WO2020169324A1 - Analyzing gas by means of raman spectroscopy - Google Patents

Analyzing gas by means of raman spectroscopy Download PDF

Info

Publication number
WO2020169324A1
WO2020169324A1 PCT/EP2020/052543 EP2020052543W WO2020169324A1 WO 2020169324 A1 WO2020169324 A1 WO 2020169324A1 EP 2020052543 W EP2020052543 W EP 2020052543W WO 2020169324 A1 WO2020169324 A1 WO 2020169324A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
gas
scattered light
laser light
gas pressure
Prior art date
Application number
PCT/EP2020/052543
Other languages
German (de)
French (fr)
Inventor
Dietmar GISELBRECHT
Original Assignee
Omicron Electronics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omicron Electronics Gmbh filed Critical Omicron Electronics Gmbh
Publication of WO2020169324A1 publication Critical patent/WO2020169324A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0317High pressure cuvettes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/651Cuvettes therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/088Using a sensor fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02385Comprising liquid, e.g. fluid filled holes

Definitions

  • the present invention relates to the analysis of gas and gas mixtures, for example for the measurement of process gases or emission gases and dissolved gases from oil-insulated high-voltage systems, with the help of Raman spectroscopy.
  • Raman technology is usually used in analytical measurement technology for liquid and solid analysis in order to analyze and quantify the chemical structure of a measured variable. Only a small amount of sample is required, which in most cases is neither destroyed nor changed.
  • the material to be examined is irradiated with monochromatic light.
  • other frequencies are observed in the spectrum of the light scattered by the material to be examined.
  • the frequency differences to the incident light correspond to the energies of rotation, oscillation, phonon or spin-flip processes that are characteristic of the material to be examined. Based on the spectrum of the scattered light, conclusions can be drawn about the matter to be examined.
  • the reason for this possibility of inference lies in an interaction of light with matter, which is also known as the Raman effect, in which energy is transferred from light to matter or energy from matter to light. Since the wavelength of the light, ie its color, depends on the energy of the light, this energy transfer causes a shift in the wavelength of the scattered light compared to the incident light, which is also known as the Raman shift and in Rayleight, Stokes- and anti-Stokes scattered light is divided. Raman technology is rarely used to analyze or measure gas because the intensity of the Raman effect (ie the intensity of the scattered light generated in the process) is low.
  • all gases except noble gases can be measured and / or analyzed, such as H 2 , O 2 , N 2 CH 4 , C 2 H6 C 2 H 4 , C 2 H 2 , SF ⁇ . It is also possible to identify the gases in a gas mixture.
  • the present invention has the task of increasing the intensity of the Raman effect in the measurement and / or analysis of gas.
  • this object is achieved by a device for analyzing gas according to claim 1, by a test system according to claim 11 and by a method for analyzing gas according to claim 12.
  • the dependent claims define preferred and advantageous embodiments of the present invention.
  • a device for analyzing gas comprises a laser light source, fiber means, coupling means, evaluation means and guide means.
  • the fiber means comprise a fiber into which the gas can be introduced.
  • the coupling means a laser light generated by the laser light source is coupled into the fiber in order to excite the gas with this laser light so that scattered light is emitted by the gas.
  • the evaluation means are designed to evaluate the scattered light with regard to its frequency, intensity and / or polarization in order to analyze the gas as a function of the frequency, intensity and / or polarity.
  • the guide means are designed to guide or guide the scattered light to the evaluation means.
  • the fibers comprise a tube in which the fiber is embedded.
  • the tube has an internal gas pressure which corresponds to an internal gas pressure of the fiber.
  • the internal gas pressure of the fiber is higher than a maximum possible internal gas pressure of the fiber, which is defined by a strength and / or an optical property of the fiber when the fiber is not embedded in the pipe.
  • the internal gas pressure of the fiber is therefore in particular higher than a maximum internal gas pressure of the fiber, which is defined solely by the strength and the optical property of the fiber (ie without embedding in a pipe).
  • the maximum internal gas pressure of the fiber is defined by the fact that if the differential pressure of the fiber between internal pressure and external pressure of the fiber is greater than this maximum internal gas pressure of the fiber, the optical properties of the fiber change and / or the fiber is destroyed becomes.
  • the maximum internal gas pressure pressure of the fiber corresponds exactly to that differential pressure of the fiber between the internal pressure and external pressure of the fiber at which the optical properties of the fiber are essentially unchanged compared to a virtually non-existent differential pressure of the fiber.
  • the differential pressure between the outside of the fiber and the inside of the fiber is identical. This measure largely avoids mechanical stress on the fiber due to the increased internal gas pressure within the fiber, so that despite the increased internal gas pressure, the fiber has the same optical properties as with an internal gas pressure at the level of the ambient air pressure.
  • the measurement accuracy shows a linear dependence on the internal gas pressure of the fiber, so that the measurement accuracy is higher, the higher the internal gas pressure of the fiber, provided that the other boundary conditions (e.g. laser power) can be kept constant.
  • the internal gas pressure of the fiber can be increased before geous enough above the maximum internal gas pressure of the fiber, this maximum internal gas pressure of the fiber being determined solely by the strength of the fiber.
  • the internal gas pressure of the fiber can be increased very much, which increases the scattered light intensity and thus the measurement accuracy accordingly . Even if the fiber were manufactured in such a way that it could withstand a very high differential pressure, there would be the risk that the fiber would be stretched without being embedded in the tube, which would disadvantageously change the optical properties of the fiber.
  • the mechanical stress caused by the high internal gas pressure changes the optical properties of the fiber.
  • the laser light and the scattered light are more attenuated, which would disadvantageously reduce the intensity of the scattered light.
  • the fiber By embedding the fiber in the tube, which is filled with the same gas pressure as the fiber, a change in the optical properties of the fiber due to the mechanical pressure load is advantageously prevented.
  • the fiber means can be designed as a gas measuring cell which has a gas inlet and a gas outlet with at least one (coupling) window to introduce the laser light into the gas measuring cell and to carry out the scattered light from the gas measuring cell.
  • a plane-parallel optical component made of crystalline material, which can be coated in order to e.g. To avoid reflection losses, understood.
  • the window can also be referred to as a plane-parallel plate.
  • the analysis according to the invention of the gas as a function of the frequency, intensity and / or polarity can comprise the analysis of a complete spectrum of gas mixtures.
  • the internal gas pressure of the fiber can be greater than 2 c 10 6 Pa or 20 bar.
  • the internal gas pressure of the fiber is greater than 5x10 6 Pa or 50 bar, better greater than 10 7 Pa or 100 bar and even better greater than 2x10 7 Pa or Is 200 bar.
  • this measurement accuracy with an internal gas pressure of the fiber of 1 bar is eg 100 ppm
  • this measurement accuracy with an internal gas pressure of the fiber of 10 bar is 10 ppm and with an internal gas pressure of the fiber of 100 bar 1 ppm.
  • the measurement accuracy increases linearly with the internal gas pressure of the fiber, as has already been explained in advance.
  • the evaluation means comprise a Raman spectrometer with a detector (in particular with a CCD detector (Charged Coupled Device)).
  • FERS spectroscopy i.e. fiber-reinforced Raman spectroscopy
  • the guide means can comprise a filter in order to filter out wavelengths (or the wavelength) of the laser light.
  • the arrangement of the filter can advantageously suppress the excitation wavelengths that are generated by the laser light source.
  • the fiber is a so-called hollow fiber or hollow core fiber (HC fiber).
  • This type of fiber i.e. the hollow fiber
  • the hollow fiber in particular comprises one or more glass tubes.
  • the gas to be analyzed is pressed into or into the cavities of the hollow fiber.
  • the hollow fiber serves as an optical waveguide for efficient guidance of the laser light through the gas to be analyzed.
  • the hollow fiber enables efficient collection and guidance of the scattered light. Both effects increase the measurement accuracy before geous.
  • the coupling means comprise a window (see definition above) or a lens in order to couple the laser light into the fiber.
  • This lens is advantageously a focusing lens, whereby the laser light is coupled into the fiber.
  • the window is a means of coupling the laser light and scattered light into and out of the fiber as unchanged as possible (in particular undamped).
  • the guide means comprise in particular an output fiber in order to guide the scattered light to the evaluation means. This output fiber is suitable for spatial filtering.
  • spatial filtering is advantageously achieved without having to implement a so-called pin hole (or a pinhole), for example.
  • evaluation means it is also possible for the evaluation means to be combined with the guide means, as it were, or for the evaluation means and the guide means to merge into one another, so that no output fiber is required.
  • the coupling means include in particular a dichroic splitter, on the one hand, to direct or couple the laser light into the fiber embedded in the pipe and, on the other hand, to couple out the scattered light coming from the fiber and to guide it to the evaluation means without any portions of the laser light.
  • the laser light emerging from the laser light source is already collimated (e.g. in the case of a free-space laser) or is collimated with a lens before the collimated laser light passes through the dichroic splitter (DC splitter) and e.g. the focusing lens is coupled into the fiber.
  • DC splitter dichroic splitter
  • the coupling means to couple the laser light into the fiber from a different side than the scattered light is guided from the fiber to the evaluation means.
  • the or each fiber has two ends, so that it is possible to couple light into the fiber from these two ends or sides.
  • the laser light is coupled in from the same side of the fiber to which the scattered light is led out of the fiber.
  • the laser light is introduced into the fiber from a first of these two sides of the fiber, while the scattered light is guided out of the fiber from a second of these two sides of the fiber. It differs the first side of the fiber from the second side of the fiber, or the first and the second side of the fiber together form the two sides or ends of the fiber.
  • the advantage of this embodiment is, for example, that the dichroic divider is not required.
  • a test system for testing dissolved gases and gas on a floch voltage system comprises an evaluation unit and a device according to the invention for analyzing gas.
  • the test system is designed to carry out an analysis of the gas from or in an insulation of the voltage installation.
  • the evaluation unit is designed to produce a result of the check of the floch voltage system depending on the analysis of the gas.
  • the test system according to the invention can be used on oil-insulated high-voltage systems, e.g. Power transformers, current converters, voltage converters and gas-insulated switchgear can be used.
  • the gas to be analyzed can be a gas that is used to insulate the high-voltage installation itself, or it can be a gas that has dissolved from a liquid in an insulation.
  • This method comprises the following steps:
  • a laser light source in particular generates monochromatic light.
  • the fiber is embedded in a tube which has an internal gas pressure which corresponds to an internal gas pressure of the fiber.
  • the internal gas pressure of the fiber is higher than a maximum possible internal gas pressure of the fiber, which is defined by a strength and an optical property of the fiber when the fiber is not embedded in the pipe.
  • the present invention can be used for quality control in the laboratory, for process analysis and process monitoring for:
  • FIG. 1 a device according to the invention for analyzing gas is shown schematically.
  • FIG. 2 schematically shows a cross section of a hollow fiber embedded in a pipe according to an embodiment of the invention.
  • a test system according to the invention with a device according to the invention for testing a high-voltage system is shown schematically.
  • FIG. 1 A device 10 according to the invention is shown schematically in FIG. 1, which comprises a detector 1, a light generator 17 and a fiber device or fiber means 2, 3.
  • the detector 1 comprises a Raman spectrometer which records measurement signals via a CCD detector 16.
  • the light generator 17 comprises a monochromatic laser 4 for generating a laser light or laser beam 7, with which gas molecules are excited.
  • the light generator 17 comprises optical components 5, 6, 9, 12, 13 for directing the laser beam 7 into a hollow fiber 2 and for directing the scattered light 8 to the detector 1.
  • a filter 5 prevents the laser beam 7 from being guided to the detector 1.
  • the fiber means which can also be viewed as a sensor or (gas) measuring cell, comprise the hollow fiber 2, which is embedded in a tube 3.
  • the gas to be analyzed is introduced into the hollow fiber 2 via a gas inlet 15 and discharged again via a gas outlet 14.
  • the fiber means 2, 3 can be designed in the form of a gas measuring cell 21 or be integrated into such a gas measuring cell 21.
  • the main element of the device 10 according to the invention is this hollow fiber 2, which is also referred to as a hollow core fiber or HC fiber.
  • the hollow fiber comprises a bundle of glass tubes.
  • the gas to be analyzed is pressed into cavities in the hollow fiber 2 which exist between the glass tubes.
  • the laser beam 7 is coupled into the hollow fiber 2 via a lens 9 and a window 19 and at the same time the scattered light 8 (especially scattered photons) is coupled into an output fiber 11 and a Raman spectrometer 1, in which measurement signals are transmitted via a CCD detector 16 are recorded, supplied.
  • the lens 9 can also be integrated in the fiber means 2, 3 or in the gas measuring cell 21 instead of the window 19, so that the lens 9 also takes over the function of the window.
  • the light generator 17 is an optical guidance system in which the paths of the laser beam 7 to the fiber 2 are directed with a dichroic splitter 6 and the scattered light 8 through the dichroic splitter 6 via a filter 5 into the path to the output fiber 1 1 is added.
  • the filter 5 significantly suppresses the remaining wavelengths of the laser beam 7, so that, if possible, only those photons which are generated in the hollow fiber 2 by Raman scattering reach the output fiber 11.
  • a further filter can be used in the scattered light path to reduce the intensity of scattered light in order to protect the individual light-sensitive elements (pixels) of a CCD sensor from excessive amounts of charge (blooming effect).
  • the filter 5 for filtering the laser light 7 can be arranged anywhere in the path of the laser light 7 from the dichroic splitter 6 to the CCD sensor 16, the location shown in FIG. 1 being preferred.
  • the filter (not shown) for filtering the scattered light can be arranged anywhere in the path of the scattered light from the gas outlet 14 to the CCD sensor 16. Even arranging this filter directly on the CCD sensor 16 is advantageous.
  • the laser 4 can be a fiber-coupled laser or a free space laser.
  • the laser beam 7 is collimated with a lens 13 and coupled into the hollow fiber (measuring fiber) 2 via the dichroic splitter 6 and a focusing lens 9.
  • the light exits a free-space laser already collimated, so that no additional lens 13 is necessary and the laser beam 7 can be coupled directly into the hollow fiber 2 via the splitter 6 and the focusing lens 9.
  • a compact embodiment is also possible in which the spectrometer 1 is integrated into the light generator 17, the output fiber 11 and lens 12 being omitted.
  • the hollow fiber 2 and the tube 3 in which the hollow fiber 2 is embedded shown in cross section.
  • the tube 3 is simultaneously filled with gas (e.g. with the gas to be analyzed).
  • the internal gas pressure PR in the pipe 3 corresponds to the internal gas pressure PF in the hollow fiber 2
  • the maximum internal gas pressure in the hollow fiber 2 is determined by the pipe 3 and the filling system used.
  • FIG. 3 an inventive test system 30 and a high voltage system 40 are shown schematically.
  • the test system 30 is designed to check insulation 19 of the high-voltage system 40.
  • the test system 30 comprises a device 10 according to the invention for analyzing gas, as previously described ben and shown schematically in FIG. 1.
  • the test system 30 comprises an evaluation unit 20 in order to produce a result of the test as a function of the analysis of the gas carried out by the device 10. Analyzed in the process the device 10 is a gas coming from the insulation 19, the analysis of this gas being used to determine the quality of the insulation 19 and thus a measure of the readiness for use of the high-voltage system 40 itself.

Abstract

For the purposes of analyzing gas, a laser light (7) is generated and the gas is introduced into a fiber (2). The laser light (7) is coupled into the fiber (2) in order to excite the gas using said laser light (7) such that Raman scattered light (8) is emitted by the gas. The Raman scattered light (8) is guided by the fiber (2) to evaluation means (1, 16) and evaluated in respect of at least one of the frequency components, the intensity of the frequency components and the polarity of the frequency components of the scattered light in question in order to analyze the gas on the basis of the at least one of the frequency components, the intensity of the frequency components and the polarity of the frequency components of said scattered light in question. In the process, the fiber (2) is embedded in a pipe (3) which has an internal gas pressure (pR), which corresponds to an internal gas pressure (pF) of the fiber (2). Here, the internal gas pressure (pF) of the fiber (2) is greater than the maximum possible internal gas pressure of the fiber (2), which is defined by a solidity or an optical property of the fiber (2), when the fiber (2) has not been embedded into the pipe (3).

Description

Analysieren von Gas mittels Raman-Spektroskopie Analyzing gas using Raman spectroscopy
GEBIET DER ERFINDUNG FIELD OF THE INVENTION
Die vorliegende Erfindung betrifft die Analyse von Gas und Gasgemischen, beispiels weise zur Messung von Prozessgasen oder Emissionsgasen sowie gelösten Gasen aus ölisolierten Hochspannungsanlagen, mit Hilfe der Raman-Spektroskopie. The present invention relates to the analysis of gas and gas mixtures, for example for the measurement of process gases or emission gases and dissolved gases from oil-insulated high-voltage systems, with the help of Raman spectroscopy.
HINTERGRUND DER ERFINDUNG BACKGROUND OF THE INVENTION
Die Raman-Technologie wird in der analytischen Messtechnik in der Regel für die Flüs- sigkeits- und Feststoffanalyse eingesetzt, um die chemische Struktur einer Messgröße zu analysieren und zu quantifizieren. Dabei wird nur eine geringe Probenmenge benö tigt, welche darüber hinaus in den meisten Fällen weder zerstört noch verändert wird. Raman technology is usually used in analytical measurement technology for liquid and solid analysis in order to analyze and quantify the chemical structure of a measured variable. Only a small amount of sample is required, which in most cases is neither destroyed nor changed.
Bei der Raman-Spektroskopie wird die zu untersuchende Materie mit monochromati schem Licht bestrahlt. Im Spektrum des an der zu untersuchenden Materie gestreuten Lichts werden neben den eingestrahlten Frequenzen noch weitere Frequenzen beo bachtet. Die Frequenzunterschiede zum eingestrahlten Licht entsprechen dabei den für die zu untersuchende Materie charakteristischen Energien von Rotations-, Schwin- gungs-, Phonon- oder Spin-Flip-Prozessen. Anhand des Spektrums des gestreuten Lichts können somit Rückschlüsse auf die zu untersuchende Materie gezogen werden. In Raman spectroscopy, the material to be examined is irradiated with monochromatic light. In addition to the irradiated frequencies, other frequencies are observed in the spectrum of the light scattered by the material to be examined. The frequency differences to the incident light correspond to the energies of rotation, oscillation, phonon or spin-flip processes that are characteristic of the material to be examined. Based on the spectrum of the scattered light, conclusions can be drawn about the matter to be examined.
Die Ursache für diese Rückschlussmöglichkeit liegt in einer Wechselwirkung des Lichts mit der Materie, was auch als Raman-Effekt bezeichnet wird, bei welchem Ener gie vom Licht auf die Materie bzw. Energie von der Materie auf das Licht übertragen wird. Da die Wellenlänge des Lichts, d.h. seine Farbe, von der Energie des Lichts ab hängt, bewirkt dieser Energieübertrag eine Verschiebung der Wellenlänge des ge streuten Lichts gegenüber dem eingestrahlten Licht, was auch als Raman-Verschie bung bekannt ist und in Rayleight-, Stokes- und Anti-Stokes-Streulicht unterteil wird. Zur Analyse oder Messung von Gas wird die Raman-Technologie selten verwendet, da die Intensität des Raman-Effekts (d.h. die Intensität des dabei erzeugten Streu lichts) gering ist. Durch das charakteristische Streulicht der einzelnen Gase können alle Gase außer Edelgase gemessen und/oder analysiert werden, wie zum Beispiel H2, O2, N2 CH4, C2H6 C2H4, C2H2, SFÖ. Außerdem ist eine Identifikation der Gase in einem Gasgemisch möglich. The reason for this possibility of inference lies in an interaction of light with matter, which is also known as the Raman effect, in which energy is transferred from light to matter or energy from matter to light. Since the wavelength of the light, ie its color, depends on the energy of the light, this energy transfer causes a shift in the wavelength of the scattered light compared to the incident light, which is also known as the Raman shift and in Rayleight, Stokes- and anti-Stokes scattered light is divided. Raman technology is rarely used to analyze or measure gas because the intensity of the Raman effect (ie the intensity of the scattered light generated in the process) is low. Due to the characteristic scattered light of the individual gases, all gases except noble gases can be measured and / or analyzed, such as H 2 , O 2 , N 2 CH 4 , C 2 H6 C 2 H 4 , C 2 H 2 , SF Ö . It is also possible to identify the gases in a gas mixture.
ZUSAMMENFASSUNG DER ERFINDUNG SUMMARY OF THE INVENTION
Daher stellt sich die vorliegende Erfindung die Aufgabe, die Intensität des Raman-Ef fekts bei der Messung und/oder Analyse von Gas zu erhöhen. Therefore, the present invention has the task of increasing the intensity of the Raman effect in the measurement and / or analysis of gas.
Erfindungsgemäß wird diese Aufgabe durch eine Vorrichtung zum Analysieren von Gas nach Anspruch 1 , durch ein Prüfsystem nach Anspruch 1 1 und durch ein Verfah ren zum Analysieren von Gas nach Anspruch 12 gelöst. Die abhängigen Ansprüche definieren bevorzugte und vorteilhafte Ausführungsformen der vorliegenden Erfin dung. According to the invention, this object is achieved by a device for analyzing gas according to claim 1, by a test system according to claim 11 and by a method for analyzing gas according to claim 12. The dependent claims define preferred and advantageous embodiments of the present invention.
Im Rahmen der vorliegenden Erfindung wird eine Vorrichtung zum Analysieren von Gas bereitgestellt. Diese erfindungsgemäße Vorrichtung umfasst eine Laserlicht quelle, Fasermittel, Koppelmittel, Auswertemittel und Führungsmittel. Die Fasermittel umfassen eine Faser, in welche das Gas einführbar ist. Mit den Koppelmitteln wird ein von der Laserlichtquelle erzeugtes Laserlicht in die Faser eingekoppelt, um mit diesem Laserlicht das Gas anzuregen, so dass Streulicht von dem Gas emittiert wird. Die Aus wertemittel sind ausgestaltet, um das Streulicht hinsichtlich seiner Frequenz, Intensität und/oder Polarisation auszuwerten, um abhängig von der Frequenz, Intensität und/o der Polarität das Gas zu analysieren. Die Führungsmittel sind ausgestaltet, um das Streulicht zu den Auswertemitteln zu führen oder zu leiten. Dabei umfassen die Faser mittel ein Rohr, in welches die Faser eingebettet ist. Das Rohr weist einen inneren Gasdruck auf, welcher einem inneren Gasdruck der Faser entspricht. Dabei ist der innere Gasdruck der Faser höher als ein maximal möglicher innerer Gasdruck der Fa ser, welcher durch eine Festigkeit und/oder eine optische Eigenschaft der Faser defi niert ist, wenn die Faser nicht in das Rohr eingebettet ist. Erfindungsgemäß ist daher der innere Gasdruck der Faser insbesondere höher als ein maximaler innerer Gasdruck der Faser, welcher allein durch die Festigkeit und die op tische Eigenschaft der Faser (d.h. ohne Einbettung in ein Rohr) definiert ist. Der maxi male innere Gasdruck der Faser ist dabei dadurch definiert, dass sich, wenn der Dif ferenzdruck der Faser zwischen Innendruck und Außendruck der Faser größer als die ser maximale innere Gasdruck der Faser ist, die optischen Eigenschaften der Faser ändern und/oder die Faser zerstört wird. Anders ausgedrückt entspricht der maximale innere Gasdruckdruck der Faser genau demjenigen Differenzdruck der Faser zwi schen Innendruck und Außendruck der Faser bei dem die optischen Eigenschaften der Faser im Vergleich zu einem nahezu nicht vorhandenen Differenzdruck der Faser im Wesentlichen unverändert sind. In the context of the present invention, a device for analyzing gas is provided. This device according to the invention comprises a laser light source, fiber means, coupling means, evaluation means and guide means. The fiber means comprise a fiber into which the gas can be introduced. With the coupling means, a laser light generated by the laser light source is coupled into the fiber in order to excite the gas with this laser light so that scattered light is emitted by the gas. The evaluation means are designed to evaluate the scattered light with regard to its frequency, intensity and / or polarization in order to analyze the gas as a function of the frequency, intensity and / or polarity. The guide means are designed to guide or guide the scattered light to the evaluation means. The fibers comprise a tube in which the fiber is embedded. The tube has an internal gas pressure which corresponds to an internal gas pressure of the fiber. The internal gas pressure of the fiber is higher than a maximum possible internal gas pressure of the fiber, which is defined by a strength and / or an optical property of the fiber when the fiber is not embedded in the pipe. According to the invention, the internal gas pressure of the fiber is therefore in particular higher than a maximum internal gas pressure of the fiber, which is defined solely by the strength and the optical property of the fiber (ie without embedding in a pipe). The maximum internal gas pressure of the fiber is defined by the fact that if the differential pressure of the fiber between internal pressure and external pressure of the fiber is greater than this maximum internal gas pressure of the fiber, the optical properties of the fiber change and / or the fiber is destroyed becomes. In other words, the maximum internal gas pressure pressure of the fiber corresponds exactly to that differential pressure of the fiber between the internal pressure and external pressure of the fiber at which the optical properties of the fiber are essentially unchanged compared to a virtually non-existent differential pressure of the fiber.
Durch das Einbetten der Faser in das Rohr und da das Rohr und die Faser mit dem selben Gasdruck gefüllt sind, ist der Differenzdruck zwischen der Außenseite der Fa ser und der Innenseite der Faser (im statischen Zustand) identisch. Durch diese Maß nahme wird eine mechanische Belastung der Faser aufgrund des erhöhten inneren Gasdrucks innerhalb der Faser weitestgehend vermieden, so dass die Faser trotz des erhöhten inneren Gasdrucks dieselben optischen Eigenschaften aufweist wie bei ei nem inneren Gasdruck auf dem Niveau des Umgebungsluftdrucks. By embedding the fiber in the tube and because the tube and fiber are filled with the same gas pressure, the differential pressure between the outside of the fiber and the inside of the fiber (in the static state) is identical. This measure largely avoids mechanical stress on the fiber due to the increased internal gas pressure within the fiber, so that despite the increased internal gas pressure, the fiber has the same optical properties as with an internal gas pressure at the level of the ambient air pressure.
Indem der innere Gasdruck der Faser erhöht wird, wird die Anzahl der Gasmoleküle und somit die Intensität des Streulichts erhöht, was zur Erhöhung der Messgenauigkeit führt. Dabei weist die Messgenauigkeit eine lineare Abhängigkeit von dem inneren Gasdruck der Faser auf, so dass die Messgenauigkeit umso höher liegt, umso höher der innere Gasdruck der Faser ist, sofern die anderen Randbedingungen (z.B. Laser leistung) konstant gehalten werden können. By increasing the internal gas pressure of the fiber, the number of gas molecules and thus the intensity of the scattered light is increased, which leads to an increase in the measurement accuracy. The measurement accuracy shows a linear dependence on the internal gas pressure of the fiber, so that the measurement accuracy is higher, the higher the internal gas pressure of the fiber, provided that the other boundary conditions (e.g. laser power) can be kept constant.
Durch die Einbettung der Faser in das Rohr kann der innere Gasdruck der Faser vor teilhafterweise über den maximalen inneren Gasdruck der Faser erhöht werden, wobei dieser maximale innere Gasdruck der Faser allein durch die Festigkeit der Faser be stimmt wird. Mit anderen Worten wird durch das Einbetten der Faser in das Rohr und durch das Befüllen des Rohrs mit demselben inneren Gasdruck wie die Faser ermög licht, dass der innere Gasdruck der Faser sehr stark erhöht werden kann, wodurch die Streulichtintensität und somit die Messgenauigkeit entsprechend gesteigert werden. Selbst wenn die Faser derart gefertigt wäre, dass sie einem sehr hohen Differenzdruck standhalten könnte, bestände ohne die Einbettung in das Rohr die Gefahr, dass die Faser gedehnt wird, wodurch sich nachteiligerweise die optischen Eigenschaften der Faser verändern. Durch die mechanische Belastung aufgrund des hohen inneren Gas drucks wird die optische Eigenschaft der Faser verändert. Dadurch werden das Laser licht und das Streulicht stärker gedämpft, was nachteiligerweise die Intensität des Streulichts reduzieren würde. Durch das Einbetten der Faser in das Rohr, welches mit demselben Gasdruck wie die Faser gefüllt ist, wird auch eine Veränderung der opti schen Eigenschaften der Faser aufgrund der mechanischen Druckbelastung vorteil hafterweise verhindert. By embedding the fiber in the tube, the internal gas pressure of the fiber can be increased before geous enough above the maximum internal gas pressure of the fiber, this maximum internal gas pressure of the fiber being determined solely by the strength of the fiber. In other words, by embedding the fiber in the tube and filling the tube with the same internal gas pressure as the fiber, the internal gas pressure of the fiber can be increased very much, which increases the scattered light intensity and thus the measurement accuracy accordingly . Even if the fiber were manufactured in such a way that it could withstand a very high differential pressure, there would be the risk that the fiber would be stretched without being embedded in the tube, which would disadvantageously change the optical properties of the fiber. The mechanical stress caused by the high internal gas pressure changes the optical properties of the fiber. As a result, the laser light and the scattered light are more attenuated, which would disadvantageously reduce the intensity of the scattered light. By embedding the fiber in the tube, which is filled with the same gas pressure as the fiber, a change in the optical properties of the fiber due to the mechanical pressure load is advantageously prevented.
Die Fasermittel können als eine Gasmesszelle ausgeführt sein, welche einen Gasein lass und einen Gasauslass mit mindestens einem (Koppel-)Fenster, um das Laserlicht in die Gasmesszelle einzuführen und das Streulicht aus der Gasmesszelle auszufüh ren, umfassen. Im Rahmen der vorliegenden Erfindung wird dabei unter einem Fenster insbesondere eine planparallele optische Komponente aus kristallinem Material, wel ches beschichtet sein kann, um z.B. Reflexionsverluste zu vermeiden, verstanden. Al ternativ kann man das Fenster auch als planparallele Platte bezeichnen. The fiber means can be designed as a gas measuring cell which has a gas inlet and a gas outlet with at least one (coupling) window to introduce the laser light into the gas measuring cell and to carry out the scattered light from the gas measuring cell. In the context of the present invention, a plane-parallel optical component made of crystalline material, which can be coated in order to e.g. To avoid reflection losses, understood. Alternatively, the window can also be referred to as a plane-parallel plate.
Die erfindungsgemäße Analyse des Gases abhängig von der Frequenz, Intensität und/oder Polarität kann die Analyse eines kompletten Spektrums von Gasgemischen umfassen. The analysis according to the invention of the gas as a function of the frequency, intensity and / or polarity can comprise the analysis of a complete spectrum of gas mixtures.
Beispielsweise kann der innere Gasdruck der Faser (und damit der innere Gasdruck des Rohrs) größer als 2c106 Pa bzw. 20 bar sein. Es ist allerdings auch möglich, dass der innere Gasdruck der Faser (und damit der innere Gasdruck des Rohrs) größer als 5x106 Pa bzw. 50 bar, besser größer als 107 Pa bzw. 100 bar und noch besser größer als 2x107 Pa bzw. 200 bar ist. For example, the internal gas pressure of the fiber (and thus the internal gas pressure of the tube) can be greater than 2 c 10 6 Pa or 20 bar. However, it is also possible that the internal gas pressure of the fiber (and thus the internal gas pressure of the pipe) is greater than 5x10 6 Pa or 50 bar, better greater than 10 7 Pa or 100 bar and even better greater than 2x10 7 Pa or Is 200 bar.
Wenn die Messgenauigkeit bei einem inneren Gasdruck der Faser von 1 bar bei z.B. 100 ppm liegt, dann liegt diese Messgenauigkeit bei einem inneren Gasdruck der Fa ser von 10 bar bei 10 ppm und bei einem inneren Gasdruck der Faser von 100 bar bei 1 ppm. Die Messgenauigkeit steigt also linear mit dem inneren Gasdruck der Faser, wie es bereits vorab ausgeführt ist. If the measurement accuracy with an internal gas pressure of the fiber of 1 bar is eg 100 ppm, then this measurement accuracy with an internal gas pressure of the fiber of 10 bar is 10 ppm and with an internal gas pressure of the fiber of 100 bar 1 ppm. The measurement accuracy increases linearly with the internal gas pressure of the fiber, as has already been explained in advance.
Gemäß einer erfindungsgemäßen Ausführungsform umfassen die Auswertemittel ein Raman-Spektrometer mit einem Detektor (insbesondere mit einem CCD-Detektor (Charged Coupled Device)). According to an embodiment according to the invention, the evaluation means comprise a Raman spectrometer with a detector (in particular with a CCD detector (Charged Coupled Device)).
Durch die Kombination mit dem Raman-Spektrometer und der Faser wird erfindungs gemäß eine FERS-Spektroskopie (d.h. eine faserverstärkte Raman-Spektroskopie) re alisiert. Through the combination with the Raman spectrometer and the fiber, FERS spectroscopy (i.e. fiber-reinforced Raman spectroscopy) is realized according to the invention.
Darüber hinaus können die Führungsmittel ein Filter umfassen, um Wellenlängen (o- der die Wellenlänge) des Laserlichts auszufiltern. In addition, the guide means can comprise a filter in order to filter out wavelengths (or the wavelength) of the laser light.
Durch die Anordnung des Filters können vorteilhafterweise die Anregungswellenlän gen, welche von der Laserlichtquelle erzeugt werden, unterdrückt werden. The arrangement of the filter can advantageously suppress the excitation wavelengths that are generated by the laser light source.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform handelt es sich bei der Faser um eine so genannte Hohlfaser oder Hollow-Core-Faser (HC-Faser). Diese Art von Faser (d.h. die Hohlfaser) umfasst insbesondere ein oder mehrere Glasrohre. Das zu analysierende Gas wird in den oder in die Hohlräume der Hohlfaser gedrückt. According to a further embodiment according to the invention, the fiber is a so-called hollow fiber or hollow core fiber (HC fiber). This type of fiber (i.e. the hollow fiber) in particular comprises one or more glass tubes. The gas to be analyzed is pressed into or into the cavities of the hollow fiber.
Die Hohlfaser dient zum einen als optischer Wellenleiter für eine effiziente Führung des Laserlichts durch das zu analysierende Gas. Zum anderen ermöglicht die Hohlfa ser ein effizientes Sammeln und Führen des Streulichts. Beide Effekte erhöhen vor teilhafterweise die Messgenauigkeit. On the one hand, the hollow fiber serves as an optical waveguide for efficient guidance of the laser light through the gas to be analyzed. On the other hand, the hollow fiber enables efficient collection and guidance of the scattered light. Both effects increase the measurement accuracy before geous.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform umfassen die Koppel mittel ein Fenster (Definition siehe oben) oder eine Linse, um das Laserlicht in die Faser einzukoppeln. Bei dieser Linse handelt es sich vorteilhafterweise um eine Fo kussierlinse, wodurch das Laserlicht in die Faser eingekoppelt wird. Bei dem Fenster handelt es sich um ein Mittel, um das Laserlicht und Streulicht möglichst unverändert (insbesondere ungedämpft) in die Faser ein- und auszukoppeln. Die Führungsmittel umfassen insbesondere eine Ausgangsfaser, um das Streulicht zu den Auswertemitteln zu führen. Diese Ausgangsfaser ist für eine räumliche Filterung geeignet. According to a further embodiment of the invention, the coupling means comprise a window (see definition above) or a lens in order to couple the laser light into the fiber. This lens is advantageously a focusing lens, whereby the laser light is coupled into the fiber. The window is a means of coupling the laser light and scattered light into and out of the fiber as unchanged as possible (in particular undamped). The guide means comprise in particular an output fiber in order to guide the scattered light to the evaluation means. This output fiber is suitable for spatial filtering.
Indem das Streulicht in die Ausgangsfaser eingekoppelt wird, wird vorteilhafterweise eine räumliche Filterung erzielt, ohne dass dazu beispielsweise ein sogenanntes Pin hole (oder eine Lochblende) implementiert werden muss. By coupling the scattered light into the output fiber, spatial filtering is advantageously achieved without having to implement a so-called pin hole (or a pinhole), for example.
Es ist allerdings auch möglich, dass die Auswertemittel quasi mit den Führungsmitteln kombiniert sind oder die Auswertemittel und die Führungsmittel ineinander übergehen, so dass keine Ausgangsfaser benötigt wird. However, it is also possible for the evaluation means to be combined with the guide means, as it were, or for the evaluation means and the guide means to merge into one another, so that no output fiber is required.
Die Koppelmittel umfassen insbesondere einen dichroitischen Teiler, um zum einen das Laserlicht in die in das Rohr eingebettete Faser zu lenken bzw. einzukoppeln und um zum anderen das von der Faser kommende Streulicht auszukoppeln und möglichst ohne Anteile des Laserlichts zu den Auswertemitteln zu führen. The coupling means include in particular a dichroic splitter, on the one hand, to direct or couple the laser light into the fiber embedded in the pipe and, on the other hand, to couple out the scattered light coming from the fiber and to guide it to the evaluation means without any portions of the laser light.
Abhängig von dem Typ der Laserlichtquelle ist das aus der Laserlichtquelle austre tende Laserlicht bereits kollimiert (z. B. bei einem Freiraumlaser) oder wird mit einer Linse kollimiert, bevor das kollimierte Laserlicht über den dichroitischen Teiler (DC- Splitter) und z.B. die Fokussierlinse in die Faser eingekoppelt wird. Depending on the type of laser light source, the laser light emerging from the laser light source is already collimated (e.g. in the case of a free-space laser) or is collimated with a lens before the collimated laser light passes through the dichroic splitter (DC splitter) and e.g. the focusing lens is coupled into the fiber.
Gemäß einer erfindungsgemäßen Ausführungsform ist es allerdings auch möglich, dass die Koppelmittel das Laserlicht von einer anderen Seite in die Faser einkoppeln als das Streulicht von der Faser zu den Auswertemitteln geführt wird. According to an embodiment according to the invention, however, it is also possible for the coupling means to couple the laser light into the fiber from a different side than the scattered light is guided from the fiber to the evaluation means.
Die bzw. jede Faser weist zwei Enden auf, so dass es möglich ist, Licht von diesen zwei Enden bzw. Seiten in die Faser einzukoppeln. Beim Einsatz des dichroitischen Teilers wird das Laserlicht von derselben Seite der Faser eingekoppelt, zu welcher auch das Streulicht aus der Faser herausgeführt wird. Dagegen wird bei der zuletzt beschriebenen Ausführungsform das Laserlicht von einer ersten dieser beiden Seiten der Faser in die Faser eingeführt, während das Streulicht von einer zweiten dieser beiden Seiten der Faser aus der Faser herausgeführt wird. Dabei unterscheidet sich die erste Seite der Faser von der zweiten Seite der Faser, oder die erste und die zweite Seite der Faser bilden zusammen die beiden Seiten bzw. Enden der Faser. The or each fiber has two ends, so that it is possible to couple light into the fiber from these two ends or sides. When using the dichroic splitter, the laser light is coupled in from the same side of the fiber to which the scattered light is led out of the fiber. In contrast, in the last-described embodiment, the laser light is introduced into the fiber from a first of these two sides of the fiber, while the scattered light is guided out of the fiber from a second of these two sides of the fiber. It differs the first side of the fiber from the second side of the fiber, or the first and the second side of the fiber together form the two sides or ends of the fiber.
Der Vorteil dieser Ausführungsform ist beispielsweise, dass der dichroitische Teiler nicht benötigt wird. The advantage of this embodiment is, for example, that the dichroic divider is not required.
Im Rahmen der vorliegenden Erfindung wird auch ein Prüfsystem zum Prüfen von ge lösten Gasen und Gas an einer Flochspannungsanlage bereitgestellt. Dabei umfasst das Prüfsystem eine Auswerteeinheit und eine erfindungsgemäße Vorrichtung zum Analysieren von Gas. Das Prüfsystem ist ausgestaltet, um eine Analyse des Gases von oder in einer Isolierung der Flochspannungsanlage durchzuführen. Die Auswer teeinheit ist ausgestaltet, um abhängig von der Analyse des Gases ein Ergebnis der Überprüfung der Flochspannungsanlage zu erstellen. In the context of the present invention, a test system for testing dissolved gases and gas on a floch voltage system is also provided. The test system comprises an evaluation unit and a device according to the invention for analyzing gas. The test system is designed to carry out an analysis of the gas from or in an insulation of the voltage installation. The evaluation unit is designed to produce a result of the check of the floch voltage system depending on the analysis of the gas.
Das erfindungsgemäße Prüfsystem kann an ölisolierten Hochspannungsanlagen, wie z.B. Leistungstransformatoren, Stromwandlern, Spannungswandlern und mittels Gas isolierten Schaltanlagen, eingesetzt werden. Bei dem zu analysierenden Gas kann es sich um ein Gas, welches zur Isolierung der Hochspannungsanlage selbst eingesetzt wird, oder um ein Gas, welches sich aus einer Flüssigkeit einer Isolierung gelöst hat, handeln. The test system according to the invention can be used on oil-insulated high-voltage systems, e.g. Power transformers, current converters, voltage converters and gas-insulated switchgear can be used. The gas to be analyzed can be a gas that is used to insulate the high-voltage installation itself, or it can be a gas that has dissolved from a liquid in an insulation.
Schließlich wird im Rahmen der vorliegenden Erfindung ein Verfahren zum Analysie ren von Gas bereitgestellt. Dieses erfindungsgemäße Verfahren umfasst folgende Schritte: Finally, within the scope of the present invention, a method for analyzing gas is provided. This method according to the invention comprises the following steps:
• Erzeugen von Laserlicht. In diesem Schritt wird von einer Laserlichtquelle ins besondere monochromatisches Licht erzeugt. • Generation of laser light. In this step, a laser light source in particular generates monochromatic light.
• Einführen des Gases in eine Faser. • Introducing the gas into a fiber.
• Einkoppeln des Laserlichts in die Faser, um mit dem Laserlicht das Gas anzu regen, so dass Streulicht von dem Gas emittiert wird. • Coupling of the laser light into the fiber in order to excite the gas with the laser light so that scattered light is emitted by the gas.
• Führen des Streulichts von der Faser zu Auswertemitteln. • Auswerten des Streulichts bezüglich seiner Frequenzanteile, seiner Intensität dieser Frequenzanteile und/oder seiner Polarität dieser Frequenzanteile, um abhängig von seinen Frequenzanteilen, von seiner Intensität der Frequenzan teile und/oder von seiner Polarität der Frequenzanteile das Gas zu analysieren. • Guiding the scattered light from the fiber to evaluation means. • Evaluation of the scattered light with regard to its frequency components, its intensity of these frequency components and / or its polarity of these frequency components in order to analyze the gas depending on its frequency components, on its intensity of the frequency components and / or on its polarity of the frequency components.
Dabei ist die Faser in einem Rohr eingebettet ist, welches einen inneren Gasdruck aufweist, welcher einem inneren Gasdruck der Faser entspricht. Der innere Gasdruck der Faser ist dabei höher als ein maximal möglicher innerer Gasdruck der Faser, wel cher durch eine Festigkeit und eine optische Eigenschaft der Faser definiert ist, wenn die Faser nicht in das Rohr eingebettet ist. The fiber is embedded in a tube which has an internal gas pressure which corresponds to an internal gas pressure of the fiber. The internal gas pressure of the fiber is higher than a maximum possible internal gas pressure of the fiber, which is defined by a strength and an optical property of the fiber when the fiber is not embedded in the pipe.
Die Vorteile des erfindungsgemäßen Verfahrens entsprechen im Wesentlichen den Vorteilen der erfindungsgemäßen Vorrichtung, so dass hier auf eine Wiederholung verzichtet wird. The advantages of the method according to the invention essentially correspond to the advantages of the device according to the invention, so that a repetition is dispensed with here.
Neben der Überprüfung von Flochspannungsanlagen kann die vorliegende Erfindung zur Qualitätskontrolle im Labor, zur Prozessanalyse und Prozessüberwachung einge setzt werden für: In addition to checking floch voltage systems, the present invention can be used for quality control in the laboratory, for process analysis and process monitoring for:
• Petrochemie- und Chemie-Anlagen • Petrochemical and chemical plants
• Erdgas-Aufbereitungsanlagen • Natural gas processing plants
• Bio-Gas-Anlagen • Bio-gas plants
• Brennwertbestimmungen bei online Erdgasanalysen und bei Energieerzeugun gen • Determining the calorific value for online natural gas analyzes and for energy generation
• Emissionsmessungen • Emissions measurements
KURZE BESCHREIBUNG DER FIGUREN BRIEF DESCRIPTION OF THE FIGURES
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen und unter Bezugnahme auf die Zeichnungen näher erläutert. The invention is explained in more detail below on the basis of preferred embodiments and with reference to the drawings.
In Fig. 1 ist schematisch eine erfindungsgemäße Vorrichtung zum Analysieren von Gas dargestellt. In Fig. 2 ist schematisch ein Querschnitt einer in einem Rohr eingebetteten Hohlfaser gemäß einer erfindungsgemäßen Ausführungsform dargestellt. In Fig. 1, a device according to the invention for analyzing gas is shown schematically. FIG. 2 schematically shows a cross section of a hollow fiber embedded in a pipe according to an embodiment of the invention.
In Fig. 3 ist schematisch ein erfindungsgemäßes Prüfsystem mit einer erfindungsge mäßen Vorrichtung zur Überprüfung einer Hochspannungsanlage dargestellt. In Fig. 3, a test system according to the invention with a device according to the invention for testing a high-voltage system is shown schematically.
DETAILLIERTE BESCHREIBUNG VON AUSFÜHRUNGSBEISPIELEN DETAILED DESCRIPTION OF EMBODIMENTS
In Fig. 1 ist schematisch eine erfindungsgemäße Vorrichtung 10 dargestellt, welche einen Detektor 1 , einen Lichtgenerator 17 und eine Fasereinrichtung bzw. Fasermittel 2,3 umfasst. A device 10 according to the invention is shown schematically in FIG. 1, which comprises a detector 1, a light generator 17 and a fiber device or fiber means 2, 3.
Der Detektor 1 umfasst ein Raman-Spektrometer, welches Messsignale über einen CCD-Detektor 16 erfasst. The detector 1 comprises a Raman spectrometer which records measurement signals via a CCD detector 16.
Der Lichtgenerator 17 umfasst einen monochromatischen Laser 4 zur Erzeugung ei nes Laserlichts bzw. Laserstrahls 7, mit welchem Gas-Moleküle angeregt werden. Zu sätzlich umfasst der Lichtgenerator 17 optische Bauteile 5, 6, 9, 12, 13 für die Lenkung des Laserstrahls 7 in eine Hohlfaser 2 und für die Lenkung des Streulichts 8 zu dem Detektor 1 . Beispielsweise verhindert ein Filter 5, dass der Laserstrahl 7 zum Detektor 1 geführt wird. The light generator 17 comprises a monochromatic laser 4 for generating a laser light or laser beam 7, with which gas molecules are excited. In addition, the light generator 17 comprises optical components 5, 6, 9, 12, 13 for directing the laser beam 7 into a hollow fiber 2 and for directing the scattered light 8 to the detector 1. For example, a filter 5 prevents the laser beam 7 from being guided to the detector 1.
Die Fasermittel, welche auch als Sensor oder (Gas-)Messzelle angesehen werden können, umfassen die Hohlfaser 2, welche in einem Rohr 3 eingebettet ist. Über einen Gaseinlass 15 wird das zu analysierende Gas in die Hohlfaser 2 eingeleitet über einen Gasauslass 14 wieder abgeleitet. Die Fasermittel 2, 3 können in Form einer Gasmess zelle 21 ausgebildet oder in eine derartige Gasmesszelle 21 integriert sein. The fiber means, which can also be viewed as a sensor or (gas) measuring cell, comprise the hollow fiber 2, which is embedded in a tube 3. The gas to be analyzed is introduced into the hollow fiber 2 via a gas inlet 15 and discharged again via a gas outlet 14. The fiber means 2, 3 can be designed in the form of a gas measuring cell 21 or be integrated into such a gas measuring cell 21.
Das Hauptelement der erfindungsgemäßen Vorrichtung 10 ist diese Hohlfaser 2, wel che auch als Hollow-Core-Faser oder HC-Faser bezeichnet wird. Die Hohlfaser um fasst ein Bündel von Glasröhren. Das zu analysierende Gas wird in Hohlräume der Hohlfaser 2 gedrückt, welche zwischen den Glasröhren existieren. Durch die Einkopplung des Laserstrahls 7 in die Hohlfaser 2 wird das innerhalb der Hohlfaser 2 befindliche Gas angeregt, so dass aufgrund des Raman-Effekts Streulicht 8 vom Gas emittiert wird. Über eine Linse 9 und ein Fenster 19 wird der Laserstrahl 7 in die Hohlfaser 2 eingekoppelt und gleichzeitig wird das Streulicht 8 (insbesondere Streuphotonen) in eine Ausgangsfaser 1 1 eingekoppelt und einem Raman-Spektro- meter 1 , in welchem Messsignale über einen CCD-Detektor 16 erfasst werden, zuge führt. The main element of the device 10 according to the invention is this hollow fiber 2, which is also referred to as a hollow core fiber or HC fiber. The hollow fiber comprises a bundle of glass tubes. The gas to be analyzed is pressed into cavities in the hollow fiber 2 which exist between the glass tubes. By coupling the laser beam 7 into the hollow fiber 2, the gas located inside the hollow fiber 2 is excited so that, due to the Raman effect, scattered light 8 is emitted from the gas. The laser beam 7 is coupled into the hollow fiber 2 via a lens 9 and a window 19 and at the same time the scattered light 8 (especially scattered photons) is coupled into an output fiber 11 and a Raman spectrometer 1, in which measurement signals are transmitted via a CCD detector 16 are recorded, supplied.
Gemäß einer nicht dargestellten Ausführungsform kann die Linse 9 auch anstelle des Fensters 19 in den Fasermitteln2, 3 bzw. in der Gasmesszelle 21 integriert sein, so dass die Linse 9 quasi die Funktion des Fensters mit übernimmt. According to an embodiment not shown, the lens 9 can also be integrated in the fiber means 2, 3 or in the gas measuring cell 21 instead of the window 19, so that the lens 9 also takes over the function of the window.
Der Lichtgenerator 17 ist ein optisches Führungssystem, bei welchem quasi die Wege des Laserstrahls 7 zur Faser 2 mit einem dichroitischen Teiler bzw. Splitter 6 gelenkt werden und das Streulicht 8 durch den dichroitischen Teiler bzw. Splitter 6 über ein Filter 5 in den Pfad zur Ausgangsfaser 1 1 hinzugefügt wird. Durch das Filter 5 werden restliche Wellenlängen des Laserstrahls 7 maßgeblich unterdrückt, so dass möglichst nur diejenigen Photonen, welche in der Hohlfaser 2 durch die Raman-Streuung er zeugt werden, in die Ausgangsfaser 1 1 gelangen. Außerdem kann in dem Streulicht pfad ein weiterer Filter (nicht dargestellt) für eine Intensitätsreduzierung von Streulicht anteilen verwendet werden, um die einzelnen lichtempfindlichen Elemente (Pixel) ei nes CCD-Sensors vor zu hoher Ladungsmenge zu schützen (Blooming-Effekt). Damit werden durch die Einkopplung der durch den Raman-Effekt gestreuten Photonen (des Streulichts 8) in die Ausgangsfaser 1 1 nahezu nur die Photonen des Streulichts 8 zur Spektralanalyse in das Raman-Spektrometer 1 geleitet. Durch den Anschluss des Ra- man-Spektrometers 1 über die Ausgangsfaser 1 1 wird vorteilhafterweise eine räumli che Filterung erzielt, ohne dass dazu beispielsweise ein Pinhole implementiert werden muss. The light generator 17 is an optical guidance system in which the paths of the laser beam 7 to the fiber 2 are directed with a dichroic splitter 6 and the scattered light 8 through the dichroic splitter 6 via a filter 5 into the path to the output fiber 1 1 is added. The filter 5 significantly suppresses the remaining wavelengths of the laser beam 7, so that, if possible, only those photons which are generated in the hollow fiber 2 by Raman scattering reach the output fiber 11. In addition, a further filter (not shown) can be used in the scattered light path to reduce the intensity of scattered light in order to protect the individual light-sensitive elements (pixels) of a CCD sensor from excessive amounts of charge (blooming effect). As a result of the coupling of the photons (of the scattered light 8) scattered by the Raman effect into the output fiber 11, almost only the photons of the scattered light 8 are passed into the Raman spectrometer 1 for spectral analysis. By connecting the Raman spectrometer 1 via the output fiber 11, spatial filtering is advantageously achieved without having to implement a pinhole, for example.
Das Filter 5 zum Filtern des Laserlichts 7 kann irgendwo im Pfad des Laserlichts 7 vom dichroitischen Teiler 6 bis zum CCD-Sensor 16 angeordnet werden, wobei der in Fig. 1 dargestellte Ort bevorzugt ist. Das (nicht dargestellte) Filter zum Filtern des Streulichts kann irgendwo im Pfad des Streulichts vom Gasauslass 14 bis zum CCD-Sensor 16 angeordnet sein. Dabei ist selbst ein Anordnen dieses Filters direkt auf dem CCD-Sensor 16 vorteilhaft. The filter 5 for filtering the laser light 7 can be arranged anywhere in the path of the laser light 7 from the dichroic splitter 6 to the CCD sensor 16, the location shown in FIG. 1 being preferred. The filter (not shown) for filtering the scattered light can be arranged anywhere in the path of the scattered light from the gas outlet 14 to the CCD sensor 16. Even arranging this filter directly on the CCD sensor 16 is advantageous.
Bei dem Laser 4 kann es sich um einen fasergekoppelten Laser oder um einen Frei raum-Laser handeln. Bei einem fasergekoppelten Laser wird der Laserstrahl 7 mit ei ner Linse 13 kollimiert und über den dichroitischen Teiler 6 und eine Fokussierlinse 9 in die Hohlfaser (Messfaser) 2 eingekoppelt. Aus einem Freiraum-Laser tritt das Licht bereits kollimiert aus, so dass keine zusätzliche Linse 13 notwendig ist und das Laser strahl 7 direkt über den Splitter 6 und die Fokussierlinse 9 in die Hohlfaser 2 eingekop pelt werden kann. The laser 4 can be a fiber-coupled laser or a free space laser. In the case of a fiber-coupled laser, the laser beam 7 is collimated with a lens 13 and coupled into the hollow fiber (measuring fiber) 2 via the dichroic splitter 6 and a focusing lens 9. The light exits a free-space laser already collimated, so that no additional lens 13 is necessary and the laser beam 7 can be coupled directly into the hollow fiber 2 via the splitter 6 and the focusing lens 9.
Erfindungsgemäß ist auch eine kompakte Ausführungsform möglich, bei welcher das Spektrometer 1 in den Lichtgenerator 17 integriert ist, wobei dabei die Ausgangsfaser 1 1 und Linse 12 entfallen kann. According to the invention, a compact embodiment is also possible in which the spectrometer 1 is integrated into the light generator 17, the output fiber 11 and lens 12 being omitted.
In Fig. 2 sind die Hohlfaser 2 und das Rohr 3, in welches die Hohlfaser 2 eingebettet ist, im Querschnitt dargestellt. Beim Befüllen des Gases in die Hohlfaser 2 wird gleich zeitig das Rohr 3 mit Gas (z.B. mit dem zu analysierenden Gas) befüllt. Somit ent spricht der innere Gasdruck PR im Rohr 3 dem inneren Gasdruck PF in der Hohlfaser 2, und der maximale innere Gasdruck in der Hohlfaser 2 wird durch das Rohr 3 und das eingesetzte Befüllungssystem bestimmt. Dadurch ist es vorteilhafterweise mög lich, bei der Analyse eines Gases mit einem sehr hohen inneren Gasdruck in der Hohl faser 2 zu arbeiten, wodurch die Anzahl der Gas-Moleküle und dadurch die Streu lichtintensität deutlich erhöht wird, was die Messgenauigkeit deutlich verbessert. In Fig. 2, the hollow fiber 2 and the tube 3 in which the hollow fiber 2 is embedded, shown in cross section. When the gas is filled into the hollow fiber 2, the tube 3 is simultaneously filled with gas (e.g. with the gas to be analyzed). Thus, the internal gas pressure PR in the pipe 3 corresponds to the internal gas pressure PF in the hollow fiber 2, and the maximum internal gas pressure in the hollow fiber 2 is determined by the pipe 3 and the filling system used. This advantageously makes it possible, please include when analyzing a gas to work with a very high internal gas pressure in the hollow fiber 2, which significantly increases the number of gas molecules and thus the scattered light intensity, which significantly improves the measurement accuracy.
In Fig. 3 sind schematisch ein erfindungsgemäßes Prüfsystem 30 und eine Hochspan nungsanlage 40 dargestellt. Dabei ist das Prüfsystem 30 ausgestaltet, um eine Isolie rung 19 der Hochspannungsanlage 40 zu überprüfen. Das Prüfsystem 30 umfasst eine erfindungsgemäße Vorrichtung 10 zum Analysieren von Gas, wie sie vorab beschrie ben und in Fig. 1 schematisch dargestellt ist. Darüber hinaus umfasst das Prüfsystem 30 eine Auswerteeinheit 20, um abhängig von der durch die Vorrichtung 10 ausgeführ ten Analyse des Gases ein Ergebnis der Überprüfung zu erstellen. Dabei analysiert die Vorrichtung 10 ein aus der Isolierung 19 kommendes Gas, wobei anhand der Ana lyse dieses Gases die Qualität der Isolierung 19 und damit ein Maß für die Einsatzbe reitschaft der Hochspannungsanlage 40 selbst bestimmt werden kann. In Fig. 3, an inventive test system 30 and a high voltage system 40 are shown schematically. The test system 30 is designed to check insulation 19 of the high-voltage system 40. The test system 30 comprises a device 10 according to the invention for analyzing gas, as previously described ben and shown schematically in FIG. 1. In addition, the test system 30 comprises an evaluation unit 20 in order to produce a result of the test as a function of the analysis of the gas carried out by the device 10. Analyzed in the process the device 10 is a gas coming from the insulation 19, the analysis of this gas being used to determine the quality of the insulation 19 and thus a measure of the readiness for use of the high-voltage system 40 itself.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1 . Vorrichtung (10) zum Analysieren von Gas, umfassend 1 . Apparatus (10) for analyzing gas, comprising
eine Laserlichtquelle (4), um ein Laserlicht (7) zu erzeugen, a laser light source (4) to generate a laser light (7),
Fasermittel (2, 3), welche eine Faser (2) umfassen, in welche das Gas einführbar ist, Koppelmittel (6, 9), um das Laserlicht (7) in die Faser (2) einzukoppeln, um mit dem Laserlicht (7) das Gas anzuregen, so dass Streulicht (8) von dem Gas emittiert wird, Auswertemittel (1 , 16), um das Streulicht (8) hinsichtlich mindestens einer von seiner Frequenz, Intensität und Polarisation auszuwerten, um abhängig von dem mindestens einen von der Frequenz, Intensität und Polarität das Gas zu analysieren, und Fiber means (2, 3) which comprise a fiber (2) into which the gas can be introduced, coupling means (6, 9) for coupling the laser light (7) into the fiber (2) in order to be able to use the laser light (7) to excite the gas so that scattered light (8) is emitted by the gas, evaluation means (1, 16) to evaluate the scattered light (8) with regard to at least one of its frequency, intensity and polarization in order to depend on the at least one of the frequency To analyze the gas intensity and polarity, and
Führungsmittel (5, 1 1 ), um das Streulicht (8) zu den Auswertemitteln zu führen, wobei die Fasermittel ein Rohr (3) umfassen, in welchem die Faser (2) eingebettet ist, wobei das Rohr (3) einen inneren Gasdruck (PR) aufweist, welcher einem inneren Gas druck (PF) der Faser (2) entspricht, Guide means (5, 11) to guide the scattered light (8) to the evaluation means, the fiber means comprising a tube (3) in which the fiber (2) is embedded, the tube (3) having an internal gas pressure ( PR), which corresponds to an internal gas pressure (PF) of the fiber (2),
wobei der innere Gasdruck (PF) der Faser (2) höher ist als ein maximal möglicher in nerer Gasdruck der Faser (2), welcher durch eine Festigkeit und eine optische Eigen schaft der Faser (2) definiert ist, wenn die Faser (2) nicht in das Rohr (3) eingebettet ist. wherein the internal gas pressure (PF) of the fiber (2) is higher than a maximum possible internal gas pressure of the fiber (2), which is defined by a strength and an optical property of the fiber (2) when the fiber (2) is not embedded in the tube (3).
2. Vorrichtung nach Anspruch 1 , 2. Device according to claim 1,
dadurch gekennzeichnet, characterized,
dass der innere Gasdruck (PF) der Faser (2) höher als 2c106 Pa ist. that the internal gas pressure (PF) of the fiber (2) is higher than 2 c 10 6 Pa.
3. Vorrichtung nach Anspruch 1 oder 2, 3. Device according to claim 1 or 2,
dadurch gekennzeichnet, characterized,
dass die Auswertemittel ein Raman-Spektrometer (1 ) mit einem Detektor (16) umfas sen, auf welchem das Streulicht (8) auftrifft. that the evaluation means include a Raman spectrometer (1) with a detector (16) on which the scattered light (8) strikes.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, 4. Device according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Führungsmittel ein Filter (5) umfassen, um Wellenlängen des Laserlichts (7) und/oder Streulichts (8) auszufiltern. that the guide means comprise a filter (5) in order to filter out wavelengths of the laser light (7) and / or scattered light (8).
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, 5. Device according to one of the preceding claims, characterized,
dass die Faser (2) eine Hohlfaser ist, und that the fiber (2) is a hollow fiber, and
dass das Gas in mindestens einen Hohlraum der Hohlfaser (2) einfüllbar ist. that the gas can be filled into at least one cavity of the hollow fiber (2).
6. Vorrichtung nach Anspruch 5, 6. Apparatus according to claim 5,
dadurch gekennzeichnet, characterized,
dass die Hohlfaser mindestens ein Glasrohr umfasst. that the hollow fiber comprises at least one glass tube.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, 7. Device according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Koppelmittel eine Linse (9) umfassen, um das Laserlicht (7) in die Faser (2) einzukoppeln. that the coupling means comprise a lens (9) in order to couple the laser light (7) into the fiber (2).
8. Vorrichtung nach einem der vorhergehenden Ansprüche, 8. Device according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Führungsmittel eine Ausgangsfaser (1 1 ) umfassen, um das Streulicht (8) zu den Auswertemitteln zu führen, und that the guide means comprise an output fiber (1 1) to guide the scattered light (8) to the evaluation means, and
dass die Ausgangsfaser (1 1 ) für eine räumliche Filterung ausgestaltet ist. that the output fiber (1 1) is designed for spatial filtering.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, 9. Device according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Koppelmittel einen dichroitischen Teiler (6) umfassen, um zum einen das La serlicht (7) in die Faser (2) einzukoppeln und um zum anderen das von der Faser (2) kommende Streulicht (8) auszukoppeln. that the coupling means comprise a dichroic splitter (6), on the one hand to couple the laser light (7) into the fiber (2) and on the other hand to couple out the scattered light (8) coming from the fiber (2).
10. Vorrichtung nach einem der Ansprüche 1 -8, 10. Device according to one of claims 1 -8,
dadurch gekennzeichnet, characterized,
dass die Vorrichtung (10) ausgestaltet ist, so dass die Koppelmittel das Laserlicht (7) von einer anderen Seite in die Faser (2) einkoppeln als das Streulicht (8) von der Faser (2) zu den Auswertemitteln (1 , 16) geführt wird. that the device (10) is designed so that the coupling means couple the laser light (7) into the fiber (2) from a different side than the scattered light (8) is guided from the fiber (2) to the evaluation means (1, 16) becomes.
1 1 . Prüfsystem zum Prüfen einer Hochspannungsanlage (40), wobei das Prüfsystem (30) eine Auswerteeinheit (20) und eine Vorrichtung (10) nach einem der vorhergehenden Ansprüche umfasst, um eine Analyse des Gases in oder von einer Isolierung der Hochspannungsanlage (40) durchzuführen, 1 1. Test system for testing a high-voltage installation (40), wherein the test system (30) comprises an evaluation unit (20) and a device (10) according to one of the preceding claims in order to carry out an analysis of the gas in or from an insulation of the high-voltage installation (40),
wobei die Auswerteeinheit (20) ausgestaltet sind, um abhängig von der Analyse ein Ergebnis der Prüfung der Hochspannungsanlage (40) zu erstellen. wherein the evaluation unit (20) is designed to produce a result of the test of the high-voltage installation (40) as a function of the analysis.
12. Verfahren zum Analysieren von Gas, 12. Methods for analyzing gas,
wobei das Verfahren folgende Schritte umfasst: the method comprising the steps of:
Erzeugen von Laserlicht (7), Generation of laser light (7),
Einführen des Gases in eine Faser (2), Introducing the gas into a fiber (2),
Koppeln des Laserlichts (7) in die Faser (2), um mit dem Laserlicht (7) das Gas anzu regen, so dass Streulicht (8) von dem Gas emittiert wird, Coupling of the laser light (7) into the fiber (2) in order to excite the gas with the laser light (7) so that scattered light (8) is emitted by the gas,
Führen des Streulichts (8) von der Faser (2) zu Auswertemitteln (1 , 16), und Guiding the scattered light (8) from the fiber (2) to evaluation means (1, 16), and
Auswerten des Streulichts (8) hinsichtlich mindestens einem von seiner Frequenzan teile, seiner Intensität der Frequenzanteile und seiner Polarität der Frequenzanteile, um abhängig von dem mindestens einen von seinen Frequenzanteilen, von seiner In tensität der Frequenzanteile und von seiner Polarität der Frequenzanteile das Gas zu analysieren, Evaluating the scattered light (8) with regard to at least one of its frequency components, its intensity of the frequency components and its polarity of the frequency components in order to analyze the gas depending on the at least one of its frequency components, its intensity of the frequency components and its polarity of the frequency components ,
wobei die Faser (2) in einem Rohr (3) eingebettet ist, wherein the fiber (2) is embedded in a tube (3),
wobei das Rohr (3) einen inneren Gasdruck (PR) aufweist, welcher einem inneren Gas druck (PF) der Faser (2) entspricht, wherein the tube (3) has an internal gas pressure (PR) which corresponds to an internal gas pressure (PF) of the fiber (2),
wobei der innere Gasdruck (PF) der Faser (2) höher ist als ein maximal möglicher in nerer Gasdruck der Faser (2), welcher durch eine Festigkeit und eine optische Eigen schaft der Faser (2) definiert ist, wenn die Faser (2) nicht in das Rohr (3) eingebettet ist. wherein the internal gas pressure (PF) of the fiber (2) is higher than a maximum possible internal gas pressure of the fiber (2), which is defined by a strength and an optical property of the fiber (2) when the fiber (2) is not embedded in the tube (3).
13. Verfahren nach Anspruch 12, 13. The method according to claim 12,
dadurch gekennzeichnet, characterized,
dass das Verfahren mit einer Vorrichtung (10) nach einem der Ansprüche 1 -1 1 ausge führt wird. that the method is carried out with a device (10) according to one of claims 1 to 1.
PCT/EP2020/052543 2019-02-21 2020-02-03 Analyzing gas by means of raman spectroscopy WO2020169324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50139/2019 2019-02-21
ATA50139/2019A AT522216A1 (en) 2019-02-21 2019-02-21 Analyzing gas using Raman spectroscopy

Publications (1)

Publication Number Publication Date
WO2020169324A1 true WO2020169324A1 (en) 2020-08-27

Family

ID=69526217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/052543 WO2020169324A1 (en) 2019-02-21 2020-02-03 Analyzing gas by means of raman spectroscopy

Country Status (2)

Country Link
AT (1) AT522216A1 (en)
WO (1) WO2020169324A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136890A (en) * 2021-12-10 2022-03-04 重庆大学 Adaptive device suitable for hollow capillary liquid spectrum sensing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090257055A1 (en) * 2008-04-14 2009-10-15 General Electric Company Hollow-core waveguide-based raman systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160202186A1 (en) * 2013-08-16 2016-07-14 Board Of Regents, The University Of Texas System Gas Sensor to Enhance Implementation of a Process-Based Leakage Monitoring Method
CN104165882B (en) * 2014-08-29 2018-04-27 四川九高科技有限公司 Raman spectrometer including gas input device
CN105987895B (en) * 2015-03-05 2018-08-17 嘉兴镭光仪器科技有限公司 A kind of laser Raman spectroscopy gas analyzer
CN104807805A (en) * 2015-05-04 2015-07-29 华北电力大学 Detection device for gas dissolved in transformer oil based on Raman spectrum
CN106597607B (en) * 2016-12-26 2017-11-07 中国人民解放军国防科学技术大学 A kind of implementation method of low-loss all -fiber heavy pressure gas chamber system
CN109239050A (en) * 2018-09-17 2019-01-18 中科院合肥技术创新工程院 Hollow-core fiber SERS probe preparation method and harmful gas detection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090257055A1 (en) * 2008-04-14 2009-10-15 General Electric Company Hollow-core waveguide-based raman systems and methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANXIN WANG ET AL: "Fiber-Enhanced Raman Spectroscopic Monitoring of Fault Characteristic Gases Dissolved in Transformer Oil by Hollow-Core Photonic Crystal Fiber", 2018 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), IEEE, 10 September 2018 (2018-09-10), pages 1 - 4, XP033517725, DOI: 10.1109/ICHVE.2018.8641989 *
SIMONE RUPP ET AL: "Enhanced Sensitivity of Raman Spectroscopy for Tritium Gas Analysis Using a Metal-Lined Hollow Glass Fiber", FUSION SCIENCE AND TECHNOLOGY., vol. 67, no. 3, April 2015 (2015-04-01), US, pages 547 - 550, XP055686074, ISSN: 1536-1055, DOI: 10.13182/FST14-T76 *
STEFAN HANF ET AL: "Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis", ANALYTICAL CHEMISTRY, vol. 86, no. 11, 20 May 2014 (2014-05-20), US, pages 5278 - 5285, XP055685459, ISSN: 0003-2700, DOI: 10.1021/ac404162w *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136890A (en) * 2021-12-10 2022-03-04 重庆大学 Adaptive device suitable for hollow capillary liquid spectrum sensing
CN114136890B (en) * 2021-12-10 2024-03-29 重庆大学 Adapting device suitable for hollow capillary liquid spectrum sensing

Also Published As

Publication number Publication date
AT522216A1 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
EP0758447B1 (en) Process and device for determining element compositions and concentrations
DE69924639T2 (en) MONITORING THE DISTRIBUTION AND MIXTURE OF A CHEMICAL SPECIES
DE10392663T5 (en) A photo-acoustic detection method for measuring the concentration of non-hydrocarbon components of a methane-containing gas mixture
DE19840763C2 (en) Method for diagnosing components within a turbine generator
DE4341462C2 (en) Method for determining the material composition of samples and device for carrying out the method
WO2020169324A1 (en) Analyzing gas by means of raman spectroscopy
EP2482057A1 (en) Gas analyser for measuring the mercury content of a gas
EP3791159A1 (en) Transmission apparatus for examining samples in cavities of a microtiter plate and method for examining samples in cavities of a microtiter plate by means of transmission
DE3938142C2 (en)
DE102016108267B4 (en) Device and method for determining a concentration of at least one gas component of a gas mixture
DE19740210B4 (en) Atomic Absorption Spectrometer
WO2021005226A1 (en) Analyzing gas by way of raman spectroscopy
DE2700952C2 (en) Method for identifying leaky components from a multi-component system
DE102005045538B3 (en) Apparatus and method for determining the refractive index of a fluid
DE102008048085A1 (en) Differentiation of enantiomers using broadband femtosecond circular dichroism mass spectrometry
DE19628310C2 (en) Optical gas analyzer
DE102018204744A1 (en) Chemical analysis device for measuring the ion concentration of an electrolyte and method for its operation
WO2021032669A1 (en) Apparatus and method for analyzing gas
DE102010016801A1 (en) Fluorescence detection device for high performance liquid chromatography device, has evaluation unit determining lifetime of excited state of analytes by pulsed time-correlated individual photon count or by modulation fluorometry
DE10306900B4 (en) Spectrometer with laser arrangement for gas analysis
EP3816609A1 (en) Method and device for remote detection of a target gas
DE102009058394B3 (en) Method for measuring the concentration of at least one gas component in a sample gas
DE112015002595T5 (en) Circular Dichroism Measuring Method and Circular Dichroism Measuring Device
EP2963398B1 (en) Test method for spectrometers and spectrometer with a test function
DE19827533C2 (en) Method for determining the vapor phase composition and the temperature by means of linear Raman scattering in the presence of phase interfaces, in particular droplets, in particular in the case of engine injection processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20704220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20704220

Country of ref document: EP

Kind code of ref document: A1