WO2020170344A1 - Casing for radial compressor and radial compressor - Google Patents

Casing for radial compressor and radial compressor Download PDF

Info

Publication number
WO2020170344A1
WO2020170344A1 PCT/JP2019/006217 JP2019006217W WO2020170344A1 WO 2020170344 A1 WO2020170344 A1 WO 2020170344A1 JP 2019006217 W JP2019006217 W JP 2019006217W WO 2020170344 A1 WO2020170344 A1 WO 2020170344A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
body portion
rotation axis
flow path
impeller
Prior art date
Application number
PCT/JP2019/006217
Other languages
French (fr)
Japanese (ja)
Inventor
保徳 渡邊
良次 岡部
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2019/006217 priority Critical patent/WO2020170344A1/en
Priority to JP2021501188A priority patent/JP7154372B2/en
Publication of WO2020170344A1 publication Critical patent/WO2020170344A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps

Definitions

  • the present invention relates to a radial compressor casing and a radial compressor.
  • Radial compressor is known as a kind of compressor.
  • the gas flowing out from the impeller is introduced into a scroll portion having a spirally formed flow path, and is guided and discharged in the circumferential direction.
  • the outer dimensions of the scroll portion gradually increase from the winding start side toward the discharge side.
  • the casing of a radial compressor used for a turbocharger of an automobile may be made of resin for weight reduction.
  • the resin has a lower thermal conductivity than a metal such as aluminum, it is difficult to sufficiently radiate heat from the casing when the casing is made of resin as in the compressor of Patent Document 1. Therefore, there is a possibility that the casing becomes hot and the scroll portion of the casing is greatly deformed due to thermal expansion. In addition, a pressure is applied to the scroll portion from the fluid flowing through the flow passage toward the outside in the radial direction.
  • the flow path is formed by joining the first main body portion and the second main body portion of the casing.
  • the present invention provides a radial compressor casing capable of improving performance while improving fatigue strength, and a radial compressor.
  • the casing of the radial compressor according to the first aspect of the present invention has a cylindrical shape that extends along the rotation axis of the impeller and opens in the direction of the rotation axis, and an intake portion that introduces a fluid into the impeller;
  • a discharge part that extends along and is open to discharge the fluid from the flow path, wherein the scroll part includes a first main body part arranged in one of the directions of the rotation axis and the first main body.
  • An annular shape that extends inside from one of the first main body portion and the second main body portion toward the other beyond the joining portion and that forms a part of the inner surface of the flow path around the rotation axis.
  • a convex portion is provided, and the other of the first main body portion and the second main body portion is provided with a concave portion that is recessed from the inner surface of the flow path and engages with the convex portion.
  • the convex portion that extends in the direction of the rotation axis beyond the joint portion and forms the inner surface of the flow path of the scroll portion is provided. Therefore, even if a crack occurs in the joint due to the stress in the circumferential direction, the convex portion is pressed outward in the radial direction by the pressure of the fluid so as to close the crack. As a result, the crack growth rate can be reduced. Even if a crack is generated, the protrusion is pressed radially outward, so that the crack does not go radially outward, but tries to propagate toward the root of the protrusion in the direction of the rotation axis.
  • the crack does not propagate to the joint portion, which is weaker in strength than the main body portion or the second main body portion, and tends to propagate toward the inside of the strong first body portion or the second main body portion. This can also reduce the crack growth rate. Further, since the convex portion is pressed outward in the radial direction by the pressure of the fluid, the gap between the convex portion and the concave portion tends to close, so that the fluid can be prevented from entering the gap. Therefore, the pressure loss of the fluid in the flow path can be reduced. Further, the joint portion is located within the range in the direction of the rotation axis in which the flow path is formed. Therefore, the joint portion is arranged close to the central position in the rotation axis direction in the flow path of the scroll portion.
  • the first main body portion has a first facing surface facing the direction of the rotation axis
  • the second main body portion has a second facing surface in surface contact with the first facing surface.
  • the first main body portion is provided with a first annular concave portion that is recessed from the first facing surface in the direction of the rotation axis line and extends annularly around the rotation axis line
  • the second main body portion is A second annular recess that is recessed from the second facing surface in the direction of the rotation axis at the position corresponding to the position where the first annular recess is provided and extends annularly around the rotation axis is provided
  • the joint portion is It may be a resin member arranged in a space formed by the first annular recess and the second annular recess.
  • the resin member for the joining portion By using the resin member for the joining portion in this way, the first body portion and the second body portion can be joined more firmly. Furthermore, since the joining portion can be provided by using die slide injection to join the first main body portion and the second main body portion, the manufacturing of the casing can be facilitated.
  • the convex portion has a convex outer surface facing outward in the radial direction, and the convex outer surface is provided with a lateral convex portion projecting outward in the radial direction, and the first main body.
  • the other of the second body portion has an inner surface facing the outer surface of the convex portion, and the inner surface is recessed outward in the radial direction and a lateral concave portion engageable with the lateral convex portion. May be provided.
  • a lateral convex portion is provided on an outer surface of the convex portion of the convex portion, and a lateral concave portion engageable with the lateral convex portion is provided on an inner surface facing the outer surface of the convex portion. It is possible to suppress relative movement in the direction of. Therefore, the first main body portion and the second main body portion can mutually regulate the deformation in the direction of the rotation axis, and improve the fatigue strength of the casing while avoiding the reduction of the compression efficiency of the fluid due to the deformation of the casing. it can.
  • the other of the first main body portion and the second main body portion is arranged outside the convex portion in the radial direction, and the first main body portion and the second main body portion are disposed.
  • the first main body portion and the second main body portion are joined by the joint portion so as to fit in the direction of the rotation axis. Therefore, it is possible to avoid radial displacement with respect to the rotation axis, and it is possible to surely arrange the first main body portion and the second main body portion coaxially during assembly and operation. As a result, the compression efficiency of the fluid can be improved.
  • the casing of the radial compressor according to one aspect of the present invention has a cylindrical shape that extends along the rotation axis of the impeller and opens in the direction of the rotation axis, and has an intake section that introduces fluid into the impeller, and the intake section.
  • a scroll part made of resin forming an annular flow path centering around the rotation axis on the outer peripheral side of the impeller, and integrally provided at one end of the scroll part in the circumferential direction of the impeller.
  • a discharge portion that extends along the opening and discharges the fluid from the flow path, wherein the scroll portion includes a first main body portion arranged in one of the directions of the rotation axis and the first main body portion.
  • the first main body portion and the second main body portion are joined in the direction of the rotation axis, and the flow path is formed.
  • a joint portion located outside the range of the direction of the rotation axis, and one of the first main body portion and the second main body portion inward of the joint portion in the radial direction with respect to the rotation axis line.
  • An annular convex centered on the rotation axis that extends from one of the first body portion and the second body portion toward the other beyond the joint portion and forms a part of the inner surface of the flow path.
  • a portion is provided, and the other of the first main body portion and the second main body portion is provided with a recessed portion that is recessed from the inner surface of the flow path and engages with the convex portion, and the first main body portion is A first facing surface that faces the direction of the rotation axis, the second main body portion has a second facing surface that is in surface contact with the first facing surface, and the first main body portion includes the first facing surface.
  • a first annular recess is provided that is recessed from one opposing surface in the direction of the rotation axis and extends annularly around the rotation axis, and the second body portion corresponds to the position where the first annular recess is provided.
  • a second annular recess is provided that is recessed from the second facing surface in the direction of the rotation axis at a position and extends annularly around the rotation axis, and the joint is the first annular recess and the second annular recess.
  • the protrusion is pressed outward in the radial direction by the pressure of the fluid so as to close the crack. It is possible to reduce the progress speed of Even if a crack occurs, the protrusion is pressed outward in the radial direction so that the crack does not go outward in the radial direction and tries to propagate toward the direction of the rotation axis at the root of the protrusion, that is, the joint. Attempts to progress toward the inside of the stronger first body portion or the second body portion. This can also reduce the crack growth rate.
  • the convex portion is pressed outward in the radial direction by the pressure of the fluid, the gap between the convex portion and the concave portion tends to close, so that the fluid can be prevented from entering the gap. Therefore, the pressure loss of the fluid in the flow path can be reduced.
  • the joint portion is located outside the range in the direction of the rotation axis where the flow path is formed. For this reason, the influence of heat from the compressed fluid and the influence of pressure from the fluid are less likely to reach the joint portion, it is possible to suppress the occurrence of cracks at the joint portion due to the stress in the circumferential direction, and to prevent damage to the casing. The effect of suppressing is obtained.
  • the casing of the radial compressor according to an aspect of the present invention has a tubular shape that extends along the rotation axis of the impeller and opens in the direction of the rotation axis, and an intake section that introduces fluid into the impeller, A resin scroll part that communicates with the air intake part and forms a flow path that extends annularly around the rotation axis on the outer peripheral side of the impeller, A discharge part that is integrally provided at one end of the scroll part and extends along the circumferential direction of the impeller to open, and discharges the fluid from the flow path, Equipped with The scroll part is A first body portion arranged in one of the directions of the rotation axis, The second main body portion arranged on the other side of the first main body portion in the direction of the rotation axis, the first main body portion and the second main body portion are joined in the direction of the rotation axis line, and the flow A joint portion located outside the range of the direction of the rotation axis in which a path is formed, and one of the first main body portion and
  • An annular convex portion is provided, and the other of the first main body portion and the second main body portion is provided with a concave portion that is recessed from the inner surface of the flow path and engages with the convex portion.
  • the convex portion has a convex outer surface facing outward in the radial direction, and a lateral convex portion protruding outward in the radial direction is provided on the convex outer surface, and the first main body portion and the second main body portion are provided.
  • the other of the two has an inner surface that faces the outer surface of the convex portion, and the inner surface is provided with a lateral concave portion that is recessed outward in the radial direction and that is engageable with the lateral convex portion.
  • the other of the main body and the second main body is disposed on the outside in the radial direction with respect to the convex portion, and from the other of the first main body and the second main body.
  • An outer convex portion protruding toward one side is further provided, and an outer concave portion engageable with the outer convex portion is provided on the one of the first main body portion and the second main body portion. ..
  • the lateral convex portion allows the first main body portion and the second main body portion to mutually regulate deformation in the direction of the rotation axis, improving fatigue strength of the casing and deformation of the casing. It is possible to avoid the accompanying decrease in the compression efficiency of the fluid. Further, as described above, the first main body portion and the second main body portion can be coaxially arranged by the outer convex portion, and the compression efficiency of the fluid can be improved.
  • a radial compressor includes an impeller, a rotating shaft that fits with the impeller and rotates together with the impeller, and the casing provided so as to cover the impeller.
  • the radial compressor 1 in the embodiment of the present invention will be described.
  • the radial compressor 1 (hereinafter, simply referred to as the compressor 1) is, for example, a compressor for a turbocharger mounted on a vehicle. As shown in FIG. 1, the compressor 1 is provided so as to cover the impeller 2, the rotary shaft 3 that rotates integrally with the impeller 2 around the rotation axis O when the impeller 2 is fitted, and the impeller 2. And a casing 4.
  • the casing 4 includes an intake part 5 for introducing a gas G (fluid) such as air into the impeller 2, a discharge part 6 for discharging the gas G flowing out of the impeller 2 and the intake part 5, and an intake part 5.
  • the scroll unit 7 is in communication with the discharge unit 6.
  • the intake part 5 is arranged in one direction of the rotation axis O with respect to the impeller 2, extends in the direction of the rotation axis 3 and has a cylindrical shape that opens in the other direction of the rotation axis O.
  • the intake section 5 sucks the gas G toward the impeller 2 from one side in the direction of the rotation axis O and introduces the gas G toward a flow path (not shown) in the impeller 2.
  • the material of the air intake portion 5 is, for example, a resin such as a thermoplastic resin (for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PA9T/PA46/PA6T (polyamide), PBT (polybutylene terephthalate), etc.). is there.
  • the scroll section 7 is arranged on the outer peripheral side of the impeller 2 and the intake section 5.
  • the scroll portion 7 has a flow path FC that extends annularly in the circumferential direction of the impeller 2 and the rotary shaft 3.
  • the gas G introduced from the intake portion 5 flows through the flow passage in the impeller 2, is compressed, and then flows through the flow passage FC of the scroll portion 7.
  • the scroll portion 7 is made of the same resin as the intake portion 5.
  • the flow channel FC of the scroll portion 7 has a circular cross section orthogonal to the circumferential direction, and the flow channel cross-sectional area gradually increases toward one side in the circumferential direction. As a result, the outer dimensions of the scroll portion 7 gradually increase in one direction in the circumferential direction toward the discharge portion 6.
  • the scroll portion 7 may be, for example, an injection-molded product of resin that is integral with the intake portion 5, or may be manufactured separately from the intake portion 5 and joined to the intake portion 5.
  • the discharge part 6 has a cylindrical shape and is integrally provided at one end of the scroll part 7 in the circumferential direction.
  • the discharge part 6 extends in the tangential direction of the scroll part 7 along the circumferential direction and opens to pass the gas G through the flow path FC. Discharge from.
  • the discharge part 6 is also made of the same resin as the scroll part 7 and the intake part 5.
  • the discharge part 6 may be, for example, an injection-molded product of resin integrated with the scroll part 7, or may be manufactured separately from the scroll part 7 and joined to the scroll part 7.
  • the scroll portion 7 is disposed on the other side of the first main body portion 11 and the direction of the rotation axis O with respect to the first main body portion 11, and forms the inner surface 7a of the flow path FC together with the first main body portion 11. 12 and a joint portion 13 provided between the first main body portion 11 and the second main body portion 12.
  • the first main body 11 has an annular shape centered on the rotation axis O.
  • the first main body portion 11 has an annular convex portion 11a centering on the rotation axis O that extends from the first main body portion 11 in the other direction of the rotation axis O and forms a part of the inner surface 7a of the flow path FC. Is provided.
  • the convex portion 11a is provided in contact with the flow path FC.
  • the first main body portion 11 is formed with a first facing surface 11b which is in contact with the convex portion 11a and is radially outward of the convex portion 11a and faces the other side in the direction of the rotation axis O.
  • the convex outer surface 11c that faces the radial outer side of the convex portion 11a is an inclined surface that is inclined radially inward toward the other side in the direction of the rotation axis O.
  • the second main body 12 has an annular shape centered on the rotation axis O.
  • the second main body 12 is provided with an annular recess 12a that is recessed radially outward from the inner surface 7a of the flow path FC and into which the protrusion 11a is inserted and that engages with the protrusion 11a. Therefore, the recess inner surface 12c that faces the inner side in the radial direction of the recess 12a is an inclined surface that slopes radially inward toward the other side in the direction of the rotation axis O corresponding to the outer surface 11c of the protrusion.
  • the second main body 12 is formed with a second facing surface 12b that is in contact with the recess 12a and is radially outward of the recess 12a and faces one side of the rotation axis O.
  • the second facing surface 12b is arranged in face-to-face contact with the first facing surface 11b in the direction of the rotation axis O.
  • the joining portion 13 is provided on the first facing surface 11b and the second facing surface 12b at a position radially outside of the convex portion 11a and the concave portion 12a. Therefore, the convex portion 11a is provided in contact with the joint portion 13 on the radially inner side of the joint portion 13.
  • the convex portion 11 a extends beyond the joint portion 13 toward the second main body portion 12 in the other direction of the rotation axis O.
  • the joining portion 13 vibrates and fuses the first main body portion 11 and the second main body portion 12 with each other, for example, in a state where the first facing surface 11b and the second facing surface 12b face each other in the direction of the rotation axis O. It is formed as a result of joining using a method such as fusion bonding. Therefore, the joint portion 13 is formed in an annular shape centering on the rotation axis O over the entire first opposing surface 11b and the second opposing surface 12b, and is made of the same resin material as the first main body portion 11 and the second main body
  • the joint portion 13 of the present embodiment is arranged along an imaginary line X that extends in the radial direction through the center position in the direction of the rotation axis O in the flow path FC of the scroll portion 7.
  • the joint portion 13 has only to be located within the range of the direction of the rotation axis O in which the flow path FC is formed, and does not necessarily have to be arranged along the above virtual line X.
  • the joint portion 13 is provided only between the first facing surface 11b and the second facing surface 12b, it is not provided between the convex portion 11a and the concave portion 12a. As a result, the convex portion 11a and the concave portion 12a are close to each other or in contact with each other, but are not joined to each other.
  • the convex portion 11a extending in the direction of the rotation axis O and forming the inner surface 7a of the flow path FC of the scroll portion 7 is provided in the first main body portion 11. Therefore, even if the crack C (see FIG. 2) is generated in the joint portion 13 due to the stress in the circumferential direction, the convex portion 11a is pressed radially outward by the pressure of the gas G so as to close the crack C. As a result, the growth rate of the crack C can be reduced.
  • the convex portion 11a and the concave portion 12a are not joined to each other, the convex portion 11a is pressed radially outward by the pressure of the gas G, so that the convex outer surface 11c and the concave portion 12a.
  • the gap with the inner surface 12c tends to close. Therefore, the gas G can be prevented from entering the gap. Therefore, the pressure loss of the gas G in the flow path FC can be reduced.
  • the joint portion 13 is provided on the virtual line X, the joint portion 13 is located within the range of the direction of the rotation axis O in which the flow path FC of the scroll portion 7 is formed. For this reason, the joint portion 13 is arranged at or near the center position of the flow path FC in the direction of the rotation axis O. As a result, the convex portion 11a is pressed outward in the radial direction by the concave portion 12a, and the gap between the convex portion outer surface 11c and the concave portion inner surface 12c tends to close.
  • the second main body 12 may be provided with the convex portion 11a and the first main body 11 may be provided with the concave portion 12a.
  • the joint portion 13 may be provided on the first facing surface 11b and the second facing surface 12b up to a position apart from the convex portion 11a. That is, The joint portion 13 may not be in contact with the convex outer surface 11c.
  • the first main body 11 is formed with a first annular recess 11d which is recessed from the first facing surface 11b toward one side in the direction of the rotation axis O and extends annularly around the rotation axis O.
  • the first annular concave portion 11d is formed in contact with the convex outer surface 11c.
  • the pair of side bottom surfaces 21a, 21b facing in the radial direction are inclined so as to approach each other toward the bottom surface 22 facing in the direction of the rotation axis O. That is, the side bottom surfaces 21a and 21b are provided with a draft for molding.
  • the second main body 12 is formed with a second annular recess 12d that is recessed from the second facing surface 12b toward the other side in the direction of the rotation axis O and extends annularly around the rotation axis O.
  • the inner bottom surface 25a of the pair of side bottom surfaces 25a, 25b facing the radial direction of the inner surface of the second annular recess 12d is provided at a position radially separated from the recess 12a. Therefore, it is provided on the outer side in the radial direction with respect to the side bottom surface 21a on the inner side in the radial direction of the first annular recess 11d.
  • the radially outer side bottom surface 25b of the second annular recess 12d is provided at the same radial position as the radially outer side bottom surface 21b of the first annular recess 11d. Similar to the side bottom surfaces 21a and 21b of the first annular recess 11d, the pair of side bottom surfaces 25a and 25b of the second annular recess 12d are inclined so as to be close to each other toward the bottom surface 26 facing the direction of the rotation axis O. There is. That is, the side bottom surfaces 25a and 25b are provided with a draft at the time of molding.
  • the joint portion 23 is a resin member arranged in the space formed by the first annular recess 11d and the second annular recess 12d.
  • the same resin material as that of the scroll portion 7 can be used as the material of the joint portion 23.
  • the outer surface of the joint portion 23 is entirely joined to the first body portion 11 and the second body portion 12.
  • the growth rate of the crack C can be reduced by the convex portion 11a provided on the first main body portion 11, and the gas in the flow path can be reduced.
  • the pressure loss of G can be reduced. Therefore, it is possible to improve the performance of the compressor 1A while improving the fatigue strength of the casing 4A.
  • the first main body portion 11 and the second main body portion 12 can be joined more firmly.
  • the first main body portion 11 and the second main body portion 12 can be joined by providing the joining portion 23 by using, for example, die slide injection. Specifically, after molding the first main body portion 11 and the second main body portion 12, die sliding is performed so that the first annular recessed portion 11d and the second annular recessed portion 12d face each other in the direction of the rotation axis O, and the joint portion 23 is formed.
  • the casing 4A can be easily manufactured by filling the space between the first annular recess 11d and the second annular recess 12d with this resin material.
  • a compressor 1B of a second modified example of the first embodiment of the present invention will be described with reference to FIG.
  • the second modification is different from the first modification in the shape of the second annular recess 32d.
  • the side bottom surface on the radially inner side of the second annular recess 32d is the convex outer surface 11c.
  • the joint portion 33 is provided in contact with the convex outer surface 11c and between the first main body portion 11 and the second main body portion 12.
  • the outer surface of the joint portion 33 is entirely joined to the first body portion 11 and the second body portion 12.
  • the resin material of the joint portion 33 is filled in the space between the first annular concave portion 11d and the second annular concave portion 32d, so that the first main body portion 11 and the second main body portion 12 are made stronger.
  • the casing 4B can be easily manufactured by using die slide injection, for example.
  • the first facing surface 41b of the first main body portion 41 and the second facing surface 42b of the second main body portion 42 are in the direction of the rotation axis O with respect to the virtual line X passing through the center position of the flow path in the direction of the rotation axis O. It is located on one side.
  • the first facing surface 41b and the second facing surface 42b are arranged outside the range in the direction of the rotation axis O in which the flow path FC is formed.
  • the first annular recess 41d and the second annular recess 42d are also arranged outside the range in the direction of the rotation axis O in which the flow path FC is formed. Therefore, the joint portion 43 is also arranged outside the range in the direction of the rotation axis O in which the flow path FC is formed.
  • the joint portion 43 is located outside the range in the direction of the rotation axis O in which the flow path FC is formed. Therefore, the influence of heat from the compressed gas G and the influence of the pressure from the gas G are less likely to reach the joint portion 43, and the generation of the crack C at the joint portion 43 due to the stress in the circumferential direction can be suppressed. .. Therefore, the effect of suppressing damage to the casing 4C can be obtained.
  • the convex portion 52a is provided in the second main body portion 52, and the concave portion 51a into which the convex portion 52a is inserted and which engages with the convex portion 52a is provided in the first main body portion 51. Has been.
  • a lateral convex portion 52f protruding radially outward is provided on the convex outer surface 52c, which is a surface of the convex portion 52a facing radially outward.
  • the lateral convex portion 52f may be provided in an annular shape centered on the rotation axis O, or a plurality of lateral convex portions 52f may be provided at intervals in the circumferential direction.
  • the recessed inner surface 51c of the recessed portion 51a which faces inward in the radial direction, is provided with a lateral recessed portion 51f which is recessed radially outwardly and into which the lateral convex portion 52f is inserted and engaged.
  • the lateral recess 51f may have an annular shape centered on the rotation axis O, or a plurality of lateral recesses may be provided at intervals in the circumferential direction.
  • the second main body portion 52 is arranged radially outward of the convex portion 52a with a radial gap from the convex portion 52a, and the second facing surface 52b of the second main body portion 52 is provided.
  • An outer convex portion 52e that protrudes toward one of the rotation axis O, that is, the first main body 51 is provided.
  • the second facing surface 52b is a surface that is in contact with the convex portion 52a and is arranged radially outward of the convex portion 52a and faces one of the directions of the rotation axis O.
  • the surface of the outer convex portion 52e facing outward in the radial direction is a dividing surface D of the first main body portion 51 and the second main body portion 52 extending in the direction of the rotation axis O.
  • the first main body portion 51 is provided with an outer concave portion 51e, which is inserted into the outer convex portion 52e and is engageable with the first main body portion 51.
  • the outer concave portion 51e is concave from the first facing surface 51b facing the second facing surface 52b in one direction of the rotation axis O. ing.
  • the joint portion 53 is arranged on the other side in the direction of the rotation axis O with respect to the virtual line X passing through the central position in the direction of the rotation axis O of the flow path FC, and the range in the direction of the rotation axis O in which the flow path FC is formed. It is located outside.
  • the outer surface of the joint portion 53 is entirely joined to the first main body portion 51 and the second main body portion 52.
  • first main body portion 51 and the second main body portion 52 are opposed to each other in the radial direction on the division surface D.
  • the first main body portion 51 is provided with a first annular recessed portion 51d having an annular shape centered on the rotation axis O that is recessed radially outward from the dividing surface D while opening at the end surface facing the other side of the rotation axis O.
  • the second main body portion 52 has a second annular concave portion 52d which has an annular shape centered on the rotation axis O which is recessed inward in the radial direction from the dividing surface D while opening at the end surface facing the other side of the rotation axis O. It is provided.
  • the first annular recess 51d and the second annular recess 52d are provided at the same position in the direction of the rotation axis O.
  • the first annular recess 51d and the second annular recess 52d are located outside the range in the direction of the rotation axis O in which the flow path FC is formed.
  • the joint 53 is arranged in the space formed by the first annular recess 51d and the second annular recess 52d. Therefore, the joint portion 53 is also located outside the range in the direction of the rotation axis O in which the flow path FC is formed.
  • the compressor 1D of the present embodiment described above it is possible to reduce the crack growth speed by the convex portion 52a and reduce the pressure loss of the gas G in the flow path FC. Furthermore, since the joint portion 53 is located outside the range in the direction of the rotation axis O in which the flow path FC is formed, the influence of heat from the compressed gas G and the influence of the pressure from the gas G may affect the joint portion. It becomes difficult to reach 53. Therefore, it is possible to suppress the occurrence of cracks in the joint portion 53 due to the stress in the circumferential direction, and it is possible to obtain the effect of suppressing damage to the casing 4D.
  • the first main body portion 51 and the second main body portion 52 are fitted to each other in the direction of the rotation axis O and joined by the joining portion 53. .. Therefore, it is possible to avoid misalignment with respect to the rotation axis O, and it is possible to arrange the first main body portion 51 and the second main body portion 52 coaxially during assembly and operation. That is, the coaxiality can be improved. As a result, the compression efficiency of the gas G can be improved.
  • the lateral convex portion 52f is provided on the convex outer surface 52c, and the lateral concave portion 51f engageable with the lateral convex portion 52f is provided on the concave inner surface 51c opposite to the convex outer surface 52c. It is possible to suppress relative movement of the main body 52 in the direction of the rotation axis O. Therefore, the first main body portion 51 and the second main body portion 52 can mutually restrict the deformation in the direction of the rotation axis O, and the gas G accompanying the deformation of the casing 4D while improving the fatigue strength of the casing 4D. It is possible to avoid a decrease in compression efficiency.
  • the heat of the first main body 51 and the second main body 52 is The smaller the amount of deformation, the more the amount of thermal deformation that can be suppressed. Therefore, it is possible to improve the fatigue strength of the casing 4D and avoid a decrease in the compression efficiency of the gas G due to the deformation of the casing 4D.
  • only one of the outer convex portion 52e (outer concave portion 51e) and the lateral convex portion 52f (lateral concave portion 51f) may be provided.
  • the first main body 61 is provided with a first annular recess 61d that is recessed from the outer recess 51e in one direction of the rotation axis O.
  • the second main body 62 is provided with a second annular recess 62d that is recessed from the outer convex portion 52e in the other direction of the rotation axis O and is annular around the rotation axis O.
  • the first annular recess 61d and the second annular recess 62d are provided at the same position in the radial direction.
  • the first annular recess 61d and the second annular recess 62d are located within a range in the direction of the rotation axis O in which the flow path FC is formed.
  • the joint 63 is arranged in the space formed by the first annular recess 61d and the second annular recess 62d. Therefore, the joint portion 63 is also located within the range in the direction of the rotation axis O in which the flow path FC is formed.
  • the joint portion 63 is located within the range in the direction of the rotation axis O in which the flow path FC is formed. Therefore, the joint portion 63 is arranged close to the central position (virtual line X) in the direction of the rotation axis O in the flow path FC. As a result, the influence of the stress in the circumferential direction due to the pressure of the gas G increases, but even in such a case, the protrusion 52a can suppress the progress of cracks, and thus the effect of suppressing damage to the casing 4E. Is obtained.
  • the position of the joint portion 63 is not limited to the above case, and it is sufficient that the joint portion 63 is located at least within the range in the direction of the rotation axis O in which the flow path FC is formed.
  • the materials of the scroll part 7, the intake part 5, and the discharge part 6 do not have to be the same.
  • at least the scroll portion 7 may be made of resin.
  • "made of resin” includes not only those made of pure resin but also those made of resin containing a material other than resin such as filler.
  • the intake part 5 and the discharge part 6 may be formed of a metal such as aluminum, carbon fiber, a composite material containing a metal filler, or the like.
  • Air intake 6 Discharge part 7 Scroll section 7a inner surface 11, 41, 51, 61 First body part 11a, 41a, 52a Convex part 11b, 41b, 51b First facing surface 11c, 52c convex outer surface 11d, 41d, 51d, 61d 1st annular recessed part 12, 42, 52, 62 2nd main-body part 12a, 51a recess 12b, 42b, 52b Second facing surface 12c, 51c Inner surface of recess 12d, 32d, 42d, 52d, 62d Second annular recess 13, 23, 33, 43, 53, 63 Joint 21a, 21b, 25a, 25b Side bottom surface 22, 26 Bottom surface 51e Outer recessed portion 51f Lateral recessed portion 52e Outer protruding portion 52f Side protruding portion 61 First main body portion 62 Second main body portion X virtual line G

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A scroll part (7) comprises: a first body part (11) that is arranged on one side in a direction of a rotation axis (O); a second body part (12) that is arranged on the other side in the direction of the rotation axis (O) with respect to the first body part (11); and a joining part (13) that joins the first body part (11) and the second body part (12) together in the direction of the rotation axis (O) and is positioned within a range in the direction of the rotation axis (O) in which a flow path (FC) for the scroll part (7) is formed. The first body part (11) is provided with an annular protruding part (11a) that extends across the joining part (13) toward the second body part (12) on a radially inner side than the joining part (13) and forms a part of an inner surface (7a) of the flow path (FC). The second body part (12) is provided with a recessed part (12a) that is recessed from the inner surface (7a) of the flow path (FC) and engages the protruding part (11a).

Description

ラジアルコンプレッサのケーシング、及びラジアルコンプレッサRadial compressor casing and radial compressor
 本発明は、ラジアルコンプレッサのケーシング、及びラジアルコンプレッサに関する。 The present invention relates to a radial compressor casing and a radial compressor.
 コンプレッサの一種としてラジアルコンプレッサが知られている。このラジアルコンプレッサでは、インペラから流出したガスを螺旋状に形成された流路を有するスクロール部に導入し、周方向に案内して吐出するようになっている。スクロール部は、巻き始め側から吐出側に向けて徐々に外形寸法が大きくなっている。 Radial compressor is known as a kind of compressor. In this radial compressor, the gas flowing out from the impeller is introduced into a scroll portion having a spirally formed flow path, and is guided and discharged in the circumferential direction. The outer dimensions of the scroll portion gradually increase from the winding start side toward the discharge side.
 ここで、引用文献1、及び引用文献2に記載されたラジアルコンプレッサのように、例えば自動車のターボチャージャに用いられるラジアルコンプレッサのケーシングは、軽量化等のため樹脂製となっている場合がある。 Here, like the radial compressors described in the cited documents 1 and 2, the casing of a radial compressor used for a turbocharger of an automobile, for example, may be made of resin for weight reduction.
国際公開第2017/168767号International Publication No. 2017/168767
 しかしながら、樹脂はアルミ等の金属と比較して熱伝導率が低いため、特許文献1のコンプレッサのようにケーシングが樹脂製である場合にはケーシングから十分な放熱を行うことが難しい。よって、ケーシングが高温となってケーシングのスクロール部が熱膨張によって大きく変形してしまう可能性がある。またスクロール部には、流路を流通する流体から径方向外側へ向かう圧力が作用する。
 特許文献1のコンプレッサでは、ケーシングの第一本体部と第二本体部とを接合することで流路が形成されている。このため、上記の熱膨張や流体の圧力によって、第一本体部と第二本体部との接合部には第一本体部と第二本体部とが離れるように周方向に応力が生じ、接合部に亀裂が生じ、第一本体部と第二本体部との間に隙間が形成されてしまう可能性がある。この結果、コンプレッサの疲労強度が低下する可能性がある。
 さらに、第一本体部と第二本体部との隙間に流路内の流体が侵入することで第一本体部と第二本体部とがさらに離れようとして隙間が大きくなり、流体の圧力損失が大きくなってしまう。
However, since the resin has a lower thermal conductivity than a metal such as aluminum, it is difficult to sufficiently radiate heat from the casing when the casing is made of resin as in the compressor of Patent Document 1. Therefore, there is a possibility that the casing becomes hot and the scroll portion of the casing is greatly deformed due to thermal expansion. In addition, a pressure is applied to the scroll portion from the fluid flowing through the flow passage toward the outside in the radial direction.
In the compressor of Patent Document 1, the flow path is formed by joining the first main body portion and the second main body portion of the casing. Therefore, due to the thermal expansion and the pressure of the fluid, a stress is generated in the circumferential direction in the joint portion between the first main body portion and the second main body portion so as to separate the first main body portion and the second main body portion, and There is a possibility that a crack may occur in the portion and a gap may be formed between the first main body portion and the second main body portion. As a result, the fatigue strength of the compressor may decrease.
Furthermore, when the fluid in the flow path enters the gap between the first main body portion and the second main body portion, the gap increases as the first main body portion and the second main body portion try to separate from each other, resulting in a pressure loss of the fluid. It gets bigger.
 そこで本発明は、疲労強度を向上しつつ、性能向上が可能なラジアルコンプレッサのケーシング、及びラジアルコンプレッサを提供する。 Therefore, the present invention provides a radial compressor casing capable of improving performance while improving fatigue strength, and a radial compressor.
 本発明の第一の態様に係るラジアルコンプレッサのケーシングは、インペラの回転軸線に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラに流体を導入する吸気部と、前記吸気部に連通して、前記インペラの外周側で前記回転軸線を中心とした環状に延びる流路を形成する樹脂製のスクロール部と、前記スクロール部の一端に一体に形成されて前記インペラの周方向に沿って延びて開口し、前記流体を前記流路から吐出する吐出部と、を備え、前記スクロール部は、前記回転軸線の方向の一方に配置された第一本体部と、前記第一本体部に対して前記回転軸線の方向の他方に配置された第二本体部と、前記第一本体部と前記第二本体部とを前記回転軸線の方向に接合するとともに、前記流路が形成された前記回転軸線の方向の範囲内に位置する接合部と、を有し、前記第一本体部及び前記第二本体部のうちの一方には、前記接合部よりも前記回転軸線に対する径方向の内側に前記第一本体部及び前記第二本体部のうちの一方から他方に向かって前記接合部を超えて延び、前記流路の内面の一部を形成する前記回転軸線を中心とした環状の凸部が設けられ、前記第一本体部及び前記第二本体部のうちの前記他方には、前記流路の内面から凹んで前記凸部に係合する凹部が設けられている。 The casing of the radial compressor according to the first aspect of the present invention has a cylindrical shape that extends along the rotation axis of the impeller and opens in the direction of the rotation axis, and an intake portion that introduces a fluid into the impeller; A scroll portion made of resin that communicates with the portion and forms a flow path that extends in an annular shape around the rotation axis on the outer peripheral side of the impeller, and is integrally formed at one end of the scroll portion in the circumferential direction of the impeller. A discharge part that extends along and is open to discharge the fluid from the flow path, wherein the scroll part includes a first main body part arranged in one of the directions of the rotation axis and the first main body. A second main body portion arranged on the other side in the direction of the rotation axis with respect to the portion, the first main body portion and the second main body portion are joined in the direction of the rotation axis line, and the flow path is formed. And a joint portion located within the range of the direction of the rotation axis, and one of the first main body portion and the second main body portion in the radial direction with respect to the rotation axis line than the joint portion. An annular shape that extends inside from one of the first main body portion and the second main body portion toward the other beyond the joining portion and that forms a part of the inner surface of the flow path around the rotation axis. A convex portion is provided, and the other of the first main body portion and the second main body portion is provided with a concave portion that is recessed from the inner surface of the flow path and engages with the convex portion.
 このようなケーシングによれば、接合部を超えて回転軸線の方向に延びてスクロール部の流路の内面を形成する凸部を設けている。このため仮に周方向の応力によって接合部に亀裂が生じたとしても、亀裂をふさぐように凸部が流体の圧力によって径方向外側に押し付けられる。この結果、亀裂の進展速度を低減することができる。また仮に亀裂が生じたとしても、凸部が径方向外側に押し付けられることで亀裂は径方向外側に向かわずに、凸部の根本に回転軸線の方向に向かって進展しようとするため、第一本体部や第二本体部に比べて強度が弱い接合部に亀裂が進展しようとせず、強度の強い第一本体部や第二本体部の内部に向かって進展しようとする。これによっても亀裂の進展速度を低減することができる。
 また凸部が流体の圧力によって径方向外側に押し付けられることで、凸部と凹部との隙間が閉じようとするため、この隙間に流体が侵入することを回避できる。よって、流路内の流体の圧力損失を低減することができる。
 さらに接合部は、流路が形成された回転軸線の方向の範囲内に位置している。このため、接合部はスクロール部の流路における回転軸線方向の中央の位置に近接して配置されていることになる。この結果、流体の圧力による周方向の応力の影響が大きくなる。しかしこのような場合であっても、上記の凸部によって亀裂の進展を抑えることができるためケーシングの損傷を抑制する効果が得られる。
According to such a casing, the convex portion that extends in the direction of the rotation axis beyond the joint portion and forms the inner surface of the flow path of the scroll portion is provided. Therefore, even if a crack occurs in the joint due to the stress in the circumferential direction, the convex portion is pressed outward in the radial direction by the pressure of the fluid so as to close the crack. As a result, the crack growth rate can be reduced. Even if a crack is generated, the protrusion is pressed radially outward, so that the crack does not go radially outward, but tries to propagate toward the root of the protrusion in the direction of the rotation axis. The crack does not propagate to the joint portion, which is weaker in strength than the main body portion or the second main body portion, and tends to propagate toward the inside of the strong first body portion or the second main body portion. This can also reduce the crack growth rate.
Further, since the convex portion is pressed outward in the radial direction by the pressure of the fluid, the gap between the convex portion and the concave portion tends to close, so that the fluid can be prevented from entering the gap. Therefore, the pressure loss of the fluid in the flow path can be reduced.
Further, the joint portion is located within the range in the direction of the rotation axis in which the flow path is formed. Therefore, the joint portion is arranged close to the central position in the rotation axis direction in the flow path of the scroll portion. As a result, the influence of the circumferential stress due to the fluid pressure becomes large. However, even in such a case, since the cracks can be suppressed from being propagated by the convex portions, the effect of suppressing damage to the casing can be obtained.
 また上記のケーシングでは、前記第一本体部は、前記回転軸線の方向を向く第一対向面を有し、前記第二本体部は、前記第一対向面に面接触する第二対向面を有し、前記第一本体部には、前記第一対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第一環状凹部が設けられ、前記第二本体部には、前記第一環状凹部が設けられた位置に対応する位置で前記第二対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第二環状凹部が設けられ、前記接合部は、前記第一環状凹部と前記第二環状凹部とによって形成された空間に配置された樹脂部材であってもよい。 Further, in the above casing, the first main body portion has a first facing surface facing the direction of the rotation axis, and the second main body portion has a second facing surface in surface contact with the first facing surface. Then, the first main body portion is provided with a first annular concave portion that is recessed from the first facing surface in the direction of the rotation axis line and extends annularly around the rotation axis line, and the second main body portion is A second annular recess that is recessed from the second facing surface in the direction of the rotation axis at the position corresponding to the position where the first annular recess is provided and extends annularly around the rotation axis is provided, and the joint portion is It may be a resin member arranged in a space formed by the first annular recess and the second annular recess.
 このように樹脂部材を接合部に用いることで、第一本体部と第二本体部とをより強固に接合することができる。さらにダイスライドインジェクションを用いて接合部を設け、第一本体部と第二本体部とを接合することができるため、ケーシングの製造を容易化できる。 By using the resin member for the joining portion in this way, the first body portion and the second body portion can be joined more firmly. Furthermore, since the joining portion can be provided by using die slide injection to join the first main body portion and the second main body portion, the manufacturing of the casing can be facilitated.
 また上記のケーシングでは、前記凸部は、前記径方向の外側を向く凸部外面を有し、前記凸部外面には前記径方向の外側に突出する横凸部が設けられ、前記第一本体部及び前記第二本体部のうちの前記他方は、前記凸部外面に対向する内面を有し、前記内面には前記径方向の外側に凹むとともに、前記横凸部が係合可能な横凹部が設けられていてもよい。 Further, in the above casing, the convex portion has a convex outer surface facing outward in the radial direction, and the convex outer surface is provided with a lateral convex portion projecting outward in the radial direction, and the first main body. And the other of the second body portion has an inner surface facing the outer surface of the convex portion, and the inner surface is recessed outward in the radial direction and a lateral concave portion engageable with the lateral convex portion. May be provided.
 凸部の凸部外面に横凸部が設けられ、凸部外面に対向する内面に横凸部に係合可能な横凹部を設けることで、第一本体部と第二本体部とが回転軸線の方向へ相対移動してしまうことを抑制できる。よって、第一本体部と第二本体部とが、互いに回転軸線の方向の変形を規制し合うことができ、ケーシングの疲労強度を向上しつつ、ケーシングの変形に伴う流体の圧縮効率低下を回避できる。 A lateral convex portion is provided on an outer surface of the convex portion of the convex portion, and a lateral concave portion engageable with the lateral convex portion is provided on an inner surface facing the outer surface of the convex portion. It is possible to suppress relative movement in the direction of. Therefore, the first main body portion and the second main body portion can mutually regulate the deformation in the direction of the rotation axis, and improve the fatigue strength of the casing while avoiding the reduction of the compression efficiency of the fluid due to the deformation of the casing. it can.
 また上記のケーシングでは、前記第一本体部と前記第二本体部とのうちの前記他方には前記凸部に対して前記径方向の外側に配置されて前記第一本体部と前記第二本体部とのうちの前記他方から前記一方に向けて突出する外側凸部がさらに設けられ、前記第一本体部と前記第二本体部とのうちの前記一方には、前記外側凸部が係合可能な外側凹部が設けられていてもよい。 Further, in the above casing, the other of the first main body portion and the second main body portion is arranged outside the convex portion in the radial direction, and the first main body portion and the second main body portion are disposed. An outer convex portion projecting from the other of the first and second main body portions toward the one, and the outer convex portion engages with the one of the first main body portion and the second main body portion. Possible outer recesses may be provided.
 このように凸部に加えてさらに外側凸部を設けることで、第一本体部と第二本体部とが回転軸線の方向に嵌め合うようにして接合部によって接合される。よって回転軸線に対して径方向に互いに位置ずれしてしまうことを回避でき、組立時、運転時に第一本体部と第二本体部とを確実に同軸上に配置することができる。この結果、流体の圧縮効率の向上が可能である。 By providing the outer convex portion in addition to the convex portion in this manner, the first main body portion and the second main body portion are joined by the joint portion so as to fit in the direction of the rotation axis. Therefore, it is possible to avoid radial displacement with respect to the rotation axis, and it is possible to surely arrange the first main body portion and the second main body portion coaxially during assembly and operation. As a result, the compression efficiency of the fluid can be improved.
 また本発明の一態様に係るラジアルコンプレッサのケーシングは、インペラの回転軸線に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラに流体を導入する吸気部と、前記吸気部に連通して、前記インペラの外周側で前記回転軸線を中心とした環状に延びる流路を形成する樹脂製のスクロール部と、前記スクロール部の一端に一体に設けられて前記インペラの周方向に沿って延びて開口し、前記流体を前記流路から吐出する吐出部と、を備え、前記スクロール部は、前記回転軸線の方向の一方に配置された第一本体部と、前記第一本体部に対して前記回転軸線の方向の他方に配置された第二本体部と、前記第一本体部と前記第二本体部とを前記回転軸線の方向に接合するとともに、前記流路が形成された前記回転軸線の方向の範囲外に位置する接合部と、を有し、前記第一本体部及び前記第二本体部のうちの一方には、前記接合部よりも前記回転軸線に対する径方向の内側に前記第一本体部及び前記第二本体部のうちの一方から他方に向かって前記接合部を超えて延び、前記流路の内面の一部を形成する前記回転軸線を中心とした環状の凸部が設けられ、前記第一本体部及び前記第二本体部のうちの前記他方には、前記流路の内面から凹んで前記凸部に係合する凹部が設けられ、前記第一本体部は、前記回転軸線の方向を向く第一対向面を有し、前記第二本体部は、前記第一対向面に面接触する第二対向面を有し、前記第一本体部には、前記第一対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第一環状凹部が設けられ、前記第二本体部には、前記第一環状凹部が設けられた位置に対応する位置で前記第二対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第二環状凹部が設けられ、前記接合部は、前記第一環状凹部と前記第二環状凹部とによって形成された空間に配置された樹脂部材である。 Further, the casing of the radial compressor according to one aspect of the present invention has a cylindrical shape that extends along the rotation axis of the impeller and opens in the direction of the rotation axis, and has an intake section that introduces fluid into the impeller, and the intake section. A scroll part made of resin forming an annular flow path centering around the rotation axis on the outer peripheral side of the impeller, and integrally provided at one end of the scroll part in the circumferential direction of the impeller. A discharge portion that extends along the opening and discharges the fluid from the flow path, wherein the scroll portion includes a first main body portion arranged in one of the directions of the rotation axis and the first main body portion. With respect to the second main body portion arranged on the other side in the direction of the rotation axis, the first main body portion and the second main body portion are joined in the direction of the rotation axis, and the flow path is formed. A joint portion located outside the range of the direction of the rotation axis, and one of the first main body portion and the second main body portion inward of the joint portion in the radial direction with respect to the rotation axis line. An annular convex centered on the rotation axis that extends from one of the first body portion and the second body portion toward the other beyond the joint portion and forms a part of the inner surface of the flow path. A portion is provided, and the other of the first main body portion and the second main body portion is provided with a recessed portion that is recessed from the inner surface of the flow path and engages with the convex portion, and the first main body portion is A first facing surface that faces the direction of the rotation axis, the second main body portion has a second facing surface that is in surface contact with the first facing surface, and the first main body portion includes the first facing surface. A first annular recess is provided that is recessed from one opposing surface in the direction of the rotation axis and extends annularly around the rotation axis, and the second body portion corresponds to the position where the first annular recess is provided. A second annular recess is provided that is recessed from the second facing surface in the direction of the rotation axis at a position and extends annularly around the rotation axis, and the joint is the first annular recess and the second annular recess. Is a resin member arranged in the space formed by.
 このようなケーシングによれば、仮に流体の圧力によって生じる周方向の応力によって接合部に亀裂が生じたとしても、亀裂をふさぐように凸部が流体の圧力によって径方向外側に押し付けられることで亀裂の進展速度を低減することができる。また仮に亀裂が生じたとしても、凸部が径方向外側に押し付けられることで亀裂は径方向外側に向かわずに、凸部の根本に回転軸線の方向に向かって進展しようとし、即ち、接合部よりも強度の強い第一本体部や第二本体部の内部に向かって進展しようとする。これによっても亀裂の進展速度を低減することができる。
 また凸部が流体の圧力によって径方向外側に押し付けられることで、凸部と凹部との隙間が閉じようとするため、この隙間に流体が侵入することを回避できる。よって、流路内の流体の圧力損失を低減することができる。
 さらに接合部は、流路が形成された回転軸線の方向の範囲外に位置している。このため、圧縮された流体からの熱の影響や流体からの圧力の影響が接合部へ及びにくくなり、周方向の応力による接合部での亀裂の発生を抑制することができ、ケーシングの損傷を抑制する効果が得られる。
According to such a casing, even if a crack occurs in the joint due to the circumferential stress generated by the pressure of the fluid, the protrusion is pressed outward in the radial direction by the pressure of the fluid so as to close the crack. It is possible to reduce the progress speed of Even if a crack occurs, the protrusion is pressed outward in the radial direction so that the crack does not go outward in the radial direction and tries to propagate toward the direction of the rotation axis at the root of the protrusion, that is, the joint. Attempts to progress toward the inside of the stronger first body portion or the second body portion. This can also reduce the crack growth rate.
Further, since the convex portion is pressed outward in the radial direction by the pressure of the fluid, the gap between the convex portion and the concave portion tends to close, so that the fluid can be prevented from entering the gap. Therefore, the pressure loss of the fluid in the flow path can be reduced.
Further, the joint portion is located outside the range in the direction of the rotation axis where the flow path is formed. For this reason, the influence of heat from the compressed fluid and the influence of pressure from the fluid are less likely to reach the joint portion, it is possible to suppress the occurrence of cracks at the joint portion due to the stress in the circumferential direction, and to prevent damage to the casing. The effect of suppressing is obtained.
 また本発明の一態様に係るラジアルコンプレッサのケーシングは、インペラの回転軸線に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラに流体を導入する吸気部と、
 前記吸気部に連通して、前記インペラの外周側で前記回転軸線を中心とした環状に延びる流路を形成する樹脂製のスクロール部と、
 前記スクロール部の一端に一体に設けられて前記インペラの周方向に沿って延びて開口し、前記流体を前記流路から吐出する吐出部と、
 を備え、
 前記スクロール部は、
 前記回転軸線の方向の一方に配置された第一本体部と、
 前記第一本体部に対して前記回転軸線の方向の他方に配置された第二本体部と、前記第一本体部と前記第二本体部とを前記回転軸線の方向に接合するとともに、前記流路が形成された前記回転軸線の方向の範囲外に位置する接合部と、を有し、前記第一本体部及び前記第二本体部のうちの一方には、前記接合部よりも前記回転軸線に対する径方向の内側に前記第一本体部及び前記第二本体部のうちの一方から他方に向かって前記接合部を超えて延び、前記流路の内面の一部を形成する前記回転軸線を中心とした環状の凸部が設けられ、前記第一本体部及び前記第二本体部のうちの前記他方には、前記流路の内面から凹んで前記凸部に係合する凹部が設けられ、前記凸部は、前記径方向の外側を向く凸部外面を有し、前記凸部外面には前記径方向の外側に突出する横凸部が設けられ、前記第一本体部及び前記第二本体部のうちの前記他方は、前記凸部外面に対向する内面を有し、前記内面には前記径方向の外側に凹むとともに、前記横凸部が係合可能な横凹部が設けられ、前記第一本体部と前記第二本体部とのうちの前記他方には前記凸部に対して前記径方向の外側に配置されて前記第一本体部と前記第二本体部とのうちの前記他方から前記一方に向けて突出する外側凸部がさらに設けられ、前記第一本体部と前記第二本体部とのうちの前記一方には、前記外側凸部が係合可能な外側凹部が設けられている。
The casing of the radial compressor according to an aspect of the present invention has a tubular shape that extends along the rotation axis of the impeller and opens in the direction of the rotation axis, and an intake section that introduces fluid into the impeller,
A resin scroll part that communicates with the air intake part and forms a flow path that extends annularly around the rotation axis on the outer peripheral side of the impeller,
A discharge part that is integrally provided at one end of the scroll part and extends along the circumferential direction of the impeller to open, and discharges the fluid from the flow path,
Equipped with
The scroll part is
A first body portion arranged in one of the directions of the rotation axis,
The second main body portion arranged on the other side of the first main body portion in the direction of the rotation axis, the first main body portion and the second main body portion are joined in the direction of the rotation axis line, and the flow A joint portion located outside the range of the direction of the rotation axis in which a path is formed, and one of the first main body portion and the second main body portion has the rotation axis line more than the joint portion. Centered on the rotation axis that extends inward in the radial direction with respect to one of the first body portion and the second body portion toward the other beyond the joint portion and forms a part of the inner surface of the flow path. An annular convex portion is provided, and the other of the first main body portion and the second main body portion is provided with a concave portion that is recessed from the inner surface of the flow path and engages with the convex portion. The convex portion has a convex outer surface facing outward in the radial direction, and a lateral convex portion protruding outward in the radial direction is provided on the convex outer surface, and the first main body portion and the second main body portion are provided. The other of the two has an inner surface that faces the outer surface of the convex portion, and the inner surface is provided with a lateral concave portion that is recessed outward in the radial direction and that is engageable with the lateral convex portion. The other of the main body and the second main body is disposed on the outside in the radial direction with respect to the convex portion, and from the other of the first main body and the second main body. An outer convex portion protruding toward one side is further provided, and an outer concave portion engageable with the outer convex portion is provided on the one of the first main body portion and the second main body portion. ..
 このようなケーシングによれば、上記の通り、凸部によって亀裂の進展速度を低減することができるとともに、流路内の流体の圧力損失を低減することができる。さらに、接合部が、流路が形成された回転軸線の方向の範囲外に位置しているため、圧縮された流体からの熱の影響や流体からの圧力の影響が接合部へ及びにくくなる。よって、流体の圧力に起因する周方向の応力による接合部での亀裂の発生を抑制することができ、ケーシングの損傷を抑制する効果が得られる。
 さらに、上記のように横凸部によって第一本体部と第二本体部とが、互いに回転軸の方向の変形を規制し合うことができ、ケーシングの疲労強度を向上しつつ、ケーシングの変形に伴う流体の圧縮効率低下を回避できる。また、上記のように外側凸部によって第一本体部と第二本体部とを同軸上に配置でき、流体の圧縮効率の向上が可能である。
According to such a casing, as described above, it is possible to reduce the growth rate of the crack due to the convex portion and reduce the pressure loss of the fluid in the flow path. Furthermore, since the joint is located outside the range of the direction of the rotation axis in which the flow path is formed, the influence of heat from the compressed fluid and the influence of pressure from the fluid are less likely to reach the joint. Therefore, it is possible to suppress the occurrence of cracks in the joint portion due to the stress in the circumferential direction due to the pressure of the fluid, and it is possible to obtain the effect of suppressing damage to the casing.
Further, as described above, the lateral convex portion allows the first main body portion and the second main body portion to mutually regulate deformation in the direction of the rotation axis, improving fatigue strength of the casing and deformation of the casing. It is possible to avoid the accompanying decrease in the compression efficiency of the fluid. Further, as described above, the first main body portion and the second main body portion can be coaxially arranged by the outer convex portion, and the compression efficiency of the fluid can be improved.
 また本発明の一態様に係るラジアルコンプレッサは、インペラと、前記インペラが嵌合して該インペラとともに回転する回転軸と、前記インペラを覆うように設けられた上記のケーシングと、を備えている。 A radial compressor according to an aspect of the present invention includes an impeller, a rotating shaft that fits with the impeller and rotates together with the impeller, and the casing provided so as to cover the impeller.
 このようなラジアルコンプレッサでは、上記のケーシングを備えることで、仮に流体の圧力によって生じる周方向の応力によって接合部に亀裂が生じたとしても、凸部によって亀裂の進展速度を低減することができる。また流体の圧力によって凸部と凹部との隙間が閉じようとするため、この隙間に流体が侵入することを回避でき、流路内の流体の圧力損失を低減することができる。 In such a radial compressor, by including the above casing, even if a crack occurs in the joint due to the stress in the circumferential direction caused by the pressure of the fluid, the growth rate of the crack can be reduced by the protrusion. Further, the pressure of the fluid tends to close the gap between the convex portion and the concave portion, so that the fluid can be prevented from entering the gap and the pressure loss of the fluid in the flow path can be reduced.
 上記のラジアルコンプレッサのケーシング、及びラジアルコンプレッサでは、第一本体部又は第二本体部に凸部を設けたことで、疲労強度を向上しつつ性能向上が可能となる。 In the above radial compressor casing and radial compressor, by providing the convex portion on the first main body portion or the second main body portion, it is possible to improve performance while improving fatigue strength.
本発明の第一実施形態に係るラジアルコンプレッサの全体斜視図である。It is the whole radial compressor perspective view concerning a first embodiment of the present invention. 本発明の第一実施形態に係るラジアルコンプレッサのケーシングの要部の縦断面図である。It is a longitudinal cross-sectional view of a main part of the casing of the radial compressor according to the first embodiment of the present invention. 本発明の第一実施形態の第一変形例に係るラジアルコンプレッサのケーシングの要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the casing of the radial compressor which concerns on the 1st modification of 1st embodiment of this invention. 本発明の第一実施形態の第二変形例に係るラジアルコンプレッサのケーシングの要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the casing of the radial compressor which concerns on the 2nd modification of 1st embodiment of this invention. 本発明の第二実施形態に係るラジアルコンプレッサのケーシングの要部の縦断面図である。It is a longitudinal section of an important section of a casing of a radial compressor concerning a second embodiment of the present invention. 本発明の第三実施形態に係るラジアルコンプレッサのケーシングの要部の縦断面図である。It is a longitudinal section of an important section of a casing of a radial compressor concerning a third embodiment of the present invention. 本発明の第四実施形態に係るラジアルコンプレッサのケーシングの要部の縦断面図である。It is a longitudinal section of an important section of a casing of a radial compressor concerning a fourth embodiment of the present invention.
〔第一実施形態〕
 以下、本発明の実施形態におけるラジアルコンプレッサ1について説明する。
 ラジアルコンプレッサ1(以下、単にコンプレッサ1とする)は、例えば車両に搭載されるターボチャージャ用のコンプレッサである。
 図1に示すように、コンプレッサ1は、インペラ2と、インペラ2が嵌合することでインペラ2と一体で回転軸線Oを中心として回転する回転軸3と、インペラ2を覆うように設けられたケーシング4とを備えている。
[First embodiment]
Hereinafter, the radial compressor 1 in the embodiment of the present invention will be described.
The radial compressor 1 (hereinafter, simply referred to as the compressor 1) is, for example, a compressor for a turbocharger mounted on a vehicle.
As shown in FIG. 1, the compressor 1 is provided so as to cover the impeller 2, the rotary shaft 3 that rotates integrally with the impeller 2 around the rotation axis O when the impeller 2 is fitted, and the impeller 2. And a casing 4.
 次に、ケーシング4について説明する。
 ケーシング4は、インペラ2に例えば空気等のガスG(流体)を導入する吸気部5と、インペラ2から流出したガスGが流通してこのガスGを吐出する吐出部6と、吸気部5と吐出部6とを連通するスクロール部7とを備えている。
Next, the casing 4 will be described.
The casing 4 includes an intake part 5 for introducing a gas G (fluid) such as air into the impeller 2, a discharge part 6 for discharging the gas G flowing out of the impeller 2 and the intake part 5, and an intake part 5. The scroll unit 7 is in communication with the discharge unit 6.
 吸気部5は、インペラ2に対して回転軸線Oの方向の一方に配置されて回転軸3線の方向に延び、回転軸線Oの方向の他方に開口する円筒状をなしている。吸気部5は、インペラ2に向かって回転軸線Oの方向の一方からガスGを吸込み、インペラ2内の流路(不図示)に向けてガスGを導入する。また、吸気部5の材料は、例えば熱可塑性プラスチック等の樹脂(例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PA9T・PA46・PA6T(ポリアミド)、PBT(ポリブチレンテレフタレート)等)である。 The intake part 5 is arranged in one direction of the rotation axis O with respect to the impeller 2, extends in the direction of the rotation axis 3 and has a cylindrical shape that opens in the other direction of the rotation axis O. The intake section 5 sucks the gas G toward the impeller 2 from one side in the direction of the rotation axis O and introduces the gas G toward a flow path (not shown) in the impeller 2. The material of the air intake portion 5 is, for example, a resin such as a thermoplastic resin (for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PA9T/PA46/PA6T (polyamide), PBT (polybutylene terephthalate), etc.). is there.
 スクロール部7は、インペラ2及び吸気部5の外周側に配置されている。このスクロール部7は、インペラ2及び回転軸3の周方向に環状に延びる流路FCを有している。吸気部5から導入されたガスGは、インペラ2内の流路を流通して圧縮された後にこのスクロール部7の流路FCを流通する。スクロール部7は吸気部5と同様の樹脂によって形成されている。スクロール部7の流路FCは、周方向に直交する断面が円形状をなし、周方向の一方に向かって流路断面積が漸次拡大する。これによりスクロール部7は、周方向の一方に吐出部6に向かって外形寸法が漸次拡大する。スクロール部7は、例えば吸気部5と一体の樹脂の射出成形品となっていてもよいし、吸気部5と別体で製造されて吸気部5と接合されていてもよい。 The scroll section 7 is arranged on the outer peripheral side of the impeller 2 and the intake section 5. The scroll portion 7 has a flow path FC that extends annularly in the circumferential direction of the impeller 2 and the rotary shaft 3. The gas G introduced from the intake portion 5 flows through the flow passage in the impeller 2, is compressed, and then flows through the flow passage FC of the scroll portion 7. The scroll portion 7 is made of the same resin as the intake portion 5. The flow channel FC of the scroll portion 7 has a circular cross section orthogonal to the circumferential direction, and the flow channel cross-sectional area gradually increases toward one side in the circumferential direction. As a result, the outer dimensions of the scroll portion 7 gradually increase in one direction in the circumferential direction toward the discharge portion 6. The scroll portion 7 may be, for example, an injection-molded product of resin that is integral with the intake portion 5, or may be manufactured separately from the intake portion 5 and joined to the intake portion 5.
 吐出部6は、円筒状をなしてスクロール部7の周方向の一方の端部に一体に設けられ、周方向に沿ってスクロール部7の接線方向に延びて開口し、ガスGを流路FCから吐出する。吐出部6もスクロール部7及び吸気部5と同様の樹脂によって形成されている。吐出部6は、例えばスクロール部7と一体の樹脂の射出成形品となっていてもよいし、スクロール部7と別体で製造されてスクロール部7と接合されていてもよい。 The discharge part 6 has a cylindrical shape and is integrally provided at one end of the scroll part 7 in the circumferential direction. The discharge part 6 extends in the tangential direction of the scroll part 7 along the circumferential direction and opens to pass the gas G through the flow path FC. Discharge from. The discharge part 6 is also made of the same resin as the scroll part 7 and the intake part 5. The discharge part 6 may be, for example, an injection-molded product of resin integrated with the scroll part 7, or may be manufactured separately from the scroll part 7 and joined to the scroll part 7.
 次に図2を参照してスクロール部7について詳述する。
 スクロール部7は、第一本体部11と、第一本体部11に対して回転軸線Oの方向の他方に配置され、第一本体部11とともに流路FCの内面7aを形成する第二本体部12と、第一本体部11と第二本体部12との間に設けられた接合部13とを有している。
Next, the scroll section 7 will be described in detail with reference to FIG.
The scroll portion 7 is disposed on the other side of the first main body portion 11 and the direction of the rotation axis O with respect to the first main body portion 11, and forms the inner surface 7a of the flow path FC together with the first main body portion 11. 12 and a joint portion 13 provided between the first main body portion 11 and the second main body portion 12.
 第一本体部11は、回転軸線Oを中心とした環状をなしている。第一本体部11には、第一本体部11から回転軸線Oの方向の他方に突出して延び、流路FCの内面7aの一部を形成する回転軸線Oを中心とした環状の凸部11aが設けられている。これにより凸部11aは流路FCに接して設けられている。第一本体部11には凸部11aに接して、凸部11aよりも径方向外側に回転軸線Oの方向の他方を向く第一対向面11bが形成されている。凸部11aの径方向外側を向く凸部外面11cは、回転軸線Oの方向の他方に向かって径方向内側に向かって傾斜する傾斜面となっている。 The first main body 11 has an annular shape centered on the rotation axis O. The first main body portion 11 has an annular convex portion 11a centering on the rotation axis O that extends from the first main body portion 11 in the other direction of the rotation axis O and forms a part of the inner surface 7a of the flow path FC. Is provided. Thereby, the convex portion 11a is provided in contact with the flow path FC. The first main body portion 11 is formed with a first facing surface 11b which is in contact with the convex portion 11a and is radially outward of the convex portion 11a and faces the other side in the direction of the rotation axis O. The convex outer surface 11c that faces the radial outer side of the convex portion 11a is an inclined surface that is inclined radially inward toward the other side in the direction of the rotation axis O.
 第二本体部12は、回転軸線Oを中心とした環状をなしている。第二本体部12には流路FCの内面7aから径方向外側に凹んで、凸部11aが挿入されて凸部11aに係合する環状の凹部12aが設けられている。よって凹部12aの径方向内側を向く凹部内面12cは、凸部外面11cに対応して回転軸線Oの方向の他方に向かって径方向内側に向かって傾斜する傾斜面となっている。第二本体部12には、凹部12aに接して凹部12aよりも径方向外側に、回転軸線Oの方向の一方を向く第二対向面12bが形成されている。第二対向面12bは第一対向面11bに回転軸線Oの方向に向かい合って面接触して配置されている。 The second main body 12 has an annular shape centered on the rotation axis O. The second main body 12 is provided with an annular recess 12a that is recessed radially outward from the inner surface 7a of the flow path FC and into which the protrusion 11a is inserted and that engages with the protrusion 11a. Therefore, the recess inner surface 12c that faces the inner side in the radial direction of the recess 12a is an inclined surface that slopes radially inward toward the other side in the direction of the rotation axis O corresponding to the outer surface 11c of the protrusion. The second main body 12 is formed with a second facing surface 12b that is in contact with the recess 12a and is radially outward of the recess 12a and faces one side of the rotation axis O. The second facing surface 12b is arranged in face-to-face contact with the first facing surface 11b in the direction of the rotation axis O.
 接合部13は、凸部11a及び凹部12aよりも径方向外側の位置で、第一対向面11b及び第二対向面12b上に設けられている。よって接合部13の径方向内側に、接合部13に接して凸部11aが設けられていることになる。また凸部11aは接合部13を超えて回転軸線Oの方向の他方に、第二本体部12に向かって延びている。接合部13は、例えば第一対向面11bと第二対向面12bとを回転軸線Oの方向に対向させた状態で、第一本体部11と第二本体部12とを振動融着や超音波融着等の方法を用いて接合させた結果形成されている。よって接合部13は第一対向面11b及び第二対向面12bの全体にわたって回転軸線Oを中心とした環状に形成され、第一本体部11及び第二本体部12と同じ樹脂材料からなる。 The joining portion 13 is provided on the first facing surface 11b and the second facing surface 12b at a position radially outside of the convex portion 11a and the concave portion 12a. Therefore, the convex portion 11a is provided in contact with the joint portion 13 on the radially inner side of the joint portion 13. The convex portion 11 a extends beyond the joint portion 13 toward the second main body portion 12 in the other direction of the rotation axis O. The joining portion 13 vibrates and fuses the first main body portion 11 and the second main body portion 12 with each other, for example, in a state where the first facing surface 11b and the second facing surface 12b face each other in the direction of the rotation axis O. It is formed as a result of joining using a method such as fusion bonding. Therefore, the joint portion 13 is formed in an annular shape centering on the rotation axis O over the entire first opposing surface 11b and the second opposing surface 12b, and is made of the same resin material as the first main body portion 11 and the second main body portion 12.
 本実施形態の接合部13は、スクロール部7の流路FCにおける回転軸線Oの方向の中央位置を通り径方向に延びる仮想線Xに沿って配置されている。ただし接合部13は流路FCが形成された回転軸線Oの方向の範囲内に位置していればよく、必ずしも上記の仮想線Xに沿って配置されている必要はない。 The joint portion 13 of the present embodiment is arranged along an imaginary line X that extends in the radial direction through the center position in the direction of the rotation axis O in the flow path FC of the scroll portion 7. However, the joint portion 13 has only to be located within the range of the direction of the rotation axis O in which the flow path FC is formed, and does not necessarily have to be arranged along the above virtual line X.
 接合部13は第一対向面11bと第二対向面12bとの間にのみ設けられているため、凸部11aと凹部12aとの間には設けられていない。この結果、凸部11aと凹部12aとは近接、又は接触した状態で互いに接合されていない状態となっている。 Since the joint portion 13 is provided only between the first facing surface 11b and the second facing surface 12b, it is not provided between the convex portion 11a and the concave portion 12a. As a result, the convex portion 11a and the concave portion 12a are close to each other or in contact with each other, but are not joined to each other.
 以上説明した本実施形態のコンプレッサ1では、回転軸線Oの方向に延びてスクロール部7の流路FCの内面7aを形成する凸部11aを第一本体部11に設けている。このため、仮に周方向の応力によって接合部13に亀裂C(図2参照)が生じたとしても、亀裂Cを塞ぐように凸部11aがガスGの圧力によって径方向外側に押し付けられる。この結果、亀裂Cの進展速度を低減することができる。 In the compressor 1 of the present embodiment described above, the convex portion 11a extending in the direction of the rotation axis O and forming the inner surface 7a of the flow path FC of the scroll portion 7 is provided in the first main body portion 11. Therefore, even if the crack C (see FIG. 2) is generated in the joint portion 13 due to the stress in the circumferential direction, the convex portion 11a is pressed radially outward by the pressure of the gas G so as to close the crack C. As a result, the growth rate of the crack C can be reduced.
 また仮に亀裂Cが生じたとしても、凸部11aが径方向外側に押し付けられることで亀裂Cは径方向外側に向かわずに、凸部11aの根本に、接合部13と凸部11aとの間で凸部外面11cに沿って回転軸線の方向の一方に向かって進展しようとする。このため、第一本体部11や第二本体部12に比べて強度が弱い接合部13に亀裂Cが生じることがなく、亀裂Cは、より強度の強い第一本体部11や第二本体部12の内部に向かって進展しようとする。これによっても亀裂Cの進展速度を低減することができる。 Even if the crack C occurs, the protrusion C is not pressed outward in the radial direction by pressing the convex portion 11a outward in the radial direction, and the crack C does not go outward in the radial direction. At this point, it tends to progress toward one side in the direction of the rotation axis along the convex outer surface 11c. Therefore, a crack C does not occur in the joint portion 13 having a lower strength than the first main body portion 11 and the second main body portion 12, and the crack C has a stronger strength than the first main body portion 11 and the second main body portion 12. Trying to progress toward the inside of twelve. This can also reduce the growth rate of the crack C.
 また凸部11aと凹部12aとの間は非接合の状態となっているが、凸部11aがガスGの圧力によって径方向外側に向かって凹部12aに押し付けられることで、凸部外面11cと凹部内面12cとの隙間が閉じようとする。このため、この隙間にガスGが侵入することを回避できる。よって、流路FC内のガスGの圧力損失を低減することができる。 Although the convex portion 11a and the concave portion 12a are not joined to each other, the convex portion 11a is pressed radially outward by the pressure of the gas G, so that the convex outer surface 11c and the concave portion 12a. The gap with the inner surface 12c tends to close. Therefore, the gas G can be prevented from entering the gap. Therefore, the pressure loss of the gas G in the flow path FC can be reduced.
 さらに接合部13は、仮想線X上に設けられていることで、スクロール部7の流路FCが形成された回転軸線Oの方向の範囲内に位置している。このため、接合部13は流路FCにおける回転軸線Oの方向の中央の位置に一致若しくは近接して配置されていることになる。この結果、凸部11aが径方向外側に向かって凹部12aに押付けられることで、凸部外面11cと凹部内面12cとの隙間が閉じようとする。 Further, since the joint portion 13 is provided on the virtual line X, the joint portion 13 is located within the range of the direction of the rotation axis O in which the flow path FC of the scroll portion 7 is formed. For this reason, the joint portion 13 is arranged at or near the center position of the flow path FC in the direction of the rotation axis O. As a result, the convex portion 11a is pressed outward in the radial direction by the concave portion 12a, and the gap between the convex portion outer surface 11c and the concave portion inner surface 12c tends to close.
 従って本実施形態のコンプレッサ1では、上記のようなケーシング4を備えることで、ケーシング4の疲労強度を向上しつつコンプレッサ1の性能向上が可能となる。 Therefore, in the compressor 1 of the present embodiment, by providing the casing 4 as described above, it is possible to improve the performance of the compressor 1 while improving the fatigue strength of the casing 4.
 ここで本実施形態では第二本体部12に凸部11aが設けられ、第一本体部11に凹部12aが設けられていてもよい。また接合部13は、第一対向面11b、第二対向面12b上で、凸部11aとは離れた位置まで設けられていてもよい。即ち。接合部13は凸部外面11cと接していなくともよい。 In this embodiment, the second main body 12 may be provided with the convex portion 11a and the first main body 11 may be provided with the concave portion 12a. Further, the joint portion 13 may be provided on the first facing surface 11b and the second facing surface 12b up to a position apart from the convex portion 11a. That is, The joint portion 13 may not be in contact with the convex outer surface 11c.
(第一変形例)
 次に、図3を参照して本発明の第一実施形態の第一変形例のコンプレッサ1Aについて説明する。
 図3に示すように第一本体部11には、第一対向面11bから回転軸線Oの方向の一方に向かって凹んで回転軸線Oを中心として環状に延びる第一環状凹部11dが形成されている。第一環状凹部11dは凸部外面11cに接して形成されている。第一環状凹部11dにおける内面のうち、径方向を向く一対の側底面21a、21bは回転軸線Oの方向を向く底面22に向かって互いに近接するように傾斜している。即ち、側底面21a、21bには型成型時の抜き勾配が設けられている。
(First modification)
Next, a compressor 1A of a first modified example of the first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 3, the first main body 11 is formed with a first annular recess 11d which is recessed from the first facing surface 11b toward one side in the direction of the rotation axis O and extends annularly around the rotation axis O. There is. The first annular concave portion 11d is formed in contact with the convex outer surface 11c. Of the inner surface of the first annular recess 11d, the pair of side bottom surfaces 21a, 21b facing in the radial direction are inclined so as to approach each other toward the bottom surface 22 facing in the direction of the rotation axis O. That is, the side bottom surfaces 21a and 21b are provided with a draft for molding.
 第二本体部12には、第二対向面12bから回転軸線Oの方向の他方に向かって凹んで回転軸線Oを中心として環状に延びる第二環状凹部12dが形成されている。第二環状凹部12dの内面のうちの径方向を向く一対の側底面25a、25bのうち径方向内側の側底面25aは、凹部12aと径方向に離れた位置に設けられている。よって第一環状凹部11dの径方向内側の側底面21aよりも径方向外側に設けられている。また、第二環状凹部12dの径方向外側の側底面25bは、第一環状凹部11dの径方向外側の側底面21bと同じ径方向の位置に設けられている。第一環状凹部11dの側底面21a、21bと同様に、第二環状凹部12dの一対の側底面25a、25bは、回転軸線Oの方向を向く底面26に向かって互いに近接するように傾斜している。即ち、側底面25a、25bには成型時の抜き勾配が設けられている。 The second main body 12 is formed with a second annular recess 12d that is recessed from the second facing surface 12b toward the other side in the direction of the rotation axis O and extends annularly around the rotation axis O. The inner bottom surface 25a of the pair of side bottom surfaces 25a, 25b facing the radial direction of the inner surface of the second annular recess 12d is provided at a position radially separated from the recess 12a. Therefore, it is provided on the outer side in the radial direction with respect to the side bottom surface 21a on the inner side in the radial direction of the first annular recess 11d. The radially outer side bottom surface 25b of the second annular recess 12d is provided at the same radial position as the radially outer side bottom surface 21b of the first annular recess 11d. Similar to the side bottom surfaces 21a and 21b of the first annular recess 11d, the pair of side bottom surfaces 25a and 25b of the second annular recess 12d are inclined so as to be close to each other toward the bottom surface 26 facing the direction of the rotation axis O. There is. That is, the side bottom surfaces 25a and 25b are provided with a draft at the time of molding.
 接合部23は、第一環状凹部11dと第二環状凹部12dとによって形成された空間に配置された樹脂部材である。接合部23の材料には上記のスクロール部7と同様の樹脂材料を用いることができる。接合部23の外面は、全体にわたって第一本体部11及び第二本体部12と接合されている。 The joint portion 23 is a resin member arranged in the space formed by the first annular recess 11d and the second annular recess 12d. The same resin material as that of the scroll portion 7 can be used as the material of the joint portion 23. The outer surface of the joint portion 23 is entirely joined to the first body portion 11 and the second body portion 12.
 以上説明した第一実施形態の第一変形例のコンプレッサ1Aによれば、第一本体部11に設けられた凸部11aによって亀裂Cの進展速度を低減することができるとともに、流路内のガスGの圧力損失を低減することができる。よってケーシング4Aの疲労強度を向上しつつコンプレッサ1Aの性能向上が可能となる。 According to the compressor 1A of the first modified example of the first embodiment described above, the growth rate of the crack C can be reduced by the convex portion 11a provided on the first main body portion 11, and the gas in the flow path can be reduced. The pressure loss of G can be reduced. Therefore, it is possible to improve the performance of the compressor 1A while improving the fatigue strength of the casing 4A.
 さらに、接合部23に樹脂部材を用いることで、第一本体部11と第二本体部12とをより強固に接合することができる。さらに、例えばダイスライドインジェクションを用いて接合部23を設け、第一本体部11と第二本体部12とを接合することができる。具体的には、第一本体部11と第二本体部12を成型した後にダイスライドを行って第一環状凹部11dと第二環状凹部12dとを回転軸線Oの方向に対向させ、接合部23の樹脂材料を第一環状凹部11dと第二環状凹部12dとの間の空間に充填することで、容易にケーシング4Aを製造できる。 Further, by using a resin member for the joint portion 23, the first main body portion 11 and the second main body portion 12 can be joined more firmly. Further, the first main body portion 11 and the second main body portion 12 can be joined by providing the joining portion 23 by using, for example, die slide injection. Specifically, after molding the first main body portion 11 and the second main body portion 12, die sliding is performed so that the first annular recessed portion 11d and the second annular recessed portion 12d face each other in the direction of the rotation axis O, and the joint portion 23 is formed. The casing 4A can be easily manufactured by filling the space between the first annular recess 11d and the second annular recess 12d with this resin material.
(第二変形例)
 次に、図4を参照して本発明の第一実施形態の第二変形例のコンプレッサ1Bについて説明する。
 第二変形例では、第一変形例とは第二環状凹部32dの形状が異なっている。図4に示すように第二環状凹部32dの径方向内側の側底面は、凸部外面11cである。これにより接合部33は凸部外面11cに接して第一本体部11と第二本体部12との間にわたって設けられている。接合部33の外面は、全体にわたって第一本体部11及び第二本体部12と接合されている。
(Second modified example)
Next, a compressor 1B of a second modified example of the first embodiment of the present invention will be described with reference to FIG.
The second modification is different from the first modification in the shape of the second annular recess 32d. As shown in FIG. 4, the side bottom surface on the radially inner side of the second annular recess 32d is the convex outer surface 11c. As a result, the joint portion 33 is provided in contact with the convex outer surface 11c and between the first main body portion 11 and the second main body portion 12. The outer surface of the joint portion 33 is entirely joined to the first body portion 11 and the second body portion 12.
 本変形例においても、接合部33の樹脂材料を第一環状凹部11dと第二環状凹部32dとの間の空間に充填したことで、第一本体部11と第二本体部12とをより強固に接合することができ、かつ、例えばダイスライドインジェクションを用いて容易にケーシング4Bを製造できる。 Also in this modification, the resin material of the joint portion 33 is filled in the space between the first annular concave portion 11d and the second annular concave portion 32d, so that the first main body portion 11 and the second main body portion 12 are made stronger. The casing 4B can be easily manufactured by using die slide injection, for example.
〔第二実施形態〕
 次に、図5を参照して本発明の第二実施形態のコンプレッサ1Cについて説明する。以下に説明する第二実施形態においては、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 本実施形態では、第一実施形態の第二変形例と比較して、接合部43の位置が異なっている。
[Second embodiment]
Next, a compressor 1C according to the second embodiment of the present invention will be described with reference to FIG. In the second embodiment described below, the same parts as those in the first embodiment will be designated by the same reference numerals and the description thereof will be omitted.
In this embodiment, the position of the joint portion 43 is different from that of the second modification of the first embodiment.
 第一本体部41の第一対向面41b、及び第二本体部42の第二対向面42bは、流路の回転軸線Oの方向の中央位置を通る仮想線Xよりも回転軸線Oの方向の一方側に配置されている。そして第一対向面41b及び第二対向面42bは、流路FCが形成された回転軸線Oの方向の範囲外に配置されている。
 さらに、第一環状凹部41d及び第二環状凹部42dも、流路FCが形成された回転軸線Oの方向の範囲外に配置されている。よって、接合部43も流路FCが形成された回転軸線Oの方向の範囲外に配置されている。
The first facing surface 41b of the first main body portion 41 and the second facing surface 42b of the second main body portion 42 are in the direction of the rotation axis O with respect to the virtual line X passing through the center position of the flow path in the direction of the rotation axis O. It is located on one side. The first facing surface 41b and the second facing surface 42b are arranged outside the range in the direction of the rotation axis O in which the flow path FC is formed.
Further, the first annular recess 41d and the second annular recess 42d are also arranged outside the range in the direction of the rotation axis O in which the flow path FC is formed. Therefore, the joint portion 43 is also arranged outside the range in the direction of the rotation axis O in which the flow path FC is formed.
 以上説明した本実施形態のコンプレッサ1Cでは、第一本体部41に設けられた凸部41aによって亀裂の進展速度を低減することができるとともに、流路FC内のガスGの圧力損失を低減することができる。よって、ケーシング4Cの疲労強度を向上しつつ、コンプレッサ1Cの性能向上が可能となる。 In the compressor 1C of the present embodiment described above, it is possible to reduce the propagation speed of the crack by the convex portion 41a provided in the first main body portion 41 and reduce the pressure loss of the gas G in the flow path FC. You can Therefore, it is possible to improve the performance of the compressor 1C while improving the fatigue strength of the casing 4C.
 さらに接合部43は、流路FCが形成された回転軸線Oの方向の範囲外に位置している。このため、圧縮されたガスGからの熱の影響やガスGからの圧力の影響が接合部43へ及びにくくなり、周方向の応力による接合部43での亀裂Cの発生を抑制することができる。よってケーシング4Cの損傷を抑制する効果が得られる。 Further, the joint portion 43 is located outside the range in the direction of the rotation axis O in which the flow path FC is formed. Therefore, the influence of heat from the compressed gas G and the influence of the pressure from the gas G are less likely to reach the joint portion 43, and the generation of the crack C at the joint portion 43 due to the stress in the circumferential direction can be suppressed. .. Therefore, the effect of suppressing damage to the casing 4C can be obtained.
〔第三実施形態〕
 次に、図6を参照して本発明の第三実施形態のコンプレッサ1Dについて説明する。以下に説明する第三実施形態においては、第一実施形態及び第二実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
[Third embodiment]
Next, the compressor 1D of the third embodiment of the present invention will be described with reference to FIG. In the third embodiment described below, the same parts as those in the first embodiment and the second embodiment will be denoted by the same reference numerals and will not be described.
 第一実施形態及び第二実施形態とは逆に凸部52aが第二本体部52に設けられ、凸部52aが挿入されて凸部52aに係合する凹部51aが第一本体部51に設けられている。 Contrary to the first embodiment and the second embodiment, the convex portion 52a is provided in the second main body portion 52, and the concave portion 51a into which the convex portion 52a is inserted and which engages with the convex portion 52a is provided in the first main body portion 51. Has been.
 さらに凸部52aにおける径方向外側を向く面である凸部外面52cには、径方向外側に突出する横凸部52fが設けられている。この横凸部52fは、回転軸線Oを中心とした環状に設けられてもよいし、周方向に間隔をあけて複数設けられてもよい。 Further, a lateral convex portion 52f protruding radially outward is provided on the convex outer surface 52c, which is a surface of the convex portion 52a facing radially outward. The lateral convex portion 52f may be provided in an annular shape centered on the rotation axis O, or a plurality of lateral convex portions 52f may be provided at intervals in the circumferential direction.
 また凹部51aにおける径方向内側を向く凹部内面51cには、径方向外側に凹むとともに横凸部52fが挿入されて係合する横凹部51fが設けられている。横凹部51fは回転軸線Oを中心とした環状をなしてもよいし、周方向に間隔をあけて複数設けられていてもよい。 Further, the recessed inner surface 51c of the recessed portion 51a, which faces inward in the radial direction, is provided with a lateral recessed portion 51f which is recessed radially outwardly and into which the lateral convex portion 52f is inserted and engaged. The lateral recess 51f may have an annular shape centered on the rotation axis O, or a plurality of lateral recesses may be provided at intervals in the circumferential direction.
 第二本体部52には、凸部52aに加えて、凸部52aと径方向に間隔をあけて凸部52aに対して径方向外側に配置され、第二本体部52の第二対向面52bから回転軸線Oの一方、即ち、第一本体部51に向けて突出する外側凸部52eが設けられている。第二対向面52bは、凸部52aに接して凸部52aよりも径方向外側に配置されて回転軸線Oの方向の一方を向く面である。外側凸部52eの径方向外側を向く面は、回転軸線Oの方向に延びる第一本体部51と第二本体部52との分割面Dとなっている。 In addition to the convex portion 52a, the second main body portion 52 is arranged radially outward of the convex portion 52a with a radial gap from the convex portion 52a, and the second facing surface 52b of the second main body portion 52 is provided. An outer convex portion 52e that protrudes toward one of the rotation axis O, that is, the first main body 51 is provided. The second facing surface 52b is a surface that is in contact with the convex portion 52a and is arranged radially outward of the convex portion 52a and faces one of the directions of the rotation axis O. The surface of the outer convex portion 52e facing outward in the radial direction is a dividing surface D of the first main body portion 51 and the second main body portion 52 extending in the direction of the rotation axis O.
 第一本体部51には、外側凸部52eが挿入されて係合可能に、第二対向面52bに対向する第一対向面51bから回転軸線Oの方向の一方に凹む外側凹部51eが設けられている。 The first main body portion 51 is provided with an outer concave portion 51e, which is inserted into the outer convex portion 52e and is engageable with the first main body portion 51. The outer concave portion 51e is concave from the first facing surface 51b facing the second facing surface 52b in one direction of the rotation axis O. ing.
 接合部53は、流路FCの回転軸線Oの方向の中央位置を通る仮想線Xよりも回転軸線Oの方向の他方側に配置され、流路FCが形成された回転軸線Oの方向の範囲外に配置されている。接合部53の外面は、全体にわたって第一本体部51及び第二本体部52と接合されている。 The joint portion 53 is arranged on the other side in the direction of the rotation axis O with respect to the virtual line X passing through the central position in the direction of the rotation axis O of the flow path FC, and the range in the direction of the rotation axis O in which the flow path FC is formed. It is located outside. The outer surface of the joint portion 53 is entirely joined to the first main body portion 51 and the second main body portion 52.
 ここで、第一本体部51と第二本体部52とは、分割面Dで径方向に対向している。第一本体部51には、回転軸線Oの方向の他方を向く端面に開口するとともに、上記分割面Dから径方向外側に凹む回転軸線Oを中心とした環状をなす第一環状凹部51dが設けられている。また第二本体部52には、回転軸線Oの方向の他方を向く端面に開口するとともに、上記分割面Dから径方向内側に凹む回転軸線Oを中心とした環状をなす第二環状凹部52dが設けられている。第一環状凹部51dと第二環状凹部52dとは、回転軸線Oの方向に同じ位置に設けられている。また、第一環状凹部51d及び第二環状凹部52dは流路FCが形成された回転軸線Oの方向の範囲外に位置している。 Here, the first main body portion 51 and the second main body portion 52 are opposed to each other in the radial direction on the division surface D. The first main body portion 51 is provided with a first annular recessed portion 51d having an annular shape centered on the rotation axis O that is recessed radially outward from the dividing surface D while opening at the end surface facing the other side of the rotation axis O. Has been. Further, the second main body portion 52 has a second annular concave portion 52d which has an annular shape centered on the rotation axis O which is recessed inward in the radial direction from the dividing surface D while opening at the end surface facing the other side of the rotation axis O. It is provided. The first annular recess 51d and the second annular recess 52d are provided at the same position in the direction of the rotation axis O. The first annular recess 51d and the second annular recess 52d are located outside the range in the direction of the rotation axis O in which the flow path FC is formed.
 そして接合部53は、第一環状凹部51dと第二環状凹部52dとによって形成された空間に配置されている。よって接合部53も流路FCが形成された回転軸線Oの方向の範囲外に位置している。 The joint 53 is arranged in the space formed by the first annular recess 51d and the second annular recess 52d. Therefore, the joint portion 53 is also located outside the range in the direction of the rotation axis O in which the flow path FC is formed.
 以上説明した本実施形態のコンプレッサ1Dでは、上記の通り、凸部52aによって亀裂の進展速度を低減することができるとともに、流路FC内のガスGの圧力損失を低減することができる。さらに、接合部53が、流路FCが形成された回転軸線Oの方向の範囲外に位置しているため、圧縮されたガスGからの熱の影響やガスGからの圧力の影響が接合部53へ及びにくくなる。よって、周方向の応力による接合部53での亀裂の発生を抑制することができ、ケーシング4Dの損傷を抑制する効果が得られる。 In the compressor 1D of the present embodiment described above, as described above, it is possible to reduce the crack growth speed by the convex portion 52a and reduce the pressure loss of the gas G in the flow path FC. Furthermore, since the joint portion 53 is located outside the range in the direction of the rotation axis O in which the flow path FC is formed, the influence of heat from the compressed gas G and the influence of the pressure from the gas G may affect the joint portion. It becomes difficult to reach 53. Therefore, it is possible to suppress the occurrence of cracks in the joint portion 53 due to the stress in the circumferential direction, and it is possible to obtain the effect of suppressing damage to the casing 4D.
 また、凸部52aに加えてさらに外側凸部52eを設けることで、第一本体部51と第二本体部52とが回転軸線Oの方向に嵌め合うようにして、接合部53によって接合される。よって回転軸線Oに対して互いに位置ずれしてしまうことを回避でき、組立時、運転時に第一本体部51と第二本体部52とを同軸上に配置することができる。即ち、同軸度を向上できる。この結果、ガスGの圧縮効率の向上が可能である。 Further, by providing the outer convex portion 52e in addition to the convex portion 52a, the first main body portion 51 and the second main body portion 52 are fitted to each other in the direction of the rotation axis O and joined by the joining portion 53. .. Therefore, it is possible to avoid misalignment with respect to the rotation axis O, and it is possible to arrange the first main body portion 51 and the second main body portion 52 coaxially during assembly and operation. That is, the coaxiality can be improved. As a result, the compression efficiency of the gas G can be improved.
 凸部外面52cに横凸部52fが設けられ、凸部外面52cに対向する凹部内面51cには横凸部52fに係合可能な横凹部51fを設けることで、第一本体部51と第二本体部52とが回転軸線Oの方向へ相対移動してしまうことを抑制できる。よって、第一本体部51と第二本体部52とが、互いに回転軸線Oの方向の変形を規制し合うことができ、ケーシング4Dの疲労強度を向上しつつ、ケーシング4Dの変形に伴うガスGの圧縮効率低下を回避できる。特に第一本体部51と第二本体部52とのいずれか一方が高温となりやすく熱変形量が大きいような場合であっても、第一本体部51と第二本体部52とのうちの熱変形量の小さい方が熱変形量の大きい方の変形を抑制することができる。よってケーシング4Dの疲労強度を向上しつつ、ケーシング4Dの変形に伴うガスGの圧縮効率低下を回避できる。 The lateral convex portion 52f is provided on the convex outer surface 52c, and the lateral concave portion 51f engageable with the lateral convex portion 52f is provided on the concave inner surface 51c opposite to the convex outer surface 52c. It is possible to suppress relative movement of the main body 52 in the direction of the rotation axis O. Therefore, the first main body portion 51 and the second main body portion 52 can mutually restrict the deformation in the direction of the rotation axis O, and the gas G accompanying the deformation of the casing 4D while improving the fatigue strength of the casing 4D. It is possible to avoid a decrease in compression efficiency. In particular, even when one of the first main body 51 and the second main body 52 is likely to reach a high temperature and the amount of thermal deformation is large, the heat of the first main body 51 and the second main body 52 is The smaller the amount of deformation, the more the amount of thermal deformation that can be suppressed. Therefore, it is possible to improve the fatigue strength of the casing 4D and avoid a decrease in the compression efficiency of the gas G due to the deformation of the casing 4D.
 本実施形態では、外側凸部52e(外側凹部51e)、及び横凸部52f(横凹部51f)のうちのいずれか一方のみが設けられていてもよい。 In the present embodiment, only one of the outer convex portion 52e (outer concave portion 51e) and the lateral convex portion 52f (lateral concave portion 51f) may be provided.
〔第四実施形態〕
 次に、図7を参照して本発明の第四実施形態のコンプレッサ1Eについて説明する。以下に説明する第四実施形態においては、第一実施形態から第三実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。本実施形態では、接合部63の位置が第三実施形態とは異なっている。
[Fourth Embodiment]
Next, a compressor 1E according to the fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment described below, the same parts as those in the first to third embodiments are designated by the same reference numerals, and a duplicate description will be omitted. In the present embodiment, the position of the joint portion 63 is different from that in the third embodiment.
 図7に示すように例えば、第一本体部61には、外側凹部51eから回転軸線Oの方向の一方に凹む第一環状凹部61dが設けられている。第二本体部62には、外側凸部52eから回転軸線Oの方向の他方に凹むとともに、回転軸線Oを中心として環状をなす第二環状凹部62dが設けられている。第一環状凹部61dと第二環状凹部62dとは径方向に同じ位置に設けられている。第一環状凹部61d及び第二環状凹部62dは、流路FCが形成された回転軸線Oの方向の範囲内に位置している。 As shown in FIG. 7, for example, the first main body 61 is provided with a first annular recess 61d that is recessed from the outer recess 51e in one direction of the rotation axis O. The second main body 62 is provided with a second annular recess 62d that is recessed from the outer convex portion 52e in the other direction of the rotation axis O and is annular around the rotation axis O. The first annular recess 61d and the second annular recess 62d are provided at the same position in the radial direction. The first annular recess 61d and the second annular recess 62d are located within a range in the direction of the rotation axis O in which the flow path FC is formed.
 そして接合部63は、第一環状凹部61dと第二環状凹部62dとによって形成された空間に配置されている。よって接合部63も流路FCが形成された回転軸線Oの方向の範囲内に位置している。 The joint 63 is arranged in the space formed by the first annular recess 61d and the second annular recess 62d. Therefore, the joint portion 63 is also located within the range in the direction of the rotation axis O in which the flow path FC is formed.
 以上説明した本実施形態のコンプレッサ1Eによれば、接合部63が流路FCが形成された回転軸線Oの方向の範囲内に位置している。このため、接合部63は流路FCにおける回転軸線Oの方向の中央の位置(仮想線X)に近接して配置されていることになる。この結果、ガスGの圧力による周方向の応力の影響が大きくなるが、このような場合であっても上記の凸部52aによって亀裂の進展を抑えることができるためケーシング4Eの損傷を抑制する効果が得られる。 According to the compressor 1E of the present embodiment described above, the joint portion 63 is located within the range in the direction of the rotation axis O in which the flow path FC is formed. Therefore, the joint portion 63 is arranged close to the central position (virtual line X) in the direction of the rotation axis O in the flow path FC. As a result, the influence of the stress in the circumferential direction due to the pressure of the gas G increases, but even in such a case, the protrusion 52a can suppress the progress of cracks, and thus the effect of suppressing damage to the casing 4E. Is obtained.
 本実施形態では接合部63の位置は上記の場合に限定されず、接合部63が少なくとも流路FCが形成された回転軸線Oの方向の範囲内に位置していればよい。 In the present embodiment, the position of the joint portion 63 is not limited to the above case, and it is sufficient that the joint portion 63 is located at least within the range in the direction of the rotation axis O in which the flow path FC is formed.
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、請求の範囲によってのみ限定される。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, each configuration and the combination thereof in each of the embodiments are examples, and addition and omission of the configurations are included without departing from the spirit of the present invention. , Substitutions, and other changes are possible. Also, the invention is not limited to the embodiments, but only by the claims.
 例えば、スクロール部7、吸気部5、吐出部6の材料は、互いに同じでなくともよい。また、少なくともスクロール部7が樹脂製であればよい。ここで「樹脂製」とは純粋に樹脂のみで製造されるものだけでなく、フィラー等の樹脂以外の材料を含んだ樹脂によって製造されるものも含む。吸気部5や吐出部6はアルミ等の金属、炭素繊維、金属フィラ―を含んだ複合材等で形成してもよい。 For example, the materials of the scroll part 7, the intake part 5, and the discharge part 6 do not have to be the same. Further, at least the scroll portion 7 may be made of resin. Here, "made of resin" includes not only those made of pure resin but also those made of resin containing a material other than resin such as filler. The intake part 5 and the discharge part 6 may be formed of a metal such as aluminum, carbon fiber, a composite material containing a metal filler, or the like.
 上記のラジアルコンプレッサのケーシング、及びラジアルコンプレッサによれば、疲労強度を向上しつつ、性能向上が可能である。 According to the above radial compressor casing and radial compressor, it is possible to improve performance while improving fatigue strength.
1、1B、1C、1D、1E  コンプレッサ 
2  インペラ 
3  回転軸 
4、4B、4C、4D、4E  ケーシング 
5  吸気部 
6  吐出部 
7  スクロール部 
7a  内面 
11、41、51、61  第一本体部 
11a、41a、52a  凸部 
11b、41b、51b  第一対向面 
11c、52c  凸部外面 
11d、41d、51d、61d  第一環状凹部
12、42、52、62  第二本体部 
12a、51a  凹部 
12b、42b、52b  第二対向面 
12c、51c  凹部内面 
12d、32d、42d、52d、62d  第二環状凹部 
13、23、33、43、53、63  接合部 
21a、21b、25a、25b  側底面
22、26  底面
51e  外側凹部
51f  横凹部
52e  外側凸部
52f  横凸部
61  第一本体部
62  第二本体部
X  仮想線 
G  ガス 
O  回転軸線
FC  流路
C  亀裂
D  分割面
1, 1B, 1C, 1D, 1E Compressor
2 impeller
3 rotation axes
4, 4B, 4C, 4D, 4E casing
5 Air intake
6 Discharge part
7 Scroll section
7a inner surface
11, 41, 51, 61 First body part
11a, 41a, 52a Convex part
11b, 41b, 51b First facing surface
11c, 52c convex outer surface
11d, 41d, 51d, 61d 1st annular recessed part 12, 42, 52, 62 2nd main-body part
12a, 51a recess
12b, 42b, 52b Second facing surface
12c, 51c Inner surface of recess
12d, 32d, 42d, 52d, 62d Second annular recess
13, 23, 33, 43, 53, 63 Joint
21a, 21b, 25a, 25b Side bottom surface 22, 26 Bottom surface 51e Outer recessed portion 51f Lateral recessed portion 52e Outer protruding portion 52f Side protruding portion 61 First main body portion 62 Second main body portion X virtual line
G gas
O Rotation axis FC Flow path C Crack D Dividing surface

Claims (7)

  1.  インペラの回転軸線に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラに流体を導入する吸気部と、
     前記吸気部に連通して、前記インペラの外周側で前記回転軸線を中心とした環状に延びる流路を形成する樹脂製のスクロール部と、
     前記スクロール部の一端に一体に形成されて前記インペラの周方向に沿って延びて開口し、前記流体を前記流路から吐出する吐出部と、
     を備え、
     前記スクロール部は、
     前記回転軸線の方向の一方に配置された第一本体部と、
     前記第一本体部に対して前記回転軸線の方向の他方に配置された第二本体部と、
     前記第一本体部と前記第二本体部とを前記回転軸線の方向に接合するとともに、前記流路が形成された前記回転軸線の方向の範囲内に位置する接合部と、
     を有し、
     前記第一本体部及び前記第二本体部のうちの一方には、前記接合部よりも前記回転軸線に対する径方向の内側に前記第一本体部及び前記第二本体部のうちの一方から他方に向かって前記接合部を超えて延び、前記流路の内面の一部を形成する前記回転軸線を中心とした環状の凸部が設けられ、
     前記第一本体部及び前記第二本体部のうちの前記他方には、前記流路の内面から凹んで前記凸部に係合する凹部が設けられているラジアルコンプレッサのケーシング。
    An intake part that extends along the rotation axis of the impeller and has a tubular shape that opens in the direction of the rotation axis, and that introduces a fluid into the impeller;
    A resin scroll part that communicates with the air intake part and forms a flow path that extends annularly around the rotation axis on the outer peripheral side of the impeller,
    A discharge part that is integrally formed at one end of the scroll part and extends along the circumferential direction of the impeller to open, and discharges the fluid from the flow path,
    Equipped with
    The scroll part is
    A first body portion arranged in one of the directions of the rotation axis,
    A second body portion arranged on the other side in the direction of the rotation axis with respect to the first body portion,
    While joining the first main body portion and the second main body portion in the direction of the rotation axis, a joint portion located within the range of the direction of the rotation axis in which the flow path is formed,
    Have
    One of the first main body portion and the second main body portion is located radially inward with respect to the rotation axis with respect to the joint portion, and the other is from one of the first main body portion and the second main body portion to the other. Extending beyond the junction towards, provided with an annular projection centered on the rotation axis forming a part of the inner surface of the flow path,
    A casing of a radial compressor in which the other of the first main body portion and the second main body portion is provided with a recessed portion that is recessed from the inner surface of the flow path and engages with the protruding portion.
  2.  前記第一本体部は、前記回転軸線の方向を向く第一対向面を有し、
     前記第二本体部は、前記第一対向面に面接触する第二対向面を有し、
     前記第一本体部には、前記第一対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第一環状凹部が設けられ、
     前記第二本体部には、前記第一環状凹部が設けられた位置に対応する位置で前記第二対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第二環状凹部が設けられ、
     前記接合部は、前記第一環状凹部と前記第二環状凹部とによって形成された空間に配置された樹脂部材である請求項1に記載のラジアルコンプレッサのケーシング。
    The first main body portion has a first facing surface facing the direction of the rotation axis,
    The second body portion has a second facing surface that is in surface contact with the first facing surface,
    The first main body portion is provided with a first annular recess that is recessed from the first opposing surface in the direction of the rotation axis and extends annularly around the rotation axis.
    In the second main body portion, a second annular recessed portion that is recessed from the second facing surface in the direction of the rotation axis and extends annularly around the rotation axis at a position corresponding to the position where the first annular recess is provided. Is provided,
    The casing of the radial compressor according to claim 1, wherein the joint portion is a resin member arranged in a space formed by the first annular recess and the second annular recess.
  3.  前記凸部は、前記径方向の外側を向く凸部外面を有し、
     前記凸部外面には前記径方向の外側に突出する横凸部が設けられ、
     前記第一本体部及び前記第二本体部のうちの前記他方は、前記凸部外面に対向する内面を有し、
     前記内面には前記径方向の外側に凹むとともに、前記横凸部が係合可能な横凹部が設けられている請求項1又は2に記載のラジアルコンプレッサのケーシング。
    The convex portion has a convex outer surface that faces the outer side in the radial direction,
    The convex outer surface is provided with a lateral convex protruding outward in the radial direction,
    The other of the first main body portion and the second main body portion has an inner surface facing the convex portion outer surface,
    The casing of the radial compressor according to claim 1, wherein the inner surface is provided with a lateral recess that is recessed outward in the radial direction and is engageable with the lateral projection.
  4.  前記第一本体部と前記第二本体部とのうちの前記他方には前記凸部に対して前記径方向の外側に配置されて前記第一本体部と前記第二本体部とのうちの前記他方から前記一方に向けて突出する外側凸部がさらに設けられ、
     前記第一本体部と前記第二本体部とのうちの前記一方には、前記外側凸部が係合可能な外側凹部が設けられている請求項1から3のいずれか一項に記載のラジアルコンプレッサのケーシング。
    In the other of the first main body and the second main body, the one of the first main body and the second main body is disposed outside the convex portion in the radial direction. An outer protrusion protruding from the other toward the one is further provided,
    The radial according to any one of claims 1 to 3, wherein the one of the first main body portion and the second main body portion is provided with an outer concave portion engageable with the outer convex portion. Compressor casing.
  5.  インペラの回転軸線に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラに流体を導入する吸気部と、
     前記吸気部に連通して、前記インペラの外周側で前記回転軸線を中心とした環状に延びる流路を形成する樹脂製のスクロール部と、
     前記スクロール部の一端に一体に設けられて前記インペラの周方向に沿って延びて開口し、前記流体を前記流路から吐出する吐出部と、
     を備え、
     前記スクロール部は、
     前記回転軸線の方向の一方に配置された第一本体部と、
     前記第一本体部に対して前記回転軸線の方向の他方に配置された第二本体部と、
     前記第一本体部と前記第二本体部とを前記回転軸線の方向に接合するとともに、前記流路が形成された前記回転軸線の方向の範囲外に位置する接合部と、
     を有し、
     前記第一本体部及び前記第二本体部のうちの一方には、前記接合部よりも前記回転軸線に対する径方向の内側に前記第一本体部及び前記第二本体部のうちの一方から他方に向かって前記接合部を超えて延び、前記流路の内面の一部を形成する前記回転軸線を中心とした環状の凸部が設けられ、
     前記第一本体部及び前記第二本体部のうちの前記他方には、前記流路の内面から凹んで前記凸部に係合する凹部が設けられ、
     前記第一本体部は、前記回転軸線の方向を向く第一対向面を有し、
     前記第二本体部は、前記第一対向面に面接触する第二対向面を有し、
     前記第一本体部には、前記第一対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第一環状凹部が設けられ、
     前記第二本体部には、前記第一環状凹部が設けられた位置に対応する位置で前記第二対向面から前記回転軸線の方向に凹んで前記回転軸線を中心として環状に延びる第二環状凹部が設けられ、
     前記接合部は、前記第一環状凹部と前記第二環状凹部とによって形成された空間に配置された樹脂部材であるラジアルコンプレッサのケーシング。
    An intake part that extends along the rotation axis of the impeller and has a tubular shape that opens in the direction of the rotation axis, and that introduces a fluid into the impeller;
    A resin scroll part that communicates with the air intake part and forms a flow path that extends annularly around the rotation axis on the outer peripheral side of the impeller,
    A discharge part that is integrally provided at one end of the scroll part and extends along the circumferential direction of the impeller to open, and discharges the fluid from the flow path,
    Equipped with
    The scroll part is
    A first body portion arranged in one of the directions of the rotation axis,
    A second body portion arranged on the other side in the direction of the rotation axis with respect to the first body portion,
    While joining the first main body portion and the second main body portion in the direction of the rotation axis, a joint portion located outside the range of the direction of the rotation axis in which the flow path is formed,
    Have
    One of the first main body portion and the second main body portion is located radially inward with respect to the rotation axis with respect to the joint portion, and the other is from one of the first main body portion and the second main body portion to the other. Extending beyond the junction towards, provided with an annular projection centered on the rotation axis forming a part of the inner surface of the flow path,
    The other of the first body portion and the second body portion is provided with a recessed portion that is recessed from the inner surface of the flow path and engages with the protrusion,
    The first main body portion has a first facing surface facing the direction of the rotation axis,
    The second body portion has a second facing surface that is in surface contact with the first facing surface,
    The first main body portion is provided with a first annular recess that is recessed from the first opposing surface in the direction of the rotation axis and extends annularly around the rotation axis.
    In the second main body portion, a second annular recessed portion that is recessed from the second facing surface in the direction of the rotation axis and extends annularly around the rotation axis at a position corresponding to the position where the first annular recess is provided. Is provided,
    The casing of the radial compressor, which is a resin member disposed in a space formed by the first annular recess and the second annular recess, is the joint.
  6.  インペラの回転軸線に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラに流体を導入する吸気部と、
     前記吸気部に連通して、前記インペラの外周側で前記回転軸線を中心とした環状に延びる流路を形成する樹脂製のスクロール部と、
     前記スクロール部の一端に一体に設けられて前記インペラの周方向に沿って延びて開口し、前記流体を前記流路から吐出する吐出部と、
     を備え、
     前記スクロール部は、
     前記回転軸線の方向の一方に配置された第一本体部と、
     前記第一本体部に対して前記回転軸線の方向の他方に配置された第二本体部と、
     前記第一本体部と前記第二本体部とを前記回転軸線の方向に接合するとともに、前記流路が形成された前記回転軸線の方向の範囲外に位置する接合部と、
     を有し、
     前記第一本体部及び前記第二本体部のうちの一方には、前記接合部よりも前記回転軸線に対する径方向の内側に前記第一本体部及び前記第二本体部のうちの一方から他方に向かって前記接合部を超えて延び、前記流路の内面の一部を形成する前記回転軸線を中心とした環状の凸部が設けられ、
     前記第一本体部及び前記第二本体部のうちの前記他方には、前記流路の内面から凹んで前記凸部に係合する凹部が設けられ、
     前記凸部は、前記径方向の外側を向く凸部外面を有し、
     前記凸部外面には前記径方向の外側に突出する横凸部が設けられ、
     前記第一本体部及び前記第二本体部のうちの前記他方は、前記凸部外面に対向する内面を有し、
     前記内面には前記径方向の外側に凹むとともに、前記横凸部が係合可能な横凹部が設けられ、
     前記第一本体部と前記第二本体部とのうちの前記他方には前記凸部に対して前記径方向の外側に配置されて前記第一本体部と前記第二本体部とのうちの前記他方から前記一方に向けて突出する外側凸部がさらに設けられ、
     前記第一本体部と前記第二本体部とのうちの前記一方には、前記外側凸部が係合可能な外側凹部が設けられているラジアルコンプレッサのケーシング。
    An intake part that extends along the rotation axis of the impeller and has a tubular shape that opens in the direction of the rotation axis, and that introduces a fluid into the impeller;
    A resin scroll part that communicates with the air intake part and forms a flow path that extends annularly around the rotation axis on the outer peripheral side of the impeller,
    A discharge part that is integrally provided at one end of the scroll part and extends along the circumferential direction of the impeller to open, and discharges the fluid from the flow path,
    Equipped with
    The scroll part is
    A first body portion arranged in one of the directions of the rotation axis,
    A second body portion arranged on the other side in the direction of the rotation axis with respect to the first body portion,
    While joining the first main body portion and the second main body portion in the direction of the rotation axis, a joint portion located outside the range of the direction of the rotation axis in which the flow path is formed,
    Have
    One of the first main body portion and the second main body portion is located radially inward with respect to the rotation axis with respect to the joint portion, and the other is from one of the first main body portion and the second main body portion. Extending beyond the junction towards, provided with an annular projection centered on the rotation axis forming a part of the inner surface of the flow path,
    The other of the first body portion and the second body portion is provided with a recessed portion that is recessed from the inner surface of the flow path and engages with the protrusion,
    The convex portion has a convex outer surface that faces the outer side in the radial direction,
    A lateral convex portion protruding outward in the radial direction is provided on the outer surface of the convex portion,
    The other of the first body portion and the second body portion has an inner surface that faces the outer surface of the convex portion,
    The inner surface is provided with a lateral recess that is recessed outward in the radial direction and that is engageable with the lateral projection.
    In the other of the first main body and the second main body, the one of the first main body and the second main body is disposed outside the convex portion in the radial direction. An outer protrusion protruding from the other toward the one is further provided,
    A casing for a radial compressor, wherein one of the first main body portion and the second main body portion is provided with an outer concave portion that is engageable with the outer convex portion.
  7.  インペラと、
     前記インペラが嵌合して該インペラとともに回転する回転軸と、
     前記インペラを覆うように設けられた請求項1から6のいずれか一項に記載のケーシングと、
     を備えるラジアルコンプレッサ。
    With an impeller,
    A rotating shaft that is fitted with the impeller and rotates together with the impeller;
    The casing according to any one of claims 1 to 6, which is provided so as to cover the impeller,
    Radial compressor equipped with.
PCT/JP2019/006217 2019-02-20 2019-02-20 Casing for radial compressor and radial compressor WO2020170344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/006217 WO2020170344A1 (en) 2019-02-20 2019-02-20 Casing for radial compressor and radial compressor
JP2021501188A JP7154372B2 (en) 2019-02-20 2019-02-20 Radial compressor casing and radial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006217 WO2020170344A1 (en) 2019-02-20 2019-02-20 Casing for radial compressor and radial compressor

Publications (1)

Publication Number Publication Date
WO2020170344A1 true WO2020170344A1 (en) 2020-08-27

Family

ID=72144582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006217 WO2020170344A1 (en) 2019-02-20 2019-02-20 Casing for radial compressor and radial compressor

Country Status (2)

Country Link
JP (1) JP7154372B2 (en)
WO (1) WO2020170344A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710499U (en) * 1993-07-28 1995-02-14 株式会社川本製作所 Synthetic resin pump casing
JPH0710500U (en) * 1993-07-28 1995-02-14 株式会社川本製作所 Synthetic resin pump casing
WO2017168767A1 (en) * 2016-03-31 2017-10-05 三菱重工業株式会社 Casing for radial compressor, and radial compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710499U (en) * 1993-07-28 1995-02-14 株式会社川本製作所 Synthetic resin pump casing
JPH0710500U (en) * 1993-07-28 1995-02-14 株式会社川本製作所 Synthetic resin pump casing
WO2017168767A1 (en) * 2016-03-31 2017-10-05 三菱重工業株式会社 Casing for radial compressor, and radial compressor

Also Published As

Publication number Publication date
JPWO2020170344A1 (en) 2021-11-25
JP7154372B2 (en) 2022-10-17

Similar Documents

Publication Publication Date Title
JP5907723B2 (en) Manufacturing method of rotating machine
JP4699531B2 (en) Impeller manufacturing method and impeller
JP5020382B2 (en) Radial compressor housing
US10458315B2 (en) Compressor structure for turbochargers
WO2011108214A1 (en) Electric blower and electric cleaner using same
JP2013245658A (en) Centrifugal air-blowing fan
US10267313B2 (en) Centrifugal pump impeller
JP2015522138A (en) Piston for internal combustion engine
JP2020502416A (en) Stator blade unit of turbo molecular pump
JP2007120445A (en) Turbo fan
JP7062072B2 (en) Sealed structure in resin cover
WO2020170344A1 (en) Casing for radial compressor and radial compressor
CN105765233A (en) Impeller, rotary machine, and impeller manufacturing method
CN109715950B (en) Scroll fluid machine, seal member, and seal
JP6748706B2 (en) Radial compressor casing and radial compressor
JP2020527676A (en) Couplings for exhaust gas superchargers and exhaust gas superchargers
JP5533060B2 (en) Turbocharger
JP2021177075A (en) Closed impeller and manufacturing method for closed impeller
JP4385679B2 (en) Blower
JP6661004B2 (en) Method for manufacturing casing of radial compressor and method for manufacturing radial compressor
JP7459952B2 (en) Rotating Machinery
JP2004308608A (en) Blower
JP6598656B2 (en) Diaphragm valve and manufacturing method thereof
CN105458224B (en) Compressor and manufacturing method of composite frame thereof
KR20140133586A (en) Exhaust-gas turbocharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915800

Country of ref document: EP

Kind code of ref document: A1