WO2020170571A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2020170571A1
WO2020170571A1 PCT/JP2019/048723 JP2019048723W WO2020170571A1 WO 2020170571 A1 WO2020170571 A1 WO 2020170571A1 JP 2019048723 W JP2019048723 W JP 2019048723W WO 2020170571 A1 WO2020170571 A1 WO 2020170571A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
interface
plane
base material
alumina
Prior art date
Application number
PCT/JP2019/048723
Other languages
English (en)
French (fr)
Inventor
晋 奥野
今村 晋也
勇樹 力宗
保樹 城戸
史佳 小林
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2020533322A priority Critical patent/JP6912032B2/ja
Priority to CN201980084743.2A priority patent/CN113226603B/zh
Priority to US17/298,966 priority patent/US11998993B2/en
Priority to EP19915691.0A priority patent/EP3871814A4/en
Publication of WO2020170571A1 publication Critical patent/WO2020170571A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/36Titanium nitride

Definitions

  • Patent Document 1 discloses that when viewed in a plane from the direction normal to the surface of the layer, the total area of the crystal grains showing the (0001) plane crystal orientation is 70% or more. Disclosed is a surface coated cutting tool having a coating comprising an Al 2 O 3 layer.
  • a cutting tool comprising a substrate and a coating for coating the substrate,
  • the coating includes an ⁇ -alumina layer provided on the substrate,
  • the ⁇ -alumina layer contains ⁇ -alumina crystal grains,
  • the ⁇ -alumina layer includes a lower part and an upper part,
  • the lower part is a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface on the side of the base material in the thickness direction, and 1.
  • the area ratio occupied by the ⁇ -alumina crystal grains is 50% or more such that the normal direction of the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • the lower side portion has an area ratio of the crystal grains of ⁇ -alumina of which the normal direction of the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface is 50% or more.
  • FIG. 1 is a perspective view illustrating one embodiment of a base material of a cutting tool.
  • FIG. 2 is a schematic cross-sectional view of the cutting tool according to one aspect of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view of a cutting tool according to another aspect of this embodiment.
  • Figure 4 is a part of the color map created based on the cross-section of the ⁇ -Al 2 O 3 layer obtained by cutting the film in a plane including the normal of the second interface of ⁇ -Al 2 O 3 layer .
  • FIG. 5 is a schematic cross section which shows an example of the chemical vapor deposition apparatus used for manufacture of a film.
  • Patent Document 1 and Patent Document 2 by having a coating film containing the ⁇ -Al 2 O 3 layer having the above-described structure, mechanical properties such as wear resistance, chipping resistance, and peeling resistance of the cutting tool are improved. Therefore, it is expected that the life of the cutting tool will be extended.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a cutting tool having improved peel resistance.
  • a cutting tool includes A cutting tool comprising a substrate and a coating for coating the substrate,
  • the coating includes an ⁇ -alumina layer provided on the substrate,
  • the ⁇ -alumina layer contains ⁇ -alumina crystal grains,
  • the ⁇ -alumina layer includes a lower part and an upper part,
  • the lower part is a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface on the side of the base material in the thickness direction, and 1.
  • the area ratio occupied by the ⁇ -alumina crystal grains is 50% or more such that the normal direction of the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • the lower portion has an area ratio of the crystal grains of ⁇ -alumina of which the normal direction of the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface is 50% or more,
  • the thickness of the ⁇ -alumina layer is 3 ⁇ m or more and 20 ⁇ m or less.
  • peeling resistance of the cutting tool is improved by having the above-mentioned configuration.
  • peeling resistance means the resistance to the film peeling off from the substrate.
  • the coating further includes an internal layer provided between the base material and the ⁇ -alumina layer,
  • the inner layer contains TiCN.
  • the coating further includes an intermediate layer provided between the inner layer and the ⁇ -alumina layer,
  • the intermediate layer contains a compound composed of titanium element and at least one element selected from the group consisting of carbon, nitrogen, boron and oxygen,
  • the composition of the intermediate layer is different from that of the inner layer.
  • the coating further includes an outermost layer provided on the ⁇ -alumina layer,
  • the outermost layer contains a compound containing titanium element and one element selected from the group consisting of carbon, nitrogen and boron.
  • the thickness of the film is 3 ⁇ m or more and 30 ⁇ m or less.
  • this embodiment is not limited to this.
  • the notation in the form of “X to Y” means the upper limit and the lower limit of the range (that is, X or more and Y or less), and when there is no unit description in X and only the unit in Y, X And the unit of Y are the same.
  • a compound is represented by a chemical formula in which the composition ratio of constituent elements is not limited, such as “TiC”, the chemical formula is represented by any conventionally known composition ratio (element ratio). Shall be included.
  • the above chemical formula includes not only the stoichiometric composition but also the non-stoichiometric composition.
  • the chemical formula “TiC” includes not only the stoichiometric composition “Ti 1 C 1 ”, but also a non-stoichiometric composition such as “Ti 1 C 0.8 ”. The same applies to the description of compounds other than "TiC”.
  • a cutting tool comprising a substrate and a coating for coating the substrate,
  • the coating film includes an ⁇ -Al 2 O 3 layer ( ⁇ -alumina layer) provided on the substrate,
  • the ⁇ -Al 2 O 3 layer contains ⁇ -Al 2 O 3 ( ⁇ -alumina) crystal grains,
  • the ⁇ -Al 2 O 3 layer includes a lower part and an upper part, The lower part is a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface on the side of the base material in the thickness direction, and 1.
  • the cross section of the ⁇ -Al 2 O 3 layer cut along a plane including the normal line of the second interface was analyzed by electron backscattering diffraction analysis using a field emission scanning microscope to analyze the ⁇ -Al 2 O 3 layer.
  • the upper portion has an area ratio of the crystal grains of ⁇ -Al 2 O 3 of 50% or more such that the normal direction of the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • the area ratio occupied by the ⁇ -Al 2 O 3 crystal grains in which the normal direction of the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface is 50% or more.
  • the thickness of the ⁇ -Al 2 O 3 layer is 3 ⁇ m or more and 20 ⁇ m or less.
  • the surface-coated cutting tool (hereinafter, may be simply referred to as “cutting tool”) 50 of the present embodiment includes a base material 10 and a coating 40 that covers the base material 10 (see FIG. 2 ).
  • the coating film may cover the rake face of the base material, or may cover a portion other than the rake face (for example, a flank face).
  • the cutting tools include, for example, drills, end mills, cutting edge exchangeable cutting tips for drills, cutting edge exchangeable cutting tips for end mills, cutting edge exchangeable cutting tips for milling, cutting edge exchangeable cutting tips for turning, metal saws, and gear cutting tools. , Reamers, taps, etc.
  • the base material of the present embodiment any base material conventionally known as this kind of base material can be used.
  • the base material is a cemented carbide (eg, tungsten carbide (WC)-based cemented carbide, a cemented carbide containing Co in addition to WC, a carbonitride of Cr, Ti, Ta, Nb, etc. in addition to WC). Cemented carbide, etc.), cermet (having TiC, TiN, TiCN, etc.
  • high-speed steel high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic crystal -Type boron nitride sintered body (cBN sintered body) and at least one selected from the group consisting of diamond sintered bodies are preferable, and at least 1 selected from the group consisting of cemented carbide, cermet and cBN sintered body. More preferably, it comprises a seed.
  • these various base materials it is particularly preferable to select WC-based cemented carbide or cBN sintered body. The reason is that these base materials have an excellent balance of hardness and strength, especially at high temperatures, and have excellent properties as a base material for a cutting tool for the above-mentioned use.
  • the effect of this embodiment is exhibited even if such cemented carbide contains free carbon or an abnormal phase called ⁇ phase.
  • the substrate used in this embodiment may have a modified surface.
  • a de- ⁇ layer may be formed on the surface thereof, and in the case of a cBN sintered body, a surface hardened layer may be formed, and thus the surface may be modified in this manner. The effect of this embodiment is shown.
  • FIG. 1 is a perspective view illustrating one mode of a base material of a cutting tool.
  • the base material having such a shape is used, for example, as a base material for a cutting edge exchange type cutting tip for turning.
  • the base material 10 has a rake face 1, a flank face 2, and a cutting edge ridge 3 where the rake face 1 and the flank face 2 intersect. That is, the rake face 1 and the flank face 2 are faces that are connected to each other with the cutting edge ridge portion 3 interposed therebetween.
  • the cutting edge ridge portion 3 constitutes the tip end portion of the cutting blade of the base material 10.
  • Such a shape of the base material 10 can be understood as the shape of the cutting tool.
  • the base material 10 includes a shape with and without a chip breaker.
  • the shape of the cutting edge ridge 3 is a sharp edge (a ridge where a rake face and a flank intersect), honing (a shape with a sharp edge added), negative land (chamfered shape), and a combination of honing and negative land. Of the shapes, any shape is included.
  • the shape of the base material 10 and the name of each part have been described above with reference to FIG. 1.
  • the shape corresponding to the base material 10 and the name of each part are the same as above.
  • the term will be used. That is, the cutting tool has a rake face, a flank face, and a cutting edge ridge portion connecting the rake face and the flank face.
  • the coating film 40 according to the present embodiment includes the ⁇ -Al 2 O 3 layer 20 provided on the base material 10 (see FIG. 2).
  • the "coating” covers at least a part of the above-mentioned base material (for example, a rake face that comes into contact with a work material at the time of cutting) to obtain various properties such as chipping resistance, wear resistance, and peeling resistance in a cutting tool. It has the effect of improving the characteristics. It is preferable that the coating film covers not only a part of the base material but the entire surface of the base material. However, it does not depart from the scope of the present embodiment even if a part of the base material is not covered with the coating film or the structure of the coating film is partially different.
  • the thickness of the coating film is preferably 3 ⁇ m or more and 30 ⁇ m or less, and more preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the coating means the sum of the thicknesses of the layers constituting the coating.
  • Examples of the “layer constituting the coating film” include an ⁇ -Al 2 O 3 layer, an intermediate layer, an inner layer and an outermost layer which will be described later.
  • the thickness of the coating film is, for example, by using a scanning transmission electron microscope (STEM), measuring 10 arbitrary points in a cross-section sample parallel to the normal direction of the surface of the substrate, and measuring the thickness of 10 points. It is possible to obtain it by taking the average value.
  • STEM scanning transmission electron microscope
  • Examples of the scanning transmission electron microscope include JEM-2100F (trade name) manufactured by JEOL Ltd.
  • the ⁇ -Al 2 O 3 layer of the present embodiment includes ⁇ -Al 2 O 3 (aluminum oxide having a crystal structure of ⁇ type) crystal grains (hereinafter, may be simply referred to as “crystal grains”). That is, the ⁇ -Al 2 O 3 layer is a layer containing polycrystalline ⁇ -Al 2 O 3 .
  • the ⁇ -Al 2 O 3 layer may be provided immediately above the base material as long as the effect of the cutting tool according to the present embodiment is not impaired, and other layers such as an inner layer and an intermediate layer described later may be provided. It may be provided on the above-mentioned base material via the layer of.
  • the ⁇ -Al 2 O 3 layer may have another layer such as an outermost layer provided thereon.
  • the ⁇ -Al 2 O 3 layer may be the outermost layer (outermost layer) of the coating.
  • the ⁇ -Al 2 O 3 layer has the following features. That is, the ⁇ -Al 2 O 3 layer includes a lower part and an upper part, The lower part is a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface on the side of the base material in the thickness direction, and 1. A region sandwiched between an imaginary plane B parallel to the first interface and passing through a point 3 ⁇ m apart, The upper portion is a virtual plane C parallel to the second interface passing through a point 0.5 ⁇ m away from the second interface opposite to the base material side in the thickness direction, and 1 ⁇ m further from the virtual plane C in the thickness direction.
  • the cross section of the ⁇ -Al 2 O 3 layer cut along a plane including the normal line of the second interface was analyzed by electron backscattering diffraction analysis using a field emission scanning microscope to analyze the ⁇ -Al 2 O 3 layer.
  • the upper portion has crystal grains of ⁇ -Al 2 O 3 (hereinafter, “(006) plane orientation”) in which the normal direction of the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • crystalline crystal grains occupy an area ratio of 50% or more
  • the lower part has a crystal grain of ⁇ -Al 2 O 3 (hereinafter, “(110) plane), in which the normal direction of the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • oriented crystal grains has an area ratio of 50% or more.
  • the first interface 20a of the ⁇ -Al 2 O 3 layer 20 shown in FIG. 4 is an interface located on the base material 10 side, and the second interface 20b is located opposite to the base material 10 side. It is an interface.
  • the first interface 20a is parallel to the second interface 20b.
  • the second interface 20b is the surface of the ⁇ -Al 2 O 3 layer 20.
  • the first interface 20a is a straight line L1 passing through a point farthest from the base material on the base material side in the direction normal to the main surface of the base material in the color map and parallel to the main surface of the base material. It is a straight line that passes through a point closest to the base material on the base material side and passes through the center of a straight line L2 parallel to the main surface of the base material.
  • the second interface 20b passes through a point farthest from the base material on the side opposite to the base material in the direction normal to the main surface of the base material in the color map and is parallel to the main surface of the base material.
  • an ⁇ -Al 2 O 3 layer is formed on a base material by the manufacturing method described later. Then, the formed ⁇ -Al 2 O 3 layer is cut so as to obtain a cross section perpendicular to the ⁇ -Al 2 O 3 layer including the base material and the like. That is, the cutting is performed so that the cut surface obtained by cutting the ⁇ -Al 2 O 3 layer is exposed in a plane including the normal line of the second interface 20b. After that, the cut surface is polished with water-resistant abrasive paper (containing a SiC abrasive abrasive as an abrasive).
  • the above-mentioned polishing shall be performed using the above water-resistant abrasive paper (using #400, #800 and #1500 in that order).
  • the number (#) of water resistant abrasive paper means the difference in particle size of the abrasive, and the larger the number, the smaller the particle size of the abrasive.
  • the polished surface is further smoothed by an ion milling treatment with Ar ions.
  • the conditions of the ion milling treatment are as follows. Accelerating voltage: 6kV
  • the smoothed cross section (mirror surface) was subjected to a field emission scanning electron microscope (FE-SEM) equipped with an electron beam backscatter diffraction device (EBSD device) (product name: "SU6600", Hitachi It is observed using High Technologies Co., Ltd., and EBSD analysis is performed on the obtained observed image.
  • FE-SEM field emission scanning electron microscope
  • EBSD device electron beam backscatter diffraction device
  • the position for observing the above-mentioned smoothed cross section is not particularly limited, but considering the relationship with the cutting characteristics, it is preferable to observe the vicinity of the cutting edge ridge line portion 3, and the vicinity of the cutting edge ridge line portion 3 It is more preferable to observe a portion where the material 10 is relatively flat.
  • the observation magnification of FE-SEM is 5000 times.
  • data are collected in sequence by individually positioning a focused electron beam on each pixel.
  • the normal line of the sample surface (the cross section of the smoothed ⁇ -Al 2 O 3 layer) is inclined by 70° with respect to the incident beam, and the analysis is performed at 15 kV.
  • a pressure of 10 Pa is applied to avoid the charging effect.
  • a high current mode is used in combination with an opening diameter of 60 ⁇ m or 120 ⁇ m.
  • the data collection is 200 ⁇ 300 corresponding to a surface area (observation area) of 20 ⁇ m (thickness direction of ⁇ -Al 2 O 3 layer) ⁇ 30 ⁇ m (direction parallel to the interface of ⁇ -Al 2 O 3 layer) on the cross section.
  • the point is performed in steps of 0.1 ⁇ m/step.
  • the number of measurement fields of view at this time is 3 or more.
  • the EBSD analysis result is analyzed using a commercially available software (trade name: “Orientation Imaging microscopy Ver 6.2”, manufactured by EDAX) to create the color map.
  • a commercially available software (trade name: “Orientation Imaging microscopy Ver 6.2”, manufactured by EDAX) to create the color map.
  • the crystal orientation of each crystal grain specified here is the crystal orientation of each crystal grain appearing in the cross section of the ⁇ -Al 2 O 3 layer 20 when viewed in plan from the normal line direction of the cross section (direction penetrating the plane of FIG. 4) This is the crystal orientation observed in.
  • the crystal orientation of each crystal grain in the normal direction of the surface of the ⁇ -Al 2 O 3 layer 20 is specified based on the obtained crystal orientation of each crystal grain.
  • a color map is created based on the specified crystal orientation.
  • the method of "Crystal Direction MAP" included in the above software can be used to create the color map.
  • the color map is created over the entire thickness direction of the ⁇ -Al 2 O 3 layer 20 observed on the cut surface.
  • the number of crystal grains that are partially outside the measurement field is also counted as one.
  • each region surrounded by a solid line and having hatching is a (006) plane oriented crystal grain, and each region surrounded by a solid line and having a dot hatching has each (110) plane orientation. It is a crystalline grain. Further, each region surrounded by a solid line and having no hatching is a crystal grain that does not correspond to either the (006) plane oriented crystal grain or the (110) plane oriented crystal grain. That is, in FIG. 4, crystal grains whose normal direction to the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface 20b of the ⁇ -Al 2 O 3 layer 20 are hatched with diagonal lines. There is.
  • Crystal grains whose normal direction to the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface 20b of the ⁇ -Al 2 O 3 layer 20 are hatched with dots.
  • the crystal grains other than the above two are not hatched.
  • this is regarded as a region of crystal grains whose crystal orientation was not specified in the above method.
  • the ⁇ -Al 2 O 3 layer 20 includes a lower side portion 20A and an upper side portion 20B.
  • the lower portion 20A is a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface 20a on the side of the base material in the thickness direction, and 1 in the thickness direction from the virtual plane A.
  • the virtual plane A and the virtual plane B can be set on the created color map based on the distance from the first interface.
  • the upper part 20B is a virtual plane C parallel to the second interface passing through a point 0.5 ⁇ m away from the second interface 20b opposite to the base material side in the thickness direction, and further in the thickness direction from the virtual plane C. It is a region sandwiched between an imaginary plane D parallel to the second interface and passing through a point 1 ⁇ m away. That is, the linear distance (shortest distance) between the virtual plane C and the virtual plane D is 1 ⁇ m, and this is the thickness of the upper portion 20B.
  • the virtual plane C and the virtual plane D can be set on the created color map based on the distance from the second interface.
  • the upper portion 20B is occupied by the ⁇ -Al 2 O 3 crystal grains whose normal direction to the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface 20b.
  • the area ratio is 50% or more, preferably 50% or more and 90% or less, and more preferably 60% or more and 85% or less.
  • the area ratio is an area ratio based on the entire area of the upper portion 20B in the color map.
  • the lower portion 20A is formed of the ⁇ -Al 2 O 3 crystal grains whose normal direction to the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface 20b.
  • the area ratio is 50% or more, preferably 50% or more and 90% or less, and more preferably 60% or more and 80% or less.
  • the area ratio is an area ratio based on the entire area of the lower portion 20A in the color map.
  • the cutting tool 10 including the ⁇ -Al 2 O 3 layer 20 satisfying the above requirements can suppress peeling damage of the coating film due to welding with the work material. That is, the cutting tool 10 has improved peeling resistance. This will be described in comparison with the related art.
  • the lower part of the ⁇ -Al 2 O 3 layer mainly has (214)-oriented crystal grains. No attention has been paid to controlling the orientation of crystal grains.
  • the present inventors considered that a breakthrough cannot be achieved only by the conventional approach for the purpose of extending the life of the cutting tool. Then, the present inventors have conducted various studies with focusing on aspects of each crystal in the thickness direction of the ⁇ -Al 2 O 3 layer, whereby, among the crystals constituting the ⁇ -Al 2 O 3 layer, It was found that the mode of crystals located on the substrate side greatly contributes to the adhesion of the ⁇ -Al 2 O 3 layer, that is, the peel resistance.
  • the present inventors have found the following points by further studying based on the above findings. (1) In the entire ⁇ -Al 2 O 3 layer, the hardness of the layer itself tends to increase as the area ratio of (006) plane-oriented crystal grains increases (2) while (006) ) If the area ratio occupied by the plane-oriented crystal grains is too large, the adhesion between the ⁇ -Al 2 O 3 layer and other layers tends to be low (3) Furthermore, in the ⁇ -Al 2 O 3 layer , The adhesiveness tends to increase as the area ratio occupied by the (110) plane-oriented crystal grains increases.
  • the cutting tool 50 is completed based on the above findings, and includes the coating film 40 having the ⁇ -Al 2 O 3 layer 20 in which the crystal orientation changes in the thickness direction. Specifically, in the ⁇ -Al 2 O 3 layer 20, the area ratio occupied by the (006) plane oriented crystal grains is 50% or more, and the area ratio occupied by the (110) plane oriented crystal grains is 50%. % Of the lower part 20A.
  • the hardness of the cutting tool in the upper portion 20B can be significantly improved, and thus high wear resistance can be obtained.
  • it can have high adhesion to the layer in contact with the lower portion 20A.
  • the present inventors believe that the (110) plane is a crystal plane that is close to a dense plane and therefore exhibits the above-described high adhesion. From the above, the coating film 40 of the present embodiment is excellent in abrasion resistance and peeling resistance, so that the mechanical characteristics of the cutting tool 50 are improved as compared with the conventional case.
  • the ⁇ -Al 2 O 3 layer has a thickness of 3 to 20 ⁇ m.
  • the thickness of the ⁇ -Al 2 O 3 layer is preferably 4 to 20 ⁇ m, more preferably 5 to 15 ⁇ m. Thereby, the above-mentioned excellent effects can be exhibited.
  • the thickness of the ⁇ -Al 2 O 3 layer means the shortest distance from the first interface to the second interface.
  • the thickness of the ⁇ -Al 2 O 3 layer is less than 3 ⁇ m, the degree of improvement in wear resistance due to the presence of the ⁇ -Al 2 O 3 layer tends to be low.
  • it exceeds 20 ⁇ m the interfacial stress due to the difference in linear expansion coefficient between the ⁇ -Al 2 O 3 layer and other layers becomes large, and the crystal grains of ⁇ -Al 2 O 3 may fall off. Therefore, when the ⁇ -Al 2 O 3 layer has the middle side portion between the upper side portion and the lower side portion, the thickness of the middle side portion is preferably 0 to 17 ⁇ m. Such a thickness can be confirmed by observing the vertical cross section of the base material and the coating film using a scanning transmission electron microscope (STEM) or the like as described above.
  • STEM scanning transmission electron microscope
  • the ⁇ -Al 2 O 3 crystal grains preferably have an average grain size of 0.1 to 3 ⁇ m, more preferably 0.2 to 2 ⁇ m.
  • the average grain size of the crystal grains on the lower side of the ⁇ -Al 2 O 3 is preferably 0.1 to 2 ⁇ m, and more preferably 0.1 to 1 ⁇ m. preferable.
  • the average grain size of the crystal grains can be obtained, for example, using the color map.
  • a region where the colors match (that is, the crystal orientations match) and the periphery is surrounded by another color (that is, another crystal orientation) is Considered as a separate area.
  • the area of each crystal grain is determined, and the diameter of a circle having the same area is used as the grain size of each crystal grain.
  • the coating 40 further includes an inner layer 21 provided between the substrate 10 and the ⁇ -Al 2 O 3 layer 20 (see FIG. 3), and the inner layer 21 may include TiCN.
  • the TiCN is preferably cubic.
  • Such an inner layer contains a large amount of (211)-oriented TiCN crystals. Therefore, a strong adhesive force is exerted on the ⁇ -Al 2 O 3 layer including the lower portion in which the area ratio occupied by the (110) plane oriented crystal grains is 50% or more. As a result, the peel resistance of the coating is further improved.
  • the thickness of the inner layer is preferably 3 to 20 ⁇ m, more preferably 5 to 15 ⁇ m. Such a thickness can be confirmed by observing the vertical cross section of the base material and the coating film using a scanning transmission electron microscope (STEM) or the like as described above.
  • STEM scanning transmission electron microscope
  • the coating film 40 further includes an intermediate layer 22 provided between the inner layer 21 and the ⁇ -Al 2 O 3 layer 20 (see FIG. 3), and the intermediate layer 22 includes titanium element and C It is preferable to include a compound containing at least one element selected from the group consisting of (carbon), N (nitrogen), B (boron) and O (oxygen).
  • the composition of the intermediate layer is different from that of the inner layer.
  • Examples of the compound contained in the intermediate layer include TiCNO, TiBN and TiB 2 .
  • the thickness of the intermediate layer is preferably 0.3 to 2.5 ⁇ m, more preferably 0.5 to 1 ⁇ m. Such a thickness can be confirmed by observing the vertical cross section of the base material and the coating film using a scanning transmission electron microscope (STEM) or the like as described above.
  • STEM scanning transmission electron microscope
  • the coating film 40 further includes an outermost layer 23 provided on the ⁇ -Al 2 O 3 layer 20 (see FIG. 3), and the outermost layer 23 is a group consisting of titanium element and C, N and B. It is preferable to include a compound consisting of one element selected from the above.
  • Examples of the compound contained in the outermost layer include TiC, TiN and TiB 2 .
  • the thickness of the outermost layer is preferably 0.1 to 1 ⁇ m, more preferably 0.3 to 0.8 ⁇ m. Such a thickness can be confirmed by observing the vertical cross section of the base material and the coating film using a scanning transmission electron microscope (STEM) or the like as described above.
  • STEM scanning transmission electron microscope
  • the coating may further include other layers as long as the effects of the cutting tool according to the present embodiment are not impaired.
  • the composition of the other layer may be different from or the same as that of the ⁇ -Al 2 O 3 layer, the inner layer, the intermediate layer or the outermost layer.
  • Examples of compounds contained in the other layers include TiN, TiCN, TiBN, and Al 2 O 3 .
  • the order of stacking the other layers is not particularly limited.
  • the thickness of the other layer is not particularly limited as long as the effects of the present embodiment are not impaired, but examples thereof include 0.1 ⁇ m or more and 20 ⁇ m or less.
  • a first step of preparing the base material (hereinafter, sometimes simply referred to as "first step”); Second step of forming a lower side portion of the ⁇ -Al 2 O 3 layer on the base material by using a source gas containing carbon dioxide gas and hydrogen sulfide gas by using a chemical vapor deposition method (hereinafter, referred to as It may be simply referred to as the "second step”.), A third step of forming an upper part of the ⁇ -Al 2 O 3 layer on the lower part using a source gas containing carbon dioxide gas and hydrogen sulfide gas using a chemical vapor deposition method (hereinafter, referred to as It may be simply referred to as the "third step”.), Including, The volume ratio of the carbon dioxide gas to the hydrogen sulfide gas in the second step was (CO 2 / H 2 S) and R1, the volume ratio of the carbon dioxide gas to the hydrogen sulfide gas in the
  • a base material is prepared.
  • a cemented carbide base material is prepared as the base material.
  • the cemented carbide base material may be a commercially available product or may be manufactured by a general powder metallurgy method.
  • a WC powder and a Co powder are mixed with a ball mill or the like to obtain a mixed powder.
  • the mixed powder is dried, it is molded into a predetermined shape to obtain a molded body. Further, by sintering the compact, a WC—Co based cemented carbide (sintered body) is obtained.
  • the sintered body is subjected to predetermined cutting edge processing such as honing treatment, whereby a base material made of a WC-Co based cemented carbide can be manufactured.
  • predetermined cutting edge processing such as honing treatment
  • any base material other than the above can be prepared as long as it is a conventionally known base material of this type.
  • ⁇ Second Step Step of Forming Lower Part of ⁇ -Al 2 O 3 Layer>
  • a lower part of the ⁇ -Al 2 O 3 layer on the base material is formed on the base material by using a source gas containing carbon dioxide gas and hydrogen sulfide gas by using a chemical vapor deposition method (CVD method). Is formed.
  • CVD method chemical vapor deposition method
  • FIG. 5 is a schematic cross section which shows an example of the chemical vapor deposition apparatus (CVD apparatus) used for manufacture of a film.
  • the second step will be described below with reference to FIG.
  • the CVD apparatus 30 includes a plurality of base material setting jigs 31 for holding the base material 10, and a reaction container 32 made of heat-resistant alloy steel for covering the base material setting jigs 31. Further, a temperature control device 33 for controlling the temperature inside the reaction container 32 is provided around the reaction container 32.
  • the reaction vessel 32 is provided with a gas introduction pipe 35 having a gas introduction port 34.
  • the gas introduction pipe 35 extends in the vertical direction in the internal space of the reaction container 32 in which the base material setting jig 31 is arranged, and is rotatably arranged around the vertical direction as an axis.
  • a plurality of ejection holes 36 for ejecting inside are provided.
  • the base material 10 is placed on the base material setting jig 31, and the source gas for the lower side part of the ⁇ -Al 2 O 3 layer 20 is supplied while controlling the temperature and pressure in the reaction vessel 32 within a predetermined range.
  • the gas is introduced into the reaction vessel 32 through the gas introduction pipe 35.
  • the lower portion 20A of the ⁇ -Al 2 O 3 layer 20 is formed on the base material 10.
  • the source gas for the inner layer is introduced into the reaction vessel 32 from the gas introduction pipe 35.
  • an internal layer a layer containing TiCN, not shown
  • the source gas for the inner layer is not particularly limited, but examples thereof include a mixed gas of TiCl 4 , N 2 and CH 3 CN.
  • the temperature inside the reaction vessel 32 when forming the inner layer is preferably controlled to 1000 to 1100°C.
  • the pressure inside the reaction container 32 when forming the inner layer is preferably controlled to 0.1 to 1013 hPa.
  • H 2 as the carrier gas.
  • the inner layer may be formed by MT (Medium Temperature)-CVD method.
  • the MT-CVD method is different from the CVD method performed at a temperature of 1000 to 1100° C. (hereinafter, also referred to as “HT-CVD method”), and the temperature in the reaction container 32 is relatively low at 850 to 950° C. This is a method of forming a layer while maintaining the temperature. Since the MT-CVD method is performed at a relatively low temperature as compared with the HT-CVD method, damage to the base material 10 due to heating can be reduced.
  • the inner layer is a TiCN layer, it is preferably formed by the MT-CVD method.
  • the lower portion 20A of the ⁇ -Al 2 O 3 layer 20 is formed on the inner layer.
  • the raw material gas for example, a mixed gas of AlCl 3 , HCl, CO, CO 2 and H 2 S is used.
  • the content ratio of CO 2 in the raw material gas is preferably 0.1 to 6% by volume, more preferably 0.5 to 3% by volume, and 0.6 to 2.5% by volume. Is more preferable.
  • the preferable flow rate of CO 2 is 0.1 to 4 L/min.
  • the content ratio of H 2 S in the raw material gas is preferably 0.1 to 1% by volume, more preferably 0.5 to 1% by volume, and 0.5 to 0.8% by volume. More preferably.
  • the preferable flow rate of H 2 S is 0.1 to 0.5 L/min.
  • the volume ratio of CO 2 relative to H 2 S is preferably 0.5-4, more preferably 0.5-2.
  • the content ratio of AlCl 3 in the raw material gas is preferably 2 to 5% by volume, and more preferably 3 to 4% by volume.
  • a preferable flow rate of AlCl 3 is, for example, 2.2 L/min.
  • the content ratio of HCl in the raw material gas is preferably 1 to 4% by volume, and more preferably 2 to 3.5% by volume.
  • a preferable flow rate of HCl is 2 L/min, for example.
  • the content ratio of CO in the raw material gas is preferably 0.1 to 4% by volume.
  • the preferable flow rate of CO is 0.1 L/min to 2 L/min.
  • the temperature in the reaction vessel 32 is preferably controlled to 950 to 1000°C.
  • the pressure inside the reaction vessel 32 is preferably controlled to 50 to 100 hPa. By controlling the temperature within the above range, the ⁇ -Al 2 O 3 fine grain structure is easily formed. Further, H 2 can be used as the carrier gas. In addition, it is similar to the above that it is preferable to rotate the gas introduction pipe 35 at the time of introducing the gas.
  • the mode of each layer is changed by controlling each condition of the CVD method.
  • the composition of each layer is determined by the composition of the raw material gas introduced into the reaction container 32.
  • the thickness of each layer is controlled by the execution time (film formation time).
  • CO 2 gas and H 2 It is important to control the flow rate ratio with S gas (CO 2 /H 2 S).
  • ⁇ Third Step Step of Forming Upper Part of ⁇ -Al 2 O 3 Layer>
  • the upper part of the ⁇ -Al 2 O 3 layer is formed on the lower part from the source gas containing carbon dioxide gas and hydrogen sulfide gas by using the chemical vapor deposition method.
  • the raw material gas for example, a mixed gas of AlCl 3 , HCl, CO 2 and H 2 S is used.
  • the content ratio of CO 2 in the raw material gas is preferably 0.15 to 8% by volume, more preferably 0.5 to 3% by volume, and 0.6 to 2.5% by volume. Is more preferable.
  • the preferable flow rate of CO 2 is 0.1 to 4 L/min.
  • the content ratio of H 2 S in the raw material gas is preferably 0.15 to 1% by volume, more preferably 0.5 to 1% by volume, and 0.5 to 0.8% by volume. More preferably.
  • the preferable flow rate of H 2 S is 0.1 to 0.5 L/min.
  • the volume ratio of CO 2 relative to H 2 S is preferably 0.5-4, more preferably 0.5-2.
  • the volume ratio of the CO 2 to the H 2 S in the second step (CO 2 /H 2 S) is R1
  • the volume ratio of the CO 2 to the H 2 S in the third step (CO 2 / When H 2 S) is R2, it is preferable to satisfy 1.5 ⁇ (R1/R2) ⁇ 2.
  • the content ratio of AlCl 3 in the raw material gas is preferably 6 to 12% by volume, and more preferably 7 to 10% by volume.
  • a preferable flow rate of AlCl 3 is, for example, 4.5 L/min.
  • the content ratio of HCl in the raw material gas is preferably 1 to 4% by volume, more preferably 1.5 to 3% by volume.
  • a preferable flow rate of HCl is, for example, 1 L/min.
  • the temperature in the reaction vessel 32 is preferably controlled to 950 to 1000°C.
  • the pressure inside the reaction vessel 32 is preferably controlled to 50 to 100 hPa. By controlling the temperature within the above range, the growth of ⁇ -Al 2 O 3 crystal grains is promoted. Further, H 2 can be used as the carrier gas. In addition, it is similar to the above that it is preferable to rotate the gas introduction pipe 35 at the time of introducing the gas.
  • additional steps may be appropriately performed within a range that does not impair the effects of the present embodiment.
  • additional step include a step of forming an intermediate layer between the inner layer and the ⁇ -Al 2 O 3 layer, a step of forming an outermost layer on the ⁇ -Al 2 O 3 layer, and a coating film.
  • examples include a step of performing blast treatment.
  • the method of forming the intermediate layer and the outermost layer is not particularly limited, and examples thereof include a method of forming by the CVD method and the like.
  • a surface-coated cutting tool comprising a substrate and a coating for coating the substrate,
  • the coating includes an ⁇ -Al 2 O 3 layer provided on the substrate,
  • the ⁇ -Al 2 O 3 layer includes ⁇ -Al 2 O 3 crystal grains,
  • the ⁇ -Al 2 O 3 layer includes a lower part and an upper part,
  • the lower part includes a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface on the side of the base material in the thickness direction, and 1.
  • the cross section of the ⁇ -Al 2 O 3 layer cut along a plane including the normal line of the second interface was analyzed by electron backscattering diffraction analysis using a field emission scanning microscope to analyze the ⁇ -Al 2 O 3 layer.
  • the upper part has an area ratio of 50% or more of the ⁇ -Al 2 O 3 crystal grains in which the normal direction of the (006) plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • the area ratio of the ⁇ -Al 2 O 3 crystal grains in which the normal direction of the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface is 50% or more.
  • Appendix 2 The surface-coated cutting tool according to Appendix 1, wherein the ⁇ -Al 2 O 3 layer has a thickness of 3 ⁇ m or more and 20 ⁇ m or less.
  • the coating further includes an inner layer provided between the substrate and the ⁇ -Al 2 O 3 layer, The surface-coated cutting tool according to Appendix 1 or 2, wherein the inner layer contains TiCN.
  • the coating further includes an intermediate layer provided between the inner layer and the ⁇ -Al 2 O 3 layer, The intermediate layer contains a compound consisting of titanium element and at least one element selected from the group consisting of C, N, B and O, 4.
  • the surface-coated cutting tool according to any one of appendices 1 to 3, wherein the intermediate layer has a composition different from that of the internal layer.
  • the coating further includes an outermost layer provided on the ⁇ -Al 2 O 3 layer, 5.
  • ⁇ Preparation of cutting tools>> ⁇ First Step: Step of Preparing Base Material> As a base material, a cemented carbide having a composition (including unavoidable impurities) of TaC (2.0 mass %), NbC (1.0 mass %), Co (10.0 mass %) and WC (the balance). A cutting chip (shape: CNMG120408N-UX, manufactured by Sumitomo Electric Hardmetal Corporation, JIS B4120 (2013)) was prepared.
  • ⁇ Second Step Step of Forming Lower Part of ⁇ -Al 2 O 3 Layer>
  • the lower part of the ⁇ -Al 2 O 3 layer was formed on the base material on which the internal layer and the intermediate layer were formed by using a CVD apparatus, and then the process was moved to the third step as a subsequent step.
  • the formation conditions of the lower side portion of the ⁇ -Al 2 O 3 layer are shown below. Table 1 shows the thickness of the ⁇ -Al 2 O 3 layer.
  • ⁇ Third Step Step of Forming Upper Part of ⁇ -Al 2 O 3 Layer>
  • a CVD apparatus by forming the upper portion of the ⁇ -Al 2 O 3 layer, alpha-Al 2 O Three layers were formed.
  • the conditions for forming the upper portion of the ⁇ -Al 2 O 3 layer are shown below.
  • the volume ratio of the CO 2 to the H 2 S in the second step (CO 2 /H 2 S) is R1
  • the volume ratio of the CO 2 to the H 2 S in the third step (CO 2 Table 1 shows the ratio R1/R2 when /H 2 S) is R2.
  • the outermost layer was formed on the base material on which the ⁇ -Al 2 O 3 layer was formed (excluding samples 7, 8 and c) by using a CVD device.
  • the conditions for forming the outermost layer are shown below. Table 1 shows the thickness and composition of the outermost layer.
  • ⁇ Creation of color map> First, the cutting tool was cut so that a cross section perpendicular to the surface (or interface) of the ⁇ -Al 2 O 3 layer in the coating film was obtained. After that, the cut surface was polished with water-resistant abrasive paper (manufactured by Noritake Coated Abrasive (NCA), trade name: WATERPROOF PAPER, #400, #800, #1500) to obtain an ⁇ -Al 2 O 3 layer.
  • NCA Noritake Coated Abrasive
  • the processed surface of was manufactured. Subsequently, the processed surface was further smoothed by an ion milling treatment with Ar ions. The conditions of the ion milling treatment are as follows.
  • Irradiation angle ⁇ -Al 2 O 3 layer of the second interface in the normal direction (i.e. a direction of a straight line parallel to the thickness direction of the ⁇ -Al 2 O 3 layer in the cut surface) 0 ° from Irradiation time: 6 hours
  • the prepared processed surface was observed with a FE-SEM (Hitachi High-Technologies Corporation, trade name: “SU6600”) equipped with EBSD at a magnification of 5000 times to obtain 20 ⁇ m ( ⁇ -Al 2
  • the above-mentioned color map was created for the observation region of (O 3 layer thickness direction) ⁇ 30 ⁇ m (direction parallel to the interface of the ⁇ -Al 2 O 3 layer).
  • the number of color maps created at this time was set to 3. Specifically, first, the crystal orientation of each crystal grain included in the cross section of the ⁇ -Al 2 O 3 layer was specified.
  • the crystallographic orientation of each crystal grain specified here is that when each crystal grain appearing in the cross section of the ⁇ -Al 2 O 3 layer is viewed in plan from the normal direction of the cross section (direction penetrating the plane of FIG. 4). This is the observed crystal orientation. Then, based on the obtained crystal orientation of each crystal grain, the crystal orientation of each crystal grain in the normal direction of the second interface of the ⁇ -Al 2 O 3 layer was specified. Then, a color map was created based on the specified crystal orientation (for example, FIG. 4). For each color map, using commercially available software (trade name: "Orientation Imaging Microscopy Ver 6.2", manufactured by EDAX), (110) plane-oriented crystal grains in the lower side of the ⁇ -Al 2 O 3 layer were used.
  • the lower portion is a virtual plane A parallel to the first interface passing through a point 0.2 ⁇ m away from the first interface on the side of the base material in the thickness direction, and a thickness direction further from the virtual plane A. Is a region sandwiched by an imaginary plane B which is parallel to the first interface and passes through a point 1.3 ⁇ m away (for example, FIG. 4).
  • the upper portion is a virtual plane C parallel to the second interface passing through a point 0.5 ⁇ m away from the second interface opposite to the base material side in the thickness direction, and 1 ⁇ m further from the virtual plane C in the thickness direction. It is a region sandwiched by an imaginary plane D that is parallel to the second interface and passes through a distant point (for example, FIG. 4 ).
  • the first interface and the second interface are defined in the color map as follows. First, in the color map, and the region of the ⁇ -Al 2 O 3 layer, and ⁇ -Al 2 O 3 other than the layer region is displayed in its color as attached distinguished. In the direction normal to the main surface of the base material in the color map, a straight line L1 passing through a point farthest from the base material on the base material side and parallel to the main surface of the base material, and the base on the base material side. A straight line passing through the point closest to the material and passing through the center of the straight line L2 parallel to the main surface of the substrate was defined as the first interface.
  • FIG. 6 shows that, for each crystal plane in the lower part of the ⁇ -Al 2 O 3 layer of Sample No. 8, the normal direction of the predetermined crystal plane is within ⁇ 15° with respect to the normal direction of the second interface.
  • 3 is a graph showing an area ratio occupied by crystal grains that become The crystal planes for which the area ratios are obtained include the (110) plane, the (012) plane, the (104) plane, the (113) plane, the (116) plane, the (300) plane, the (214) plane, and the (006) plane. Is. From the result of FIG. 6, in the lower part of the ⁇ -Al 2 O 3 layer of sample number 8, the crystal in which the normal direction of the (110) plane is within ⁇ 15° with respect to the normal direction of the second interface. It was found that the area ratio occupied by the grains was 50% or more.
  • ⁇ Cutting test ⁇ (Cutting evaluation (1): intermittent processing test) Cutting using the cutting tools of the samples (Samples 1 to 12 and Samples a to f) manufactured as described above until the peeling of the ⁇ -Al 2 O 3 layer on the rake face occurs under the following cutting conditions. The time was measured. The results are shown in Table 2. The longer the cutting time is, the more excellent the peeling resistance can be evaluated as a cutting tool.
  • Test conditions for intermittent cutting Work material FCD700 Groove material
  • Cutting speed 150 m/min Feed: 0.25mm/rev Notch: 2 mm
  • Cutting oil Wet
  • the cutting tools of Samples 1 to 12 showed good results with a cutting time of 240 seconds or more in interrupted machining.
  • the cutting tools of Samples a to f had a cutting time of 60 seconds or less in the interrupted working. From the above results, it was found that the cutting tool of the example is superior in peel resistance to the cutting tool of the comparative example.
  • the cutting tools of Samples 1 to 12 showed good results in which the average wear amount of the flank in continuous machining was 0.14 mm or less.
  • the cutting tools of Samples a to f the cutting tools of Comparative Examples
  • the average wear amount of the flank in the continuous machining was 0.27 mm or more. From the above results, it was found that the cutting tools of Examples had excellent wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

基材と、基材を被覆する被膜とを備える切削工具であって、被膜は、基材上に設けられたα-アルミナ層を含み、α-アルミナ層は、α-アルミナの結晶粒を含み、α-アルミナ層は、下側部と上側部とを含み、第二界面の法線を含む平面でα-アルミナ層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によってα-アルミナの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、カラーマップにおいて、上側部は、(006)面の法線方向が前記第二界面の法線方向に対して±15°以内となるα-アルミナの結晶粒の占める面積比率が50%以上であり、下側部は、(110)面の法線方向が第二界面の法線方向に対して±15°以内となるα-アルミナの結晶粒の占める面積比率が50%以上であり、α-アルミナ層の厚みが3μm以上20μm以下である、切削工具。

Description

切削工具
 本開示は、切削工具に関する。本出願は、2019年2月19日に出願した日本特許出願である特願2019-027257号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 従来より、基材上に被膜を被覆した切削工具が用いられている。たとえば、特開2004-284003号公報(特許文献1)は、層の表面の法線方向から平面視した場合に、(0001)面の結晶方位を示す結晶粒の総面積が70%以上のα-Al層を含む被膜を有する表面被覆切削工具を開示している。
 また、特開平06-316758号公報(特許文献2)は、少なくとも1層がアルミナの層である1以上の耐火層で少なくとも部分的に被覆された被覆物体において、該アルミナ層がd=0.5-25μmの厚さを有し、且つグレンサイズ(S)を有する単相α-構造から成り、当該グレンサイズ(S)が0.5μm<d<2.5μmの場合に0.5μm<S<1μmであり、そして2.5μm<d<25μmの場合に0.5μm<S<3μmの関係にあることを特徴とする被覆物体を開示している。
特開2004-284003号公報 特開平06-316758号公報
 本開示に係る切削工具は、
 基材と、上記基材を被覆する被膜とを備える切削工具であって、
 上記被膜は、上記基材上に設けられたα-アルミナ層を含み、
 上記α-アルミナ層は、α-アルミナの結晶粒を含み、
 上記α-アルミナ層は、下側部と上側部とを含み、
 上記下側部は、上記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る上記第一界面に平行な仮想平面Aと、上記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る上記第一界面に平行な仮想平面Bとに挟まれた領域であり、
 上記上側部は、上記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る上記第二界面に平行な仮想平面Cと、上記仮想平面Cから更に厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Dとに挟まれた領域であり、
 上記第一界面は、上記第二界面に平行であり、
 上記第二界面の法線を含む平面で上記α-アルミナ層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記α-アルミナの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記上側部は、(006)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-アルミナの結晶粒の占める面積比率が50%以上であり、
 上記下側部は、(110)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-アルミナの結晶粒の占める面積比率が50%以上である。
図1は、切削工具の基材の一態様を例示する斜視図である。 図2は、本実施形態の一態様における切削工具の模式断面図である。 図3は、本実施形態の他の態様における切削工具の模式断面図である。 図4は、α-Al層の第二界面の法線を含む平面で被膜を切断したときのα-Al層の断面に基づいて作成されたカラーマップの一部である。 図5は、被膜の製造に用いられる化学気相蒸着装置の一例を示す模式断面図である。 図6は、α-Al層の下側部において、各結晶面ごとに、所定の結晶面の法線方向が第二界面の法線方向に対して±15°以内となる結晶粒が占める面積比率を示すグラフである。
[本開示が解決しようとする課題]
 特許文献1及び特許文献2では、上記のような構成のα-Al層を含む被膜を有することにより、切削工具の耐摩耗性、耐欠損性、耐剥離性といった機械特性が向上し、以って切削工具の寿命が長くなることが期待されている。
 しかしながら、近年の切削加工においては、高速化及び高能率化が進行し、切削工具にかかる負荷が増大し、切削工具の寿命が短期化する傾向があった。このため、切削工具の被膜の機械特性を更に向上させることが求められている。
 本開示は、上記事情に鑑みてなされたものであり、耐剥離性が向上した切削工具を提供することを目的とする。
[本開示の効果]
 本開示によれば、被膜の耐剥離性が向上した切削工具を提供することが可能になる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 [1]本開示に係る切削工具は、
 基材と、上記基材を被覆する被膜とを備える切削工具であって、
 上記被膜は、上記基材上に設けられたα-アルミナ層を含み、
 上記α-アルミナ層は、α-アルミナの結晶粒を含み、
 上記α-アルミナ層は、下側部と上側部とを含み、
 上記下側部は、上記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る上記第一界面に平行な仮想平面Aと、上記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る上記第一界面に平行な仮想平面Bとに挟まれた領域であり、
 上記上側部は、上記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る上記第二界面に平行な仮想平面Cと、上記仮想平面Cから更に厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Dとに挟まれた領域であり、
 上記第一界面は、上記第二界面に平行であり、
 上記第二界面の法線を含む平面で上記α-アルミナ層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記α-アルミナの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記上側部は、(006)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-アルミナの結晶粒の占める面積比率が50%以上であり、
 上記下側部は、(110)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-アルミナの結晶粒の占める面積比率が50%以上であり、
 上記α-アルミナ層の厚みが3μm以上20μm以下である。
 上記切削工具は、上述のような構成を備えることによって、耐剥離性が向上する。ここで、「耐剥離性」とは、基材から被膜が剥がれて脱落することに対する耐性を意味する。
 [2]上記被膜は、上記基材と上記α-アルミナ層との間に設けられている内部層を更に含み、
 上記内部層は、TiCNを含む。このように規定することで、耐剥離性に加えて、耐摩耗性に優れた切削工具を提供することが可能になる。
 [3]上記被膜は、上記内部層と上記α-アルミナ層との間に設けられている中間層を更に含み、
 上記中間層は、チタン元素と、炭素、窒素、ホウ素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物を含み、
 上記中間層は、上記内部層とは組成が異なる。このように規定することで、基材と被膜との密着力が向上し、耐剥離性が更に向上する。
 [4]上記被膜は、上記α-アルミナ層上に設けられている最外層を更に含み、
 上記最外層は、チタン元素と、炭素、窒素及びホウ素からなる群より選ばれる1種の元素とからなる化合物を含む。このように規定することで、耐剥離性に加えて、被膜の識別性に優れた切削工具を提供することが可能になる。
 [5]上記被膜の厚みが3μm以上30μm以下である。このように規定することで、耐剥離性に加えて、耐摩耗性に優れた切削工具を提供することが可能になる。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「X~Y」という形式の表記は、範囲の上限下限(すなわちX以上Y以下)を意味し、Xにおいて単位の記載がなく、Yにおいてのみ単位が記載されている場合、Xの単位とYの単位とは同じである。さらに、本明細書において、例えば「TiC」等のように、構成元素の組成比が限定されていない化学式によって化合物が表された場合には、その化学式は従来公知のあらゆる組成比(元素比)を含むものとする。このとき上記化学式は、化学量論組成のみならず、非化学量論組成も含むものとする。例えば「TiC」の化学式には、化学量論組成「Ti」のみならず、例えば「Ti0.8」のような非化学量論組成も含まれる。このことは、「TiC」以外の化合物の記載についても同様である。
 ≪表面被覆切削工具≫
 本開示に係る切削工具は、
 基材と、上記基材を被覆する被膜とを備える切削工具であって、
 上記被膜は、上記基材上に設けられたα-Al層(α-アルミナ層)を含み、
 上記α-Al層は、α-Al(α-アルミナ)の結晶粒を含み、
 上記α-Al層は、下側部と上側部とを含み、
 上記下側部は、上記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る上記第一界面に平行な仮想平面Aと、上記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る上記第一界面に平行な仮想平面Bとに挟まれた領域であり、
 上記上側部は、上記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る上記第二界面に平行な仮想平面Cと、上記仮想平面Cから更に厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Dとに挟まれた領域であり、
 上記第一界面は、上記第二界面に平行であり、
 上記第二界面の法線を含む平面で上記α-Al層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記α-Alの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記上側部は、(006)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-Alの結晶粒の占める面積比率が50%以上であり、
 上記下側部は、(110)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-Alの結晶粒の占める面積比率が50%以上であり、
 上記α-Al層の厚みが3μm以上20μm以下である。
 本実施形態の表面被覆切削工具(以下、単に「切削工具」という場合がある。)50は、基材10と、上記基材10を被覆する被膜40とを備える(図2参照)。本実施形態の一側面において、上記被膜は、上記基材におけるすくい面を被覆していてもよいし、すくい面以外の部分(例えば、逃げ面)を被覆していてもよい。上記切削工具は、例えば、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等であり得る。
 <基材>
 本実施形態の基材は、この種の基材として従来公知のものであればいずれの基材も使用することができる。例えば、上記基材は、超硬合金(例えば、炭化タングステン(WC)基超硬合金、WCの他にCoを含む超硬合金、WCの他にCr、Ti、Ta、Nb等の炭窒化物を添加した超硬合金等)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム等)、立方晶型窒化硼素焼結体(cBN焼結体)及びダイヤモンド焼結体からなる群より選ばれる少なくとも1種を含むことが好ましく、超硬合金、サーメット及びcBN焼結体からなる群より選ばれる少なくとも1種を含むことがより好ましい。
 これらの各種基材の中でも、特にWC基超硬合金又はcBN焼結体を選択することが好ましい。その理由は、これらの基材が特に高温における硬度と強度とのバランスに優れ、上記用途の切削工具の基材として優れた特性を有するためである。
 基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素又はη相と呼ばれる異常相を含んでいても本実施形態の効果は示される。なお、本実施形態で用いる基材は、その表面が改質されたものであっても差し支えない。例えば、超硬合金の場合はその表面に脱β層が形成されていたり、cBN焼結体の場合には表面硬化層が形成されていてもよく、このように表面が改質されていても本実施形態の効果は示される。
 図1は、切削工具の基材の一態様を例示する斜視図である。このような形状の基材は、例えば、旋削加工用刃先交換型切削チップの基材として用いられる。上記基材10は、すくい面1と、逃げ面2と、上記すくい面1と逃げ面2とが交差する刃先稜線部3とを有する。すなわち、すくい面1と逃げ面2とは、刃先稜線部3を挟んで繋がる面である。刃先稜線部3は、基材10の切刃先端部を構成する。このような基材10の形状は、上記切削工具の形状と把握することもできる。
 上記切削工具が刃先交換型切削チップである場合、上記基材10は、チップブレーカーを有する形状も、有さない形状も含まれる。刃先稜線部3の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与した形状)、ネガランド(面取りをした形状)、ホーニングとネガランドを組み合わせた形状の中で、いずれの形状も含まれる。
 以上、基材10の形状及び各部の名称を、図1を用いて説明したが、本実施形態に係る切削工具において、上記基材10に対応する形状及び各部の名称については、上記と同様の用語を用いることとする。すなわち、上記切削工具は、すくい面と、逃げ面と、上記すくい面及び上記逃げ面を繋ぐ刃先稜線部とを有する。
 <被膜>
 本実施形態に係る被膜40は、上記基材10上に設けられたα-Al層20を含む(図2参照)。「被膜」は、上記基材の少なくとも一部(例えば、切削加工時に被削材と接するすくい面等)を被覆することで、切削工具における耐欠損性、耐摩耗性、耐剥離性等の諸特性を向上させる作用を有するものである。上記被膜は、上記基材の一部に限らず上記基材の全面を被覆することが好ましい。しかしながら、上記基材の一部が上記被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても本実施形態の範囲を逸脱するものではない。
 上記被膜は、その厚みが3μm以上30μm以下であることが好ましく、5μm以上25μm以下であることがより好ましい。ここで、被膜の厚みとは、被膜を構成する層それぞれの厚みの総和を意味する。「被膜を構成する層」としては、例えば、後述するα-Al層、中間層、内部層及び最外層等が挙げられる。上記被膜の厚みは、例えば、走査透過型電子顕微鏡(STEM)を用いて、基材の表面の法線方向に平行な断面サンプルにおける任意の10点を測定し、測定された10点の厚みの平均値をとることで求めることが可能である。後述するα-Al層、中間層、内部層、最外層等のそれぞれの厚みを測定する場合も同様である。走査透過型電子顕微鏡としては、例えば、日本電子株式会社製のJEM-2100F(商品名)が挙げられる。
 (α-Al層)
 本実施形態のα-Al層は、α-Al(結晶構造がα型である酸化アルミニウム)の結晶粒(以下、単に「結晶粒」という場合がある。)を含む。すなわち、上記α-Al層は、多結晶のα-Alを含む層である。
 上記α-Al層は、本実施形態に係る切削工具が奏する効果を損なわない範囲において、上記基材の直上に設けられていてもよいし、後述する内部層、中間層等の他の層を介して上記基材の上に設けられていてもよい。上記α-Al層は、その上に最外層等の他の層が設けられていてもよい。また、上記α-Al層は、上記被膜の最外層(最表面層)であってもよい。
 上記α-Al層は、以下の特徴を有する。すなわち、上記α-Al層は、下側部と上側部とを含み、
 上記下側部は、上記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る上記第一界面に平行な仮想平面Aと、上記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る上記第一界面に平行な仮想平面Bとに挟まれた領域であり、
 上記上側部は、上記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る上記第二界面に平行な仮想平面Cと、上記仮想平面Cから更に厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Dとに挟まれた領域であり、
 上記第一界面は、上記第二界面に平行であり、
 上記第二界面の法線を含む平面で上記α-Al層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記α-Alの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記上側部は、(006)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-Alの結晶粒(以下、「(006)面配向性結晶粒」とも記す。)の占める面積比率が50%以上であり、
 上記下側部は、(110)面の法線方向が上記第二界面の法線方向に対して±15°以内となる上記α-Alの結晶粒(以下、「(110)面配向性結晶粒」とも記す。)の占める面積比率が50%以上である。
 ここで、図4を用いながら、上記のカラーマップの具体的な作成方法について説明する。図4は、α-Al層の第二界面の法線を含む平面で被膜を切断したときのα-Al層の断面に基づいて作成されたカラーマップの一部である。なお、図4に示されるα-Al層20の第一界面20aは、基材10の側に位置する界面であり、第二界面20bは、基材10の側と反対に位置する界面である。第一界面20aは、第二界面20bに平行である。なお、α-Al層20が被膜の最外層である場合、上記第二界面20bは、α-Al層20の表面となる。上記第一界面20aは、上記カラーマップにおける上記基材の主面の法線方向において、基材側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線L1と、当該基材側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線L2との中心を通る直線である。上記第二界面20bは、上記カラーマップにおける上記基材の主面の法線方向において、上記基材とは反対側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線M1と、上記基材とは反対側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線M2との中心を通る直線である。ただし、上述の「基材に最も近い点」及び「基材に最も遠い点」を選択するにあたり、一見して異常点と思われる点は除外する。
 まずα-Al層を後述の製造方法に基づき基材上に形成する。そして、形成されたα-Al層を、基材なども含めα-Al層に垂直な断面が得られるように切断する。すなわち、上記第二界面20bの法線を含む平面でα-Al層を切断した切断面が露出するように切断する。その後、その切断面を耐水研磨紙(研磨剤としてSiC砥粒研磨剤を含むもの)で研磨する。
 なお、上記の切断は、たとえばα-Al層20の表面(α-Al層20上に他の層が形成されている場合は被膜の表面)を十分に大きな保持用の平板上にワックス等を用いて密着固定した後、回転刃の切断機にてその平板に対して垂直方向に切断する(当該回転刃と当該平板とが可能な限り垂直となるように切断する)ものとする。この切断は、このような垂直方向に対して行なわれる限り、α-Al層20の任意の部位で行なうことができるが、後述のように、刃先稜線部3の近傍を切断することが好ましく、刃先稜線部3の近傍であって基材10が比較的平坦な箇所を切断することがより好ましい。
 また、上記の研磨は、上記耐水研磨紙を用いて行う(#400、#800、#1500を順に用いて行なう)ものとする。耐水研磨紙の番号(#)は、研磨剤の粒径の違いを意味し、番号が大きくなるほど研磨剤の粒径は小さくなる。
 引続き、上記の研磨面をArイオンによるイオンミーリング処理によりさらに平滑化する。イオンミーリング処理の条件は以下の通りである。
加速電圧:6kV
照射角度:α-Al層の第二界面の法線方向(すなわち切断面におけるα-Al層の厚み方向に平行となる直線方向)から0°
照射時間:6時間。
 次に、上記の平滑化処理された断面(鏡面)を、電子線後方散乱回折装置(EBSD装置)を備えた電界放出型走査型電子顕微鏡(FE-SEM)(製品名:「SU6600」、日立ハイテクノロジーズ社製)を用いて観察し、得られた観察像に対してEBSD解析を行う。上記平滑化処理された断面を観察する位置は、特に限定されないが、切削特性との関係を考慮すると、刃先稜線部3の近傍を観察することが好ましく、刃先稜線部3の近傍であって基材10が比較的平坦な箇所を観察することがより好ましい。なお、FE-SEMの観察倍率は5000倍とする。
 またEBSD解析に関し、データは、集束電子ビームを各ピクセル上へ個別に位置させることによって順に収集する。サンプル面(平滑化処理されたα-Al層の断面)の法線は、入射ビームに対して70°傾斜させ、解析は、15kVにて行なう。帯電効果を避けるために、10Paの圧力を印加する。開口径60μmまたは120μmと合わせて高電流モードを用いる。データ収集は、断面上、20μm(α-Al層の厚み方向)×30μm(α-Al層の界面に平行な方向)の面領域(観察領域)に相当する200×300ポイントについて、0.1μm/ステップのステップにて行なう。このときの測定視野数は、3以上とする。
 上記EBSD解析結果を、市販のソフトウェア(商品名:「orientation Imaging microscopy Ver 6.2」、EDAX社製)を用いて分析し、上記カラーマップを作成する。具体的には、まずα-Al層20の断面に含まれる各結晶粒の結晶方位を特定する。ここで特定される各結晶粒の結晶方位は、α-Al層20の断面に現れる各結晶粒を、当該断面の法線方向(図4において紙面を貫く方向)から平面視したときに観察される結晶方位である。そして、得られた各結晶粒の結晶方位に基づいて、α-Al層20の表面(すなわち、第二界面20b)の法線方向における各結晶粒の結晶方位を特定する。そして、特定された結晶方位に基づいてカラーマップを作成する。該カラーマップの作成には、上記ソフトウェアに含まれる「Cristal Direction MAP」の手法を用いることができる。なお、カラーマップは切断面に観察されるα-Al層20の厚み方向の全域に亘って作成される。また、一部が測定視野の外に出ている結晶粒も1つとしてカウントする。
 図4においては、実線で囲まれかつ斜線のハッチングを有する各領域が、各(006)面配向性結晶粒であり、実線で囲まれかつドットのハッチングを有する各領域が各(110)面配向性結晶粒である。また、実線で囲まれかつハッチングを有さない各領域が、(006)面配向性結晶粒及び(110)面配向性結晶粒のいずれにも該当しない結晶粒である。すなわち、図4では、α-Al層20の第二界面20bの法線方向に対して、(006)面の法線方向が±15°以内となる結晶粒が斜線でハッチングされている。α-Al層20の第二界面20bの法線方向に対して、(110)面の法線方向が±15°以内となる結晶粒がドットでハッチングされている。また、上述の二者以外の結晶粒がハッチングされていないこととなる。なお、図4において黒色で示される領域があるが、これは、上記方法において結晶方位が特定されなかった結晶粒の領域とみなす。
 また、図4に示されているようにα-Al層20は、下側部20Aと上側部20Bとを含む。
 下側部20Aは、上記基材の側の第一界面20aから厚み方向に0.2μm離れた地点を通る上記第一界面に平行な仮想平面Aと、上記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る上記第一界面に平行な仮想平面Bとに挟まれた領域である。すなわち、仮想平面Aと仮想平面Bとの直線距離(最短距離)は、1.3μmであり、これが下側部20Aの厚みとなる。ここで、上記仮想平面A及び仮想平面Bは、作成したカラーマップ上で、第一界面からの距離に基づいて設定することができる。
 上側部20Bは、上記基材の側と反対の第二界面20bから厚み方向に0.5μm離れた地点を通る上記第二界面に平行な仮想平面Cと、上記仮想平面Cから更に厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Dとに挟まれた領域である。すなわち、仮想平面Cと仮想平面Dとの直線距離(最短距離)は、1μmであり、これが上側部20Bの厚みとなる。ここで、上記仮想平面C及び仮想平面Dは、作成したカラーマップ上で、第二界面からの距離に基づいて設定することができる。
 上記カラーマップにおいて、上記上側部20Bは、(006)面の法線方向が上記第二界面20bの法線方向に対して±15°以内となる上記α-Alの結晶粒の占める面積比率が50%以上であり、50%以上90%以下であることが好ましく、60%以上85%以下であることがより好ましい。ここで、上記面積比率は、上記カラーマップにおける上記上側部20Bの面積全体を基準とした面積比率である。
 上記カラーマップにおいて、上記下側部20Aは、(110)面の法線方向が上記第二界面20bの法線方向に対して±15°以内となる上記α-Alの結晶粒の占める面積比率が50%以上であり、50%以上90%以下であることが好ましく、60%以上80%以下であることがより好ましい。ここで、上記面積比率は、上記カラーマップにおける上記下側部20Aの面積全体を基準とした面積比率である。
 上記要件を満たすα-Al層20を備える切削工具10は、被削材との溶着による被膜の剥離損傷を抑制することが可能になる。すなわち、上記切削工具10は、耐剥離性が向上している。これについて、従来技術と比較しながら説明する。
 従来、α-Al層の機械特性を向上させるべくとられていたアプローチは、α-Al層の表面における各結晶の態様を制御することによってα-Al層の特性を向上させ、もってα-Al層を有する被膜の特性を向上させるというものであった。このような従来のアプローチは、α-Al層の表面が切削加工による負荷を大きく受ける部分であり、この部分の特性の制御によって、α-Al層全体の特性が制御されるとの考えに基づいていた。このため、Al層の厚み方向の構成については、これまで着目されることはなかった。例えば、従来の製造方法によって形成されたα-Al層では、その下側部は主に(214)配向性を示す結晶粒が多いことが知られていたが、上記下側部における結晶粒の配向性を制御することは着目されていなかった。
 しかし、本発明者らは、従来のアプローチのみでは、切削工具の寿命をさらに長寿命化させるという目的において、ブレイクスルーを図れないと考えた。そして、本発明者らは、α-Al層の厚み方向における各結晶の態様に着眼して種々の検討を行い、これによって、α-Al層を構成する結晶のうち、基材側に位置する結晶の態様がα-Al層の密着性、すなわち耐剥離性に大きく寄与することを知見した。
 上記知見に基づいてさらに検討を重ねることにより、本発明者らは以下の点を見いだした。
(1)α-Al層の全体において、(006)面配向性結晶粒の占める面積比率が増加するにつれて、層自体の硬度が高くなる傾向があること
(2)一方で、(006)面配向性結晶粒の占める面積比率が大きすぎると、α-Al層と他の層との密着性が低くなる傾向があること
(3)さらに、α-Al層において、(110)面配向性結晶粒の占める面積比率が増加するにつれて、上記密着性が高くなる傾向があること
 本実施形態に係る切削工具50は、上記の知見に基づいて完成されたものであり、厚み方向において結晶の配向性が変化するα-Al層20を有する被膜40を含む。具体的にはα-Al層20は、(006)面配向性結晶粒の占める面積比率が50%以上の上側部20Bと、(110)面配向性結晶粒の占める面積比率が50%以上の下側部20Aとを含む。
 このようなα-Al層20によれば、上側部20Bにおいて切削工具の硬度を大幅に向上させることができ、もって高い耐摩耗性を有することができる。一方で、下側部20Aと接する層に対し高い密着性を有することができる。(110)面は、稠密面に近い結晶面であるため、上述のような高い密着性を発揮していると本発明者らは考えている。以上のことから、本実施形態の被膜40は、耐摩耗性とともに耐剥離性に優れるため、切削工具50の機械特性が従来と比して向上したものとなる。
 (α-Al層の厚み)
 本実施形態において、α-Al層は、その厚みが3~20μmである。α-Al層はの厚みは、4~20μmであることが好ましく、5~15μmであることがより好ましい。これにより、上記のような優れた効果を発揮することができる。ここで、α-Al層の厚みとは、上記第一界面から上記第二界面までの最短距離を意味する。
 α-Al層の厚みが3μm未満の場合、α-Al層の存在に起因する耐摩耗性の向上の程度が低い傾向がある。20μmを超えると、α-Al層と他の層との線膨張係数の差に起因する界面応力が大きくなり、α-Alの結晶粒が脱落する場合がある。したがって、α-Al層が、上側部および下側部の間に中側部を有する場合、当該中側部の厚みは0~17μmであることが好ましいこととなる。このような厚みは、上述したのと同様に走査透過型電子顕微鏡(STEM)等を用いて基材と被膜の垂直断面を観察することにより確認することができる。
 (α-Alの結晶粒の平均粒径)
 本実施形態において、上記α-Alの結晶粒は、その平均粒径が0.1~3μmであることが好ましく、0.2~2μmであることがより好ましい。本実施形態の一側面において、上記α-Alの下側部における結晶粒は、その平均粒径が0.1~2μmであることが好ましく、0.1~1μmであることがより好ましい。上記結晶粒の平均粒径は、例えば、上記カラーマップを用いて求めることが可能である。具体的には、まず、上記カラーマップにおいて、色彩が一致し(すなわち結晶方位が一致し)、かつ周囲が他の色彩(すなわち他の結晶方位)で囲まれている領域を、各結晶粒の個別の領域とみなす。次に、各結晶粒の面積を求め、それと同じ面積を有する円の直径を各結晶粒の粒径とする。
 (内部層)
 上記被膜40は、上記基材10と上記α-Al層20との間に設けられている内部層21を更に含み(図3参照)、上記内部層21は、TiCNを含むことが好ましい。上記TiCNは、立方晶であることが好ましい。このような内部層は、(211)面配向性のTiCNの結晶を多く含む。そのため、(110)面配向性結晶粒の占める面積比率が50%以上の下側部を含む上記α-Al層に対して強い密着力を発揮する。その結果、被膜の耐剥離性が更に向上する。
 上記内部層は、その厚みが3~20μmであることが好ましく、5~15μmであることがより好ましい。このような厚みは、上述したのと同様に走査透過型電子顕微鏡(STEM)等を用いて基材と被膜の垂直断面を観察することにより確認することができる。
 (中間層)
 上記被膜40は、上記内部層21と上記α-Al層20との間に設けられている中間層22を更に含み(図3参照)、上記中間層22は、チタン元素と、C(炭素)、N(窒素)、B(ホウ素)及びO(酸素)からなる群より選ばれる少なくとも1種の元素とからなる化合物を含むことが好ましい。ここで、上記中間層は、上記内部層とは組成が異なる。
 上記中間層に含まれる化合物としては、例えば、TiCNO、TiBN及びTiB等が挙げられる。
 上記中間層は、その厚みが0.3~2.5μmであることが好ましく、0.5~1μmであることがより好ましい。このような厚みは、上述したのと同様に走査透過型電子顕微鏡(STEM)等を用いて基材と被膜の垂直断面を観察することにより確認することができる。
 (最外層)
 上記被膜40は、上記α-Al層20上に設けられている最外層23を更に含み(図3参照)、上記最外層23は、チタン元素と、C、N及びBからなる群より選ばれる1種の元素とからなる化合物を含むことが好ましい。
 上記最外層に含まれる化合物としては、例えば、TiC、TiN及びTiB等が挙げられる。
 上記最外層は、その厚みが0.1~1μmであることが好ましく、0.3~0.8μmであることがより好ましい。このような厚みは、上述したのと同様に走査透過型電子顕微鏡(STEM)等を用いて基材と被膜の垂直断面を観察することにより確認することができる。
 (他の層)
 本実施形態に係る切削工具が奏する効果を損なわない範囲において、上記被膜は、他の層を更に含んでいてもよい。上記他の層は、上記α-Al層、上記内部層、上記中間層又は上記最外層とは組成が異なっていてもよいし、同じであってもよい。他の層に含まれる化合物としては、例えば、TiN、TiCN、TiBN及びAl等を挙げることができる。なお、上記他の層は、その積層の順も特に限定されない。上記他の層の厚みは、本実施形態の効果を損なわない範囲において、特に制限はないが例えば、0.1μm以上20μm以下が挙げられる。
 ≪表面被覆切削工具の製造方法≫
 本実施形態に係る切削工具の製造方法は、
 上記基材を準備する第1工程(以下、単に「第1工程」という場合がある。)と、
 化学気相蒸着法を用いて、二酸化炭素ガス及び硫化水素ガスを含む原料ガスを用いて、上記基材上に上記α-Al層における下側部を形成する第2工程(以下、単に「第2工程」という場合がある。)と、
 化学気相蒸着法を用いて、二酸化炭素ガス及び硫化水素ガスを含む原料ガスを用いて、上記下側部上に上記α-Al層における上側部を形成する第3工程(以下、単に「第3工程」という場合がある。)と、
を含み、
 上記第2工程における上記硫化水素ガスに対する上記二酸化炭素ガスの体積比(CO/HS)をR1とし、上記第3工程における上記硫化水素ガスに対する上記二酸化炭素ガスの体積比(CO/HS)をR2とした場合、1.5≦(R1/R2)≦2を満たす。
 なお、上述の中側部は第2工程から第3工程へ移る過程で形成される「遷移部」と把握することができる。
 <第1工程:基材を準備する工程>
 第1工程では基材を準備する。例えば、基材として超硬合金基材が準備される。超硬合金基材は、市販品を用いてもよく、一般的な粉末冶金法で製造してもよい。一般的な粉末冶金法で製造する場合、例えば、ボールミル等によってWC粉末とCo粉末等とを混合して混合粉末を得る。該混合粉末を乾燥した後、所定の形状に成形して成形体を得る。さらに該成形体を焼結することにより、WC-Co系超硬合金(焼結体)を得る。次いで該焼結体に対して、ホーニング処理等の所定の刃先加工を施すことにより、WC-Co系超硬合金からなる基材を製造することができる。第1工程では、上記以外の基材であっても、この種の基材として従来公知の基材であればいずれも準備可能である。
 <第2工程:α-Al層における下側部を形成する工程>
 第2工程では、化学気相蒸着法(CVD法)を用いて、二酸化炭素ガス及び硫化水素ガスを含む原料ガスを用いて、上記基材上に上記α-Al層における下側部が形成される。
 図5は、被膜の製造に用いられる化学気相蒸着装置(CVD装置)の一例を示す模式断面図である。以下図5を用いて第2工程について説明する。CVD装置30は、基材10を保持するための基材セット治具31の複数と、基材セット治具31を覆う耐熱合金鋼製の反応容器32とを備えている。また、反応容器32の周囲には、反応容器32内の温度を制御するための調温装置33が設けられている。反応容器32にはガス導入口34を有するガス導入管35が設けられている。ガス導入管35は、基材セット治具31が配置される反応容器32の内部空間において、鉛直方向に延在し当該鉛直方向を軸に回転可能に配置されており、またガスを反応容器32内に噴出するための複数の噴出孔36が設けられている。このCVD装置30を用いて、次のようにして上記被膜を構成するα-Al層の下側部等を形成することができる。
 まず、基材10を基材セット治具31に配置し、反応容器32内の温度および圧力を所定の範囲に制御しながら、α-Al層20の下側部用の原料ガスをガス導入管35から反応容器32内に導入させる。これにより、基材10上にα-Al層20の下側部20Aが形成される。ここで、α-Al層20の下側部20Aを形成する前に(すなわち、第2工程の前に)、内部層用の原料ガスをガス導入管35から反応容器32内に導入させることにより、基材10の表面に内部層(TiCNを含む層、図示せず。)を形成することが好ましい。以下、基材10の表面に内部層を形成した後に、上記α-Al層20の下側部20Aを形成する方法について説明する。
 上記内部層用の原料ガスとしては、特に制限はないが例えば、TiCl、N及びCHCNの混合ガスが挙げられる。
 上記内部層を形成する際の反応容器32内の温度は、1000~1100℃に制御されることが好ましい。上記内部層を形成する際の反応容器32内の圧力は0.1~1013hPaに制御されることが好ましい。また、なお、キャリアガスとしては、Hを用いることが好ましい。また、ガス導入時、不図示の駆動部によりガス導入管35を回転させることが好ましい。これにより、反応容器32内において各ガスを均一に分散させることができる。
 さらに、上記内部層を、MT(Medium Temperature)-CVD法で形成してもよい。MT-CVD法は、1000~1100℃の温度で実施されるCVD法(以下、「HT-CVD法」ともいう。)とは異なり、反応容器32内の温度を850~950℃といった比較的低い温度に維持して層を形成する方法である。MT-CVD法は、HT-CVD法と比して比較的低温で実施されるため、加熱による基材10へのダメージを低減することができる。特に、上記内部層がTiCN層である場合、MT-CVD法で形成することが好ましい。
 次に、上記内部層上にα-Al層20の下側部20Aを形成する。原料ガスとしては、例えば、AlCl、HCl、CO、CO及びHSの混合ガスを用いる。
 原料ガス中におけるCOの含有割合は、0.1~6体積%であることが好ましく、0.5~3体積%であることがより好ましく、0.6~2.5体積%であることが更に好ましい。COの好ましい流量は、0.1~4L/minである。
 原料ガス中におけるHSの含有割合は、0.1~1体積%であることが好ましく、0.5~1体積%であることがより好ましく、0.5~0.8体積%であることが更に好ましい。HSの好ましい流量は、0.1~0.5L/minである。
 このとき、HSに対するCOの体積比(CO/HS)は、0.5~4であることが好ましく、0.5~2であることがより好ましい。
 原料ガス中におけるAlClの含有割合は、2~5体積%であることが好ましく、3~4体積%であることがより好ましい。AlClの好ましい流量は、例えば、2.2L/minである。
 原料ガス中におけるHClの含有割合は、1~4体積%であることが好ましく、2~3.5体積%であることがより好ましい。HClの好ましい流量は、例えば、2L/minである。
 原料ガス中におけるCOの含有割合は、0.1~4体積%であることが好ましい。COの好ましい流量は、0.1L/min~2L/minである。
 反応容器32内の温度は950~1000℃に制御されることが好ましい。反応容器32内の圧力は50~100hPaに制御されることが好ましい。温度を上述の範囲で制御することにより、α-Alの微粒組織が形成され易くなる。また、キャリアガスとしてはHを用いることができる。なお、ガス導入時、ガス導入管35を回転させることが好ましいことは、上記と同様である。
 上記製造方法に関し、CVD法の各条件を制御することによって、各層の態様が変化する。たとえば、反応容器32内に導入する原料ガスの組成によって、各層の組成が決定される。実施時間(成膜時間)により、各層の厚みが制御される。なかでも、α-Al層20における粗粒の割合を低下させたり、後述する第3工程において(006)面配向性を高めるためには、原料ガスのうち、COガスとHSガスとの流量比(CO/HS)の制御が重要である。
 <第3工程:α-Al層における上側部を形成する工程>
 第3工程では、化学気相蒸着法を用いて、二酸化炭素ガス及び硫化水素ガスを含む原料ガスから、上記下側部上に上記α-Al層における上側部が形成される。
 原料ガスとしては、例えば、AlCl、HCl、CO及びHSの混合ガスを用いる。
 原料ガス中におけるCOの含有割合は、0.15~8体積%であることが好ましく、0.5~3体積%であることがより好ましく、0.6~2.5体積%であることが更に好ましい。COの好ましい流量は、0.1~4L/minである。
 原料ガス中におけるHSの含有割合は、0.15~1体積%であることが好ましく、0.5~1体積%であることがより好ましく、0.5~0.8体積%であることが更に好ましい。HSの好ましい流量は、0.1~0.5L/minである。
 このとき、HSに対するCOの体積比(CO/HS)は、0.5~4であることが好ましく、0.5~2であることがより好ましい。
 さらに、上記第2工程における上記HSに対する上記COの体積比(CO/HS)をR1とし、上記第3工程における上記HSに対する上記COの体積比(CO/HS)をR2とした場合、1.5≦(R1/R2)≦2を満たすことが好ましい。
 原料ガス中におけるAlClの含有割合は、6~12体積%であることが好ましく、7~10体積%であることがより好ましい。AlClの好ましい流量は、例えば、4.5L/minである。
 原料ガス中におけるHClの含有割合は、1~4体積%であることが好ましく、1.5~3体積%であることがより好ましい。HClの好ましい流量は、例えば、1L/minである。
 反応容器32内の温度は950~1000℃に制御されることが好ましい。反応容器32内の圧力は50~100hPaに制御されることが好ましい。温度を上述の範囲で制御することにより、α-Alの結晶粒の成長が促進される。また、キャリアガスとしてはHを用いることができる。なお、ガス導入時、ガス導入管35を回転させることが好ましいことは、上記と同様である。
 <その他の工程>
 本実施形態に係る製造方法では、上述した工程の他にも、本実施形態の効果を損なわない範囲で追加工程を適宜行ってもよい。上記追加工程としては例えば、上記内部層と上記α-Al層との間に中間層を形成する工程、上記α-Al層上に最外層を形成する工程、及び被膜にブラスト処理を行う工程等が挙げられる。中間層及び最外層を形成する方法としては、特に制限はなく、例えば、CVD法等によって形成する方法が挙げられる。
 以上の説明は、以下に付記する特徴を含む。
(付記1)
 基材と、前記基材を被覆する被膜とを備える表面被覆切削工具であって、
 前記被膜は、前記基材上に設けられたα-Al層を含み、
 前記α-Al層は、α-Alの結晶粒を含み、
 前記α-Al層は、下側部と上側部とを含み、
 前記下側部は、前記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る前記第一界面に平行な仮想平面Aと、前記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る前記第一界面に平行な仮想平面Bとに挟まれた領域であり、
 前記上側部は、前記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る前記第二界面に平行な仮想平面Cと、前記仮想平面Cから更に厚み方向に1μm離れた地点を通る前記第二界面に平行な仮想平面Dとに挟まれた領域であり、
 前記第一界面は、前記第二界面に平行であり、
 前記第二界面の法線を含む平面で前記α-Al層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって前記α-Alの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 前記カラーマップにおいて、
 前記上側部は、(006)面の法線方向が前記第二界面の法線方向に対して±15°以内となる前記α-Alの結晶粒の占める面積比率が50%以上であり、
 前記下側部は、(110)面の法線方向が前記第二界面の法線方向に対して±15°以内となる前記α-Alの結晶粒の占める面積比率が50%以上である、表面被覆切削工具。
(付記2)
 前記α-Al層は、その厚みが3μm以上20μm以下である、付記1に記載の表面被覆切削工具。
(付記3)
 前記被膜は、前記基材と前記α-Al層との間に設けられている内部層を更に含み、
 前記内部層は、TiCNを含む、付記1又は付記2に記載の表面被覆切削工具。
(付記4)
 前記被膜は、前記内部層と前記α-Al層との間に設けられている中間層を更に含み、
 前記中間層は、チタン元素と、C、N、B及びOからなる群より選ばれる少なくとも1種の元素とからなる化合物を含み、
 前記中間層は、前記内部層とは組成が異なる、付記1~付記3のいずれかに記載の表面被覆切削工具。
(付記5)
 前記被膜は、前記α-Al層上に設けられている最外層を更に含み、
 前記最外層は、チタン元素と、C、N及びBからなる群より選ばれる1種の元素とからなる化合物を含む、付記1~付記4のいずれかに記載の表面被覆切削工具。
(付記6)
 前記被膜は、その厚みが3μm以上30μm以下である、付記1~付記5のいずれかに記載の表面被覆切削工具。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 ≪切削工具の作製≫
 <第1工程:基材を準備する工程>
 基材として、TaC(2.0質量%)、NbC(1.0質量%)、Co(10.0質量%)及びWC(残部)からなる組成(ただし不可避不純物を含む。)の超硬合金製切削チップ(形状:CNMG120408N-UX、住友電工ハードメタル株式会社製、JIS B4120(2013))を準備した。
 <内部層、中間層を形成する工程>
 後述の第2工程の前に、準備した基材に対し、CVD装置を用いて、内部層及び中間層をこの順に形成させた。各層の形成条件を以下に示す。なお、各ガス組成に続く括弧内の値は、各ガスの流量(L/min)を示す。また、内部層及び中間層の厚み、並びに、中間層の組成を表1に示す。
 (内部層:TiCN)
原料ガス:TiCl(10L/min)、CHCN(1.5L/min)、N(15L/min)、H(80L/min)
圧力  :100hPa
温度  :850℃
成膜時間:表1に示される厚みとなるように適宜調製した
 (中間層:TiCNO、TiCN又はTiBN)
(TiCNOの場合)
原料ガス:TiCl(0.4L/min)、CH(2.5L/min)、CO(0.5L/min)、N(25L/min)、H(50L/min)
圧力  :140hPa
温度  :970℃
成膜時間:表1に示される厚みとなるように適宜調製した
(TiCNの場合)
原料ガス:TiCl(4L/min)、CHCN(2L/min)、N(30L/min)、H(70L/min)
圧力  :80hPa
温度  :980℃
成膜時間:表1に示される厚みとなるように適宜調製した
(TiBNの場合)
原料ガス:TiCl(5L/min)、BCl(0.5L/min)、N(25L/min)、H(60L/min)
圧力  :65hPa
温度  :970℃
成膜時間:表1に示される厚みとなるように適宜調製した
 <第2工程:α-Al層における下側部を形成する工程>
 内部層及び中間層が形成された基材に対し、CVD装置を用いて、α-Al層における下側部を形成させて、後工程の第3工程に移った。α-Al層における下側部の形成条件を以下に示す。また、α-Al層の厚みを表1に示す。
 (α-Al層の下側部)
原料ガス:AlCl(2.2L/min)、CO(0.l~4.0L/min)、CO:(0.1~2.0L/min)、HS(0.1~0.5L/min)、HCl(2.0L/min)、H(60L/min)
圧力  :50~100hPa
温度  :950~1000℃
成膜時間:下側部の厚みが2μmとなるように適宜調製した
 <第3工程:α-Al層における上側部を形成する工程>
 次に、α-Al層における下側部が形成された基材に対し、CVD装置を用いて、α-Al層における上側部を形成させることで、α-Al層を形成した。α-Al層における上側部の形成条件を以下に示す。ここで、上記第2工程における上記HSに対する上記COの体積比(CO/HS)をR1とし、上記第3工程における上記HSに対する上記COの体積比(CO/HS)をR2とした場合における比率R1/R2を表1に示す。
 (α-Al層の上側部)
原料ガス:AlCl(4.5L/min)、CO(0.1~4.0L/min)、HS(0.1~0.5L/min)、HCl(1.0L/min)、H(50L/min)圧力  :50~100hPa
温度  :950~1000℃
成膜時間:下側部と上側部との合計の厚みが表1に示される厚みとなるように適宜調製した
Figure JPOXMLDOC01-appb-T000001
 <最外層を形成する工程>
 最後に、上記α-Al層が形成された基材(ただし、試料7、8及びcを除く。)に対し、CVD装置を用いて、最外層を形成させた。最外層の形成条件を以下に示す。また、最外層の厚み及び組成を表1に示す。
 (最外層:TiN、TiC又はTiB
(TiNの場合)
原料ガス:TiCl(5L/min)、N(25L/min)、H(70L/min)
圧力  :150hPa
温度  :980℃
成膜時間:表1に示される厚みとなるように適宜調製した
(TiCの場合)
原料ガス:TiCl(2L/min)、CH(4L/min)、H(80L/min)
圧力  :350hPa
温度  :990℃
成膜時間:表1に示される厚みとなるように適宜調製した
(TiBの場合)
原料ガス:TiCl(15L/min)、BCl(0.2L/min)、H(75L/min)
圧力  :400hPa
温度  :1000℃
成膜時間:表1に示される厚みとなるように適宜調製した
 以上の手順によって、試料1~12及び試料a~fの切削工具を作製した。
 ≪切削工具の特性評価≫
 上述のようにして作製した試料の切削工具を用いて、以下のように、切削工具の各特性を評価した。ここで、試料1~12は実施例に相当し、試料a~fは比較例に相当する。
 <カラーマップの作成>
 まず、被膜におけるα-Al層の表面(又は界面)に垂直な断面が得られるように上記切削工具を切断した。その後、その切断面を耐水研磨紙(株式会社ノリタケコーテッドアブレーシブ(NCA)製、商品名:WATERPROOF PAPER、#400、#800、#1500)で研磨を実施し、α-Al層の加工面を作製した。引き続き、上記加工面をArイオンによるイオンミーリング処理によりさらに平滑化を行った。イオンミーリング処理の条件は以下の通りである。
加速電圧:6kV
照射角度:α-Al層の第二界面の法線方向(すなわち切断面におけるα-Al層の厚み方向に平行となる直線方向)から0°
照射時間:6時間
 作製された上記加工面をEBSDを備えたFE-SEM(日立ハイテクノロジーズ社製、商品名:「SU6600」)を用いて5000倍の倍率で観察することにより、加工面における20μm(α-Al層の厚み方向)×30μm(α-Al層の界面に平行な方向)の観察領域に関して上述のカラーマップを作成した。このとき作成したカラーマップの数(測定視野の数)は、3とした。具体的には、まずα-Al層の断面に含まれる各結晶粒の結晶方位を特定した。ここで特定される各結晶粒の結晶方位は、α-Al層の断面に現れる各結晶粒を、当該断面の法線方向(図4において紙面を貫く方向)から平面視したときに観察される結晶方位である。そして、得られた各結晶粒の結晶方位に基づいて、α-Al層の第二界面の法線方向における各結晶粒の結晶方位を特定した。そして、特定された結晶方位に基づいてカラーマップを作成した(例えば、図4)。各カラーマップについて、市販のソフトウェア(商品名:「Orientation Imaging Microscopy Ver 6.2」、EDAX社製)を用いて、α-Al層の下側部における(110)面配向性結晶粒の占める面積比率、α-Al層の下側部における(214)面配向性結晶粒の占める面積比率、及びα-Al層の上側部における(006)面配向性結晶粒の占める面積比率を求めた。その結果を表2及び図6に示す。ここで、上記下側部は、上記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る上記第一界面に平行な仮想平面Aと、上記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る上記第一界面に平行な仮想平面Bとに挟まれた領域である(例えば、図4)。上記上側部は、上記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る上記第二界面に平行な仮想平面Cと、上記仮想平面Cから更に厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Dとに挟まれた領域である(例えば、図4)。
 ここで、上記第一界面及び上記第二界面は上記カラーマップにおいて以下のようにして定めた。まず、カラーマップにおいて、α-Al層の領域と、α-Al層以外の領域とが区別つくように色を分けて表示した。上記カラーマップにおける上記基材の主面の法線方向において、基材側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線L1と、当該基材側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線L2との中心を通る直線を、上記第一界面とした。また、上記カラーマップにおける上記基材の主面の法線方向において、上記基材とは反対側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線M1と、上記基材とは反対側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線M2との中心を通る直線を上記第二界面とした。
 図6は、試料番号8のα-Al層の下側部における各結晶面ごとに、所定の結晶面の法線方向が上記第二界面の法線方向に対して±15°以内となる結晶粒が占める面積比率を示すグラフである。面積比率を求めた結晶面は、(110)面の他、(012)面、(104)面、(113)面、(116)面、(300)面、(214)面及び(006)面である。図6の結果から、試料番号8のα-Al層の下側部において、(110)面の法線方向が上記第二界面の法線方向に対して±15°以内となる結晶粒が占める面積比率が50%以上であることが分かった。
 ≪切削試験≫
 (切削評価(1):断続加工試験)
 上述のようにして作製した試料(試料1~12及び試料a~f)の切削工具を用いて、以下の切削条件により、すくい面におけるα-Al層の剥離が発生するまでの切削時間を測定した。その結果を表2に示す。切削時間が長いほど耐剥離性に優れる切削工具として評価することができる。
断続加工の試験条件
被削材 :FCD700溝材
切削速度:150m/min
送り  :0.25mm/rev
切込み :2mm
切削油 :湿式
 (切削評価(2):連続加工試験)
 上述のようにして作製した試料(試料1~12及び試料a~f)の切削工具を用いて、以下の切削条件により、10分間切削を行った後の、逃げ面における平均摩耗量を測定した。その結果を表2に示す。平均摩耗量が小さいほど耐摩耗性に優れる切削工具として評価することができる。
連続加工の試験条件
被削材 :SCr440H丸棒
切削速度:250m/min
送り  :0.25mm/rev
切込み :2mm
切削油 :湿式
Figure JPOXMLDOC01-appb-T000002
 表2の結果から試料1~12の切削工具(実施例の切削工具)は、断続加工における切削時間が240秒以上の良好な結果が得られた。一方試料a~fの切削工具(比較例の切削工具)は、断続加工における切削時間が60秒以下であった。以上の結果から、実施例の切削工具は、比較例の切削工具に比べて耐剥離性に優れることが分かった。
 表2の結果から、試料1~12の切削工具(実施例の切削工具)は、連続加工における逃げ面の平均摩耗量が0.14mm以下の良好な結果が得られた。一方試料a~fの切削工具(比較例の切削工具)は、連続加工における逃げ面の平均摩耗量が0.27mm以上であった。以上の結果から実施例の切削工具は、耐摩耗性に優れることが分かった。
 以上のように本発明の実施形態及び実施例について説明を行なったが、上述の各実施形態及び各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 すくい面、 2 逃げ面、 3 刃先稜線部、 10 基材、 20 α-Al層、 20a 第一界面、 20b 第二界面、 20A 下側部、 20B 上側部、 21 内部層、 22 中間層、 23 最外層、 30 CVD装置、 31 基材セット治具、 32 反応容器、 33 調温装置、 34 ガス導入口、 35 ガス導入管、 36 噴出孔、 40 被膜、 50 切削工具、 A 仮想平面A、 B 仮想平面B、 C 仮想平面C、 D 仮想平面D

Claims (5)

  1.  基材と、前記基材を被覆する被膜とを備える切削工具であって、
     前記被膜は、前記基材上に設けられたα-アルミナ層を含み、
     前記α-アルミナ層は、α-アルミナの結晶粒を含み、
     前記α-アルミナ層は、下側部と上側部とを含み、
     前記下側部は、前記基材の側の第一界面から厚み方向に0.2μm離れた地点を通る前記第一界面に平行な仮想平面Aと、前記仮想平面Aから更に厚み方向に1.3μm離れた地点を通る前記第一界面に平行な仮想平面Bとに挟まれた領域であり、
     前記上側部は、前記基材の側と反対の第二界面から厚み方向に0.5μm離れた地点を通る前記第二界面に平行な仮想平面Cと、前記仮想平面Cから更に厚み方向に1μm離れた地点を通る前記第二界面に平行な仮想平面Dとに挟まれた領域であり、
     前記第一界面は、前記第二界面に平行であり、
     前記第二界面の法線を含む平面で前記α-アルミナ層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって前記α-アルミナの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
     前記カラーマップにおいて、
     前記上側部は、(006)面の法線方向が前記第二界面の法線方向に対して±15°以内となる前記α-アルミナの結晶粒の占める面積比率が50%以上であり、
     前記下側部は、(110)面の法線方向が前記第二界面の法線方向に対して±15°以内となる前記α-アルミナの結晶粒の占める面積比率が50%以上であり、
     前記α-アルミナ層の厚みが3μm以上20μm以下である、切削工具。
  2.  前記被膜は、前記基材と前記α-アルミナ層との間に設けられている内部層を更に含み、
     前記内部層は、TiCNを含む、請求項1に記載の切削工具。
  3.  前記被膜は、前記内部層と前記α-アルミナ層との間に設けられている中間層を更に含み、
     前記中間層は、チタン元素と、炭素、窒素、ホウ素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物を含み、
     前記中間層は、前記内部層とは組成が異なる、請求項2に記載の切削工具。
  4.  前記被膜は、前記α-アルミナ層上に設けられている最外層を更に含み、
     前記最外層は、チタン元素と、炭素、窒素及びホウ素からなる群より選ばれる1種の元素とからなる化合物を含む、請求項1から請求項3のいずれか一項に記載の切削工具。
  5.  前記被膜の厚みが3μm以上30μm以下である、請求項1から請求項4のいずれか一項に記載の切削工具。
PCT/JP2019/048723 2019-02-19 2019-12-12 切削工具 WO2020170571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020533322A JP6912032B2 (ja) 2019-02-19 2019-12-12 切削工具
CN201980084743.2A CN113226603B (zh) 2019-02-19 2019-12-12 切削工具
US17/298,966 US11998993B2 (en) 2019-02-19 2019-12-12 Cutting tool
EP19915691.0A EP3871814A4 (en) 2019-02-19 2019-12-12 CUTTING TOOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-027257 2019-02-19
JP2019027257 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020170571A1 true WO2020170571A1 (ja) 2020-08-27

Family

ID=72145073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048723 WO2020170571A1 (ja) 2019-02-19 2019-12-12 切削工具

Country Status (4)

Country Link
EP (1) EP3871814A4 (ja)
JP (1) JP6912032B2 (ja)
CN (1) CN113226603B (ja)
WO (1) WO2020170571A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103568B1 (ja) * 2021-03-22 2022-07-20 住友電工ハードメタル株式会社 切削工具
JP7103567B1 (ja) * 2021-03-22 2022-07-20 住友電工ハードメタル株式会社 切削工具
US11407037B1 (en) 2021-03-22 2022-08-09 Sumitomo Electric Hardmetal Corp. Cutting tools

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316758A (ja) 1992-12-18 1994-11-15 Sandvik Ab 被覆物体
JP2004284003A (ja) 2003-02-28 2004-10-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
WO2013031952A1 (ja) * 2011-08-31 2013-03-07 三菱マテリアル株式会社 表面被覆切削工具
JP2013129030A (ja) * 2011-12-22 2013-07-04 Mitsubishi Materials Corp 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP2013188833A (ja) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP2017071044A (ja) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 表面被覆切削工具
JP2019027257A (ja) 2017-08-03 2019-02-21 株式会社Lixil 吐水部品及び水栓装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006002859D1 (de) * 2005-11-18 2008-11-06 Mitsubishi Materials Corp Hartstoffbeschichtetes Cermet-Schneidwerkzeug mit modifizierter alpha-Al2O3 Schicht
JP5383259B2 (ja) * 2009-03-10 2014-01-08 京セラ株式会社 切削工具
JP5892472B2 (ja) * 2012-06-19 2016-03-23 三菱マテリアル株式会社 硬質被覆層が高速断続切削加工ですぐれた耐剥離性、耐チッピング性を発揮する表面被覆切削工具
EP3100806B1 (en) * 2014-01-27 2020-05-06 Tungaloy Corporation Coated cutting tool
KR101666284B1 (ko) * 2014-12-30 2016-10-13 한국야금 주식회사 절삭공구용 경질피막
US10058924B2 (en) * 2015-08-28 2018-08-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
KR102027028B1 (ko) * 2015-08-28 2019-09-30 스미또모 덴꼬오 하드메탈 가부시끼가이샤 표면 피복 절삭 공구
JP6241630B1 (ja) * 2016-07-01 2017-12-06 株式会社タンガロイ 被覆切削工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316758A (ja) 1992-12-18 1994-11-15 Sandvik Ab 被覆物体
JP2004284003A (ja) 2003-02-28 2004-10-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
WO2013031952A1 (ja) * 2011-08-31 2013-03-07 三菱マテリアル株式会社 表面被覆切削工具
JP2013129030A (ja) * 2011-12-22 2013-07-04 Mitsubishi Materials Corp 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP2013188833A (ja) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP2017071044A (ja) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 表面被覆切削工具
JP2019027257A (ja) 2017-08-03 2019-02-21 株式会社Lixil 吐水部品及び水栓装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3871814A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103568B1 (ja) * 2021-03-22 2022-07-20 住友電工ハードメタル株式会社 切削工具
JP7103567B1 (ja) * 2021-03-22 2022-07-20 住友電工ハードメタル株式会社 切削工具
US11407037B1 (en) 2021-03-22 2022-08-09 Sumitomo Electric Hardmetal Corp. Cutting tools
WO2022201228A1 (ja) * 2021-03-22 2022-09-29 住友電工ハードメタル株式会社 切削工具
WO2022201230A1 (ja) * 2021-03-22 2022-09-29 住友電工ハードメタル株式会社 切削工具
WO2022201229A1 (ja) * 2021-03-22 2022-09-29 住友電工ハードメタル株式会社 切削工具
US11471951B2 (en) 2021-03-22 2022-10-18 Sumitomo Electric Hardmetal Corp. Cutting tools
US11511353B2 (en) 2021-03-22 2022-11-29 Sumitomo Electric Hardmetal Corp. Cutting tools
JP7205039B1 (ja) * 2021-03-22 2023-01-17 住友電工ハードメタル株式会社 切削工具

Also Published As

Publication number Publication date
CN113226603B (zh) 2024-03-01
JPWO2020170571A1 (ja) 2021-03-11
CN113226603A (zh) 2021-08-06
US20220032380A1 (en) 2022-02-03
JP6912032B2 (ja) 2021-07-28
EP3871814A1 (en) 2021-09-01
EP3871814A4 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020170571A1 (ja) 切削工具
WO2020170572A1 (ja) 切削工具
JP6889451B2 (ja) 切削工具
JP6834111B1 (ja) 切削工具
WO2020079894A1 (ja) 切削工具
JP6926387B2 (ja) 切削工具
JP6750789B1 (ja) 切削工具
US11998993B2 (en) Cutting tool
JP6950882B2 (ja) 切削工具
JP6840927B1 (ja) 切削工具
JP7135250B1 (ja) 切削工具
US11007580B2 (en) Cutting tool
WO2020213257A1 (ja) 切削工具
WO2020079893A1 (ja) 切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533322

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019915691

Country of ref document: EP

Effective date: 20210527

NENP Non-entry into the national phase

Ref country code: DE