WO2020168540A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020168540A1
WO2020168540A1 PCT/CN2019/075819 CN2019075819W WO2020168540A1 WO 2020168540 A1 WO2020168540 A1 WO 2020168540A1 CN 2019075819 W CN2019075819 W CN 2019075819W WO 2020168540 A1 WO2020168540 A1 WO 2020168540A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
fingerprint
light source
control signal
Prior art date
Application number
PCT/CN2019/075819
Other languages
English (en)
French (fr)
Inventor
谢浩
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/075819 priority Critical patent/WO2020168540A1/zh
Priority to CN201980000270.3A priority patent/CN109983472B/zh
Publication of WO2020168540A1 publication Critical patent/WO2020168540A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • This application relates to the field of optical fingerprint technology, and more specifically, to a fingerprint identification device and electronic equipment.
  • under-screen biometrics technology has been widely used.
  • under-screen fingerprint recognition technology has been widely used in mobile terminals, smart homes and other fields.
  • the mainstream display screens in the market include liquid crystal display (LCD) and organic light-emitting diode (OLED) displays.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the optical fingerprint recognition technology under the OLED screen uses the light emitted by the OLED display itself to illuminate the finger and detects the fingerprint.
  • the improvement of the quality of the fingerprint detection signal is limited by the maximum brightness that the OLED display can provide.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve the quality of fingerprint detection signals under the OLED screen, thereby improving the performance of the fingerprint identification device.
  • a fingerprint identification device including: a fingerprint identification module, which is arranged under the display screen, and is used to receive the light signal reflected by the finger and convert it into an electrical signal; the light signal includes a supplementary light source The first blinking light passes through the first blinking light signal reflected by the finger.
  • the light intensity of the fingerprint detection light signal is no longer limited by the light source light intensity of the OLED display screen itself, and the light intensity of the fingerprint detection light signal is increased.
  • the supplementary light source emits the first flicker light, which is different from the ambient light, thereby avoiding the interference of the ambient light, improving the quality of the fingerprint detection signal, and enabling fingerprint detection under strong light.
  • the device further includes the supplemental light source, and the supplemental light source is used to generate the first blinking light.
  • the supplemental light source is arranged outside the field of view of the fingerprint identification module.
  • the supplemental light source is a hollow surface light source
  • the field of view of the fingerprint recognition module is located in a hollow area of the hollow surface light source.
  • the hollow surface light source includes: a hollow circular surface light source, a hollow rectangular surface light source or a hollow hexagonal surface light source.
  • the fingerprint identification module is arranged below the center of the hollow surface light source.
  • the supplemental light source is an infrared light emitting source.
  • the fingerprint recognition module is used to generate a first control signal, and the first control signal controls the switching frequency and/or switching time of the supplementary light source to emit the first control signal. Flashing light.
  • the first control signal includes a first modulation control signal, and the first modulation control signal controls the switching frequency and/or switching time of the supplemental light source to change with time.
  • the fingerprint identification module is used to process the electrical signal to obtain a first fingerprint detection signal; the first fingerprint detection signal is an electrical signal based on the first blinking light signal .
  • the fingerprint identification module is used to demodulate and process the electrical signal to obtain the first fingerprint detection signal.
  • the optical signal includes a second flashing light signal reflected by the finger of the second flashing light of the display screen.
  • the fingerprint recognition module is used to generate a second control signal, and the second control signal controls the switching frequency and/or switching time of the pixel unit in the display screen to emit the The second flashing light.
  • the second control signal includes a second modulation control signal, and the second modulation control signal controls the switching frequency and/or switching time of the pixel unit in the display screen to change with time.
  • the fingerprint identification module is used to process the electrical signal to obtain a second fingerprint detection signal; the second pattern detection signal is based on the first blinking light signal and the The electrical signal of the second blinking light signal.
  • the fingerprint identification module is used to demodulate the electrical signal to obtain the second fingerprint detection signal.
  • the device further includes: a processor, configured to generate a first control signal, and the first control signal controls the switching frequency and/or switching time of the supplementary light source to emit the The first flashing light.
  • the first control signal includes a first modulation control signal, and the first modulation control signal controls the switching frequency and/or switching time of the supplemental light source to change with time.
  • the processor is configured to process the electrical signal to obtain a first fingerprint detection signal; the first fingerprint detection signal is an electrical signal based on the first blinking light signal.
  • the processor is configured to demodulate and process the electrical signal to obtain the fingerprint detection signal.
  • the optical signal includes a second flashing light signal reflected by the finger of the second flashing light of the display screen.
  • the processor is configured to generate a second control signal, and the second control signal controls the switching frequency and/or switching time of the pixel unit in the display screen to emit the second flicker Light.
  • the second control signal includes a second modulation control signal, and the second modulation control signal controls the switching frequency and/or switching time of the pixel unit in the display screen to change with time.
  • the processor is configured to process the electrical signal to obtain a second fingerprint detection signal; the second fingerprint detection signal is based on the first flicker light signal and the second flicker Electrical signal of optical signal.
  • the processor is configured to demodulate and process the electrical signal to obtain the second fingerprint detection signal.
  • the processor is configured to receive first indication information, where the first indication information indicates that there is a finger touch on the display screen, and turn on the fill light according to the first indication information light source.
  • the processor is configured to receive second indication information, the second indication information indicating that there is ambient light exceeding a first threshold intensity, and according to the second indication information and the first indication Information turns on the supplementary light source.
  • an electronic device including a display screen and a fingerprint identification device as in the first aspect or any of its possible implementations.
  • FIG. 1 is a schematic structural diagram of an electronic device to which an embodiment of the present application is applied.
  • Fig. 2 is a schematic structural diagram of a fingerprint identification device and its applicable terminal equipment according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the shape of a supplementary light source according to an embodiment of the present application.
  • Fig. 4 is a schematic functional block diagram of a fingerprint identification device according to an embodiment of the present application.
  • Fig. 5 is a schematic functional block diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 6 is a schematic functional block diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 7 is a schematic functional block diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 8 is a schematic functional block diagram of another fingerprint identification device according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another fingerprint identification method according to an embodiment of the present application.
  • Fig. 10 is a schematic functional block diagram of another fingerprint identification device according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a fingerprint identification method according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices.
  • the technical solutions of the embodiments of the present application can be used in biometric identification technology.
  • the biometric recognition technology includes but is not limited to fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
  • fingerprint recognition technology includes but is not limited to fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
  • fingerprint recognition technology uses fingerprint recognition technology as an example.
  • the optical fingerprint system of the embodiment of the present application includes an optical fingerprint device, which can be arranged in a partial area or the entire area below the display screen, thereby forming an under-display optical fingerprint system.
  • the terminal device 10 includes a display screen 120 and a fingerprint identification module 110, wherein the fingerprint identification module 110 is set in the display The partial area below the screen 120.
  • the fingerprint identification module 110 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 112 having a plurality of optical sensing units 111.
  • the display screen 120 is an OLED display screen
  • the fingerprint identification module 300 can use the display unit (ie, OLED light source) of the OLED display screen 120 as an excitation light source for optical fingerprint detection .
  • the display screen 120 emits a beam of light 121 to the target finger 140, and the light 121 is reflected on the surface of the finger 140 to form reflected light or scattered inside the finger 140 to form scattered light
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light.
  • the sensing array 112 in the group 110 receives and converts into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the terminal device 10 Realize the optical fingerprint recognition function.
  • the basic structure of the OLED display screen is to make a layer of tens of nanometers thick organic light-emitting material on indium tin oxides (ITO) glass as the light-emitting layer
  • the brightness or intensity of the light depends on the performance of the light-emitting material and the application The magnitude of the current.
  • the luminous efficiency of the luminescent material is low, and the greater the applied current, the faster the aging speed of the luminescent material, and the luminous efficiency will further decrease. Therefore, limited by the light-emitting characteristics of organic light-emitting materials, the brightness of the OLED light source is low.
  • the OLED light source is used as an excitation light source for the fingerprint identification module 300 to detect fingerprints, so that the light intensity of the fingerprint detection signal is small and the signal quality is poor.
  • the present application provides a fingerprint identification scheme, which adds a supplementary light source to the fingerprint identification device.
  • the supplementary light source is turned on to increase the light intensity of the fingerprint detection light signal, thereby increasing the fingerprint detection electrical signal quality.
  • the fingerprint identification device may be a fingerprint module, or the fingerprint identification device may be an electronic device including a fingerprint module, which is not limited in the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a fingerprint identification device 200 and a terminal device 20 to which it is applicable according to an embodiment of the application, wherein (a) in FIG. 2 is a schematic front view of a terminal device 20 to which the fingerprint identification device 200 of the embodiment of the application can be applied , Fig. 2(b) is a partial cross-sectional structure diagram of the terminal device 10 shown in Fig. 2(a) along AA'.
  • the terminal device 20 includes a display screen 120 and a fingerprint identification device 200.
  • the fingerprint identification device 200 includes a fingerprint identification module 300.
  • the fingerprint identification module 300 is used to be installed in the area below the display screen 120 for receiving and converting the light signal reflected by the finger 140. Is an electrical signal; the optical signal includes the first flashing light signal reflected by the finger from the first flashing light of the supplemental light source 400.
  • the fingerprint recognition module 300 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 322 having a plurality of optical sensing units 321, and the sensing array 322 is located or its sensing area is the fingerprint recognition The fingerprint detection area 103 of the module 300. As shown in (a) in FIG. 2, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the fingerprint recognition module 300 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the terminal device 10, and the optical path design is used to design the The optical signal of at least part of the display area of the display screen 120 is guided to the fingerprint identification module 300, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the fingerprint identification module 300, for example, through a light path design such as lens imaging, a reflective folding light path design, or other light convergence or reflection light path designs.
  • the area of the fingerprint detection area 103 of the fingerprint identification module 300 can be made larger than the area of the sensing array of the fingerprint identification module 300.
  • the fingerprint detection area 103 of the fingerprint identification module 300 can also be designed to be substantially the same as the area of the sensing array of the fingerprint identification module 300.
  • the sensing array area of the fingerprint identification module 300 is small, for example, it only includes an optical fingerprint sensor.
  • the fingerprint detection area 103 of the fingerprint identification module 300 has a small area and a small area. It is fixed, so the user needs to press the finger to a specific position of the fingerprint detection area 103 when performing fingerprint input, otherwise the fingerprint recognition module 300 may not be able to collect the fingerprint image, resulting in poor user experience.
  • the fingerprint recognition module 300 has a large sensing array area, for example, it may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side on the display screen 120 by splicing.
  • the fingerprint detection area 103 of the fingerprint recognition module 300 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint of the fingerprint recognition module 300 is collected
  • the area 103 can be expanded to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the terminal device 20 adopting the above structure does not need to reserve space on the front side to set a fingerprint button (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire terminal device 20.
  • a fingerprint button such as the Home button
  • the fingerprint recognition module 300 may include an optical component 310 and a light detection module 320, and the light detection module 320 includes the sensing array 322 and
  • the reading circuit and other auxiliary circuits that are electrically connected to the sensing array 322 can be fabricated on a chip (Die), such as an optical imaging chip or an optical fingerprint sensor, through a semiconductor process, and the sensing array is specifically a photodetector A (Photodetector) array includes a plurality of photodetectors distributed in an array.
  • Die such as an optical imaging chip or an optical fingerprint sensor
  • the optical component 310 may be disposed above the sensing array of the light detection module 320, and it may specifically include a filter layer (Filter) 311, a light guide layer 312, and other optical elements.
  • 311 can be used to filter out the ambient light penetrating the finger and transmit the effective fingerprint reflection light signal
  • the light guide layer 312 is mainly used to guide the effective fingerprint reflection light signal to the sensing module 320.
  • the array performs optical inspection.
  • the effective fingerprint reflected light signal includes the first blinking light signal of the supplemental light source.
  • the filter layer 311 may be disposed above the light guide layer 312, or the filter layer 311 may be disposed below the light guide layer 312 And above the light detection module 320.
  • the filter layer 311 and the light guide layer 312 can be connected by a fixing device or the filter layer can be directly prepared on the light guide layer 312 through a manufacturing process.
  • the effective fingerprint reflection light signal is visible light
  • the sensing array 322 receives and processes the visible light fingerprint light signal.
  • the filter layer 311 may be an infrared cut filter, which filters out infrared ambient light and transmits visible light.
  • the effective fingerprint reflection light signal is infrared light
  • the sensing array 322 receives and processes the infrared light fingerprint light signal.
  • the filter layer 311 may be a visible light filter to filter the visible light of the screen.
  • the filter layer 311 can be an infrared cut filter, which is arranged above the light guide layer 312 by a fixing device, and there is a certain amount of air between the filter layer 311 and the light guide layer 312 gap.
  • the fixing device is arranged below the light guide layer 312 and above the light detection module 320, and there is a certain air gap between the filter layer 311, the light guide layer 312, and the light detection module 320.
  • the filter layer 311 can also be an infrared filter material, which is directly coated on the upper surface of the light guide layer 312. Or it is coated on the upper surface of the light detection module 320.
  • the optical assembly 310 and the light detection module 320 may be packaged in the same optical fingerprint component.
  • the optical component 310 and the optical detection module 320 may be packaged in the same optical fingerprint chip, or the optical component 310 may be arranged outside the chip where the optical detection module 320 is located, for example, the optical component 310 is attached above the chip, or some components of the optical assembly 310 are integrated into the chip.
  • the light guide layer 312 of the optical component 310 has a variety of implementation solutions.
  • the light guide layer 312 may be specifically a collimator layer made on a semiconductor silicon wafer, which has multiple collimator layers. A straight unit or a micro-hole array.
  • the collimating unit may be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be received by the optical sensing unit below it, The light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it, so the sensor array The fingerprint image of the finger can be detected.
  • the light guide layer 312 may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which is used to The reflected light reflected from the finger converges to the sensing array of the light detection module 320 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the fingerprint recognition module to improve the The fingerprint imaging effect of the fingerprint identification module 300.
  • the light guide layer 312 or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer, and the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can pass through a semiconductor A growth process or other processes are formed above the sensing array of the light detection module 320, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the microlens layer and the sensing unit may also include The light-blocking layer of the micro-hole, wherein the micro-hole is formed between the corresponding micro-lens and the sensing unit, the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the sensing The light corresponding to the unit is condensed into the microhole through the microlens and is transmitted to the sensing unit through the microhole to perform optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the fingerprint recognition module 300 is used to receive the light signal reflected by the finger 140 and convert it into an electrical signal.
  • the light signal includes a first blinking light signal 411 reflected by the finger 140 by the first blinking light 401 emitted by the supplemental light source 400.
  • the fingerprint identification device 200 may further include: a supplementary light source 400.
  • the supplemental light source 400 corresponds to the fingerprint detection area 103 in the display screen 120, and the fingerprint identification module 300 can use the supplemental light source 400 as an excitation light source for optical fingerprint detection.
  • the supplemental light source 400 emits a first flashing light 401 to the target finger 140 above the fingerprint detection area 103.
  • the first flashing light 401 is on the ridge 141 and the ridge of the finger 140.
  • the surface of 142 is reflected to form a first scintillation light signal 411.
  • the fingerprint identification device 200 of the embodiment of the present application is used for optical fingerprint detection.
  • the supplementary light source 400 By adding the supplementary light source 400, the light intensity of the fingerprint detection light signal is no longer limited by the light source light intensity of the OLED display itself, and the fingerprint detection light signal is increased. Light intensity.
  • the supplementary light source 400 emits the first flickering light 401, which is different from the ambient light, thereby avoiding the interference of the ambient light, improving the quality of the fingerprint detection signal, and performing fingerprint detection even under strong light.
  • the supplemental light source 400 is arranged above the fingerprint identification module 300 for generating the first blinking light.
  • the supplemental light source 400 is in contact with the upper surface of the fingerprint recognition module 300, specifically, the supplemental light source 400 is in contact with the upper surface of the filter layer 311 or the light guide layer 312 in the fingerprint recognition module 300.
  • the supplemental light source 400 does not contact the upper surface of the fingerprint recognition module 300, so that a certain distance is maintained between the supplementary light source 400 and the upper surface of the fingerprint recognition module 300, such as a certain air gap.
  • the supplemental light source 400 is arranged below the display screen 120.
  • the supplemental light source 400 may be in contact with the lower surface of the display screen 120, for example, the supplemental light source 400 can be pasted on the black foam under the OLED display screen 120 through frame glue.
  • the supplemental light source 400 may also not be in contact with the lower surface of the display screen 120, so that a certain distance is maintained between the supplementary light source 400 and the lower surface of the display screen 120, such as a certain air gap.
  • the supplemental light source 400 is any electric light source capable of emitting light, such as a light-emitting diode (LED), a laser diode (LD) or a vertical cavity surface emitting laser (VCSEL) )Wait.
  • LED light-emitting diode
  • LD laser diode
  • VCSEL vertical cavity surface emitting laser
  • the supplemental light source 400 may be a visible light emitting light source or a non-visible light emitting light source.
  • the supplemental light source 400 is an infrared light emitting source.
  • the supplemental light source 400 is a visible light emitting source
  • the first scintillation light signal is a visible light signal
  • the effective fingerprint reflection light signal is visible light.
  • the material of the filter layer 311 is a non-visible light filter material.
  • the filter layer 311 may be an infrared cut filter.
  • the supplemental light source 400 is a non-visible light emitting light source
  • the first scintillation light signal is a non-visible light signal
  • the effective fingerprint reflection light signal is non-visible light.
  • the material of the filter layer 311 is a visible light filter material.
  • the supplemental light source 400 is arranged outside the field of view (FOV) of the fingerprint identification module 300.
  • the field of view of the fingerprint identification module 300 is also called the angle of view, which refers to the visible range of an object that can be observed by the fingerprint identification module 300.
  • the supplemental light source 400 is arranged around the lower area corresponding to the fingerprint detection area 103.
  • the supplemental light source 400 may be a point light source, a line light source or a surface light source.
  • the supplemental light source 400 is a plurality of scattered LED point light sources, which are scattered around the lower area corresponding to the fingerprint detection area 103.
  • the supplemental light source 400 is two parallel line light sources, which are arranged on both sides of the lower area corresponding to the fingerprint detection area 103.
  • the supplemental light source 400 is a hollow surface light source.
  • the supplementary light source 400 is a circular surface light source with a hollow in the middle, wherein the hollow part does not emit light, and the surrounding ring is a light emitting source.
  • the fill light source 400 is a polygonal surface light source with a hollow in the middle.
  • the fill light source 400 is a rectangular surface light source with a hollow in the middle, or as shown in (c) in FIG. 3,
  • the supplementary light source 400 is a hexagonal surface light source hollowed out in the middle.
  • the hollow surface light source is arranged below the center of the fingerprint detection area 103, the light-emitting area of the hollow surface light source is around the lower area corresponding to the fingerprint detection area 103, and the field of view of the fingerprint recognition module 300 is The hollow area of the hollow surface light source.
  • the fingerprint identification module 300 is arranged below the center of the hollow surface light source.
  • the use of the hollow surface light source can provide additional uniform light sources for the fingers without affecting the normal fingerprint detection area.
  • the terminal device 20 further includes a transparent protective cover plate.
  • the cover plate may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the terminal.
  • the front of the device 20 because, in the embodiment of the present application, the so-called pressing of the finger on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the fingerprint identification module in the embodiments of the present application can also be referred to as an optical fingerprint device, optical fingerprint identification module, fingerprint identification device, fingerprint identification module, fingerprint module, fingerprint acquisition device, etc., and the above terms may Replace each other.
  • FIG. 4 is a schematic functional block diagram of a fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint recognition device 200 includes a fingerprint recognition module 300, which is used to receive the light signal reflected by the finger 140 and convert it into an electrical signal; the light signal includes the second light source 400 A flashing light passes through the first flashing light signal reflected by the finger.
  • the fingerprint identification device 200 may further include a supplementary light source 400 for generating the first blinking light.
  • the fingerprint recognition module 300 generates a first control signal, and the first control signal controls the switching frequency and/or switching time of the supplemental light source to emit the first blinking light.
  • the fingerprint identification module 300 may further include a first control module 330.
  • the first control module 330 generates a first control signal 301, and the first control signal 301 controls the switching frequency and/or switching time of the supplementary light source 400 to emit the first blinking light 401.
  • the first control signal 301 may be any electrical signal that controls the supplementary light source 400 to emit the first scintillation light 401, for example, a sine wave, a cosine wave, a triangle wave, or a pulse wave signal.
  • the first control signal 301 is a rectangular wave pulse signal
  • the switching frequency of the supplement light source 400 is the frequency of the first control signal 301
  • the single turn-on time of the supplement light source 400 is the first control signal 301
  • the pulse width When the pulse reaches the maximum amplitude, the fill light source is turned on, and the maximum amplitude hold time is the time that the fill light source is turned on once.
  • the pulse reaches the minimum amplitude the fill light source is turned off, and the minimum amplitude hold time is the fill light. The time when the light source is turned off for a single time.
  • the first control signal 301 is a rectangular wave pulse signal with a fixed frequency and width. Therefore, correspondingly, the change of the light intensity of the first scintillation light 401 over time is represented by the same frequency and width as the first control signal 301. Rectangular wave pulse, the first blinking light 401 is a blinking light with a fixed frequency and light-emitting time. For the convenience of description, in the following, the change of light intensity with time is also written as light intensity change.
  • the first control signal 301 is a rectangular wave pulse signal whose frequency changes with time or a rectangular wave pulse signal whose width changes.
  • the time interval between the two pulses may be different.
  • the first control signal 301 is a rectangular wave pulse signal whose pulse width changes with time, the pulse widths of the two pulses may be different.
  • the first blinking light 401 has a rectangular wave pulse with the same frequency or pulse width as the first control signal 301, and the first blinking light 401 is a blinking light with a non-fixed frequency or a non-fixed lighting time.
  • the change of frequency with time is also written as frequency change
  • the change of pulse width with time is also written as pulse width change.
  • the fingerprint recognition module 300 may further include an optical component 310 and a light detection module 320.
  • the optical signal reflected by the finger is the first optical signal 410.
  • the optical component 310 receives the first optical signal 410 and transmits the first optical signal 410 to the light detection module 320, which is used to receive the first light.
  • the first optical signal 410 includes the first flashing light signal 411 reflected by the first flashing light 401 by the finger 140.
  • the first light signal 410 further includes an ambient light signal 412 of the ambient light 402 reflected by the finger.
  • the ambient light is a light signal with constant light intensity or a slow change frequency in the external environment
  • the first blinking light 401 can be any light signal whose light intensity changes different from the ambient light 402. The embodiment of the application does not do this here. limited.
  • the light intensity change of the first scintillation light 401 is represented as a rectangular wave pulse with the same frequency and width as the first control signal 301, and the first scintillation light 401 is a scintillation light with a fixed frequency and luminous time.
  • the light intensity change of the first blinking light signal 411 also appears as a rectangular wave pulse with the same frequency and width as the first control signal 301.
  • the ambient light 402 is a light signal with a constant light intensity. Accordingly, after being reflected by a finger, the ambient light signal 412 is also a light signal with a constant light intensity.
  • the first light signal 410 includes the first flicker light signal 411 and the ambient light signal 412.
  • the first electrical signal 510 obtained by converting the first light signal 410 includes the first flicker light signal 411 and the ambient light signal.
  • the electrical signal component of 412 is affected by the light intensity change of the first scintillation light signal 411, and the first electrical signal 510 also appears as a rectangular wave pulse with the same frequency and width as the first control signal 301.
  • the maximum pulse amplitude of the first electrical signal 510 is the electrical signal generated when the first flicker light signal 411 and the ambient light signal 412 act simultaneously, and the minimum pulse amplitude of the first electrical signal 510 is only when the environmental light signal 412 acts The electrical signal generated.
  • the fingerprint identification module 300 may process the electrical signal to obtain a first fingerprint detection signal; the first fingerprint detection signal is an electrical signal processed based on the first blinking light signal.
  • the fingerprint identification module 300 further includes a first processing module 340.
  • the first processing module 340 is configured to process the first electrical signal 510 to obtain the first fingerprint detection signal 610.
  • the first fingerprint detection signal 610 corresponds to the first blinking light signal 411, and is not interfered by the ambient light signal 412.
  • the first processing module 340 is used to remove the electrical signal component corresponding to the environmental light 412 in the first electrical signal 510, so that the first fingerprint detection processing signal 611 is only generated when the first blinking light signal 411 is applied.
  • the electrical signal component For example, when the first control signal 301 is a rectangular wave pulse signal with a fixed frequency and width, the first electrical signal 510 also appears as a rectangular wave pulse with the same frequency and width as the first control signal 301, and the first processing module 340 is used for Subtracting the minimum pulse amplitude from the first electrical signal 510, the electrical signal generated is the first fingerprint detection processing signal 611.
  • the first fingerprint detection signal 610 includes the first fingerprint detection processing signal 611.
  • the light detection module 320 may also be used to process the first fingerprint detection signal 610 to obtain a fingerprint image signal.
  • first control module 330, the first processing module 340, and the light detection module 320 may be a plurality of independent chips that are packaged independently, or may be bare chip modules grown on multiple wafers. Multiple bare chip modules are packaged to form a chip.
  • the supplementary light source 400 is made to emit the first flickering light 401 through the first control signal 301, and the first flickering light 401 is different from the ambient light, and the first electrical signal 510 generated by the fingerprint identification module 300
  • the processing to filter out the interference of the electrical signal generated by the ambient light, and obtain the fingerprint detection electrical signal. Therefore, during fingerprint detection, the embodiment of the present application can eliminate the interference of ambient light, improve the signal quality of the fingerprint detection electrical signal, and perform fingerprint recognition even in a strong light environment.
  • FIG. 5 is a schematic functional block diagram of another fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 may include a supplementary light source 400 and a fingerprint identification module 300.
  • the fingerprint recognition module 300 may include an optical component 310, a light detection module 320, a first control module 330, and a first processing module 340.
  • the fingerprint recognition module 300 generates a first modulation control signal, and the first modulation control signal controls the switching frequency and/or switching time of the supplementary light source 400 to change with time.
  • the first control module 330 may include a first modulation control module 331.
  • the first modulation control module 331 is used to modulate to generate a first modulation control signal 302, and the first modulation control signal 302 controls the switching frequency and/or switching time of the supplementary light source 400 to change with time to emit the first modulation Flashing light 403.
  • the first control signal 301 is the first modulation control signal 302
  • the first flicker light 401 is the first modulated flicker light 403.
  • the first modulation control module 331 receives the first modulation signal 501 and the first carrier signal 502, and performs modulation based on the first modulation signal 501 and the first carrier signal 502 to obtain the first modulation control signal 302 .
  • the first modulation signal 501 may be an analog signal or a digital signal, where the analog first modulation signal is a low-frequency signal, which may be a sine wave, a cosine wave, or the like.
  • the first carrier signal 502 is a high-frequency signal, which may be a sine wave, a cosine wave, a square wave, a pulse, or a sawtooth wave.
  • the first modulation signal 501 is an analog signal
  • the first modulation control module 331 includes an analog modulation circuit.
  • the modulation method includes: amplitude modulation (AM), frequency Modulation (frequency modulation, FM) and phase modulation (phase modulation, PM), etc.
  • the modulation methods include: pulse amplitude modulation (PAM), pulse width modulation (PWM), pulse frequency modulation (PFM) and pulse position modulation (pulse position modulation, PDM), etc.
  • the first modulation signal 501 is a digital signal
  • the first modulation control module 331 includes a digital modulation circuit.
  • the modulation method includes: amplitude-shift keying (ASK) ), frequency-shift keying (FSK), and phase-shift keying (PSK), etc.
  • the modulation methods include pulse code modulation (PCM), delta modulation (DM), and so on.
  • the first modulation control module 331 adopts FM frequency modulation
  • the first modulation control signal 302 is a first frequency modulation control signal, that is, the frequency of the first modulation control signal 302 changes according to a linear function of the first modulation signal 501.
  • the first modulation control module 331 uses PWM pulse width modulation
  • the first modulation control signal 302 is a first modulated pulse width signal
  • the first modulation signal 501 is a sine wave
  • the first carrier signal 502 is high.
  • the first modulation control signal 302 is a pulse signal obtained by comparing the level of the first modulation signal 501 with the level of the first carrier signal 502, and the pulse width of the first modulation control signal 302 varies with the first modulation signal 501 The level changes.
  • the first modulation control signal 302 is used to control the switching frequency of the supplementary light source 400 to form the first modulated scintillation light 403.
  • the light intensity of the first modulated scintillation light 403 changes with time and is compared with the first modulation control signal 302.
  • the frequency changes with time and is related or the same, or the switching time of the supplementary light source 400 is controlled by the first modulation control signal 302 to form the first modulated flicker light 403.
  • the light intensity of the first modulated flicker light 403 varies with time and the first modulation control signal
  • the 302 level changes with time to be related or the same. Therefore, correspondingly, the first modulated scintillation light signal 421 of the first modulated scintillation light 403 reflected by the finger is related to or the same as the frequency change or level change of the first modulation control signal 302.
  • the first modulation control signal 302 is a rectangular wave pulse signal with a varying frequency or a rectangular wave pulse signal with a varying width.
  • the light intensity variation of the first modulated scintillation light 421 is shown to be the same as the first modulation control signal.
  • the signal 302 is the same rectangular wave pulse.
  • the optical component 310 receives the first modulated light signal 420 reflected by the finger, and transmits the first modulated light signal 420 to the light detection module 320, and the light detection module 320 is used to receive the first modulated light signal 420.
  • the optical signal 420 is modulated and the first modulated optical signal 420 is converted into a first modulated electrical signal 520.
  • the first modulated light signal 420 includes the first modulated scintillation light signal 421 reflected by the first modulated scintillation light 403 by the finger 140.
  • the first modulated light signal 420 further includes an ambient light signal 412 of the ambient light 402 reflected by the finger.
  • the foregoing first optical signal 410 may be the first modulated optical signal 420.
  • the first modulated electrical signal 520 contains the same electrical frequency change or pulse width change as the first modulated scintillation light signal 421. Signal component.
  • the fingerprint identification module 300 demodulates the electrical signal to obtain the first fingerprint detection signal.
  • the first processing module 340 may further include a first demodulation module 341, and the first processing module 340 is configured to process the first modulated electrical signal 520 to obtain the first fingerprint detection Demodulate the signal 612.
  • the first electrical signal 510 may be the first modulated electrical signal 520.
  • the aforementioned first fingerprint detection signal 610 may be the first fingerprint detection demodulation signal 612.
  • the first demodulation module 341 includes a coherent demodulation circuit, obtains the first carrier signal 502, multiplies the first modulated electrical signal 520 by the first carrier signal 502 through a multiplier, and uses a low-pass filter to correct the high frequency signal. The signal is filtered to obtain the first fingerprint detection demodulation signal 612.
  • the first demodulation module 341 includes a non-coherent demodulation circuit, which is demodulated by an envelope detector, for example, a diode envelope detector composed of a diode and a low-pass filter is used to demodulate the first fingerprint detection solution. ⁇ 612 ⁇ Modulation signal 612.
  • the first modulation control module 331 adopts FM frequency modulation
  • the frequency of the generated first modulation control signal 302 changes according to the linear function of the first modulation signal 501
  • the first demodulation module 341 uses a frequency discriminator circuit to perform
  • a modulated electrical signal 520 is demodulated to obtain a first fingerprint detection demodulation signal 612 reflecting the change of the first modulation signal 501.
  • the first fingerprint detection demodulation signal 612 includes the light intensity information of the first modulated blinking light signal 421. It is not disturbed by the ambient light signal 412.
  • the first modulated electrical signal 520 is derived with respect to time to obtain an FM/AM signal, and the amplitude change of the FM/AM signal is detected by envelope detection, and the first fingerprint detection demodulation signal 612 is obtained.
  • the first modulation control module 331 may also obtain the first modulation signal 501 and the first carrier signal 502, and the first modulation signal 501 and the first carrier signal 502 may be sent to the first modulation control by the processor. Module 331.
  • the light detection module 320 may also be used to process the first fingerprint detection demodulation signal 612 to obtain a fingerprint image signal.
  • the supplementary light source 400 is made to emit the first modulated scintillation light 403 through the first modulation control signal 302.
  • the frequency or pulse width of the first modulated scintillation light 403 varies with time, which is different from ambient light.
  • the first modulated electrical signal 520 generated by the fingerprint identification module 300 is demodulated to obtain a fingerprint detection electrical signal based on the change in the frequency or pulse width of the first modulated blinking light 403, which further improves the fingerprint detection electrical signal without interference from ambient light.
  • the signal quality of the signal is referred to improve the fingerprint detection electrical signal.
  • FIG. 6 is a schematic functional block diagram of another fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 includes a fingerprint identification module 300.
  • the fingerprint identification module 300 is used to receive the light signal reflected by the finger and convert it into an electrical signal; the light signal includes the first flashing light signal reflected by the finger and the first flashing light signal of the supplementary light source. The second blinking light signal reflected by the finger.
  • the fingerprint identification device 200 may further include a supplementary light source 400.
  • the fingerprint recognition module 300 may include an optical component 310, a light detection module 320, and a first control module 330.
  • the fingerprint recognition module 300 may generate a second control signal, and the second control signal controls the switching frequency and/or the switching time of the pixel unit in the display screen to emit the second blinking light.
  • the fingerprint identification module 300 may further include a second control module 350.
  • the second control module 350 is configured to generate a second control signal 303 to control the switching frequency and/or the switching time of the switching frequency of the pixel unit in the display screen 120, and emit the second blinking light 404.
  • the second control signal 302 may be any electrical signal that controls the display screen 120 to emit the second flashing light 404, for example, a sine wave, a cosine wave, a triangle wave, or a pulse wave signal.
  • the second control signal 302 is a rectangular wave pulse signal
  • the switching frequency of the pixel unit in the display screen 120 is the frequency of the second control signal 303
  • the single turn-on time of the pixel unit in the display screen 120 is the first Second, the pulse width of the control signal 303.
  • the second control signal 303 is a rectangular wave pulse signal with a fixed frequency and width. Therefore, correspondingly, the change of the light intensity of the second scintillation light 404 with time appears to have the same frequency and width as the second control signal 303. Rectangular wave pulse, the second blinking light 404 is a blinking light with a fixed frequency and luminous time.
  • the second control signal 303 is a rectangular wave pulse signal whose frequency changes with time or a rectangular wave pulse signal whose width changes.
  • the second blinking light 404 has a rectangular wave pulse with the same frequency or pulse width as the second control signal 303, and the second blinking light 404 is a blinking light with a non-fixed frequency or a non-fixed lighting time.
  • the optical signal reflected by the finger is the second optical signal 430.
  • the optical component 310 receives the second optical signal 430 and transmits the second optical signal 430 to the optical detection module 320.
  • the detection module 320 is configured to receive the second optical signal 430 and convert the second optical signal 430 into a second electrical signal 530.
  • the second light signal 430 includes a first blinking light signal 411 reflected by the first blinking light 401 through the finger 140 and a second blinking light signal 431 reflected by the second blinking light 404 by the finger 140.
  • the second light signal 430 further includes an ambient light signal 412 of the ambient light 402 reflected by the finger.
  • the first control signal 301 and the second control signal 303 may be the same signal, and the first blinking light 401 and the second blinking light 404 may be blinking lights that blink simultaneously.
  • the first control signal 301 and the second control signal 303 are exactly the same rectangular wave pulse signals, that is, the frequency, phase, amplitude and other parameters are exactly the same.
  • the pulse frequency is 1MHz
  • the pulse width is 1 ⁇ s.
  • the first blinking light 401 and the second blinking light 404 blink synchronously, and the blinking frequency is 1 MHz.
  • the first control signal 301 and the second control signal 303 are different.
  • the first control signal 301 and the second control signal 303 are rectangular wave pulse signals with a fixed frequency, and the value of the first control signal 301 The frequency is different from the frequency of the second control signal 303, so the first blinking light 401 and the second blinking light 404 have different bright blinking frequencies.
  • the pulse frequency of the second control signal 303 is 1 MHz and the pulse width is 1 ⁇ s
  • the pulse frequency of the first control signal 301 is 2 MHz and the pulse width is 0.5 ⁇ s.
  • the fingerprint identification module 300 processes the electrical signal to obtain a second fingerprint detection signal;
  • the second pattern detection signal is an electrical signal obtained by processing based on the first flicker light signal and the second flicker light signal.
  • the fingerprint identification module 300 may further include a second processing module 360 for processing the second electrical signal 530 to obtain the second fingerprint detection signal 620.
  • the second fingerprint detection signal 620 corresponds to the first blinking light signal 411 and the second blinking light signal 431, and is not interfered by the ambient light signal 412.
  • the second processing module 360 is configured to process and acquire the electrical signal component generated when the first flicker light signal 411 and the second flicker light signal 431 act simultaneously as the second fingerprint detection processing signal 621.
  • the second electrical signal 530 also exhibits the same rectangular wave pulse, and the second processing module 360 is used to convert the second electrical signal By subtracting the minimum pulse amplitude from 530, the generated electrical signal is the second fingerprint processing detection signal 621.
  • the second fingerprint detection signal 620 includes the second fingerprint detection processing signal 621.
  • the light detection module 320 may also be used to process the second fingerprint detection processing signal 621 to obtain a fingerprint image signal.
  • the second control module 350, the second processing module 360, and the light detection module 320 may be multiple independent chips, which are packaged independently, or may be bare chip modules grown on multiple wafers. Multiple bare chip modules are packaged to form a chip.
  • the first control signal 301 causes the supplementary light source 400 to emit the first flashing light 401
  • the second control signal 302 causes the display screen 120 to emit the second flashing light 404.
  • the first flashing light 401 and The second blinking light 404 is different from the ambient light.
  • the flashing light function increases the light intensity of the fingerprint detection signal and improves the quality of the fingerprint detection signal.
  • Fig. 7 is a schematic functional block diagram of another fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 may include a supplementary light source 400 and a fingerprint identification module 300.
  • the fingerprint recognition module 300 includes an optical component 310, a light detection module 320, a first control module 330, a second control module 350, and a second processing module 360.
  • the first control module 330 may further include a first modulation control module 331.
  • the fingerprint recognition module 300 generates a second modulation control signal that controls the switching frequency and/or switching time of the pixel unit in the display screen to change with time.
  • the second control module 350 may further include a second modulation control module 351.
  • the second modulation control module 351 is used to modulate and generate a second modulation control signal 304.
  • the modulation control signal 304 controls the switching frequency and/or switching time of the pixel unit in the display screen 120 to change with time, and emits the second modulated flicker light 405.
  • the light intensity change of the second modulated scintillation light 405 is represented by a rectangular wave pulse with a varying frequency or a rectangular wave pulse with a varying pulse width.
  • the second control signal 303 is the second modulation control signal 304
  • the second flicker light 404 is the second modulated flicker light 405.
  • the second modulation control module 351 receives a second modulation signal 503 and a second carrier signal 504, and performs modulation based on the second modulation signal 503 and the second carrier signal 504 to obtain the second modulation control signal 304 .
  • the second modulation signal 503 may be an analog signal or a digital signal, where the analog second modulation signal 503 is a low-frequency signal, which may be a sine wave, a cosine wave, or the like.
  • the second carrier signal 504 is a high-frequency signal, which may be a sine wave, a cosine wave, a square wave, a pulse, or a sawtooth wave.
  • the second modulation control module 351 performs modulation based on the second modulation signal 503 and the second carrier signal 504 to obtain the second modulation control signal 304.
  • the method includes an analog modulation method and a digital modulation method.
  • the analog modulation method Including: AM, FM, PM, PAM, PWM, PFM and PDM etc.
  • Digital modulation methods include: ASK, FSK, PSK, PCM and DM, etc.
  • the second modulation control signal 304 controls the switching frequency of the pixel unit in the display screen 120 to form the second modulated flicker light 405.
  • the light intensity of the second modulated flicker light 405 changes with time and the second modulation control signal
  • the frequency of 304 varies with time or is the same, or the second modulation control signal 304 controls the switching time of the pixel unit in the display screen 120 to form the second modulated flicker light 405.
  • the light intensity of the second modulated flicker light 405 changes with time and the first
  • the level of the second modulation control signal 304 varies with time or is the same. Therefore, correspondingly, the second modulated scintillation light signal 441 reflected by the finger of the second modulated scintillation light 405 is related to or the same as the frequency change or level change of the second modulation control signal 304.
  • the optical component 310 is configured to receive the second modulated light signal 440 reflected by the finger and transmit it to the light detection module 320.
  • the optical detection module 320 is configured to receive the second modulated optical signal 440 and convert it into the second modulated electrical signal 540.
  • the second modulated light signal 440 includes the first modulated scintillation light signal 421 reflected by the first modulated scintillation light 403 by the finger 140 and the second modulated scintillation reflected by the second modulated scintillation light 405 by the finger 140 Light signal 441.
  • the second modulated light signal 440 further includes an ambient light signal 412 of the ambient light 402 reflected by the finger.
  • the second optical signal 430 may be the second modulated optical signal 440.
  • the first modulation control signal 302 and the second modulation control signal 304 may be pulse signals with the same frequency or varying pulse width, and the first blinking light 401 and the second blinking light 404 may be blinking lights that blink simultaneously. .
  • the first modulation control signal 302 and the second modulation control signal 304 may be pulse signals with different changes in frequency or pulse width.
  • the second modulated electrical signal 540 includes the frequency of the first modulated scintillation signal 421.
  • the fingerprint identification module 300 demodulates the electrical signal to obtain the second fingerprint detection signal.
  • the second processing module 360 may further include a second demodulation module 361, and the second demodulation module 361 is configured to demodulate the second modulated electrical signal 540 to obtain a second The fingerprint detection demodulates the signal 622.
  • the second electrical signal 530 may be the second modulated electrical signal 540.
  • the aforementioned second fingerprint detection signal 620 may be the first fingerprint detection demodulation signal 622.
  • the second demodulation module 361 includes a coherent demodulation circuit or a non-coherent demodulation circuit.
  • the second fingerprint detection demodulation signal 622 includes a first demodulation signal component 623 corresponding to the first modulated scintillation light signal 421 and a second demodulation signal component 623 corresponding to the second modulated scintillation light signal 441.
  • both the first modulation control module 331 and the second modulation control module 351 adopt FM frequency modulation, the frequency of the first modulation control signal 302 generated changes according to the linear function of the first modulation signal 501, and the generated first modulation control signal
  • the frequency of the second modulation control signal 304 changes according to a linear function of the second modulation signal 503.
  • the second demodulation module 322 demodulates the first modulated electrical signal 520 by using two frequency discrimination circuits, and obtains the first demodulated signal component 623 reflecting the change of the first modulated signal 501 and the change reflecting the second modulated signal 503 respectively.
  • the second demodulated signal component 624 is the first modulated electrical signal 520 by using two frequency discrimination circuits, and obtains the first demodulated signal component 623 reflecting the change of the first modulated signal 501 and the change reflecting the second modulated signal 503 respectively.
  • the first demodulated signal component 623 and the second demodulated signal component 624 are processed to obtain a second fingerprint detection demodulated signal 622.
  • the second fingerprint detection demodulation signal 622 includes the light intensity information of the first modulated blinking light signal 421 and the second modulated blinking light signal 441, and is not interfered by the ambient light signal 412.
  • the second modulation control module 351 may also obtain a second modulation signal 503 and a second carrier signal 504, and the second modulation signal 503 and the second carrier signal 504 may be sent to the second modulation control by the processor. Module 351.
  • the light detection module 320 may also be used to process the second fingerprint detection demodulation signal 622 to obtain a fingerprint image signal.
  • the second modulation control signal 304 causes the display screen 120 to emit the second modulated flicker light 405, and the first modulation control signal 302 causes the supplement light source 400 to emit the first modulated flicker light 403,
  • the frequency or pulse width of the modulated scintillation light 405 and the first modulated scintillation light 401 changes with time.
  • the second modulated scintillation light 405 and the first The fingerprint detection electrical signal that modulates the frequency or pulse width of the blinking light 401 can effectively eliminate interference from other lights, increase the light intensity of the fingerprint detection optical signal, and significantly improve the signal quality of the fingerprint detection electrical signal.
  • FIG. 8 is a schematic functional block diagram of another fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 includes a fingerprint identification module 300, which is used to receive the light signal reflected by the finger 140 and convert it into an electrical signal; the light signal includes the first light source 400 A flashing light passes through the first flashing light signal reflected by the finger.
  • the fingerprint identification device 200 may further include a supplementary light source 400.
  • the fingerprint identification device 200 may further include a processor 500.
  • the processor 500 generates a first control signal, and the first control signal controls the switching frequency and/or the switching time of the supplemental light source to emit the first blinking light.
  • the processor 500 may include the first control module 330.
  • the first control module 330 is used to generate a first control signal 301 to control the switching frequency and/or switching time of the supplemental light source 400, and emit the first blinking light 401.
  • the first control module 330 may further include a first modulation control module 331, which is used to modulate and generate a first modulation control signal 302, and the first modulation control signal 302 controls the The switching frequency and/or the switching time of the supplementary light source 400 change with time to emit the first modulated blinking light 403.
  • a first modulation control module 331 which is used to modulate and generate a first modulation control signal 302
  • the first modulation control signal 302 controls the The switching frequency and/or the switching time of the supplementary light source 400 change with time to emit the first modulated blinking light 403.
  • the fingerprint recognition module 300 includes an optical component 310 and a light detection module 320 for converting the first optical signal 410 into the first electrical signal 510.
  • the first optical signal 410 includes the first flashing light signal 411 reflected by the first flashing light 401 by the finger 140.
  • the first light signal 410 further includes an ambient light signal 412 of the ambient light 402 reflected by the finger.
  • the processor 500 may process the electrical signal to obtain a first fingerprint detection signal; the first fingerprint detection signal is an electrical signal obtained by processing based on the first blinking light signal.
  • the processor 500 further includes a first processing module 340 for processing the first electrical signal 510 to obtain the first fingerprint detection signal 610.
  • the first fingerprint detection signal 610 corresponds to the first blinking light signal 411, and is not interfered by the ambient light signal 412.
  • the first processing module 340 further includes a first demodulation module 341 configured to demodulate the first electrical signal 510 to obtain the first fingerprint detection demodulation signal 612.
  • the first fingerprint detection signal 610 includes the first fingerprint detection demodulation signal 612.
  • the processor 500 may also be used to process the first fingerprint detection signal 610 to obtain a fingerprint image signal.
  • FIG. 9 is a schematic functional block diagram of another fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 includes a fingerprint identification module 300.
  • the fingerprint identification module 300 is used to receive the light signal reflected by the finger and convert it into an electrical signal; the light signal includes the first flashing light signal reflected by the finger and the first flashing light signal of the supplementary light source. The second blinking light signal reflected by the finger.
  • the fingerprint identification device 200 may further include a supplementary light source 400.
  • the processor 500 may include a first control module 330.
  • the processor 500 may generate a second control signal that controls the switching frequency and/or switching time of the pixel unit in the display screen to emit the second blinking light.
  • the processor 500 further includes a second control module 350, and the second control module 350 is configured to generate a second control signal 303 to control the switching frequency of the pixel unit in the display screen 120 And/or the switching time, a second blinking light 404 is emitted.
  • the second control module 350 further includes a second modulation control module 351, and the second modulation control module 351 is used to modulate and generate a second modulation control signal 304, and the second modulation control signal 304 controls the The switching frequency and/or the switching time of the pixel unit in the display screen 120 change with time to emit the second modulated flicker light 405.
  • the fingerprint recognition module 300 may include an optical component 310 and a light detection module 320 for converting the second optical signal 430 into a second electrical signal 530.
  • the second light signal 430 includes a first blinking light signal 411 reflected by the first blinking light 401 through the finger 140 and a second blinking light signal 431 reflected by the second blinking light 404 by the finger 140.
  • the second light signal 430 further includes an ambient light signal 412 of the ambient light 402 reflected by the finger.
  • the processor 500 processes the electrical signal to obtain a second fingerprint detection signal;
  • the second pattern detection signal is an electrical signal obtained by processing based on the first flicker light signal and the second flicker light signal.
  • the processor 500 may further include a second processing module 360 for processing the second electrical signal 530 to obtain the second fingerprint detection signal 620.
  • the second fingerprint detection signal 620 corresponds to the first blinking light signal 411 and the second blinking light signal 431, and is not interfered by the ambient light signal 412.
  • the second processing module 360 further includes a second demodulation module 361, and the second demodulation module 361 is configured to demodulate the second electrical signal 530 to obtain a second fingerprint detection demodulation signal 622.
  • the processor 500 may also be used to process the second fingerprint detection signal 620 to obtain a fingerprint image signal.
  • FIG. 10 is a schematic functional block diagram of another fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 may include a supplementary light source 400, a fingerprint identification module 300 and a processor 500.
  • the processor 500 is configured to receive first instruction information 710, and turn on the supplemental light source 400 according to the first instruction information 710.
  • the first indication information 710 indicates that there is a finger touch on the display screen 120, specifically, indicates that there is a finger touch on the first detection area 103 on the display screen 120.
  • the display screen 120 is a touch display screen with a touch function.
  • the display screen 120 sends first indication information to the processor. 500.
  • the processor 500 is further configured to receive second indication information 720, and turn on the supplemental light source 400 according to the first indication information 710 and the second indication information 720.
  • the second indication information 720 indicates that there is ambient light exceeding the first threshold intensity.
  • the electronic device including the fingerprint identification device 200 includes a light sensor, and when the light sensor receives ambient light with a certain threshold intensity, the light sensor sends second instruction information to the processor 500.
  • the processor 500 is further configured to receive the first indication information 710 and the second indication information 720, and control the fingerprint identification according to the first indication information 710 and the second indication information 720
  • the module 300 starts to operate, that is, starts to convert the received optical signal into an electrical signal.
  • the processor 500 is further configured to receive a third instruction signal, and turn off the supplemental light source 400 according to the third instruction signal.
  • the third indication information indicates that the fingerprint identification device 200 has processed a fingerprint image.
  • the fingerprint recognition module 300 in the fingerprint recognition device 200 processes the fingerprint image, and the fingerprint recognition module 300 sends the third instruction information to the processor 500.
  • the processor 500 may also be used to control the display screen 120 to start detecting whether there is a finger touch.
  • the processor 500 may also be used to control the light sensor to start detecting ambient light.
  • the processor 500 controls the opening and closing of the supplementary light source 400 and the operation of the fingerprint recognition module 300, which can effectively reduce fingerprint trigger misjudgments, and can effectively reduce the impact of the supplementary light source 400. Power consumption.
  • FIG. 11 is a schematic flowchart of a method for starting a fingerprint identification device 200 for fingerprint identification according to an embodiment of the present application.
  • the fingerprint identification device 200 may include a fingerprint identification module 300 and a light source 400.
  • S110 Receive first indication information, where the first indication information indicates that there is a finger touch on the display screen, specifically, indicates that there is a finger touch on the fingerprint detection area on the display screen.
  • the display screen is a touch display screen with a touch function.
  • the display screen sends first indication information.
  • the fingerprint identification device 200 receives the first instruction information.
  • S120 Receive second indication information, where the second indication information indicates that there is ambient light exceeding a first threshold intensity.
  • the electronic device including the fingerprint identification device 200 includes a light sensor, and when the light sensor receives ambient light with a certain threshold intensity, the light sensor sends the second instruction information.
  • the fingerprint identification device 200 receives the second instruction information.
  • S130 Turn on the supplemental light source 400 according to the first instruction information and the second instruction information.
  • the supplemental light source 400 emits first blinking light.
  • S140 Control the switching frequency and/or switching time of the supplemental light source 400 to emit the first blinking light.
  • the fingerprint recognition module 300 is controlled to start receiving an optical signal and convert the optical signal into an electrical signal, the optical signal including the first optical signal reflected by the finger from the first flashing light of the supplemental light source 400.
  • S160 Receive third instruction information, where the third instruction information indicates that the fingerprint identification device 200 has processed the fingerprint image.
  • the fingerprint recognition module 300 in the fingerprint recognition device 200 processes the fingerprint image, and the fingerprint recognition module 300 sends the third instruction information.
  • the fingerprint identification device 200 receives the third instruction information.
  • an embodiment of the present application also provides an electronic device 600.
  • the electronic device 600 may include a fingerprint identification device 610.
  • the fingerprint identification device 610 may be the fingerprint identification device 200 in the foregoing device embodiment. It can be used to execute the content in the method embodiment described in FIG. 11. For the sake of brevity, it will not be repeated here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the fingerprint recognition in the embodiments of the present application may further include a memory
  • the memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the embodiment of the present application also proposes a computer-readable storage medium that stores one or more programs, and the one or more programs include instructions.
  • the instructions When the instructions are included in a portable electronic device that includes multiple application programs When executed, the portable electronic device can be made to execute the method of the embodiment shown in FIG. 8.
  • the embodiment of the present application also proposes a computer program, which includes instructions.
  • the computer program When the computer program is executed by a computer, the computer can execute the method of the embodiment shown in FIG. 11.
  • An embodiment of the present application also provides a chip that includes an input and output interface, at least one processor, at least one memory, and a bus.
  • the at least one memory is used to store instructions, and the at least one processor is used to call the at least one memory. To execute the method of the embodiment shown in FIG. 11.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别装置和电子设备,能够提高指纹检测信号的质量。该指纹识别装置包括:指纹识别模组,用于设置于显示屏下方,用于接收经过手指反射的光信号并转换为电信号;所述光信号包括补光光源的第一闪烁光经过所述手指反射的第一闪烁光信号。

Description

指纹识别装置和电子设备 技术领域
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
随着信息行业的高速发展,屏下生物识别技术受到了越来越广泛的应用,其中,屏下指纹识别技术已经广泛应用在移动终端、智能家居等多个领域。
目前,市场主流的显示屏包括液晶显示器(liquid crystal display,LCD)和有机发光二极管(organic light-emitting diode,OLED)显示屏。OLED屏下光学指纹识别技术是利用OLED显示屏自身发出的光照射手指后检测指纹,指纹检测信号的质量提升受限于OLED显示屏所能提供的最大亮度。
因此,如何提高OLED屏下指纹检测信号质量,成为一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提高OLED屏下指纹检测信号质量,从而提高指纹识别装置的性能。
第一方面,提供了一种指纹识别装置,包括:指纹识别模组,用于设置于显示屏下方,用于接收经过手指反射的光信号并转换为电信号;所述光信号包括补光光源的第一闪烁光经过所述手指反射的第一闪烁光信号。
基于上述技术方案,通过增加补光光源使指纹检测光信号的光强不再受限于OLED显示屏本身的光源光强,增大指纹检测光信号的光强。且该补光光源发射第一闪烁光,区别于环境光,从而避免环境光的干扰,提高指纹检测信号的质量,在强光下也能进行指纹检测。
在一种可能的实现方式中,所述装置还包括所述补光光源,所述补光光源用于产生所述第一闪烁光。
可选地,所述补光光源设置于所述指纹识别模组的视场外。
在一种可能的实现方式中,所述补光光源为中空面光源,所述指纹识别 模组的视场位于所述中空面光源的中空区域中。
可选地,所述中空面光源包括:中空圆形面光源,中空矩形面光源或中空六边形面光源。
可选地,所述指纹识别模组设置于所述中空面光源中心下方。
在一种可能的实现方式中,所述补光光源为红外光发光光源。
在一种可能的实现方式中,所述指纹识别模组用于产生第一控制信号,所述第一控制信号控制所述补光光源的开关频率和/或开关时间,以发射所述第一闪烁光。
可选地,所述第一控制信号包括第一调制控制信号,所述第一调制控制信号控制所述补光光源的开关频率和/或开关时间随时间变化。
在一种可能的实现方式中,所述指纹识别模组用于对所述电信号进行处理得到第一指纹检测信号;所述第一指纹检测信号为基于所述第一闪烁光信号的电信号。
可选地,所述指纹识别模组用于对所述电信号解调处理得到所述第一指纹检测信号。
在一种可能的实现方式中,所述光信号包括显示屏的第二闪烁光经过所述手指反射的第二闪烁光信号。
在一种可能的实现方式中,所述指纹识别模组用于产生第二控制信号,所述第二控制信号控制所述显示屏中像素单元的开关频率和/或开关时间,以发射所述第二闪烁光。
可选地,所述第二控制信号包括第二调制控制信号,所述第二调制控制信号控制所述显示屏中像素单元的开关频率和/或开关时间随时间变化。
在一种可能的实现方式中,所述指纹识别模组用于对所述电信号进行处理得到第二指纹检测信号;所述第二纹检测信号为基于所述第一闪烁光信号和所述第二闪烁光信号的电信号。
可选地,所述指纹识别模组用于对所述电信号解调处理得到所述第二指纹检测信号。
在一种可能的实现方式中,所述装置还包括:处理器,用于产生第一控制信号,所述第一控制信号控制所述补光光源的开关频率和/或开关时间,以发射所述第一闪烁光。
可选地,所述第一控制信号包括第一调制控制信号,所述第一调制控制 信号控制所述补光光源的开关频率和/或开关时间随时间变化。
在一种可能的实现方式中,所述处理器用于对所述电信号进行处理得到第一指纹检测信号;所述第一指纹检测信号为基于所述第一闪烁光信号的电信号。
可选地,所述处理器用于对所述电信号解调处理得到所述指纹检测信号。
在一种可能的实现方式中,所述光信号包括显示屏的第二闪烁光经过所述手指反射的第二闪烁光信号。
在一种可能的实现方式中,所述处理器用于产生第二控制信号,所述第二控制信号控制所述显示屏中像素单元的开关频率和/或开关时间,以发射所述第二闪烁光。
可选地,所述第二控制信号包括第二调制控制信号,所述第二调制控制信号控制所述显示屏中像素单元的开关频率和/或开关时间随时间变化。
在一种可能的实现方式中,所述处理器用于对所述电信号进行处理得到第二指纹检测信号;所述第二纹检测信号为基于所述第一闪烁光信号和所述第二闪烁光信号的电信号。
可选地,所述处理器用于对所述电信号解调处理得到所述第二指纹检测信号。
在一种可能的实现方式中,所述处理器用于接收第一指示信息,所述第一指示信息指示所述显示屏上存在所述手指触摸,根据所述第一指示信息打开所述补光光源。
在一种可能的实现方式中,所述处理器用于接收第二指示信息,所述第二指示信息指示存在超过第一阈值强度的环境光,根据所述第二指示信息和所述第一指示信息打开所述补光光源。
第二方面,提供了一种电子设备,包括显示屏以及如第一方面或其任一种可能的实现方式中的指纹识别装置。
附图说明
图1是本申请实施例所适用的电子设备的结构示意图。
图2是本申请实施例指纹识别装置及其适用的终端设备的结构示意图。
图3是本申请实施例的补光光源的形状示意图。
图4是本申请实施例的指纹识别装置的示意性功能框图。
图5是本申请实施例的另一指纹识别装置的示意性功能框图。
图6是本申请实施例的另一指纹识别装置的示意性功能框图。
图7是本申请实施例的另一指纹识别装置的示意性功能框图。
图8是本申请实施例的另一指纹识别装置的示意性功能框图。
图9是本申请实施例的另一指纹识别方法的示意性流程图。
图10是本申请实施例的另一指纹识别装置的示意性功能框图。
图11是本申请实施例的一种指纹识别方法流程示意图。
图12是根据本申请实施例的电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
作为一种常见的应用场景,本申请实施例的技术方案可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备。且本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
在上述终端设备中,本申请实施例的光学指纹系统中包括光学指纹装置,该光学指纹装置可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under display)光学指纹系统。
如图1所示为本申请实施例可以适用的终端设备10的结构示意图,所述终端设备10包括显示屏120和指纹识别模组110,其中,所述指纹识别模组110设置在所述显示屏120下方的局部区域。所述指纹识别模组110包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元111的感应阵列112。
作为一种可选的实施例,所述显示屏120为OLED显示屏,所述指纹识别模组300可以利用所述OLED显示屏120的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在所述显示屏120时,显示屏120向目标手指140发出一束光121,该光121在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴141 (ridge)与峪142(vally)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的反射光152具有不同的光强,反射光被指纹识别模组110中的感应阵列112所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备10实现光学指纹识别功能。
由于OLED显示屏的基本结构是在铟锡氧化物(indium tin oxides,ITO)玻璃上制作一层几十纳米厚的有机发光材料作发光层,光的亮度或强度取决于发光材料的性能以及施加电流的大小。发光材料的发光效率低,且施加电流越大,发光材料老化速度变快,发光效率会进一步下降。因此,受限于有机发光材料的发光特性,OLED光源的亮度低。将OLED光源作为指纹识别模组300检测指纹的激励光源,使指纹检测信号的光强度小,信号质量差。
基于此,本申请提供了一种指纹识别方案,在指纹识别装置中增加补光光源,在指纹检测时,开启该补光光源,增强指纹检测光信号的光强,从而提高指纹检测电信号的质量。
以下,结合图2至图11,详细介绍本申请实施例的指纹识别装置。可选地,在本申请实施例中,该指纹识别装置可以为指纹模组,或者,该指纹识别装置可以为包括指纹模组的电子设备,本申请实施例对此不作限定。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
图2为本申请实施例指纹识别装置200及其适用的终端设备20的结构示意图,其中,图2中的(a)为本申请实施例的指纹识别装置200可以适用的终端设备20的正面示意图,图2中的(b)是图2中的(a)所示的终端设备10沿A-A’的部分剖面结构示意图。如图2所示,所述终端设备20包括显示屏120和指纹识别装置200。所述指纹识别装置200包括指纹识别模组300,该指纹识别模组300所述指纹识别模组300用于设置在所述显示屏120下方区域,用于接收经过手指140反射的光信号并转换为电信号;所述光信号包括补光光源400的第一闪烁光经过所述手指反射的第一闪烁光信号。
可选地,所述指纹识别模组300包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元321的感应阵列322,所述感应阵列322所在区域或者其感应区域为所述指纹识别模组300的指纹检测区域103。如图 2中的(a)所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述指纹识别模组300还可以设置在其他位置,比如所述显示屏120的侧面或者所述终端设备10的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述指纹识别模组300,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述指纹识别模组300的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述指纹识别模组300的指纹检测区域103的面积大于所述指纹识别模组300感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述指纹识别模组300的指纹检测区域103也可以设计成与所述指纹识别模组300的感应阵列的面积基本一致。
另一方面,在某些实施例中,所述指纹识别模组300的感应阵列面积小,例如仅包括一个光学指纹传感器,此时指纹识别模组300的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则指纹识别模组300可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述指纹识别模组300的感应阵列面积大,例如可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述指纹识别模组300的指纹检测区域103。也即是说,所述指纹识别模组300的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述指纹识别模组300的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏下实现,因此采用上述结构的终端设 备20无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个终端设备20的正面。
作为一种可选的实现方式,如图2中的(b)所示,所述指纹识别模组300可以包括光学组件310和光检测模块320,所述光检测模块320包括所述感应阵列322以及与所述感应阵列322电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器。
可选地,所述光学组件310可以设置在所述光检测模块320的感应阵列的上方,其可以具体包括滤光层(Filter)311、导光层312以及其他光学元件,所述滤光层311可以用于滤除穿透手指的环境光和透过有效的指纹反射光信号,而所述导光层312主要用于有效的指纹反射光信号导引至所述光检测模块320中的感应阵列进行光学检测。在本申请实施例中,有效的指纹反射光信号包括补光光源的第一闪烁光信号。
可选地,如图2中的(b)所示,所述滤光层311可以设置在所述导光层312的上方,或者所述滤光层311设置在所述导光层312的下方以及所述光检测模块320的上方。该滤光层311和导光层312可以通过固定装置连接或者通过制造工艺将该滤光层直接制备在导光层312上。
可选地,有效的指纹反射光信号为可见光,感应阵列322接收可见光指纹光信号并进行处理,所述滤光层311可以为红外截止滤波片,对红外环境光进行滤除而透过可见光。
可选地,有效的指纹反射光信号为红外光,感应阵列322接收红外光指纹光信号并进行处理,所述滤光层311可以为可见光滤波片,对屏幕的可见光进行滤除。
以有效的指纹反射光信号为可见光为例,滤光层311可以为红外截止滤波片,通过固定装置设置在导光层312的上方,滤光层311与导光层312之间有一定的空气间隙。或者通过固定装置设置在导光层312的下方以及光检测模块320的上方,滤光层311与导光层312,以及光检测模块320之间有一定的空气间隙。
滤光层311还可以为红外滤波材料,直接涂覆在导光层312的上表面。 或者涂覆在光检测模块320的上表面。
在具体实现上,所述光学组件310可以与所述光检测模块320封装在同一个光学指纹部件。比如,所述光学组件310可以与所述光学检测模块320封装在同一个光学指纹芯片,也可以将所述光学组件310设置在所述光检测模块320所在的芯片外部,比如将所述光学组件310贴合在所述芯片上方,或者将所述光学组件310的部分元件集成在上述芯片之中。
其中,所述光学组件310的导光层312有多种实现方案,比如,所述导光层312可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,所述导光层312也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测模块320的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述指纹识别模组的视场,以提高所述指纹识别模组300的指纹成像效果。
在其他实施例中,所述导光层312或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,所述微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测模块320的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单元。并且,所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜汇聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直 器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
在本申请实施例中,指纹识别模组300用于接收经过手指140反射的光信号并转换为电信号。所述光信号包括所述补光光源400发射的第一闪烁光401经过所述手指140反射的第一闪烁光信号411。
作为一种可选地实施例,如图2中的(b)所示,所述指纹识别装置200还可以包括:补光光源400。可选地,该补光光源400对应于显示屏120中指纹检测区域103,所述指纹识别模组300可以利用所述补光光源400来作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,补光光源400向所述指纹检测区域103上方的目标手指140发出第一闪烁光401,该第一闪烁光401在手指140的嵴141与峪142表面发生反射形成第一闪烁光信号411。
采用本申请实施例的指纹识别装置200进行光学指纹检测,通过增加补光光源400使指纹检测光信号的光强不再受限于OLED显示屏本身的光源光强,增大指纹检测光信号的光强。且该补光光源400发射第一闪烁光401,区别于环境光,从而避免环境光的干扰,提高指纹检测信号的质量,在强光下也能进行指纹检测。
可选地,补光光源400设置于指纹识别模组300的上方,用于产生所述第一闪烁光。可选地,补光光源400与指纹识别模组300的上表面接触,具体地,补光光源400与指纹识别模组300中的滤光层311或者导光层312的上表面接触。可选地,补光光源400与指纹识别模组300的上表面不接触,使补光光源400与指纹识别模组300的上表面之间保持一定的距离,例如存在一定的空气间隙。
可选地,补光光源400设置于显示屏120的下方。可选地该补光光源400可以与显示屏120的下表面接触,例如通过框贴胶将补光光源400粘贴在OLED显示屏120下方的黑色泡棉上。该补光光源400也可以与显示屏120的下表面不接触,使补光光源400与显示屏120的下表面之间保持一定的距离,例如存在一定的空气间隙。
可选地,补光光源400为任意可发光的电光源,例如发光二极管(light-emitting diode,LED),激光二极管(laser diode,LD)或者垂直腔面 发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)等。
可选地,补光光源400可以为可见光发光光源,也可以为非可见光发光光源。例如,补光光源400为红外光发光光源。
应当注意,当补光光源400为可见光发光光源时,第一闪烁光信号为可见光信号,因而有效的指纹反射光信号为可见光,此时,所述滤光层311的材料为非可见光滤光材料,例如滤光层311可以为红外截止滤波片。
当补光光源400为非可见光发光光源时,第一闪烁光信号为非可见光信号,因而有效的指纹反射光信号为非可见光,此时,所述滤光层311的材料为可见光滤光材料。
可选地,补光光源400设置于指纹识别模组300的视场(field of view,FOV)之外。所述指纹识别模组300的视场也称视场角,是指能被指纹识别模组300观察到的物方可视范围。
可选地,补光光源400设置于所述指纹检测区域103对应的下方区域四周。
可选地,补光光源400可以为点光源,线光源或者面光源。例如,补光光源400为多个分散的LED点光源,分散设置于指纹检测区域103对应的下方区域的四周。或者补光光源400为两条平行的线光源,设置于指纹检测区域103对应的下方区域的两侧。
优选地,如图3所示,补光光源400为中空面光源。如图3中的(a)所示,补光光源400为中间镂空的圆形面光源,其中镂空部分不发光,四周圆环为发光光源。或者补光光源400为中间镂空的多边形面光源,例如,如图3中的(b)所示,补光光源400为中间镂空的矩形面光源,或者如图3中的(c)所示,补光光源400为中间镂空的六边形面光源。
优选地,所述中空面光源设置于指纹检测区域103中心下方,所述中空面光源的发光区域在所述指纹检测区域103对应的下方区域四周,所述指纹识别模组300的视场在所述中空面光源的中空区域中。
优选地,所述指纹识别模组300设置于所述中空面光源中心下方。
采用该中空面光源能够为手指提供附加均匀的光源,且不会影响正常的指纹检测区域。
应当理解的是,在具体实现上,所述终端设备20还包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并 覆盖所述终端设备20的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
需要说明的是,本申请实施例中的指纹识别模组也可以称为光学指纹装置,光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
图4是本申请实施例提供的一种指纹识别装置200的示意性功能框图。如图4所示,指纹识别装置200包括指纹识别模组300,该指纹识别模组300用于接收经过手指140反射的光信号并转换为电信号;所述光信号包括补光光源400的第一闪烁光经过所述手指反射的第一闪烁光信号。
可选地,如图4所示,所述指纹识别装置200还可以包括补光光源400,用于产生所述第一闪烁光。
可选地,所述指纹识别模组300产生第一控制信号,所述第一控制信号控制所述补光光源的开关频率和/或开关时间,以发射所述第一闪烁光。
可选地,如图4所示,指纹识别模组300中还可以包括第一控制模块330。该第一控制模块330产生第一控制信号301,该第一控制信号301控制补光光源400的开关频率和/或开关时间,以发射第一闪烁光401。
应理解,所述第一控制信号301可以为任意控制补光光源400发射第一闪烁光401的电信号,例如,正弦波,余弦波,三角波或者脉冲波信号等。
作为示例而非限定,第一控制信号301为矩形波脉冲信号,补光光源400的开关频率为即第一控制信号301的频率,补光光源400的单次开启时间即为第一控制信号301的脉冲宽度。当脉冲达到最大幅值时,补光光源开启,最大幅值保持的时间为补光光源单次开启的时间,当脉冲达到最小幅值时,补光光源关闭,最小幅值保持的时间为补光光源单次关闭的时间。
可选地,第一控制信号301为频率和宽度固定的矩形波脉冲信号,因而,相应地,第一闪烁光401的光强随时间的变化表现为频率和宽度与第一控制信号301相同的矩形波脉冲,第一闪烁光401为固定频率和发光时间闪烁的闪烁光。为方便描述,在下文中,光强随时间的变化也写为光强变化。
可选地,第一控制信号301为频率随时间变化的矩形波脉冲信号或者宽度变化的矩形波脉冲信号。当第一控制信号301为频率随时间变化的矩形波脉冲信号时,两个脉冲之间的时间间隔可能不同。当第一控制信号301为脉 宽随时间变化的矩形波脉冲信号时,两个脉冲的脉冲宽度可能不同。相应地,第一闪烁光401表现频率或脉宽为与第一控制信号301相同的矩形波脉冲,第一闪烁光401为非固定频率闪烁的闪烁光或者非固定发光时间闪烁的闪烁光。为方便描述,在下文中,频率随时间的变化也写为频率变化,脉宽随时间变化也写为脉宽变化。
可选地,所述指纹识别模组300中还可以包括光学组件310和光检测模块320。经过手指反射的光信号为第一光信号410,光学组件310接收所述第一光信号410,并将该第一光信号410传送给光检测模块320,光检测模块320用于接收第一光信号410并将第一光信号410转换为第一电信号510。
可选地,所述第一光信号410包括第一闪烁光401经过手指140反射的第一闪烁光信号411。
可选地,所述第一光信号410还包括经过手指反射的环境光402的环境光信号412。
应理解,环境光为外部环境中光强不变或者变化频率缓慢的光信号,第一闪烁光401可以为任意光强变化不同于环境光402的光信号,本申请实施例对此处不做限定。
作为示例而非限定,第一闪烁光401的光强变化表现为频率和宽度与第一控制信号301相同的矩形波脉冲,第一闪烁光401为固定频率和发光时间闪烁的闪烁光。相应地,经过手指反射之后,第一闪烁光信号411的光强变化也表现为频率和宽度与第一控制信号301相同的矩形波脉冲。环境光402为光强不变的光信号,相应地,经过手指反射之后,环境光信号412也为光强不变的光信号。第一光信号410中包含第一闪烁光信号411和环境光信号412,因此,经过对第一光信号410转换得到的第一电信号510中包含对应于第一闪烁光信号411和环境光信号412的电信号分量,受第一闪烁光信号411光强变化的影响,第一电信号510也表现为频率和宽度与第一控制信号301相同的矩形波脉冲。该第一电信号510的脉冲最大幅值为第一闪烁光信号411和环境光信号412同时作用时产生的电信号,该第一电信号510的脉冲最小幅值仅为环境光信号412作用时产生的电信号。
可选地,所述指纹识别模组300可以对电信号进行处理得到第一指纹检测信号;所述第一指纹检测信号为基于第一闪烁光信号处理得到的电信号。
可选地,如图4所示,所述指纹识别模组300还包括第一处理模块340。 该第一处理模块340用于对第一电信号510进行处理得到第一指纹检测信号610。该第一指纹检测信号610对应于所述第一闪烁光信号411,且不受环境光信号412的干扰。
可选地,第一处理模块340用于去除第一电信号510中对应于环境光412作用时产生的电信号分量,使第一指纹检测处理信号611仅为第一闪烁光信号411作用时产生的电信号分量。例如,当第一控制信号301为为频率和宽度固定的矩形波脉冲信号,第一电信号510也表现为频率和宽度与第一控制信号301相同的矩形波脉冲,第一处理模块340用于将第一电信号510减去其脉冲最小幅值,产生的电信号即为第一指纹检测处理信号611。第一指纹检测信号610包括所述第一指纹检测处理信号611。
可选地,光检测模块320还可以用于对该第一指纹检测信号610进行处理得到指纹图像信号。
应理解,所述第一控制模块330,第一处理模块340和光检测模块320可以为多个独立的芯片,分别进行独立的芯片封装,也可以为生长在多个晶圆上的裸露芯片模块,对多个裸露芯片模块进行封装形成一个芯片。
在本申请实施例中,通过第一控制信号301使补光光源400发出第一闪烁光401,该第一闪烁光401和环境光不同,通过对指纹识别模组300产生的第一电信号510的处理,滤除环境光产生的电信号的干扰,得到指纹检测电信号。因而,指纹检测时,本申请实施例能够排除环境光的干扰,提高指纹检测电信号的信号质量,在强光环境下也能进行指纹识别。
图5是本申请实施例提供的另一种指纹识别装置200的示意性功能框图。如图5所示,指纹识别装置200可以包括补光光源400和指纹识别模组300。
可选地,指纹识别模组300可以包括光学组件310,光检测模块320,第一控制模块330以及第一处理模块340。
可选地,指纹识别模组300产生第一调制控制信号,所述第一调制控制信号控制补光光源400的开关频率和/或开关时间随时间变化。
可选地,如图5所示,所述第一控制模块330可以包括第一调制控制模块331。该第一调制控制模块331用于调制产生第一调制控制信号302,所述第一调制控制信号302控制所述补光光源400的开关频率和/或开关时间随时间变化,以发射第一调制闪烁光403。在上述情况下,上述第一控制信号 301为第一调制控制信号302,上述第一闪烁光401为第一调制闪烁光403。
可选地,所述第一调制控制模块331接收第一调制信号501和第一载波信号502,基于所述第一调制信号501和第一载波信号502进行调制得到所述第一调制控制信号302。
可选地,该第一调制信号501可以为模拟信号或者为数字信号,其中模拟第一调制信号为低频信号,可以为正弦波,余弦波等等。
可选地,相对于第一调制信号501,第一载波信号502为高频信号,可以为正弦波,余弦波,方波,脉冲或者锯齿波等。
可选地,第一调制信号501为模拟信号,第一调制控制模块331包括模拟调制电路,其中若第一载波信号502为正弦波信号,调制方式包括:幅度调制(amplitude modulation,AM),频率调制(frequency modulation,FM)以及相位调制(phase modulation,PM)等。若第一载波信号502为脉冲信号,调制方式包括:脉幅调制(pulse amplitude modulation,PAM),脉宽调制(pulse width modulation,PWM),脉频调制(pulse frequency modulation,PFM)以及脉位调制(pulse position modulation,PDM)等。
可选地,第一调制信号501为数字信号,第一调制控制模块331包括数字调制电路,其中若第一载波信号502为正弦波信号,调制方式包括:振幅键控(amplitude-shift keying,ASK),频移键控(frequency-shift keying,FSK),以及相移键控(phase-shift keying,PSK)等。若第一载波信号502为脉冲信号,调制方式包括:脉码调制(pulse code modulation,PCM),增量调制(delta modulation,DM)等。
作为示例而非限定,第一调制控制模块331采用FM频率调制,第一调制控制信号302为第一调频控制信号,即第一调制控制信号302的频率按照第一调制信号501的线性函数变化。
作为示例而非限定,第一调制控制模块331采用PWM脉宽调制,该第一调制控制信号302为第一已调脉宽信号,第一调制信号501为正弦波,第一载波信号502为高频锯齿波,第一调制控制信号302为第一调制信号501的电平与第一载波信号502的电平比较得到的脉冲信号,该第一调制控制信号302的脉冲宽度随第一调制信号501电平的变化而变化。
在本申请实施例中,通过第一调制控制信号302控制补光光源400的开关频率形成第一调制闪烁光403,该第一调制闪烁光403光强随时间变化与 第一调制控制信号302的频率随时间变化相关或相同,或者通过第一调制控制信号302控制补光光源400的开关时间形成第一调制闪烁光403,该第一调制闪烁光403光强随时间变化与第一调制控制信号302电平随时间变化相关或相同。因此,相应地,经过手指反射的第一调制闪烁光403的第一调制闪烁光信号421与第一调制控制信号302的频率变化或者电平变化相关或相同。
作为示例而非限定,第一调制控制信号302为频率变化的矩形波脉冲信号或者宽度变化的矩形波脉冲信号,相应地,该第一调制闪烁光421的光强变化表现为与第一调制控制信号302相同的矩形波脉冲。
可选地,在本申请实施例中,光学组件310接收经过手指反射的第一调制光信号420,并将第一调制光信号420传送给光检测模块320,光检测模块320用于接收第一调制光信号420并将第一调制光信号420转换为第一调制电信号520。
可选地,所述第一调制光信号420包括第一调制闪烁光403经过手指140反射的第一调制闪烁光信号421。
可选地,所述第一调制光信号420还包括经过手指反射的环境光402的环境光信号412。
在上述情况下,上述第一光信号410可以为第一调制光信号420。
在本申请实施例中,受第一调制闪烁光信号421光强频率变化或者脉宽变化的影响,第一调制电信号520包含与第一调制闪烁光信号421频率变化或者脉宽变化相同的电信号分量。
可选地,所述指纹识别模组300对电信号解调处理得到第一指纹检测信号。
可选地,如图5所示,所述第一处理模块340还可以包括第一解调模块341,所述第一处理模块340用于对第一调制电信号520进行处理得到第一指纹检测解调信号612。在上述情况下,上述第一电信号510可以为第一调制电信号520。上述第一指纹检测信号610可以为第一指纹检测解调信号612。
可选地,第一解调模块341包括相干解调电路,获取第一载波信号502,通过乘法器将第一调制电信号520与第一载波信502相乘,用低通滤波器对高频信号滤波,得到第一指纹检测解调信号612。
可选地,第一解调模块341包括非相干解调电路,通过包络检波器进行解调,例如,通过二极管加低通滤波器组成的二极管包络检波器解调出第一指纹检测解调信号612。
作为示例而非限定,第一调制控制模块331采用FM频率调制,产生的第一调制控制信号302的频率按照第一调制信号501的线性函数变化,第一解调模块341采用鉴频电路对第一调制电信号520进行解调得到反映第一调制信号501变化的第一指纹检测解调信号612,该第一指纹检测解调信号612中既包括第一调制闪烁光信号421的光强信息,又不受环境光信号412的干扰。例如,将第一调制电信号520对时间求导得到调频调幅信号,利用包络检波检波检出该调频调幅信号的幅值变化,得到第一指纹检测解调信号612。
可选地,第一调制控制模块331还可以获取第一调制信号501和第一载波信号502,所述第一调制信号501和第一载波信号502可以由处理器发送给所述第一调制控制模块331。
可选地,光检测模块320还可以用于对该第一指纹检测解调信号612进行处理得到指纹图像信号。
在本申请实施例中,通过第一调制控制信号302使补光光源400发出第一调制闪烁光403,该第一调制闪烁光403的频率或者脉宽随时间变化,与环境光不同,通过对指纹识别模组300产生的第一调制电信号520的解调,得到基于第一调制闪烁光403的频率或者脉宽变化的指纹检测电信号,在排除环境光的干扰下,进一步提高指纹检测电信号的信号质量。
图6是本申请实施例提供的另一种指纹识别装置200的示意性功能框图。如图6所示,指纹识别装置200包括指纹识别模组300。该指纹识别模组300用于接收经过手指反射的光信号并转换为电信号;所述光信号包括补光光源的第一闪烁光经过所述手指反射的第一闪烁光信号以及显示屏的第二闪烁光经过所述手指反射的第二闪烁光信号。
可选地,如图6所示,所述指纹识别装置200还可以包括补光光源400。
可选地,指纹识别模组300可以包括光学组件310,光检测模块320以及第一控制模块330。
可选地,所述指纹识别模组300可以产生第二控制信号,所述第二控制信号控制显示屏中像素单元的开关频率和/或开关时间,以发射所述第二闪烁光。
可选地,如图6所示,指纹识别模组300中还可以包括第二控制模块350。该第二控制模块350用于产生第二控制信号303,以控制显示屏120中像素单元的开关频率的开关频率和/或开关时间,发射第二闪烁光404。
应理解,所述第二控制信号302可以为任意控制显示屏120发射第二闪烁光404的电信号,例如,正弦波,余弦波,三角波或者脉冲波信号等。
作为示例而非限定,第二控制信号302为矩形波脉冲信号,显示屏120中像素单元的开关频率为即第二控制信号303的频率,显示屏120中像素单元的单次开启时间即为第二控制信号303的脉冲宽度。
可选地,第二控制信号303为频率和宽度固定的矩形波脉冲信号,因而,相应地,第二闪烁光404的光强随时间的变化表现为频率和宽度与第二控制信号303相同的矩形波脉冲,第二闪烁光404为固定频率和发光时间闪烁的闪烁光。
可选地,第二控制信号303为频率随时间变化的矩形波脉冲信号或者宽度变化的矩形波脉冲信号。相应地,第二闪烁光404表现频率或脉宽为与第二控制信号303相同的矩形波脉冲,第二闪烁光404为非固定频率闪烁的闪烁光或者非固定发光时间闪烁的闪烁光。
在本申请实施例中,经过手指反射的光信号为第二光信号430,所述光学组件310接收所述第二光信号430,并将该第二光信号430传送给光检测模块320,光检测模块320用于接收第二光信号430并将第二光信号430转换为第二电信号530。
在本申请实施例中,所述第二光信号430包括第一闪烁光401经过手指140反射的第一闪烁光信号411以及第二闪烁光404经过手指140反射的第二闪烁光信号431。
可选地,所述第二光信号430还包括经过手指反射的环境光402的环境光信号412。
可选地,第一控制信号301和第二控制信号303可以为相同的信号,所述第一闪烁光401和第二闪烁光404可以为同步闪烁的闪烁光。作为示例而非限定,第一控制信号301和第二控制信号303为完全相同矩形波脉冲信号,即频率,相位,幅度等参数完全相同,例如脉冲频率均为1MHz,脉宽均为1μs,则第一闪烁光401和第二闪烁光404同步闪烁,闪烁频率均为1MHz。
可选地,第一控制信号301和第二控制信号303不同,作为示例而非限 定,第一控制信号301和第二控制信号303为固定频率的矩形波脉冲信号,且第一控制信号301的频率不同于第二控制信号303的频率,因此第一闪烁光401和第二闪烁光404的亮闪烁频率不同。例如,第二控制信号303的脉冲频率为1MHz,脉宽为1μs,第一控制信号301的脉冲频率为2MHz,脉宽为0.5μs。
可选地,指纹识别模组300对电信号进行处理得到第二指纹检测信号;所述第二纹检测信号为基于所述第一闪烁光信号和第二闪烁光信号处理得到的电信号。
可选地,如图6所示,所述指纹识别模组300还可以包括第二处理模块360,用于对第二电信号530进行处理得到第二指纹检测信号620。该第二指纹检测信号620对应于所述第一闪烁光信号411以及第二闪烁光信号431,且不受环境光信号412的干扰。
可选地,第二处理模块360用于处理获取第一闪烁光信号411以及第二闪烁光信号431同时作用时产生的电信号分量为第二指纹检测处理信号621。例如,当第一控制信号301和第二控制信号303为完全相同矩形波脉冲信号时,第二电信号530也表现为与其相同的矩形波脉冲,第二处理模块360用于将第二电信号530减去其脉冲最小幅值,产生的电信号即为第二指纹处理检测信号621。所述第二指纹检测信号620包括所述第二指纹检测处理信号621。
可选地,光检测模块320还可以用于对该第二指纹检测处理信号621进行处理得到指纹图像信号。
应理解,所述第二控制模块350,第二处理模块360和光检测模块320可以为多个独立的芯片,分别进行独立的芯片封装,也可以为生长在多个晶圆上的裸露芯片模块,对多个裸露芯片模块进行封装形成一个芯片。
在本申请实施例中,通过第一控制信号301使补光光源400发出第一闪烁光401,以及通过第二控制信号302使显示屏120发出第二闪烁光404,该第一闪烁光401和第二闪烁光404均与环境光不同,通过对指纹识别模组300产生的第二电信号530的处理,滤除环境光产生的干扰,且在指纹检测时,同时有第一闪烁光与第二闪烁光作用,增大了指纹检测信号的光强,提高了指纹检测信号的质量。
图7是本申请实施例提供的另一种指纹识别装置200的示意性功能框 图。如图7所示,指纹识别装置200可以包括补光光源400和指纹识别模组300。
可选地,指纹识别模组300包括光学组件310,光检测模块320,第一控制模块330、第二控制模块350以及第二处理模块360。
可选地,第一控制模块330中还可以包括第一调制控制模块331。
可选地,指纹识别模组300产生第二调制控制信号,所述第二调制控制信号控制显示屏中像素单元的开关频率和/或开关时间随时间变化。
可选地,如图7所示,所述第二控制模块350中还可以包括第二调制控制模块351,该第二调制控制模块351用于调制产生第二调制控制信号304,所述第二调制控制信号304控制所述显示屏120中像素单元的开关频率和/或开关时间随时间变化,发射第二调制闪烁光405。可选地,该第二调制闪烁光405的光强变化表现为频率变化的矩形波脉冲或者脉宽变化的矩形波脉冲。在上述情况下,上述第二控制信号303为第二调制控制信号304,上述第二闪烁光404为第二调制闪烁光405。
可选地,所述第二调制控制模块351接收第二调制信号503和第二载波信号504,基于所述第二调制信号503和第二载波信号504进行调制得到所述第二调制控制信号304。
可选地,该第二调制信号503可以为模拟信号或者为数字信号,其中模拟第二调制信号503为低频信号,可以为正弦波,余弦波等等。
可选地,相对于第二调制信号503,第二载波信号504为高频信号,可以为正弦波,余弦波,方波,脉冲或者锯齿波等。
可选地,第二调制控制模块351基于所述第二调制信号503和第二载波信号504进行调制得到所述第二调制控制信号304的方法包括模拟调制方法和数字调制方法,其中模拟调制方法包括:AM,FM,PM,PAM,PWM,PFM以及PDM等。数字调制方法包括:ASK,FSK,PSK,PCM以及DM等。
在本申请实施例中,通过第二调制控制信号304控制显示屏120中像素单元的开关频率形成第二调制闪烁光405,该第二调制闪烁光405光强随时间变化与第二调制控制信号304的频率随时间变化相关或相同,或者通过第二调制控制信号304控制显示屏120中像素单元的开关时间形成第二调制闪烁光405,该第二调制闪烁光405光强随时间变化与第二调制控制信号304 电平随时间变化相关或相同。因此,相应地,第二调制闪烁光405经过手指反射的第二调制闪烁光信号441与第二调制控制信号304的频率变化或者电平变化相关或相同。
可选地,在本申请实施例中,光学组件310用于接收经过手指反射的第二调制光信号440,并传送给光检测模块320。光检测模块320用于接收第二调制光信号440并转换为第二调制电信号540。
在本申请实施例中,所述第二调制光信号440包括第一调制闪烁光403经过手指140反射的第一调制闪烁光信号421以及第二调制闪烁光405经过手指140反射的第二调制闪烁光信号441。
可选地,所述第二调制光信号440还包括经过手指反射的环境光402的环境光信号412。
在上述情况下,上述第二光信号430可以为第二调制光信号440。
可选地,第一调制控制信号302和第二调制控制信号304可以为相同的频率或脉宽变化的脉冲信号,所述第一闪烁光401和第二闪烁光404可以为同步闪烁的闪烁光。
可选地,第一调制控制信号302和第二调制控制信号304可以为频率或脉宽变化不同的脉冲信号。
在本申请实施例中,受第一调制闪烁光信号421以及第二调制闪烁光信号441光强频率变化或者脉宽变化的影响,第二调制电信号540包含与第一调制闪烁光信号421频率变化或者脉宽变化相同的电信号分量以及与第二调制闪烁光信号441频率变化或者脉宽变化相同的电信号分量。
可选地,指纹识别模组300对电信号解调处理得到所述第二指纹检测信号。
可选地,如图7所示,所述第二处理模块360中还可以包括第二解调模块361,该第二解调模块361用于对第二调制电信号540进行解调得到第二指纹检测解调信号622。上述情况下,上述第二电信号530可以为第二调制电信号540。上述第二指纹检测信号620可以为第一指纹检测解调信号622。
可选地,第二解调模块361包括相干解调电路或者非相干解调电路。第二指纹检测解调信号622包括对应于第一调制闪烁光信号421的第一解调信号分量623以及对应于第二调制闪烁光信号441的第二解调信号分量623。
作为示例而非限定,第一调制控制模块331和第二调制控制模块351均 采用FM频率调制,产生的第一调制控制信号302的频率按照第一调制信号501的线性函数变化,且产生的第二调制控制信号304的频率按照第二调制信号503的线性函数变化。第二解调模块322采用两路鉴频电路对第一调制电信号520进行解调,分别得到反映第一调制信号501变化的第一解调信号分量623,以及反映第二调制信号503变化的第二解调信号分量624。对该第一解调信号分量623以及第二解调信号分量624进行处理得到第二指纹检测解调信号622。该第二指纹检测解调信号622中既包括第一调制闪烁光信号421以及第二调制闪烁光信号441的光强信息,又不受环境光信号412的干扰。
可选地,第二调制控制模块351还可以获取第二调制信号503和第二载波信号504,所述第二调制信号503和第二载波信号504可以由处理器发送给所述第二调制控制模块351。
可选地,光检测模块320还可以用于对该第二指纹检测解调信号622进行处理得到指纹图像信号。
在本申请实施例中,通过第二调制控制信号304使显示屏120发出第二调制闪烁光405,以及通过第一调制控制信号302使补光光源400发出第一调制闪烁光403,该第二调制闪烁光405和第一调制闪烁光401的频率或者脉宽随时间变化,通过对指纹识别模组300产生的第二调制电信号540的解调,得到基于第二调制闪烁光405以及第一调制闪烁光401的频率或者脉宽变化的指纹检测电信号,能够有效排除其他光的干扰,且增大指纹检测光信号的光强,显著提高指纹检测电信号的信号质量。
图8是本申请实施例提供的另一种指纹识别装置200的示意性功能框图。如图8所示,指纹识别装置200包括指纹识别模组300,该指纹识别模组300用于接收经过手指140反射的光信号并转换为电信号;所述光信号包括补光光源400的第一闪烁光经过所述手指反射的第一闪烁光信号。
可选地,如图8所示,所述指纹识别装置200还可以包括补光光源400。
可选地,如图8所示,所述指纹识别装置200还可以包括处理器500。
可选地,所述处理器500产生第一控制信号,所述第一控制信号控制所述补光光源的开关频率和/或开关时间,以发射所述第一闪烁光。
可选地,如图8所示,处理器500可以包括所述第一控制模块330。该第一控制模块330用于产生第一控制信号301,以控制补光光源400的开关 频率和/或开关时间,发射所述第一闪烁光401。
可选地,所述第一控制模块330还可以包括第一调制控制模块331,该第一调制控制模块331用于调制产生第一调制控制信号302,所述第一调制控制信号302控制所述补光光源400的开关频率和/或开关时间随时间变化,以发射第一调制闪烁光403。
可选地,所述指纹识别模组300包括光学组件310和光检测模块320,用于将第一光信号410转换为第一电信号510。
在本申请实施例中,所述第一光信号410包括第一闪烁光401经过手指140反射的第一闪烁光信号411。
可选地,所述第一光信号410还包括经过手指反射的环境光402的环境光信号412。
可选地,所述处理器500可以对电信号进行处理得到第一指纹检测信号;所述第一指纹检测信号为基于第一闪烁光信号处理得到的电信号。
可选地,如图8所示,所述处理器500还包括第一处理模块340,用于对第一电信号510进行处理得到第一指纹检测信号610。该第一指纹检测信号610对应于所述第一闪烁光信号411,且不受环境光信号412的干扰。
可选地,第一处理模块340还包括第一解调模块341,所述第一解调模块341用于对第一电信号510进行解调得到第一指纹检测解调信号612。所述第一指纹检测信号610包括所述第一指纹检测解调信号612。
可选地,处理器500还可以用于对第一指纹检测信号610进行处理得到指纹图像信号。
图9是本申请实施例提供的另一种指纹识别装置200的示意性功能框图。如图9所示,指纹识别装置200包括指纹识别模组300。该指纹识别模组300用于接收经过手指反射的光信号并转换为电信号;所述光信号包括补光光源的第一闪烁光经过所述手指反射的第一闪烁光信号以及显示屏的第二闪烁光经过所述手指反射的第二闪烁光信号。
可选地,如图9所示,所述指纹识别装置200还可以包括补光光源400。
可选地,处理器500可以包括第一控制模块330。
可选地,处理器500可以产生第二控制信号,所述第二控制信号控制显示屏中像素单元的开关频率和/或开关时间,以发射所述第二闪烁光。
可选地,如图9所示,处理器500还包括第二控制模块350,该第二控 制模块350用于产生第二控制信号303,以控制显示屏120中像素单元的开关频率的开关频率和/或开关时间,发射第二闪烁光404。
可选地,所述第二控制模块350中还包括第二调制控制模块351,该第二调制控制模块351用于调制产生第二调制控制信号304,所述第二调制控制信号304控制所述显示屏120中像素单元的开关频率和/或开关时间随时间变化,以发射第二调制闪烁光405。
可选地,指纹识别模组300可以包括光学组件310和光检测模块320,用于将第二光信号430转换为第二电信号530。
在本申请实施例中,所述第二光信号430包括第一闪烁光401经过手指140反射的第一闪烁光信号411以及第二闪烁光404经过手指140反射的第二闪烁光信号431。
可选地,所述第二光信号430还包括经过手指反射的环境光402的环境光信号412。
可选地,处理器500对电信号进行处理得到第二指纹检测信号;所述第二纹检测信号为基于所述第一闪烁光信号和第二闪烁光信号处理得到的电信号。
可选地,如图9所示,处理器500还可以包括第二处理模块360,用于对第二电信号530进行处理得到第二指纹检测信号620。该第二指纹检测信号620对应于所述第一闪烁光信号411以及第二闪烁光信号431,且不受环境光信号412的干扰。
可选地,所述第二处理模块360还包括第二解调模块361,该第二解调模块361用于对第二电信号530进行解调得到第二指纹检测解调信号622。
可选地,处理器500还可以用于对第二指纹检测信号620进行处理得到指纹图像信号。
图10是本申请实施例提供的另一种指纹识别装置200的示意性功能框图。如图10所示,指纹识别装置200可以包括补光光源400,指纹识别模组300以及处理器500。
可选地,所述处理器500用于接收第一指示信息710,根据所述第一指示信息710打开所述补光光源400。
所述第一指示信息710指示显示屏120上存在手指触摸,具体地,指示显示屏120上的第一检测区域103存在手指触摸。
作为示例而非限定,显示屏120为具有触控功能的触摸显示屏,当手指触摸在所述显示屏120中的第一检测区域103时,显示屏120发送第一指示信息给所述处理器500。
可选地,所述处理器500还用于接收第二指示信息720,根据所述第一指示信息710和所述第二指示信息720打开所述补光光源400。
所述第二指示信息720指示存在超过第一阈值强度的环境光。
作为示例而非限定,包含所述指纹识别装置200的电子设备中包括光线传感器,所述光线传感器接收到一定阈值强度的环境光时,发送第二指示信息给所述处理器500。
可选地,所述处理器500还用于接收所述第一指示信息710和所述第二指示信息720,根据所述第一指示信息710和所述第二指示信息720控制所述指纹识别模组300开始运行,即开始将接收到的光信号转换为电信号。
可选地,所述处理器500还用于接收第三指示信号,根据所述第三指示信号关闭所述补光光源400。
所述第三指示信息指示所述指纹识别装置200已经处理得到指纹图像。
作为示例而非限定,指纹识别装置200中的指纹识别模组300处理得到指纹图像,指纹识别模组300发送第三指示信息给所述处理器500。
可选地,处理器500还可以用于控制所述显示屏120开始检测是否存在手指触摸。
可选地,处理器500还可以用于控制所述光线传感器开始检测环境光。
在本申请实施例中,通过处理器500控制补光光源400的打开和关闭,以及控制指纹识别模组300的运行,可以有效的降低指纹触发误判,并且可以有效降低补光光源400带来的功耗。
图11是本申请实施例提供的一种启动指纹识别装置200进行指纹识别的方法流程示意图。该指纹识别装置200中可以包括指纹识别模组300和补光光源400。
S110:接收第一指示信息,所述第一指示信息指示显示屏上存在手指触摸,具体地,指示显示屏上的指纹检测区域存在手指触摸。
作为示例而非限定,显示屏为具有触控功能的触摸显示屏,当手指触摸在所述显示屏中的指纹检测区域时,显示屏发送第一指示信息。指纹识别装置200接收该第一指示信息。
S120:接收第二指示信息,所述第二指示信息指示存在超过第一阈值强度的环境光。
作为示例而非限定,包含所述指纹识别装置200的电子设备中包括光线传感器,所述光线传感器接收到一定阈值强度的环境光时,发送第二指示信息。指纹识别装置200接收该第二指示信息。
S130:根据所述第一指示信息和所述第二指示信息,打开补光光源400。所述补光光源400发射第一闪烁光。
S140:控制补光光源400的开关频率和/或开关时间,发射所述第一闪烁光。
S150:控制指纹识别模组300开始运行。
可选地,控制所述指纹识别模组300开始接收光信号并将光信号转换为电信号,所述光信号包括补光光源400的第一闪烁光经过所述手指反射的第一光信号。
S160:接收第三指示信息,所述第三指示信息指示所述指纹识别装置200已经处理得到指纹图像。
作为示例而非限定,指纹识别装置200中的指纹识别模组300处理得到指纹图像,指纹识别模组300发送第三指示信息。指纹识别装置200接收该第三指示信息。
S170:根据所述第三指示信息,关闭补光光源400。
如图12所示,本申请实施例还提供了一种电子设备600,所述电子设备600可以包括指纹识别装置610,该指纹识别装置610可以为前述装置实施例中的指纹识别装置200,其能够用于执行图11中所述方法实施例中的内容,为了简洁,这里不再赘述。
应理解,本申请实施例的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理 器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例的指纹识别还可以包括存储器,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图8所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图11所示实施例的方法。
本申请实施例还提供了一种芯片,该芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器中的指令,以执行图11所示实施例的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (28)

  1. 一种指纹识别的装置,其特征在于,包括:
    指纹识别模组,用于设置于显示屏下方,用于接收经过手指反射的光信号并转换为电信号;
    所述光信号包括补光光源的第一闪烁光经过所述手指反射的第一闪烁光信号。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括所述补光光源,所述补光光源用于产生所述第一闪烁光。
  3. 根据权利要求1或2所述的装置,其特征在于,所述补光光源设置于所述指纹识别模组的视场外。
  4. 根据权利要求1-3中任一项所述的装置,其特征在于,所述补光光源为中空面光源,所述指纹识别模组的视场位于所述中空面光源的中空区域中。
  5. 根据权利要求4所述的装置,其特征在于,所述中空面光源包括:
    中空圆形面光源,中空矩形面光源或中空六边形面光源。
  6. 根据权利要求4或5所述的装置,其特征在于,所述指纹识别模组设置于所述中空面光源中心下方。
  7. 根据权利要求1-6中任一项所述的装置,其特征在于,所述补光光源为红外光发光光源。
  8. 根据权利要求1-7中任一项所述的装置,其特征在于,所述指纹识别模组用于产生第一控制信号,所述第一控制信号控制所述补光光源的开关频率和/或开关时间,以发射所述第一闪烁光。
  9. 根据权利要求8所述的装置,其特征在于,所述第一控制信号包括第一调制控制信号,所述第一调制控制信号控制所述补光光源的开关频率和/或开关时间随时间变化。
  10. 根据权利要求1-9中任一项所述的装置,其特征在于,所述指纹识别模组用于对所述电信号进行处理得到第一指纹检测信号;
    所述第一指纹检测信号为基于所述第一闪烁光信号的电信号。
  11. 根据权利要求10所述的装置,其特征在于,所述指纹识别模组用于对所述电信号解调处理得到所述第一指纹检测信号。
  12. 根据权利要求1-11中任一项所述的装置,其特征在于,所述光信号 还包括显示屏的第二闪烁光经过所述手指反射的第二闪烁光信号。
  13. 根据权利要求12所述的装置,其特征在于,所述指纹识别模组用于产生第二控制信号,所述第二控制信号控制所述显示屏中像素单元的开关频率和/或开关时间,以发射所述第二闪烁光。
  14. 根据权利要求13所述的装置,其特征在于,所述第二控制信号包括第二调制控制信号,所述第二调制控制信号控制所述显示屏中像素单元的开关频率和/或开关时间随时间变化。
  15. 根据权利要求12-14中任一项所述的装置,其特征在于,所述指纹识别模组用于对所述电信号进行处理得到第二指纹检测信号;
    所述第二纹检测信号为基于所述第一闪烁光信号和所述第二闪烁光信号的电信号。
  16. 根据权利要求15所述的装置,其特征在于,所述指纹识别模组用于对所述电信号解调处理得到所述第二指纹检测信号。
  17. 根据权利要求1-7中任一项所述的装置,其特征在于,所述装置还包括:
    处理器,用于产生第一控制信号,所述第一控制信号控制所述补光光源的开关频率和/或开关时间,以发射所述第一闪烁光。
  18. 根据权利要求17所述的装置,其特征在于,所述第一控制信号包括第一调制控制信号,所述第一调制控制信号控制所述补光光源的开关频率和/或开关时间随时间变化。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理器用于对所述电信号进行处理得到第一指纹检测信号;
    所述第一指纹检测信号为基于所述第一闪烁光信号的电信号。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器用于对所述电信号解调处理得到所述指纹检测信号。
  21. 根据权利要求17-20中任一项所述的装置,其特征在于,所述光信号包括显示屏的第二闪烁光经过所述手指反射的第二闪烁光信号。
  22. 根据权利要求21所述的装置,其特征在于,所述处理器用于产生第二控制信号,所述第二控制信号控制所述显示屏中像素单元的开关频率和/或开关时间,以发射所述第二闪烁光。
  23. 根据权利要求22所述的装置,其特征在于,所述第二控制信号包 括第二调制控制信号,所述第二调制控制信号控制所述显示屏中像素单元的开关频率和/或开关时间随时间变化。
  24. 根据权利要求21-23中任一项所述的装置,其特征在于,所述处理器用于对所述电信号进行处理得到第二指纹检测信号;
    所述第二指纹检测信号为基于所述第一闪烁光信号和所述第二闪烁光信号的电信号。
  25. 根据权利要求24所述的装置,其特征在于,所述处理器用于对所述电信号解调处理得到所述第二指纹检测信号。
  26. 根据权利要求17-25任一项所述的装置,其特征在于,所述处理器用于接收第一指示信息,所述第一指示信息指示所述显示屏上存在所述手指触摸,根据所述第一指示信息打开所述补光光源。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器用于接收第二指示信息,所述第二指示信息指示存在超过第一阈值强度的环境光,根据所述第二指示信息和所述第一指示信息打开所述补光光源。
  28. 一种电子设备,其特征在于,包括:
    如权利要求1至27中任一项所述的指纹识别装置。
PCT/CN2019/075819 2019-02-22 2019-02-22 指纹识别装置和电子设备 WO2020168540A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075819 WO2020168540A1 (zh) 2019-02-22 2019-02-22 指纹识别装置和电子设备
CN201980000270.3A CN109983472B (zh) 2019-02-22 2019-02-22 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075819 WO2020168540A1 (zh) 2019-02-22 2019-02-22 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020168540A1 true WO2020168540A1 (zh) 2020-08-27

Family

ID=67073959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075819 WO2020168540A1 (zh) 2019-02-22 2019-02-22 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (1) CN109983472B (zh)
WO (1) WO2020168540A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308771B (zh) * 2019-07-09 2022-05-10 京东方科技集团股份有限公司 电子装置面板、光电处理单元和电子装置及其处理方法
CN113239856B (zh) * 2019-07-12 2023-08-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
KR20220012360A (ko) 2019-08-02 2022-02-03 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 감지 장치 및 전자 디바이스
CN110796070B (zh) * 2019-10-28 2021-05-04 Oppo广东移动通信有限公司 显示屏组件及屏下指纹识别电子设备
TWI761755B (zh) * 2020-02-04 2022-04-21 大陸商北京集創北方科技股份有限公司 生物特徵採集與識別方法及利用其之生物特徵識別裝置和資訊處理裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893992A (zh) * 2016-05-31 2016-08-24 京东方科技集团股份有限公司 指纹识别结构和方法、显示装置
CN107145886A (zh) * 2017-05-03 2017-09-08 广东欧珀移动通信有限公司 光学指纹采集方法及相关产品
CN109196524A (zh) * 2018-02-23 2019-01-11 深圳市汇顶科技股份有限公司 具有有机发光二极管(oled)屏幕或其他屏幕的设备中用于屏上指纹感测的屏下光学传感器模块中经由成像透镜和成像针孔的光学成像
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202126693U (zh) * 2011-06-20 2012-01-25 东莞市中控电子技术有限公司 一种具有适应环境光功能的人脸识别装置
CN104318204A (zh) * 2014-09-29 2015-01-28 上海箩箕技术有限公司 指纹成像系统及方法、指纹识别系统、电子设备
CN106128361B (zh) * 2016-09-09 2018-10-19 京东方科技集团股份有限公司 光信号调制电路及其调制方法、阵列基板、显示面板、显示装置
CN107220592B (zh) * 2017-05-03 2020-01-14 Oppo广东移动通信有限公司 一种光学指纹采集方法及相关产品
CN107153818B (zh) * 2017-05-03 2020-01-14 Oppo广东移动通信有限公司 光学指纹验证方法及相关产品
KR101886035B1 (ko) * 2017-06-08 2018-08-08 주식회사 센소니아 주변광의 영향을 감소시키는 지문 센싱 방법
CN108513706A (zh) * 2018-04-12 2018-09-07 深圳阜时科技有限公司 电子设备及其面部识别方法
CN209496383U (zh) * 2019-02-22 2019-10-15 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893992A (zh) * 2016-05-31 2016-08-24 京东方科技集团股份有限公司 指纹识别结构和方法、显示装置
CN107145886A (zh) * 2017-05-03 2017-09-08 广东欧珀移动通信有限公司 光学指纹采集方法及相关产品
CN109196524A (zh) * 2018-02-23 2019-01-11 深圳市汇顶科技股份有限公司 具有有机发光二极管(oled)屏幕或其他屏幕的设备中用于屏上指纹感测的屏下光学传感器模块中经由成像透镜和成像针孔的光学成像
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备

Also Published As

Publication number Publication date
CN109983472B (zh) 2021-05-11
CN109983472A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020168540A1 (zh) 指纹识别装置和电子设备
US11144744B2 (en) Backlight module, under-screen fingerprint identification apparatus and electronic device
CN108415188B (zh) 一种液晶显示面板、显示装置及其指纹解锁方法
US10963671B2 (en) Multifunction fingerprint sensor having optical sensing capability
CN107480639B (zh) 一种触控显示面板和显示装置
US20190042721A1 (en) Biometrics authentication system
CN107122750B (zh) 一种光学指纹识别装置及显示面板
CN108287634B (zh) 触控显示面板、显示装置和触控显示面板的驱动方法
WO2019219061A1 (zh) 一种同步验证指纹信息的屏幕解锁方法和装置
US20200293740A1 (en) Optical image capturing unit, optical image capturing system and electronic device
CN208985184U (zh) 背光模组、屏下指纹识别装置和电子设备
KR102509439B1 (ko) 지문 센서 패키지 및 이를 포함하는 표시 장치
CN111626214B (zh) 屏下指纹识别装置及系统、指纹识别方法和电子装置
CN209327746U (zh) 显示屏组件及电子设备
TWI654916B (zh) 可攜式電子裝置
WO2019219062A1 (zh) 一种同步验证指纹信息的触控组件操作方法和装置
CN110633695B (zh) 纹路识别模组和显示设备
US11048906B2 (en) Method and apparatus for fingerprint identification and terminal device
CN111523440A (zh) 屏下光学指纹识别装置
CN210864751U (zh) 恒流驱动电路和电子设备
CN112668388A (zh) 包含取代光电二极管的光圈以获得增加的光通过量的光学感测系统和装置
CN109063621A (zh) 一种移动终端
CN209496383U (zh) 指纹识别装置和电子设备
CN109376668B (zh) 指纹模组、电子设备以及指纹采集方法
CN112800808A (zh) 一种指纹识别方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916197

Country of ref document: EP

Kind code of ref document: A1