WO2020168809A1 - 多工位3d打印机的控制方法、光学系统和3d打印机 - Google Patents

多工位3d打印机的控制方法、光学系统和3d打印机 Download PDF

Info

Publication number
WO2020168809A1
WO2020168809A1 PCT/CN2019/126922 CN2019126922W WO2020168809A1 WO 2020168809 A1 WO2020168809 A1 WO 2020168809A1 CN 2019126922 W CN2019126922 W CN 2019126922W WO 2020168809 A1 WO2020168809 A1 WO 2020168809A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
light source
printer
exposure
moving mechanism
Prior art date
Application number
PCT/CN2019/126922
Other languages
English (en)
French (fr)
Inventor
黄鹤源
饶辉
蔡德信
屈阳
桂培炎
武让
Original Assignee
广州黑格智造信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910127672.1A external-priority patent/CN109732912B/zh
Priority claimed from CN201920232039.4U external-priority patent/CN209566497U/zh
Application filed by 广州黑格智造信息科技有限公司 filed Critical 广州黑格智造信息科技有限公司
Publication of WO2020168809A1 publication Critical patent/WO2020168809A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present disclosure relates to the field of optical 3D printing, and in particular, to a control method of a multi-station 3D printer, an optical system and a 3D printer.
  • This molding technology is to directly input the 3D model file into the machine and then perform layer-by-layer printing and overlay molding. In theory, it can be directly formed at one time regardless of any complex structure. , There is also a wide range of choices for the materials used.
  • 3D printers generally use a single model to form a single model.
  • a 3D printer has only one forming platform. Every time a model is printed, the model needs to be removed, and then a new model is printed. This is true for 3D printing.
  • the efficiency of a technology has a great impact.
  • the printing speed is slow, which cannot meet the needs of some batch production; and in light-curing 3D printing, after each layer is printed, the platform needs to rise, start peeling, peeling is complete, and the platform drops. For such a series of actions, each layer will have a certain waiting time.
  • the purpose of the present disclosure is to provide a control method for a multi-station 3D printer, an optical system and a multi-station 3D printer, which can make full use of the curing waiting time of each station to realize simultaneous printing of a single optical system and multiple stations, thereby saving
  • the waiting time of the platform peeling and resetting greatly saves time and improves the efficiency of the printer, so as to realize the function of mass production of 3D printers.
  • a control method of a multi-station 3D printer includes the following steps:
  • the steps of layered printing are as follows:
  • the light source waits in place to expose the a+1 layer on the first station;
  • the light source moves to the second station to expose the b-th layer of the second station;
  • n, n, a, b are: n>1, m ⁇ 1, k>1, m ⁇ n, and n, m, and k are all
  • the m executable data are the same or different.
  • the optimization module obtains executable data, and controls the moving mechanism to move to the station that needs exposure earliest.
  • the executable data includes cross-sectional shape information, cross-sectional area information, and/or printing material information.
  • the light intensity of the light source is first calibrated.
  • calibrating the light intensity of the light source includes calibrating the position of the molding platform, calibrating the uniformity of the light source, and calibrating the projection energy of the light source.
  • the methods for calibrating the uniformity of the light source and calibrating the light projection ability of the light source are:
  • Exposure measurement is performed on the calibration object, the calibration coefficient is obtained according to the actual exposure size and the calibration size, and the initial position of the light source is adjusted according to the calibration coefficient.
  • the product at the station is actively peeled off.
  • An optical system applying any of the above control methods, including a control system, a light source, a moving mechanism, and a data storage module;
  • the control system is signally connected to the data storage module for analyzing the data in the data storage module;
  • the control system is signally connected to the mobile mechanism, and is used to control the mobile mechanism to move according to the executable data in the data storage module;
  • the light source is arranged on the moving mechanism and connected with the control system signal for exposure according to the executable data after the moving mechanism is moved into position.
  • the positioning mechanism is signal-connected to the control system for positioning the moving mechanism at different positions.
  • the positioning mechanism is a grating ruler.
  • the multiple executable data there are multiple executable data in the multiple data storage modules, and the multiple executable data are the same or different.
  • an optimization module is further included, and the optimization module performs optimization calculation on the movement path of the moving mechanism according to the executable data.
  • the moving mechanism is a linear mechanism, a linear module, a screw guide rail, a rack and pinion mechanism, a screw screw mechanism or a chain transmission mechanism.
  • a printer using any one of the above optical systems including a main frame and the optical system of any one of the above multi-station 3D printers;
  • the main frame is provided with multiple stations, and the optical system is set on the main frame.
  • each station is provided with a lifting mechanism, and the lifting mechanism is used to implement the lifting of the station on the main frame.
  • the lifting mechanism is a linear mechanism, a linear module, a screw guide rail, a rack and pinion mechanism, a screw screw mechanism or a chain transmission mechanism.
  • a magnetic self-locking system is provided on the lifting mechanism.
  • the magnetic self-locking system includes an electromagnet arranged on the lifting mechanism, a magnet block arranged on a work station, and a control switch for controlling the electrification state of the electromagnet.
  • the beneficial effects of the embodiments of the present disclosure are: using the product peeling and resetting waiting time at the station to perform exposure processing on other stations, and adapting between each station through the control system, and the printing waiting time is fully adjusted. Utilization, thereby improving the printing efficiency; in the same 3D printer, a single optical system exposes multiple stations, realizing the mass production of 3D printing.
  • FIG. 1 is a flowchart of a control method of a multi-station 3D printer according to an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of an optical system of a multi-station 3D printer according to an embodiment of the disclosure
  • FIG. 3 is a schematic structural diagram of a data storage module of an optical system of a multi-station 3D printer according to an embodiment of the disclosure
  • FIG. 4 is a front view of a multi-station 3D printer according to an embodiment of the disclosure.
  • FIG. 5 is a right side view of the multi-station 3D printer according to the embodiment of the disclosure.
  • Figure 6 is a top view of a multi-station 3D printer according to an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a multi-station 3D printer according to an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of the lifting mechanism and the magnetic self-locking system of the multi-station 3D printer according to the embodiment of the disclosure.
  • FIG. 9 is a printing flow chart of a multi-station 3D printer according to an embodiment of the disclosure.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “vertical”, “horizontal”, etc. are based on the orientation or positional relationship shown in the drawings, or
  • the orientation or positional relationship usually placed when the product of the invention is used is only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, Therefore, it cannot be understood as a limitation of the present disclosure.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing description, and cannot be understood as indicating or implying relative importance.
  • horizontal does not mean that the component is required to be absolutely horizontal or overhang, but may be slightly inclined.
  • horizontal only means that its direction is more horizontal than “vertical”, it does not mean that the structure must be completely horizontal, but can be slightly inclined.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or an optional connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present disclosure can be understood in specific situations.
  • This embodiment provides a method for controlling a multi-station 3D printer, which includes the following steps:
  • the steps of layered printing are as follows:
  • the light source waits in place to expose the a+1 layer on the first station;
  • the light source moves to the second station to expose the b-th layer of the second station;
  • the drawing information of the product to be printed is analyzed and analyzed to form slice data of layer by layer section, and the slice data is formed into executable data of the printer.
  • the executable data is input into the control system through USB or network or other means, and the control system controls the moving mechanism 6 to drive the light source 5 to move according to the information of the executable data.
  • the specific control parameters include moving position, moving speed and exposure time, etc., so that when exposure is performed at different stations, other stations do not need to be exposed, thereby avoiding waiting for exposure time and improving printing efficiency.
  • the executable data can be the material parameters used when printing products at each station, or the product parameters such as the cross-sectional shape and cross-sectional area of each layer when printing, and the control system analyzes this After the information, the moving mechanism 6 drives the light source 5 to perform exposure operations according to various parameters of the executable data.
  • the moving mechanism 6 drives the light source 5 to expose each station in sequence according to the order of the stations, that is, after exposing the first station 1 and peeling off at the first station 1, the moving mechanism 6 drives the light source 5 to The second station 2 performs exposure.
  • the moving mechanism 6 drives the light source 5 to expose the third station 3.
  • the moving mechanism 6 drives the light source 5 Expose the first station 1 and circulate in turn to form a time chain, and then make full use of the exposure waiting time of each station, improve the utilization rate and improve the printing efficiency.
  • the second case the executable data in the data storage module is different, that is, the same printer is used to print multiple different products at the same time. At this time, the materials used for printing, the shape of the printed product, etc. are different, so that the exposure time and waiting exposure time are different.
  • the control system sends the executable information to the optimization module.
  • the optimization module calculates the exposure waiting time of different stations at different stages according to the different parameters of the different products printed on each station, and the moving mechanism 6 according to the different waiting time , Driving the light source 5 to different positions for exposure, thereby improving the utilization rate of the waiting time.
  • the next station that needs to be exposed is the second station 2.
  • the moving mechanism 6 drives the light source 5 to the second station.
  • Station 2 performs exposure, and then according to the calculation result of the optimization module, the next station to be exposed is still second station 2.
  • the moving mechanism 6 does not move and waits.
  • the next station to be exposed is the third.
  • the moving mechanism 6 drives the light source 5 to expose the third station 3, and so on.
  • the movement moves according to the exposure time, and there may be waiting time.
  • the waiting time is reduced to the shortest to improve the utilization rate of the waiting time and improve the printing efficiency.
  • the 3D printer needs to calibrate the light source 5 before printing.
  • the calibration of the light intensity of the light source 5 includes calibration of the position of the forming platform, calibration of the uniformity of the light source 5 and calibration of the projection energy of the light source 5.
  • the position calibration process is as follows:
  • the electromagnet 15 on the platform base 16 is automatically energized to lock the forming platform, and then place the prepared and cleaned material tray Fix the notch of the material tray on the machine, then lower the integral molding platform to a certain height through the control system, put a micrometer between the molding platform and the material tray, and measure the distance between the molding platform and the material tray at five points. Then adjust the leveling screw 18 on the platform so that the error of the distance between the final molding platform and the material tray is less than 0.02 mm, and then the platform leveling can be considered as complete. By analogy, multiple stations are adjusted accordingly.
  • the method of calibrating the uniformity of light source 5 and calibrating the light projection ability of light source 5 is:
  • the exposure measurement is performed on the calibration object, the calibration coefficient is obtained according to the actual exposure size and the calibration size, and the initial position of the light source 5 is adjusted according to the calibration coefficient.
  • first reset the position of the platform place the large-format calibration board in the center of the tray, control the reset of the optical system, and turn on the calibration exposure to the position of the first station 1, and use the measuring tool to measure the actual exposure size and the calibration size
  • Perform error conversion calculate the X-axis and Y-axis calibration coefficients, enter the computer software, and then use the automatic energy calibration function on the operating system to calibrate the projection energy of the optical system so that the optical system is positioned on the tray.
  • the 40 points projected all reach the specified value of 21 ⁇ 0.2W/m2.
  • the light source 5 is moved to other stations in turn, the calibration coefficients of the X-axis and the Y-axis at each station are calculated, and the energy is calibrated.
  • the resin material can be poured (100 mL of acrylic resin material is used in this embodiment), and then the printing is ready to start.
  • an optical system applying the above control method is provided, as shown in Figures 2 and 3, which specifically includes a control system, a light source 5, a moving mechanism 6, and a data storage module; the control system and the data storage module signal Connection; the control system is signal-connected with the moving mechanism 6 for controlling the moving mechanism 6 to move according to the executable data in the data storage module; the light source 5 is arranged on the moving mechanism 6 and is signal-connected with the control system for moving according to The executable data in the data storage module is exposed after the moving mechanism 6 is moved into position.
  • control system and the data storage module jointly constitute the controller 11 of the moving mechanism 6, wherein each data storage module corresponds to a station.
  • control system After inputting executable data for each data storage module, the control system After obtaining the executable data, the executable data is sent to the moving mechanism 6 step by step as a control instruction, so that the moving mechanism 6 drives the light source 5 to move correspondingly according to the control instruction to realize exposure to different stations.
  • the light source 5 is also signal-connected to the control system. According to the executable data, the light source 5 intensity and illumination time matching the light source 5 can be used at different workstations to ensure the light curing effect.
  • a positioning mechanism is also provided; the positioning mechanism is signal-connected to the control system for positioning the moving mechanism 6 at different positions.
  • the positioning mechanism is a grating ruler.
  • the controller 11 further includes an optimization module.
  • the optimization module is signally connected to the control system and the data storage module, and can receive executable data in the data storage module, and perform the movement path of the moving mechanism 6 according to the executable data.
  • the calculation is optimized and the calculation result is sent to the control system.
  • the control system sends a movement instruction to the moving mechanism according to the calculation result to ensure that it can effectively increase the waiting time utilization rate and improve the printing efficiency of the printer.
  • a multi-station 3D printer which applies the above-mentioned optical system, and the specific structure is as follows:
  • the forming platform group is a workstation, which has multiple forming platforms.
  • each forming platform corresponds to a lifting mechanism 4, which is arranged on the main frame 8 through the lifting mechanism 4, the material tray is arranged on the main frame 8, and each material tray corresponds to a forming platform, which is arranged below the forming platform .
  • the forming platform of this embodiment is shown in Figures 4 to 8, including a forming platform and a platform base 16.
  • the forming platform is connected to the platform base 16 through a slide rail inside the platform base 16, and the forming platform is selected as a metal mesh hole Flat, four-corner leveling screws 18 can be used to calibrate the forming platform in a horizontal direction.
  • the platform base 16 is connected to the lifting mechanism 4.
  • the lifting mechanism 4 is driven by a threaded screw, which includes a lifting motor 12, a screw slide 13 and a slider 14.
  • the platform base 16 is fixed on the slider 14, and the slider 14 and the screw slide 13 Threaded connection
  • the screw slide rail 13 is vertically arranged on the main frame 8 and is rotatably connected with the main frame 8
  • the lifting motor 12 is fixedly arranged on the main frame 8 and connected with the screw slide rail 13, which can drive the screw
  • the sliding rail 13 rotates to drive the slider 14 to move up and down on the screw slide rail 13 in a vertical direction, thereby driving the platform base 16 to move up and down.
  • a displacement sensor is provided beside the screw slide rail 13 to facilitate monitoring of the moving distance.
  • a magnetic self-locking system is arranged between the forming platform and the platform base 16.
  • the magnetic self-locking system includes an electromagnet 15 arranged on the platform base 16 and a metal module 17 arranged on the forming platform. Specifically, The metal module 17 is placed where the molding platform and the platform base 16 are attached to each other.
  • the energization state of the electromagnet 15 is controlled by the control switch, and the magnetism of the electromagnet 15 is changed. When there is magnetism, the forming platform and the platform base 16 will be adsorbed and locked. When there is no magnetism, the forming platform and the platform The base 16 is separated.
  • the optical system of this embodiment is mounted on the lower inner side of the main frame 8.
  • the optical system includes an LED light source 5, the wavelength of the light source 5 is 355-480 nm, and the optical system also includes a moving mechanism 6.
  • the light source 5 is installed on the moving mechanism 6, and the movement of the moving mechanism 6 is controlled by the moving motor, thereby driving the light source 5 to move in the horizontal direction, and the accuracy of the horizontal movement is controlled by the grating ruler.
  • the moving mechanism 6 is also provided with a position sensor , To eliminate the accumulated error of the motor movement and improve the movement accuracy of the light source 5 in the horizontal direction.
  • the tray is a film-coated tray, which performs peeling during the printing process in an active peeling manner.
  • a scraper is set above the tray to level the resin level, increase accuracy and reduce waiting time;
  • a liquid level sensor is set on the top of the tray to monitor the amount of resin material remaining in the tray; in the main frame
  • a temperature and humidity sensor is installed on the other side of the upper part of 8 to detect the temperature and humidity of the printing environment;
  • the controller 11 is arranged outside the main frame 8, and the controller 11 is connected to the main frame 8 through a movable bracket and a fixed frame.
  • the controller 11 is installed on a fixed frame, which can be removed or installed as required; the fixed frame is connected to one end of the movable bracket, and the other end of the movable bracket is connected to the outside of the main frame 8.
  • the controller 11 is a tablet computer, a control system, a data storage module, and an optimization module are installed in the tablet computer, and the 3D printer is controlled through the tablet computer.
  • the main frame 8 is equipped with a machine perspective cover, which is made of transparent material; the machine perspective cover is connected to the main frame 8 in a sliding manner, and the sliding of the machine perspective cover can be controlled by a tablet computer to realize opening and closing ;
  • a tablet computer to realize opening and closing ;
  • STEP1 First, control the scraper to scrape the liquid level of the three trays, and then return the three platforms to zero together;
  • STEP2 The light source 5 is reset first, and the light is projected from the position of the No. 1 tray 7 of the first station 1 to T1 (T1 is the exposure time of the first layer of the R1 material). After the exposure is completed, the No. 1 material of the first station 1 The peeling mechanism of the tray 7 starts to move to perform peeling. At the same time, the control system controls the moving mechanism 6 to move the light source 5 to the position of the second tray 9 of the second station 2;
  • the control system determines whether the second station 2 has an exposure picture to be extracted for exposure. If there is an exposure picture, it determines that the second station 2 needs to be exposed; at this time, the moving mechanism 6 drives the light source 5 Move to a fixed position directly below the No. 2 tray 9 of the second station 2; after the light source 5 reaches the designated position below the No.
  • the controller 11 controls the light source 5 to start emitting light T2 After the exposure T2 is completed, the peeling machine of the second tray 9 of the second station 2 starts the peeling movement, and at the same time, the controller 11 controls the moving mechanism 6 to start driving the light source 5 to move; if there is no exposed picture (ie not using The second station 2 has been printed or the printing has been completed, and there is no subsequent exposure picture), the controller 11 directly controls the moving mechanism 6 to move the light source 5 to the third station 3 under the third tray 10, and in the second station 2 Do not stay everywhere.
  • STEP4 According to the executable data, the control system judges whether the third station 3 has an exposure picture to be extracted for exposure. If there is an exposure picture, the control system judges that the third station 3 needs exposure, and controls the moving mechanism 6 to drive the light source 5 to move to A fixed position directly below the No. 3 tray 10 of the third station 3. After the light source 5 reaches the designated position below the No.
  • the control system controls the light source 5 to start emitting light T3, and the exposure T3 is completed Then, the peeling machine of the third tray 10 of the third station 3 starts the peeling movement, and at the same time, the control system controls the moving mechanism 6 to start to drive the light source 5 to move; if there is no exposed picture (that is, the third station 3 is not used for printing Or the printing has been completed and there is no subsequent exposure picture), the controller 11 directly controls the moving mechanism 6 to make the optical system move from the second tray 9 of the second station 2 to the first station 1 directly, No movement occurs in the direction of the third tray 10 of the third station 3.
  • STEP5 After the light source 5 is reset to the position of the No. 1 tray 7 of the first station 1, the controller 11 judges whether the first layer peeling action is completed on the No. 1 tray 7 of the first station 1. 7 After the peeling is completed, the optical system starts to cast light on the next layer; if the peeling of No. 1 tray 7 is not completed, wait for the completion of the peeling of No. 1 tray 7 before the optical system starts to cast light on the next layer. By analogy, the second tray 9 of the second station 2 and the third tray 10 of the third station 3 need to wait for the stripping action to be completed if they need to be exposed.
  • STEP6 After the molding of any one of the three molding platforms is completed, the controller 11 recognizes that the exposure pictures of the station have all been exposed, and the light source 5 will no longer expose the tray corresponding to the molding platform, and skip this during the moving process. Forming platform, continue to expose the remaining two forming platforms until all three models are printed.
  • the controller 11 can independently control the individual exposure process of each station, which can not only realize multi-station printing at the same time, but also select the number of stations required, such as only using Two stations, or only one station becomes an ordinary DLP 3D printer; and the three trays of the three stations can use different resin materials to print different models.
  • the No. 3 molding platform will drop to the height of contact with the resin material, and automatically find the starting point through the displacement sensor and force sensor, which is the positive pressure measured by the force sensor
  • the value is the position when the value is 20N (the positive pressure value in this embodiment is the pressure when the forming platform is in full contact with the tray).
  • the moving mechanism 6 automatically resets when printing starts and returns to the first station 1.
  • the light source 5 turns on the exposure of the first image of model A
  • the exposure time is the first layer exposure time 6s
  • the light source 5 quickly moves to the second station 2 directly below the No. 2 tray 9 and moves in the horizontal direction through the moving mechanism 6, and the moving position is determined by the grating ruler.
  • the light source 5 reaches the No. 2 material.
  • the No. 2 forming platform has automatically searched the starting point and ended, and directly started the exposure of the first image of the B model.
  • the exposure time is the first layer exposure time 6s.
  • the No. 1 forming platform 19 is already starting to Ascend, an active peeling process occurs with the resin liquid level. After the peeling is completed, the liquid level is repaired horizontally by the scraper on the tray, and then the No. 1 forming platform 19 is lowered back to the starting position of the peeling and automatically rises a layer of height ( In this embodiment, the rise is 0.05 mm). After the exposure time of the second tray 9 ends, the light source 5 starts to move to just below the third tray 10, the third forming platform has automatically searched the starting point and the light source 5 directly starts the first image of the C model Exposure, the exposure time is 6s for the first layer. At the same time, the No.
  • the exposure time is the main body exposure time 3s, and then begins to repeat the above process until a certain platform After the model is printed, the controller 11 knows that the platform has been exposed by recognizing the exposure picture, the light source 5 automatically skips the platform, and continues to expose the models of the remaining two platforms, and so on to complete the final exposure of the three models.
  • the completion time is different.
  • the first station 1 and the second station 2 After adding the resin material, check the first station 1 and the second station 2 from the operation interface of the tablet computer. (In this embodiment, check the first station 1 and the second station 2, which can also be Check the first station 1 and the third station 3; or the second station 2 and the third station 3), select models A and B on the first station 1 and the second station 2, and then click
  • the system does not recognize the file to be printed on the third station 3, so the optimization module does not consider the relative movement of the third station 3 when calculating the trajectory of the light source 5 and the platform motion trajectory.
  • the scraper above the tray will scrape the resin in the first tray 7 and the second tray 9 to the level of the liquid level, and then the first forming platform 19 and the second forming platform will function in the platform control system.
  • the movable motor automatically resets when it starts printing, and returns to just below the No. 1 tray 7 and waits for the No. 1 tray.
  • the No. 1 forming platform 19 on 7 automatically finds the starting point, the light source 5 turns on the exposure of the first image of model A, the exposure time is the first layer exposure time 6s, after the exposure time, the light source 5 quickly moves to No.
  • the light source 5 is driven by the moving mechanism 6 to move directly below the tray 9, and the moving position is determined by the grating ruler.
  • the second forming platform has automatically searched the starting point and ended, and directly started the B model
  • the exposure time is the first layer exposure time of 6s.
  • the No. 1 molding platform 19 has begun to rise upward, and an active peeling process has taken place with the resin surface. After the peeling is completed, the The squeegee repairs the liquid level horizontally, and then the No.
  • the resin material After the resin material is added, check the first station 1 from the operation interface (the first station 1 is checked in this embodiment, or the second station 2 or the third station 3 can be checked separately). Directly select model A on station 1, and then click to start printing. The system cannot recognize the file to be printed on the second station 2 and third station 3. Therefore, when the optimization module calculates the trajectory of the light source 5 and the movement trajectory of the platform, The relative movement of the second station 2 and the third station 3 will not be considered. After starting to print, the movable light source 5 is fixed at a fixed position directly below the No. 1 tray 7 without any movement.
  • the machine is equivalent to an ordinary DLP light-curing 3D printer, and the light source 5 is fixed to expose a single platform ,
  • the scraper above the tray will scrape the resin in the first tray 7 to the level of the liquid level, and then the first forming platform 19 will be lowered to the height of contact with the resin material under the action of the platform control system, and pass
  • the displacement sensor and the force sensor automatically find the starting point, which is when the positive pressure value measured by the force sensor is 20N (the positive pressure value in this embodiment is the pressure when the molding platform is in full contact with the material plate).
  • the No. 3 forming platform and No. 3 forming platform remain stationary.
  • the moving mechanism 6 automatically resets when printing starts, and returns to just below the No. 1 tray 7 until the No.
  • the light source 5 turns on the exposure of the first image of model A.
  • the exposure time is the first layer exposure time of 6s.
  • the light source 5 waits in its original position, and the No. 1 forming platform 19 starts to rise and actively peel off. Then drop back to the position where the peeling start and rise by one layer thickness (0.05mm in this embodiment), then the light source 5 starts the exposure of the second layer, the exposure time is the main body exposure time 3s, after the exposure time ends, the light source 5 continues the original Waiting for the position, the No. 1 forming platform 19 starts the steps of rising, peeling and lowering, and so on, until the No. 1 forming platform 19 completes the entire model printing, and the light source 5 always keeps the position unchanged.
  • the present disclosure can realize a high-efficiency 3D printing mass production process, greatly reducing the time required to average each piece.
  • the present disclosure makes full use of the peeling time, waiting time, and falling time after the exposure is completed, and can be moved to other stations for exposure, maintaining the efficient use of the light source 5, so that one light source 5 can complete the required work for multiple stations.
  • the exposure action greatly saves the cost of the machine.
  • the 3D printer in the present disclosure has multiple different sensors, which makes the printer's control system powerful, can realize various controls of the entire 3D printer, and can eliminate systematic errors, thereby ensuring the final molding accuracy.
  • the present disclosure also cooperates with the printing process of different schemes, not only can realize multi-platform printing, when there is no need for multiple platforms, you can freely choose the number of platforms that need to be printed, and it can also be a normal single optical system single platform. Printing becomes an ordinary light curing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本公开提供了一种多工位3D打印机的控制方法、光学系统和多工位3D打印机。控制方法为:对三维模型信息进行预处理,形成m个可执行数据;根据可执行数据,分别在n个工位上进行分层打印;每个工位剥离完成后上升一个分层厚度并继续下一截面层动作,直至全部打印完成。光学系统包括控制系统、光源、移动机构和存储模块;控制系统与数据存储模块信号连接;控制系统与移动机构信号连接;光源设置在移动机构上,并与控制系统信号连接。3D打印机包括主架和光学系统。本公开利用工位上产品的剥离和复位等待时间,对其他工位进行曝光,充分利用了打印等待时间,提高了打印效率;单一光学系统对多工位进行曝光,实现了3D打印的批量化生产。

Description

多工位3D打印机的控制方法、光学系统和3D打印机 技术领域
本公开主张2019年2月20日在中国提交的中国专利申请号No.201910127672.1的优先权以及2019年2月20日在中国提交的中国专利申请号No.201920232039.4的优先权,其全部内容通过引用包含于此。
本公开涉及光学3D打印领域,具体而言,涉及一种多工位3D打印机的控制方法、光学系统和3D打印机。
背景技术
如今3D打印行业的飞速发展,已经引起了各行各业的重视与关注,这种成型技术是直接通过三维模型文件输入机器之后进行逐层打印叠加成型,理论上可以无视任何复杂的结构直接一次成型,对所使用的材料也有很大范围的选择。
现在的3D打印机,普遍是单一模型单一成型的方式,一台3D打印机就仅仅会有一个成型平台,每次打完一个模型需要将模型取下,然后再开始新模型的打印,对3D打印这一技术的效率型有极大的影响,打印速度较慢,无法满足一些批量的生产需求;并且在光固化3D打印中,每层打印之后需要有平台上升,开始剥离,剥离完成,平台下降,这样一系列的动作,每层都会有一定的等待时间,这些等待时间极大的浪费了3D打印的整个时间工序,没能得到充分的利用;且如果使用多台3D打印机来实现产品的量产,不仅在空间上会占更多的地方,机器成本上也会随打印机数量的增加而增加,并且对多台打印机的打印取件操作,会使得在人力安排和时间安排上需要更多,使得人力成本和时间成本都较高,无法真正的将3D打印技术与工业生产相结合,达到批量化定制生产的地步。
发明内容
本公开的目的在于提供一种多工位3D打印机的控制方法、光学系统和多工位3D打印机,其能够充分利用各工位的固化等待时间,实现单一光学系统多工位同时打印,从而节约平台剥离及复位的等待时间,大大节约时间提高打印机的效率,从而实现3D打印机批量化生产产品的功能。
本公开的实施例是这样实现的:
一种多工位3D打印机的控制方法,包括如下步骤:
S10、对三维模型信息进行预处理,形成m个可执行数据;
S20、根据可执行数据,分别在n个工位上进行分层打印;
其中,分层打印的步骤如下:
S21、在第一工位上进行第a层曝光后,第一工位进行剥离动作;
S22、根据可执行数据,判断下个需要曝光的工位:
当下个需要曝光的工位为第一工位时,光源原位等待,对第一工位上的a+1层进行曝光;
当下个需要曝光的工位为第二工位时,光源移动至第二工位,对第二工位的第b层进行曝光;
S23、重复步骤S21、步骤S22,至各个工位曝光、剥离动作完成;
S30:每个工位剥离完成后上升一个分层厚度并继续下一截面层动作,直至全部打印完成;
其中,以上的m、n、a、b的范围为:n>1,m≥1,k>1,m≤n,且n、m、k均为
正整数。
在本公开较佳的实施例中,m个可执行数据相同或不相同。
在本公开较佳的实施例中,优化模块获取可执行数据,控制移动机构移动到最早需要曝光的工位。
在本公开较佳的实施例中,可执行数据包括截面形状信息、截面积信息和/或打印材料信息。
在本公开较佳的实施例中,在执行步骤S20前,先对光源的光强进行校准。
在本公开较佳的实施例中,对光源的光强进行校准包括对成型平台的位置校准、对光源的均匀性校准和对光源的投光能量校准。
在本公开较佳的实施例中,对光源的均匀性校准和对光源的投光能力校准的方法为:
对标定物进行曝光测量,根据实测曝光尺寸和标定尺寸得出校准系数,根据校准系数对光源的初始位置进行调整。
在本公开较佳的实施例中,进行曝光之后,所在工位上的产品进行主动剥离。
一种应用上述任一项的控制方法的光学系统,包括控制系统、光源、移动机构和数据存储模块;
控制系统与数据存储模块信号连接,用于对数据存储模块内的数据进行解析;
控制系统与移动机构信号连接,用于根据数据存储模块内的可执行数据控制移动机构进行移动;
光源设置在移动机构上,并与控制系统信号连接,用于根据可执行数据,在移动机构移动到位后进行曝光。
在本公开较佳的实施例中,还包括定位机构;定位机构与控制系统信号连接,用于给移动机构在不同位置进行定位。
在本公开较佳的实施例中,定位机构为光栅尺。
在本公开较佳的实施例中,多个数据存储模块内的可执行数据为多个,多个可执行数据相同或不相同。
在本公开较佳的实施例中,还包括优化模块,优化模块根据可执行数据,对移动机构的移动路径进行优化计算。
在本公开较佳的实施例中,移动机构为直线机构、线性模组、丝杆导轨、齿轮齿条机构、螺纹螺杆机构或链条传动机构。
一种应用上述任一项的光学系统的打印机,包括主架和上述任一项的多工位3D打印机的光学系统;
主架上设置有多工位,光学系统设置在主架上。
在本公开较佳的实施例中,每个工位上均设置有升降机构,通过升降机构实行工位在主架上的升降。
在本公开较佳的实施例中,升降机构为直线机构、线性模组、丝杆导轨、齿轮齿条机构、螺纹螺杆机构或链条传动机构。
在本公开较佳的实施例中,升降机构上设置有磁吸自锁系统。
在本公开较佳的实施例中,磁吸自锁系统包括设置在升降机构上的电磁铁、设置在工位上的磁铁块以及控制电磁铁通电状态的控制开关。
本公开实施例的有益效果是:利用工位上产品的剥离和复位等待时间,对其他工位进行曝光处理,通过控制系统对各工位之间进行适配,对打印等待时间进行了充分的利用,进而提高了打印效率;在同一台3D打印机中,单一光学系统对多个工位进行曝光,实现了3D打印的批量化生产。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例多工位3D打印机的控制方法的流程图;
图2为本公开实施例多工位3D打印机的光学系统的结构示意图;
图3为本公开实施例多工位3D打印机的光学系统的数据存储模块的结构示意图;
图4为本公开实施例多工位3D打印机的主视图;
图5为本公开实施例多工位3D打印机的右视图;
图6为本公开实施例多工位3D打印机的俯视图;
图7为本公开实施例多工位3D打印机的立体结构示意图;
图8为本公开实施例多工位3D打印机的升降机构和磁吸自锁系统的结构示意图;
图9为本公开实施例多工位3D打印机的打印流程图。
图中:
1:第一工位;2:第二工位;3:第三工位;4:升降机构;5:光源;6:移动机构;7:一号料盘;8:主架;9:二号料盘;10:三号料盘;11:控制器;12:升降电 机;13:丝杆滑轨;14:滑块;15:电磁铁;16:平台基座;17:金属模块;18:调平螺丝;19:一号成型平台。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“上”、“下”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
下面结合附图,对本公开的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
第一实施例
请参照图1,本实施例提供一种多工位3D打印机的控制方法,其包括如下步骤:
S10、对三维模型信息进行预处理,形成m个可执行数据;
S20、根据所述可执行数据,分别在n个工位上进行分层打印;
其中,分层打印的步骤如下:
S21、在第一工位上进行第a层曝光后,第一工位进行剥离动作;
S22、根据所述可执行数据,判断下个需要曝光的工位:
当下个需要曝光的工位为第一工位时,光源原位等待,对第一工位上的a+1层进行曝光;
当下个需要曝光的工位为第二工位时,光源移动至第二工位,对第二工位的第b层进行曝光;
S23、重复步骤S21、步骤S22,至各个工位曝光、剥离动作完成;
S30:每个工位剥离完成后上升一个分层厚度并继续下一截面层动作,直至全部打印完成;
其中,以上的m、n、a、b的范围为:n>1,m≥1,k>1,m≤n,且n、m、k均为正整数。
具体的,在本实施例中,在进行打印之前,先将准备打印的产品的图纸信息进行分析解析,形成一层层截面的切片数据,并将切片数据形成打印机的可执行数据。
将可执行数据通过usb或网络或其他方式输入到控制系统中,控制系统根据可执行数据的信息,控制移动机构6带动光源5进行移动。具体的控制参数包括移动位置、移动速度和曝光时间等,以使得在不同的工位上进行曝光时,其他工位上不需要曝光,进而避免了等待曝光时间,提高了打印效率。
具体的,在本实施例中,可执行数据可以是各工位上打印产品时所使用的材料参数,也可以是打印每一层时的截面形状和截面积等产品参数,控制系统解析出该信息后,移动机构6根据可执行数据的各个参数带动光源5进行曝光作业。
根据不同的可执行数据的参数信息,可以分为两种情况:
第一种情况:数据存储模块内的可执行数据相同,即各工位上打印所用的材料、打印的产品完全相同,使得各工位的曝光时间和等待曝光时间是相同的。
此时移动机构6带动光源5在按照工位顺序,对各工位依次进行曝光,即对第一工位1曝光后,在第一工位1进行剥离的时候,移动机构6带动光源5对第二工位2进行曝光,当第二工位2进行剥离的时候,移动机构6带动光源5对第三工位3进行曝光,当第一工位1再次需要曝光时,移动机构6带动光源5对第一工位1进行曝光,依次循 环,形成一个时间环链,进而对各工位的曝光等待时间进行了充分的利用,提高了利用率,提高了打印效率。
第二种情况:数据存储模块内的可执行数据不相同,即使用同一台打印机,同时打印多个不同的产品。此时,打印所用的材料、打印产品的形状等不相同,使得曝光时间、等待曝光时间各不相同。
此时,控制系统将可执行信息发送给优化模块,优化模块根据各工位上所打印的不同产品的不同参数计算出不同工位在不同阶段的曝光等待时间,移动机构6根据不同的等待时间,带动光源5去不同的工位进行曝光,进而提高了等待时间的利用率。
具体的使用过程中,先对第一工位1进行曝光后,根据优化模块的计算结果,下一个需要进行曝光的工位是第二工位2,此时移动机构6带动光源5对第二工位2进行曝光,再根据优化模块的计算结果下一个需要曝光的工位还是第二工位2,此时,移动机构6不移动,进行等待,在对第二工位2进行再次曝光后,再根据优化模块的计算结果,下一个需要曝光的工位是第三个,此时移动机构6带动光源5对第三工位3进行曝光,以此类推。
也就是说,整个曝光的过程中,移动根据曝光时间进行移动,可能会存在等待时间,但是通过优化计算,将等待时间降低到最短,以提高等待时间的利用率,提高打印效率。
在本实施例中,3D打印机在进行打印之前,需要先对光源5进行校准。对光源5的光强进行校准包括对成型平台的位置校准、对光源5的均匀性校准和对光源5的投光能量校准。
位置校准过程如下:
将成型平台保持水平放置,平台平面向下,装入平台基座16上,此时平台基座16上的电磁铁15自动通电,锁死成型平台,然后将准备好的清洗干净的料盘放置在机器上固定料盘的槽口,然后通过控制系统将整体成型平台下降到一定高度,在成型平台和料盘之间放入千分尺,分别测量成型平台和料盘之间五个点的距离,然后调整平台上的调平螺丝18,使最终的成型平台和料盘之间的距离的误差小于0.02mm,方可认为平台调平完成。以此类推,将多个工位均进行相应调整。
对光源5的均匀性校准和对光源5的投光能力校准的方法为:
对标定物进行曝光测量,根据实测曝光尺寸和标定尺寸得出校准系数,根据校准系数对所述光源5的初始位置进行调整。
具体的,先将平台位置复位,用大幅面标定板放置在料盘中心,控制光学系统复位, 到第一工位1的位置,开启标定曝光,用测量工具测量实际曝光出的尺寸和标定尺寸进行误差换算,计算出X轴方向和Y轴方向的校准系数,输入计算机软件,接着使用操作系统上的自动能量校准功能,将光学系统的投光能量进行校准,使得光学系统在料盘上所投射的40个点均达到指定值为21±0.2W/m2的范围。以此类推,依次将光源5移动到其他工位,计算出在各工位上X轴和Y轴的校准系数,以及对能量进行校准。
3D打印机的调整校准工作完成后,方可倒入树脂材料(本实施例选用丙烯酸树脂材料100mL),然后准备开始打印。
第二实施例
本实施例中,提供了一种应用上述控制方法的光学系统,如图2和图3所示,其具体包括控制系统、光源5、移动机构6和数据存储模块;控制系统与数据存储模块信号连接;控制系统与移动机构6信号连接,用于根据所述数据存储模块内的可执行数据控制移动机构6进行移动;光源5设置在移动机构6上,并与控制系统信号连接,用于根据所述数据存储模块内的可执行数据,在移动机构6移动到位后进行曝光。
在本实施例中,控制系统和数据存储模块共同构成移动机构6的控制器11,其中,每一个数据存储模块均对应一个工位,在对每一个数据存储模块输入可执行数据后,控制系统获取该可执行数据后,将可执行数据作为控制指令分步发送给移动机构6,使得移动机构6带动光源5根据控制指令进行相应的移动,实现对不同工位的曝光。
在本实施例中,光源5与控制系统也进行信号连接,能够根据可执行数据,在不同的工位,使用与其相匹配的光源5强度和以及光照时间,以保证光固化效果。
为保证移动机构6的移动准确性,在本实施例中,还设置了定位机构;定位机构与控制系统信号连接,用于给移动机构6在不同位置进行定位。
具体的,在本实施例中,定位机构为光栅尺。
移动机构6的设置方式有很多种,如可以是使用齿轮齿条结构带动光源5移动,也可以是使用螺纹螺杆结构带动光源5移动,还可以是使用链条传动的方式带动光源5移动,也就是说,其只要是能够带动光源5在不同的工位间进行移动即可。
在本实施例中,控制器11还包括优化模块,优化模块与控制系统、数据存储模块信号连接,能够接收数据存储模块内的可执行数据,并根据可执行数据对移动机构6的移动路径进行优化计算,并将计算结果发送给控制系统,控制系统根据计算结果向移动机构发送移动指令,以保证其能够有效的提高等待时间利用率,提高打印机的打印效率。
第三实施例
在本实施例中,提供了一种多工位3D打印机,其将上述的光学系统进行了应用,具体结构如下:
控制器11、主架8,主架8上部的成型平台组、升降机构4,主架8下部的光学系统。其中成型平台组为工位,其有多个成型平台,具体的,在本实施例中为三个成型平台,对应三个料盘,三个升降机构4,成型平台组和光学系统均设有驱动机构,控制器11上连接有多种传感器系统。
具体的,每个成型平台均对应一个升降机构4,通过升降机构4设置在主架8上,料盘设置在主架8上,且每个料盘对应一个成型平台,设置在成型平台的下方。
本实施例的成型平台如图4-图8所示,包括有成型平台和平台基座16,成型平台通过平台基座16内部的滑轨和平台基座16相连,成型平台选为金属网洞平面,设有四角的调平螺丝18可以对成型平台进行水平方向校准,平台基座16连接在升降机构4上。
在本实施例中,升降机构4为螺纹螺杆传动,其包括升降电机12、丝杆滑轨13和滑块14,平台基座16固定设置在滑块14上,滑块14与丝杆滑轨13螺纹连接,丝杆滑轨13竖直设置在主架8上,且与主架8转动连接,升降电机12固定设置在主架8上,且与丝杆滑轨13连接,能够带动丝杆滑轨13转动,进而带动滑块14在丝杆滑轨13上进行竖直方向升降,进而带动平台基座16上下升降。
在本实施例中,丝杆滑轨13旁设置有位移传感器,方便监测移动的距离。
在成型平台和平台基座16之间设置有磁吸自锁系统,磁吸自锁系统包括设置在平台基座16上的电磁铁15,和设置在成型平台上的金属模块17,具体的,金属模块17放置在成型平台与平台基座16相贴合的地方。通过控制开关对电磁铁15的通电状态进行控制,进而改变电磁铁15的磁性,当有磁性的时候就会将成型平台和平台基座16吸附锁死,当无磁性的时候,成型平台和平台基座16分离。
如图4-图8所示,更具体的,本实施例的光学系统装载在主架8的下部内侧,光学系统包括LED光源5,光源5的波长355-480nm,光学系统还包括移动机构6,光源5安装在移动机构6上,并通过移动电机控制移动机构6运动,从而带动光源5发生水平方向的运动,通过光栅尺控制水平方向运动的精度,在移动机构6上还设置有位置传感器,来消除电机运动的累积误差,提高光源5在水平方向上的运动精度。
具体的,在本实施例中,料盘为覆膜料盘,其以主动剥离的方式进行打印过程中的剥离。在料盘的上方设置有刮刀,用于刮平树脂液面,增加精度,减小等待时间; 在料盘上部设置有液位传感器,用来监测料盘内剩余树脂材料的多少;在主架8上部的另一侧安装有温湿度传感器,用来检测打印环境的温度和湿度;控制器11设置在主架8外部,通过活动式支架和固定框架,实现控制器11与主架8连接。
具体的,控制器11安装在固定框架上,可以根据需要取下或安装;固定框架与活动式支架的一端连接,活动式支架的另一端与主架8外部连接。
更具体的,控制器11为平板电脑,控制系统和数据存储模块,以及优化模块安装在平板电脑内,通过平板电脑实现对3D打印机的控制。
更具体的,主架8上装有机器透视盖,机器透视盖为透明材质;机器透视盖通过滑动式的方式与主架8连接,可以通过平板电脑控制机器透视盖的滑动,进而实现开启和闭合;这样的设置,在机器透视盖关闭时,便于从外界观察主架8内的打印情况;在打印机打印完产品后,可以通过开启机器透视盖,将打印机内的产品取出。
如图9所示,利用本公开的3D打印机,进行打印时,具体流程如下:
STEP1:首先控制刮刀刮平三个料盘的液面,然后三个平台一起归零;
STEP2:光源5先进行复位,从第一工位1的一号料盘7位置开始投光T1(T1为R1材料的首层曝光时间),曝光完成后,第一工位1的一号料盘7的剥离机构开始动作,进行剥离,与此同时控制系统控制移动机构6使光源5向第二工位2的二号料盘9位置移动;
STEP3:控制系统根据数据存储模块内的可执行数据,判断第二工位2是否有曝光图片待提取曝光,如果有曝光图片,则判断第二工位2需要曝光;此时移动机构6带动光源5移动到第二工位2的二号料盘9正下方的固定位置;待光源5到达第二工位2二号的料盘下方的指定位置后,控制器11控制光源5开始投光T2,曝光T2完成后,第二工位2的二号料盘9的剥离机开始启动剥离运动,与此同时控制器11控制移动机构6开始带动光源5进行移动;如果无曝光图片(即不使用第二工位2打印或者打印已经完成,没有后续曝光图片),则控制器11直接控制移动机构6使光源5向第三工位3的三号料盘10下方运动,在第二工位2处不做停留。
STEP4:控制系统根据可执行数据,判断第三工位3是否有曝光图片待提取曝光,如果有曝光图片,则控制系统判断第三工位3需要曝光,就控制移动机构6带动光源5移动到第三工位3的三号料盘10正下方的固定位置,待光源5到达第三工位3三号的料盘下方的指定位置后,控制系统控制光源5开始投光T3,曝光T3完成后,第三工位3的三号料盘10的剥离机开始启动剥离运动,与此同时控制系统控制移动机构6开始带动光源5移动;如果无曝光图片(即不使用第三工位3打印或者打印已经完成,没有后 续曝光图片),则控制器11直接控制移动机构6使光学系统从第二工位2的二号料盘9直接向第一工位1的一号料盘7运动,不向第三工位3的三号料盘10方向发生移动。
STEP5:光源5复位至第一工位1的一号料盘7位置后,控制器11判断第一工位1的一号料盘7上是否完成第一层的剥离动作,若一号料盘7剥离已完成,光学系统开始下一层投光;若一号料盘7剥离未完成,先等待一号料盘7剥离完成,光学系统再开始下一层投光。以此类推,第二工位2的二号料盘9和第三工位3的三号料盘10如果需要曝光也需要等待剥离动作完成才会开始投光。
STEP6:当三个成型平台中任意一个成型结束之后,控制器11识别该工位曝光图片已经全部曝光完毕,光源5不会再对该成型平台所对应的料盘曝光,移动过程中跳过该成型平台,对剩余两个成型平台继续进行曝光直至三个模型全部完成打印。
综上所述,在打印的过程中,控制器11能够独立控制每一个工位的单独曝光过程,不仅可以实现多工位同时打印,也可以针对性选择所需要的工位个数比如只使用两个工位,或者只使用一个工位变成普通的DLP式3D打印机;且三个工位的三个料盘可以使用不同的树脂材料,打印不同的模型。
由上述可以看出,当3D打印机具有3个工位时,其打印过程,可以分为三种情况:
第一种情况下,同时打印A、B、C三个模型。
待加入树脂材料之后,从平板电脑的操作界面上勾选第一工位1、第二工位2和第三工位3,分别选择模型A、B、C,然后点击开始打印,三个料盘上方的刮刀会将三个料盘内的树脂分别刮致液面水平状态,然后第一工位1的一号成型平台19,第二工位2的二号成型平台以及第三工位3的三号成型平台会在平台控制系统(控制器11)的作用下,下降到和树脂材料相接触的高度,并通过位移传感器和力传感器自动寻找起始点位,即为力传感器测得正压力数值为20N时的位置(该正压力值在本实施例中就是成型平台与料盘充分接触时候的压力),同时,移动机构6在开始打印的时候自动复位,回到第一工位1的一号料盘7正下方,待一号料盘7上的一号成型平台19自动寻到起始点位的时候,光源5开启模型A的第一张图的曝光,曝光时间为首层曝光时间6s,曝光时间结束后,光源5迅速移动到第二工位2的二号料盘9正下方,通过移动机构6进行水平方向上的移动,并通过光栅尺确定移动位置,光源5到达二号料盘9正下方之后,二号成型平台已经自动寻起始点结束,直接开始B模型的第一张图的曝光,曝光时间为首层曝光时间6s,与此同时,一号成型平台19已经在开始向上升起,与树脂液面发生主动剥离过程,待剥离完成之后,由料盘上的刮刀对液面进行水平修复,接着一号成 型平台19下降回剥离的起始自动上升一层高度的位置(本实施例中为上升0.05mm)。待二号料盘9的曝光时间结束后,光源5又开始移动到三号料盘10的正下方,三号成型平台已经自动寻起始点结束,光源5直接开始C模型的第一张图的曝光,曝光时间为首层曝光时间6s,与此同时,二号成型平台已经在开始向上升起,与树脂液面发生主动剥离过程,待剥离完成之后,由料盘上的刮刀对液面进行水平修复,接着二号成型平台下降回剥离的起始自动上升一层高度的位置(本实施例中为上升0.05mm)。待三号料盘10的曝光时间结束后,光源5自动复位,回到一号料盘7正下方,此时一号料盘7中的一号成型平台19也已完成复位,回到了起始点上升一个层厚的高度(本实施例中为上升0.05mm),光源5开始一号料盘7的第二层曝光,曝光时间为主体曝光时间3s,接着开始重复以上过程,直到某一平台的模型打印完成,控制器11通过识别曝光图片得知该平台已经曝光完成,则光源5自动跳过该平台,继续剩余两个平台的模型曝光,以此类推,完成三个模型最终的曝光。
在本实施例中,由于模型选取不同,完成时间各有先后。
第二种情况,仅打印A、B两个模型。
待加入树脂材料之后,从平板电脑的操作界面上勾选第一工位1、第二工位2,(本实施例中勾选第一工位1和第二工位2,其也可以是勾选第一工位1和第三工位3;或第二工位2和第三工位3),分别在第一工位1和第二工位2上选择模型A、B,然后点击开始打印,系统在第三工位3上识别不到待打印文件,故优化模块在计算光源5轨迹和平台运动轨迹时,不会考虑到第三工位3的相关运动。开始打印之后,料盘上方刮刀会将一号料盘7和二号料盘9内的树脂分别刮致液面水平状态,然后一号成型平台19,二号成型平台会在平台控制系统的作用下,下降到和树脂材料相接触的高度,并通过位移传感器和力传感器自动寻找起始点位,既为力传感器测得正压力数值为20N的时候(该正压力值在本实施例中就是成型平台与材料盘充分接触时候的压力),此时三号成型平台保持不动,同时,可移动式电机在开始打印的时候自动复位,回到一号料盘7正下方,待一号料盘7上的一号成型平台19自动寻到起始点位的时候,光源5开启模型A的第一张图的曝光,曝光时间为首层曝光时间6s,曝光时间结束后,光源5迅速移动到二号料盘9正下方,通过移动机构6带动光源5移动,通过光栅尺确定移动位置,光源5到达二号料盘9正下方之后,二号成型平台已经自动寻起始点结束,直接开始B模型的第一张图的曝光,曝光时间为首层曝光时间6s,与此同时,一号成型平台19已经在开始向上升起,与树脂液面发生主动剥离过程,待剥离完成之后,由料盘上的刮刀对液面进行水平修复,接着一号成型平台19下降回剥离的起始自动上升一层高度的位 置(本实施例中为上升0.05mm),待光源5在二号料盘9曝光完成之后,由于识别不到三号料盘10的曝光图片,光源5自动跳过移动到三号料盘10这一过程,直接从二号料盘9移动回到一号料盘7的正下方,此时一号料盘7完成了平台上升,主动剥离,平台下降回起始点上升一个层厚的高度(本实施例中为0.05mm),光源5回到一号料盘7正下方之后,开始一号料盘7的第二层图片的曝光,以此类推,直到两个平台中的一个模型打印完成,此时光源5只停留在剩余未完成的平台正下方开始固定位置,持续对该平台进行曝光直至打印完成。
第三种情况,仅打印A模型。
待加入树脂材料之后,从操作界面勾选第一工位1(本实施例中勾选第一工位1,也可以单独勾选第二工位2或第三工位3),在第一工位1上直接选择模型A,然后点击开始打印,系统在第二工位2和第三工位3上均识别不到待打印文件,故优化模块在计算光源5轨迹和平台运动轨迹时,不会考虑到第二工位2和第三工位3的相关运动。开始打印之后,可移动式光源5在一号料盘7的正下方固定位置,不发生任何移动,此时机器相当于一台普通的DLP光固化3D打印机,光源5固定,对单一平台进行曝光,料盘上方刮刀会将一号料盘7内的树脂分别刮致液面水平状态,然后一号成型平台19会在平台控制系统的作用下,下降到和树脂材料相接触的高度,并通过位移传感器和力传感器自动寻找起始点位,既为力传感器测得正压力数值为20N的时候(该正压力值在本实施例中就是成型平台与材料盘充分接触时候的压力),此时二号成型平台和三号成型平台保持不动,同时,移动机构6在开始打印的时候自动复位,回到一号料盘7正下方,待一号料盘7上的一号成型平台19自动寻到起始点位的时候,光源5开启模型A的第一张图的曝光,曝光时间为首层曝光时间6s,曝光时间结束后,光源5原位置等待,一号成型平台19开始上升,主动剥离,然后下降回剥离起始上升一个层厚高度的位置(本实施例中为0.05mm),接着光源5开始第二层的曝光,曝光时间为主体曝光时间3s,曝光时间结束后,光源5继续原位置等待,一号成型平台19开始上升剥离及下降的步骤,以此类推,直至一号成型平台19完成整个模型打印,光源5始终保持位置不变。
本公开相对于现有技术具有如下的优点及有益效果:
(1)本公开可以实现高效率的3D打印批量生产的过程,大大缩减平均到每一个件上所需的时间。
(2)本公开充分的利用曝光完成之后的剥离时间、等待时间、下降时间,可以移 动到其它工位进行曝光,保持了光源5的高效利用,使得一个光源5完成多个工位所需的曝光动作,大大节省了机器成本。
(3)本公开中的3D打印机有多个不同传感器,使得打印机的控制系统功能强大,可以实现对整个3D打印机的各种控制,并且可以消除系统性误差,从而保证最终的成型精度。
(4)本公开还额外配合了不同方案的打印流程,不仅仅可以实现多平台打印,在没有多平台需要的时候,可以自由选择需要打印的平台个数,还可以正常普通单光学系统单平台打印,变成普通的光固化机器。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种多工位3D打印机的控制方法,其特征在于,包括如下步骤:
    S10、对三维模型信息进行预处理,形成m个可执行数据;
    S20、根据所述可执行数据,分别在n个工位上进行分层打印;
    其中,分层打印的步骤如下:
    S21、在第一工位上进行第a层曝光后,第一工位进行剥离动作;
    S22、根据所述可执行数据,判断下个需要曝光的工位:
    当下个需要曝光的工位为第一工位时,光源原位等待,对第一工位上的a+1层进行曝光;
    当下个需要曝光的工位为第二工位时,光源移动至第二工位,对第二工位的第b层进行曝光;
    S23、重复步骤S21、步骤S22,至各个工位曝光、剥离动作完成;
    S30:每个工位剥离完成后上升一个分层厚度并继续下一截面层动作,直至全部打印完成;
    其中,以上的m、n、a、b的范围为:n>1,m≥1,k>1,m≤n,且n、m、k均为正整数。
  2. 根据权利要求1所述的多工位3D打印机的控制方法,其特征在于,m个所述可执行数据相同或不相同。
  3. 根据权利要求1或2所述的多工位3D打印机的控制方法,其特征在于,优化模块获取所述可执行数据,控制所述移动机构移动到最早需要曝光的工位。
  4. 根据权利要求1至3中任一项所述的多工位3D打印机的控制方法,其特征在于,所述可执行数据包括截面形状信息、截面积信息和/或打印材料信息。
  5. 根据权利要求1至4中任一项所述的多工位3D打印机的控制方法,其特征在于,在执行步骤S20前,先对光源的光强进行校准。
  6. 根据权利要求5所述的多工位3D打印机的控制方法,其特征在于,对光源的光强进行校准包括对成型平台的位置校准、对光源的均匀性校准和对光源的投光能量校准。
  7. 根据权利要求6所述的多工位3D打印机的控制方法,其特征在于,对光源的均匀性校准和对光源的投光能力校准的方法为:
    对标定物进行曝光测量,根据实测曝光尺寸和标定尺寸得出校准系数,根据校准系 数对所述光源的初始位置进行调整。
  8. 根据权利要求1至7中任一项所述的多工位3D打印机的控制方法,其特征在于,进行曝光之后,所在工位上的产品进行主动剥离。
  9. 一种应用权利要求1至8中任一项所述多工位3D打印机的控制方法的光学系统,其特征在于,包括控制系统、光源、移动机构和数据存储模块;
    所述控制系统与所述数据存储模块信号连接;
    所述控制系统与所述移动机构信号连接,用于根据所述数据存储模块内的可执行数据控制所述移动机构进行移动;
    所述光源设置在所述移动机构上,并与所述控制系统信号连接,用于根据所述可执行数据,在所述移动机构移动到位后进行曝光。
  10. 根据权利要求9所述的光学系统,其特征在于,还包括定位机构;所述定位机构与所述控制系统信号连接,用于给所述移动机构在不同位置进行定位。
  11. 根据权利要求10所述的光学系统,其特征在于,所述定位机构为光栅尺。
  12. 根据权利要求9至11中任一项所述的光学系统,其特征在于,所述数据存储模块内的可执行数据为多个,多个所述可执行数据相同或不相同。
  13. 根据权利要求12所述的光学系统,其特征在于,还包括优化模块,所述优化模块根据所述可执行数据,对所述移动机构的移动路径进行优化计算。
  14. 根据权利要求9至13中任一项所述的光学系统,其特征在于,所述移动机构为直线机构、线性模组、丝杆导轨、齿轮齿条机构、螺纹螺杆机构或链条传动机构。
  15. 一种3D打印机,其特征在于,包括主架和权利要求9-14任一项所述的多工位3D打印机的光学系统;
    所述主架上设置有多个工位,所述光学系统设置在所述主架上。
  16. 根据权利要求15所述的3D打印机,其特征在于,每个工位上均设置有升降机构,通过所述升降机构实行所述工位在所述主架上的升降。
  17. 根据权利要求16所述的3D打印机,其特征在于,所述升降机构为直线机构、线性模组、丝杆导轨、齿轮齿条机构、螺纹螺杆机构或链条传动机构。
  18. 根据权利要求16或17所述的3D打印机,其特征在于,所述升降机构上设置有磁吸自锁系统。
  19. 根据权利要求18所述的3D打印机,其特征在于,所述磁吸自锁系统包括设置在所述升降机构上的电磁铁、设置在所述工位上的磁铁块以及控制所述电磁铁通电状态的控制开关。
PCT/CN2019/126922 2019-02-20 2019-12-20 多工位3d打印机的控制方法、光学系统和3d打印机 WO2020168809A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910127672.1A CN109732912B (zh) 2019-02-20 2019-02-20 多工位3d打印机的控制方法、光学系统和3d打印机
CN201920232039.4U CN209566497U (zh) 2019-02-20 2019-02-20 多工位3d打印机的光学系统和3d打印机
CN201910127672.1 2019-02-20
CN201920232039.4 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020168809A1 true WO2020168809A1 (zh) 2020-08-27

Family

ID=72143651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126922 WO2020168809A1 (zh) 2019-02-20 2019-12-20 多工位3d打印机的控制方法、光学系统和3d打印机

Country Status (1)

Country Link
WO (1) WO2020168809A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050767A1 (en) 2018-09-07 2020-03-12 Valmet Ab Method of producing lignin with reduced amount of odorous substances
CN115107279A (zh) * 2022-06-23 2022-09-27 先临三维科技股份有限公司 上拉式面成型3d打印曝光前等待时间预测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1895875A (zh) * 2006-06-28 2007-01-17 西安交通大学 一种用于光固化快速成型工艺的精度校正方法
WO2011019669A1 (en) * 2009-08-09 2011-02-17 Rolls-Royce Corporation Method and apparatus for calibrating a projected image manufacturing device
CN104708818A (zh) * 2013-12-13 2015-06-17 三纬国际立体列印科技股份有限公司 立体打印装置
CN205167567U (zh) * 2015-10-21 2016-04-20 上海数造机电科技有限公司 一种双槽光固化3d打印机
CN107877853A (zh) * 2017-12-26 2018-04-06 广州市小盒信息科技有限公司 一种光固化3d打印机
CN109732912A (zh) * 2019-02-20 2019-05-10 广州黑格智造信息科技有限公司 多工位3d打印机的控制方法、光学系统和3d打印机
CN209566497U (zh) * 2019-02-20 2019-11-01 广州黑格智造信息科技有限公司 多工位3d打印机的光学系统和3d打印机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1895875A (zh) * 2006-06-28 2007-01-17 西安交通大学 一种用于光固化快速成型工艺的精度校正方法
WO2011019669A1 (en) * 2009-08-09 2011-02-17 Rolls-Royce Corporation Method and apparatus for calibrating a projected image manufacturing device
CN104708818A (zh) * 2013-12-13 2015-06-17 三纬国际立体列印科技股份有限公司 立体打印装置
CN205167567U (zh) * 2015-10-21 2016-04-20 上海数造机电科技有限公司 一种双槽光固化3d打印机
CN107877853A (zh) * 2017-12-26 2018-04-06 广州市小盒信息科技有限公司 一种光固化3d打印机
CN109732912A (zh) * 2019-02-20 2019-05-10 广州黑格智造信息科技有限公司 多工位3d打印机的控制方法、光学系统和3d打印机
CN209566497U (zh) * 2019-02-20 2019-11-01 广州黑格智造信息科技有限公司 多工位3d打印机的光学系统和3d打印机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050767A1 (en) 2018-09-07 2020-03-12 Valmet Ab Method of producing lignin with reduced amount of odorous substances
CN115107279A (zh) * 2022-06-23 2022-09-27 先临三维科技股份有限公司 上拉式面成型3d打印曝光前等待时间预测方法及系统
CN115107279B (zh) * 2022-06-23 2024-02-23 先临三维科技股份有限公司 上拉式面成型3d打印曝光前等待时间预测方法及系统

Similar Documents

Publication Publication Date Title
KR101533374B1 (ko) Dlp 방식 3d 프린터
CN106881858B (zh) 3d打印底板系统及更换3d打印接触板的方法
JP5156452B2 (ja) 欠陥分類方法、プログラム、コンピュータ記憶媒体及び欠陥分類装置
WO2020168809A1 (zh) 多工位3d打印机的控制方法、光学系统和3d打印机
WO2017198057A1 (zh) 新型激光3d打印机
CN209566497U (zh) 多工位3d打印机的光学系统和3d打印机
US9908290B1 (en) Configurable printers
WO2020019653A1 (zh) 一种悬臂式双台面的双面数字化曝光系统及曝光方法
CN1949079A (zh) 涂敷装置以及涂敷方法
CN109732912B (zh) 多工位3d打印机的控制方法、光学系统和3d打印机
CN211669102U (zh) 基板检查装置
TW201837980A (zh) 光處理裝置、塗布顯影裝置、光處理方法及記錄媒體
CN112420567A (zh) 激光转印装置及使用该装置的转印方法
WO2020019651A1 (zh) 一种新型双面数字化曝光系统及工作流程
JP4860966B2 (ja) 露光パターンの転写方法及び露光装置
KR102197572B1 (ko) 조명 소스로서의 마이크로 led 어레이
CN109379850B (zh) 印制线路板阻焊图形加工装置及方法
CN113059796B (zh) 3d打印设备的标定机构、方法、系统及存储介质
CN106541132B (zh) 激光3d打印机及其调焦系统及方法
CN209775556U (zh) 3d打印设备
JP6703785B2 (ja) 基板処理装置、および物品製造方法
CN113119458B (zh) 3d打印设备的标定系统、方法及3d打印设备
TW202213452A (zh) 描繪裝置
CN113276408A (zh) 一种液体内连续光固化成型增材制造装置及其制造方法
CN114261088B (zh) 能量辐射装置的幅面亮度检测方法、系统及标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916061

Country of ref document: EP

Kind code of ref document: A1