WO2020166280A1 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
WO2020166280A1
WO2020166280A1 PCT/JP2020/001793 JP2020001793W WO2020166280A1 WO 2020166280 A1 WO2020166280 A1 WO 2020166280A1 JP 2020001793 W JP2020001793 W JP 2020001793W WO 2020166280 A1 WO2020166280 A1 WO 2020166280A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
resource
terminal device
terminal
information
Prior art date
Application number
PCT/JP2020/001793
Other languages
English (en)
French (fr)
Inventor
直紀 草島
博允 内山
懿夫 唐
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020572136A priority Critical patent/JPWO2020166280A1/ja
Priority to EP20755087.2A priority patent/EP3927040A4/en
Priority to US17/428,289 priority patent/US20220070829A1/en
Publication of WO2020166280A1 publication Critical patent/WO2020166280A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to a communication device and a communication method.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • NRAT New Radio Access Technology
  • EUTRA Evolved Universal Terrestrial Radio Access
  • FEUTRA Frether EUTRA
  • LTE includes LTE-A, LTE-A Pro, and EUTRA
  • NR includes NRAT and FEUTRA.
  • LTE and NR a base station device (base station) is also called an eNodeB (evolved NodeB), and a terminal device (mobile station, mobile station device, terminal) is also called a UE (User Equipment).
  • LTE and NR are cellular communication systems in which a plurality of areas covered by a base station device are arranged in a cell shape. A single base station device may manage a plurality of cells.
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-Pedestrian
  • V2I/N vehicle-to-Infrastructure/network
  • V2X various vehicle-to-Anything
  • V2X in LTE supports use cases such as driving assistance, automatic driving, and warning to pedestrians.
  • Side links also called device-to-device communication (Device to Device (D2D) communication) are used to support V2X.
  • V2X use cases such as platooning (Vehicles Platooning), sensor sharing (Extended Sensors), advanced automatic driving (Advanced Driving), remote driving (Remote Driving), etc.
  • platooning Vehicle Platooning
  • sensor sharing Extended Sensors
  • Advanced Driving Advanced Automatic driving
  • Remote Driving Remote driving
  • higher throughput and lower delay and higher reliability are required, and operation in millimeter waves such as the 60 GHz band is also being considered.
  • the details of V2X in NR are disclosed in Non-Patent Document 1.
  • a communication unit that performs wireless communication and a response to data transmission from another terminal device via inter-device communication are transmitted to the other terminal device via the inter-device communication.
  • a communication unit that performs wireless communication, and a control unit that controls so that data is transmitted to another terminal device via inter-device communication includes the device.
  • a communication device comprising: controlling to obtain a response to the transmission of the data, which is transmitted from the other terminal device using a resource according to a condition regarding inter-communication.
  • a computer performs wireless communication and a response to data transmission from another terminal device via inter-device communication is transmitted to the other terminal device via the inter-device communication.
  • a communication method is provided that includes controlling the transmission to be performed, and determining a resource to be used for transmitting the response based on a condition regarding communication between the devices.
  • a computer performs wireless communication, controls so that data is transmitted to another terminal device via inter-device communication, and responds to conditions regarding the inter-device communication. Controlling so that a response to the transmission of the data, which is transmitted from the other terminal device using a resource, is obtained.
  • FIG. 4 is an explanatory diagram for describing an overview of sidelink communication in an embodiment of the present disclosure. It is a schematic block diagram which shows the structure of the base station apparatus of the same embodiment. It is a schematic block diagram which shows the structure of the terminal device of the same embodiment. It is an explanatory view for explaining an example of dynamic resource pool allocation of a side link. It is an explanatory view for explaining other examples of dynamic resource pool allocation of a side link. It is an explanatory view for explaining other examples of dynamic resource pool allocation of a side link. It is an explanatory view for explaining other examples of dynamic resource pool allocation of a side link. It is an explanatory view for explaining other examples of dynamic resource pool allocation of a side link. It is an explanatory view for explaining other examples of dynamic resource pool allocation of a side link. It is an explanatory view for explaining other examples of dynamic resource pool allocation of a side link.
  • FIG. 11 is an explanatory diagram for explaining an outline of another example of a resource allocation method that can be used for HARQ.
  • FIG. 11 is an explanatory diagram for explaining an outline of another example of a resource allocation method that can be used for HARQ.
  • It is a block diagram showing an example of a schematic structure of a car navigation device.
  • the wireless communication system includes at least a base station device 1 and a terminal device 2.
  • the base station device 1 can accommodate a plurality of terminal devices.
  • the base station device 1 can be connected to other base station devices by means of an X2 interface.
  • the base station device 1 can be connected to an EPC (Evolved Packet Core) by means of the S1 interface.
  • the base station device 1 can be connected to an MME (Mobility Management Entity) by means of an S1-MME interface and can be connected to an S-GW (Serving Gateway) by means of an S1-U interface.
  • the S1 interface supports a many-to-many connection between the MME and/or S-GW and the base station device 1.
  • the base station device 1 and the terminal device 2 respectively support LTE and/or NR.
  • FIG. 1 is an explanatory diagram for explaining an outline of the side link communication in this embodiment.
  • two or more terminal devices 2 may exist inside the cell 3 configured by the base station device 1 and perform side link communication between the terminal devices 2.
  • at least one of the two or more terminal devices 2 exists inside the cell 3 configured by the base station device 1, and the other terminal device 2 is In a situation where the terminal device 2 exists outside the cell 3, side link communication may be performed between the terminal devices 2.
  • the terminal device 2 existing inside the cell 3 communicates with the base station device 1 to relay communication between the base station device 1 and the terminal device 2 existing outside the cell 3. It is possible to
  • the state in which the terminal device 2 exists inside the cell 3 is a state in which the quality of the downlink signal that the terminal device 2 receives from the base station device 1 is equal to or higher than a predetermined standard.
  • the state in which the terminal device 2 exists inside the cell 3 is a state in which the probability that the predetermined downlink channel received by the terminal device 2 from the base station device 1 can be decoded is equal to or higher than the predetermined probability. I can say.
  • the state in which the terminal device 2 exists outside the cell 3 is a state in which the quality of the downlink signal received by the terminal device 2 from the base station device 1 is below a predetermined reference.
  • the state in which the terminal device 2 exists outside the cell 3 is a state in which the probability that the terminal device 2 can decode the predetermined downlink channel received from the base station device 1 is not equal to or higher than the predetermined probability. Can also be said.
  • the two terminal devices that perform transmission/reception by side link communication are also referred to as a first terminal device and a second terminal device.
  • a terminal device that receives information about side link communication from a base station device and transmits a side link control channel is referred to as a first terminal device, and other terminal devices are referred to as a second terminal device.
  • first terminal device a terminal device that receives information about side link communication from a base station device and transmits a side link control channel
  • other terminal devices are referred to as a second terminal device.
  • FIG. 2 is a schematic block diagram showing the configuration of the base station device 1 of this embodiment.
  • the base station device 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmitting/receiving antenna 109.
  • the receiving unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a wireless reception unit 1057, and a channel measurement unit 1059.
  • the transmission unit 107 is configured to include an encoding unit 1071, a modulation unit 1073, a multiplexing unit 1075, a wireless transmission unit 1077, and a downlink reference signal generation unit 1079.
  • the base station device 1 can support one or more RATs. Some or all of the units included in the base station apparatus 1 illustrated in FIG. 2 may be individually configured according to the RAT. For example, the receiving unit 105 and the transmitting unit 107 are individually configured with LTE and NR. Further, in the NR cell, some or all of the units included in the base station apparatus 1 shown in FIG. 2 can be individually configured according to the parameter set related to the transmission signal. For example, in a certain NR cell, the wireless reception unit 1057 and the wireless transmission unit 1077 can be individually configured according to the parameter set regarding the transmission signal.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (RLC) layer, and a radio resource control (Radio). Performs processing of Resource Control: RRC) layer.
  • the upper layer processing unit 101 also generates control information for controlling the reception unit 105 and the transmission unit 107, and outputs the control information to the control unit 103.
  • the control unit 103 controls the reception unit 105 and the transmission unit 107 based on the control information from the upper layer processing unit 101.
  • the control unit 103 generates control information for the upper layer processing unit 101 and outputs it to the upper layer processing unit 101.
  • the control unit 103 inputs the decoded signal from the decoding unit 1051 and the channel estimation result from the channel measuring unit 1059.
  • the control unit 103 outputs the signal to be encoded to the encoding unit 1071.
  • the control unit 103 is also used to control the whole or a part of the base station device 1.
  • the upper layer processing unit 101 performs processing and management related to RAT control, radio resource control, subframe setting, scheduling control, and/or CSI report control.
  • the processing and management in the upper layer processing unit 101 are performed for each terminal device or common to the terminal devices connected to the base station device.
  • the processing and management in the upper layer processing unit 101 may be performed only by the upper layer processing unit 101, or may be acquired from the upper node or another base station device. Further, the processing and management in the upper layer processing unit 101 may be individually performed according to the RAT.
  • the upper layer processing unit 101 separately performs processing and management in LTE and processing and management in NR.
  • the RAT control in the upper layer processing unit 101 manages the RAT. For example, in the RAT control, management regarding LTE and/or management regarding NR is performed. Management regarding NR includes setting and processing of parameter sets regarding transmission signals in NR cells.
  • downlink data transport block
  • system information system information
  • RRC message RRC parameter
  • CE MAC control element
  • subframe setting in the upper layer processing unit 101 management of subframe setting, subframe pattern setting, uplink-downlink setting, uplink reference UL-DL setting, and/or downlink reference UL-DL setting is performed. Be seen.
  • the subframe setting in upper layer processing section 101 is also referred to as base station subframe setting. Further, the subframe setting in the upper layer processing unit 101 can be determined based on the amount of uplink traffic and the amount of downlink traffic. Further, the subframe setting in upper layer processing section 101 can be determined based on the scheduling result of the scheduling control in upper layer processing section 101.
  • the control unit 103 In the scheduling control in the upper layer processing unit 101, based on the received channel state information, the estimated value of the propagation path input from the channel measurement unit 1059, the quality of the channel, and the like, the frequency and subframe to which the physical channel is assigned, the physical channel The coding rate, the modulation method, the transmission power, etc. are determined. For example, the control unit 103 generates control information (DCI format) based on the scheduling result of the scheduling control in the upper layer processing unit 101.
  • DCI format control information
  • the CSI report of the terminal device 2 is controlled.
  • the setting regarding the CSI reference resource to be assumed for calculating the CSI in the terminal device 2 is controlled.
  • the reception unit 105 Under the control of the control unit 103, the reception unit 105 receives the signal transmitted from the terminal device 2 via the transmission/reception antenna 109, further performs reception processing such as separation, demodulation, and decoding, and outputs the reception-processed information. It is output to the control unit 103.
  • the receiving process in the receiving unit 105 is performed based on the settings specified in advance or the settings notified by the base station device 1 to the terminal device 2.
  • the wireless reception unit 1057 converts an uplink signal received via the transmission/reception antenna 109 into an intermediate frequency (down conversion), removes unnecessary frequency components, and appropriately maintains the signal level. Control of amplification level, quadrature demodulation based on in-phase component and quadrature component of received signal, conversion from analog signal to digital signal, removal of guard interval (GI), and/or fast Fourier transform (Fast Fourier) Extract the frequency domain signal by Transform: FFT).
  • GI guard interval
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 demultiplexes the uplink channel and/or the uplink reference signal such as PUCCH or PUSCH from the signal input from the radio receiving unit 1057.
  • the demultiplexing unit 1055 outputs the uplink reference signal to the channel measuring unit 1059.
  • the demultiplexing unit 1055 compensates the propagation path for the uplink channel from the estimated value of the propagation path input from the channel measuring unit 1059.
  • the demodulation unit 1053 uses a modulation method such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase shift Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM or 256QAM for the modulation symbol of the uplink channel. Demodulate.
  • the demodulation unit 1053 separates and demodulates the MIMO-multiplexed uplink channel.
  • the decoding unit 1051 performs a decoding process on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and/or the uplink control information is output to the control section 103.
  • the decoding unit 1051 performs decoding processing on the PUSCH for each transport block.
  • the channel measuring unit 1059 measures the estimated value of the propagation path and/or the quality of the channel from the uplink reference signal input from the demultiplexing unit 1055, and outputs it to the demultiplexing unit 1055 and/or the control unit 103.
  • the channel measurement unit 1059 uses UL-DMRS to measure an estimated value of a channel for performing channel compensation for PUCCH or PUSCH, and uses SRS to measure the quality of an uplink channel.
  • the transmission unit 107 performs transmission processing such as encoding, modulation, and multiplexing on the downlink control information and the downlink data input from the upper layer processing unit 101, under the control of the control unit 103. For example, the transmission unit 107 generates and multiplexes PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal to generate a transmission signal. Note that the transmission processing in the transmission unit 107 is based on a preset setting, a setting notified by the base station device 1 to the terminal device 2, or a setting notified via the PDCCH or EPDCCH transmitted in the same subframe. Done.
  • the coding unit 1071 performs block coding, convolutional coding, turbo coding, etc. on the HARQ indicators (HARQ-ACK, ACK/NACK), downlink control information, and downlink data input from the control unit 103. Encoding is performed using a predetermined encoding method.
  • the modulation unit 1073 modulates the coded bits input from the coding unit 1071 by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the downlink reference signal generation unit 1079 generates a downlink reference signal based on the physical cell identification (PCI), the RRC parameter set in the terminal device 2, and the like.
  • the multiplexing unit 1075 multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges them in a predetermined resource element.
  • the wireless transmission unit 1077 transforms the signal from the multiplexing unit 1075 into a signal in the time domain by inverse fast Fourier transform (IFFT), adds a guard interval, generates a baseband digital signal, Generates a transmission signal by performing processing such as conversion to analog signal, quadrature modulation, conversion of intermediate frequency signal to high frequency signal (up convert), removal of extra frequency components, amplification of power, etc. ..
  • IFFT inverse fast Fourier transform
  • the transmission signal output by the wireless transmission unit 1077 is transmitted from the transmission/reception antenna 109.
  • FIG. 3 is a schematic block diagram showing the configuration of the terminal device 2 of this embodiment.
  • the terminal device 2 includes an upper layer processing unit 201, a control unit 203, a receiving unit 205, a transmitting unit 207, and a transmitting/receiving antenna 209.
  • the receiving unit 205 includes a decoding unit 2051, a demodulation unit 2053, a demultiplexing unit 2055, a radio receiving unit 2057, and a channel measuring unit 2059.
  • the transmission unit 207 is configured to include an encoding unit 2071, a modulation unit 2073, a multiplexing unit 2075, a wireless transmission unit 2077, and an uplink reference signal generation unit 2079.
  • the terminal device 2 can support one or more RATs. Some or all of the units included in the terminal device 2 illustrated in FIG. 3 may be individually configured according to the RAT. For example, the reception unit 205 and the transmission unit 207 are individually configured for LTE and NR. Further, in the NR cell, some or all of the units included in the terminal device 2 shown in FIG. 3 can be individually configured according to the parameter set related to the transmission signal. For example, in a certain NR cell, the wireless reception unit 2057 and the wireless transmission unit 2077 can be individually configured according to the parameter set regarding the transmission signal.
  • the upper layer processing unit 201 outputs the uplink data (transport block) to the control unit 203.
  • the upper layer processing unit 201 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (RLC) layer, and a radio resource control (Radio). Resource Control: RRC) process.
  • the upper layer processing unit 201 also generates control information for controlling the reception unit 205 and the transmission unit 207, and outputs the control information to the control unit 203.
  • the control unit 203 controls the reception unit 205 and the transmission unit 207 based on the control information from the upper layer processing unit 201.
  • the control unit 203 generates control information for the upper layer processing unit 201 and outputs it to the upper layer processing unit 201.
  • the control unit 203 receives the decoded signal from the decoding unit 2051 and the channel estimation result from the channel measuring unit 2059.
  • the control unit 203 outputs the signal to be encoded to the encoding unit 2071.
  • the control unit 203 may be used to control the whole or a part of the terminal device 2.
  • the upper layer processing unit 201 performs processing and management related to RAT control, radio resource control, subframe setting, scheduling control, and/or CSI report control.
  • the processing and management in the upper layer processing unit 201 are performed based on the settings defined in advance and/or the settings based on the control information set or notified from the base station apparatus 1.
  • the control information from the base station device 1 includes an RRC parameter, a MAC control element or DCI.
  • the processing and management in the upper layer processing unit 201 may be individually performed according to the RAT.
  • the upper layer processing unit 201 separately performs processing and management in LTE and processing and management in NR.
  • the RAT control in the upper layer processing unit 201 manages the RAT. For example, in the RAT control, management regarding LTE and/or management regarding NR is performed. Management regarding NR includes setting and processing of parameter sets regarding transmission signals in NR cells.
  • radio resource control in the upper layer processing unit 201 the setting information in the own device is managed.
  • radio resource control in the upper layer processing unit 201 generation and/or management of uplink data (transport block), system information, RRC message (RRC parameter), and/or MAC control element (CE: Control Element) is performed. Done.
  • the subframe setting in the upper layer processing unit 201 the subframe setting in the base station device 1 and/or the base station device different from the base station device 1 is managed.
  • the subframe settings include uplink or downlink settings for subframes, subframe pattern settings, uplink-downlink settings, uplink reference UL-DL settings, and/or downlink reference UL-DL settings.
  • the subframe setting in upper layer processing section 201 is also referred to as terminal subframe setting.
  • control information for controlling the receiving unit 205 and the transmitting unit 207 regarding scheduling is generated based on DCI (scheduling information) from the base station device 1.
  • control relating to the CSI report to the base station device 1 is performed.
  • the setting related to the CSI reference resource that is assumed for calculating the CSI in the channel measurement unit 2059 is controlled.
  • the resource (timing) used for reporting CSI is controlled based on DCI and/or RRC parameters.
  • the reception unit 205 Under the control of the control unit 203, the reception unit 205 receives the signal transmitted from the base station device 1 via the transmission/reception antenna 209, further performs reception processing such as separation, demodulation, and decoding, and the reception processed information. Is output to the control unit 203. Note that the reception process in the reception unit 205 is performed based on a preset setting, or a notification or setting from the base station device 1.
  • the radio reception unit 2057 converts an uplink signal received via the transmission/reception antenna 209 into an intermediate frequency (down conversion), removes unnecessary frequency components, and appropriately maintains the signal level. Control of amplification level, quadrature demodulation based on in-phase component and quadrature component of received signal, conversion from analog signal to digital signal, removal of guard interval (GI), and/or fast Fourier transform (Fast Fourier) Extract the frequency domain signal by Transform: FFT).
  • FFT fast Fourier transform
  • the demultiplexing unit 2055 separates a downlink channel such as PHICH, PDCCH, EPDCCH or PDSCH, a downlink synchronization signal and/or a downlink reference signal from the signal input from the radio receiving unit 2057.
  • the demultiplexing unit 2055 outputs the downlink reference signal to the channel measuring unit 2059.
  • the demultiplexing unit 2055 compensates the propagation path for the downlink channel from the estimated value of the propagation path input from the channel measuring unit 2059.
  • the demodulation unit 2053 demodulates the received signal to the downlink channel modulation symbol by using a modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the demodulation unit 2053 separates and demodulates the MIMO-multiplexed downlink channels.
  • the decoding unit 2051 performs a decoding process on the demodulated coded bits of the downlink channel.
  • the decoded downlink data and/or the downlink control information is output to the control section 203.
  • the decoding unit 2051 performs decoding processing on the PDSCH for each transport block.
  • the channel measuring unit 2059 measures the estimated value of the propagation path and/or the quality of the channel from the downlink reference signal input from the demultiplexing unit 2055, and outputs it to the demultiplexing unit 2055 and/or the control unit 203.
  • the downlink reference signal used by the channel measurement unit 2059 for measurement may be determined based on at least the transmission mode set by the RRC parameter and/or another RRC parameter.
  • DL-DMRS measures a channel estimation value for channel compensation for PDSCH or EPDCCH.
  • the CRS measures a channel estimation value for channel compensation for the PDCCH or PDSCH and/or a downlink channel for reporting CSI.
  • CSI-RS measures the channel in the downlink for reporting CSI.
  • the channel measuring unit 2059 calculates RSRP (Reference Signal Received Power) and/or RSRQ (Reference Signal Received Quality) based on the CRS, CSI-RS or the detection signal, and outputs the RSRP (Reference Signal Received Quality) to the upper layer processing unit 201.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the transmission unit 207 performs transmission processing such as coding, modulation, and multiplexing on the uplink control information and the uplink data input from the upper layer processing unit 201 under the control of the control unit 203. For example, the transmission unit 207 generates and multiplexes an uplink channel and/or an uplink reference signal such as PUSCH or PUCCH to generate a transmission signal. In addition, the transmission process in the transmission unit 207 is performed based on a preset setting or a setting or a notification from the base station device 1.
  • the coding unit 2071 performs block coding, convolutional coding, turbo coding, etc. on the HARQ indicators (HARQ-ACK, ACK/NACK), uplink control information, and uplink data input from the control unit 203. Encoding is performed using a predetermined encoding method.
  • the modulator 2073 modulates the coded bits input from the encoder 2071 by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the uplink reference signal generation unit 2079 generates an uplink reference signal based on the RRC parameter set in the terminal device 2 and the like.
  • the multiplexing unit 2075 multiplexes the modulation symbol of each channel and the uplink reference signal and arranges them in a predetermined resource element.
  • the wireless transmission unit 2077 converts the signal from the multiplexing unit 2075 into a signal in the time domain by an inverse fast Fourier transform (IFFT), adds a guard interval, generates a baseband digital signal, Generates a transmission signal by performing processing such as conversion to analog signal, quadrature modulation, conversion of intermediate frequency signal to high frequency signal (up convert), removal of extra frequency components, amplification of power, etc. ..
  • IFFT inverse fast Fourier transform
  • the transmission signal output by the wireless transmission unit 2077 is transmitted from the transmission/reception antenna 209.
  • Side link communication is performed in LTE.
  • Sidelink communication is direct communication between a terminal device and a terminal device different from the terminal device.
  • time and frequency resource candidates used for transmission and reception of a side link called a resource pool are set in the terminal device, resources for transmission and reception of the side link are selected from the resource pool, and Link communication is performed. Since side link communication is performed using uplink resources (uplink subframes, uplink component carriers), the resource pool is also set to uplink subframes or uplink component carriers.
  • Sidelink physical channels include PSCCH, PSSCH, sidelink ACK/NACK channels, and the like.
  • the PSCCH is used to transmit sidelink control information (Sidelink Control Information: SCI).
  • SCI Sidelink Control Information
  • the mapping of the information bits of the side link control information is defined as the SCI format.
  • the side link control information includes a side link grant.
  • the side link grant is used for PSSCH scheduling.
  • PSSCH is used to transmit sidelink data (Sidelink Shared Channel: SLL-SCH). Note that the PSSCH may also be used to transmit upper layer control information.
  • SLL-SCH Sidelink Shared Channel
  • the side link ACK/NACK channel is used to reply ACK/NACK for the PSSCH decoding result to the transmitting terminal device.
  • the resource pool is set from the base station device to the terminal device by SIB or dedicated RRC message. Alternatively, it is set by information about the resource pool set in advance in the terminal device.
  • the time resource pool is indicated by period information, offset information, and subframe bitmap information.
  • a resource pool of frequencies is indicated by a resource block start position, a resource block end position, and the number of consecutive resource blocks.
  • the resource pool of the side link in NR can dynamically set the resource pool.
  • the side link resource pool in NR is indicated by the base station by the NR-PDCCH. That is, the NR-DCI included in the NR-PDCCH indicates a resource block and a subframe in which the NR-PSCCH, the NR-PSSCH, and the side link ACK/NACK channel are transmitted and received.
  • FIG. 4 is a diagram showing an example of dynamic resource pool allocation for side links.
  • the first terminal apparatus uses the NR-PDCCH to set the subsequent three subframes including the subframe in which the NR-PDCCH is transmitted, as a resource pool for sidelink communication.
  • the first terminal apparatus waits for a gap time for reception/transmission switching and generation processing of the NR-PSCCH and NR-PSSCH, and then uses the resource pool designated by the NR-PDCCH to make the NR-PSCCH.
  • the first terminal device transmits the NR-PSSCH scheduled according to the NR-SCI format included in the NR-PSCCH to the second terminal device by using the resource pool designated by the NR-PDCCH.
  • the second terminal apparatus waits for the gap time for the side link ACK/NACK channel generation processing, and then transmits from the first terminal apparatus using the resource pool designated by the NR-PDCCH.
  • Information of the ACK/NACK response to the generated NR-PSSCH is placed on the side-link ACK/NACK channel and transmitted to the first terminal apparatus.
  • the time resource used for the side-link communication includes a predetermined sub-resource from the NR-PDCCH.
  • the frame Up to the frame is designated as a side link resource pool.
  • the first terminal device recognizes the time resource pool from the subframe in which the DCI instructing the side link communication is received.
  • the predetermined subframe may be set in advance, such as 3 subframes, or may be set from a higher layer such as SIB or a dedicated RRC message.
  • the time resource used for the side link communication includes the information indicating the subframe in the DCI instructing the side link communication included in the NR-PDCCH.
  • the resource pool is specified based on the.
  • the first terminal device recognizes the time resource pool from the information indicating the subframe. Examples of subframe indication methods include a subframe number and the number of subframes from the NR-PDCCH to the time resource pool.
  • the frequency resource used for the side link communication is instructed based on the resource allocation information which is one of the DCI parameters included in the NR-PDCCH for instructing the side link communication. It The first terminal device recognizes that the resource block indicated by the resource allocation information is a resource pool.
  • the resource allocation information is information indicating a resource in which at least NR-PSCCH is transmitted.
  • the resource allocation information includes information indicating a resource for transmitting the NR-PSCCH, information indicating a resource for transmitting the NR-PSSCH, and information indicating a resource for transmitting the side link ACK/NACK channel. , May be individually notified.
  • the resource for transmitting the NR-PSSCH and the resource for transmitting the side link ACK/NACK channel may be associated with the information indicating the resource for transmitting the NR-PSCCH.
  • the frequency resource on which the NR-PSSCH is transmitted may be the same as the frequency resource on which the NR-PSCCH is transmitted.
  • resource pools of multiple NR component carriers may be designated from one NR-PDCCH.
  • a resource pool used for side link communication of the NR primary cell and the secondary cell may be set from the NR-PDCCH transmitted in the NR primary cell.
  • the subframes and resource blocks for which the resource pool can be designated by the NR-PDCCH may be limited by higher layer information.
  • the upper layer information is, for example, terminal-specific setting information by a dedicated RRC message or the like, or broadcast information such as SIB.
  • a candidate for a time and frequency resource pool is set by the upper layer information, and a subframe and a resource block that can be actually used as a resource pool are instructed from the candidate by the DCI included in the NR-PDCCH that indicates the side link communication. To be done.
  • NR-PDCCH which includes information about the side link resource pool, is preferably transmitted in a terminal device-specific or terminal device group-specific manner. That is, the NR-PDCCH including the side link resource pool information is arranged in the search space determined by the terminal device specific information such as C-RNTI, or the search space determined by the terminal device group specific information. Are preferably arranged in
  • the second terminal device constantly monitors both NR-PDCCH and NR-PSCCH.
  • the second terminal device shifts to the uplink transmission process, the downlink reception process, or the NR-PSCCH transmission process, and otherwise, Try to monitor NR-PSCCH.
  • a plurality of resource candidates (NR-PSCCH candidates) that may transmit the NR-PSCCH are set from the upper layer or set in advance for the second terminal device.
  • the second terminal device attempts blind decoding of the NR-PSCCH in the set NR-PSCCH candidate.
  • the setting information of the NR-PSCCH candidates is notified to the second terminal device by a dedicated RRC message when the second terminal device is in the RRC connected state with the base station device, and the second terminal device is notified by the base station.
  • the second terminal device is notified by the NR side link broadcast channel (NR-PSBCH) transmitted by the first terminal device.
  • the setting information included in the NR-PSBCH is information set by the base station apparatus when the first terminal apparatus exists inside the cell, and when the first terminal apparatus exists outside the cell. , Information set in advance.
  • the resource pool in which the NR-PSBCH is transmitted may also be indicated by the NR-PDCCH.
  • the method of indicating the resource pool in which the NR-PSBCH is transmitted may be the same as the method of instructing the resource pool in which the NR-PSCCH is transmitted.
  • the second terminal device receives the NR-PDCCH for which the resource pool is designated. be able to.
  • the second terminal apparatus attempts to decode the NR-PSCCH in the resource in which the NR-PSCCH is transmitted, based on the information of the resource pool included in the NR-PDCCH, If not, the monitoring process waits until the next unit frame. By this means, it is not necessary to perform the operation of attempting to decode the NR-PSCCH a plurality of times in one unit frame, so that effects such as low power consumption of the terminal device and simplification of the receiver can be expected.
  • FIG. 5 is a diagram showing an example of side link dynamic resource pool allocation.
  • the transmission/reception of the NR-PSCCH, NR-PSSCH and the side link ACK/NACK channel is one predetermined transmission/reception time.
  • the resource pool for side link transmission allocated within (for example, a unit frame time) can be completed.
  • the first terminal apparatus After receiving the NR-PDCCH, the first terminal apparatus recognizes the side-link resource pool based on the DCI (first side-link DCI) instructing the side-link communication included in the NR-PDCCH.
  • the first terminal device transmits the NR-PSCCH and NR-PSSCH using the resource pool of the side link instructed by the first DCI for side link.
  • the second terminal device After receiving the NR-PSCCH transmitted from the first terminal device, the second terminal device attempts to decode the NR-PSSCH based on the information included in the NR-PSCCH.
  • the first terminal device can determine the channel length of the NR-PSSCH based on the information on the side link time resource included in the first side link DCI.
  • the first terminal apparatus can recognize the side link time resource included in the NR-PDCCH based on the information regarding the channel length of the NR-PSSCH included in the first side link DCI.
  • FIG. 6 is a diagram showing an example of dynamic resource pool allocation for side links.
  • the first terminal device uses the NR-PSCCH to instruct the second terminal device of scheduling information for NR-PSSCH transmission from the second terminal device.
  • the second terminal device waits for a gap time for the NR-PSCCH reception process and the NR-PSSCH transmission process, and then transmits the NR-PSSCH based on the information instructed by the NR-PSSCH. ..
  • the base station device uses the resource for side link communication used by the second terminal device by way of the first terminal device. Can be controlled dynamically, and the resource utilization efficiency of the system is improved.
  • the DCI included in the NR-PSCCH transmitted in FIG. 5 that instructs side-link communication is the DCI in which the first terminal device schedules resources for transmitting the NR-PSCCH and NR-PSSCH to the second terminal device.
  • the DCI instructing the side link communication included in the NR-PSCCH transmitted in FIG. 6 is the resource in which the first terminal device transmits the NR-PSCCH to the second terminal device, and the second Is a DCI that schedules resources for transmitting the NR-PSSCH scheduled by the NR-PSCCH to the first terminal.
  • the SCI (first SCI) included in the NR-PSCCH transmitted in FIG. 5 and the SCI (second SCI) included in the NR-PSCCH transmitted in FIG. 6 are different.
  • the first SCI is used to instruct the second terminal device to receive the NR-PSSCH transmitted from the first terminal device
  • the second SCI is used for the second terminal device. It is used to instruct the transmission of the NR-PSSCH addressed to the first terminal device.
  • FIG. 7 is a diagram showing an example of dynamic resource pool allocation for side links.
  • FIG. 7 assumes terminal device relay.
  • NR-PUSCH scheduling is also performed in addition to the side link resource pool instruction by the NR-PDCCH.
  • the first terminal device instructs the second terminal device to transmit the NR-PSSCH by the NR-PSCCH, and receives the SL-SCH from the second terminal device.
  • the first terminal apparatus includes the received SL-SCH in the NR-PUSCH and transmits it to the base station apparatus.
  • the side link resource pool and the NR-PUSCH can be scheduled by one NR-PDCCH, so that it is possible to realize the terminal device relay with low delay while reducing the overhead due to the NR-PDCCH.
  • FIG. 8 is a diagram showing an example of dynamic resource pool allocation for side links.
  • the NR-PDCCH indicates a side link resource pool in radio frame units. It is transmitted in subframe #0.
  • the side link resource pool information included in the NR-PDCCH includes bitmap information in which a subframe in which the side link resource pool is set is indicated by 1 or 0, a resource block start position S1, and a resource block end. It is indicated by the position S2 and the number M of consecutive resource blocks.
  • the NR-PDCCH including this side link resource pool information is preferably sent to the terminal sharing. That is, it is preferable that the NR-PDCCH including the resource pool information of the side link is arranged in the search space common to the terminal devices.
  • the terminal device receives the NR-PDCCH including the side link resource pool information in the subframe #0, the resource pool is set using the resource pool information between the radio frames in which the NR-PDCCH is received. It On the other hand, when the terminal device receives the NR-PDCCH including the side link resource pool information in the subframe #0, it is assumed that the resource pool is not set between the radio frames.
  • NR V2X With conventional D2D and V2X, broadcast communication was supported for the purpose of supporting the minimum necessary use cases.
  • NR V2X in addition to supporting the V2X use case in LTE, NR V2X also supports use cases with higher requirements such as platooning, sensor sharing, and remote control. .. Therefore, in order to support such use cases with higher requirements, support for unicast communication and groupcast (multicast) communication is under consideration in addition to support for broadcast communication.
  • the terminal device on the transmitting side transmits data to surrounding terminal devices (that is, the terminal device on the receiving side) by broadcasting, and the terminal device on the receiving side transmits the data based on the destination information included in the upper layer. Process or discard. Since the conventional multicast communication method uses broadcast communication, it may be difficult to perform appropriate communication control for the terminal devices belonging to the group, which may not always be efficient.
  • the upper layer level eg, TCP layer or application layer level
  • the introduction of technology such as HARQ that feeds back a response according to the data reception result to the device on the transmission side is an effective means.
  • the terminal device on the transmitting side can retransmit data according to the success or failure of data combination in the terminal device on the receiving side. Therefore, the terminal device on the receiving side can transmit the transmitted data.
  • Soft composition is possible. Also, since the terminal device on the transmitting side can know the state of the reception quality of the terminal device on the receiving side by the ACK/NACK feedback, it is possible to realize the link adaptation of unicast or group cast.
  • the terminal device on the transmission side determines that, for example, a sufficient reception SINR has been secured for the MCS used for transmission, and for the next transmission. It becomes possible to use a high MCS.
  • the terminal device on the transmission side determines that it is difficult to secure a sufficient reception SINR for the MCS used for transmission, for example, and the next transmission is not performed. It is possible to use low MCS. With the control as described above, it becomes possible to realize good side link communication.
  • the present disclosure proposes a technique that enables HARQ to be applied in a more suitable mode for inter-device communication (for example, NR V2X) between terminal devices that are supposed to apply NR.
  • the transmitting terminal device uses the resources available to the receiving terminal device as sidelink ACK/NACK channels and HARQ feedback channels. get.
  • a channel that can be used for transmitting a response via the sidelink such as a sidelink ACK/NACK channel or a HARQ feedback channel, is also referred to as a “PSFCH (Physical Sidelink Feedback Channel)” for convenience.
  • PSFCH Physical Sidelink Feedback Channel
  • the terminal device on the transmission side is also referred to as a “transmission terminal”
  • the terminal device on the reception side is also referred to as a “reception terminal”.
  • the receiving terminal corresponds to an example of “another terminal device” when viewed from the transmitting terminal
  • the transmitting terminal corresponds to “another terminal device” when viewed from the receiving terminal. It may correspond to an example of an “apparatus”.
  • Short PSFCH is configured with a length of 2 symbols or less.
  • Long PSFCH has a length of 3 symbols or more and 14 symbols or less.
  • FIGS. 9 to 11 are explanatory diagrams for explaining the outline of an example of a method of arranging resources that can be used for HARQ. Therefore, each of the examples shown in FIGS. 9 to 11 will be individually described below.
  • FIG. 9 shows an example of a PSFCH placement method assuming self-contained feedback. That is, FIG. 9 illustrates an example of a method of arranging the PSFCH when one PSFCH is associated with one PSSCH.
  • self-contained feedback for example, as shown in FIG. 9, HARQ resources (in other words, one rear symbol) for a predetermined number of symbols on the rear side of the slot used for PSSCH transmission (in other words, one rear symbol) are used. , PSFCH resource).
  • FIG. 10 shows an example of a PSFCH arrangement method assuming HARQ bundling between the same links (between the same transmission and reception). That is, FIG. 10 illustrates an example of a method of arranging the PSFCHs when one PSFCH is associated with a plurality of PSSCHs.
  • HARQ bundling is performed between the same links, one PSFCH can be associated with a plurality of PSSCHs arranged in different slots, as shown in FIG. 10, for example.
  • PSCCH may be missed due to the characteristic that one PSFCH can be associated with a plurality of PSSCHs arranged in different slots. Therefore, it is desirable to introduce a mechanism corresponding to DAI (Downlink Assignment Index) in LTE in order to avoid missing the PSSCH.
  • the DAI is an index for notifying how many times the PSSCH is currently transmitted when the PSSCH is transmitted in a plurality of times (in other words, is transmitted in a plurality of slots).
  • a mechanism corresponding to the above-mentioned DAI which is applied to inter-device communication between terminal devices represented by NR V2X, is referred to as “SAI (Sidelink Assignment Index)” for convenience. Also called. That is, by using the SAI, the receiving terminal can specify the PSCCH and PSSCH when a part of the PSCCH and PSSCH is missed, and can transmit the NACK for the PSCCH and PSSCH to the transmitting terminal.
  • repetition transmission can be applied in inter-device communication via the side link. Therefore, an example of the relationship between repetition transmission and SAI will be described below.
  • the receiving terminal has a PSSCH repetition for the plurality of slots. Can be recognized as being applied.
  • the receiving terminal recognizes that the data transmitted in the respective slots are different from each other. It is possible to recognize that there is.
  • the terminal device can dynamically perform repetition control (notification of application/non-application of repetition) with a small amount of control information.
  • FIG. 11 shows an example of a PSFCH allocation method assuming HARQ bundling between different links (between different transmitting terminals or different receiving terminals). That is, FIG. 11 shows an example of a method of arranging the PSFCHs when a plurality of PSFCHs are associated with a plurality of PSSCHs. Note that the example shown in FIG. 11 will be described separately for different transmission terminals and different reception terminals.
  • the receiving terminal may return HARQ-ACK to each of the plurality of transmitting terminals in association with different resources.
  • the receiving terminal may individually return HARQ-ACK to each of the plurality of transmitting terminals by unicast.
  • the receiving terminal may return HARQ-ACKs for a plurality of transmitting terminals in association with one PSFCH. In other words, in this case, the receiving terminal may return the HARQ-ACK to the plurality of transmitting terminals by broadcasting.
  • each of the plurality of receiving terminals may return HARQ-ACK using different resources. That is, in this case, a resource (PSFCH) that can be used for feedback is individually assigned to each of the plurality of receiving terminals. Note that this method is also referred to as a “feedback resource individual allocation method” for convenience. Further, as another example, each of the plurality of receiving terminals may return HARQ-ACK using a common resource that can be used for feedback. That is, in this case, a common resource (PSFCH) that can be used for feedback is allocated to a plurality of receiving terminals. Note that this method is also referred to as a “feedback resource sharing allocation method” for convenience.
  • the Long PSFCH can be used as a resource that can be used for HARQ feedback. Also in this case, it is possible to apply the same resource allocation method as when the Short PSFCH is used.
  • time resource information is notified as a resource that can be used for HARQ feedback.
  • the resource allocation pattern may be switched according to the resource instruction.
  • the time resource information may be designated in advance.
  • the resources available for HARQ feedback may be determined according to various conditions.
  • the resource may be determined according to the urgency of the packet.
  • PSFCH resources may be assigned to the same slot.
  • PSFCH resources after a predetermined number of slots may be allocated.
  • the resource may be determined according to the capability of the terminal device.
  • PSFCH resources may be allocated to the same slot for a terminal device having a short processing time (including PSSCH decoding time and Rx/Tx Switching time). That is, when the receiving terminal can feed back to the transmitting terminal in the same slot, the PSFCH resource may be allocated to the same slot.
  • PSFCH resources after a predetermined number of slots may be allocated to a terminal device with a long processing time. That is, when it is difficult for the receiving terminal to feed back to the transmitting terminal within the same slot, PSFCH resources may be allocated to the slot after a period longer than the processing time of the receiving terminal has elapsed.
  • the resource may be determined according to the congestion level of the frequency band used for communication between devices.
  • the congestion degree of the frequency band is represented by, for example, CBR (Channel Busy Ratio).
  • CBR Channel Busy Ratio
  • the resource may be determined according to the CR (Channel Occupancy Ratio) of the terminal device.
  • CR Channel Occupancy Ratio
  • the time offset may be controlled to be shorter.
  • the above is merely an example, and does not necessarily limit the function provided in the system according to the embodiment of the present disclosure (particularly, the function related to determination of resources available for HARQ feedback). That is, the resource may be determined according to conditions other than the above.
  • the information on the resource may be associated with the PSCCH bit.
  • the control information associated with the information about the PSFCH such as the information about the resource, like the PSCCH, corresponds to an example of the “first control information”.
  • resources that can be used for HARQ feedback may be specified by information about the time offset from PSCCH to PSFCH.
  • the resource may be notified by a bit string corresponding to the time offset pattern.
  • the notification method is the same as the PDSCH-to-HARQ-feedback-timing-indicator included in the DCI formats 1_0 and 1_1.
  • the default time offset pattern may be used. Examples of the default time offset pattern include ⁇ 0, 1, 2, 3 ⁇ .
  • the time offset is represented by the number of slots, for example.
  • a PSFCH resource may be designated. For example, as in the example described with reference to FIG. 11, when a plurality of PSFCH resources are set in a predetermined slot, information designating the PSFCH resource may be notified.
  • an instruction regarding skipping of PSFCH in the same slot may be performed.
  • whether or not the PSFCH is transmitted in the same slot may be notified. That is, when it is notified that the PSFCH will be transmitted in the same slot, the PSFCH will be transmitted in the corresponding slot. On the other hand, when it is notified that the PSFCH is not transmitted in the same slot, the PSFCH may be transmitted in a previously designated slot, for example.
  • the various conditions described above may be applied individually or a combination of a plurality of conditions may be applied. Further, the various conditions described above are merely examples, and do not necessarily limit the functions provided in the system according to the embodiment of the present disclosure (particularly, the functions related to determination of resources available for HARQ feedback). That is, the resources available for HARQ feedback may be designated by conditions other than the above.
  • the PSFCH resource may be determined according to the location of the PSCCH physical resource.
  • the PSFCH resource may be determined according to the scrambling sequence of the PSCCH.
  • scramble sequences such as PSCCH scramble and CRC scramble and PSFCH resources may be associated with each other.
  • the PSFCH resource may be determined according to the length of the PSSCH.
  • the PSFCH may not be transmitted in the slot and the PSFCH may be transmitted in the subsequent slots.
  • the offset of the slot, the slot number, etc. may be designated in advance.
  • the resource may be determined by using the control information by associating the resource information with the control information different from the PSFCH resource information included in the SCI.
  • control information different from the information about the PSFCH resource included in the SCI include a sending terminal ID, a receiving terminal ID, a HARQ process ID (HARQ process ID), an NDI (New Data Indicator), and an RV (Redundancy Version). ) And the like.
  • the transmission terminal ID for example, the resource may be assigned to each transmission terminal.
  • the receiving terminal ID for example, the resource may be assigned to each receiving terminal.
  • the HARQ process ID and the information regarding the time offset may be associated with each other.
  • the HARQ process ID may indicate the time offset.
  • the PSFCH is transmitted in the same slot, and when the HARQ process ID is 1, the PSFCH is transmitted in the next slot. ..
  • the resource may be determined by using control information included in another SCI (Sidelink Control Information) different from the SCI associated with the information regarding the PSFCH resource.
  • SCI Systemlink Control Information
  • the other SCI include SCI for broadcast transmission, SCI for communication between other terminals, SCI including control information different from SCI associated with information regarding PSFCH resource, and the like.
  • the PSFCH may be transmitted using a resource different from the instructed PSFCH resource.
  • the control information included in the other SCI described above corresponds to an example of “second control information”.
  • the explicit designation method may be used.
  • the set of possible values changes depending on the condition, and the corresponding value may be designated by an explicit designation method or an implicit pointing method.
  • the pattern of the time offset switches between ⁇ 0, 1, 2, 3 ⁇ and ⁇ 4,5, 6, 7 ⁇ according to the degree of urgency, and an explicit designation method or an implied
  • the offset value may be notified by a specific pointing method.
  • the time offset patterns are ⁇ 0, 1, 2, 3 ⁇ and ⁇ 4,5, 6, 7 ⁇ depending on the congestion level of the frequency band used for inter-device communication.
  • the offset value may be notified by an explicit designation method or an implicit pointing method.
  • ⁇ Switching time For example, when the PSFCH is transmitted immediately after the PSSCH, it is necessary to switch between Tx and Rx.
  • the time required for switching between Tx and Rx is referred to as switching time.
  • a switching gap of 1 symbol or more for Rx/Tx switching may be provided.
  • the switching gap may be set in advance.
  • Rx/Tx switching may be performed using a symbol that is not used for both PSSCH and PSFCH.
  • the switching gap may be set for each BWP (Bandwidth Part) (or subcarrier interval).
  • the switching gap may be set by RRC. In this case, for example, information regarding which symbol corresponds to a switching symbol may be notified. Further, in this case, the switching gap may be set for each BWP (or subcarrier interval).
  • the switching gap may be notified by the PSCCH.
  • an explicit notification method and an implicit notification method can be applied.
  • the explicit notification method for example, information about at least one of which symbol corresponds to a switching symbol and presence/absence of a switching gap may be notified by PSCCH.
  • the implicit notification method for example, resources other than those allocated by PSSCH and PSFCH can be used as a switching gap.
  • a switching gap when a switching gap is provided for one symbol or more, other terminal devices can use the switching gap for other purposes.
  • another terminal device transmits a detection signal to a DSRC (Dedicated Short Range Communications) device in a switching gap of 1 symbol or more.
  • another terminal device may transmit the PSFCH in a switching gap of 1 symbol or more.
  • another terminal device can also receive a PSCCH (SCI) that is not addressed to itself. That is, the other terminal device can recognize the switching gap by acquiring the PSCCH (SCI) that is not addressed to itself, and can transmit the signal by utilizing the switching gap.
  • SCI PSCCH
  • the switching gap may be set based on the capability information of the terminal device.
  • a terminal device with a long processing time including PSSCH decoding time and Rx/Tx Switching time
  • a terminal device with a short processing time has a switching gap. Only one symbol may be provided.
  • the switching gap may be set for each BWP (or subcarrier interval).
  • part of the rear symbols of PSSCH may be used for Rx/Tx switching.
  • a part of the backward symbols for example, the symbol to be delivered after the completion of the decoding of the data
  • the beginning of the PSFCH or part of the AGC symbol described later may be used for Rx/Tx switching.
  • the receiving terminal may bank (without transmitting) the first symbol of the PSFCH or a part of the AGC symbol described later and use it for Rx/Tx switching.
  • ⁇ AGC symbol As for DL (Downlink), the base station is fixed (that is, the base station does not move), and a periodic signal is periodically transmitted from the base station. Therefore, the terminal device uses the periodic signal to perform AGC. (Automatic Gain Control) can be performed. Further, also in UL (Uplink), the transmission power control is periodically performed so that the reception power of the base station is constant, and therefore, a situation in which the reception power greatly changes is unlikely to occur.
  • AGC Automatic Gain Control
  • both the transmitting terminal and the receiving terminal can dynamically move. Due to such characteristics, the distance between the transmission and the reception can greatly change in the communication between the devices, and thus the reception power may significantly change.
  • the receiving terminal may be desirable for the receiving terminal to adjust the peak level of the received signal by performing gain control (that is, AGC) of the received signal before demodulating the received signal. is there.
  • AGC gain control
  • the transmitting terminal transmits the signal for AGC (in other words, gain control in signal demodulation before transmitting at least one of PSCCH and PSFCH). (Available signal) may be transmitted.
  • FIG. 12 is an explanatory diagram for explaining the outline of the AGC symbol, and shows an example of a schematic frame configuration when the AGC symbol is added to the PSFCH.
  • the horizontal axis represents time. That is, in the example shown in FIG. 12, the AGC symbol is added immediately before the PSFCH symbol. That is, the receiving terminal can adjust the peak level of the received signal (PSFCH) by performing AGC using the AGC symbol before demodulating the PSFCH. That is, the AGC symbol corresponds to a symbol that can be used by a terminal device that receives a signal for gain control (that is, AGC) in demodulation of the signal.
  • AGC peak level of the received signal
  • the conditions for adding the AGC symbol to the PSFCH may be set in advance, for example.
  • the AGC symbol may be always added when the PSFCH is transmitted.
  • condition for adding the AGC symbol to the PSFCH may be set by RRC signaling.
  • whether or not to add the AGC symbol can be set for each BWP (or subcarrier interval).
  • condition for adding the AGC symbol to the PSFCH may be explicitly notified using the PSCCH.
  • at least one of which symbol corresponds to the AGC symbol and the presence or absence of the AGC gap (AGC gap) may be notified by the PSCCH.
  • the condition for adding the AGC symbol to the PSFCH may be implicitly notified.
  • the AGC symbol when the AGC symbol is added to PSCCH or PSSCH, the AGC symbol may be added to PSFCH.
  • the AGC symbol when the AGC symbol is not added to PSCCH and PSSCH, the AGC symbol may not be added to PSFCH.
  • the condition for adding the AGC symbol to the PSFCH is not limited to the above example.
  • whether or not to add the AGC symbol may be determined according to the distance between transmission and reception. Further, as another example, whether or not to add the AGC symbol may be determined according to the information regarding the zone in which the terminal device is located. Further, as another example, whether or not to add the AGC symbol may be determined according to the traffic pattern. As a simple example, for periodic traffic, the AGC symbol does not necessarily have to be added to all PSFCH transmissions. In addition, as another example, when repetition transmission is applied, for example, the AGC symbol may be added to the first transmission and the AGC symbol may not be added to the subsequent transmissions.
  • the AGC symbol may not be added until a predetermined number of transmissions (counter) is exceeded or a predetermined time (timer) is elapsed after transmitting the AGC symbol. Further, whether or not to add the AGC symbol may be determined according to the capability information of the terminal device. Further, in unicast communication or group cast communication, an AGC symbol may be added to a physical channel (PSCCH, PSSCH, PSFCH) at the time of initial setup of an inter-terminal link. Also, the addition of the AGC symbol may be omitted in the second and subsequent feedback transmissions. Regarding the setting of such conditions, for example, the transmitting terminal or the base station may notify or set to the receiving terminal.
  • PSCCH, PSSCH, PSFCH physical channel
  • the transmitting terminal or the base station may notify or set to the receiving terminal.
  • the receiving terminal may add new feedback information by adding an AGC symbol to the PSFCH.
  • the receiving terminal can feed back the information about the received power by returning the PSFCH including the AGC symbol and the NACK to the transmitting terminal.
  • An example of a case where PSSCH reception fails is a case where PSSCH reception fails due to too high received power.
  • the receiving terminal may add the AGC symbol and return the PSFCH to the transmitting terminal when the received power of the PSCCH or PSCCH is out of the predetermined range.
  • the AGC symbol can be composed of, for example, a CSI measurement signal. Further, as another example, the AGC symbol may be configured by extending the CP (Cyclic prefix) of the first symbol of the PSCCH or PSFCH. Further, as another example, the AGC symbol may be composed of a signal that can be received by the DSRC device. In this case, for example, the DSRC device can transmit the resource occupancy status to other devices by detecting the signal, and in addition to the AGC effect, more efficient coexistence with DSRC can be possible.
  • the signal has an AGC symbol, 1 symbol, or a length of 1 symbol or less (it can also be called a sub symbol). Further, the length of the AGC symbol may be a fixed length regardless of the symbol length (or subcarrier interval).
  • the transmission parameters regarding the PSFCH can be overwritten before the PSFCH is transmitted.
  • Examples of the overwritable PSFCH transmission parameters include the following parameters. -PSFCH transmission resource-Transmission power-PSFCH format (for example, Long PSFCH or short PSFCH) -Addition of AGC symbol-DMRS sequence of PSFCH
  • the transmission parameters regarding the PSFCH may be overwritten by another SCI, for example.
  • another SCI for example.
  • the transmission parameter of the PSFCH is instructed by a predetermined SCI and before the transmission of the PSFCH, the transmission parameter is instructed again by another SCI different from the SCI. Can be assumed. In such a case, the transmission parameter instructed by the other SCI may be used.
  • the transmission parameter regarding the PSFCH may be overwritten.
  • transmission resource allocation may be controlled so that the transmission timing of the PSFCH is postponed.
  • Group cast HARQ HARQ assuming a group cast (hereinafter, also referred to as “group cast HARQ” for convenience) will be described. Transmission of PSCCH and/or PSSCH associated with a group ID can be considered as groupcast transmission. Therefore, an example of a technique for realizing group cast HARQ will be described below.
  • the method of allocating feedback resources differs depending on whether the receiving terminal sends ACK/NACK as a response or only NACK.
  • the receiving terminal transmits ACK/NACK as a response specifically, when the receiving terminal succeeds in decoding PSSCH, it transmits ACK as a response and when it fails in decoding PSSCH.
  • send NACK When the receiving terminal sends only NACK as a response, specifically, when the receiving terminal succeeds in decoding PSSCH, it does not send a response (eg, ACK) and fails in decoding PSSCH. When it does, NACK is transmitted as a response.
  • the transmitting terminal can allocate orthogonal individual HARQ feedback resources (that is, PSFCH resources) to each receiving terminal.
  • the feedback resource allocation method in this case is also referred to as “feedback resource individual allocation method” for convenience.
  • assigning feedback resources individually to each receiving terminal may mean that different physical resources (for example, time, frequency, and orthogonal code) are assigned to each receiving terminal.
  • the “feedback resource individual allocation method” corresponds to an example of the “first allocation method”.
  • the transmitting terminal can individually recognize the decoding status of information at each receiving terminal (for example, the decoding result of PSCCH and PSSCH). That is, in this case, since a unique (individual) resource is allocated to each receiving terminal, which transmitting terminal has succeeded in receiving information and which receiving terminal has failed in receiving information? Can be recognized.
  • DTX Discontinuous Transmission
  • the transmitting terminal can determine that decoding of the PSCCH has failed on the receiving terminal side, for example.
  • the transmitting terminal can selectively apply two schemes as HARQ feedback resource allocation schemes.
  • the first method is the "feedback resource individual allocation method" described above. That is, the transmitting terminal can allocate orthogonal individual HARQ feedback resources to each receiving terminal. In this case, since a unique (individual) resource is allocated to each receiving terminal, the transmitting terminal recognizes which receiving terminal has succeeded in receiving information and which receiving terminal has failed in receiving information. It becomes possible to do.
  • the second method is a method in which the transmitting terminal allocates a common HARQ feedback resource among the receiving terminals belonging to the group.
  • the feedback resource allocation method in this case is also referred to as a “feedback resource shared allocation method” for convenience.
  • assigning a common feedback resource to each receiving terminal may mean that the same physical resource (for example, time and frequency) is assigned so as to be shared between the receiving terminals.
  • the “feedback resource shared allocation method” corresponds to an example of the “second allocation method”. In this case, since resources are shared by the receiving terminals belonging to the group, it is possible to improve resource utilization efficiency for HARQ feedback.
  • the sending terminal does not recognize the terminal device belonging to the group.
  • a method in which the receiving terminal transmits only NACK as a response may be applied.
  • the feedback resource shared allocation method may be applied as the HARQ feedback resource allocation method.
  • the above-mentioned “feedback resource dedicated allocation method” and “feedback resource shared allocation method” may be selectively applied as HARQ feedback resource allocation methods according to predetermined conditions. ..
  • the HARQ feedback resource allocation method may be switched according to the number of receiving terminals belonging to the group. More specifically, when the number of receiving terminals belonging to the group is small (that is, less than the threshold value), the “feedback resource individual allocation method” may be applied. On the other hand, when the number of receiving terminals belonging to the group is large (that is, when the number of receiving terminals is equal to or more than the threshold) or when the number of receiving terminals belonging to the group is unknown, the “feedback resource sharing allocation method” is applied May be done.
  • the HARQ feedback resource allocation method may be switched according to the congestion level of the frequency band used for inter-device communication. More specifically, when the congestion level of the frequency band is low (that is, when the congestion level is less than the threshold value), the “feedback resource individual allocation method” may be applied. On the other hand, when the congestion level of the frequency band is high (that is, when it is equal to or higher than the threshold value), the “feedback resource sharing allocation method” may be applied.
  • the HARQ feedback resource allocation method may be switched according to the positional relationship between the transmitting terminal and each receiving terminal belonging to the group. More specifically, if the distance between the transmitting and receiving terminals for the receiving terminal located farthest from the transmitting terminal is long (that is, equal to or greater than the threshold value), the "feedback resource individual allocation method" is applied. Good. On the other hand, when the distance between the transmitting and receiving terminals for the receiving terminal located farthest from the transmitting terminal is short (that is, less than the threshold value), the "feedback resource sharing allocation method" may be applied. Good.
  • the HARQ feedback resource allocation method may be switched according to the PSSCH transmission method. More specifically, when the PSSCH is transmitted in a high MCS (Modulation and Coding Scheme) (that is, when the multilevel is equal to or higher than the threshold), the “feedback resource individual allocation method” may be applied. On the other hand, when the PSSCH is transmitted with a low MCS (that is, when the multi-level is less than the threshold), the “feedback resource sharing allocation scheme” may be applied.
  • MCS Modulation and Coding Scheme
  • the HARQ feedback resource allocation method may be switched according to the QoS level (in other words, the level of urgency). More specifically, when the QoS level is (that is, when the QoS level is equal to or higher than the threshold value), the “feedback resource individual allocation method” may be applied. On the other hand, when the QoS level is low (that is, less than the threshold value), the “feedback resource sharing allocation method” may be applied.
  • on-off keying may be applied to the notification of the response.
  • the terminal device that receives the feedback may determine NACK if the received power of the predetermined resource is equal to or more than the threshold value, and may determine ACK if the received power is less than the threshold value. ..
  • a sequence may be used to notify the response.
  • the response may be transmitted using a sequence pattern indicating ACK/NACK.
  • a payload may be used to notify the response.
  • the response may be transmitted by associating the bit information indicating ACK/NACK with the physical channel.
  • the mechanism of Resource selection may be applied to the notification of the response.
  • two types of feedback resources are assigned.
  • the terminal device that receives the feedback determines, for example, that the response is transmitted by using one resource, and determines that the response is transmitted by using the other resource. It may be judged as NACK.
  • the above is just an example, and if the response (ACK/NACK or NACK) can be notified to other terminal devices, the method is not particularly limited.
  • the base station device 1 may be realized as an eNB (evolved Node B) of any type such as a macro eNB or a small eNB.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB or a home (femto) eNB.
  • the base station device 1 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the base station device 1 may include a main body (also referred to as a base station device) that controls wireless communication, and one or more RRHs (Remote Radio Heads) arranged in a place different from the main body. Further, various types of terminals described later may operate as the base station device 1 by temporarily or semi-permanently executing the base station function. Furthermore, at least a part of the components of the base station device 1 may be implemented in the base station device or a module for the base station device.
  • the terminal device 2 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable/dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. May be realized as. Further, the terminal device 2 may be realized as a terminal that performs M2M (Machine To Machine) communication (also referred to as an MTC (Machine Type Communication) terminal). Furthermore, at least a part of the components of the terminal device 2 may be realized by a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • M2M Machine To Machine
  • MTC Machine Type Communication
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology according to the present disclosure can be applied.
  • the eNB 800 has one or more antennas 810 and a base station device 820. Each antenna 810 and base station device 820 may be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for the base station device 820 to transmit and receive radio signals.
  • the eNB 800 has a plurality of antennas 810 as shown in FIG. 13, and the plurality of antennas 810 may correspond to a plurality of frequency bands used by the eNB 800, respectively. Note that FIG. 13 shows an example in which the eNB 800 has a plurality of antennas 810, but the eNB 800 may have a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of the upper layer of the base station device 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors and may transfer the generated bundled packet. Further, the controller 821 is a logic for executing control such as radio resource control (Radio Resource Control), radio bearer control (Radio Bearer Control), mobility management (Mobility Management), admission control (Admission Control) or scheduling (Scheduling). It may have a general function.
  • Radio Resource Control Radio Resource Control
  • Radio Bearer Control Radio Bearer Control
  • Mobility Management Mobility Management
  • Admission Control Admission Control
  • scheduling scheduling
  • the control may be executed in cooperation with a peripheral eNB or core network node.
  • the memory 822 includes a RAM and a ROM, and stores a program executed by the controller 821 and various control data (for example, a terminal list, transmission power data, scheduling data, etc.).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. Controller 821 may communicate with core network nodes or other eNBs via network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, the S1 interface or the X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports a cellular communication method such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). (Packet Data Convergence Protocol)) various signal processing is executed.
  • L1, MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and a related circuit. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or blade inserted in the slot of the base station device 820, or a chip mounted on the card or blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 13, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 as shown in FIG. 13, and the plurality of RF circuits 827 may correspond to a plurality of antenna elements, respectively.
  • FIG. 13 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But it's okay.
  • the eNB 800 illustrated in FIG. 13 one or more components of the upper layer processing unit 101 and the control unit 103 described with reference to FIG. 2 may be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and/or the controller 821, and the one or more components may be mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • a program for causing a processor to function as one or more components described above is installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and/or the controller 821 executes the program.
  • the eNB 800, the base station device 820 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium recording the above program may be provided.
  • the receiving unit 105 and the transmitting unit 107 described with reference to FIG. 2 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827).
  • the transmit/receive antenna 109 may also be implemented in the antenna 810.
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology according to the present disclosure can be applied.
  • the eNB 830 has one or more antennas 840, a base station device 850, and an RRH 860.
  • Each antenna 840 and RRH 860 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other by a high speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for transmitting and receiving radio signals by the RRH 860.
  • the eNB 830 may include a plurality of antennas 840 as illustrated in FIG. 14, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830. Note that FIG. 14 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH860 via the RRH860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 or the like.
  • the BB processor 856 is similar to the BB processor 826 described with reference to FIG. 13 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as shown in FIG. 13, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830.
  • FIG. 14 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (radio communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line connecting the base station device 850 (radio communication interface 855) and the RRH 860.
  • the RRH 860 also includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (radio communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high speed line.
  • the wireless communication interface 863 sends and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 or the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 14, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the eNB 830 illustrated in FIG. 14 one or more components of the upper layer processing unit 101 and the control unit 103 described with reference to FIG. 2 are implemented in the wireless communication interface 855 and/or the wireless communication interface 863. Good. Alternatively, at least some of these components may be implemented in controller 851. As an example, the eNB 830 includes a module including a part (eg, the BB processor 856) or all of the wireless communication interface 855 and/or the controller 851, and the one or more components may be mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • a program for causing a processor to function as the one or more components may be installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and/or the controller 851 may execute the program.
  • the eNB 830, the base station device 850, or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium recording the above program may be provided.
  • the reception unit 105 and the transmission unit 107 described with reference to FIG. 2 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the transmit/receive antenna 109 may also be implemented in the antenna 840.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, and one or more antenna switches 915. It comprises one or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes RAM and ROM and stores programs and data executed by the processor 901.
  • the storage 903 may include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 has an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor, for example.
  • the microphone 908 converts a voice input to the smartphone 900 into a voice signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays the output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports a cellular communication method such as LTE or LTE-Advanced and executes wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, multiplexing/demultiplexing, and the like, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as shown in FIG. 15.
  • FIG. 15 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But it's okay.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-distance wireless communication method, a close proximity wireless communication method or a wireless LAN (Local Area Network) method in addition to the cellular communication method, In that case, the BB processor 913 and the RF circuit 914 for each wireless communication system may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for transmitting and receiving radio signals by the radio communication interface 912.
  • the smartphone 900 may have a plurality of antennas 916 as shown in FIG. Note that FIG. 15 illustrates an example in which the smartphone 900 has a plurality of antennas 916, but the smartphone 900 may have a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication system.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. ..
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 15 via a power supply line partially shown by a broken line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the smartphone 900 includes a module including a part (eg, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and/or the auxiliary controller 919, and the one or more constituent elements in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and/or the auxiliary controller 919 are included in the program. You may run the program.
  • the smartphone 900 or the module may be provided as an apparatus including the one or more components, and a program for causing the processor to function as the one or more components may be provided.
  • a readable recording medium recording the above program may be provided.
  • the reception unit 205 and the transmission unit 207 described with reference to FIG. 3 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the transmit/receive antenna 209 may also be implemented in the antenna 916.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931 and wireless communication.
  • An interface 933, one or more antenna switches 936, one or more antennas 937 and a battery 938 are provided.
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor, for example.
  • the data interface 926 is connected to the vehicle-mounted network 941 via a terminal (not shown), and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces the content stored in the storage medium (for example, CD or DVD) inserted in the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor that detects a touch on the screen of the display device 930, a button or a switch, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports a cellular communication method such as LTE or LTE-Advanced and executes wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, multiplexing/demultiplexing, and the like, and perform various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935, as shown in FIG. 16.
  • 16 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But it's okay.
  • the wireless communication interface 933 may support other types of wireless communication systems such as a short-range wireless communication system, a close proximity wireless communication system, and a wireless LAN system in addition to the cellular communication system.
  • a BB processor 934 and an RF circuit 935 for each communication method may be included.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 933.
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for transmitting and receiving radio signals by the radio communication interface 933.
  • the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. 16 illustrates an example in which the car navigation device 920 has a plurality of antennas 937, the car navigation device 920 may have a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication system.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies electric power to each block of the car navigation device 920 shown in FIG. 16 via a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation device 920 includes a module including a part (eg, the BB processor 934) or all and/or the processor 921 of the wireless communication interface 933, and the one or more components described above are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • a program for causing a processor to function as one or more components described above is installed in the car navigation device 920, and the wireless communication interface 933 (eg, BB processor 934) and/or the processor 921 executes the program.
  • the car navigation device 920 or the module may be provided as the device including the one or more constituent elements, and the program for causing the processor to function as the one or more constituent elements may be provided.
  • a readable recording medium recording the above program may be provided.
  • the reception unit 205 and the transmission unit 207 described with reference to FIG. 3 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935). Further, the transmitting/receiving antenna 209 may be mounted in the antenna 937.
  • the technology according to the present disclosure may be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941 and a vehicle-side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as an apparatus including at least one of the upper layer processing unit 201, the control unit 203, the receiving unit 205, and the transmitting unit 207.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the vehicle-mounted network 941.
  • the communication device is a communication unit that performs wireless communication, and data from another terminal device (transmission Tamazu) via inter-device communication. And a control unit that controls such that a response to the transmission of is transmitted to the other terminal device via the inter-device communication. The control unit determines a resource to be used for transmitting the response based on the condition regarding the inter-device communication.
  • the communication device (transmission terminal) includes a communication unit that performs wireless communication, and a control unit that controls so that data is transmitted to another terminal device (reception terminal) via inter-device communication. The control unit controls such that a response to the transmission of the data, which is transmitted from the other terminal device, is acquired by using a resource according to the condition regarding the inter-device communication.
  • NR V2X device-to-device communication
  • NR V2X device-to-device communication
  • HARQ can be applied in a more suitable manner for inter-device communication (for example, NR V2X) between terminal devices that are supposed to apply NR. Therefore, according to the technology according to the present disclosure, it is possible to realize highly efficient unicast communication and groupcast communication in a more preferable manner in inter-device communication between terminal devices represented by NR V2X. ..
  • a communication unit that performs wireless communication A control unit that controls a response to the transmission of data from another terminal device via the inter-device communication so as to be transmitted to the other terminal device via the inter-device communication, Equipped with The control unit determines a resource to be used for transmitting the response, based on a condition regarding the inter-device communication, Communication device.
  • the communication device according to (1) wherein the control unit determines a resource used for transmission of the response based on information notified from the other terminal device in association with transmission of the data.
  • the information notified from the other terminal device is information regarding the resource.
  • the communication device (4) The communication device according to (3), wherein the information about the resource includes information about a time offset from the first control information with which the resource is associated. (5) The communication device according to (2), wherein the information notified from the other terminal device is information regarding a condition of the inter-device communication. (6) The information regarding the conditions of the inter-device communication is Information about a scramble sequence of first control information with which the resource is associated; Second control information relating to the inter-device communication different from the first control information; Including at least one of The communication device according to (5) above. (7) The communication device according to (6), wherein the second control information includes identification information associated with a process related to the transmission of the response.
  • the communication device according to any one of (2) to (7), wherein a set of values that can be taken as information notified from the other terminal device is selectively switched according to a predetermined condition.
  • the predetermined condition is An urgency associated with the packet of data, A level of congestion degree of a frequency band used for the inter-device communication, Including conditions relating to at least one of The communication device according to (8).
  • the control unit is An urgency associated with the packet of data, Capabilities of the communication device between the devices, A level of congestion degree of a frequency band used for the inter-device communication, Occupancy of the frequency band by the communication device, Determining resources to use for transmitting the response based on information about at least one of The communication device according to (1).
  • the communication device according to any one of (1) to (10), wherein the control unit individually determines the resource for each transmission of the response to each of the plurality of other terminal devices. (12) The communication device according to any one of (1) to (10), wherein the control unit determines the common resource for transmission of the response to each of the plurality of other terminal devices. (13) The communication device according to any one of (1) to (12), wherein the control unit associates a symbol that can be used for gain control in demodulation of the response with the response based on a predetermined condition. .. (14) The communication device according to (13), wherein the control unit associates the symbol with the response according to information transmitted from the other terminal device via the inter-device communication.
  • the control unit is Depending on whether the first control information associated with the resource is associated with a symbol that can be used for gain control in demodulation of the first control information,
  • the response is associated with a symbol that can be used for gain control in demodulation of the response,
  • the communication device according to (14).
  • a communication unit that performs wireless communication A control unit that controls data to be transmitted to another terminal device via device-to-device communication; Equipped with The control unit controls so that a response to the transmission of the data, which is transmitted from the other terminal device using a resource according to a condition regarding the inter-device communication, is acquired,
  • a communication device comprising: (17) The control unit is Allocating the resource to the other terminal device, Control so that the information according to the allocation result of the resource is notified to the other terminal device, The communication device according to (16). (18) The communication device according to (17), wherein the control unit individually allocates the resources to the plurality of other terminal devices. (19) The communication device according to (17), wherein the control unit allocates the common resource to a plurality of the other terminal devices.
  • the control unit sets the common resource to a plurality of the other terminal devices.
  • the control unit is As the resource allocation method, A first allocation scheme in which the resources are individually allocated to a plurality of the other terminal devices; A second allocation method for allocating the common resource to a plurality of the other terminal devices; Which of the following is applied based on the predetermined conditions, The communication device according to (17).
  • the control unit is The number of the other terminal devices to which the data is transmitted, A level of congestion degree of a frequency band used for the inter-device communication, Determining which of the first allocation scheme and the second allocation scheme is to be applied based on a condition relating to at least one of The communication device according to (21).
  • (23) Computer Wireless communication Controlling that a response to data transmission from another terminal device via inter-device communication is transmitted to the other terminal device via the inter-device communication, Determining a resource to be used for transmitting the response based on a condition regarding the inter-device communication, Including a communication method.
  • (24) Computer Wireless communication, Controlling data to be transmitted to another terminal device through device-to-device communication; Controlling so that a response to the transmission of the data, which is transmitted from the other terminal device using a resource according to the condition regarding the inter-device communication, is acquired, Including a communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信を行う通信部と、装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御する制御部と、を備え、前記制御部は、前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定する、通信装置。

Description

通信装置及び通信方法
 本開示は、通信装置及び通信方法に関する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution(LTE)」、「LTE-Advanced(LTE-A)」、「LTE-Advanced Pro(LTE-A Pro)」、「New Radio(NR)」、「New Radio Access Technology(NRAT)」、「Evolved Universal Terrestrial Radio Access(EUTRA)」、または「Further EUTRA(FEUTRA)」とも称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。なお、以下の説明において、LTEは、LTE-A、LTE-A Pro、およびEUTRAを含み、NRは、NRAT、およびFEUTRAを含む。LTEおよびNRでは、基地局装置(基地局)はeNodeB(evolved NodeB)、端末装置(移動局、移動局装置、端末)はUE(User Equipment)とも称する。LTEおよびNRは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 LTEにおいて、車車間通信(Vehicle-to-Vehicle(V2V) communication)や車人間通信(Vehicle-to-Pedestrian(V2P) communication)、車インフラ間通信(Vehicle-to-Infrastructure/network(V2I/N) communication)など、自動車における様々な通信(Vehicle-to-Anything(V2X) communication)がサポートされた。LTEにおけるV2Xでは、運転補助や自動運転、歩行者への警告、などのユースケースをサポートする。V2Xをサポートするために、サイドリンク(デバイス間通信(Device to Device(D2D) communication)とも呼称される)が用いられる。
 更に、NRにおいて、LTEのV2Xユースケースをサポートすることに加え、隊列走行(Vehicles Platooning)、センサシェアリング(Extended Sensors)、高度自動運転(Advanced Driving)、リモート操縦(Remote Driving)等のような、更なる要求条件の高いユースケースをサポートすることが求められている。これらのユースケースをサポートするためには、より高スループットかつ低遅延高信頼性が求められ、60GHz帯などのミリ波での運用も検討されている。NRにおけるV2Xの詳細は、非特許文献1に開示されている。
RP-181429, Vodafone, "New SID: Study on NR V2X," 3GPP TSG RAN Meeting #80, La Jolla, USA, June 11th-14th, 2018.
 ところで、従来のD2DやV2Xでは、ブロードキャスト通信がサポートされていた。これに対して、NR V2Xでは、上述の通り多様なユースケースをサポートするために、ブロードキャスト通信に加えて、ユニキャスト通信やグループキャスト(マルチキャスト)通信のサポートが検討されている。このような背景から、NR V2Xに代表される端末装置間における装置間通信において、高効率なユニキャスト通信やグループキャスト通信を実現するために、当該装置間通信に対して、HARQのようなデータの受信結果に応じた応答を送信側の装置にフィードバックする技術の適用が求められている。
 そこで、本開示では、端末装置間における装置間通信において、データの受信結果に応じた応答のフィードバックをより好適な態様で実現可能とする技術を提案する。
 本開示によれば、無線通信を行う通信部と、装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御する制御部と、を備え、前記制御部は、前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定する、通信装置が提供される。
 また、本開示によれば、無線通信を行う通信部と、装置間通信を介して他の端末装置にデータが送信されるように制御する制御部と、を備え、前記制御部は、前記装置間通信に関する条件に応じたリソースを使用して前記他の端末装置から送信される、前記データの送信に対する応答が取得されるように制御する、を備える、通信装置が提供される。
 また、本開示によれば、コンピュータが、無線通信を行うことと、装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御することと、前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定することと、を含む、通信方法が提供される。
 また、本開示によれば、コンピュータが、無線通信を行うことと、装置間通信を介して他の端末装置にデータが送信されるように制御することと、前記装置間通信に関する条件に応じたリソースを使用して前記他の端末装置から送信される、前記データの送信に対する応答が取得されるように制御することと、を含む、通信方法が提供される。
本開示の一実施形態におけるサイドリンク通信の概要について説明するための説明図である。 同実施形態の基地局装置の構成を示す概略ブロック図である。 同実施形態の端末装置の構成を示す概略ブロック図である。 サイドリンクの動的リソースプール割当の一例について説明するための説明図である。 サイドリンクの動的リソースプール割当の他の一例について説明するための説明図である。 サイドリンクの動的リソースプール割当の他の一例について説明するための説明図である。 サイドリンクの動的リソースプール割当の他の一例について説明するための説明図である。 サイドリンクの動的リソースプール割当の他の一例について説明するための説明図である。 HARQに利用可能なリソースの配置方法の一例について概要を説明するための説明図である。 HARQに利用可能なリソースの配置方法の他の一例について概要を説明するための説明図である。 HARQに利用可能なリソースの配置方法の他の一例について概要を説明するための説明図である。 AGCシンボルについて概要を説明するための説明図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.技術的課題
 3.技術的特徴
 4.応用例
  4.1.基地局に関する応用例
  4.2.端末装置に関する応用例
 5.むすび
 <<1.はじめに>>
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、特に明記されない限り、以下で説明される技術、機能、方法、構成、手順、およびその他全ての記載は、LTEおよびNRに適用できる。
  <本実施形態における無線通信システム>
 本実施形態において、無線通信システムは、基地局装置1および端末装置2を少なくとも具備する。基地局装置1は複数の端末装置を収容できる。基地局装置1は、他の基地局装置とX2インタフェースの手段によって互いに接続できる。また、基地局装置1は、S1インタフェースの手段によってEPC(Evolved Packet Core)に接続できる。さらに、基地局装置1は、S1-MMEインタフェースの手段によってMME(Mobility Management Entity)に接続でき、S1-Uインタフェースの手段によってS-GW(Serving Gateway)に接続できる。S1インタフェースは、MMEおよび/またはS-GWと基地局装置1との間で、多対多の接続をサポートしている。また、本実施形態において、基地局装置1および端末装置2は、それぞれLTEおよび/またはNRをサポートする。
  <本実施形態におけるサイドリンク通信の概要>
 図1は、本実施形態におけるサイドリンク通信の概要について説明するための説明図である。1つのユースケースとして、例えば、2つ以上の端末装置2が、基地局装置1により構成されるセル3の内部に存在し、当該端末装置2間でサイドリンク通信を行う場合がある。また、他のユースケースとして、例えば、2つ以上の端末装置2のうち、少なくとも一方の端末装置2が、基地局装置1により構成されるセル3の内部に存在し、他方の端末装置2がそのセル3の外部に存在するような状況下において、当該端末装置2間でサイドリンク通信を行う場合がある。更に、セル3の内部に存在する端末装置2は、基地局装置1と通信を行うことで、当該基地局装置1と、セル3の外部に存在する端末装置2と、の間の通信の中継を行うことが可能である。
 なお、端末装置2がセル3の内部に存在する状態は、端末装置2が基地局装置1から受信する下りリンク信号の品質が、所定の基準以上である状態であるとも言える。また、端末装置2がセル3の内部に存在する状態は、端末装置2が基地局装置1から受信する所定の下りリンクチャネルが復号可能である確率が、所定の確率以上である状態であるとも言える。言い換えると、端末装置2がセル3の外部に存在する状態は、端末装置2が基地局装置1から受信する下りリンク信号の品質が、所定の基準を下回る状態であるとも言える。また、端末装置2がセル3の外部に存在する状態は、端末装置2が基地局装置1からの受信する所定の下りリンクチャネルを復号可能である確率が、所定の確率以上ではない状態であるとも言える。
 以下、本実施形態では、サイドリンク通信によって送受信を行う2つの端末装置を第1の端末装置と第2の端末装置とも呼称する。特に、本実施形態では、基地局装置からサイドリンク通信に関する情報を受信し、サイドリンク制御チャネルを送信する端末装置を第1の端末装置と呼称し、それ以外の端末装置を第2の端末装置と呼称する場合がある。
  <本実施形態における基地局装置の構成例>
 図2は、本実施形態の基地局装置1の構成を示す概略ブロック図である。図示するように、基地局装置1は、上位層処理部101、制御部103、受信部105、送信部107、および、送受信アンテナ109、を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057、およびチャネル測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077、および下りリンク参照信号生成部1079を含んで構成される。
 既に説明したように、基地局装置1は、1つ以上のRATをサポートできる。図2に示す基地局装置1に含まれる各部の一部または全部は、RATに応じて個別に構成されうる。例えば、受信部105および送信部107は、LTEとNRとで個別に構成される。また、NRセルにおいて、図2に示す基地局装置1に含まれる各部の一部または全部は、送信信号に関するパラメータセットに応じて個別に構成されうる。例えば、あるNRセルにおいて、無線受信部1057および無線送信部1077は、送信信号に関するパラメータセットに応じて個別に構成されうる。
 上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行う。また、上位層処理部101は、受信部105、および送信部107の制御を行うために制御情報を生成し、制御部103に出力する。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105および送信部107の制御を行う。制御部103は、上位層処理部101への制御情報を生成し、上位層処理部101に出力する。制御部103は、復号化部1051からの復号化された信号およびチャネル測定部1059からのチャネル推定結果を入力する。制御部103は、符号化する信号を符号化部1071へ出力する。また、制御部103は、基地局装置1の全体または一部を制御するために用いられる。
 上位層処理部101は、RAT制御、無線リソース制御、サブフレーム設定、スケジューリング制御、および/または、CSI報告制御に関する処理および管理を行う。上位層処理部101における処理および管理は、端末装置毎、または基地局装置に接続している端末装置共通に行われる。上位層処理部101における処理および管理は、上位層処理部101のみで行われてもよいし、上位ノードまたは他の基地局装置から取得してもよい。また、上位層処理部101における処理および管理は、RATに応じて個別に行われてもよい。例えば、上位層処理部101は、LTEにおける処理および管理と、NRにおける処理および管理とを個別に行う。
 上位層処理部101におけるRAT制御では、RATに関する管理が行われる。例えば、RAT制御では、LTEに関する管理および/またはNRに関する管理が行われる。NRに関する管理は、NRセルにおける送信信号に関するパラメータセットの設定および処理を含む。
 上位層処理部101における無線リソース制御では、下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ(RRCパラメータ)、および/または、MAC制御エレメント(CE:Control Element)の生成および/または管理が行われる。
 上位層処理部101におけるサブフレーム設定では、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、および/または、下りリンク参照UL-DL設定の管理が行われる。なお、上位層処理部101におけるサブフレーム設定は、基地局サブフレーム設定とも呼称される。また、上位層処理部101におけるサブフレーム設定は、上りリンクのトラフィック量および下りリンクのトラフィック量に基づいて決定できる。また、上位層処理部101におけるサブフレーム設定は、上位層処理部101におけるスケジューリング制御のスケジューリング結果に基づいて決定できる。
 上位層処理部101におけるスケジューリング制御では、受信したチャネル状態情報およびチャネル測定部1059から入力された伝搬路の推定値やチャネルの品質などに基づいて、物理チャネルを割り当てる周波数およびサブフレーム、物理チャネルの符号化率および変調方式および送信電力などが決定される。例えば、制御部103は、上位層処理部101におけるスケジューリング制御のスケジューリング結果に基づいて、制御情報(DCIフォーマット)を生成する。
 上位層処理部101におけるCSI報告制御では、端末装置2のCSI報告が制御される。例えば、端末装置2においてCSIを算出するために想定するためのCSI参照リソースに関する設定が制御される。
 受信部105は、制御部103からの制御に従って、送受信アンテナ109を介して端末装置2から送信された信号を受信し、さらに分離、復調、復号などの受信処理を行い、受信処理された情報を制御部103に出力する。なお、受信部105における受信処理は、あらかじめ規定された設定、または基地局装置1が端末装置2に通知した設定に基づいて行われる。
 無線受信部1057は、送受信アンテナ109を介して受信された上りリンクの信号に対して、中間周波数への変換(ダウンコンバート)、不要な周波数成分の除去、信号レベルが適切に維持されるように増幅レベルの制御、受信された信号の同相成分および直交成分に基づく直交復調、アナログ信号からディジタル信号への変換、ガードインターバル(Guard Interval: GI)の除去、および/または、高速フーリエ変換(Fast Fourier Transform: FFT)による周波数領域信号の抽出を行う。
 多重分離部1055は、無線受信部1057から入力された信号から、PUCCHまたはPUSCHなどの上りリンクチャネルおよび/または上りリンク参照信号を分離する。多重分離部1055は、上りリンク参照信号をチャネル測定部1059に出力する。多重分離部1055は、チャネル測定部1059から入力された伝搬路の推定値から、上りリンクチャネルに対する伝搬路の補償を行う。
 復調部1053は、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM、256QAM等の変調方式を用いて受信信号の復調を行う。復調部1053は、MIMO多重された上りリンクチャネルの分離および復調を行う。
 復号化部1051は、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータおよび/または上りリンク制御情報は制御部103へ出力される。復号化部1051は、PUSCHに対しては、トランスポートブロック毎に復号処理を行う。
 チャネル測定部1059は、多重分離部1055から入力された上りリンク参照信号から伝搬路の推定値および/またはチャネルの品質などを測定し、多重分離部1055および/または制御部103に出力する。例えば、チャネル測定部1059は、UL-DMRSを用いてPUCCHまたはPUSCHに対する伝搬路補償を行うための伝搬路の推定値を測定し、SRSを用いて上りリンクにおけるチャネルの品質を測定する。
 送信部107は、制御部103からの制御に従って、上位層処理部101から入力された下りリンク制御情報および下りリンクデータに対して、符号化、変調および多重などの送信処理を行う。例えば、送信部107は、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を生成および多重し、送信信号を生成する。なお、送信部107における送信処理は、あらかじめ規定された設定、基地局装置1が端末装置2に通知した設定、または、同一のサブフレームで送信されるPDCCHまたはEPDCCHを通じて通知される設定に基づいて行われる。
 符号化部1071は、制御部103から入力されたHARQインディケータ(HARQ-ACK、ACK/NACK)、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の所定の符号化方式を用いて符号化を行う。変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。下りリンク参照信号生成部1079は、物理セル識別子(PCI:Physical cell identification)、端末装置2に設定されたRRCパラメータなどに基づいて、下りリンク参照信号を生成する。多重部1075は、各チャネルの変調シンボルと下りリンク参照信号を多重し、所定のリソースエレメントに配置する。
 無線送信部1077は、多重部1075からの信号に対して、逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)による時間領域の信号への変換、ガードインターバルの付加、ベースバンドのディジタル信号の生成、アナログ信号への変換、直交変調、中間周波数の信号から高周波数の信号への変換(アップコンバート: up convert)、余分な周波数成分の除去、電力の増幅などの処理を行い、送信信号を生成する。無線送信部1077が出力した送信信号は、送受信アンテナ109から送信される。
  <本実施形態における端末装置の構成例>
 図3は、本実施形態の端末装置2の構成を示す概略ブロック図である。図示するように、端末装置2は、上位層処理部201、制御部203、受信部205、送信部207、および送受信アンテナ209を含んで構成される。また、受信部205は、復号化部2051、復調部2053、多重分離部2055、無線受信部2057、およびチャネル測定部2059を含んで構成される。また、送信部207は、符号化部2071、変調部2073、多重部2075、無線送信部2077、および上りリンク参照信号生成部2079を含んで構成される。
 既に説明したように、端末装置2は、1つ以上のRATをサポートできる。図3に示す端末装置2に含まれる各部の一部または全部は、RATに応じて個別に構成されうる。例えば、受信部205および送信部207は、LTEとNRとで個別に構成される。また、NRセルにおいて、図3に示す端末装置2に含まれる各部の一部または全部は、送信信号に関するパラメータセットに応じて個別に構成されうる。例えば、あるNRセルにおいて、無線受信部2057および無線送信部2077は、送信信号に関するパラメータセットに応じて個別に構成されうる。
 上位層処理部201は、上りリンクデータ(トランスポートブロック)を、制御部203に出力する。上位層処理部201は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部201は、受信部205、および送信部207の制御を行うために制御情報を生成し、制御部203に出力する。
 制御部203は、上位層処理部201からの制御情報に基づいて、受信部205および送信部207の制御を行う。制御部203は、上位層処理部201への制御情報を生成し、上位層処理部201に出力する。制御部203は、復号化部2051からの復号化された信号およびチャネル測定部2059からのチャネル推定結果を入力する。制御部203は、符号化する信号を符号化部2071へ出力する。また、制御部203は、端末装置2の全体または一部を制御するために用いられてもよい。
 上位層処理部201は、RAT制御、無線リソース制御、サブフレーム設定、スケジューリング制御、および/または、CSI報告制御に関する処理および管理を行う。上位層処理部201における処理および管理は、あらかじめ規定される設定、および/または、基地局装置1から設定または通知される制御情報に基づく設定に基づいて行われる。例えば、基地局装置1からの制御情報は、RRCパラメータ、MAC制御エレメントまたはDCIを含む。また、上位層処理部201における処理および管理は、RATに応じて個別に行われてもよい。例えば、上位層処理部201は、LTEにおける処理および管理と、NRにおける処理および管理とを個別に行う。
 上位層処理部201におけるRAT制御では、RATに関する管理が行われる。例えば、RAT制御では、LTEに関する管理および/またはNRに関する管理が行われる。NRに関する管理は、NRセルにおける送信信号に関するパラメータセットの設定および処理を含む。
 上位層処理部201における無線リソース制御では、自装置における設定情報の管理が行われる。上位層処理部201における無線リソース制御では、上りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ(RRCパラメータ)、および/または、MAC制御エレメント(CE:Control Element)の生成および/または管理が行われる。
 上位層処理部201におけるサブフレーム設定では、基地局装置1および/または基地局装置1とは異なる基地局装置におけるサブフレーム設定が管理される。サブフレーム設定は、サブフレームに対する上りリンクまたは下りリンクの設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、および/または、下りリンク参照UL-DL設定を含む。なお、上位層処理部201におけるサブフレーム設定は、端末サブフレーム設定とも呼称される。
 上位層処理部201におけるスケジューリング制御では、基地局装置1からのDCI(スケジューリング情報)に基づいて、受信部205および送信部207に対するスケジューリングに関する制御を行うための制御情報が生成される。
 上位層処理部201におけるCSI報告制御では、基地局装置1に対するCSIの報告に関する制御が行われる。例えば、CSI報告制御では、チャネル測定部2059でCSIを算出するために想定するためのCSI参照リソースに関する設定が制御される。CSI報告制御では、DCIおよび/またはRRCパラメータに基づいて、CSIを報告するために用いられるリソース(タイミング)を制御する。
 受信部205は、制御部203からの制御に従って、送受信アンテナ209を介して基地局装置1から送信された信号を受信し、さらに分離、復調、復号などの受信処理を行い、受信処理された情報を制御部203に出力する。なお、受信部205における受信処理は、あらかじめ規定された設定、または基地局装置1からの通知または設定に基づいて行われる。
 無線受信部2057は、送受信アンテナ209を介して受信された上りリンクの信号に対して、中間周波数への変換(ダウンコンバート)、不要な周波数成分の除去、信号レベルが適切に維持されるように増幅レベルの制御、受信された信号の同相成分および直交成分に基づく直交復調、アナログ信号からディジタル信号への変換、ガードインターバル(Guard Interval: GI)の除去、および/または、高速フーリエ変換(Fast Fourier Transform: FFT)による周波数領域の信号の抽出を行う。
 多重分離部2055は、無線受信部2057から入力された信号から、PHICH、PDCCH、EPDCCHまたはPDSCHなどの下りリンクチャネル、下りリンク同期信号および/または下りリンク参照信号を分離する。多重分離部2055は、下りリンク参照信号をチャネル測定部2059に出力する。多重分離部2055は、チャネル測定部2059から入力された伝搬路の推定値から、下りリンクチャネルに対する伝搬路の補償を行う。
 復調部2053は、下りリンクチャネルの変調シンボルに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の変調方式を用いて受信信号の復調を行う。復調部2053は、MIMO多重された下りリンクチャネルの分離および復調を行う。
 復号化部2051は、復調された下りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された下りリンクデータおよび/または下りリンク制御情報は制御部203へ出力される。復号化部2051は、PDSCHに対しては、トランスポートブロック毎に復号処理を行う。
 チャネル測定部2059は、多重分離部2055から入力された下りリンク参照信号から伝搬路の推定値および/またはチャネルの品質などを測定し、多重分離部2055および/または制御部203に出力する。チャネル測定部2059が測定に用いる下りリンク参照信号は、少なくともRRCパラメータによって設定される送信モードおよび/または他のRRCパラメータに基づいて決定されてもよい。例えば、DL-DMRSはPDSCHまたはEPDCCHに対する伝搬路補償を行うための伝搬路の推定値を測定する。CRSはPDCCHまたはPDSCHに対する伝搬路補償を行うための伝搬路の推定値、および/または、CSIを報告するための下りリンクにおけるチャネルを測定する。CSI-RSは、CSIを報告するための下りリンクにおけるチャネルを測定する。チャネル測定部2059は、CRS、CSI-RSまたは検出信号に基づいて、RSRP(Reference Signal Received Power)および/またはRSRQ(Reference Signal Received Quality)を算出し、上位層処理部201へ出力する。
 送信部207は、制御部203からの制御に従って、上位層処理部201から入力された上りリンク制御情報および上りリンクデータに対して、符号化、変調および多重などの送信処理を行う。例えば、送信部207は、PUSCHまたはPUCCHなどの上りリンクチャネルおよび/または上りリンク参照信号を生成および多重し、送信信号を生成する。なお、送信部207における送信処理は、あらかじめ規定された設定、または、基地局装置1から設定または通知に基づいて行われる。
 符号化部2071は、制御部203から入力されたHARQインディケータ(HARQ-ACK、ACK/NACK)、上りリンク制御情報、および上りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の所定の符号化方式を用いて符号化を行う。変調部2073は、符号化部2071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。上りリンク参照信号生成部2079は、端末装置2に設定されたRRCパラメータなどに基づいて、上りリンク参照信号を生成する。多重部2075は、各チャネルの変調シンボルと上りリンク参照信号を多重し、所定のリソースエレメントに配置する。
 無線送信部2077は、多重部2075からの信号に対して、逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)による時間領域の信号への変換、ガードインターバルの付加、ベースバンドのディジタル信号の生成、アナログ信号への変換、直交変調、中間周波数の信号から高周波数の信号への変換(アップコンバート: up convert)、余分な周波数成分の除去、電力の増幅などの処理を行い、送信信号を生成する。無線送信部2077が出力した送信信号は、送受信アンテナ209から送信される。
  <本実施形態におけるLTEのサイドリンクの詳細>
 LTEにおいて、サイドリンク通信が行われる。サイドリンク通信とは、端末装置とその端末装置とは異なる端末装置との直接通信である。サイドリンクには、リソースプールと呼称されるサイドリンクの送受信に用いられる時間および周波数リソースの候補が端末装置に設定され、そのリソースプールの中からサイドリンクの送受信のためのリソースが選択され、サイドリンク通信が行われる。サイドリンク通信は、上りリンクのリソース(上りリンクサブフレーム、上りリンクコンポーネントキャリア)を用いて行われるため、リソースプールも上りリンクサブフレームまたは上りリンクコンポーネントキャリアに設定される。
 サイドリンク物理チャネルは、PSCCH、PSSCH、サイドリンクACK/NACKチャネル、などを含む。
 PSCCHは、サイドリンク制御情報(Sidelink Control Information:SCI)を送信するために用いられる。サイドリンク制御情報の情報ビットのマッピングが、SCIフォーマットとして定義される。サイドリンク制御情報は、サイドリンクグラントを含む。サイドリンクグラントは、PSSCHのスケジューリングのために用いられる。
 PSSCHは、サイドリンクデータ(Sidelink Shared Channel:SLL-SCH)を送信するために用いられる。なお、PSSCHは、上位層の制御情報を送信するためにも用いられてもよい。
 サイドリンクACK/NACKチャネルは、PSSCHの復号結果に対するACK/NACKを送信端末装置に対して回答するために用いられる。
 リソースプールは、SIBまたは専用RRCメッセージによって基地局装置から端末装置に設定される。もしくは、端末装置に予め設定されたリソースプールに関する情報によって設定される。時間のリソースプールは、周期の情報、オフセットの情報、および、サブフレームビットマップ情報によって指示される。周波数のリソースプールは、リソースブロックの開始位置、リソースブロックの終了位置、および連続するリソースブロック数によって指示される。
  <本実施形態におけるNRのサイドリンクの詳細>
 以下に、NRにおけるサイドリンクのリソースプールの割当の詳細について説明する。
 セルカバレッジ内におけるサイドリンク通信において、NRにおけるサイドリンクのリソースプールは、動的にリソースプールを設定することができる。NRにおけるサイドリンクのリソースプールは、NR-PDCCHによって基地局から指示される。すなわち、NR-PDCCHに含まれるNR-DCIは、NR-PSCCH、NR-PSSCH、および、サイドリンクACK/NACK用チャネルが送受信されるリソースブロックおよびサブフレームを指示する。
 図4は、サイドリンクの動的リソースプール割当の一例を示す図である。第1の端末装置は、NR-PDCCHによって、そのNR-PDCCHが送信されたサブフレームを含む、後の3サブフレームをサイドリンク通信のためのリソースプールとして設定される。第1の端末装置は、受信/送信切替え、および、NR-PSCCHとNR-PSSCHの生成処理のためのギャップ時間を待機した後に、NR-PDCCHで指定されたリソースプールを用いて、NR-PSCCHを第2の端末装置宛に送信する。更に、第1の端末装置は、NR-PDCCHで指定されたリソースプールを用いて、NR-PSCCHに含まれるNR-SCIフォーマットに従ってスケジュールされたNR-PSSCHを第2の端末装置宛に送信する。最後に、第2の端末装置は、サイドリンクACK/NACK用チャネルの生成処理のためのギャップ時間を待機した後に、NR-PDCCHで指定されたリソースプールを用いて、第1の端末装置から送信されたNR-PSSCHに対するACK/NACK応答の情報をサイドリンクACK/NACK用チャネルに乗せて、第1の端末装置宛に送信する。
 NR-PDCCHによる時間リソースプールの指示の一例として、サイドリンク通信に用いられる時間リソースは、NR-PDCCHにサイドリンク通信を指示するDCIが含まれていた場合に、そのNR-PDCCHから所定のサブフレームまでサイドリンクのリソースプールとして指示される。第1の端末装置は、そのサイドリンク通信を指示するDCIを受信したサブフレームから、時間リソースプールを認識する。所定のサブフレームは、例えば、3サブフレームなど予め設定されてもよいし、SIBや専用RRCメッセージなどの上位層から設定されてもよい。
 NR-PDCCHによる時間リソースプールの指示の一例として、サイドリンク通信に用いられる時間リソースは、NR-PDCCHに含まれるサイドリンク通信を指示するDCIにサブフレームを指示する情報が含まれて、その情報に基づいてリソースプールが指示される。第1の端末装置は、そのサブフレームを指示する情報から、時間リソースプールを認識する。サブフレームの指示の方法として、例えば、サブフレーム番号、NR-PDCCHから時間リソースプールまでのサブフレーム数、などがある。
 NR-PDCCHによる周波数リソースの指示の一例として、サイドリンク通信に用いられる周波数リソースは、NR-PDCCHに含まれるサイドリンク通信を指示するDCIのパラメータの1つであるリソース割当情報に基づいて指示される。第1の端末装置は、リソース割当情報によって指示されたリソースブロックは、リソースプールであると認識する。そのリソース割当情報は、少なくともNR-PSCCHが送信されるリソースを示す情報である。
 なお、そのリソース割当情報は、NR-PSCCHが送信されるリソースを示す情報と、NR-PSSCHが送信されるリソースを示す情報と、サイドリンクACK/NACK用チャネルが送信されるリソースを示す情報と、で個別に通知されてもよい。
 なお、NR-PSSCHが送信されるリソースと、サイドリンクACK/NACK用チャネルが送信されるリソースは、NR-PSCCHが送信されるリソースを示す情報に紐付いてもよい。例えば、NR-PSSCHが送信される周波数リソースは、NR-PSCCHが送信される周波数リソースと同じであってもよい。
 なお、1つのNR-PDCCHから複数のNRコンポーネントキャリアのリソースプールが指示されてもよい。例えば、NRのプライマリーセルで送信されたNR-PDCCHから、NRのプライマリーセルおよびセカンダリーセルのサイドリンク通信に用いられるリソースプールが設定されてもよい。
 なお、NR-PDCCHによるリソースプールの指示が可能なサブフレームおよびリソースブロックは、上位層情報によって制限されてもよい。その上位層情報は、例えば、専用RRCメッセージなどによる端末固有設定情報や、SIBなどの報知情報である。その上位層情報によって時間および周波数リソースプールの候補が設定され、NR-PDCCHに含まれるサイドリンク通信を指示するDCIによって、その候補から実際にリソースプールとして用いることができるサブフレームおよびリソースブロックが指示される。
 サイドリンクのリソースプールに関する情報が含まれるNR-PDCCHは、端末装置固有または端末装置グループ固有に送信されることが好ましい。すなわち、サイドリンクのリソースプール情報が含まれるNR-PDCCHは、C-RNTIなどの端末装置固有情報によって決定されるサーチスペースに配置される、もしくは、端末装置グループ固有の情報によって決定されるサーチスペースに配置されることが好ましい。
 第2の端末装置のNR-PSCCHのモニタリングの一例として、第2の端末装置はNR-PDCCHとNR-PSCCHの両方を常にモニタし続ける。第2の端末装置宛のNR-PDCCHを検出した場合は、第2の端末装置は、上りリンクの送信処理または下りリンクの受信処理またはNR-PSCCHの送信処理に移行し、そうでなければ、NR-PSCCHのモニタを試みる。この場合、第2の端末装置に対して、NR-PSCCHが送信される可能性のある複数のリソースの候補(NR-PSCCH候補)を上位層から設定される、または、予め設定される。第2の端末装置は、その設定されたNR-PSCCH候補において、NR-PSCCHのブラインド復号を試みる。そのNR-PSCCH候補の設定情報は、第2の端末装置が基地局装置とRRC接続状態である場合には、専用RRCメッセージによって第2の端末装置に通知され、第2の端末装置が基地局装置とRRC接続状態でない場合には、第1の端末装置が送信するNRのサイドリンク用報知チャネル(NR-PSBCH)によって第2の端末装置に報知される。NR-PSBCHに含まれる設定情報は、第1の端末装置がセルの内部に存在する場合は、基地局装置から設定された情報であり、第1の端末装置がセルの外部に存在する場合は、予め設定された情報である。
 なお、NR-PSBCHが送信されるリソースプールも、NR-PDCCHによって指示されてもよい。NR-PSBCHが送信されるリソースプールを指示する方法も、NR-PSCCHが送信されるリソースプールを指示する方法と同様であってもよい。
 第2の端末装置のNR-PSCCHのモニタリングの別の一例として、第2の端末装置がセルの内部に存在する場合は、第2の端末装置はリソースプールが指定されるNR-PDCCHを受信することができる。そのNR-PDCCHを受信した場合に、第2の端末装置は、そのNR-PDCCHに含まれるリソースプールの情報に基づいて、NR-PSCCHが送信されるリソースにおいてNR-PSCCHの復号を試み、そうでなければ、次の単位フレームまでモニタリングの処理を待機する。これにより、1つの単位フレームにおいて複数回のNR-PSCCHの復号を試みる動作を行わなくてよいため、端末装置の低消費電力や受信機の簡略化などの効果が期待できる。
 図5は、サイドリンクの動的リソースプール割当の一例を示す図である。図4との差異として、サイドリンク通信においても自己完結型送信が可能である場合、図5に示す通りNR-PSCCH、NR-PSSCHおよびサイドリンクACK/NACKチャネルの送受信が1つの所定の送受信時間(例えば、単位フレーム時間)内に割り当てられるサイドリンク送信用リソースプールで完結することができる。第1の端末装置は、NR-PDCCHの受信後に、NR-PDCCHに含まれるサイドリンク通信を指示するDCI(第1のサイドリンク用DCI)に基づいて、サイドリンクのリソースプールを認識する。そして、第1の端末装置は、その第1のサイドリンク用DCIから指示されたサイドリンクのリソースプールを用いてNR-PSCCHとNR-PSSCHを送信する。第2の端末装置は、第1の端末装置から送信されたNR-PSCCHを受信後、そのNR-PSCCHに含まれる情報に基づいてNR-PSSCHの復号を試みる。
 第1の端末装置は、第1のサイドリンク用DCIに含まれるサイドリンクの時間リソースに関する情報に基づいて、NR-PSSCHのチャネル長を決定することができる。または、第1の端末装置は、第1のサイドリンク用DCIに含まれるNR-PSSCHのチャネル長に関する情報に基づいて、NR-PDCCHに含まれるサイドリンクの時間リソースを認識することができる。
 これにより、サイドリンク通信においても自己完結型送信が可能となり、柔軟なリソース制御を行うことで、システムのリソース利用効率が良好となる。
 図6は、サイドリンクの動的リソースプール割当の一例を示す図である。図5との差異として、第1の端末装置は、NR-PSCCHを用いて、第2の端末装置に対して第2の端末装置からのNR-PSSCH送信のスケジューリング情報を指示する。第2の端末装置は、NR-PSCCHの受信処理およびNR-PSSCHの送信処理のためのギャップ時間を待機してから、そのNR-PSSCHから指示された情報に基づいて、NR-PSSCHを送信する。これにより、特に、第2の端末装置がセルの外部に存在した場合でも、第1の端末装置を経由することで、基地局装置が、第2の端末装置が使うサイドリンク通信のためのリソースを、動的に制御することができ、システムのリソース利用効率が良好となる。
 図6で送信されるNR-PSCCHに含まれるサイドリンク通信を指示するDCI(第2のサイドリンク用DCI)は、図5で送信されるNR-PSCCHに含まれるサイドリンク通信を指示する第1のサイドリンク用DCIとは異なる。図5で送信されるNR-PSCCHに含まれるサイドリンク通信を指示するDCIは、第1の端末装置が第2の端末装置に対してNR-PSCCHおよびNR-PSSCHを送信するリソースをスケジュールするDCIであり、図6で送信されるNR-PSCCHに含まれるサイドリンク通信を指示するDCIは、第1の端末装置が第2の端末装置に対してNR-PSCCHを送信するリソース、および、第2の端末装置は第1の端末装置に対してそのNR-PSCCHによってスケジュールされたNR-PSSCHを送信するリソースをスケジュールするDCIである。
 また、図5で送信されるNR-PSCCHに含まれるSCI(第1のSCI)と、図6で送信されるNR-PSCCHに含まれるSCI(第2のSCI)は異なる。第1のSCIは、第2の端末装置に対して第1の端末装置から送信されるNR-PSSCHの受信を指示するために用いられ、第2のSCIは、第2の端末装置に対して第1の端末装置宛のNR-PSSCHの送信を指示するために用いられる。
 図7は、サイドリンクの動的リソースプール割当の一例を示す図である。図7は、端末装置中継を想定する。図7は、図6から更に、NR-PDCCHによってサイドリンクのリソースプールの指示に加えて、NR-PUSCHのスケジューリングも行われる。図6と同様に、第1の端末装置は、NR-PSCCHによって、第2の端末装置に対してNR-PSSCHの送信を指示し、第2の端末装置からのSL-SCHを受信する。そして、第1の端末装置は、その受信したSL-SCHをNR-PUSCHに含めて基地局装置へ送信する。これにより、1つのNR-PDCCHによってサイドリンクのリソースプールとNR-PUSCHのスケジューリングを行うことができるため、NR-PDCCHによるオーバーヘッドを低減しつつ、低遅延な端末装置中継を実現することができる。
 図8は、サイドリンクの動的リソースプール割当の一例を示す図である。図8は、NR-PDCCHによってサイドリンクのリソースプールを無線フレーム単位で指示する。サブフレーム#0で送信される。
 NR-PDCCHに含まれるサイドリンクのリソースプールの情報は、サイドリンクのリソースプールが設定されるサブフレームを1または0で指示されるビットマップ情報と、リソースブロックの開始位置S1、リソースブロックの終了位置S2、および連続するリソースブロック数Mによって指示される。
 このサイドリンクのリソースプール情報を含むNR-PDCCHは、端末共有に送られることが好ましい。すわなち、そのサイドリンクのリソースプール情報が含まれるNR-PDCCHは、端末装置共通のサーチスペースに配置されることが好ましい。
 端末装置がサブフレーム#0でサイドリンクのリソースプール情報が含まれるNR-PDCCHを受信した場合は、NR-PDCCHを受信したその無線フレーム間では、そのリソースプール情報を用いてリソースプールが設定される。一方で、端末装置が端末装置がサブフレーム#0でサイドリンクのリソースプール情報が含まれるNR-PDCCHを受信した場合は、その無線フレーム間では、リソースプールが設定されないと想定する。
 <<2.技術的課題>>
 続いて、本開示の一実施形態に係る通信システムの技術的課題について、特に、NRのサイドリンクを介した装置間通信(例えば、D2D、V2Vに代表されるV2X通信等)を実現する場合に着目して説明する。
 従来のD2DやV2Xでは、必要最低限のユースケースのサポートを目的として、ブロードキャスト通信をサポートしていた。これに対して、NRのV2Xでは、LTEでのV2Xのユースケースをサポートすることに加えて、隊列走行、センサシェアリング、リモート操縦等のような、要求条件のより高いユースケースがサポートされる。そのため、このような要求条件のより高いユースケースをサポートするために、ブロードキャスト通信のサポートに加えて、ユニキャスト通信やグループキャスト(マルチキャスト)通信のサポートが検討されている。
 従来のD2Dにおいても、上位層レベル(例えば、TCP層やアプリケーション層レベル)でのグループキャスト通信を実施することは可能である。具体的には、送信側の端末装置がブロードキャストによって周囲の端末装置(即ち、受信側の端末装置)にデータを送信し、受信側の端末装置が上位層に含まれる宛先情報に基づいてデータを処理するか破棄するかを行う。従来のマルチキャスト通信の方式では、ブロードキャスト通信を用いるため、グループに属する端末装置に対して適切な通信制御を行うことが困難な場合があり、必ずしも効率的とは言えない場合があった。
 高効率なユニキャスト通信及びグループキャスト通信を実現するためには、HARQのような、データの受信結果に応じた応答を送信側の装置にフィードバックする技術の導入は有効な手段である。HARQを適用することで、送信側の端末装置が受信側の端末装置におけるデータ複合の成否に応じてデータの再送を行うことが可能となるため、受信側の端末装置は、送信されたデータをソフト合成することが可能となる。また、ACK/NACKフィードバックによって、送信側の端末装置が受信側の端末装置の受信品質の状態を知ることが可能であるため、ユニキャストまたはグループキャストのリンクアダプテーションを実現することが可能となる。具体的には、ACKが返ってきた場合には、送信側の端末装置は、例えば、送信に用いられたMCSに対して十分な受信SINRが確保できていると判断し、次の送信には高いMCSを用いることが可能となる。また、NACKが返ってきた場合には、送信側の端末装置は、例えば、送信に用いられたMCSに対して十分な受信SINRを確保することが困難であると判断し、次の送信には低いMCSを用いることが可能となる。以上のような制御により、良好なサイドリンク通信を実現することが可能となる。
 一方で、サイドリンクを介した端末装置間における装置間通信に対してHARQを適用するためには、受信側の端末装置が送信側の端末装置に対してHARQをフィードバックするためのリソースの確保が必要となる。
 以上のような状況を鑑み、本開示では、端末装置間における装置間通信(例えば、D2D、V2Vに代表されるV2X通信等)において、データの受信結果に応じた応答のフィードバックをより好適な態様で実現可能とする技術を提案する。具体的には、本開示では、NRの適用を想定した端末装置間における装置間通信(例えば、NR V2X)に対して、より好適な態様でHARQを適用可能とする技術を提案する。
 <<3.技術的特徴>>
 以下に、本開示の一実施形態に係るシステムの技術的特徴について、特に、NRのV2Xに代表されるサイドリンクを介した端末装置間での装置間通信におけるHARQの実現に係る技術に着目して説明する。
 サイドリンクを介した端末装置間における装置間通信において、送信側の端末装置は、PSCCH、PSSCHに加えて、受信側の端末装置がsidelink ACK/NACKチャネルやHARQフィードバック用チャネルとして利用可能なリソースを取得する。なお、本開示では、sidelink ACK/NACKチャネルやHARQフィードバック用チャネル等のように、サイドリンクを介した応答の送信に利用可能なチャネルを便宜上「PSFCH(Physical Sidelink Feedback Channel)」とも称する。また、以降では、便宜上、送信側の端末装置を「送信端末」とも称し、受信側の端末装置を「受信端末」とも称する。即ち、端末装置間における装置間通信においては、送信端末から見た場合には受信端末が「他の端末装置」の一例に相当し、受信端末から見た場合には送信端末が「他の端末装置」の一例に相当し得る。このような仕組みが実現されることで、例えば、送信端末においてPSFCHリソースを予め認識することが可能となるため、PSFCHの受信タイミングの調整や、PFSCHのブラインドデコードにかかる負荷の低減が可能となる。更に、グループキャストにおいて、複数受信端末で用いられるPSFCHリソースのスケジューリングを調整することが容易となる。
 PSFCHとしては、「Short PSFCH」と「Long PSFCH」との2種類が挙げられる。Short PSFCHは、2シンボル以下の長さで構成される。これに対して、Long PSFCHは、3シンボル以上、14シンボル以下の長さで構成される。
  (HARQフィードバックに利用可能なリソースの配置方法)
 ここで、以下に、HARQフィードバックに利用可能なリソース(即ち、PSFCHリソース)の配置方法の一例について説明する。まず、装置間通信における受信側から送信側へのHARQフィードバックにShort PSFCHが利用される場合に着目して、HARQフィードバックに利用可能なリソースの配置方法の一例について説明する。例えば、図9~図11は、HARQに利用可能なリソースの配置方法の一例について概要を説明するための説明図である。そこで、図9~図11に示す例それぞれについて以下に個別に説明する。
 まず、図9に示す例について説明する。図9は、self-contained feedbackを想定したPSFCHの配置方法の一例について示している。即ち、図9は、1つのPSSCHに対して1つのPSFCHが関連付けられる場合における、当該PSFCHの配置方法の一例について示している。self-contained feedbackが行われる場合には、例えば図9に示すように、PSSCHの送信に利用されるスロットの後方側の所定数のシンボル(例えば、後方1シンボル)に対してHARQリソース(換言すると、PSFCHリソース)が割り当てられる。
 次いで、図10に示す例について説明する。図10は、同一リンク間(同一送受信間)におけるHARQ bundlingを想定したPSFCHの配置方法の一例について示している。即ち、図10は、複数のPSSCHに対して1つのPSFCHが関連付けられる場合における、当該PSFCHの配置方法の一例について示している。同一リンク間におけるHARQ bundlingが行われる場合には、例えば図10に示すように、互いに異なるスロットに配置された複数のPSSCHに対して1つのPSFCHが関連付けられ得る。
 一方で、図10に示す例では、互いに異なるスロットに配置された複数のPSSCHに対して1つのPSFCHが関連付けられ得るという特性から、PSCCHの取り逃しが生じる可能性がある。そのため、当該PSSCHの取り逃しを回避するために、LTEにおけるDAI(Downlink Assignment Index)に相当する仕組みが導入されることが望ましい。DAIとは、PSSCHが複数回に分けて送信される(換言すると、複数のスロットに分けて送信される)場合において、今は何回目の送信であるかを通知するためのインデックスである。なお、本開示においては、NRのV2Xに代表されるサイドリンクを介した端末装置間における装置間通信に対して適用される、上記DAIに相当する仕組みを、便宜上「SAI(Sidelink Assignment Index)」とも称する。即ち、受信端末は、SAIを用いることで、一部のPSCCH及びPSSCHを取り逃した場合に、当該PSCCH及びPSSCHを特定し、当該PSCCH及びPSSCHに対するNACKを送信端末に送信することが可能となる。
 また、サイドリンクを介した装置間通信では、リピティション(Repetition)送信を適用することが可能である。そのため、リピティション送信とSAIとの関係について一例を以下に説明する。互いに異なる複数のスロットそれぞれに配置されたPSCCH間において、同じSAIであり、かつ同じHARQ ID(HARQプロセスID)であるという条件を満たす場合に、受信端末は、当該複数のスロットに対してPSSCH repetitionが適用されていると認識することが可能である。換言すると、互いに異なる複数のスロットそれぞれに配置されたPSCCH間において、SAIが異なる場合や、HARQ IDが異なる場合には、受信端末は、当該複数のスロットそれぞれで送信されるデータが互いに異なるデータであると認識することが可能である。これにより、端末装置は、少ない制御情報で動的にリピティション制御(リピティションの適用/不適用の通知)が可能となる。
 次いで、図11に示す例について説明する。図11は、異なるリンク間(異なる送信端末間または異なる受信端末間)におけるHARQ bundlingを想定したPSFCHの配置方法の一例について示している。即ち、図11は、複数のPSSCHに対して複数のPSFCHが関連付けられる場合における、当該PSFCHの配置方法の一例について示している。なお、図11に示す例については、送信端末が異なる場合と、受信端末が異なる場合と、に分けてそれぞれ説明する。
 まず、送信端末が異なる場合の一例について説明する。この場合には、例えば、受信端末は、複数の送信端末それぞれに対して、互いに異なるリソースに関連付けてHARQ-ACKを返送してもよい。換言すると、この場合には、受信端末は、ユニキャスト(Unicast)により、複数の送信端末それぞれに対して個別にHARQ-ACKを返送してもよい。また、他の一例とそして、受信端末は、複数の送信端末に対するHARQ-ACKを1つのPSFCHに関連付けて返送してもよい。換言すると、この場合には、受信端末は、ブロードキャスト(broadcast)により、複数の送信端末に対してHARQ-ACKを返送してもよい。
 次いで、受信端末が異なる場合(即ち、グループキャストやマルチキャストが行われる場合)の一例について説明する。この場合には、例えば、複数の受信端末のそれぞれが異なるリソースを用いてHARQ-ACKを返送してもよい。即ち、この場合には、複数の受信端末それぞれに対して、フィードバックに利用可能なリソース(PSFCH)が個別に割り当てられる。なお、本方式を、便宜上「フィードバックリソース個別割当方式」とも称する。また、他の一例として、複数の受信端末のそれぞれがフィードバックに利用可能な共通のリソースを用いてHARQ-ACKを返送してもよい。即ち、この場合には、複数の受信端末に対して、フィードバックに利用可能な共通のリソース(PSFCH)が割り当てられる。なお、本方式を、便宜上「フィードバックリソース共有割当方式」とも称する。
 なお、上述したように、HARQフィードバックに利用可能なリソースとして、Long PSFCHを利用することも可能である。この場合においても、Short PSFCHが利用される場合と同様のリソースの割当方法を適用することが可能である。
  (HARQフィードバックに利用可能なリソースの指示の方法)
 続いて、HARQフィードバックに利用可能なリソースの指示の方法の一例について説明する。
 基本的には、HARQフィードバックに利用可能なリソースとして、時間リソース情報が通知される。この場合には、リソースの指示によって、リソースの配置パターンが切り替えられてもよい。なお、時間リソース情報については、事前に指定されてもよい。
 また、各種条件に応じて、HARQフィードバックに利用可能なリソースが決定されてもよい。
 例えば、パケットの緊急度に応じてリソースが決定されてもよい。具体的な一例として、緊急度の高いパケットの場合には、同一スロットにPSFCHリソースが割り当てられてもよい。なお、緊急度の高いパケットとしては、例えば、遅延要求がより厳しいパケットが該当し得る。また、緊急度の低いパケットの場合には、所定数のスロット後のPSFCHリソースが割り当てられてもよい。
 また、他の一例として、端末装置のケイパビリティ応じてリソースが決定されてもよい。具体的な一例として、Processing time(PSSCHの復号時間やRx/Tx Switching時間を含む)が短い端末装置については、同一スロットにPSFCHリソースが割り当てられてもよい。即ち、受信端末が、同一スロット内での送信端末に対するフィードバックが可能な場合には、同一スロットにPSFCHリソースが割り当てられてもよい。これに対して、Processing timeが長い端末装置については、所定数のスロット後のPSFCHリソースが割り当てられてもよい。即ち、受信端末が、同一スロット内での送信端末に対するフィードバックが困難な場合には、当該受信端末のProcessing Timeよりも長い期間が経過した後のスロットにPSFCHリソースが割り当てられてもよい。
 また、他の一例として、装置間通信に使用される周波数帯域の混雑度のレベルに応じてリソースが決定されてもよい。なお、上記周波数帯域の混雑度については、例えば、CBR(Channel Busy Ratio)によって表される。具体的な一例として、上記周波数帯域の混雑度がより高いほど、時間セットがより短くとられるように制御されてもよい。
 また、他の一例として、端末装置のCR(Channel Occupancy Ratio)に応じてリソースが決定されてもよい。具体的な一例として、CRがより高く、周波数帯域がより多く保有されている場合には、時間オフセットがより短くとられるように制御されてもよい。
 もちろん、上記はあくまで一例であり、必ずしも本開示の一実施形態に係るシステムにおいて提供される機能(特に、HARQフィードバックに利用可能なリソースの決定に係る機能)を限定するものではない。即ち、上記以外の他の条件に応じてリソースが決定されてもよい。
 続いて、HARQフィードバックに利用可能なリソースが指定される場合の一例について説明する。なお、当該リソースの指定方法としては、明示的(explicit)な指定方法と、暗示的(implicit)な指定方法と、が想定され得る。そこで、それぞれの指定方法について以下に個別に説明する。
 まず、HARQフィードバックに利用可能なリソースが明示的に指定される場合における、当該指定方法の一例について説明する。この場合には、例えば、PSCCHのビットに対して、上記リソースに関する情報が関連付けられてもよい。なお、上記PSCCHのように、上記リソースに関する情報等のPSFCHに関する情報が関連付けられる制御情報が、「第1の制御情報」の一例に相当する。
 具体的な一例として、PSCCHからPSFCHまでの時間オフセットに関する情報により、HARQフィードバックに利用可能なリソースが指定されてもよい。この場合には、例えば、時間オフセットパターンに対応するビット列により、上記リソースが通知されてもよい。なお、本通知方法は、DCIフォーマット1_0,1_1に含まれるPDSCH-to-HARQ-feedback-timing-indicatorと同様の通知方法である。また、時間オフセットパターンが上位層により設定されなかった場合には、デフォルトの時間オフセットパターンが用いられてもよい。デフォルトの時間オフセットパターンとしては、例えば、{0,1,2,3}が挙げられる。また、時間オフセットは、例えば、スロット数により表される。
 また、他の一例として、PSFCHのリソースが指定されてもよい。例えば、図11を参照して説明した例のように、所定のスロット内に複数のPSFCHリソースが設定された場合には、当該PSFCHリソースを指定する情報が通知されてもよい。
 また、他の一例として、同一スロット内におけるPSFCHのスキップに係る指示が行われてもよい。具体的な一例として、同一スロットでPSFCHが送信されるか否かが通知されてもよい。即ち、同一スロットでPSFCHが送信されることが通知された場合には、対応するスロットでPSFCHが送信されることとなる。これに対して、同一スロットでPSFCHが送信ないことが通知された場合には、例えば、予め指定されたスロットでPSFCHがされてもよい。
 なお、上述した各種条件は個別に適用されてもよいし、複数の条件の組み合わせが適用されてもよい。また、上述した各種条件はあくまで一例であり、必ずしも本開示の一実施形態に係るシステムにおいて提供される機能(特に、HARQフィードバックに利用可能なリソースの決定に係る機能)を限定するものではない。即ち、上記以外の他の条件によりHARQフィードバックに利用可能なリソースが指定されてもよい。
 次いで、HARQフィードバックに利用可能なリソースが暗示的に指定される場合における、当該指定方法の一例について説明する。
 具体的な一例として、PSCCHの物理リソースの位置に応じてPSFCHのリソースが決定されてもよい。
 また、他の一例として、PSCCHのスクランブル系列に応じてPSFCHのリソースが決定されてもよい。この場合には、例えば、PSCCH scrambleやCRC scramble等のスクランブル系列と、PSFCHのリソースと、が紐づけられてもよい。
 また、他の一例として、PSSCHの長さに応じてPSFCHのリソースが決定されてもよい。具体的な一例として、PSSCHがPSFCHリソースにオーバラップするように指示された場合には、当該スロットではPSFCHが送信されず、以降のスロットで当該PSFCHが送信されてもよい。当該以降のスロットは、例えばスロットのオフセットやスロット番号等が、予め指定されてもよい。このような制御により、例えば、PSFCHの送信が行われないリソースをPSSCHの送信に利用することが可能となり、リソース利用効率の向上を期待することが可能となる。
 また、他の一例として、SCIに含まれるPSFCHのリソースに関する情報とは異なる制御情報に対して、リソースに関する情報が紐付けられることで、当該制御情報を利用してリソースが決定されてもよい。SCIに含まれるPSFCHのリソースに関する情報とは異なる他の制御情報の一例としては、送信端末ID、受信端末ID、HARQプロセスID(HARQ process ID)、NDI(New Data Indicator)、及びRV(Redundancy Version)等が挙げられる。具体的には、送信端末IDが利用される場合には、例えば、送信端末ごとに上記リソースが割り当てられてもよい。また、受信端末IDが利用される場合には、例えば、受信端末ごとに上記リソースが割り当てられてもよい。また、HARQプロセスIDが利用される場合には、当該HARQプロセスIDと時間オフセットに関する情報とが紐づけられてもよい。この場合には、例えば、HARQプロセスIDが時間オフセットを示してもよい。具体的な一例として、HARQプロセスIDが0の場合には、同一スロットでPSFCHが送信され、HARQプロセスIDが1の場合には、次のスロットでPSFCHが送信されるように制御されてもよい。
 また、他の一例として、PSFCHのリソースに関する情報が関連付けられたSCIとは異なる、他のSCI(Sidelink Control Information)に含まれる制御情報を利用してリソースが決定されてもよい。他のSCIとは、ブロードキャスト送信のためのSCI、他の端末間通信のSCI、PSFCHのリソースに関する情報が関連付けられたSCIとは異なる制御情報を含むSCI等が挙げられる。具体的には、他のSCIの情報から、PSFCHのリソースと重なることが判断された場合には、指示されたPSFCHリソースとは異なるリソースを用いてPSFCHが送信されてもよい。なお、上述した他のSCIに含まれる制御情報が、「第2の制御情報」の一例に相当する。
 また、上述した明示的な指定方法と暗示的な指定方法との組み合わせが利用されてもよい。具体的には、条件に応じて取りうる値のセットが変わり、明示的な指定方法または暗示的な指摘方法により対応する値が指定されてもよい。
 より具体的な一例として、緊急度に応じて、時間オフセットのパターンが{0,1,2,3}と{4,5,6,7}との間で切り替わり、明示的な指定方法または暗示的な指摘方法によりオフセット値の通知が行われてもよい。また、他の一例として、装置間通信に使用される周波数帯域の混雑度のレベルに応じて、時間オフセットのパターンが{0,1,2,3}と{4,5,6,7}との間で切り替わり、明示的な指定方法または暗示的な指摘方法によりオフセット値の通知が行われてもよい。
  (HARQフィードバックリソースに加えて設定され得る情報)
 続いて、HARQフィードバックリソースに加えて設定され得る情報の一例について以下に説明する。
  ・スイッチングタイム(Switching time)
 例えば、PSSCHの直後にPSFCHが送信される場合には、TxとRxとの切り替えが必要となる。このTxとRxとの切り替えに要する時間については、スイッチングタイム(Switching time)と称されている。
 TxとRxとの切り替えが必要となる場合には、例えば、Rx/Txスイッチングのために1シンボル以上のスイッチングギャップ(Switching gap)が設けられているとよい。スイッチングギャップについては、予め設定されてもよい。例えば、PSSCH及びPSFCHのいずれにも用いられないシンボルを利用してRx/Txスイッチングが行われてもよい。また、この場合には、BWP(Bandwidth Part)(または、サブキャリア間隔)ごとにスイッチングギャップが設定されてもよい。
 また、他の一例として、スイッチングギャップがRRCにより設定されてもよい。この場合には、例えば、どのシンボルがスイッチングシンボル(Switching symbol)に該当するかに関する情報が通知されてもよい。また、この場合には、BWP(または、サブキャリア間隔)ごとにスイッチングギャップが設定されてもよい。
 また、他の一例として、スイッチングギャップがPSCCHにより通知されてもよい。この場合には、明示的(Explicit)な通知方法と、暗示的(Implicit)な通知方法とが適用され得る。明示的な通知方法が適用される場合には、例えば、何シンボル目がスイッチングシンボルに該当するかと、スイッチングギャップの有無と、のうちの少なくともいずれかに関する情報がPSCCHで通知されるとよい。また、暗示的な通知方法が適用される場合には、例えば、PSSCH及びPSFCHによって割り当てられたリソース以外については、スイッチングギャップとして用いることが可能である。
 なお、スイッチングギャップが1シンボル以上設けられた場合には、他の端末装置が当該スイッチングギャプを他の用途で使用することも可能である。具体的な一例として、1シンボル以上のスイッチングギャップ間において、他の端末装置が、DSRC(Dedicated Short Range Communications)機器への検出用信号を送信することも可能である。また、他の一例として、1シンボル以上のスイッチングギャップ間において、他の端末装置が、PSFCHの送信を行ってもよい。また、他の端末装置は、自分宛てではないPSCCH(SCI)を受信することも可能である。即ち、他の端末装置は、自分宛てではないPSCCH(SCI)を取得することで、スイッチングギャップを認識し、当該スイッチングギャップを活用して信号を送信することが可能である。
 また、他の一例として、スイッチングギャップは、端末装置のケイパビリティ(Capability)情報に基づき設定されてもよい。具体的な一例として、Processing time(PSSCHの復号時間やRx/Tx Switching時間を含む)が長い端末装置については、スイッチングギャップが2シンボル以上設けられ、Processing timeが短い端末装置については、スイッチングギャップが1シンボルのみ設けられてもよい。また、この場合には、BWP(または、サブキャリア間隔)ごとにスイッチングギャップが設定されてもよい。
 また、PSSCHの後方シンボルの一部が、Rx/Txスイッチングに利用されてもよい。具体的な一例として、受信端末は、PSSCHの全てのシンボルを受信する前にデータの復号を完了することができた場合には、後方シンボルの一部(例えば、データの復号完了後に送達するシンボルの一部)をRx/Txスイッチングに利用してもよい。
 また、PSFCHの先頭、または、後述するAGCシンボルの一部が、Rx/Txスイッチングに利用されてもよい。具体的な一例として、受信端末は、PSFCHの先頭シンボル、または、後述するAGCシンボルの一部をバンクチャし(送信せずに)、Rx/Txスイッチングに利用してもよい。
  ・AGCシンボル(AGC symbol)
 DL(Downlink)については基地局が固定されており(即ち、基地局が移動せず)、さらに周期信号が基地局から定期的に送信されるため、端末装置は、当該周期信号を用いてAGC(Automatic Gain Control)を行うことが可能である。また、UL(Uplink)においても、基地局の受信電力が一定となるように送信電力制御が定期的に行われるため、受信電力が大幅に変化するような状況は発生しにくい。
 一方で、D2DやV2Xのような端末装置間における装置間通信においては、送信端末と受信端末との双方が動的に移動し得る。このような特性から、当該装置間通信については送受信間の距離が大きく変わり得るため、受信電力が大幅に変化する可能性がある。このような状況を鑑みて、受信端末が、受信信号の復調を行う前に、当該受信信号のゲインコントロール(即ち、AGC)を行うことで、受信信号のピークレベルを調整することが望ましい場合がある。このように、受信端末がAGCを行う場合には、送信端末は、例えば、PSCCH及びPSFCHのうちの少なくともいずれかの送信の前に、AGC用の信号(換言すると、信号の復調におけるゲインコントロールに利用可能な信号)の送信を行ってもよい。
 例えば、図12は、AGCシンボルについて概要を説明するための説明図であり、PSFCHに対してAGCシンボルが付加される場合における概略的なフレーム構成の一例を示している。図12において、横軸は時間を示している。即ち、図12に示す例では、PSFCHのシンボルの直前に、AGCシンボルが付加されている。即ち、受信端末は、PSFCHの復調を行う前に、当該AGCシンボルを利用してAGCを行うことで、受信信号(PSFCH)のピークレベルを調整することが可能となる。即ち、AGCシンボルは、信号を受信する端末装置が当該信号の復調におけるゲインコントロール(即ち、AGC)に利用可能なシンボルに相当する。
 PSFCHに対するAGCシンボルの付加条件については、例えば、予め設定されていてもよい。この場合には、例えば、PSFCHが送信される際に、常にAGCシンボルが付加されてもよい。
 また、他の一例として、PSFCHに対するAGCシンボルの付加条件が、RRCシグナリングにより設定されてもよい。この場合には、例えば、BWP(または、サブキャリア間隔)ごとにAGCシンボルを付加するか否かが設定され得る。
 また、他の一例として、PSFCHに対するAGCシンボルの付加条件が、PSCCHを利用して明示的(Explicit)に通知されてもよい。この場合には、例えば、何シンボル目がAGCシンボルに該当するかと、AGCギャップ(AGC gap)の有無と、のうちの少なくともいずれかがPSCCHで通知されるとよい。
 また、他の一例として、PSFCHに対するAGCシンボルの付加条件が、暗示的(Implicit)に通知されてもよい。具体的な一例として、PSCCHまたはPSSCHに対してAGCシンボルが付加されている場合には、PSFCHに対してAGCシンボルが付加されてもよい。これに対して、PSCCH及びPSSCHに対してAGCシンボルが付加されていない場合には、PSFCHに対してAGCシンボルが付加されなくてもよい。
 もちろん上記はあくまで一例であり、PSFCHに対するAGCシンボルの付加条件は上述した例には限定されない。具体的な一例として、AGCシンボルを付加するか否かが、送受信間の距離に応じて決定されてもよい。また、他の一例として、AGCシンボルを付加するか否かが、端末装置の位置するゾーンに関する情報に応じて決定されてもよい。また、他の一例として、AGCシンボルを付加するか否かが、トラフィックパターンに応じて決定されてもよい。具多的な一例として、周期トラフィックに関しては、必ずしも全てのPSFCH送信に対してAGCシンボルが付加されなくてもよい。また、他の一例として、リピティション送信が適用される場合には、例えば、最初の送信に対してAGCシンボルが付加され、以降の送信についてはAGCシンボルが付加されなくてもよい。また、他の一例として、AGCシンボルを送信してから所定の送信回数(カウンタ)を超過する、または、所定の時間(タイマ)を経過するまで、AGCシンボルが付加されなくてもよい。また、AGCシンボルを付加するか否かが、端末装置のケイパビリティ(Capability)情報に応じて決定されてもよい。また、ユニキャスト通信またはグループキャスト通信における、端末間リンクの初期セットアップ時において、物理チャネル(PSCCH、PSSCH、PSFCH)にAGCシンボルが付加されてもよい。また、2回目以降のフィードバック送信の際には、AGCシンボルの付加が省略されてもよい。このような条件の設定については、例えば、送信端末または基地局から受信端末に対して通知や設定が行われてもよい。
 また、受信端末が送信端末に対してPSFCHをフィードバックする際に、当該受信端末が、当該PSFCHに対してAGCシンボルを付加することで、新たなフィードバック情報を付加してもよい。具体的な一例として、受信端末は、PSSCHの受信が失敗した場合に、AGCシンボルとNACKを含んだPSFCHとを送信端末に返送することで受信電力に関する情報をフィードバックすることが可能となる。なお、PSSCHの受信に失敗する場合の一例として、受信電力が大きすぎることで、PSSCHの受信に失敗する場合が挙げられる。また、受信端末は、PSCCHまたはPSCCHの受信電力が所定のレンジ外であった場合に、AGCシンボルを付加してPSFCHを送信端末に返送してもよい。
 次いで、AGCシンボルの構成の一例について説明する。AGCシンボルは、例えば、CSI測定用信号で構成され得る。また、他の一例として、AGCシンボルは、PSCCHまたはPSFCHの先頭シンボルのCP(Cyclic prefix)を延長させることで構成されてもよい。また、他の一例として、AGCシンボルは、DSRC機器が受信可能な信号で構成されてもよい。この場合には、例えば、DSRC機器が当該信号を検出することでリソース占有状況を他の装置に伝えることが可能となり、AGC効果に加えて、DSRCとのより高効率な共存が可能となり得る。
 また、AGCシンボル、1シンボルまたは1シンボル以下の長さ(サブシンボルとも称することが可能である)の信号であることが望ましい。また、AGCシンボルの長さは、シンボル長(または、サブキャリア間隔)に関わらず、一定の長さであってもよい。
  (PSFCHに関する送信パラメータの上書き)
 PSFCHに関する送信パラメータは、PSFCHが送信される前であれば、上書きすることが可能である。上書き可能なPSFCHの送信パラメータとしては、例えば、以下に示すパラメータが挙げられる。
 ・PSFCH送信リソース
 ・送信電力
 ・PSFCHフォーマット(例えば、Long PSFCHまたはshort PSFCH)
 ・AGCシンボルの付加
 ・PSFCHのDMRSシーケンス
 また、PSFCHに関する送信パラメータは、例えば、他のSCIによって上書きされてもよい。具体的な一例として、所定のSCIでPSFCHの送信パラメータが指示された後であり、かつ当該PSFCHの送信前に、当該SCIとは異なる他のSCIによって送信パラメータが改めて指示されるような状況が想定され得る。このような場合には、当該他のSCIで指示された送信パラメータが用いられてもよい。
 また、他の一例として、PSFCHの送信タイミングが、より優先度の高い信号またはチャネルの送信タイミングまたは受信タイミングと重複する場合に、当該PSFCHに関する送信パラメータが上書きされてもよい。具体的な一例として、PSFCHの送信タイミングが、同期信号またはPSDCHの送信タイミングまたは受信タイミングと重複する場合に、当該PSFCHの送信タイミングが延期されるように送信リソースの割り当てが制御されてもよい。
 以上のような制御により、チャネルや通信の状況により追従可能となるように、適応的な通信を実現することが可能となる。
  (グループキャストHARQ)
 続いて、グループキャストを想定したHARQ(以降では、便宜上「グループキャストHARQ」とも称する)について説明する。グループIDに関連付けられたPSCCH及び/またはPSSCHの送信については、グループキャスト送信とみなすことが可能である。そこで、グループキャストHARQを実現するための技術の一例について以下に説明する。
 まず、グループキャストHARQのフィードバックリソースの割り当て方法について、送信端末がグループに所属する端末装置を認識している場合と、送信端末がグループに所属する端末装置を認識していない場合と、に分けて説明する。
 送信端末がグループに所属する端末装置を認識している場合には、受信端末が応答としてACK/NACKを送信するか、NACKのみを送信するか、に応じて、フィードバックリソースの割り当て方法が異なる。ここで、受信端末が応答としてACK/NACKを送信する場合においては、具体的には、受信端末は、PSSCHの復号に成功した場合に応答としてACKを送信し、PSSCHの復号に失敗した場合に応答してNACKを送信する。また、受信端末が応答としてNACKのみを送信する場合においては、具体的には、受信端末は、PSSCHの復号に成功した場合には応答(例えば、ACK)を送信せず、PSSCHの復号に失敗した場合に応答としてNACKを送信する。
 受信端末が応答としてACK/NACKを送信する場合には、例えば、送信端末は、各受信端末に対して、直交した個別のHARQフィードバックリソース(即ち、PSFCHリソース)を割り当てることが可能である。なお、この場合におけるフィードバックリソースの割当方式を、便宜上「フィードバックリソース個別割当方式」とも称する。ここで、各受信端末に対して個別にフィードバックリソースを割り当てるということは、各受信端末に対して互いに異なる物理リソース(例えば、時間、周波数、及び直交コード)が割り当てられることを意味し得る。また、「フィードバックリソース個別割当方式」が、「第1の割当方式」の一例に相当する。
 フィードバックリソース個別割当方式が適用されることで、例えば、送信端末は、各受信端末における情報の復号状況(例えば、PSCCH及びPSSCHの復号結果)を個別に認識することが可能となる。即ち、この場合には、各受信端末に対して固有(個別)のリソースが割り当てられるため、送信端末は、どの受信端末が情報の受信に成功し、どの受信端末が情報の受信に失敗したかを認識することが可能となる。
 また、フィードバックリソース個別割当方式が適用されることで、例えば、受信端末が応答としてACK及びNACKのいずれも送信しないことで、DTX(Discontinuous Transmission)をフィードバックすることも可能となる。なお、DTXが通知された場合には、送信端末は、例えば、受信端末側でPSCCHの復号に失敗したと判断することが可能となる。
 また、受信端末が応答としてNACKのみを送信する場合には、送信端末は、HARQフィードバックリソースの割当方式として2つの方式を選択的に適用することが可能である。
 まず、1つ目の方式は、上述した「フィードバックリソース個別割当方式」である。即ち、送信端末は、各受信端末に対して、直交した個別のHARQフィードバックリソースを割り当てることが可能である。この場合には、各受信端末に対して固有(個別)のリソースが割り当てられるため、送信端末は、どの受信端末が情報の受信に成功し、どの受信端末が情報の受信に失敗したかを認識することが可能となる。
 これに対して、2つ目の方式は、送信端末が、グループに所属する受信端末間で共通のHARQフィードバックリソースを割り当てる方式である。なお、この場合におけるフィードバックリソースの割当方式を、便宜上「フィードバックリソース共有割当方式」とも称する。ここで、各受信端末に対して共通のフィードバックリソースを割り当てるということは、同一の物理リソース(例えば、時間及び周波数)が各受信端末間で共有されるように割り当てられることを意味し得る。また、「フィードバックリソース共有割当方式」が、「第2の割当方式」の一例に相当する。この場合には、グループに所属する受信端末間でリソースが共通となるため、HARQフィードバックに対するリソース利用効率を向上させることが可能となる。
 次いで、送信端末がグループに所属する端末装置を認識していない場合の例について説明する。送信端末がグループに所属する端末装置を認識していない場合には、例えば、受信端末が応答としてNACKのみを送信する方式が適用され得る。また、HARQフィードバックリソースの割当方式としては、フィードバックリソース共有割当方式が適用され得る。
 続いて、グループキャストHARQにおける、HARQフィードバックリソースの割当方式の切り替えについて説明する。グループキャストHARQが行われる場合にはHARQフィードバックリソースの割当方式として、上述した「フィードバックリソース個別割当方式」と「フィードバックリソース共有割当方式」とが所定の条件に応じて選択的に適用されてもよい。
 具体的な一例として、グループに所属する受信端末の数に応じて、HARQフィードバックリソースの割当方式が切り替えられてもよい。より具体的には、グループに所属する受信端末の数が少ない場合(即ち、閾値未満の場合)には、「フィードバックリソース個別割当方式」が適用されてもよい。これに対して、グループに所属する受信端末の数が多い場合(即ち、閾値以上の場合)や、グループに所属する受信端末の数が不明の場合には、「フィードバックリソース共有割当方式」が適用されてもよい。
 また、他の一例として、装置間通信に使用される周波数帯域の混雑度のレベルに応じて、HARQフィードバックリソースの割当方式が切り替えられてもよい。より具体的には、上記周波数帯域の混雑度のレベルが低い場合(即ち、閾値未満の場合)には、「フィードバックリソース個別割当方式」が適用されてもよい。これに対して、上記周波数帯域の混雑度のレベルが高い場合(即ち、閾値以上の場合)には、「フィードバックリソース共有割当方式」が適用されてもよい。
 また、他の一例として、送信端末とグループに所属する各受信端末との位置関係に応じて、HARQフィードバックリソースの割当方式が切り替えられてもよい。より具体的には、送信端末から最も遠くに位置する受信端末を対象とした送受信端末間の距離が長い場合(即ち、閾値以上の場合)には、「フィードバックリソース個別割当方式」が適用されてもよい。これに対して、送信端末から最も遠くに位置する受信端末を対象とした送受信端末間の距離が短い場合(即ち、閾値未満の場合)には、「フィードバックリソース共有割当方式」が適用されてもよい。
 また、他の一例として、PSSCHの送信方式に応じて、HARQフィードバックリソースの割当方式が切り替えられてもよい。より具体的には、PSSCHが高いMCS(Modulation and Coding Scheme)で送信される場合(即ち、多値レベルが閾値以上の場合)には、「フィードバックリソース個別割当方式」が適用されてもよい。これに対して、PSSCHが低いMCSで送信される場合(即ち、多値レベルが閾値未満の場合)には、「フィードバックリソース共有割当方式」が適用されてもよい。
 また、他の一例として、QoSレベル(換言すると、緊急度のレベル)に応じて、HARQフィードバックリソースの割当方式が切り替えられてもよい。より具体的には、QoSレベルが場合(即ち、閾値以上の場合)には、「フィードバックリソース個別割当方式」が適用されてもよい。これに対して、QoSレベルが低い場合(即ち、閾値未満の場合)には、「フィードバックリソース共有割当方式」が適用されてもよい。
 以上のように、HARQフィードバックリソースの割当方式が各種条件に基づき選択的に切り替えられることで、通信効率やフィードバックリソースのオーバーヘッドを状況に応じて調整することが可能となる。なお、上記はあくまで一例であり、HARQフィードバックリソースの割当方式の切り替え条件として上記とは異なる他の条件が適用されてもよい。
  (応答の通知方法)
 続いて、応答(ACK/NACKまたはNACK)の通知方法の一例について説明する。
 具体的な一例として、応答の通知に、オンオフ変調(On-Off keying)が適用されてもよい。この場合には、フィードバックを受ける端末装置は、例えば、所定のリソースの受信電力が閾値以上の場合にはNACKと判断し、当該受信電力が当該閾値未満の場合にはACKと判断してもよい。
 また、他の一例として、応答の通知に、シーケンス(Sequence)が利用されてもよい。この場合には、例えば、ACK/NACKを表すシーケンスパターンを用いて応答が送信されてもよい。
 また、他の一例として、応答の通知に、ペイロード(Payload)が利用されてもよい。この場合には、物理チャネルに対してACK/NACKを表すビット情報が関連付けられることで応答が送信されてもよい。
 また、他の一例として、応答の通知に、Resource selectionの仕組みが適用されてもよい。この場合には、例えば、2種類のフィードバックリソースが割り当てられる。このような前提の基で、フィードバックを受ける端末装置は、例えば、一方のリソースを利用して応答が送信された場合にACKと判断し、他方のリソースを利用して応答が送信された場合にNACKと判断してもよい。
 もちろん、上記はあくまで一例であり、他の端末装置に対して応答(ACK/NACKまたはNACK)を通知することが可能であれば、その方法は特に限定されない。
 <<4.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局装置1は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局装置1は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局装置1は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局装置1として動作してもよい。さらに、基地局装置1の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、端末装置2は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置2は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置2の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
  <4.1.基地局に関する応用例>
 (第1の応用例)
 図13は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図13に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図13にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図13に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図13に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図13には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図13に示したeNB800において、図2を参照して説明した上位層処理部101及び制御部103のうち1つ以上の構成要素は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図13に示したeNB800において、図2を参照して説明した受信部105及び送信部107は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、送受信アンテナ109は、アンテナ810において実装されてもよい。
 (第2の応用例)
 図14は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図14に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図14にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図13を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図13を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図13に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図14には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図14に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図14には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図14に示したeNB830において、図2を参照して説明した上位層処理部101及び制御部103のうち1つ以上の構成要素は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図14に示したeNB830において、例えば、図2を参照して説明した受信部105及び送信部107は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、送受信アンテナ109は、アンテナ840において実装されてもよい。
  <4.2.端末装置に関する応用例>
 (第1の応用例)
 図15は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図15に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図15には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図15に示したように複数のアンテナ916を有してもよい。なお、図15にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図15に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図15に示したスマートフォン900において、図3を参照して説明した上位層処理部201及び制御部203のうち1つ以上の構成要素は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図15に示したスマートフォン900において、例えば、図3を参照して説明した受信部205及び送信部207は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、送受信アンテナ209は、アンテナ916において実装されてもよい。
 (第2の応用例)
 図16は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図16に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図16には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図16に示したように複数のアンテナ937を有してもよい。なお、図16にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図16に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図16に示したカーナビゲーション装置920において、図3を参照して説明した上位層処理部201及び制御部203のうち1つ以上の構成要素は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図16に示したカーナビゲーション装置920において、例えば、図3を参照して説明した受信部205及び送信部207は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、送受信アンテナ209は、アンテナ937において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、上位層処理部201、制御部203、受信部205、及び送信部207のうち少なくともいずれかを備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<5.むすび>>
 以上説明したように、本開示の一実施形態に係るシステムにおいて、通信装置(受信端末)は、無線通信を行う通信部と、装置間通信を介した他の端末装置(送信玉津)からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御する制御部と、を備える。上記制御部は、上記装置間通信に関する条件に基づき、上記応答の送信に使用するリソースを決定する。また、通信装置(送信端末)は、無線通信を行う通信部と、装置間通信を介して他の端末装置(受信端末)にデータが送信されるように制御する制御部と、を備える。上記制御部は、上記装置間通信に関する条件に応じたリソースを使用して上記他の端末装置から送信される、上記データの送信に対する応答が取得されるように制御する。
 以上のような構成により、NRの適用を想定した端末装置間における装置間通信(例えば、NR V2X)において、データの受信結果に応じた応答の送信に利用可能なリソースをより好適な態様で確保することが可能となる。即ち、上記装置間通信に対してユニキャストやグループキャスト(マルチキャスト)が適用される場合においても、データの受信結果に応じた応答のフィードバックをより好適な態様で実現することが可能となる。より具体的には、上述した構成により、NRの適用を想定した端末装置間における装置間通信(例えば、NR V2X)に対して、より好適な態様でHARQを適用することが可能となる。そのため、本開示に係る技術に依れば、NR V2Xに代表される端末装置間における装置間通信において、高効率なユニキャスト通信やグループキャスト通信をより好適な態様で実現することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 無線通信を行う通信部と、
 装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御する制御部と、
 を備え、
 前記制御部は、前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定する、
 通信装置。
(2)
 前記制御部は、前記データの送信に関連付けて前記他の端末装置から通知される情報に基づき、前記応答の送信に使用するリソースを決定する、前記(1)に記載の通信装置。
(3)
 前記他の端末装置から通知される情報は、前記リソースに関する情報である、前記(2)に記載の通信装置。
(4)
 前記リソースに関する情報は、前記リソースが関連付けられた第1の制御情報からの時間オフセットに関する情報を含む、前記(3)に記載の通信装置。
(5)
 前記他の端末装置から通知される情報は、前記装置間通信の条件に関する情報である、前記(2)に記載の通信装置。
(6)
 前記装置間通信の条件に関する情報は、
  前記リソースが関連付けられた第1の制御情報のスクランブル系列に関する情報と、
  前記第1の制御情報とは異なる、前記装置間通信に関する第2の制御情報と、
  のうちの少なくともいずれかを含む、
 前記(5)に記載の通信装置。
(7)
 前記第2の制御情報は、前記応答の送信に係る処理に関連付けられた識別情報を含む、前記(6)に記載の通信装置。
(8)
 前記他の端末装置から通知される情報として取り得る値のセットは、所定の条件に応じて選択的に切り替えられる、前記(2)~(7)のいずれか一項に記載の通信装置。
(9)
 前記所定の条件は、
  前記データのパケットに関連付けられた緊急度と、
  前記装置間通信に使用される周波数帯域の混雑度のレベルと、
  のうちの少なくともいずれかに関する条件を含む、
 前記(8)に記載の通信装置。
(10)
 前記制御部は、
  前記データのパケットに関連付けられた緊急度と、
  前記通信装置の前記装置間通信に関するケイパビリティと、
  前記装置間通信に使用される周波数帯域の混雑度のレベルと、
  前記通信装置による前記周波数帯域の占有率と、
  のうちの少なくともいずれかに関する情報に基づき、前記応答の送信に使用するリソースを決定する、
 前記(1)に記載の通信装置。
(11)
 前記制御部は、複数の前記他の端末装置それぞれに対する前記応答の送信それぞれに対して前記リソースを個別に決定する、前記(1)~(10)のいずれか一項に記載の通信装置。
(12)
 前記制御部は、複数の前記他の端末装置それぞれに対する前記応答の送信に対して共通の前記リソースを決定する、前記(1)~(10)のいずれか一項に記載の通信装置。
(13)
 前記制御部は、所定の条件に基づき、前記応答に対して、当該応答の復調におけるゲインコントロールに利用可能なシンボルを関連付ける、前記(1)~(12)のいずれか一項に記載の通信装置。
(14)
 前記制御部は、前記他の端末装置から前記装置間通信を介して送信される情報に応じて、前記応答に対して前記シンボルを関連付ける、前記(13)に記載の通信装置。
(15)
 前記制御部は、
  前記リソースが関連付けられた第1の制御情報に対して、当該第1の制御情報の復調におけるゲインコントロールに利用可能なシンボルが関連付けられているか否かに応じて、
  前記応答に対して、当該応答の復調におけるゲインコントロールに利用可能なシンボルを関連付ける、
 前記(14)に記載の通信装置。
(16)
 無線通信を行う通信部と、
 装置間通信を介して他の端末装置にデータが送信されるように制御する制御部と、
 を備え、
 前記制御部は、前記装置間通信に関する条件に応じたリソースを使用して前記他の端末装置から送信される、前記データの送信に対する応答が取得されるように制御する、
 を備える、通信装置。
(17)
 前記制御部は、
  前記他の端末装置に対して前記リソースを割り当て、
  当該リソースの割り当て結果に応じた情報が当該他の端末装置に通知されるように制御する、
 前記(16)に記載の通信装置。
(18)
 前記制御部は、複数の前記他の端末装置に対して前記リソースを個別に割り当てる、前記(17)に記載の通信装置。
(19)
 前記制御部は、複数の前記他の端末装置に対して共通の前記リソースを割り当てる、前記(17)に記載の通信装置。
(20)
 前記制御部は、前記他の端末装置における前記データの復号の成功時には当該他の端末装置から前記応答が送信されない設定の場合に、複数の前記他の端末装置に対して、共通の前記リソースを割り当てる、前記(19)に記載の通信装置。
(21)
 前記制御部は、
  前記リソースの割当方式として、
  複数の前記他の端末装置に対して前記リソースを個別に割り当てる第1の割当方式と、
  複数の前記他の端末装置に対して共通の前記リソースを割り当てる第2の割当方式と、
  のいずれを適用するかを所定の条件に基づき決定する、
 前記(17)に記載の通信装置。
(22)
 前記制御部は、
  前記データの送信対象となる前記他の端末装置の数と、
  前記装置間通信に使用される周波数帯域の混雑度のレベルと、
 のうちの少なくともいずれかに関する条件に基づき、前記第1の割当方式と前記第2の割当方式とのうちのいずれを適用するかを決定する、
 前記(21)に記載の通信装置。
(23)
 コンピュータが、
 無線通信を行うことと、
 装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御することと、
 前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定することと、
 を含む、通信方法。
(24)
 コンピュータが、
 無線通信を行うことと、
 装置間通信を介して他の端末装置にデータが送信されるように制御することと、
 前記装置間通信に関する条件に応じたリソースを使用して前記他の端末装置から送信される、前記データの送信に対する応答が取得されるように制御することと、
 を含む、通信方法。
1    基地局装置
101  上位層処理部
103  制御部
105  受信部
1051 復号化部
1053 復調部
1055 多重分離部
1057 無線受信部
1059 チャネル測定部
107  送信部
1071 符号化部
1073 変調部
1075 多重部
1077 無線送信部
1079 リンク参照信号生成部
109  送受信アンテナ
2    端末装置
201  上位層処理部
203  制御部
205  受信部
2051 復号化部
2053 復調部
2055 多重分離部
2057 無線受信部
2059 チャネル測定部
207  送信部
2071 符号化部
2073 変調部
2075 多重部
2077 無線送信部
2079 リンク参照信号生成部
209  送受信アンテナ

Claims (24)

  1.  無線通信を行う通信部と、
     装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御する制御部と、
     を備え、
     前記制御部は、前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定する、
     通信装置。
  2.  前記制御部は、前記データの送信に関連付けて前記他の端末装置から通知される情報に基づき、前記応答の送信に使用するリソースを決定する、請求項1に記載の通信装置。
  3.  前記他の端末装置から通知される情報は、前記リソースに関する情報である、請求項2に記載の通信装置。
  4.  前記リソースに関する情報は、前記リソースが関連付けられた第1の制御情報からの時間オフセットに関する情報を含む、請求項3に記載の通信装置。
  5.  前記他の端末装置から通知される情報は、前記装置間通信の条件に関する情報である、請求項2に記載の通信装置。
  6.  前記装置間通信の条件に関する情報は、
      前記リソースが関連付けられた第1の制御情報のスクランブル系列に関する情報と、
      前記第1の制御情報とは異なる、前記装置間通信に関する第2の制御情報と、
      のうちの少なくともいずれかを含む、
     請求項5に記載の通信装置。
  7.  前記第2の制御情報は、HARQプロセスIDを含む、請求項6に記載の通信装置。
  8.  前記他の端末装置から通知される情報として取り得る値のセットは、所定の条件に応じて選択的に切り替えられる、請求項2に記載の通信装置。
  9.  前記所定の条件は、
      前記データのパケットに関連付けられた緊急度と、
      前記装置間通信に使用される周波数帯域の混雑度のレベルと、
      のうちの少なくともいずれかに関する条件を含む、
     請求項8に記載の通信装置。
  10.  前記制御部は、
      前記データのパケットに関連付けられた緊急度と、
      前記通信装置の前記装置間通信に関するケイパビリティと、
      前記装置間通信に使用される周波数帯域の混雑度のレベルと、
      前記通信装置による前記周波数帯域の占有率と、
      のうちの少なくともいずれかに関する情報に基づき、前記応答の送信に使用するリソースを決定する、
     請求項1に記載の通信装置。
  11.  前記制御部は、複数の前記他の端末装置それぞれに対する前記応答の送信それぞれに対して前記リソースを個別に決定する、請求項1に記載の通信装置。
  12.  前記制御部は、複数の前記他の端末装置それぞれに対する前記応答の送信に対して共通の前記リソースを決定する、請求項1に記載の通信装置。
  13.  前記制御部は、所定の条件に基づき、前記応答に対して、当該応答の復調におけるゲインコントロールに利用可能なシンボルを関連付ける、請求項1に記載の通信装置。
  14.  前記制御部は、前記他の端末装置から前記装置間通信を介して送信される情報に応じて、前記応答に対して前記シンボルを関連付ける、請求項13に記載の通信装置。
  15.  前記制御部は、
      前記リソースが関連付けられた第1の制御情報に対して、当該第1の制御情報の復調におけるゲインコントロールに利用可能なシンボルが関連付けられているか否かに応じて、
      前記応答に対して、当該応答の復調におけるゲインコントロールに利用可能なシンボルを関連付ける、
     請求項14に記載の通信装置。
  16.  無線通信を行う通信部と、
     装置間通信を介して他の端末装置にデータが送信されるように制御する制御部と、
     を備え、
     前記制御部は、前記装置間通信に関する条件に応じたリソースを使用して前記他の端末装置から送信される、前記データの送信に対する応答が取得されるように制御する、
     を備える、通信装置。
  17.  前記制御部は、
      前記他の端末装置に対して前記リソースを割り当て、
      当該リソースの割り当て結果に応じた情報が当該他の端末装置に通知されるように制御する、
     請求項16に記載の通信装置。
  18.  前記制御部は、複数の前記他の端末装置に対して前記リソースを個別に割り当てる、請求項17に記載の通信装置。
  19.  前記制御部は、複数の前記他の端末装置に対して共通の前記リソースを割り当てる、請求項17に記載の通信装置。
  20.  前記制御部は、前記他の端末装置における前記データの復号の成功時には当該他の端末装置から前記応答が送信されない設定の場合に、複数の前記他の端末装置に対して、共通の前記リソースを割り当てる、請求項19に記載の通信装置。
  21.  前記制御部は、
      前記リソースの割当方式として、
      複数の前記他の端末装置に対して前記リソースを個別に割り当てる第1の割当方式と、
      複数の前記他の端末装置に対して共通の前記リソースを割り当てる第2の割当方式と、
      のいずれを適用するかを所定の条件に基づき決定する、
     請求項17に記載の通信装置。
  22.  前記制御部は、
      前記データの送信対象となる前記他の端末装置の数と、
      前記装置間通信に使用される周波数帯域の混雑度のレベルと、
     のうちの少なくともいずれかに関する条件に基づき、前記第1の割当方式と前記第2の割当方式とのうちのいずれを適用するかを決定する、
     請求項21に記載の通信装置。
  23.  コンピュータが、
     無線通信を行うことと、
     装置間通信を介した他の端末装置からのデータの送信に対する応答が、当該装置間通信を介して当該他の端末装置に送信されるように制御することと、
     前記装置間通信に関する条件に基づき、前記応答の送信に使用するリソースを決定することと、
     を含む、通信方法。
  24.  コンピュータが、
     無線通信を行うことと、
     装置間通信を介して他の端末装置にデータが送信されるように制御することと、
     前記装置間通信に関する条件に応じたリソースを使用して前記他の端末装置から送信される、前記データの送信に対する応答が取得されるように制御することと、
     を含む、通信方法。
PCT/JP2020/001793 2019-02-14 2020-01-21 通信装置及び通信方法 WO2020166280A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020572136A JPWO2020166280A1 (ja) 2019-02-14 2020-01-21 通信装置及び通信方法
EP20755087.2A EP3927040A4 (en) 2019-02-14 2020-01-21 COMMUNICATION DEVICE AND COMMUNICATION METHOD
US17/428,289 US20220070829A1 (en) 2019-02-14 2020-01-21 Communication device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019024211 2019-02-14
JP2019-024211 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020166280A1 true WO2020166280A1 (ja) 2020-08-20

Family

ID=72044077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001793 WO2020166280A1 (ja) 2019-02-14 2020-01-21 通信装置及び通信方法

Country Status (5)

Country Link
US (1) US20220070829A1 (ja)
EP (1) EP3927040A4 (ja)
JP (1) JPWO2020166280A1 (ja)
TW (1) TW202041056A (ja)
WO (1) WO2020166280A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220167310A1 (en) * 2020-11-25 2022-05-26 Qualcomm Incorporated Long physical sidelink shared channel format for sidelink communication
WO2022254658A1 (ja) * 2021-06-03 2022-12-08 三菱電機株式会社 通信システム、携帯端末、プログラム及び通信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154436B2 (ja) * 2019-03-05 2022-10-17 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるpsfchを送信する方法、及び装置
JP7248779B2 (ja) * 2019-03-20 2023-03-29 株式会社Nttドコモ 端末、通信方法、及び無線通信システム
US11689325B2 (en) * 2020-12-16 2023-06-27 Qualcomm Incorporated Feedback transmission via a sidelink feedback channel resource of a sidelink resource pool
EP4280500A1 (en) * 2021-01-12 2023-11-22 LG Electronics Inc. Method and device for performing sl drx operation on basis of harq feedback in nr v2x
US11683800B2 (en) * 2021-05-14 2023-06-20 Qualcomm Incorporated Transmitter multiplexing in multi-opportunity sidelink grant
WO2023184151A1 (en) * 2022-03-29 2023-10-05 Qualcomm Incorporated Psfch coverage extension
US20240031990A1 (en) * 2022-07-20 2024-01-25 Qualcomm Incorporated Sidelink feedback channel resources having a plurality of symbols

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9544045B2 (en) * 2011-09-20 2017-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Relaying unicast and multicast data in a wireless network
JP2018029323A (ja) * 2016-08-10 2018-02-22 ソニー株式会社 通信装置及び通信方法
US11490341B2 (en) * 2018-02-02 2022-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Wireless node for receiving a wireless signal and method thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on physical layer procedures in NR V2X", 3CPP TSC RAN WC1 ADHOC_NR_AH_1901, R1-1900321, 11 January 2019 (2019-01-11), pages 3, XP051575930, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WC1_RL1/TSCR1_AH/NR_AH_1901/Docs/R1-1900321.zip> [retrieved on 20200213] *
CMCC: "Discussion on HARQ feedback", 3GPP TSG RAN WG1 ADHOC_NR_AH_1901, R1-1900405, 12 January 2019 (2019-01-12), pages 1 - 2, XP051576014, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RL1/TSGR1_AH/NR_AH_1901/Docs/R1-1900405.zip> [retrieved on 20200212] *
LG ELECTRONICS: "Discussion on physical layer structure for NR V2X", 3GPP TSG RAN WG1 ADHOC_NR_AH_1901, R1-1901335, 21 January 2019 (2019-01-21), XP051601273, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WC1_RL1/TSCR1_AH1/NR_AH_1901/Docs/R1-1901335.zip> [retrieved on 20200213] *
LG ELECTRONICS: "Feature lead summary for agenda item 7.2.4.1.2 Physical layer procedures", 3GPP TSG RAN WG1 ADHOC_NR_AH_1901, R1-1901439, 25 January 2019 (2019-01-25), XP051601351, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1901/Docs/R1-1901439.zip> [retrieved on 20200212] *
SONY: "Discussion on NR V2X resource allocation mechanism", 3CPP TSC RAN WC1 ADHOC_NR_AH_1901, R1-1900369, 11 January 2019 (2019-01-11), pages 3, XP051575978, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WC1_RL1/TSCR1_AH/NR_AH_1901/Docs/R1-1900369.zip> [retrieved on 20200213] *
VODAFONE: "New SID: Study on NR V2X", 3GPP TSG RAN MEETING, 11 June 2018 (2018-06-11)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220167310A1 (en) * 2020-11-25 2022-05-26 Qualcomm Incorporated Long physical sidelink shared channel format for sidelink communication
US11659521B2 (en) * 2020-11-25 2023-05-23 Qualcomm Incorporated Long physical sidelink shared channel format for sidelink communication
WO2022254658A1 (ja) * 2021-06-03 2022-12-08 三菱電機株式会社 通信システム、携帯端末、プログラム及び通信方法

Also Published As

Publication number Publication date
EP3927040A1 (en) 2021-12-22
JPWO2020166280A1 (ja) 2021-12-23
US20220070829A1 (en) 2022-03-03
EP3927040A4 (en) 2022-04-20
TW202041056A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
WO2020166280A1 (ja) 通信装置及び通信方法
US20230141536A1 (en) Electronic device, wireless communication method and computer-readable medium
CN111213424B (zh) 在无线通信系统中由终端发送侧链路消息的方法和使用该方法的终端
US9826562B2 (en) Communication control method, user terminal, processor, storage medium, and base station for D2D communication
CN111096055A (zh) 终端设备、基站设备、方法和记录介质
US11974268B1 (en) System and method for transmitting control information
JP6553592B2 (ja) 通信制御方法及びユーザ端末
WO2018030158A1 (ja) 通信装置、通信方法及びプログラム
JPWO2014017476A1 (ja) 移動通信システム、基地局、ユーザ端末、及びプロセッサ
US11496975B2 (en) Communication device, communication method, and program
CN108702741B (zh) 终端设备、基站设备和通信方法
CN109565709B (zh) 通信设备、通信方法和记录介质
CN112822778B (zh) 用于侧行链路传送的方法及用户设备
WO2015005316A1 (ja) ネットワーク装置及び通信制御方法
US10021039B2 (en) Mobile communication system and user terminal
US10212696B2 (en) Mobile communication system and user terminal
CN110447199B (zh) 电子装置和无线通信方法
US20160029401A1 (en) Mobile communication system and user terminal
WO2019065307A1 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
EP3834541A1 (en) Method for resource allocation in device to device communication
US20240008061A1 (en) Method and apparatus by which lte v2x and nr v2x coexist in same frequency band
JP2018057032A (ja) 基地局、通信制御方法、及びユーザ端末
WO2023039783A1 (en) Decoupled mini-slot sidelink control information (sci) for scheduling and resource reservation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020755087

Country of ref document: EP

Effective date: 20210914