechanism for blowing gas near a discharge hole through which a resin is extruded to blow away the main body.
特開2012-232432号公報JP 2012-232432A 特開2017-47638号公報JP, 2017-47638, A
 特許文献1、2に開示されている押出機用ダイは、メヤニに対して単に気体を吹き付ける構成であり、メヤニが強固に付着していると十分に除去できないことがある。そして、そのようなメヤニを十分に除去するには長時間にわたり気体の噴射を継続したり、噴射する気体の圧力を高めたりする必要がある。これらは、ストランドの切断の原因となることがある。また、吹き付ける気体を加熱し、熱風の状態で付着物に吹き付けることが考えられるが、それのみでは十分に除去することができない。 The extruder dies disclosed in Patent Documents 1 and 2 have a configuration in which gas is simply blown onto the eyebrows, and may not be sufficiently removed if the eyebrows are firmly attached. Then, in order to sufficiently remove such a body, it is necessary to continue jetting the gas for a long time or increase the pressure of the jetted gas. These can cause strand breaks. Further, although it is conceivable that the gas to be sprayed is heated and sprayed on the adhering material in the state of hot air, it cannot be sufficiently removed by itself.
 本発明は、上記従来の問題点に鑑みなされたものである。そして、その目的は、押出機用ダイから吐出した溶融樹脂のストランド又はダイの樹脂吐出孔の周囲に生じた付着物を短時間で十分に除去し得る、付着物除去装置及び方法を提供することにある。 The present invention has been made in view of the above conventional problems. And the object is to provide a deposit removing device and method capable of sufficiently removing a deposit of a molten resin discharged from an extruder die or a periphery of a resin discharge hole of a die in a short time. It is in.
 上述の課題を解決するために、本願に係る付着物除去装置は、ダイの吐出面に形成された吐出孔から吐出された溶融した樹脂のストランド及び/又は吐出孔の周囲に生じた付着物を除去するためのものであって、付着物が除去されるように吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように気体を噴射する噴射手段を含んでいる。 In order to solve the above-mentioned problems, the deposit removing device according to the present application removes the deposit of molten resin discharged from the discharge hole formed on the discharge surface of the die and/or the deposit generated around the discharge hole. It is for removing, and includes a jetting means for jetting gas so that an air flow whose strength fluctuates temporally and/or spatially hits the periphery of the discharge hole so as to remove the deposit.
 噴射手段は、気体を噴射するノズルと、ノズルの位置及び/又は方向を制御することができる駆動手段とを含み、駆動手段は、吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、ノズルがその位置及び/又は方向について所定の動作をするように駆動してもよい。 The ejection unit includes a nozzle that ejects gas, and a driving unit that can control the position and/or direction of the nozzle, and the driving unit has a temporal and/or spatially varying intensity around the ejection hole. The nozzle may be driven to perform a predetermined operation with respect to its position and/or direction so as to be hit by the air flow.
 駆動手段は、ノズルの位置について、ノズルが吐出面との間に所定の間隔を有して動作するように制御してもよい。駆動手段は、ノズルの位置について、ノズルが吐出面からの距離も変動して動作するように制御してもよい。駆動手段は、ノズルの方向について、吐出面に対して所定の角度を有するように制御してもよい。 The driving means may control the position of the nozzle so that the nozzle operates with a predetermined distance from the ejection surface. The driving unit may control the position of the nozzle so that the nozzle operates while varying the distance from the ejection surface. The driving unit may control the nozzle direction so as to have a predetermined angle with respect to the ejection surface.
 所定の動作は、所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、ノズルを位置及び/又は方向について揺動させる揺動動作を含んでもよい。 The predetermined operation may include a rocking operation in which the nozzle is rocked in the position and/or the direction so that the air flow whose strength fluctuates temporally and/or spatially hits the circumference of the predetermined discharge hole.
 噴射手段は、一つの吐出孔の周囲に異なる方向から同時に気流を当てることができるような二本以上のノズルを含んでもよい。二本以上のノズルを支持する支持台をさらに含み、駆動手段は支持台を介して二本以上のノズルを駆動してもよい。支持台は、二本以上のノズルの間の距離及び二本以上のノズルの方向を調整することができてもよい。 The ejection means may include two or more nozzles that can simultaneously apply airflow around one discharge hole from different directions. The driving unit may further include a support base that supports the two or more nozzles, and the driving unit may drive the two or more nozzles via the support base. The support may be capable of adjusting the distance between the two or more nozzles and the orientation of the two or more nozzles.
 吐出面には、水平方向に複数の吐出孔が一列に形成され、駆動手段は、ノズルの位置について、一列の吐出孔に沿って所定の動作をするように制御してもよい。所定の動作は、吐出孔について所定の吐出孔に対応する位置から他の吐出孔に対応する位置にノズルを並進させる並進動作を含んでもよい。 A plurality of discharge holes may be formed in a row in the horizontal direction on the discharge surface, and the driving means may control the position of the nozzle so as to perform a predetermined operation along the discharge holes in one row. The predetermined operation may include a translational operation of translating the nozzle from a position corresponding to the predetermined ejection hole in the ejection hole to a position corresponding to another ejection hole.
 噴射手段は、所定の軸の周りに回転可能であり、気体を噴射するノズルを含んでもよい。ノズルは、所定の軸について、隣接する吐出孔の方向を含む所定の角度範囲にわたって回転可能であってもよい。 The injection means is rotatable about a predetermined axis and may include a nozzle for injecting gas. The nozzle may be rotatable about a predetermined axis over a predetermined angular range that includes the direction of adjacent ejection holes.
 ノズルは、吐出面に沿って所定の軸の周りに回転可能であり、吐出面上でノズルが回転可能な範囲を覆い、ノズルが回転可能な周方向に、隣接する吐出孔を含む所定の角度範囲にのみ開口してノズルから噴射された気体を当該開口した範囲に案内するフードをさらに含んでもよい。 The nozzle is rotatable around a predetermined axis along the discharge surface, covers a rotatable range of the nozzle on the discharge surface, and rotates the nozzle at a predetermined angle including adjacent discharge holes in the circumferential direction. It may further include a hood that is opened only in the range and guides the gas injected from the nozzle to the opened range.
 噴射手段は、吐出面に沿って延び、気体を噴射する噴射孔が形成されたパイプを含み、パイプは吐出面に沿って移動可能であってもよい。パイプは、一方向に延び、パイプは当該一方向に沿って移動可能であってもよい。パイプは、噴射孔から噴射された気体により所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように揺動されてもよい。 The ejection means may include a pipe extending along the ejection surface and having an ejection hole for ejecting gas, and the pipe may be movable along the ejection surface. The pipe may extend in one direction, and the pipe may be movable along the one direction. The pipe may be swung so that the gas jetted from the jet holes impinges on the periphery of a predetermined discharge hole an air flow whose intensity varies temporally and/or spatially.
 噴射手段は、所定の流量の気体を噴射してもよい。噴射手段に気体を供給する気体供給手段をさらに含んでもよい。噴射手段に供給する気体の圧力を調整する圧力調整手段をさらに含んでもよい。噴射手段に供給する気体を加熱する気体加熱手段をさらに含んでもよい。 The injecting means may inject a predetermined amount of gas. It may further include gas supply means for supplying gas to the injection means. It may further include pressure adjusting means for adjusting the pressure of the gas supplied to the injection means. It may further include gas heating means for heating the gas supplied to the injection means.
 本願に係る付着物除去方法は、ダイの吐出面に形成された吐出孔から吐出された溶融した樹脂のストランド及び/又は吐出孔の周囲に生じた付着物を除去するためのものであって、付着物が除去されるように吐出孔の周囲に時間的/及び空間的に強度が変動する気流が当たるように気体を噴射する噴射ステップを含んでもよい。 The deposit removing method according to the present application is for removing a strand of molten resin discharged from a discharge hole formed on a discharge surface of a die and/or a deposit generated around the discharge hole, An injection step of injecting a gas may be included so that an airflow having a temporally and/or spatially varying intensity hits the periphery of the discharge hole so that the deposit is removed.
 噴射ステップは、気体を噴射するノズルの位置及び/又は方向を制御し、吐出孔について所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、ノズルがその位置及び/又は方向について所定の動作をするように駆動する駆動ステップを含んでもよい。 The injecting step controls the position and/or direction of the nozzle that injects the gas, so that the nozzle is controlled so that an air flow having a temporally and/or spatially varying intensity hits a predetermined ejection hole around the ejection hole. It may include a driving step for driving to perform a predetermined operation with respect to position and/or direction.
 噴射ステップは、吐出面との間に所定の間隔を有するようにノズルを駆動してもよい。駆動ステップは、吐出面との間の距離が変動するようにノズルを駆動してもよい。駆動ステップは、吐出面に対して所定の角度を有するようにノズルを駆動してもよい。 In the jetting step, the nozzle may be driven so as to have a predetermined distance from the discharge surface. The driving step may drive the nozzle so that the distance to the ejection surface varies. The driving step may drive the nozzle so as to have a predetermined angle with respect to the ejection surface.
 駆動ステップは、所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、ノズルを位置及び/又は方向について揺動させる揺動ステップを含んでもよい。 The driving step may include a rocking step of rocking the nozzle in position and/or direction so that an air flow whose strength fluctuates temporally and/or spatially hits a predetermined discharge hole.
 吐出面には、水平方向に複数の吐出孔が一列に形成され、駆動ステップは、ノズルを一列の吐出孔に沿って駆動してもよい。駆動ステップは、所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、ノズルを位置及び/又は方向について揺動させる揺動ステップと、所定の吐出孔に対応する位置から他の吐出孔に対応する位置にノズルを並進させる並進ステップとを交互に繰り返してもよい。 A plurality of ejection holes may be formed in a row in the horizontal direction on the ejection surface, and the driving step may drive the nozzles along the ejection holes in one row. The driving step includes a swinging step of swinging the nozzle in a position and/or a direction so that an airflow whose intensity fluctuates temporally and/or spatially hits the predetermined discharge hole, and a predetermined discharge hole. The translation step of translating the nozzle from the corresponding position to the position corresponding to another ejection hole may be alternately repeated.
 噴射ステップは、所定の軸の周りに隣接する吐出孔の方向を含む所定の角度範囲にわたって回転可能である気体を噴射するノズルを回転させるように駆動する駆動ステップを含んでもよい。 The injecting step may include a driving step for driving to rotate a nozzle that injects a gas that is rotatable around a predetermined axis over a predetermined angle range including a direction of an adjacent ejection hole.
 噴射ステップは、吐出面に沿って所定の軸の周りに回転可能であって、吐出面上で回転可能な周方向に隣接する吐出孔を含む所定の角度範囲にのみ開口したフードによって覆われた気体を噴射するノズルを回転させるように駆動する駆動ステップを含んでもよい。 The injection step is covered by a hood that is rotatable around a predetermined axis along the discharge surface and that is open only within a predetermined angle range that includes circumferentially adjacent discharge holes that are rotatable on the discharge surface. A driving step of driving the nozzle for injecting the gas to rotate the nozzle may be included.
 噴射ステップは、吐出面に沿って延び吐出面に沿って移動可能である気体を噴射する噴射孔が形成されたパイプを移動させるように駆動する駆動ステップを含んでもよい。駆動ステップは、噴射孔から噴射された気体により所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるようにパイプを揺動させる揺動ステップを含んでもよい。 The injecting step may include a driving step of driving the pipe, which extends along the ejection surface and has an ejection hole for ejecting a gas that is movable along the ejection surface, to move. The driving step may include an oscillating step of oscillating the pipe so that the gas jetted from the jet holes impinges an air flow whose intensity varies temporally and/or spatially around a predetermined discharge hole.
 噴射ステップは、所定の流量の気体を噴射してもよい。噴射ステップは、噴射する気体を供給する気体供給ステップをさらに含んでもよい。噴射ステップは、噴射する気体の圧力を調整する圧力調整ステップをさらに含んでもよい。噴射ステップは、噴射する気体を加熱する気体加熱ステップをさらに含んでもよい。 The injection step may inject a predetermined amount of gas. The injecting step may further include a gas supplying step of supplying a gas to be injected. The injecting step may further include a pressure adjusting step of adjusting the pressure of the gas to be injected. The injection step may further include a gas heating step of heating the gas to be injected.
 本発明によれば、押出機用ダイから吐出した溶融樹脂のストランド又はダイの樹脂吐出孔の周囲に生じた付着物を短時間で十分に除去することができる。 According to the present invention, it is possible to sufficiently remove the strand of molten resin discharged from the extruder die or the deposits around the resin discharge hole of the die in a short time.
単一の吐出孔を有するダイに適用した付着物除去装置を示す図である。It is a figure which shows the deposit removal device applied to the die which has a single discharge hole. 単一の吐出孔を有するダイに適用した付着物除去装置の揺動動作を説明する図である。It is a figure explaining the rocking|fluctuation operation|movement of the deposit removal apparatus applied to the die which has a single discharge hole. 付着物除去装置を適用した一連の製造工程を説明する概念図である。It is a conceptual diagram explaining a series of manufacturing processes to which an adhered matter removing device is applied. 複数の吐出孔を有するダイに適用した付着物除去装置を示す図である。It is a figure which shows the deposit removal device applied to the die which has a some discharge hole. 複数の吐出孔を有するダイに適用した付着物除去装置の動作を説明する図である。It is a figure explaining operation|movement of the deposit removal apparatus applied to the die which has a some discharge hole. 単一の吐出孔を有するダイに適用した第1変形例の付着物除去装置を示す図である。It is a figure which shows the deposit removal apparatus of the 1st modification applied to the die which has a single discharge hole. 第1変形例の二本のノズルの支持台を示す斜視図である。It is a perspective view which shows the support stand of the two nozzles of a 1st modification. 複数の吐出孔を有するダイに適用した第1変形例の付着物除去装置を示す図である。It is a figure which shows the deposit removal apparatus of the 1st modification applied to the die which has a some discharge hole. 第2変形例の付着物除去装置を示す斜視図である。It is a perspective view which shows the deposit removal device of the 2nd modification. 第3変形例の付着物除去装置を示す図である。It is a figure which shows the deposit removal device of the 3rd modification. 第4変形例の付着物除去装置を示す斜視図である。It is a perspective view which shows the deposit removal apparatus of the 4th modification.
 以下、付着物除去装置及び方法の実施の形態について図面を参照して詳細に説明する。本実施の形態の付着物除去装置及び方法は、ダイの吐出面に形成された吐出孔から吐出された溶融した樹脂のストランド及び/又は吐出孔の周囲に生じた付着物を除去するものである。溶融した樹脂のストランドを吐出するダイには、吐出孔が単一のものと複数のものがある。本実施の形態の付着物除去装置及び方法は、吐出孔が単一のダイにも吐出孔が複数のダイにも適用することができるが、以下の説明では、便宜上、単一の吐出孔を有するダイと複数の吐出孔を有するダイとに分けて説明する。 Hereinafter, embodiments of the deposit removing device and method will be described in detail with reference to the drawings. The deposit removing apparatus and method according to the present embodiment removes a strand of molten resin discharged from a discharge hole formed on a discharge surface of a die and/or a deposit generated around the discharge hole. .. There are a single die and a plurality of die that eject a molten resin strand. The deposit removing apparatus and method according to the present embodiment can be applied to a die having a single discharge hole or a plurality of discharge holes. However, in the following description, a single discharge hole will be used for convenience. Description will be given separately for a die having the same and a die having a plurality of ejection holes.
 図1は、単一の吐出孔を有するダイに適用した本実施の形態の付着物除去装置を示す図である。図1(a)は付着物除去装置の斜視図、図1(b)は付着物除去装置の正面図、図1(c)は付着物除去装置の左側面図である。ダイ10において、略鉛直方向に延びた吐出面11の略中央に所定径を有する単一の吐出孔12が形成されている。吐出孔12からは、溶融した樹脂のストランド100が所定の線速度で吐出されている。 FIG. 1 is a diagram showing an adhered substance removing device of the present embodiment applied to a die having a single discharge hole. FIG. 1A is a perspective view of the deposit removing device, FIG. 1B is a front view of the deposit removing device, and FIG. 1C is a left side view of the deposit removing device. In the die 10, a single discharge hole 12 having a predetermined diameter is formed at a substantially center of a discharge surface 11 extending in a substantially vertical direction. The molten resin strands 100 are discharged from the discharge holes 12 at a predetermined linear velocity.
 本実施の形態の付着物除去装置は、所定の流量で気体を噴射する一本のノズル1を有している。ノズル1は、図示しない駆動手段によって駆動され、ダイ10の吐出面11に対して所定の間隔を有し、吐出面11に形成された吐出孔12に対してその位置及び/又は方向について所定の動作をすることにより、吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるように制御されている。本明細書においては、吐出面11の吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにノズル1を空間及び/又は方向について動作させることについて、ノズル1を揺動させるということにする。ノズル1の駆動手段は、適切なアクチュエータによって構成してもよく、ロボットアームによって構成してもよい。 The deposit removing device according to the present embodiment has one nozzle 1 for injecting gas at a predetermined flow rate. The nozzle 1 is driven by a driving unit (not shown), has a predetermined space from the ejection surface 11 of the die 10, and has a predetermined position and/or direction with respect to the ejection hole 12 formed in the ejection surface 11. By performing the operation, the air flow whose strength fluctuates temporally and/or spatially is controlled around the ejection hole 12. In the present specification, regarding the operation of the nozzle 1 in space and/or direction so that an air flow whose strength fluctuates temporally and/or spatially hits the ejection hole 12 of the ejection surface 11, I will rock it. The driving means of the nozzle 1 may be constituted by a suitable actuator or a robot arm.
 本実施の形態において、ノズル1は、ダイ10の吐出面11の吐出孔12に向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第1位置P1と、第1位置P1と略同じ高さにあり、吐出面11の吐出孔12に向かって右上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第2位置P2との間で揺動する。このような揺動の動作によって、吐出面11の吐出孔12の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In the present embodiment, the nozzle 1 is located on the upper left side of the ejection surface 11 of the die 10 toward the ejection hole 12, faces the ejection surface 11 at a predetermined interval, and forms a predetermined angle with the ejection surface 11. The first position P1 for injecting the gas downward and the first position P1 are at substantially the same height as the first position P1 and are located on the upper right side toward the ejection holes 12 of the ejection surface 11 at a predetermined interval. It has and opposes and oscillates between the discharge surface 11 and the second position P2 that makes a predetermined angle and injects gas downward. By such an oscillating operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially around the ejection holes 12 of the ejection surface 11.
 本実施の形態の付着物除去装置においては、所定の流量で気体を噴射するノズル1が第1位置P1と第2位置P2との間を揺動することにより、吐出面11の吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の吐出孔12から吐出されたストランド100又は吐出面11の吐出孔12の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。 In the deposit removing device of the present embodiment, the nozzle 1 that injects gas at a predetermined flow rate oscillates between the first position P1 and the second position P2, so that the discharge hole 12 of the discharge surface 11 The surroundings may be exposed to an air flow whose intensity varies temporally and/or spatially. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
 本実施の形態の付着物除去装置において、吐出面11とノズル1との間隔は2~30mmであってもよい。本明細書において、吐出面11とノズル1との間隔とは、図1(c)に示したノズル1の先端と吐出面11において気体が実際に当たる位置との距離aと、吐出面11を真横から見た際のノズル1の先端と吐出面11との距離bとの内で、ノズル1の先端と吐出面11において気体が実際に当たる位置との距離aをいうものとする。 In the deposit removing device of the present embodiment, the distance between the ejection surface 11 and the nozzle 1 may be 2 to 30 mm. In the present specification, the distance between the ejection surface 11 and the nozzle 1 is the distance a between the tip of the nozzle 1 shown in FIG. Of the distance b between the tip of the nozzle 1 and the ejection surface 11 when viewed from above, the distance a between the tip of the nozzle 1 and the position where the gas actually hits the ejection surface 11 is referred to.
 本実施の形態の付着物除去装置は、ノズル1に所定の種類の気体を供給する気体供給手段を有してもよい。気体供給手段は、圧縮気体を供給するコンプレッサであってもよい。気体は、空気であってもよく、非酸化性ガスであってもよい。また、本実施の形態の付着物除去装置は、ノズル1から所定の圧力の気体を噴射するように圧力を調整する圧力調整手段を有してもよい。圧力調整手段は、気体供給手段からノズル1に気体を供給する給気管に設けられた減圧弁であってもよい。 The deposit removing device of the present embodiment may have a gas supply means for supplying a predetermined type of gas to the nozzle 1. The gas supply means may be a compressor that supplies compressed gas. The gas may be air or a non-oxidizing gas. Further, the deposit removing device of the present embodiment may have a pressure adjusting means for adjusting the pressure so as to inject a gas having a predetermined pressure from the nozzle 1. The pressure adjusting means may be a pressure reducing valve provided in an air supply pipe for supplying gas from the gas supply means to the nozzle 1.
 さらに、本実施の形態の付着物除去装置は、ノズル1から噴射する気体を所定の温度に加熱するための気体加熱手段を有してもよい。気体加熱手段は、給気管又はノズル1に設けられたヒーターであってもよい。ノズル1へ供給する加熱した気体の温度は、20~800℃の範囲にあってもよく、好ましくは20℃~600℃の範囲にあってもよい。ノズル1から噴射されて吐出孔12の周囲に当たる気流の温度は、ノズル1に供給された加熱した気体の温度から低下している。吐出孔12の周囲に当たる気流の温度は、ヒーター設定温度、気体流量、ノズル1の内径・長さ、ノズル1先端と吐出面11の間隔などの影響因子があり、適宜これらを調整して、対象物に適した条件を選択すればよい。 Further, the deposit removing device of the present embodiment may have a gas heating means for heating the gas injected from the nozzle 1 to a predetermined temperature. The gas heating means may be a heater provided in the air supply pipe or the nozzle 1. The temperature of the heated gas supplied to the nozzle 1 may be in the range of 20 to 800°C, preferably 20 to 600°C. The temperature of the air flow ejected from the nozzle 1 and hitting the periphery of the discharge hole 12 is lower than the temperature of the heated gas supplied to the nozzle 1. The temperature of the air flow that hits the periphery of the discharge hole 12 has influential factors such as the heater set temperature, the gas flow rate, the inner diameter/length of the nozzle 1, the distance between the tip of the nozzle 1 and the discharge surface 11, etc. It suffices to select the conditions suitable for the product.
 図2は、単一の吐出孔を有するダイに適用した付着物除去装置の揺動動作を説明する図である。図2(a)に示す第1態様の揺動動作においては、ノズル1が吐出面11の吐出孔12に向かって左上にある第1位置P1からダイ10の吐出面11の吐出孔12に向かって右上にある第2位置P2まで略水平方向に順方向に移動して進み、第2位置P2から第1位置P1まで略水平方向に逆方向に移動して戻る動作を1サイクルとする。そして、このサイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の吐出孔12の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 FIG. 2 is a diagram explaining the swinging operation of the adhered substance removing device applied to a die having a single discharge hole. In the swinging operation of the first mode shown in FIG. 2A, the nozzle 1 moves from the first position P1 at the upper left toward the ejection hole 12 of the ejection surface 11 toward the ejection hole 12 of the ejection surface 11 of the die 10. One cycle is to move forward in the substantially horizontal direction to the second position P2 located on the upper right side and move forward in the substantially horizontal direction, and then move in the reverse direction from the second position P2 to the first position P1 in the substantially horizontal direction and return. Then, this cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the ejection hole 12 of the ejection surface 11.
 第1態様の揺動動作においては、所定の流量で気体を噴射するノズル1が第1位置P1と第2位置P2との間を揺動することにより、吐出面11の吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の吐出孔12から吐出されたストランド100又は吐出面11の吐出孔12の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。 In the swing operation of the first aspect, the nozzle 1 that injects gas at a predetermined flow rate swings between the first position P1 and the second position P2, so that the discharge surface 11 is surrounded by the discharge holes 12. The air flow whose intensity fluctuates temporally and/or spatially can be applied. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
 なお、本明細書ではノズル1の吐出面11に沿った所定の動作を例示するが、ノズル1は例示するような動作の順序には限定されず、逆の順序で動作してもよい。例えば、図2(a)に示した第1態様の揺動動作においては、第2位置P2から第1位置P1まで進んで第1位置P1から第2位置P2に戻る動作を1サイクルとしてもよい。以下でも同様である。 In this specification, the predetermined operation along the ejection surface 11 of the nozzle 1 is illustrated, but the nozzle 1 is not limited to the order of the illustrated operation, and may be operated in the reverse order. For example, in the swing motion of the first mode shown in FIG. 2A, the operation of advancing from the second position P2 to the first position P1 and returning from the first position P1 to the second position P2 may be one cycle. .. The same applies below.
 図2(b)に示す第2態様の揺動動作においては、ノズル1が吐出面11の吐出孔12に向かって直上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第0位置P0を始点とする。そして、ノズル1が始点の第0位置P0から吐出面11の吐出孔12に向かって右上にある第2位置P2まで略水平方向に順方向に移動して進み、次に第2位置P2から第0位置P0に略水平方向に逆方向に移動して戻る動作を第1サイクルとする。また、ノズル1が始点の第0位置P0から吐出面11の吐出孔12に向かって左上にある第1位置P1まで略水平方向に逆方向に移動して進み、次に第1位置P1から第0位置P0に略水平方向に順方向に移動して戻る動作を第2サイクルとする。そして、このような第1サイクルと第2サイクルを合わせた動作を1サイクルとし、このサイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の吐出孔12の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In the swinging operation of the second mode shown in FIG. 2B, the nozzle 1 is directly above the ejection hole 12 of the ejection surface 11 and faces the ejection surface 11 at a predetermined interval. The 0th position P0 which makes a predetermined angle with 11 and injects gas downward is made into the starting point. Then, the nozzle 1 moves in the forward direction in a substantially horizontal direction from the 0th position P0 at the starting point to the second position P2 in the upper right direction toward the discharge hole 12 of the discharge surface 11, and then proceeds from the second position P2 to the second position P2. The operation of moving to the 0 position P0 in a substantially horizontal direction in the opposite direction and returning is referred to as a first cycle. Further, the nozzle 1 moves in a reverse direction in a substantially horizontal direction from the 0th position P0 at the starting point to the first position P1 at the upper left toward the discharge hole 12 of the discharge surface 11, and then proceeds from the first position P1 to the first position P1. The operation of moving to the 0 position P0 in the substantially horizontal direction in the forward direction and returning to the 0 position P0 is referred to as a second cycle. Then, the operation in which the first cycle and the second cycle are combined is defined as one cycle, and this cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the ejection hole 12 of the ejection surface 11.
 第2態様の揺動動作の第1サイクル及び第2サイクルを第1態様の揺動動作の1サイクルと比較すると、第2態様の動作の第1サイクルと第2サイクルを合わせた振幅が第1態様の揺動動作の1サイクルの振幅に相当している。また、第2態様の揺動動作の第1サイクルと第2サイクルの期間の和が第1態様の揺動動作の1サイクルの期間に相当している。さらに、第2態様の揺動動作の第1サイクルと第2サイクルの回数の和は、対応する第1態様の動作の1サイクルの回数の2倍に相当している。 Comparing the first cycle and the second cycle of the rocking motion of the second mode with one cycle of the rocking motion of the first mode, the combined amplitude of the first cycle and the second cycle of the motion of the second mode is first. This corresponds to the amplitude of one cycle of the swinging motion of the embodiment. Further, the sum of the periods of the first cycle and the second cycle of the rocking motion of the second mode corresponds to the period of one cycle of the rocking motion of the first mode. Furthermore, the sum of the number of times of the first cycle and the second cycle of the swing motion of the second mode corresponds to twice the number of times of one cycle of the corresponding motion of the first mode.
 第2態様の揺動動作においても、所定の流量で気体を噴射するノズル1が第0位置P0を始点として第1位置P1又は第2位置P2との間を揺動することにより、吐出面11の吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の吐出孔12から吐出されたストランド100又は吐出面11の吐出孔12の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。 Also in the swinging operation of the second aspect, the nozzle 1 that injects gas at a predetermined flow rate swings between the first position P1 and the second position P2 starting from the 0th position P0, so that the discharge surface 11 It is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the discharge hole 12. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do.
 また、第2態様の揺動動作においては、第0位置P0と第2位置P2との間でノズル1を駆動する第1サイクル及び第0位置P0と第1位置P1との間でノズル1を駆動する第2サイクルを個別に制御することができる。したがって、吐出面11に向かって吐出孔12に右側と左側とから当たる気流の強さを個別に制御することができる。このため、吐出孔12の左右について発生する付着物の量が異なる場合にも、吐出孔12に右側と左側とから当たる気流の強さを個別に調整することによって対応することができる。 In the swing motion of the second aspect, the nozzle 1 is driven between the 0th position P0 and the first position P1 in the first cycle in which the nozzle 1 is driven between the 0th position P0 and the second position P2. The second cycle to be driven can be individually controlled. Therefore, it is possible to individually control the strength of the airflow that strikes the ejection holes 12 from the right side and the left side toward the ejection surface 11. Therefore, even when the amounts of the adhered substances generated on the left and right sides of the discharge hole 12 are different, it is possible to deal with the situation by individually adjusting the intensities of the air currents that hit the discharge hole 12 from the right side and the left side.
 本実施の形態の付着物除去装置においては、吐出孔12に対応する揺動動作は、吐出孔12の径の0.5~3倍の振幅で行われてもよい。また、単独の吐出孔12に対応する揺動動作の周期は、0.5~3秒であってもよい。吐出孔12に対して揺動する回数は、2~4回であってもよい。 In the deposit removing device according to the present embodiment, the swinging operation corresponding to the discharge hole 12 may be performed with an amplitude of 0.5 to 3 times the diameter of the discharge hole 12. Further, the cycle of the rocking operation corresponding to the single ejection hole 12 may be 0.5 to 3 seconds. The number of times of rocking with respect to the ejection hole 12 may be 2 to 4 times.
 なお、本実施の形態の付着物除去装置においては、ダイ10の吐出面11とノズル1との間隔は、一定の距離でなくてもよい。吐出面11とノズル1との距離は、駆動手段によるノズル1の所定の動作において変動するように制御されてもよい。 In addition, in the deposit removing device of the present embodiment, the distance between the ejection surface 11 of the die 10 and the nozzle 1 may not be a constant distance. The distance between the ejection surface 11 and the nozzle 1 may be controlled so as to change in a predetermined operation of the nozzle 1 by the driving unit.
 図3は、付着物除去装置を適用した一連の製造工程を説明する概念図である。本実施の形態の付着物除去装置は、押出機40に取り付けられたダイ10に適用され、ダイ10の吐出孔12から吐出された溶融した樹脂のストランド100及び/又は吐出孔12の周囲に生じた付着物を除去している。付着物が除去されたストランド100は、ウォーターバス50に投入されて冷却水51によって冷却される。その後、カッター60に搬送され所定の長さにカッティングされてペレット110となる。 FIG. 3 is a conceptual diagram illustrating a series of manufacturing processes to which an adhered matter removing device is applied. The deposit removing device according to the present embodiment is applied to the die 10 attached to the extruder 40, and is formed around the molten resin strand 100 discharged from the discharge hole 12 of the die 10 and/or around the discharge hole 12. Removed deposits. The strand 100 from which the deposits have been removed is put into the water bath 50 and cooled by the cooling water 51. After that, the pellets 110 are conveyed to the cutter 60 and cut into a predetermined length to form pellets 110.
 押出機40においては、ダイ10の吐出面11の上方に付着物除去装置が設置されている。押出機40は押出スクリューを有する押出機であれば特に限定はなく、単軸押出機、異方向二軸押出機、同方向二軸押出機等を挙げることができる。そして、押出機40においては、付着物除去装置による除去操作を実施するため、ダイ10の吐出孔12周辺の付着物の成長を抑制することができる。そのため、押し出しの際に吐出孔12周辺に発生する付着物が除去され、付着物が最終製品に混入することや、付着物に起因するストランド100の切断や付着物除去のためのメンテンナンス作業頻度を低減することができる。 In the extruder 40, a deposit removing device is installed above the discharge surface 11 of the die 10. The extruder 40 is not particularly limited as long as it has an extrusion screw, and examples thereof include a single-screw extruder, different-direction twin-screw extruder, and same-direction twin-screw extruder. Then, in the extruder 40, since the removal operation is performed by the deposit removing device, it is possible to suppress the growth of deposits around the discharge holes 12 of the die 10. Therefore, the deposits generated around the discharge holes 12 at the time of extrusion are removed, and the deposits are mixed in the final product, and the maintenance work frequency for cutting the strands 100 and removing the deposits due to the deposits is reduced. It can be reduced.
 本実施形態において、ストランド100を構成する樹脂組成物は、少なくとも樹脂及び添加剤を、押出機40に投入して、ダイ10から吐出させて製造している。本実施形態において使用される樹脂には特に制限はなく、汎用樹脂でも、エンジニアリング樹脂でもよい。これらの樹脂を複数混ぜ合わせてもよい。また、使用される添加剤においても制限はなく、各種安定剤、各種機能付与剤、各種物性強化剤等の使用が可能である。本実施形態の付着物除去装置は、特に付着物を発生しやすい樹脂組成物の製造に有効である。 In the present embodiment, the resin composition forming the strand 100 is manufactured by charging at least the resin and the additive into the extruder 40 and discharging the resin from the die 10. The resin used in this embodiment is not particularly limited, and may be a general-purpose resin or an engineering resin. A plurality of these resins may be mixed. Further, the additive used is not limited, and various stabilizers, various function-imparting agents, various physical property enhancers and the like can be used. The deposit removing device according to the present embodiment is particularly effective for producing a resin composition that is likely to generate deposits.
 樹脂組成物としては、例えば、少なくとも、ポリアセタール樹脂と、主鎖がポリエチレンであり、側鎖がアクリロニトリル-スチレン共重合体であるグラフト共重合体とを、押出機40に投入して、ダイ10から吐出させてポリアセタール樹脂組成物を得ることができる。このような樹脂組成物を得る際に押出機40により押し出しをすると、当該グラフト共重合体を由来とする付着物がダイ10の吐出孔12の周囲に発生しやすい傾向にある。本実施形態の付着物除去装置を用いると、付着物が低減され、最終製品への付着物の混入や、ストランド100の切断を抑制することができる。 As the resin composition, for example, at least a polyacetal resin and a graft copolymer having a main chain of polyethylene and a side chain of an acrylonitrile-styrene copolymer are charged into an extruder 40, and then a die 10 is used. A polyacetal resin composition can be obtained by discharging. When extruding with the extruder 40 when obtaining such a resin composition, an adhered matter derived from the graft copolymer tends to be generated around the discharge hole 12 of the die 10. By using the deposit removing device of the present embodiment, deposits are reduced, and it is possible to suppress inclusion of deposits in the final product and cutting of the strand 100.
 このように、本実施の形態においては、付着物除去装置によって、ダイ10の吐出孔12から吐出された樹脂のストランド100及び/又は吐出孔12の周囲に生じた付着物が短時間で十分に除去されている。したがって、付着物の発生によってストランド100が切断されることがなくなり、製造の効率を向上させることができる。また、ストランド100から付着物が十分に除去されているため、ストランド100をカッティングして製造したペレット110の品質を向上させることができる。 As described above, in the present embodiment, the adhering substance removing apparatus can sufficiently adhere the adhering substances generated around the resin strands 100 and/or the ejection holes 12 ejected from the ejection holes 12 of the die 10 in a short time. It has been removed. Therefore, the strand 100 will not be cut due to the generation of deposits, and the manufacturing efficiency can be improved. Further, since the deposits are sufficiently removed from the strand 100, the quality of the pellet 110 produced by cutting the strand 100 can be improved.
 図4は、複数の吐出孔を有するダイに適用した本実施の形態の付着物除去装置を示す図である。図4(a)は付着物除去装置の斜視図、図4(b)は付着物除去装置の正面図、図4(c)は付着物除去装置の左側面図である。ダイ10において、略鉛直方向に延びた吐出面11の鉛直方向の略中央に所定径を有する第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の4個の吐出孔が略水平方向に所定間隔をおいて一列に並んで形成されている。第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からは、それぞれ第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104が所定の線速度で吐出されている。 FIG. 4 is a diagram showing an adhered substance removing device of the present embodiment applied to a die having a plurality of discharge holes. FIG. 4A is a perspective view of the deposit removing device, FIG. 4B is a front view of the deposit removing device, and FIG. 4C is a left side view of the deposit removing device. In the die 10, the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction. Of the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction. From the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
 本実施の形態の付着物除去装置は、所定の流量で気体を噴射するノズル1を有している。ノズル1は、図示しない駆動手段によって駆動され、ダイ10の吐出面11に対して所定の間隔を有し、吐出面11に形成された第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対してその位置及び方向について所定の動作をすることにより、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるように駆動される。 The deposit removing device of the present embodiment has a nozzle 1 for injecting gas at a predetermined flow rate. The nozzle 1 is driven by a driving unit (not shown) and has a predetermined interval with respect to the ejection surface 11 of the die 10, and has a first ejection hole 13, a second ejection hole 14, and a third ejection hole formed in the ejection surface 11. By performing a predetermined operation with respect to the position and direction of the hole 15 and the fourth discharge hole 16, the first discharge hole 13, the second discharge hole 14, the third discharge hole 15 and the fourth discharge hole 16 are surrounded. It is driven so that it is hit by an air flow whose intensity varies temporally and/or spatially.
 本実施の形態において、ノズル1は、ダイ10の吐出面11の第1吐出孔13に向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第1位置P1と、第1位置P1と略同じ高さにあり、吐出面11の第1吐出孔13に向かって右上、第2吐出孔14に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第2位置P2と、第1位置P1及び第2位置P2と略同じ高さにあり、吐出面11の第2吐出孔14に向かって右上、第3吐出孔15に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第3位置P3と、第1位置P1、第2位置P2及び第3位置P3と略同じ高さにあり、吐出面11の第3吐出孔15に向かって右上、第4吐出孔16に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第4位置P4と、第1位置P1、第2位置P2、第3位置P3及び第4位置P4と略同じ高さにあり、吐出面11の第4吐出孔16に向かって右上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第5位置P5との間で一列の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に沿って所定の動作をなす。この動作は、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/空間的に変動する気流が当たるようにする揺動動作を含んでいる。 In the present embodiment, the nozzle 1 is located on the upper left side of the ejection surface 11 of the die 10 toward the first ejection hole 13, faces the ejection surface 11 at a predetermined interval, and forms a predetermined angle with the ejection surface 11. The first position P1 for injecting the gas downward and at substantially the same height as the first position P1 is located on the upper right side of the first discharge hole 13 of the discharge surface 11 and on the second discharge hole 14. On the other hand, a second position P2, which is on the upper left side and faces the ejection surface 11 with a predetermined interval, injects gas downward at a predetermined angle with the ejection surface 11, and a first position. It is located at substantially the same height as P1 and the second position P2, and is located on the upper right side of the second ejection hole 14 of the ejection surface 11 and on the upper left side of the third ejection hole 15 at a predetermined interval on the ejection surface 11. The third position P3, which has and faces the ejection surface 11 at a predetermined angle with respect to the ejection surface 11 and has the same height as the first position P1, the second position P2, and the third position P3. The upper surface of the discharge surface 11 faces the third discharge hole 15 and the upper surface of the discharge surface 11 faces the fourth discharge hole 16, and faces the discharge surface 11 with a predetermined space. At the same height as the fourth position P4 for injecting gas downward and at the first position P1, the second position P2, the third position P3, and the fourth position P4. The fifth position P5, which is on the upper right side of the fourth discharge hole 16 and faces the discharge surface 11 at a predetermined interval and injects gas downward at a predetermined angle with the discharge surface 11. A predetermined operation is performed along a line of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16. This operation is performed so that the airflow whose strength fluctuates temporally and/or spatially is applied to the periphery of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. It includes a swinging motion.
 本実施の形態の付着物除去装置においては、所定の流量で気体を噴射するノズル1が一列の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に沿って第1位置P1、第2位置P2、第3位置P3、第4位置P4及び第5位置P5の間で揺動する。例えば、第1位置P1、第2位置P2、第3位置P3、第4位置P4及び第5位置P5から選択された適切な折り返し端点について揺動してもよい。これによって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からそれぞれ吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばすことができる。したがって、これらの付着物を短時間で十分に除去することができる。 In the deposit removing device of the present embodiment, the nozzles 1 for injecting gas at a predetermined flow rate are arranged along a row of the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16. And swings between the first position P1, the second position P2, the third position P3, the fourth position P4, and the fifth position P5. For example, you may swing about the suitable folding|turning endpoint selected from the 1st position P1, the 2nd position P2, the 3rd position P3, the 4th position P4, and the 5th position P5. As a result, an air flow whose intensity fluctuates temporally and/or spatially is applied to the periphery of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. can do. Therefore, the first strand 101, the second strand 102, the third strand 103, and the third strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11, respectively. It is possible to blow away the adhered matter generated around the four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 with an air current whose strength varies. Therefore, these deposits can be sufficiently removed in a short time.
 なお、複数の吐出孔を有するダイ10として吐出面11に第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の四個の吐出孔が形成された例を示したが、本実施の形態の付着物除去装置が適用されるダイ10は四個の吐出孔を有するものに限られない。本実施の形態の付着物除去装置は、複数の吐出孔を有するダイ10として、吐出面11に二個以上の吐出孔が形成されたダイ10に適用することができる。 An example in which four ejection holes of a first ejection hole 13, a second ejection hole 14, a third ejection hole 15 and a fourth ejection hole 16 are formed on the ejection surface 11 as a die 10 having a plurality of ejection holes. Although shown, the die 10 to which the deposit removing device of the present embodiment is applied is not limited to the one having four ejection holes. The deposit removing device according to the present embodiment can be applied to the die 10 having two or more ejection holes on the ejection surface 11 as the die 10 having a plurality of ejection holes.
 図5は、複数の吐出孔を有するダイに適用した付着物除去装置の動作を説明する図である。図5においては、図2(a)に第1態様の揺動動作として示したように所定の吐出孔に対応する揺動動作の始点を吐出面11に向かって該当する吐出孔の左上として説明するものとするが、図2(b)に第2態様の揺動動作として示したように所定の吐出孔に対応する揺動動作の始点を吐出面11に向かって該当する吐出孔の直上としてもよい。 FIG. 5 is a diagram for explaining the operation of the deposit removing device applied to a die having a plurality of discharge holes. In FIG. 5, the starting point of the swinging motion corresponding to a predetermined discharge hole is shown as the upper left of the corresponding discharge hole toward the discharge surface 11 as shown as the swinging motion of the first mode in FIG. However, as shown in FIG. 2B as the swing motion of the second mode, the starting point of the swing motion corresponding to a predetermined discharge hole is set directly above the corresponding discharge hole toward the discharge surface 11. Good.
 図5(a)に示す第1態様の動作においては、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16のそれぞれについて揺動動作を行う。第1吐出孔13に対応する揺動動作として、第1吐出孔13に対応する揺動動作の始点となる第1位置P1から第2位置P2に向けて、吐出面11に向かって第1吐出孔13の直上を越えて所定の折り返し端点までノズル1が略水平方向に順方向に移動して進み、当該折り返し端点から第1位置P1まで略水平方向に逆方向に移動して戻る所定振幅の動作を第1サイクルとし、第1サイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第1吐出孔13の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In the operation of the first mode shown in FIG. 5A, the swing operation is performed for each of the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16. As the swing motion corresponding to the first discharge hole 13, the first discharge is performed toward the discharge surface 11 from the first position P1 which is the starting point of the swing motion corresponding to the first discharge hole 13 toward the second position P2. With a predetermined amplitude, the nozzle 1 moves forward in a substantially horizontal direction beyond just above the hole 13 to a predetermined turnaround end point and moves in a reverse direction in a substantially horizontal direction from the turnaround end point to the first position P1. The operation is the first cycle, and the first cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the first ejection hole 13 of the ejection surface 11.
 第1吐出孔13に対応する揺動動作に続いて、第2吐出孔14に対応する揺動動作を可能にするために、第1吐出孔13に対応する揺動動作の始点となっていた第1位置P1から第2吐出孔14に対応する揺動動作の始点となる第2位置P2までノズル1を進める。以下の本明細書では、所定の吐出孔に対応する位置から他の吐出孔に対応する位置までノズルを移動させることについてノズルを並進させるということにする。このような並進動作に続いて、第2吐出孔14に対応する揺動動作として、ノズル1が第2位置P2から第3位置P3に向けて、吐出面11に向かって第2吐出孔14の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第2位置P2まで略水平方向に逆方向に移動して戻る所定振幅の動作を第2サイクルとし、第2サイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第2吐出孔14の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In order to enable the swinging motion corresponding to the second discharge hole 14 subsequent to the swinging motion corresponding to the first discharge hole 13, it is the starting point of the swinging motion corresponding to the first discharge hole 13. The nozzle 1 is advanced from the first position P1 to the second position P2 which is the starting point of the swinging motion corresponding to the second ejection hole 14. In the following specification, the nozzle is translated in terms of moving the nozzle from a position corresponding to a predetermined discharge hole to a position corresponding to another discharge hole. Subsequent to such a translational motion, as a swinging motion corresponding to the second discharge hole 14, the nozzle 1 moves the second discharge hole 14 from the second position P2 toward the third position P3 toward the discharge surface 11. The second cycle is an operation of a predetermined amplitude that moves forward in a substantially horizontal direction to a predetermined turnaround end point over just above and then moves in a reverse direction in a substantially horizontal direction from the turnaround end point to a second position P2. , The second cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the airflow whose strength fluctuates temporally and/or spatially hit the periphery of the second ejection hole 14 of the ejection surface 11.
 第2吐出孔14に対応する揺動動作に続いて、第3吐出孔15に対応する揺動動作を可能にするために、第2吐出孔14に対応する揺動動作の始点となっていた第2位置P2から第3吐出孔15に対応する揺動動作の始点となる第3位置P3までノズル1を並進させる。このような並進動作に続いて、第3吐出孔15に対応する揺動動作として、ノズル1が第3位置P3から第4位置P4に向けて、吐出面11に向かって第3吐出孔15の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第3位置P3まで略水平方向に逆方向に移動して戻る所定振幅の動作を第3サイクルとし、第3サイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第3吐出孔15の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In order to enable the swinging motion corresponding to the third discharge hole 15 subsequent to the swinging motion corresponding to the second discharge hole 14, it is the starting point of the swinging motion corresponding to the second discharge hole 14. The nozzle 1 is translated from the second position P2 to the third position P3, which is the starting point of the swing motion corresponding to the third ejection hole 15. Subsequent to such a translational motion, as a swinging motion corresponding to the third discharge hole 15, the nozzle 1 moves from the third position P3 to the fourth position P4 toward the discharge surface 11 toward the discharge surface 11 so that the third discharge hole 15 moves. An operation of a predetermined amplitude is defined as a third cycle, in which the operation proceeds in a forward direction in a substantially horizontal direction beyond just above to a predetermined turnaround end point and proceeds, and moves in a reverse direction in a substantially horizontal direction from the turnaround end point to a third position P3. , The third cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially around the third ejection hole 15 of the ejection surface 11.
 第3吐出孔15に対応する揺動動作に続いて、第4吐出孔16に対応する揺動動作を可能にするために、第3吐出孔15に対応する揺動動作の始点となっていた第3位置P3から第4吐出孔16に対応する揺動動作の始点となる第4位置P4までノズル1を並進させる。このような並進動作に続いて、第4吐出孔16に対応する揺動動作として、ノズル1が第4位置P4から第5位置P5に向けて、吐出面11に向かって第4吐出孔16の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第4位置P4まで略水平方向に逆方向に移動して戻る所定振幅の動作を第4サイクルとし、第4サイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第4吐出孔16の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In order to enable the swing operation corresponding to the fourth discharge hole 16 subsequent to the swing operation corresponding to the third discharge hole 15, the swing operation corresponding to the third discharge hole 15 is the starting point. The nozzle 1 is translated from the third position P3 to the fourth position P4 which is the starting point of the swinging motion corresponding to the fourth ejection hole 16. Subsequent to such a translational movement, as a swinging operation corresponding to the fourth ejection hole 16, the nozzle 1 moves toward the ejection surface 11 from the fourth position P4 to the fifth position P5 toward the ejection surface 11 so that the fourth ejection hole 16 moves. The fourth cycle is an operation with a predetermined amplitude, which goes forward and moves in a substantially horizontal direction forward to a predetermined turnaround end point, and moves in a reverse direction in a substantially horizontal direction from the turnaround end point to the fourth position P4. , The fourth cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the fourth ejection hole 16 of the ejection surface 11.
 このような一連の動作を終えると、第1吐出孔13に対応する揺動動作の始点となる第1位置P1にノズル1を戻してもよい。所定回数の第1サイクル、第2サイクル、第3サイクル及び第4サイクルを併せて1サイクルとし、このサイクルを所定回数にわたり繰り返してもよい。 After completing such a series of operations, the nozzle 1 may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first discharge hole 13. The first cycle, the second cycle, the third cycle, and the fourth cycle of a predetermined number of times may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
 第1態様の動作においては、所定の流量で気体を噴射するノズル1が第1吐出孔13に対応する第1位置P1を始点とした第1サイクル、第2吐出孔14に対応する第2位置P2を始点とした第2サイクル、第3吐出孔15に対応する第3位置P3を始点とした第3サイクル、第4吐出孔16に対応する第4位置P4を始点とした第4サイクルのそれぞれの揺動動作をすることにより、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲にそれぞれ強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からそれぞれ吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。 In the operation of the first aspect, the nozzle 1 that injects the gas at a predetermined flow rate has the first cycle starting from the first position P1 corresponding to the first discharge hole 13, and the second position corresponding to the second discharge hole 14. A second cycle starting from P2, a third cycle starting from a third position P3 corresponding to the third discharge hole 15, and a fourth cycle starting from a fourth position P4 corresponding to the fourth discharge hole 16 By performing the swinging motion of the, the strength around the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 is temporally and/or spatially. A fluctuating air flow can be applied. Therefore, the first strand 101, the second strand 102, the third strand 103, and the third strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11, respectively. The four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 on the discharge surface 11 are blown off by an air flow whose strength fluctuates, and these deposits are attached. The kimono can be sufficiently removed in a short time.
 また、第1態様の動作においては、ノズル1が第1吐出孔13に対応する第1位置P1を始点とした第1サイクル、第2吐出孔14に対応する第2位置P2を始点とした第2サイクル、第3吐出孔15に対応する第3位置P3を始点とした第3サイクル、第4吐出孔16に対応する第4位置P4を始点とした第4サイクルの揺動動作を個別に制御することができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に当たる気流の強さを個別に制御することができる。このため、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に発生する付着物の量が異なる場合にも、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に当たる気流の強さを個別に調整することによって対応することができる。 In the operation of the first aspect, the nozzle 1 starts the first cycle starting from the first position P1 corresponding to the first discharge hole 13 and the second cycle starting from the second position P2 corresponding to the second discharge hole 14. Two cycles, the third cycle starting from the third position P3 corresponding to the third discharge hole 15 and the fourth cycle starting from the fourth position P4 corresponding to the fourth discharge hole 16 are individually controlled. can do. Therefore, it is possible to individually control the strength of the airflow impinging around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. Therefore, even when the amounts of deposits generated in the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 are different, the first ejection hole 13 and the second ejection hole 14 are different. This can be dealt with by individually adjusting the strength of the airflow impinging on the periphery of the third discharge hole 15 and the fourth discharge hole 16.
 図5(b)に示す第2態様の動作においては、第1吐出孔13及び第2吐出孔14と、第3吐出孔15及び第4吐出孔16とのように、2個の吐出孔を一組としてそれぞれについて揺動動作を行う。第1吐出孔13及び第2吐出孔14に対応する揺動動作として、第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となる第1位置P1から第3位置P3に向けて、吐出面11に向かって第1吐出孔13及び第2吐出孔14の直上を越えて所定の折り返し端点までノズル1が略水平方向に順方向に移動して進み、当該折り返し端点から第1位置P1まで略水平方向に逆方向に移動して戻る所定振幅の動作を第1サイクルとし、第1サイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第1吐出孔13及び第2吐出孔14の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In the operation of the second mode shown in FIG. 5B, two ejection holes, such as the first ejection hole 13 and the second ejection hole 14, and the third ejection hole 15 and the fourth ejection hole 16, are formed. The rocking motion is performed for each as a set. As the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14, from the first position P1 which is the starting point of the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14 to the third position P3. Toward the discharge surface 11, the nozzle 1 moves forward in a substantially horizontal direction beyond the first discharge hole 13 and the second discharge hole 14 to a predetermined turnaround end point, and advances from the turnaround end point to the predetermined turnaround end point. The operation of a predetermined amplitude that moves to the first position P1 in a substantially horizontal direction in the reverse direction and returns is defined as a first cycle, and the first cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the first ejection hole 13 and the second ejection hole 14 of the ejection surface 11.
 第1吐出孔13及び第2吐出孔14に対応する揺動動作に続いて、第3吐出孔15及び第4吐出孔16に対応する揺動動作を可能にするために、第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となっていた第1位置P1から第3吐出孔15及び第4吐出孔16に対応する揺動動作の始点となる第3位置P3までノズル1を並進させる。このような並進動作に続いて、第3吐出孔15及び第4吐出孔16に対応する揺動動作として、ノズル1が第3位置P3から第5位置P5に向けて、吐出面11に向かって第3吐出孔15及び第4吐出孔16の直上を越えて所定の折り返し端点までノズル1が略水平方向に順方向に移動して進み、当該折り返し端点から第3位置P3まで略水平方向に逆方向に移動して戻る所定振幅の動作を第2サイクルとし、第2サイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。このような一連の動作を終えると、第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となる第1位置P1にノズルを戻してもよい。所定回数の第1サイクル及び第2サイクルを併せて1サイクルとし、このサイクルを所定回数にわたり繰り返してもよい。 In order to enable the swing operation corresponding to the third discharge hole 15 and the fourth discharge hole 16 subsequent to the swing operation corresponding to the first discharge hole 13 and the second discharge hole 14, the first discharge hole 13 is provided. And a nozzle from the first position P1 which is the starting point of the swinging motion corresponding to the second discharge hole 14 to the third position P3 which is the starting point of the swinging motion corresponding to the third discharge hole 15 and the fourth discharge hole 16. Translate 1 Subsequent to such a translational movement, the nozzle 1 moves toward the ejection surface 11 from the third position P3 to the fifth position P5 as a swinging operation corresponding to the third ejection hole 15 and the fourth ejection hole 16. The nozzle 1 moves forward in the substantially horizontal direction beyond just above the third discharge hole 15 and the fourth discharge hole 16 to a predetermined folding end point, and moves in the reverse direction from the folding end point to the third position P3 in the substantially horizontal direction. The operation of a predetermined amplitude that moves in the direction and returns is defined as a second cycle, and the second cycle is repeated a predetermined number of times. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially around the third ejection hole 15 and the fourth ejection hole 16 of the ejection surface 11. After completing such a series of operations, the nozzles may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first ejection hole 13 and the second ejection hole 14. The predetermined number of times of the first cycle and the second cycle may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
 第2態様の動作においても、所定の流量で気体を噴射するノズル1が第1吐出孔13及び第2吐出孔14に対応する第1位置P1を始点とした第1サイクル、第3吐出孔15及び第4吐出孔16に対応する第3位置P3を始点とした第2サイクルのそれぞれの揺動動作により、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からそれぞれ吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。 Also in the operation of the second aspect, the first cycle in which the nozzle 1 that injects the gas at a predetermined flow rate starts from the first position P1 corresponding to the first discharge hole 13 and the second discharge hole 14, and the third discharge hole 15 By the swinging operation of the second cycle starting from the third position P3 corresponding to the fourth discharge hole 16, the first discharge hole 13, the second discharge hole 14, the third discharge hole 15 of the discharge surface 11, and An air flow whose intensity fluctuates temporally and/or spatially can be applied to the periphery of the fourth discharge hole 16. Therefore, the first strand 101, the second strand 102, the third strand 103, and the third strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11, respectively. The four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 on the discharge surface 11 are blown off by an air flow whose strength fluctuates, and these deposits are attached. The kimono can be sufficiently removed in a short time.
 また、第2態様の動作においては、ノズル1が第1吐出孔13及び第2吐出孔14に対応する第1位置P1を始点とした第1サイクル、第3吐出孔15及び第4吐出孔16に対応する第3位置P3を始点とした第2サイクルの揺動動作を個別に制御することができる。したがって、吐出面11の第1吐出孔13及び第2吐出孔14と、第3吐出孔15及び第4吐出孔16との周囲に当たる気流の強さを個別に制御することができる。このため、第1吐出孔13及び第2吐出孔14と、第3吐出孔15及び第4吐出孔16とに発生する付着物の量が異なる場合にも、第1吐出孔13及び第2吐出孔14と、第3吐出孔15及び第4吐出孔16との周囲に当たる気流の強さを個別に調整することによって対応することができる。 Further, in the operation of the second aspect, the first cycle in which the nozzle 1 starts from the first position P1 corresponding to the first ejection hole 13 and the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 It is possible to individually control the swinging operation of the second cycle starting from the third position P3 corresponding to. Therefore, it is possible to individually control the intensities of the airflows that impinge around the first ejection holes 13 and the second ejection holes 14 of the ejection surface 11, and the third ejection holes 15 and the fourth ejection holes 16. Therefore, even when the amounts of the deposits generated in the first ejection hole 13 and the second ejection hole 14 and the third ejection hole 15 and the fourth ejection hole 16 are different, the first ejection hole 13 and the second ejection hole This can be dealt with by individually adjusting the intensities of the air currents that hit the peripheries of the holes 14 and the third and fourth ejection holes 15 and 16.
 さらに、第2態様の動作を第1態様の動作と比較すると、第1態様の動作においては、1サイクルが、ノズル1が第1吐出孔13に対応する揺動動作の始点となる第1位置P1から、第2吐出孔14対応する揺動動作の始点となる第2位置P2、第3吐出孔15に対応する揺動動作の始点となる第3位置P3、第4吐出孔16に対応する揺動動作の始点となる第4位置P4に並進し、その後で第1位置P1に並進するような5ステップの並進動作を含んでいたのに対し、第2の揺動動作においては、1サイクルが、ノズル1が第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となる第1位置P1から、第3吐出孔15及び第4吐出孔16に対応する揺動動作の始点となる第3位置P3に並進し、その後で第1位置P1に並進するような3ステップの並進動作を含んでいる点で相違している。したがって、第2態様の動作は、第1態様の動作と比べると並進動作のステップが減少するため、揺動動作及び並進動作を含むノズル1の所定の動作がより簡単になり、所定の動作の1サイクルの周期も短縮される。 Further, comparing the operation of the second aspect with the operation of the first aspect, in the operation of the first aspect, one cycle is the first position where the nozzle 1 is the starting point of the swinging operation corresponding to the first ejection hole 13. From P1, it corresponds to the second position P2, which is the starting point of the rocking operation corresponding to the second ejection hole 14, the third position P3, which is the starting point of the rocking operation corresponding to the third ejection hole 15, and the fourth ejection hole 16. While the translation operation of 5 steps such as translation to the fourth position P4, which is the starting point of the swing operation, and then translation to the first position P1, was included, in the second swing operation, one cycle However, from the first position P1 at which the nozzle 1 is the starting point of the swing operation corresponding to the first discharge hole 13 and the second discharge hole 14, the swing operation corresponding to the third discharge hole 15 and the fourth discharge hole 16 is performed. The difference is that it includes a three-step translation operation of translating to a third position P3 that is a starting point and then translating to a first position P1. Therefore, in the operation of the second aspect, since the steps of the translational movement are reduced as compared with the operation of the first aspect, the predetermined operation of the nozzle 1 including the swinging operation and the translational operation becomes simpler, and the operation of the predetermined operation is reduced. The cycle of one cycle is also shortened.
 なお、第2態様の揺動動作として、第1吐出孔13及び第2吐出孔14と、第3吐出孔15及び第4吐出孔16とのように、2個の吐出孔を一組としてそれぞれについて揺動動作を行う例を示したが、2個以上の吐出孔を一組としてそれぞれについて揺動動作を行ってもよい。以下でも同様である。 As the swinging motion of the second aspect, two ejection holes, such as the first ejection hole 13 and the second ejection hole 14, and the third ejection hole 15 and the fourth ejection hole 16, are respectively set as a set. Although the example in which the swinging operation is performed is described above, the swinging operation may be performed for each set of two or more discharge holes. The same applies below.
 図5(c)に示す第3態様の動作においては、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の4個の吐出孔を一括として揺動動作を行う。第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対応する揺動動作として、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対応する揺動動作の始点となる第1位置P1から第5位置P5に向けて吐出面11に向かって第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の直上を越えて所定の折り返し端点までノズル1が略水平方向に順方向に移動して進み、当該折り返し端点から第1位置P1まで略水平方向に逆方向に移動して戻る所定振幅の動作を1サイクルとし、このサイクルを所定回数繰り返す。このような揺動動作によって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In the operation of the third mode shown in FIG. 5C, the four ejection holes of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 are collectively swung. I do. As the swing motion corresponding to the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16, the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the third ejection hole 15 The first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the third ejection hole 15 from the first position P1 which is the starting point of the swinging operation corresponding to the fourth ejection hole 16 toward the fifth position P5 toward the ejection surface 11. The nozzle 1 moves forward in the substantially horizontal direction beyond just above the fourth discharge hole 16 to a predetermined folding end point, and moves in the reverse direction in the substantially horizontal direction from the folding end point to the first position P1 and returns. The operation with a predetermined amplitude is defined as one cycle, and this cycle is repeated a predetermined number of times. Due to such swinging operation, the airflow whose strength fluctuates temporally and/or spatially around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. Can be hit.
 第3態様の動作においても、所定の流量で気体を噴射するノズル1が第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対応する第1位置P1と折り返し端点との間を揺動することにより、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲にそれぞれ強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からそれぞれ吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。 Also in the operation of the third aspect, the nozzle 1 for injecting gas at a predetermined flow rate has the first position P1 corresponding to the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16. By swinging between the folding end points, the strength is temporal and/or temporal around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. It is possible to impinge a spatially varying air flow. Therefore, the first strand 101, the second strand 102, the third strand 103, and the third strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11, respectively. The four strands 104 or the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 on the discharge surface 11 are blown off by an air flow whose strength fluctuates, and these deposits are attached. The kimono can be sufficiently removed in a short time.
 また、第3態様の動作を第1態様及び第2態様の動作と比較すると、第1態様の動作においては、1サイクルが、ノズル1が第1吐出孔13に対応する揺動動作の始点となる第1位置P1から、第2吐出孔14対応する揺動動作の始点となる第2位置P2、第3吐出孔15に対応する揺動動作の始点となる第3位置P3、第4吐出孔16に対応する揺動動作の始点となる第4位置P4に並進し、その後で第1位置P1に並進するような5ステップの並進動作を含み、第2態様の動作においては、1サイクルが、ノズル1が第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となる第1位置P1から、第3吐出孔15及び第4吐出孔16に対応する揺動動作の始点となる第3位置P3に並進し、その後で第1位置P1に並進するような3ステップの並進動作を含んでいたのに対し、第3態様の動作においては並進動作が含まれていない点で相違している。したがって、第3態様の動作は、第1態様及び第2態様の動作と比べると並進動作のステップが存在しないため、揺動動作を含むノズル1の所定の動作がより簡単になり、所定の動作の1サイクルの周期も短縮される。 Further, when the operation of the third aspect is compared with the operations of the first aspect and the second aspect, in the operation of the first aspect, one cycle is the starting point of the swinging operation in which the nozzle 1 corresponds to the first ejection hole 13. From the first position P1 to the second position P2, which is the starting point of the rocking motion corresponding to the second ejection hole 14, the third position P3, which is the starting point of the rocking motion corresponding to the third ejection hole 15, and the fourth ejection hole. 16 translational motions such as translating to the fourth position P4 which is the starting point of the swing motion corresponding to 16 and then translating to the first position P1. In the motion of the second aspect, one cycle is From the first position P1 at which the nozzle 1 is the starting point of the rocking operation corresponding to the first ejection hole 13 and the second ejection hole 14, to the starting point of the rocking operation corresponding to the third ejection hole 15 and the fourth ejection hole 16. In contrast to the three-step translational motion of translating to the third position P3 and then to the first position P1, the operation of the third aspect is different in that the translational motion is not included. doing. Therefore, in the operation of the third aspect, as compared with the operations of the first aspect and the second aspect, the step of the translation operation does not exist, so that the predetermined operation of the nozzle 1 including the swinging operation becomes easier and the predetermined operation is performed. The cycle of 1 cycle is also shortened.
 図6は、単一の吐出孔を有するダイに適用した第1変形例の付着物除去装置を示す図である。図6(a)は第1変形例の斜視図、図6(b)は第1変形例の正面図、図1(c)は第1変形例の左側面図である。ダイ10において、略鉛直方向に延びた吐出面11の略中央に所定径を有する単一の吐出孔12が形成されている。吐出孔12からは、溶融した樹脂のストランド100が所定の線速度で吐出されている。 FIG. 6 is a view showing an adhered substance removing device of a first modified example applied to a die having a single discharge hole. 6A is a perspective view of the first modification, FIG. 6B is a front view of the first modification, and FIG. 1C is a left side view of the first modification. In the die 10, a single discharge hole 12 having a predetermined diameter is formed at a substantially center of a discharge surface 11 extending in a substantially vertical direction. The molten resin strands 100 are discharged from the discharge holes 12 at a predetermined linear velocity.
 第1変形例の付着物除去装置は、所定の流量で気体を噴射する第1ノズル2及び第2ノズル3の二本のノズルを有している。第1ノズル2及び第2ノズル3は、これら第1ノズル2及び第2ノズル3を支持する支持台8を介して、図示しない駆動手段によって駆動され、ダイ10の吐出面11に対して所定の間隔を有し、吐出面11に形成された吐出孔12に対してその位置及び/又は方向について所定の動作をすることにより、吐出孔12の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように揺動される。 The adhered matter removing device of the first modification has two nozzles, a first nozzle 2 and a second nozzle 3 which inject gas at a predetermined flow rate. The first nozzle 2 and the second nozzle 3 are driven by a driving unit (not shown) via a support base 8 that supports the first nozzle 2 and the second nozzle 3, and a predetermined amount with respect to the ejection surface 11 of the die 10. By performing a predetermined operation with respect to the position and/or the direction of the discharge holes 12 formed on the discharge surface 11 having a space, the strength varies temporally and/or spatially around the discharge holes 12. It is swung so as to hit the air flow.
 第1変形例においては、第1ノズル2及び第2ノズル3の二本のノズルにより、吐出面11の吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の吐出孔12から吐出されたストランド100又は吐出面11の吐出孔12の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。また、第1変形例においては、第1ノズル2及び第2ノズル3の二本のノズルにより吐出面11の吐出孔12の周囲に異なる方向から同時に気流が当てることにより、付着物を確実に除去することができる。 In the first modified example, the two nozzles of the first nozzle 2 and the second nozzle 3 allow the airflow whose strength fluctuates temporally and/or spatially to hit the ejection hole 12 of the ejection surface 11. can do. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do. Further, in the first modified example, the two nozzles of the first nozzle 2 and the second nozzle 3 simultaneously apply the airflow from the different directions to the periphery of the ejection hole 12 of the ejection surface 11 to reliably remove the adhering matter. can do.
 なお、第1変形例の付着物除去装置として、第1ノズル2及び第2ノズル3の二本のノズルを有する例を示したが、本実施の形態は二本のノズルに限定されない。本実施の形態は、複数のノズルとして、三本以上のノズルについても同様に適用することができる。 It should be noted that, although the example of having the two nozzles of the first nozzle 2 and the second nozzle 3 has been shown as the attached matter removing device of the first modified example, the present embodiment is not limited to the two nozzles. The present embodiment can be similarly applied to three or more nozzles as a plurality of nozzles.
 図7は、第1変形例の二本のノズルの支持台を示す斜視図である。支持台8は、第1ノズル2及び第2ノズル3のそれぞれの角度や高さ、互いの距離等を調整することができるように支持している。第1ノズル2及び第2ノズル3は、支持台8によって、それぞれから噴射される気体の気流が例えば一点で合流するような方向に設定されてもよい。また、それぞれから噴射される気体の気流が合流しないように設定されてもよい。第1ノズル2及び第2ノズル3の角度や高さ、互いの距離等は、ダイ10の吐出面11の吐出孔に対する支持台8の位置等に基づいて適切に調整することができる。 FIG. 7 is a perspective view showing a support base for two nozzles of a first modified example. The support base 8 supports the first nozzle 2 and the second nozzle 3 so that the angles and heights of the first nozzle 2 and the distance between the second nozzle 3 can be adjusted. The first nozzle 2 and the second nozzle 3 may be set by the support base 8 so that the air streams of the gas jetted from the respective nozzles merge at one point, for example. In addition, it may be set so that the air streams of the gas jetted from each do not join. The angles and heights of the first nozzle 2 and the second nozzle 3, the mutual distances, and the like can be appropriately adjusted based on the position of the support base 8 with respect to the ejection holes of the ejection surface 11 of the die 10.
 第1変形例において、第1ノズル2及び第2ノズル3は、ダイ10の吐出面11の吐出孔12に向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第1位置P1と、第1位置P1と略同じ高さにあり、吐出面11の吐出孔12に向かって右上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第2位置P2との間で揺動する。このような揺動動作によって、吐出面11の吐出孔12の周囲に強度が時間的及び/空間的に変動する気流が当たるようにすることができる。 In the first modified example, the first nozzle 2 and the second nozzle 3 are located on the upper left side of the ejection surface 11 of the die 10 toward the ejection hole 12 and face the ejection surface 11 with a predetermined interval. 11, a first position P1 for injecting gas downward at a predetermined angle with the first position P1, which is substantially at the same height as the first position P1, and is located on the upper right side toward the discharge hole 12 of the discharge surface 11, The discharge surface 11 is opposed to the discharge surface 11 at a predetermined interval, and swings between the discharge surface 11 and a second position P2 that makes a predetermined angle and injects gas downward. By such a swinging operation, it is possible to make the air flow whose strength fluctuates temporally and/or spatially hit the periphery of the ejection hole 12 of the ejection surface 11.
 第1変形例における第1ノズル2及び第2ノズル3の揺動動作は、図2(a)に第1態様の揺動動作として一本のノズル1について示したように、第1ノズル2及び第2ノズル3が吐出面11の吐出孔12に向かって左上にある第1位置P1からダイ10の吐出面11の吐出孔12に向かって右上にある第2位置P2まで略水平方向に順方向に移動して進み、第2位置P2から第1位置P1まで略水平方向に逆方向に移動して戻る動作を1サイクルとして、このサイクルを所定回数繰り返すものであってもよい。 The swinging motion of the first nozzle 2 and the second nozzle 3 in the first modification is as shown in FIG. 2A for one nozzle 1 as the swinging motion of the first mode. The second nozzle 3 is forward in a substantially horizontal direction from a first position P1 located on the upper left side of the ejection surface 11 of the ejection surface 11 to a second position P2 located on the upper right side of the ejection hole 12 of the ejection surface 11 of the die 10. The cycle may be repeated a predetermined number of times, with one cycle being an operation of moving to and moving from the second position P2 to the first position P1 in the reverse direction in the substantially horizontal direction.
 なお、第1変形例における第1ノズル2及び第2ノズル3の揺動動作は、図2(b)に第2態様の揺動動作として一本のノズル1について示したように、第1ノズル2及び第2ノズル3が吐出面11の吐出孔12に向かって直上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する位置P0から吐出面11の吐出孔12に向かって右上にある第2位置P2まで略水平方向に順方向に移動して進み、次に第2位置から位置P0に略水平方向に逆方向に移動して戻る動作を第1サイクルとし、位置P0から吐出面11の吐出孔12に向かって左上にある第1位置P1まで略水平方向に逆方向に移動して進み、次に第1位置P1から位置P0に略水平方向に順方向に移動して戻る動作を第2サイクルとし、このような第1サイクルと第2サイクルを合わせた動作を1サイクルとし、このサイクルを所定回数繰り返すものであってもよい。 The swinging motion of the first nozzle 2 and the second nozzle 3 in the first modified example is the same as the one nozzle 1 shown in FIG. 2B as the swinging motion of the second mode. The second nozzle 2 and the second nozzle 3 are directly above the ejection hole 12 of the ejection surface 11 and face the ejection surface 11 with a predetermined interval, and face the ejection surface 11 downward at a predetermined angle. From the position P0 for injecting the gas toward the discharge hole 12 of the discharge surface 11 to the second position P2 at the upper right in a substantially horizontal forward direction, and then proceed, and then from the second position to the position P0 in a substantially horizontal direction. The operation of moving in the opposite direction and returning is defined as the first cycle, and moves in the substantially horizontal direction in the opposite direction from the position P0 to the first position P1 located on the upper left side toward the ejection hole 12 of the ejection surface 11 and then proceeds. The operation of moving from the first position P1 to the position P0 in the substantially horizontal direction in the forward direction and returning is referred to as the second cycle, and the operation in which the first cycle and the second cycle are combined is defined as one cycle, and this cycle is repeated a predetermined number of times. It may be one.
 図8は、複数の吐出孔を有するダイに適用した第1変形例の付着物除去装置を示す図である。図8(a)は第1変形例の斜視図、図8(b)は第1変形例の正面図、図8(c)は第1変形例の左側面図である。ダイ10において、略鉛直方向に延びた吐出面11の鉛直方向の略中央に所定径を有する第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の4個の吐出孔が略水平方向に所定間隔をおいて一列に並んで形成されている。第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からは、それぞれ第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104が所定の線速度で吐出されている。 FIG. 8 is a view showing an adhered matter removing device of a first modified example applied to a die having a plurality of discharge holes. 8A is a perspective view of the first modification, FIG. 8B is a front view of the first modification, and FIG. 8C is a left side view of the first modification. In the die 10, the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction. Of the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction. From the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
 第1変形例の付着物除去装置は、所定の流量で気体を噴射する第1ノズル2及び第2ノズル3の二本のノズルを有している。第1ノズル2及び第2ノズル3は、これら第1ノズル2及び第2ノズル3を支持する支持台8を介して図示しない駆動手段によって駆動され、ダイ10の吐出面11に対して所定の間隔を有し、吐出面11に形成された第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対してその位置及び方向について所定の動作をすることにより、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるように揺動される。 The adhered matter removing device of the first modification has two nozzles, a first nozzle 2 and a second nozzle 3 which inject gas at a predetermined flow rate. The first nozzle 2 and the second nozzle 3 are driven by a driving unit (not shown) via a support base 8 that supports the first nozzle 2 and the second nozzle 3, and have a predetermined distance from the ejection surface 11 of the die 10. By performing a predetermined operation with respect to the position and direction of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15 and the fourth ejection hole 16 formed on the ejection surface 11, The first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 are swung so that an air flow whose strength fluctuates temporally and/or spatially is hit.
 なお、複数の吐出孔を有するダイに適用した第1変形例においても、図2(a)に第1態様の揺動動作として示したように所定の吐出孔に対応する揺動動作の始点を吐出面11に向かって該当する吐出孔の左上として説明するものとするが、図2(b)に第2態様の揺動動作として示したように所定の吐出孔に対応する揺動動作の始点を吐出面11に向かって該当する吐出孔の直上としてもよい。 Even in the first modification applied to a die having a plurality of ejection holes, the starting point of the rocking operation corresponding to a predetermined ejection hole is shown as the rocking operation of the first mode in FIG. The upper left of the corresponding discharge hole toward the discharge surface 11 will be described, but as shown in FIG. 2B as the swing motion of the second mode, the start point of the swing motion corresponding to a predetermined discharge hole. May be directly above the corresponding ejection hole toward the ejection surface 11.
 第1変形例において、第1ノズル2及び第2ノズル3は、ダイ10の吐出面11の第1吐出孔13に向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第1位置P1と、第1位置P1と略同じ高さにあり、吐出面11の第1吐出孔13に向かって右上、第2吐出孔14に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第2位置P2と、第1位置P1及び第2位置P2と略同じ高さにあり、吐出面11の第2吐出孔14に向かって右上、第3吐出孔15に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第3位置P3と、第1位置P1、第2位置P2及び第3位置P3と略同じ高さにあり、吐出面11の第3吐出孔15に向かって右上、第4吐出孔16に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第4位置P4と、第1位置P1、第2位置P2、第3位置P3及び第4位置P4と略同じ高さにあり、吐出面11の第4吐出孔16に向かって右上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして下側に向けて気体を噴射する第5位置P5との間で一列の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に沿って所定の動作をなす。この動作は、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/空間的に変動する気流が当たるようにする揺動動作を含んでいる。 In the first modified example, the first nozzle 2 and the second nozzle 3 are located on the upper left side of the ejection surface 11 of the die 10 toward the first ejection hole 13 and face the ejection surface 11 at a predetermined interval. The first position P1 at which the gas is jetted downward at a predetermined angle with the discharge surface 11 is at substantially the same height as the first position P1, and is located at the upper right side toward the first discharge hole 13 of the discharge surface 11. A second upper left side of the second discharge hole 14 that faces the discharge surface 11 at a predetermined interval and injects gas downward at a predetermined angle with the discharge surface 11. The position P2 is at substantially the same height as the first position P1 and the second position P2, and is on the upper right side toward the second ejection hole 14 of the ejection surface 11 and on the upper left side toward the third ejection hole 15, A third position P3, which faces the ejection surface 11 with a predetermined interval and injects gas downward at a predetermined angle with the ejection surface 11, a first position P1, a second position P2, and a third position P3. It is located at substantially the same height as the position P3, is located at the upper right of the third ejection hole 15 of the ejection surface 11 and is located at the upper left of the fourth ejection hole 16, and opposes the ejection surface 11 at a predetermined interval. Then, the fourth position P4 that makes a predetermined angle with the ejection surface 11 and injects the gas downward, and the first position P1, the second position P2, the third position P3, and the fourth position P4 have substantially the same height. The discharge surface 11 is located on the upper right side of the fourth discharge hole 16 and faces the discharge surface 11 with a predetermined space, and forms a predetermined angle with the discharge surface 11 toward the lower side. A predetermined operation is performed along the row of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 with respect to the fifth position P5 for ejecting. This operation is performed so that the airflow whose strength fluctuates temporally and/or spatially is applied to the periphery of the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. It includes a swinging motion.
 第1変形例においては、第1ノズル2及び第2ノズル3の二本のノズルにより、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16から吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。また、第1変形例においては、第1ノズル2及び第2ノズル3の二本のノズルにより吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に異なる方向から同時に気流が当てることにより、付着物を確実に除去することができる。 In the first modified example, the first nozzle 2, the second nozzle 3, and the second nozzle 3 are used to form the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11. An airflow whose intensity varies temporally and/or spatially can be applied to the surroundings of the. Therefore, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 The deposits generated around the strands 104 or the first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 of the discharge surface 11 are blown off by an air current whose strength varies, and these deposits Can be sufficiently removed in a short time. Further, in the first modified example, the first nozzle 2, the second nozzle 3, the second nozzle 3, the second nozzle 14, the third nozzle 15, and the fourth nozzle 15 are used by the two nozzles of the first nozzle 2 and the second nozzle 3. By simultaneously applying air currents to the periphery of 16 from different directions, it is possible to reliably remove the deposits.
 第1変形例における第1ノズル2及び第2ノズル3の動作は、図5(a)に第1態様の動作として一本のノズル1について示したように、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16のそれぞれについて揺動動作を行ってもよい。この場合には、第1吐出孔13に対応する揺動動作として、第1吐出孔13に対応する揺動動作の始点となる第1位置P1から第2位置P2に向けて、吐出面11に向かって第1吐出孔13の直上を越えて所定の折り返し端点まで第1ノズル2及び第2ノズル3が略水平方向に順方向に移動して進み、当該折り返し端点から第1位置P1まで略水平方向に逆方向に移動して戻る所定振幅の動作を第1サイクルとし、第1サイクルを所定回数繰り返す。第1吐出孔13に対応する揺動動作に続いて、第1吐出孔13に対応する揺動動作の始点となっていた第1位置P1から第2吐出孔14に対応する揺動動作の始点となる第2位置P2まで第1ノズル2及び第2ノズル3を並進させ、第2吐出孔14に対応する揺動動作として、第2位置P2から第3位置P3に向けて、吐出面11に向かって第2吐出孔14の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第2位置P2まで略水平方向に逆方向に移動して戻る所定振幅の動作を第2サイクルとし、第2サイクルを所定回数繰り返す。第2吐出孔14に対応する揺動動作に続いて、第2吐出孔14に対応する揺動動作の始点となっていた第2位置P2から第3吐出孔15に対応する揺動動作の始点となる第3位置P3まで第1ノズル2及び第2ノズル3を並進させ、第3吐出孔15に対応する揺動動作として、第3位置P3から第4位置P4に向けて、吐出面11に向かって第3吐出孔15の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第3位置P3まで略水平方向に逆方向に移動して戻る所定振幅の動作を第3サイクルとし、第3サイクルを所定回数繰り返す。第3吐出孔15に対応する揺動動作に続いて、第3吐出孔15に対応する揺動動作の始点となっていた第3位置P3から第4吐出孔16に対応する揺動動作の始点となる第4位置P4まで第1ノズル2及び第2ノズル3を並進させ、第4吐出孔16に対応する揺動動作として、第4位置P4から第5位置P5に向けて、吐出面11に向かって第4吐出孔16の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第4位置P4まで略水平方向に逆方向に移動して戻る所定振幅の動作を第4サイクルとし、第4サイクルを所定回数繰り返す。このような一連の動作を終えると、第1吐出孔13に対応する揺動動作の始点となる第1位置P1に第1ノズル2及び第2ノズル3を戻してもよい。所定回数の第1サイクル、第2サイクル、第3サイクル及び第4サイクルを併せて1サイクルとし、このサイクルを所定回数にわたり繰り返してもよい。 The operation of the first nozzle 2 and the second nozzle 3 in the first modified example is the same as that of the single nozzle 1 as the operation of the first mode in FIG. The swing motion may be performed for each of the hole 14, the third discharge hole 15, and the fourth discharge hole 16. In this case, as the swing motion corresponding to the first discharge hole 13, the discharge surface 11 is moved from the first position P1 which is the starting point of the swing motion corresponding to the first discharge hole 13 to the second position P2. The first nozzle 2 and the second nozzle 3 move in the forward direction in a substantially horizontal direction beyond just above the first discharge hole 13 to a predetermined folding end point, and proceed substantially horizontally from the folding end point to the first position P1. The operation of a predetermined amplitude that moves in the opposite direction and returns is defined as the first cycle, and the first cycle is repeated a predetermined number of times. Subsequent to the rocking motion corresponding to the first ejection hole 13, the starting point of the rocking motion corresponding to the second ejection hole 14 from the first position P1, which was the starting point of the rocking motion corresponding to the first ejection hole 13. Then, the first nozzle 2 and the second nozzle 3 are translated to the second position P2 which is defined as follows, and as a swinging motion corresponding to the second discharge hole 14, the discharge surface 11 is moved from the second position P2 to the third position P3. Toward the predetermined folding end point over the second ejection hole 14 in the substantially horizontal direction in the forward direction, and then proceeds from the folding end point to the second position P2 in the substantially horizontal direction in the reverse direction and returns. The amplitude operation is the second cycle, and the second cycle is repeated a predetermined number of times. Subsequent to the swinging motion corresponding to the second discharge hole 14, the swinging motion corresponding to the third discharge hole 15 is started from the second position P2 which was the starting point of the swinging motion corresponding to the second discharge hole 14. Then, the first nozzle 2 and the second nozzle 3 are translated to the third position P3 which is defined as follows, and as a swinging motion corresponding to the third discharge hole 15, the discharge surface 11 is moved from the third position P3 to the fourth position P4. Toward the predetermined folding end point over the third discharge hole 15 in the substantially horizontal direction in the forward direction, and then proceeds from the folding end point to the third position P3 in the substantially horizontal direction in the reverse direction and returns. The amplitude operation is the third cycle, and the third cycle is repeated a predetermined number of times. Subsequent to the rocking motion corresponding to the third ejection hole 15, the starting point of the rocking motion corresponding to the fourth ejection hole 16 from the third position P3, which was the starting point of the rocking motion corresponding to the third ejection hole 15. The first nozzle 2 and the second nozzle 3 are translated to the fourth position P4 which becomes, and as the swinging motion corresponding to the fourth discharge hole 16, the discharge surface 11 is moved from the fourth position P4 to the fifth position P5. Toward the predetermined folding end point over the fourth discharge hole 16 in the substantially horizontal direction in the forward direction, and then proceeds from the folding end point to the fourth position P4 in the substantially horizontal direction in the reverse direction and returns. The amplitude operation is the fourth cycle, and the fourth cycle is repeated a predetermined number of times. After completing such a series of operations, the first nozzle 2 and the second nozzle 3 may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first ejection hole 13. The first cycle, the second cycle, the third cycle, and the fourth cycle of a predetermined number of times may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
 また、第1変形例における第1ノズル2及び第2ノズル3の動作は、図5(b)に第2態様の動作として一本のノズル1について示したように、第1吐出孔13及び第2吐出孔14と、第3吐出孔15及び第4吐出孔16とのように、2個の吐出孔を一組としてそれぞれについて揺動動作を行ってもよい。この場合には、第1吐出孔13及び第2吐出孔14に対応する揺動動作として、第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となる第1位置P1から第3位置P3に向けて、吐出面11に向かって第1吐出孔13及び第2吐出孔14の直上を越えて所定の折り返し端点まで第1ノズル2及び第2ノズル3が略水平方向に順方向に移動して進み、当該折り返し端点から第1位置P1まで略水平方向に逆方向に移動して戻る所定振幅の動作を第1サイクルとし、第1サイクルを所定回数繰り返す。第1吐出孔13及び第2吐出孔14に対応する揺動動作に続いて、第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となっていた第1位置P1から第3吐出孔15及び第4吐出孔16に対応する揺動動作の始点となる第3位置P3まで第1ノズル2及び第2ノズル3を並進させ、第3吐出孔15及び第4吐出孔16に対応する揺動動作として、第3位置P3から第5位置P5に向けて、吐出面11に向かって第3吐出孔15及び第4吐出孔16の直上を越えて所定の折り返し端点まで略水平方向に順方向に移動して進み、当該折り返し端点から第3位置P3まで略水平方向に逆方向に移動して戻る所定振幅の動作を第2サイクルとし、第2サイクルを所定回数繰り返す。このような一連の動作を終えると、第1吐出孔13及び第2吐出孔14に対応する揺動動作の始点となる第1位置P1に第1ノズル2及び第2ノズル3を戻してもよい。所定回数の第1サイクル及び第2サイクルを併せて1サイクルとし、このサイクルを所定回数にわたり繰り返してもよい。 Further, the operation of the first nozzle 2 and the second nozzle 3 in the first modified example is the same as that of the single nozzle 1 as the operation of the second mode in FIG. Like the two ejection holes 14 and the third ejection hole 15 and the fourth ejection hole 16, two ejection holes may be set as one set and the swinging operation may be performed for each. In this case, as the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14, from the first position P1 which is the starting point of the rocking motion corresponding to the first ejection hole 13 and the second ejection hole 14. Toward the third position P3, the first nozzle 2 and the second nozzle 3 are arranged in a substantially horizontal direction toward the ejection surface 11 beyond just above the first ejection hole 13 and the second ejection hole 14 to a predetermined folding end point. The first cycle is an operation of a predetermined amplitude in which the first cycle is repeated by moving in the direction, moving from the folding end point to the first position P1, and moving in the reverse direction in the substantially horizontal direction in the reverse direction. Following the swinging motion corresponding to the first discharge hole 13 and the second discharge hole 14, from the first position P1 which was the starting point of the swinging motion corresponding to the first discharge hole 13 and the second discharge hole 14, The first nozzle 2 and the second nozzle 3 are translated to the third position P3 which is the starting point of the swinging motion corresponding to the third discharge hole 15 and the fourth discharge hole 16, and the third discharge hole 15 and the fourth discharge hole 16 are caused to move. As a corresponding swinging operation, from the third position P3 to the fifth position P5, in a substantially horizontal direction toward the ejection surface 11 beyond just above the third ejection hole 15 and the fourth ejection hole 16 to a predetermined folding end point. The operation of a predetermined amplitude is moved to the forward direction, moves to the third position P3 from the folding end point in the reverse direction in the substantially horizontal direction, and returns to the second cycle. The second cycle is repeated a predetermined number of times. After completing such a series of operations, the first nozzle 2 and the second nozzle 3 may be returned to the first position P1 which is the starting point of the swinging operation corresponding to the first ejection hole 13 and the second ejection hole 14. .. The predetermined number of times of the first cycle and the second cycle may be combined into one cycle, and this cycle may be repeated a predetermined number of times.
 さらに、第1変形例における第1ノズル2及び第2ノズル3の動作は、図5(c)に第3態様の動作として一本のノズル1について示したように、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の4個の吐出孔を一括として揺動動作を行ってもよい。この場合には、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対応する揺動動作として、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16に対応する揺動動作の始点となる第1位置P1から第5位置P5まで第1ノズル2及び第2ノズル3が略水平方向に順方向に移動して進み、折り返し端点となる第5位置P5から第1位置P1まで略水平方向に逆方向に移動して戻る所定振幅の動作を1サイクルとし、このサイクルを所定回数繰り返す。 Further, the operations of the first nozzle 2 and the second nozzle 3 in the first modified example are the same as those of the single nozzle 1 as the operation of the third aspect in FIG. The swing operation may be performed by collectively using the four discharge holes of the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16. In this case, the rocking motion corresponding to the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 is the first ejection hole 13, the second ejection hole 14, and the third ejection hole. The first nozzle 2 and the second nozzle 3 move forward in a substantially horizontal direction from the first position P1 to the fifth position P5, which is the starting point of the swinging motion corresponding to the discharge holes 15 and the fourth discharge holes 16, to proceed in the forward direction. The operation of a predetermined amplitude that moves in the reverse direction from the fifth position P5, which is the turn-back end point, to the first position P1 and returns substantially horizontally is defined as one cycle, and this cycle is repeated a predetermined number of times.
 図9は、第2変形例の付着物除去装置を示す斜視図である。ダイ10において、略鉛直方向に延びた吐出面11の鉛直方向の略中央に所定径を有する第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の4個の吐出孔が略水平方向に所定間隔をおいて一列に並んで形成されている。第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からは、それぞれ第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104が所定の線速度で吐出されている。 FIG. 9 is a perspective view showing an adhering matter removing device according to a second modified example. In the die 10, the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction. Of the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction. From the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
 第2変形例の付着物除去装置は、所定の流量で気体を噴射する第1ノズル21、第2ノズル22、第3ノズル23、第4ノズル24及び第5ノズル25の五本のノズルを有している。第1ノズル21は、ダイ10の吐出面11の第1吐出孔13に向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして気体を噴射する第1位置P1にある。第2ノズル22は、第1位置P1と略同じ高さにあり、吐出面11の第1吐出孔13に向かって右上、第2吐出孔14に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして気体を噴射する第2位置P2にある。第3ノズル23は、第1位置P1及び第2位置P2と略同じ高さにあり、吐出面11の第2吐出孔14に向かって右上、第3吐出孔15に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして気体を噴射する第3位置P3にある。第4ノズル24は、第1位置P1、第2位置P2及び第3位置P3と略同じ高さにあり、吐出面11の第3吐出孔15に向かって右上、第4吐出孔16に対して向かって左上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして気体を噴射する第4位置P4にある。第5ノズル25は、第1位置P1、第2位置P2、第3位置P3及び第4位置P4と略同じ高さにあり、吐出面11の第4吐出孔16に向かって右上にあって、吐出面11に所定間隔を有して対向し、吐出面11と所定の角度をなして気体を噴射する第5位置P5にある。 The adhered matter removing device of the second modified example has five nozzles of a first nozzle 21, a second nozzle 22, a third nozzle 23, a fourth nozzle 24, and a fifth nozzle 25 which inject gas at a predetermined flow rate. doing. The first nozzle 21 is located on the upper left side of the ejection surface 11 of the die 10 toward the first ejection hole 13, faces the ejection surface 11 with a predetermined interval, and forms a predetermined angle with the ejection surface 11 to form a gas. Is in the first position P1 for injecting. The second nozzle 22 is located at substantially the same height as the first position P1, is located on the upper right side of the ejection surface 11 toward the first ejection hole 13, and is located on the upper left side of the second ejection hole 14 on the ejection surface 11. At a second position P2, which is opposed to the discharge surface 11 at a predetermined interval and injects gas at a predetermined angle with the discharge surface 11. The third nozzle 23 is located at substantially the same height as the first position P1 and the second position P2, and is located on the upper right side toward the second ejection hole 14 of the ejection surface 11 and on the upper left side toward the third ejection hole 15. The third position P3 is opposed to the ejection surface 11 at a predetermined interval and injects gas at a predetermined angle with the ejection surface 11. The fourth nozzle 24 is at substantially the same height as the first position P1, the second position P2, and the third position P3, and is located on the upper right side of the third ejection hole 15 of the ejection surface 11 and with respect to the fourth ejection hole 16. It is located on the upper left side, faces the ejection surface 11 at a predetermined interval, and is in a fourth position P4 for ejecting gas at a predetermined angle with the ejection surface 11. The fifth nozzle 25 is located at substantially the same height as the first position P1, the second position P2, the third position P3, and the fourth position P4, and is located on the upper right side of the ejection surface 11 toward the fourth ejection hole 16. It is located at a fifth position P5, which is opposed to the ejection surface 11 with a predetermined interval and injects gas at a predetermined angle with the ejection surface 11.
 第1ノズル21、第2ノズル22、第3ノズル23、第4ノズル24及び第5ノズル25は、それぞれ所定の軸の周りに図示しない駆動手段によって駆動され、第1位置P1にある第1ノズル21は隣接する第1吐出孔13の方向を含む角度範囲で、第2位置P2にある第2ノズル22は隣接する第1吐出孔13及び第2吐出孔14を含む角度範囲で、第3位置P3にある第3ノズル23は隣接する第2吐出孔14及び第3吐出孔15を含む角度範囲で、第4位置P4にある第4ノズル24は隣接する第3吐出孔15及び第4吐出孔16を含む角度範囲で、第5位置P5にある第5ノズル25は隣接する第4吐出孔16を含む角度範囲でそれぞれ所定の回転速度で揺動するように回転する。 Each of the first nozzle 21, the second nozzle 22, the third nozzle 23, the fourth nozzle 24, and the fifth nozzle 25 is driven by a driving unit (not shown) around a predetermined axis, and is located at the first position P1. Reference numeral 21 denotes an angular range including the directions of the adjacent first ejection holes 13, second nozzle 22 at the second position P2 has an angular range including the adjacent first ejection holes 13 and second ejection holes 14, and a third position. The third nozzle 23 at P3 is in an angular range including the adjacent second ejection hole 14 and the third ejection hole 15, and the fourth nozzle 24 at the fourth position P4 is the adjacent third ejection hole 15 and the fourth ejection hole. In the angle range including 16, the fifth nozzle 25 at the fifth position P5 rotates so as to oscillate at a predetermined rotation speed in the angle range including the adjacent fourth ejection hole 16.
 第2変形例においては、第1ノズル21、第2ノズル22、第3ノズル23及び第4ノズル24及び第5ノズル25の五本のノズルにより、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16から吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。また、第2変形例においては、第1吐出孔13に対して第1ノズル21及び第2ノズル22が、第2吐出孔14に対して第2ノズル22及び第3ノズル23が、第3吐出孔15に対して第3ノズル23及び第4ノズル24が、第4吐出孔16に対して第4ノズル24及び第5ノズル25がそれぞれ対応しているため、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲に異なる方向から十分な流量の気流が供給され、付着物を確実に除去することができる。 In the second modified example, the first nozzle 21, the second nozzle 22, the third nozzle 23, the fourth nozzle 24, and the fifth nozzle 25 are used to form the first ejection hole 13 of the ejection surface 11 and the second nozzle An air flow whose strength fluctuates temporally and/or spatially can be applied to the periphery of the ejection holes 14, the third ejection holes 15, and the fourth ejection holes 16. Therefore, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16 of the discharge surface 11 The deposits generated around the strands 104 or the first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 of the discharge surface 11 are blown off by an air current whose strength varies, and these deposits Can be sufficiently removed in a short time. Further, in the second modified example, the first nozzle 21 and the second nozzle 22 are discharged to the first discharge hole 13, the second nozzle 22 and the third nozzle 23 are discharged to the second discharge hole 14, and the third discharge is performed. Since the third nozzle 23 and the fourth nozzle 24 correspond to the hole 15 and the fourth nozzle 24 and the fifth nozzle 25 correspond to the fourth ejection hole 16, respectively, the first ejection hole 13 of the ejection surface 11 corresponds. A sufficient flow rate of airflow is supplied from different directions around the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, and the deposit can be reliably removed.
 図10は、第3変形例の付着物除去装置を示す図である。図10(a)は第3変形例の斜視図であり、図10(b)は第3変形例の図10(a)中の切断面X―Xにおける断面図である。ダイ10において、略鉛直方向に延びた吐出面11の略中央やや下に所定径を有する単一の吐出孔12が形成されている。吐出孔12からは、溶融した樹脂のストランド100が所定の線速度で吐出されている。 FIG. 10 is a diagram showing an adhering matter removing device according to a third modified example. FIG. 10A is a perspective view of the third modification, and FIG. 10B is a cross-sectional view taken along the section line XX of FIG. 10A of the third modification. In the die 10, a single discharge hole 12 having a predetermined diameter is formed at a position slightly below the center of the discharge surface 11 extending in the substantially vertical direction. The molten resin strands 100 are discharged from the discharge holes 12 at a predetermined linear velocity.
 第3変形例の付着物除去装置は、吐出面11上で吐出孔12の直上に位置し、吐出面11に沿って所定の軸30の周りに所定の回転速度で回転し、気体を吐出面11に沿って所定の流量を噴射する一本のノズル31と、吐出面11上で回転するノズル31を覆い、ノズル31が回転する周方向に前記軸30について直下にある吐出孔12を含む所定の角度範囲にわたり開口33が設けられたフード32とを有している。 The adhered matter removing device of the third modified example is located on the discharge surface 11 immediately above the discharge hole 12 and rotates along the discharge surface 11 around a predetermined axis 30 at a predetermined rotation speed to discharge gas. A single nozzle 31 that injects a predetermined flow rate along the nozzle 11 and a nozzle 31 that covers the nozzle 31 that rotates on the discharge surface 11 and that includes a discharge hole 12 that is immediately below the shaft 30 in the circumferential direction in which the nozzle 31 rotates. And a hood 32 provided with an opening 33 over the angular range of.
 第3変形例において、ノズル31から噴射された気体は、ノズル31を覆うフード32内においてフード32の開口33から噴射されるように案内される。フード32の開口33からは、ノズル31の回転に応じて時間的に及び/又は空間的に変動する強度を有する気流がノズル31の回転の周方向に吐出面11の吐出孔12を含む所定の角度範囲内で噴射され、吐出面11の吐出孔12の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の吐出孔12から吐出されたストランド100又は吐出面11の吐出孔12の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。第3変形例においては、ノズル31の回転によりフード32の開口33から噴射される気流の時間的及び/又は空間的な強度の変動が担保されている。したがって、第3変形例においては、気流の十分な強度の変動により、付着物を確実に除去することができる。 In the third modification, the gas sprayed from the nozzle 31 is guided so as to be sprayed from the opening 33 of the hood 32 in the hood 32 covering the nozzle 31. From the opening 33 of the hood 32, an air flow having a strength that temporally and/or spatially varies depending on the rotation of the nozzle 31 and includes a predetermined discharge hole 12 of the discharge surface 11 in the circumferential direction of the rotation of the nozzle 31. It is possible to make the air flow, which is jetted within the angular range and whose strength varies temporally and/or spatially, around the ejection holes 12 of the ejection surface 11. Therefore, the strands 100 ejected from the ejection holes 12 of the ejection surface 11 or the deposits generated around the ejection holes 12 of the ejection face 11 are blown off by an air flow whose strength varies, and these deposits are sufficiently removed in a short time. can do. In the third modified example, the temporal and/or spatial variation in the strength of the air flow ejected from the opening 33 of the hood 32 due to the rotation of the nozzle 31 is secured. Therefore, in the third modification, the adhering matter can be reliably removed by the sufficient fluctuation of the air flow.
 図11は、第4変形例の付着物除去装置を示す斜視図である。ダイ10において、略鉛直方向に延びた吐出面11の鉛直方向の略中央に所定径を有する第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の4個の吐出孔が略水平方向に所定間隔をおいて一列に並んで形成されている。第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16からは、それぞれ第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104が所定の線速度で吐出されている。 FIG. 11 is a perspective view showing an adhering matter removing device of a fourth modified example. In the die 10, the four first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 each having a predetermined diameter are provided at the substantially vertical center of the discharge surface 11 extending in the substantially vertical direction. Of the discharge holes are formed side by side in a row at a predetermined interval in a substantially horizontal direction. From the first discharge hole 13, the second discharge hole 14, the third discharge hole 15, and the fourth discharge hole 16, the first strand 101, the second strand 102, the third strand 103, and the fourth strand 104 have predetermined lines. Discharged at a speed.
 第4変形例の付着物除去装置は、吐出面11上で一列の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16から所定間隔を有して上側にあって、この一列に沿って略水平方向に延びるように配置されたパイプ35を有している。パイプ35には所定の圧力の気体が供給され、パイプ35の下側には所定の方向に気体を噴射するように所定の位置に第1噴射孔35A、及び第2噴射孔35Bが形成されている。図中に示すように、吐出面11に向かって右下の方向に気体を噴射する第1噴射孔35Aと、吐出面11に向かって左下の方向に気体を噴射する第2噴射孔35Bとが交互に形成されている。パイプ35において、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の上側には、第1吐出孔13、第2吐出孔14、第3吐出孔15及び第4吐出孔16の周囲にそれぞれ気流が当たるように、それぞれ一対の第1噴射孔35A及び第2噴射孔35Bが形成されている。パイプ35は、このパイプ35が延びる方向に沿って所定の距離を所定の周期で揺動される。 The adhered matter removing device of the fourth modified example has a predetermined interval above the ejection surface 11 from the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 arranged in a row. Therefore, the pipe 35 is arranged so as to extend in a substantially horizontal direction along this one row. A gas having a predetermined pressure is supplied to the pipe 35, and a first injection hole 35A and a second injection hole 35B are formed at predetermined positions below the pipe 35 so as to inject the gas in a predetermined direction. There is. As shown in the drawing, a first injection hole 35A for injecting gas in the lower right direction toward the ejection surface 11 and a second injection hole 35B for injecting gas in the lower left direction toward the ejection surface 11 are formed. They are formed alternately. In the pipe 35, the first ejection hole 13, the second ejection hole 14, the third ejection hole 14, the third ejection hole 15, and the third ejection hole 15 of the ejection surface 11 are provided above the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16. A pair of first injection holes 35A and second injection holes 35B are formed so that the airflows hit the discharge holes 15 and the fourth discharge holes 16, respectively. The pipe 35 is swung at a predetermined distance along a direction in which the pipe 35 extends at a predetermined cycle.
 第4変形例において、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15、第4吐出孔16には、それぞれ上側のパイプ35に形成された一対の第1噴射孔35A及び第2噴射孔35Bから気体が噴射され、吐出面の第1吐出孔13、第2吐出孔14、第3吐出孔15、第4吐出孔16の周囲に強度が時間的及び/又は空間的に変動する気流が当たるようにすることができる。したがって、吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15、第4吐出孔16から吐出された第1ストランド101、第2ストランド102、第3ストランド103及び第4ストランド104又は吐出面11の第1吐出孔13、第2吐出孔14、第3吐出孔15、第4吐出孔16の周囲に生じた付着物を強度が変動する気流で吹き飛ばし、これらの付着物を短時間で十分に除去することができる。また、第4変形例は、パイプ35の延びる方向への揺動のみで足りるため駆動が容易である。さらに、吐出孔の数が異なるダイ10に適用する場合にも、パイプ35の長さを変更することにより容易に対応することができる。 In the fourth modified example, the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 of the ejection surface 11 each have a pair of first ejections formed in the upper pipe 35. Gas is ejected from the holes 35A and the second ejection holes 35B, and the strength is temporal and/or temporal around the first ejection hole 13, the second ejection hole 14, the third ejection hole 15, and the fourth ejection hole 16 on the ejection surface. It is possible to impinge a spatially varying air flow. Therefore, the first strand 101, the second strand 102, the third strand 103 and the fourth strand 103 discharged from the first discharge hole 13, the second discharge hole 14, the third discharge hole 15 and the fourth discharge hole 16 of the discharge surface 11 The deposits generated around the strands 104 or the first discharge holes 13, the second discharge holes 14, the third discharge holes 15, and the fourth discharge holes 16 of the discharge surface 11 are blown off by an air flow whose strength changes, and these deposits are generated. Can be sufficiently removed in a short time. In addition, in the fourth modified example, since it is sufficient to swing the pipe 35 in the extending direction, driving is easy. Further, even when applied to the die 10 having a different number of discharge holes, it can be easily dealt with by changing the length of the pipe 35.
 以下、実施例と比較例を挙げて本発明の内容を具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the content of the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 [実施例1]
 ポリアセタール樹脂(トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させてなるポリアセタール共重合体(メルトマスフローレイト(ISO1133に準拠し、温度190℃,荷重2160gで測定):2.5g/10min)100質量部と、主鎖がポリエチレンであり、側鎖がアクリロニトリル-スチレン共重合体であるグラフト共重合体7質量部と、ヒンダードフェノール系酸化防止剤(製品名:Irganox 1010,BASFジャパン社製)0.5質量部とを、二軸押出機(日本製鋼所製TEX65)に投入し、バレル設定温度:200℃、ダイ設定:170℃、温度スクリュー回転数:280rpm、押出量:350kg/hにて押し出しを行った。また、押し出されたストランドは、図3に示すように、ウォーターバス50を経てカッター60に搬送されるようにした。吐出面11には一列に並んだ直径4.0mmの円形の吐出孔を24個設置した。
[Example 1]
Polyacetal resin (polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt mass flow rate (measured according to ISO 1133 at a temperature of 190° C. and a load of 2160 g)) : 2.5 g/10 min) 100 parts by mass, 7 parts by mass of a graft copolymer having a main chain of polyethylene and a side chain of an acrylonitrile-styrene copolymer, and a hindered phenolic antioxidant (product name: 0.5 parts by mass of Irganox 1010 (manufactured by BASF Japan Ltd.) are charged into a twin-screw extruder (TEX65 manufactured by Japan Steel Works), barrel setting temperature: 200° C., die setting: 170° C., temperature screw rotation speed: 280 rpm. The extrusion rate was 350 kg/h, and the extruded strands were conveyed to the cutter 60 through the water bath 50 as shown in Fig. 3. The discharge surface 11 was in a line. Twenty-four circular discharge holes having a diameter of 4.0 mm arranged side by side were installed.
 付着物除去装置は2本のノズルを有する第1変形例のものを使用した。コンプレッサを用いて30L/分の流量で空気を設定温度350℃のヒーターに送り込み加熱したのち、これを内径2mmの円筒断面を有する長さ50mmのノズルへ供給し、ノズル先端から吐出孔付近に噴出させた。ノズルの先端と樹脂吐出面の間隔は5mmとした。吐出孔付近での気体の温度は、気体流量、ノズルの形状、ノズルの先端と樹脂吐出面の間隔等に応じて、ヒーターの設定温度350℃より低下している。各吐出孔について、隣接吐出孔の中心距離を振幅とする二回の揺動を行った後、隣接する吐出孔の揺動開始位置に並進する動作を繰り返した。押出を60時間継続し実施したが、その間、付着物除去の操作は不要であった。 As the deposit removing device, the one of the first modified example having two nozzles was used. Air is sent to a heater with a preset temperature of 350°C at a flow rate of 30 L/min using a compressor for heating, and then this is supplied to a nozzle with a cylindrical cross section with an inner diameter of 2 mm and a length of 50 mm, and is jetted from the tip of the nozzle to the vicinity of the discharge hole. Let The distance between the tip of the nozzle and the resin ejection surface was 5 mm. The temperature of the gas in the vicinity of the discharge hole is lower than the set temperature of 350° C. of the heater depending on the gas flow rate, the shape of the nozzle, the distance between the nozzle tip and the resin discharge surface, and the like. Each of the ejection holes was rocked twice with the center distance of the adjacent ejection hole as the amplitude, and then translated to the rocking start position of the adjacent ejection hole. The extrusion was continued for 60 hours, but during that period, the operation for removing the deposit was unnecessary.
 表1に、実施例1の条件と付着物除去の結果を示した。表1には、以下の実施例2~4及び比較例1についても併せて示した。 Table 1 shows the conditions of Example 1 and the results of removing the deposits. Table 1 also shows the following Examples 2 to 4 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 付着物除去装置の揺動を各吐出孔ではなく、全体の吐出孔に対して、両端の吐出孔の間隔を振幅とする揺動を継続して実施した以外は実施例1と同様の操作を行った。押出中の付着物除去操作は30時間に一度実施が必要であった。
[Example 2]
The same operation as in Example 1 was performed, except that the swinging of the adhered matter removing device was performed not for the respective discharge holes but for the entire discharge holes by continuously swinging the discharge holes at the intervals of the both ends. went. It was necessary to perform the deposit removal operation during extrusion once every 30 hours.
 [実施例3]
 付着物除去装置のノズルへ送り込む空気を加熱しない以外は実施例1と同様の操作を行った。押出中の付着物除去操作は8時間に一度実施が必要であった。
[Example 3]
The same operation as in Example 1 was performed except that the air sent to the nozzle of the deposit removing device was not heated. It was necessary to perform the deposit removal operation during extrusion once every 8 hours.
 [実施例4]
 付着物除去装置のノズルへ送り込む空気を加熱しないことと両端の吐出孔の間隔を振幅とする揺動を継続して実施した以外は実施例1と同様の操作を行った。押出中の付着物除去操作は5時間に一度実施が必要であった。
[Example 4]
The same operation as in Example 1 was performed, except that the air sent to the nozzle of the adhered matter removing device was not heated and the rocking with the interval between the discharge holes at both ends as the amplitude was continued. It was necessary to perform the deposit removal operation during extrusion once every 5 hours.
 [比較例1]
 付着物除去装置を使用せずに実施例1と同様の押出を実施した。押出中の付着物除去操作は20分に一度実施する必要があった。
[Comparative Example 1]
Extrusion similar to that of Example 1 was carried out without using the deposit removing device. The deposit removal operation during extrusion had to be performed once every 20 minutes.
 [実施例5]
 ポリブチレンテレフタレート樹脂(固有粘度(o-クロロフェノール中で温度35℃の条件で測定):0.69dL/g)100質量部と、繊維径13μmのガラス繊維45質量部を、二軸押出機(日本製鋼所製TEX65)に投入し、バレル設定温度:250℃、ダイ設定温度:270℃、スクリュー回転数:280rpm、押出量:350kg/hにて押し出しを行った。また、押し出されたストランドは、図3に示すように、ウォーターバス50を経てカッター60に搬送されるようにした。吐出面11には一列に並んだ直径4.0mmの円形の吐出孔を21個設置した。
[Example 5]
100 parts by weight of polybutylene terephthalate resin (intrinsic viscosity (measured in o-chlorophenol at a temperature of 35° C.): 0.69 dL/g) and 45 parts by weight of glass fiber having a fiber diameter of 13 μm were combined with a twin-screw extruder ( It was put into TEX65 manufactured by Japan Steel Works and extruded at a barrel setting temperature: 250° C., a die setting temperature: 270° C., a screw rotation speed: 280 rpm, and an extrusion rate: 350 kg/h. Further, the extruded strands were conveyed to the cutter 60 via the water bath 50 as shown in FIG. On the discharge surface 11, 21 circular discharge holes having a diameter of 4.0 mm arranged in a line were installed.
 付着物除去装置は2本のノズルを有する第1変形例のものを使用した。コンプレッサを用いて30L/分の流量で空気を設定温度350℃のヒーターに送り込み加熱したのち、これを内径2mmの円筒断面を有する長さ50mmのノズルへ供給し、ノズル先端から吐出孔付近に噴出させた。ノズルの先端と樹脂吐出面の間隔は5mmとした。吐出孔付近での気体の温度は、気体流量、ノズルの形状、ノズルの先端と樹脂吐出面の間隔等に応じて、ヒーターの設定温度350℃より低下している。各吐出孔について、隣接吐出孔の中心距離を振幅とする二回の揺動を行った後、隣接する吐出孔の揺動開始位置に並進する動作を繰り返した。押出を60時間継続し実施したが、その間、付着物除去の操作は不要であった。 As the deposit removing device, the one of the first modified example having two nozzles was used. Air is sent to a heater with a preset temperature of 350°C at a flow rate of 30 L/min using a compressor for heating, and then this is supplied to a nozzle with a cylindrical cross section with an inner diameter of 2 mm and a length of 50 mm, and is jetted from the tip of the nozzle to the vicinity of the discharge hole. Let The distance between the tip of the nozzle and the resin ejection surface was 5 mm. The temperature of the gas in the vicinity of the discharge hole is lower than the set temperature of 350° C. of the heater depending on the gas flow rate, the shape of the nozzle, the distance between the nozzle tip and the resin discharge surface, and the like. Each of the ejection holes was rocked twice with the center distance of the adjacent ejection hole as the amplitude, and then translated to the rocking start position of the adjacent ejection hole. The extrusion was continued for 60 hours, but during that period, the operation for removing the deposit was unnecessary.
 表2に、実施例5の条件と付着物除去の結果を示した。表2には、以下の実施例6~8及び比較例2についても併せて示した。 Table 2 shows the conditions of Example 5 and the results of removing deposits. Table 2 also shows the following Examples 6 to 8 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例6]
 付着物除去装置の揺動を各吐出孔ではなく、全体の吐出孔に対して、両端の吐出孔の間隔を振幅とする揺動を継続して実施した以外は実施例5と同様の操作を行った。押出中の目ヤニ除去操作は25時間に一度実施が必要であった。
[Example 6]
The same operation as in Example 5 was performed except that the swinging of the adhered matter removing device was performed not for the respective discharge holes but for the entire discharge holes by continuously swinging the discharge holes at the intervals of the both ends. went. It was necessary to carry out the operation for removing eye blemishes during extrusion once every 25 hours.
 [実施例7]
 付着物除去装置のノズルへ送り込む空気を加熱しない以外は実施例5と同様の操作を行った。押出中の付着物除去操作は7時間に一度実施が必要であった。
[Example 7]
The same operation as in Example 5 was performed except that the air sent to the nozzle of the deposit removing device was not heated. It was necessary to perform the deposit removal operation during extrusion once every 7 hours.
 [実施例8]
 付着物除去装置のノズルへ送り込む空気を加熱しないことと両端の吐出孔の間隔を振幅とする揺動を継続して実施した以外は実施例5と同様の操作を行った。押出中の付着物除去操作は4.5時間に一度実施が必要であった。
[Example 8]
The same operation as in Example 5 was performed, except that the air sent to the nozzle of the adhered matter removing device was not heated and the rocking with the interval between the discharge holes at both ends as the amplitude was continued. The deposit removal operation during extrusion had to be performed once every 4.5 hours.
 [比較例2]
 付着物除去装置を使用せずに実施例5と同様の押出を実施した。押出中の目ヤニ除去操作は20分に一度実施する必要があった。
[Comparative Example 2]
Extrusion similar to that of Example 5 was carried out without using the deposit removing device. It was necessary to carry out the operation for removing the eye tarpaulin during the extrusion once every 20 minutes.
 1 ノズル
 2 第1ノズル
 3 第2ノズル
 10 ダイ
 11 吐出面
 12 吐出孔
 13 第1吐出孔
 14 第2吐出孔
 15 第3吐出孔
 16 第4吐出孔
 100 ストランド
 101 第1ストランド
 102 第2ストランド
 103 第3ストランド
 104 第4ストランド
1 Nozzle 2 1st Nozzle 3 2nd Nozzle 10 Die 11 Discharge Surface 12 Discharge Hole 13 First Discharge Hole 14 Second Discharge Hole 15 Third Discharge Hole 16 Fourth Discharge Hole 100 Strand 101 First Strand 102 Second Strand 103 No. 3 strand 104 4th strand

Claims (37)

  1.  ダイの吐出面に形成された吐出孔から吐出された溶融した樹脂のストランド及び/又は前記吐出孔の周囲に生じた付着物を除去するための付着物除去装置であって、
     前記付着物が除去されるように前記吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように気体を噴射する噴射手段を含む付着物除去装置。
    A deposit removing device for removing a strand of molten resin discharged from a discharge hole formed on a discharge surface of a die and/or a deposit generated around the discharge hole,
    An adhering substance removing device including an ejecting unit that ejects gas so that an airflow whose intensity fluctuates temporally and/or spatially hits the periphery of the discharge hole so that the adhering substance is removed.
  2.  前記噴射手段は、
     気体を噴射するノズルと、
     前記ノズルの位置及び/又は方向を制御することができる駆動手段とを含み、
     前記駆動手段は、前記吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、前記ノズルがその位置及び/又は方向について所定の動作をするように駆動する請求項1に記載の付着物除去装置。
    The injection means,
    A nozzle that injects gas,
    Drive means capable of controlling the position and/or orientation of the nozzle,
    The driving means drives the nozzle so as to perform a predetermined operation with respect to its position and/or direction so that an airflow whose intensity fluctuates temporally and/or spatially strikes the discharge hole. The deposit removing device according to 1.
  3.  前記駆動手段は、前記ノズルの位置について、前記ノズルが前記吐出面との間に所定の間隔を有して動作するように制御する請求項2に記載の付着物除去装置。 The deposit removing device according to claim 2, wherein the drive unit controls the position of the nozzle so that the nozzle operates with a predetermined gap between the nozzle and the ejection surface.
  4.  前記駆動手段は、前記ノズルの位置について、前記ノズルが前記吐出面からの距離も変動して動作するように制御する請求項2に記載の付着物除去装置。 The adhering matter removing device according to claim 2, wherein the drive means controls the position of the nozzle so that the nozzle operates while varying the distance from the ejection surface.
  5.  前記駆動手段は、前記ノズルの方向について、前記吐出面に対して所定の角度を有するように制御する請求項2から4のいずれかに記載の付着物除去装置。 The adhering matter removing device according to any one of claims 2 to 4, wherein the driving means controls the direction of the nozzle so as to have a predetermined angle with respect to the ejection surface.
  6.  前記所定の動作は、所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、前記ノズルを位置及び/又は方向について揺動させる揺動動作を含む請求項2から5のいずれかに記載の付着物除去装置。 The predetermined operation includes a rocking operation of rocking the nozzle in a position and/or a direction so that an air flow whose strength fluctuates temporally and/or spatially hits a predetermined discharge hole. The deposit removing device according to any one of 2 to 5.
  7.  前記噴射手段は、一つの吐出孔の周囲に異なる方向から同時に気流を当てることができるような二本以上のノズルを含む請求項2から6のいずれかに記載の付着物除去装置。 The deposit removing device according to any one of claims 2 to 6, wherein the spraying means includes two or more nozzles that can simultaneously apply airflow around one discharge hole from different directions.
  8.  前記二本以上のノズルを支持する支持台をさらに含み、前記駆動手段は前記支持台を介して前記二本以上のノズルを駆動する請求項7に記載の付着物除去装置。 The deposit removing device according to claim 7, further comprising a support base that supports the two or more nozzles, and the drive unit drives the two or more nozzles via the support base.
  9.  前記支持台は、前記二本以上のノズルの間の距離及び前記二本以上のノズルの方向を調整することができる請求項8に記載の付着物除去装置。 The deposit removing device according to claim 8, wherein the support base can adjust a distance between the two or more nozzles and a direction of the two or more nozzles.
  10.  前記吐出面には、水平方向に複数の吐出孔が一列に形成され、前記駆動手段は、前記ノズルの位置について、前記一列の吐出孔に沿って所定の動作をするように制御する請求項2から9のいずれかに記載の付着物除去装置。 3. A plurality of discharge holes are formed in a line in the horizontal direction on the discharge surface, and the drive means controls the position of the nozzle so as to perform a predetermined operation along the discharge holes in the one line. 11. The deposit removing device according to any one of 9 to 9.
  11.  前記所定の動作は、前記吐出孔について所定の吐出孔に対応する位置から他の吐出孔に対応する位置に前記ノズルを並進させる並進動作を含む請求項10に記載の付着物除去装置。 The deposit removing device according to claim 10, wherein the predetermined operation includes a translational operation of translating the nozzle from a position corresponding to a predetermined ejection hole to a position corresponding to another ejection hole of the ejection hole.
  12.  前記噴射手段は、所定の軸の周りに回転可能であり、気体を噴射するノズルを含む請求項1に記載の付着物除去装置。 The adhering matter removing device according to claim 1, wherein the injecting unit includes a nozzle that is rotatable about a predetermined axis and injects a gas.
  13.  前記ノズルは、前記所定の軸について、隣接する吐出孔の方向を含む所定の角度範囲にわたって回転可能である請求項12に記載の付着物除去装置。 The deposit removing device according to claim 12, wherein the nozzle is rotatable about the predetermined axis over a predetermined angle range including directions of adjacent ejection holes.
  14.  前記ノズルは、吐出面に沿って所定の軸の周りに回転可能であり、吐出面上で前記ノズルが回転可能な範囲を覆い、前記ノズルが回転可能な周方向に、隣接する吐出孔を含む所定の角度範囲にのみ開口して前記ノズルから噴射された気体を当該開口した範囲に案内するフードをさらに含む請求項12に記載の付着物除去装置。 The nozzle is rotatable about a predetermined axis along a discharge surface, covers a rotatable range of the nozzle on the discharge surface, and includes adjacent discharge holes in a circumferential direction in which the nozzle is rotatable. The deposit removing device according to claim 12, further comprising a hood which is opened only in a predetermined angle range and guides the gas jetted from the nozzle to the opened range.
  15.  前記噴射手段は、前記吐出面に沿って延び、気体を噴射する噴射孔が形成されたパイプを含み、前記パイプは前記吐出面に沿って移動可能である請求項1に記載の付着物除去装置。 The deposit removing device according to claim 1, wherein the injection unit includes a pipe that extends along the ejection surface and has an injection hole that ejects gas, and the pipe is movable along the ejection surface. ..
  16.  前記パイプは、一方向に延び、前記パイプは当該一方向に沿って移動可能である請求項15に記載の付着物除去装置。 The deposit removing device according to claim 15, wherein the pipe extends in one direction, and the pipe is movable along the one direction.
  17.  前記パイプは、前記噴射孔から噴射された気体により所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように揺動される請求項16に記載の付着物除去装置。 The deposit removal according to claim 16, wherein the pipe is swung so that an air flow whose strength fluctuates temporally and/or spatially hits a predetermined discharge hole by the gas injected from the injection hole. apparatus.
  18.  前記噴射手段は、所定の流量の気体を噴射する請求項1から17のいずれかに記載の付着物除去装置。 The deposit removing device according to any one of claims 1 to 17, wherein the spraying unit sprays a gas at a predetermined flow rate.
  19.  前記噴射手段に気体を供給する気体供給手段をさらに含む請求項1から18のいずれかに記載の付着物除去装置。 The deposit removing device according to any one of claims 1 to 18, further comprising gas supply means for supplying gas to the injection means.
  20.  前記噴射手段に供給する気体の圧力を調整する圧力調整手段をさらに含む請求項1から19のいずれかに記載の付着物除去装置。 The deposit removing device according to any one of claims 1 to 19, further comprising pressure adjusting means for adjusting the pressure of the gas supplied to the injection means.
  21.  前記噴射手段に供給する気体を加熱する気体加熱手段をさらに含む請求項1から20のいずれかに記載の付着物除去装置。 The deposit removing device according to any one of claims 1 to 20, further comprising a gas heating unit that heats a gas supplied to the injection unit.
  22.  ダイの吐出面に形成された吐出孔から吐出された溶融した樹脂のストランド及び/又は前記吐出孔の周囲に生じた付着物を除去するための付着物除去方法であって、
     前記付着物が除去されるように前記吐出孔の周囲に時間的/及び空間的に強度が変動する気流が当たるように気体を噴射する噴射ステップを含む付着物除去方法。
    A method for removing deposits for removing a strand of molten resin discharged from a discharge hole formed on a discharge surface of a die and/or a deposit formed around the discharge hole,
    A method for removing deposits, which comprises a spraying step of spraying a gas so that an air flow whose strength fluctuates temporally and/or spatially hits the periphery of the discharge holes so that the deposits are removed.
  23.  前記噴射ステップは、気体を噴射するノズルの位置及び/又は方向を制御し、前記吐出孔について所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、前記ノズルがその位置及び/又は方向について所定の動作をするように駆動する駆動ステップを含む請求項22に記載の付着物除去方法。 The injecting step controls a position and/or a direction of a nozzle for injecting a gas, and the airflow of which the intensity fluctuates temporally and/or spatially is applied to the ejection hole around a predetermined ejection hole. The deposit removing method according to claim 22, further comprising a driving step of driving the nozzle so as to perform a predetermined operation with respect to its position and/or direction.
  24.  前記噴射ステップは、前記吐出面との間に所定の間隔を有するように前記ノズルを駆動する請求項23に記載の付着物除去方法。 The deposit removing method according to claim 23, wherein in the spraying step, the nozzle is driven so as to have a predetermined distance from the discharge surface.
  25.  前記駆動ステップは、前記吐出面との間の距離が変動するように前記ノズルを駆動する請求項23に記載の付着物除去方法。 24. The deposit removing method according to claim 23, wherein the driving step drives the nozzle so that a distance between the nozzle and the ejection surface varies.
  26.  前記駆動ステップは、前記吐出面に対して所定の角度を有するように前記ノズルを駆動する請求項23から25のいずれかに記載の付着物除去方法。 26. The deposit removing method according to claim 23, wherein the driving step drives the nozzle so as to have a predetermined angle with respect to the ejection surface.
  27.  前記駆動ステップは、所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、前記ノズルを位置及び/又は方向について揺動させる揺動ステップを含む請求項23から26のいずれかに記載の付着物除去方法。 24. The driving step includes a rocking step of rocking the nozzle with respect to a position and/or a direction so that an airflow having a temporally and/or spatially varying intensity hits a predetermined discharge hole. 27. The method for removing deposits according to any one of 26 to 26.
  28.  前記吐出面には、水平方向に複数の吐出孔が一列に形成され、前記駆動ステップは、前記ノズルを前記一列の吐出孔に沿って駆動する請求項23から26のいずれかに記載の付着物除去方法。 The deposit according to any one of claims 23 to 26, wherein a plurality of discharge holes are formed in a line in the horizontal direction on the discharge surface, and the driving step drives the nozzles along the line of the discharge holes. Removal method.
  29.  前記駆動ステップは、所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように、前記ノズルを位置及び/又は方向について揺動させる揺動ステップと、所定の吐出孔に対応する位置から他の吐出孔に対応する位置に前記ノズルを並進させる並進ステップとを交互に繰り返す請求項28に記載の付着物除去方法。 The driving step includes a swinging step of swinging the nozzle in a position and/or a direction so that an air flow whose intensity fluctuates temporally and/or spatially hits a predetermined discharge hole, and a predetermined discharge. 29. The deposit removing method according to claim 28, wherein a translation step of translating the nozzle from a position corresponding to a hole to a position corresponding to another ejection hole is alternately repeated.
  30.  前記噴射ステップは、所定の軸の周りに隣接する吐出孔の方向を含む所定の角度範囲にわたって回転可能である気体を噴射するノズルを回転させるように駆動する駆動ステップを含む請求項22に記載の付着物除去方法。 23. The jetting step according to claim 22, wherein the jetting step includes a driving step of driving to rotate a nozzle for jetting a gas that is rotatable around a predetermined axis over a predetermined angular range including a direction of an adjacent ejection hole. How to remove deposits.
  31.  前記噴射ステップは、吐出面に沿って所定の軸の周りに回転可能であって、吐出面上で回転可能な周方向に隣接する吐出孔を含む所定の角度範囲にのみ開口したフードによって覆われた気体を噴射するノズルを回転させるように駆動する駆動ステップを含む請求項22に記載の付着物除去方法。 The jetting step is covered by a hood that is rotatable about a predetermined axis along the discharge surface and that is open only in a predetermined angle range that includes circumferentially adjacent discharge holes that are rotatable on the discharge surface. 23. The deposit removing method according to claim 22, further comprising a driving step of driving to rotate the nozzle for injecting the gas.
  32.  前記噴射ステップは、吐出面に沿って延び吐出面に沿って移動可能である気体を噴射する噴射孔が形成されたパイプを移動させるように駆動する駆動ステップを含む請求項22に記載の付着物除去方法。 23. The deposit according to claim 22, wherein the injecting step includes a driving step of driving to move a pipe having an injection hole extending along the ejection surface and ejecting a gas that is movable along the ejection surface. Removal method.
  33.  前記駆動ステップは、前記噴射孔から噴射された気体により所定の吐出孔の周囲に時間的及び/又は空間的に強度が変動する気流が当たるように前記パイプを揺動させる揺動ステップを含む請求項32に記載の付着物除去方法。 The driving step includes a rocking step in which the pipe is rocked so that an air flow whose strength temporally and/or spatially fluctuates around a predetermined discharge hole by the gas injected from the injection hole. Item 32. A method for removing deposits according to Item 32.
  34.  前記噴射ステップは、所定の流量の気体を噴射する請求項22から33のいずれかに記載の付着物除去方法。 The deposit removing method according to any one of claims 22 to 33, wherein the injecting step injects a gas at a predetermined flow rate.
  35.  前記噴射ステップは、噴射する気体を供給する気体供給ステップをさらに含む請求項22から34のいずれかに記載の付着物除去方法。 The deposit removing method according to any one of claims 22 to 34, wherein the spraying step further includes a gas supply step of supplying a gas to be sprayed.
  36.  前記噴射ステップは、噴射する気体の圧力を調整する圧力調整ステップをさらに含む請求項22から35のいずれかに記載の付着物除去方法。 The deposit removing method according to any one of claims 22 to 35, wherein the injecting step further includes a pressure adjusting step of adjusting the pressure of the gas to be injected.
  37.  前記噴射ステップは、噴射する気体を加熱する気体加熱ステップをさらに含む請求項22から36のいずれかに記載の付着物除去方法。 The method of removing deposits according to any one of claims 22 to 36, wherein the spraying step further includes a gas heating step of heating the sprayed gas.
PCT/JP2020/000130 2019-02-19 2020-01-07 Device and method for removing deposits WO2020170620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080015300.0A CN113439017B (en) 2019-02-19 2020-01-07 Device and method for removing attached matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-027401 2019-02-19
JP2019027401A JP7223595B2 (en) 2019-02-19 2019-02-19 Deposit removing device and method

Publications (1)

Publication Number Publication Date
WO2020170620A1 true WO2020170620A1 (en) 2020-08-27

Family

ID=72143474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000130 WO2020170620A1 (en) 2019-02-19 2020-01-07 Device and method for removing deposits

Country Status (4)

Country Link
JP (1) JP7223595B2 (en)
CN (1) CN113439017B (en)
TW (1) TWI829847B (en)
WO (1) WO2020170620A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254234A (en) * 1996-03-26 1997-09-30 Showa Electric Wire & Cable Co Ltd Extrusion coating molding machine
JP2011011459A (en) * 2009-07-02 2011-01-20 Sumitomo Electric Ind Ltd Device of removing material dregs
JP4747951B2 (en) * 2006-05-30 2011-08-17 パナソニック電工株式会社 Communication route construction method and communication terminal
WO2012131980A1 (en) * 2011-03-31 2012-10-04 ポリプラスチックス株式会社 Method for producing thermoplastic resin composition pellet, extruder, and die plate

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2948201C2 (en) * 1979-11-30 1985-09-26 Degussa Ag, 6000 Frankfurt Apparatus and method for periodically cleaning heat exchanger tubes from solid deposits and the use of this apparatus
JPH0535243U (en) * 1991-10-23 1993-05-14 昭和電線電纜株式会社 Adhesion remover
JPH0617324A (en) * 1992-06-26 1994-01-25 Murao & Co Ltd Lap removing device for lap bobbin
JP3678835B2 (en) * 1996-02-28 2005-08-03 旭化成ケミカルズ株式会社 Thermoplastic resin molding method
JPH10146606A (en) * 1996-11-14 1998-06-02 Nkk Corp Device for removing deposits on roll
JP3562219B2 (en) * 1997-06-04 2004-09-08 オムロン株式会社 Automatic soldering equipment
JP2002004234A (en) * 2000-06-20 2002-01-09 Bridgestone Corp Adhered material removal method of hard floor face and road surface
AT411264B (en) * 2002-02-14 2003-11-25 Voest Alpine Ind Anlagen DISTRIBUTOR FLOOR FOR DISTRIBUTING A GAS LOADED WITH FINE SOLID PARTICLES
JP2004174845A (en) * 2002-11-26 2004-06-24 Toshiba Tec Corp Cleaning device for inkjet head
JP4046632B2 (en) * 2003-03-28 2008-02-13 三菱重工プラント建設株式会社 Medium blowing device and nozzle head for medium blowing device
DE102004013304B4 (en) * 2004-02-27 2014-10-30 Nukem Technologies Gmbh Arrangement and method for removing deposits from a tank
JP2005254156A (en) * 2004-03-12 2005-09-22 Kumagai Gumi Co Ltd Grinding and sweeping apparatus of surface adherent matter
JP3813162B2 (en) * 2004-08-05 2006-08-23 株式会社神戸製鋼所 Deposit removal device
ATE491533T1 (en) * 2004-08-05 2011-01-15 Kobe Steel Ltd DEPOSIT REMOVAL DEVICE
CA2534156C (en) * 2005-01-26 2012-05-29 Steven B. Taplin Sediment removal apparatus and method for removing sediment from open waterways
CN2808423Y (en) * 2005-04-11 2006-08-23 黄雷君 Machine for removing residual slag from cutting tool
EP1772671A1 (en) * 2005-10-08 2007-04-11 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Cleaning station for a robot-assisted or automated burner
JP4846629B2 (en) * 2007-03-12 2011-12-28 株式会社リコー Curtain coating apparatus and curtain coating method
EP2273193B1 (en) * 2008-04-10 2016-03-16 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner, combustion apparatus using solid fuel burner
US8001994B2 (en) * 2008-04-14 2011-08-23 Martin Engineering Company Gas channeling device for directing blasts of gas through alternative outlet passageways and method therefor
AT507411B1 (en) * 2009-05-15 2010-05-15 Lhs Clean Air Systems Gmbh DEVICE FOR SEPARATING PARTICLES OF A LIQUID COATING MATERIAL
JP5774901B2 (en) * 2011-04-28 2015-09-09 三菱エンジニアリングプラスチックス株式会社 Resin extrusion die
DE102012023002A1 (en) * 2012-11-24 2014-05-28 Oerlikon Textile Gmbh & Co. Kg Device for melt spinning and cooling several synthetic threads, has guide sheet and preparation device that are arranged together at vertically adjustable carrier wall of thread shaft through blow box held to spinning beam
JP2014151267A (en) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd Two-fluid nozzle and nozzle cleaning device with the same
JP6089862B2 (en) * 2013-03-27 2017-03-08 日本電気株式会社 Nozzle with deposit removing mechanism, and liquid supply apparatus provided with the nozzle
JP2014240046A (en) * 2013-06-11 2014-12-25 株式会社デンソー Foreign object removal device
US10553409B2 (en) * 2017-05-12 2020-02-04 Tokyo Electron Limited Method of cleaning plasma processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254234A (en) * 1996-03-26 1997-09-30 Showa Electric Wire & Cable Co Ltd Extrusion coating molding machine
JP4747951B2 (en) * 2006-05-30 2011-08-17 パナソニック電工株式会社 Communication route construction method and communication terminal
JP2011011459A (en) * 2009-07-02 2011-01-20 Sumitomo Electric Ind Ltd Device of removing material dregs
WO2012131980A1 (en) * 2011-03-31 2012-10-04 ポリプラスチックス株式会社 Method for producing thermoplastic resin composition pellet, extruder, and die plate

Also Published As

Publication number Publication date
CN113439017B (en) 2023-09-05
CN113439017A (en) 2021-09-24
JP7223595B2 (en) 2023-02-16
TW202039209A (en) 2020-11-01
TWI829847B (en) 2024-01-21
JP2020131537A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
CN1757800B (en) Device for producing filaments from thermoplastic synthetic
WO2017108001A1 (en) Intelligent dual-line production system for material plasticization
JP2018090941A (en) Manufacturing method of silicone rubber glove
WO2020170620A1 (en) Device and method for removing deposits
CN206703520U (en) A kind of linear array injecting type FDM 3 D-printing shower nozzles
CN108544756A (en) 3D printer for printing stacked horizontally
JP2007014863A (en) Washing method of coating gun
US3563791A (en) Method of coating the inside of a cylindrical member
KR100473468B1 (en) An apparatus for continuous spray casting of alloy ingots
JPH09271965A (en) Patterning device
JP4540031B2 (en) Rotating nozzle device for crushing concrete with water jet
CA3119151A1 (en) Injection method and injection apparatus for molten resin, and injection stretch blow molding machine using injection apparatus
JP5636838B2 (en) Thermal spraying method
JP2012126948A (en) Thermal spraying method
KR101857750B1 (en) Device for manufacturing metal powder using gas atomizer
CN1215654A (en) Gas injected molding machine
KR100508344B1 (en) Spray Casting Device of Alloy Ingot
KR100705699B1 (en) Spray casting device of alloy billet
JP7423415B2 (en) Molding method for synthetic resin products and molds used therein
JP7368158B2 (en) Gas replacement method and device for injection molding machine
CN108048626A (en) A kind of device and method for reducing laser quenching soft ribbons
KR19980035868U (en) Multi-nozzle Gas Sprayer for Spray Casting
KR101607001B1 (en) Nozzle unit for tundish and apparatus for manfacturing water injected iron-based powder having the same
CN107351395A (en) The method for cleaning of 3D printer shower nozzle inner product reservation or revocation material
KR20030052910A (en) Spray casting device of alloy ingot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20760112

Country of ref document: EP

Kind code of ref document: A1