WO2020166257A1 - Method for manufacturing optical film - Google Patents

Method for manufacturing optical film Download PDF

Info

Publication number
WO2020166257A1
WO2020166257A1 PCT/JP2020/000978 JP2020000978W WO2020166257A1 WO 2020166257 A1 WO2020166257 A1 WO 2020166257A1 JP 2020000978 W JP2020000978 W JP 2020000978W WO 2020166257 A1 WO2020166257 A1 WO 2020166257A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
cutting
work
optical film
producing
Prior art date
Application number
PCT/JP2020/000978
Other languages
French (fr)
Japanese (ja)
Inventor
誠 中市
裕加 山本
文人 島ノ江
能満 池内
昌幸 大本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080013911.1A priority Critical patent/CN113423527A/en
Priority to KR1020217024596A priority patent/KR20210125487A/en
Priority to JP2020572130A priority patent/JP7475289B2/en
Publication of WO2020166257A1 publication Critical patent/WO2020166257A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/10Relieving by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/12Trimming or finishing edges, e.g. deburring welded corners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the present invention relates to a method for manufacturing an optical film.
  • optical films for example, polarizing plates
  • image display devices such as mobile phones and notebook personal computers in order to realize image display and/or enhance the performance of the image display.
  • an optical laminated body for an instrument panel of an automobile, a smart watch, etc.
  • the end face may be cut by an end mill.
  • minute recesses are created when the end mill comes into contact with the work surface at the start of cutting, or when the end of cutting is completed, the end mill is separated from the work surface. A slight step or fluff may occur at the time of doing.
  • high shape accuracy of optical films has been demanded, and suppression of generation of such recesses, steps, fluffs, etc. has been demanded.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to prevent the occurrence of unnecessary recesses, steps, fluff, etc. at the cutting start point and/or the cutting end point while using an end mill.
  • An object of the present invention is to provide a method for producing an optical film that can be suppressed.
  • the method for manufacturing a cut optical film includes forming a work by stacking a plurality of optical films, and cutting the work with an end mill. At the start of cutting, a diagonal direction with respect to the work in plan view. The end mill from the work while the end mill is brought into contact with the work while running the end mill, and/or at the end of cutting, while the end mill is running in a direction oblique to the work in plan view. Including spacing.
  • the running locus ts of the end mill at the start of cutting is curved.
  • the radius of curvature of the traveling locus ts of the end mill at the start of cutting is larger than 1/2 of the outer diameter of the end mill.
  • the radius of curvature of the traveling locus ts of the end mill at the start of cutting is larger than the outer diameter of the end mill.
  • the running locus te of the end mill at the end of the cutting is curved.
  • the radius of curvature of the running locus te of the end mill at the end of the cutting is larger than 1/2 of the outer diameter of the end mill.
  • the radius of curvature of the traveling locus te of the end mill at the end of the cutting is larger than the outer diameter of the end mill.
  • the speed of the end mill when the end mill is brought into contact with the work is slower than the feed speed of the end mill when the outer peripheral surface of the work is cut by the end mill.
  • the speed of the end mill when separating the end mill from the work is slower than the feed speed of the end mill when cutting the outer peripheral surface of the work with the end mill.
  • cutting is performed over the entire circumference of the outer peripheral surface of the work, the cutting start point a and the cutting end point b are different positions, and the cutting end point is located in front of the cutting start point a in the traveling direction of the end mill. b is set.
  • the outer diameter of the end mill is 10 mm or less.
  • the twist angle of the end mill is 0°.
  • the present invention it is possible to provide a method for producing an optical film that can suppress the generation of unnecessary recesses, steps, fluffs, etc. at the cutting start point and/or the cutting end point while using an end mill.
  • FIG. 3(a) is a schematic cross-sectional view seen from the axial direction for explaining another example of the cutting means used for cutting in the method for producing an optical film of the present invention
  • FIG. 3(b) is It is a schematic perspective view of the cutting means of FIG.
  • FIG. 4A and FIG. 4B are schematic plan views illustrating the cutting process according to the embodiment of the present invention.
  • 5(a) and 5(b) are schematic plan views for explaining cutting processing according to one embodiment of the present invention.
  • FIG. 7A and FIG. 7B are schematic plan views for explaining cutting processing according to one embodiment of the present invention.
  • FIG. 8A and FIG. 8B are schematic plan views illustrating cutting processing according to one embodiment of the present invention.
  • the method for producing a machined optical film of the present invention includes stacking a plurality of optical films to form a work, and cutting the outer peripheral surface of the work with an end mill.
  • a work 1 is formed by stacking a plurality of optical films.
  • the optical film is typically cut into any appropriate shape.
  • the optical film may be cut into a rectangular shape, may be cut into a shape similar to a rectangular shape, or may be cut into an appropriate shape (for example, a circle) according to the purpose. Good.
  • the optical film is cut into a rectangular shape, and the work 1 has outer peripheral surfaces (cutting surfaces) 1a and 1b facing each other and outer peripheral surfaces (cutting surfaces) 1c and 1d orthogonal to them. ..
  • the work 1 is preferably clamped from above and below by a clamp means (not shown).
  • the total thickness of the work is, for example, 8 mm to 100 mm, preferably 8 mm to 50 mm, more preferably 8 mm to 20 mm, further preferably 9 mm to 15 mm, and further preferably about 10 mm. With such a thickness, it is possible to prevent damage due to the pressing by the clamp means or the impact during cutting.
  • the optical films are stacked so that the work pieces have such a total thickness.
  • the number of optical films constituting the work may be, for example, 10 to 500 (10 to 300 in one embodiment; 10 to 50 in another embodiment).
  • the clamp means (for example, a jig) may be made of a soft material or a hard material.
  • its hardness is preferably 20° to 80°, more preferably 60° to 80°, and its thickness is, for example, 0.3 mm to 5 mm. If the hardness is too high, the imprint of the clamping means may remain. If the hardness is too low or too thick, the jig may be deformed to cause misalignment, resulting in insufficient cutting accuracy.
  • the outer peripheral surface of the work 1 is cut by the end mill 20.
  • the cutting is performed by bringing the cutting blade of the end mill into contact with the outer peripheral surface of the work 1.
  • the cutting may be performed over the entire circumference of the outer peripheral surface of the work, or may be performed only at a predetermined position. Further, for a work having a hole, the inner peripheral surface of the hole may be brought into contact with a cutting blade of an end mill to cut the inner peripheral surface.
  • a straight end mill can be typically used as the end mill 20. In the cutting process, only the end mill may be moved, only the work may be moved, or both the end mill and the work may be moved.
  • the end mill 20 includes a rotary shaft 21 extending in the stacking direction (vertical direction) of the works 1, and a cutting blade 22 configured as an outermost diameter of a main body rotating about the rotary shaft 21.
  • the cutting blade 22 may be configured as an outermost diameter twisted along the rotating shaft 21 as shown in FIG. 2 (may have a predetermined helix angle), and as shown in FIG. It may be configured to extend in a direction substantially parallel to 21 (the twist angle may be 0°). It should be noted that “0°” means substantially 0°, and also includes the case where a slight angle twist is caused by a processing error or the like.
  • the helix angle is preferably 70° or less, more preferably 65° or less, and further preferably 45° or less.
  • the cutting blade 22 includes a cutting edge 22a, a rake surface 22b, and a relief surface 22c.
  • the number of blades of the cutting blade 22 can be appropriately set as long as a desired number of contacts described later can be obtained. Although the number of blades in FIG. 2 is three and the number of blades in FIG. 3 is two, the number of blades may be one, four, or five or more. Preferably, the number of blades is two. With such a configuration, the rigidity of the blade is ensured and the pocket is secured, so that the scraps can be satisfactorily discharged.
  • an end mill with a twist angle of 0° is used.
  • the generation of the concave portion can be prevented.
  • the outer diameter of the end mill is 10 mm or less, preferably 3 mm to 9 mm, and more preferably 4 mm to 6 mm.
  • the “outer diameter of the end mill” refers to a value obtained by doubling the distance from the rotary shaft to one cutting edge.
  • the cutting conditions can be set appropriately according to the desired shape.
  • the rotation speed of the end mill is preferably 1000 rpm to 60000 rpm, more preferably 10,000 rpm to 40,000 rpm.
  • the feed rate of the end mill is preferably 500 mm/min to 10000 mm/min, more preferably 500 mm/min to 2500 mm/min.
  • the speed of the end mill is a relative speed with respect to the work.
  • the end mill is brought into contact with the work while traveling in an oblique direction with respect to the work in plan view.
  • the “oblique direction with respect to the work” at the start of cutting refers to the rear in the traveling direction of the end mill after the start of cutting, with reference to the cutting start point a (where the end mill first contacts the work).
  • the angle x (angle x in FIG. 4) formed by the side A of the work including the cutting start point a or the tangent line B of the work at the cutting start point a is a direction of 60° or less.
  • the “oblique direction with respect to the work” means a direction that does not include a direction perpendicular to the work or a direction close to the perpendicular, that is, a direction in which the angle x is 0° is also included.
  • the angle x is referred to as the running angle x of the end mill at the start of cutting.
  • the traveling angle x of the end mill at the start of the cutting is defined from the side A of the work including the cutting start point a and the traveling locus of the end mill (Fig. 4).
  • the traveling angle x of the end mill at the start of the cutting is defined from the tangent line B of the workpiece at the cutting start point a and the traveling locus of the end mill (FIG. 5).
  • FIGS. 4(a) and 4(b) are schematic plan views for explaining the cutting process according to one embodiment of the present invention.
  • 5(a) and 5(b) are schematic plan views for explaining the cutting process according to another embodiment of the present invention.
  • FIGS. 4(a) and 4(b), and FIGS. 5(a) and 5(b) the movement of the end mill (relative movement with respect to the work 1) at the start of cutting is shown by a running locus in plan view. Shown as ts.
  • the work 1 has a substantially rectangular shape.
  • the outer contour of the work 1 includes a curved line.
  • the running locus ts of the end mill at the start of cutting may be curved as shown in FIGS. 4(a) and 5(a), or may be straight as shown in FIGS. 4(b) and 5(b). It may be a shape.
  • the running angle x of the end mill at the start of cutting is 60° or less as described above, preferably 0° or more and 60° or less, more preferably 0° or more and 45° or less, and further preferably 0° or more 40. Or less, and particularly preferably 0° or more and 35° or less.
  • the running angle x of the end mill at the start of cutting is preferably closer to 0°, and in one embodiment, the running angle x is 5° or less (preferably 3° or less, more preferably 1° or less, and further preferably 0). 0.5° or less).
  • the traveling locus ts only needs to satisfy the traveling angle x at the start of cutting, and any locus may be used until the start of cutting (for example, 2 seconds before the end mill comes into contact with the work). May be run.
  • the traveling angle x may be 0°.
  • the apex of the work is used as a cutting start point, and the end mill is run while traveling from a direction parallel to one side of the work. May be brought into contact with the work, but preferably, the apex of the work is not used as the cutting start point (that is, when the work has a rectangular shape, the traveling angle x is preferably larger than 0°).
  • the traveling angle x is preferably larger than 0°.
  • the running trace ts of the end mill at the start of cutting is curved.
  • the traveling angle x of the end mill at the start of cutting is determined by the tangent line us of the traveling locus ts at the cutting start point a and the side A of the workpiece or the tangent line B at the cutting start point a. Stipulated.
  • the end mill and the work are brought into close contact with each other while rotating the work in the plane, so that the end mill travels relative to the work along a curved travel locus ts.
  • the work may be brought close to the fixed end mill, the end mill may be moved linearly to bring the end mill and the work close together, and both the end mill and the work may be made linear.
  • the end mill and the work may be moved closer to each other by moving.
  • the radius of curvature of the traveling locus ts is preferably 1/2 or more of the outer diameter of the end mill, and more preferably larger than the outer diameter of the end mill. It is more preferably 110% or more with respect to the outer diameter of the end mill, particularly preferably 130% or more with respect to the outer diameter of the end mill, and particularly preferably 150% or more with respect to the outer diameter of the end mill. Most preferred. With such a range, it is possible to prevent the generation of unnecessary recesses at the cutting start point a.
  • the radius of curvature of the running locus ts is preferably 4 mm or more, more preferably 6 mm or more, and further preferably 7.5 mm or more. is there.
  • the speed of the end mill when the end mill is brought into contact with the work is preferably slower than the feed speed of the end mill during cutting (when the surface to be cut of the work is cut by the end mill). By reducing the speed of the end mill at the start of cutting, rattling of the work can be suppressed.
  • the speed of the end mill when the end mill is brought into contact with the work is preferably 400 mm/min to 1200 mm/min, more preferably 500 mm/min to 900 mm/min.
  • the speed of the end mill when the end mill is brought into contact with the work is preferably 30 mm/min to 1200 mm/min. And more preferably 50 mm/min to 1000 mm/min.
  • the shape of the work can be any appropriate shape.
  • Examples of the shape of the work include a substantially rectangular shape as shown in FIG. 4, a substantially polygonal shape, a substantially circular shape, and a substantially elliptical shape.
  • the shape of the work may be a shape in which a straight line and a curve are appropriately combined, or a shape configured by a plurality of curves having different curvatures.
  • the work may not have a pure rectangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like, and may have a shape in which a deformed portion is added to these shapes.
  • a rectangular shape to which a modified portion is added is included in the “substantially rectangular shape”.
  • the deformed portion for example, in addition to the concave portion as shown in FIG.
  • the work may have a shape in which a rectangular corner is curved.
  • the cutting method (specifically, the running locus of the end mill at the start of cutting and the running locus of the end mill at the end of cutting, which will be described later), has a work 1 having a hole 11 as shown in FIG. 'Can also be applied when cutting the inner peripheral surface of the hole 11.
  • the end mill is moved away from the work while traveling in an oblique direction with respect to the work in plan view.
  • the “oblique direction with respect to the work” at the end of cutting refers to the cutting in front of the running direction of the end mill before the end of cutting with reference to the cutting end point b (the point where the end mill is separated from the work). It means a direction in which an angle y (angle y in FIG. 7) between the side A of the work including the end point b or the tangent line B′ of the work at the cutting end point b is 60° or less.
  • the “oblique direction with respect to the work” means a direction that does not include a direction perpendicular to the work or a direction close to the vertical, that is, a direction in which the angle y is 0°.
  • the angle y is referred to as the running angle y of the end mill at the end of cutting.
  • the traveling angle y of the end mill at the end of the cutting is defined from the side A of the work including the cutting end point b and the traveling locus of the end mill (Fig. 7).
  • the traveling angle y of the end mill at the end of cutting is defined from the tangent line B′ of the workpiece at the cutting end point b and the traveling locus of the end mill (FIG. 8).
  • FIGS. 7A and 7B are schematic plan views for explaining cutting processing according to one embodiment of the present invention.
  • FIG. 8A and FIG. 8B are schematic plan views illustrating the cutting process according to another embodiment of the present invention.
  • the movement of the end mill (relative movement with respect to the work 1) at the end of cutting is shown by a traveling locus te in plan view. Is shown as.
  • the work 1 has a substantially rectangular shape.
  • the outer contour of the work 1 includes a curved line.
  • the traveling locus te of the end mill at the end of cutting may be curved as shown in FIGS.
  • the running angle y of the end mill at the end of cutting is 60° or less as described above, preferably 0° or more and 60° or less, more preferably 0° or more and 45° or less, and further preferably 0° or more and 40° or more. Or less, and particularly preferably 0° or more and 35° or less.
  • the running angle y of the end mill at the end of cutting is preferably closer to 0°, and in one embodiment, the running angle y is 5° or less (preferably 3° or less, more preferably 1° or less, and further preferably 0). 0.5° or less).
  • the traveling locus te has only to satisfy the traveling angle y at the end of cutting, and after the end mill is separated from the work by a predetermined distance, the end mill may travel along any locus.
  • the traveling angle y may be 0°.
  • the apex of the work is set as the cutting end point and the end mill may be separated from the work in a direction parallel to one side of the work. Good.
  • the traveling angle y is set to be larger than 0°.
  • the running locus te of the end mill at the end of cutting is curved.
  • the traveling angle y of the end mill at the end of cutting is the tangent line ue of the traveling locus te at the cutting end point b and the tangent line B′ at the side A of the work or the cutting end point a.
  • the end mill and the work are separated from each other while the work is rotated in-plane, so that the end mill travels relatively to the work along a curved travel locus te.
  • the work When separating the end mill from the work, the work may be separated from the fixed end mill, the end mill may be moved linearly to separate the end mill from the work, and both the end mill and the work may be linearly moved.
  • the end mill and the work may be separated by moving.
  • the radius of curvature of the running locus te is preferably 1/2 or more of the outer diameter of the end mill, and more preferably larger than the outer diameter of the end mill. It is more preferably 110% or more with respect to the outer diameter of the end mill, particularly preferably 130% or more with respect to the outer diameter of the end mill, and particularly preferably 150% or more with respect to the outer diameter of the end mill. Most preferred. With such a range, it is possible to prevent the generation of unnecessary steps and fluff at the cutting end point b.
  • the radius of curvature of the traveling locus te is preferably 4 mm or more, more preferably 6 mm or more, and further preferably 7.5 mm or more. is there.
  • the speed of the end mill when separating the end mill from the work is preferably slower than the feed speed of the end mill during cutting (when the surface to be cut of the work is cut by the end mill). By reducing the speed of the end mill at the end of cutting, rattling of the work can be suppressed.
  • the speed of the end mill when separating the end mill from the work is preferably 400 mm/min to 1200 mm/min, more preferably 500 mm/min to 900 mm/min.
  • the speed of the end mill when separating the end mill from the work is preferably 30 mm/min to 1200 mm/min. And more preferably 50 mm/min to 1000 mm/min.
  • the cutting start point a and the cutting end point b may be at the same position, and the cutting start point a and the cutting end point may be the same.
  • b may be set at a different position, and the cutting end point b may be located ahead of the cutting start point a in the traveling direction of the end mill.
  • the cutting start point a and the cutting end point b are set to different positions, and the cutting end point b is set in front of the cutting start point a in the traveling direction of the end mill.
  • the distance between the cutting start point a and the cutting end point b is preferably 0.1 mm to 5 mm. It is preferably 0.3 mm to 4 mm, more preferably 0.5 mm to 2 mm.
  • the end mill is run as described above at the start of cutting and the end mill is run as described above at the end of cutting. In another embodiment, the end mill is run as described above at the start of cutting and is run by an arbitrary method at the end of cutting. In yet another embodiment, the end mill is run by an arbitrary method at the start of cutting and is run as described above at the end of cutting.
  • the optical film includes a polarizer.
  • the optical film including a polarizer may be a polarizer alone or a film including a polarizer and other layers. Examples of the other layer include a protective layer that protects the polarizer and a layer formed of any appropriate optical functional layer.
  • a polarizing plate is used as the optical film containing a polarizer.
  • the polarizing plate may include a polarizer and a protective layer disposed on at least one side of the polarizer.
  • the surface protective film or the separator is releasably laminated on the polarizing plate via any appropriate pressure-sensitive adhesive.
  • the “surface protective film” is a film that temporarily protects the polarizing plate, and is different from the protective layer (layer that protects the polarizer) included in the polarizing plate.
  • the polarizer is typically a resin film (for example, polyvinyl alcohol resin film) swelling treatment, stretching treatment, dichroic substance (for example, iodine, organic dye, etc.) dyeing treatment, crosslinking treatment, washing treatment, It can be obtained by performing various treatments such as drying treatment.
  • a polarizer obtained through a stretching treatment has a property that cracks are likely to occur, but according to the present invention, an optical film containing a polarizer can be cut while preventing cracks.
  • the thickness of the optical film including the polarizer is not particularly limited, and an appropriate thickness can be adopted according to the purpose, for example, 20 ⁇ m to 200 ⁇ m.
  • the thickness of the polarizer is also not particularly limited, and an appropriate thickness can be adopted depending on the purpose.
  • the thickness of the polarizer is typically about 1 ⁇ m to 80 ⁇ m, preferably 3 ⁇ m to 40 ⁇ m.
  • the size of the optical film including the polarizer is not particularly limited, and may be an appropriate size depending on the purpose.
  • the optical film including the polarizer has a rectangular shape including a side parallel to the absorption axis of the polarizer, and a length of the side parallel to the absorption axis of the polarizer is 10 mm to 400 mm. Yes, the other sides have a length of 10 mm to 500 mm.
  • “parallel” includes a case of being substantially parallel, and specifically includes a case of forming an angle between two directions of 0° to 5°.
  • the cut optical film obtained by the manufacturing method of the present invention can be used for a liquid crystal image display device, an organic EL image display device, and the like.
  • the cut optical film has a rectangular image display portion typified by the personal computer (PC) or tablet terminal, and/or an odd-shaped image display typified by an automobile instrument panel or smart watch. It can be preferably used for parts.
  • Example 1 A surface protection film (48 ⁇ m)/hard coat layer (5 ⁇ m)/cycloolefin-based protection film (47 ⁇ m)/polarizer (5 ⁇ m)/cycloolefin-based protection film (24 ⁇ m)/adhesive layer ( An optical film (polarizing plate) having a constitution of 20 ⁇ m)/separator was produced.
  • the pressure-sensitive adhesive layer was produced according to [0121] and [0124] of JP-A-2016-190996.
  • the obtained optical film was punched into a shape similar to that shown in FIG. 4 (approximately a size of about 140 mm ⁇ about 65 mm).
  • a plurality of punched optical films were stacked to form a work (total thickness: about 10 mm).
  • the entire periphery of the work was cut by an end mill.
  • the end mill travels in an oblique direction with respect to the work piece in plan view (travel locus ts of the end mill at the start of cutting: curved shape with a radius of curvature of 7.5 mm, travel angle x of the end mill at the start of cutting: The end mill was brought into contact with the work at 13° and the end mill speed at the start of cutting: 700 mm/min).
  • the outer diameter of the end mill was 5 mm, the number of blades was 2, and the helix angle was 0°. Further, the feed rate of the end mill (the feed rate at the time of cutting the straight portion) was 1000 mm/min, and the rotation speed was 25000 rpm.
  • Example 2 In the same manner as in Example 1, the cutting was started, and when the cutting was completed, the end mill was moved away from the work while the end mill was running in an oblique direction with respect to the work in plan view (the end mill travel locus at the end of cutting). te: curved shape with a radius of curvature of 7.5 mm, running angle y of the end mill at the end of cutting: 0°, end mill speed at the end of cutting: 700 mm/min).
  • the cutting end point b was set ahead of the cutting start point a in the running direction of the end mill, and the distance between the cutting start point a and the cutting end point b was 1 mm.
  • Example 3 At the start of cutting, the apex of the work is set as the cutting start point, and the end mill travels in a direction parallel to the long side of the work (end mill travel locus ts at the start of cutting: straight line, end mill travel angle x at the start of cutting). :0°, end mill speed at the start of cutting: 700 mm/min), and cutting was performed in the same manner as in Example 1 except that the end mill was brought into contact with the work.
  • end mill travel locus ts at the start of cutting straight line
  • end mill travel angle x at the start of cutting 700 mm/min
  • Example 4 A surface protection film (48 ⁇ m)/hard coat layer (5 ⁇ m)/cycloolefin-based protection film (47 ⁇ m)/polarizer (5 ⁇ m)/cycloolefin-based protection film (24 ⁇ m)/adhesive layer ( An optical film (polarizing plate) having a constitution of 20 ⁇ m)/separator was produced.
  • the pressure-sensitive adhesive layer was produced according to [0121] and [0124] of JP-A-2016-190996.
  • the obtained optical film was punched into a shape similar to that shown in FIG. 4 (approximately a size of about 140 mm ⁇ about 65 mm).
  • a plurality of punched optical films were stacked to form a work (total thickness: about 10 mm). With the obtained work sandwiched by clamps (jigs), the entire periphery of the work was cut by an end mill. At the end of cutting, the end mill was moved away from the work while the end mill was running in an oblique direction with respect to the work in plan view (running trajectory te of the end mill at the end of cutting: curved shape with a radius of curvature of 7.5 mm, cutting The running angle y of the end mill at the end: 30°, the end mill speed at the end of cutting: 700 mm/min). The outer diameter of the end mill was 5 mm, the number of blades was 2, and the helix angle was 0°.
  • the feed rate of the end mill (the feed rate at the time of cutting the straight portion) was 1000 mm/min, and the rotation speed was 25000 rpm.
  • the machined optical film of the present invention has a rectangular image display portion typified by a personal computer (PC) or a tablet terminal, and/or a deformed image display typified by an instrument panel of a car or a smart watch. It can be preferably used for parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Milling Processes (AREA)
  • Polarising Elements (AREA)
  • Numerical Control (AREA)

Abstract

Provided is a method for manufacturing an optical film, the method being capable of suppressing occurrence of an unnecessary recess at an end section even while using an end mill. This method for manufacturing a cut optical film includes: forming a workpiece by laminating a plurality of sheets of optical films; and cutting the workpiece by means of the end mill. This method includes: causing the end mill to come into contact with the workpiece when starting the cutting while causing the end mill to travel from a direction inclined with respect to the workpiece when viewed in a plan view; or causing the end mill to be separated from the workpiece when completing the cutting while causing the end mill to travel in a direction inclined with respect to the workpiece when viewed in a plan view.

Description

光学フィルムの製造方法Method for manufacturing optical film
 本発明は、光学フィルムの製造方法に関する。 The present invention relates to a method for manufacturing an optical film.
 携帯電話、ノート型パーソナルコンピューター等の画像表示装置には、画像表示を実現し、および/または当該画像表示の性能を高めるために、種々の光学フィルム(例えば、偏光板)が使用されている。近年、自動車のインストゥルメントパネルやスマートウォッチなどにも光学積層体の使用が望まれており、光学積層体の形状を所望の形状に加工することが望まれている。このような加工の際、エンドミルにより、端面を切削する場合がある。エンドミルによる切削加工においては、高精度な切削が可能である一方、切削開始時、エンドミルを被加工面に接触させた時点で微小な凹部ができたり、切削終了時、エンドミルを被加工面から離した時点で微小な段差やケバが生じることがある。近年においては、光学フィルムの高い形状精度が求められており、このような凹部、段差、ケバ等の発生の抑制が求められている。 Various optical films (for example, polarizing plates) are used in image display devices such as mobile phones and notebook personal computers in order to realize image display and/or enhance the performance of the image display. In recent years, it has been desired to use an optical laminated body for an instrument panel of an automobile, a smart watch, etc., and it is desired to process the optical laminated body into a desired shape. At the time of such processing, the end face may be cut by an end mill. While high-precision cutting is possible in cutting with an end mill, minute recesses are created when the end mill comes into contact with the work surface at the start of cutting, or when the end of cutting is completed, the end mill is separated from the work surface. A slight step or fluff may occur at the time of doing. In recent years, high shape accuracy of optical films has been demanded, and suppression of generation of such recesses, steps, fluffs, etc. has been demanded.
特開2007-187781号公報JP-A-2007-187781 特開2018-022140号公報Japanese Patent Laid-Open No. 2018-022140
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、エンドミルを用いつつも、切削開始点および/または切削終了点における不要な凹部、段差、ケバ等の発生を抑制し得る、光学フィルムの製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to prevent the occurrence of unnecessary recesses, steps, fluff, etc. at the cutting start point and/or the cutting end point while using an end mill. An object of the present invention is to provide a method for producing an optical film that can be suppressed.
 切削加工された光学フィルムの製造方法は、光学フィルムを複数枚重ねてワークを形成すること、および該ワークをエンドミルで切削することを含み、切削開始時、平面視で該ワークに対して斜め方向から該エンドミルを走行させながら、該エンドミルを該ワークに接触させること、および/または、切削終了時、平面視で前記ワークに対して斜め方向に前記エンドミルを走行させながら、該エンドミルを該ワークから離間させることを含む。
 1つの実施形態においては、切削開始時の上記エンドミルの走行軌跡tsが、曲線状である。
 1つの実施形態においては、上記切削開始時のエンドミルの走行軌跡tsの曲率半径が、該エンドミルの外径の1/2より大きい。
 1つの実施形態においては、上記切削開始時のエンドミルの走行軌跡tsの曲率半径が、該エンドミルの外径より大きい。
 1つの実施形態においては、上記切削終了時のエンドミルの走行軌跡teが、曲線状である。
 1つの実施形態においては、上記切削終了時のエンドミルの走行軌跡teの曲率半径が、該エンドミルの外径の1/2より大きい。
 1つの実施形態においては、上記切削終了時のエンドミルの走行軌跡teの曲率半径が、該エンドミルの外径より大きい。
 1つの実施形態においては、上記エンドミルを上記ワークに接触させる際の該エンドミルの速度が、該ワークの外周面を該エンドミルで切削する際の該エンドミルの送り速度よりも遅い。
 1つの実施形態においては、上記エンドミルを上記ワークから離間させる際の該エンドミルの速度が、該ワークの外周面を該エンドミルで切削する際の該エンドミルの送り速度よりも遅い。
 1つの実施形態においては、上記ワークの外周面の全周にわたって切削加工を行い、切削開始点aと切削終了点bとを異なる位置とし、切削開始点aよりエンドミルの走行方向前方に切削終了点bが設定される。
 1つの実施形態においては、上記エンドミルの外径が、10mm以下である。
 1つの実施形態においては、上記エンドミルのねじれ角が、0°である。
The method for manufacturing a cut optical film includes forming a work by stacking a plurality of optical films, and cutting the work with an end mill. At the start of cutting, a diagonal direction with respect to the work in plan view. The end mill from the work while the end mill is brought into contact with the work while running the end mill, and/or at the end of cutting, while the end mill is running in a direction oblique to the work in plan view. Including spacing.
In one embodiment, the running locus ts of the end mill at the start of cutting is curved.
In one embodiment, the radius of curvature of the traveling locus ts of the end mill at the start of cutting is larger than 1/2 of the outer diameter of the end mill.
In one embodiment, the radius of curvature of the traveling locus ts of the end mill at the start of cutting is larger than the outer diameter of the end mill.
In one embodiment, the running locus te of the end mill at the end of the cutting is curved.
In one embodiment, the radius of curvature of the running locus te of the end mill at the end of the cutting is larger than 1/2 of the outer diameter of the end mill.
In one embodiment, the radius of curvature of the traveling locus te of the end mill at the end of the cutting is larger than the outer diameter of the end mill.
In one embodiment, the speed of the end mill when the end mill is brought into contact with the work is slower than the feed speed of the end mill when the outer peripheral surface of the work is cut by the end mill.
In one embodiment, the speed of the end mill when separating the end mill from the work is slower than the feed speed of the end mill when cutting the outer peripheral surface of the work with the end mill.
In one embodiment, cutting is performed over the entire circumference of the outer peripheral surface of the work, the cutting start point a and the cutting end point b are different positions, and the cutting end point is located in front of the cutting start point a in the traveling direction of the end mill. b is set.
In one embodiment, the outer diameter of the end mill is 10 mm or less.
In one embodiment, the twist angle of the end mill is 0°.
 本発明によれば、エンドミルを用いつつも、切削開始点および/または切削終了点における不要な凹部、段差、ケバ等の発生を抑制し得る、光学フィルムの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing an optical film that can suppress the generation of unnecessary recesses, steps, fluffs, etc. at the cutting start point and/or the cutting end point while using an end mill.
本発明の光学フィルムの切削加工の一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating an example of the cutting process of the optical film of this invention. 本発明の光学フィルムの製造方法における切削加工に用いられるエンドミルの一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating an example of the end mill used for the cutting process in the manufacturing method of the optical film of this invention. 図3(a)は、本発明の光学フィルムの製造方法における切削加工に用いられる切削手段の別の例を説明するための軸方向から見た概略断面図であり;図3(b)は、図3(a)の切削手段の概略斜視図である。FIG. 3(a) is a schematic cross-sectional view seen from the axial direction for explaining another example of the cutting means used for cutting in the method for producing an optical film of the present invention; FIG. 3(b) is It is a schematic perspective view of the cutting means of FIG. 図4(a)および図4(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。FIG. 4A and FIG. 4B are schematic plan views illustrating the cutting process according to the embodiment of the present invention. 図5(a)および図5(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。5(a) and 5(b) are schematic plan views for explaining cutting processing according to one embodiment of the present invention. 本発明の1つの実施形態におけるワークを説明する概略平面図である。It is a schematic plan view explaining the workpiece|work in one Embodiment of this invention. 図7(a)および図7(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。FIG. 7A and FIG. 7B are schematic plan views for explaining cutting processing according to one embodiment of the present invention. 図8(a)および図8(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。FIG. 8A and FIG. 8B are schematic plan views illustrating cutting processing according to one embodiment of the present invention.
 以下、図面を参照して本発明の具体的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、見やすくするために図面は模式的に表されており、さらに、図面における長さ、幅、厚み等の比率、ならびに角度等は、実際とは異なっている。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. Note that the drawings are schematically shown for easy understanding, and the ratios of lengths, widths, thicknesses, and the like, angles, and the like in the drawings are different from the actual ones.
 本発明の切削加工された光学フィルムの製造方法は、光学フィルムを複数枚重ねてワークを形成すること、および該ワークの外周面をエンドミルで切削することを含む。 The method for producing a machined optical film of the present invention includes stacking a plurality of optical films to form a work, and cutting the outer peripheral surface of the work with an end mill.
 図1は、切削加工を説明するための概略斜視図であり、本図にワーク1が示されている。図1に示すように、光学フィルムを複数枚重ねたワーク1が形成される。光学フィルムは、ワーク形成に際し、代表的には任意の適切な形状に切断されている。具体的には、光学フィルムは矩形状に切断されていてもよく、矩形状に類似する形状に切断されていてもよく、目的に応じた適切な形状(例えば、円形)に切断されていてもよい。図示例では、光学フィルムは矩形状に切断されており、ワーク1は、互いに対向する外周面(切削面)1a、1bおよびそれらと直交する外周面(切削面)1c、1dを有している。ワーク1は、好ましくは、クランプ手段(図示せず)により上下からクランプされている。ワークの総厚みは、例えば、8mm~100mmであり、好ましくは8mm~50mmであり、より好ましくは8mm~20mmであり、さらに好ましくは9mm~15mmであり、さらに好ましくは約10mmである。このような厚みであれば、クランプ手段による押圧または切削加工時の衝撃による損傷を防止し得る。光学フィルムは、ワークがこのような総厚みとなるように重ねられる。ワークを構成する光学フィルムの枚数は、例えば10枚~500枚(1つの実施形態においては、10枚~300枚;別の実施形態においては、10枚~50枚)であり得る。クランプ手段(例えば、治具)は、軟質材料で構成されてもよく硬質材料で構成されてもよい。軟質材料で構成される場合、その硬度(JIS  A)は、好ましくは20°~80°であり、より好ましくは60°~80°であり、その厚みは例えば0.3mm~5mmである。硬度が高すぎると、クランプ手段による押し跡が残る場合がある。硬度が低すぎるまたは厚すぎると、治具の変形により位置ずれが生じ、切削精度が不十分となる場合がある。 1 is a schematic perspective view for explaining the cutting process, and the work 1 is shown in this figure. As shown in FIG. 1, a work 1 is formed by stacking a plurality of optical films. When forming a work, the optical film is typically cut into any appropriate shape. Specifically, the optical film may be cut into a rectangular shape, may be cut into a shape similar to a rectangular shape, or may be cut into an appropriate shape (for example, a circle) according to the purpose. Good. In the illustrated example, the optical film is cut into a rectangular shape, and the work 1 has outer peripheral surfaces (cutting surfaces) 1a and 1b facing each other and outer peripheral surfaces (cutting surfaces) 1c and 1d orthogonal to them. .. The work 1 is preferably clamped from above and below by a clamp means (not shown). The total thickness of the work is, for example, 8 mm to 100 mm, preferably 8 mm to 50 mm, more preferably 8 mm to 20 mm, further preferably 9 mm to 15 mm, and further preferably about 10 mm. With such a thickness, it is possible to prevent damage due to the pressing by the clamp means or the impact during cutting. The optical films are stacked so that the work pieces have such a total thickness. The number of optical films constituting the work may be, for example, 10 to 500 (10 to 300 in one embodiment; 10 to 50 in another embodiment). The clamp means (for example, a jig) may be made of a soft material or a hard material. When it is made of a soft material, its hardness (JIS A) is preferably 20° to 80°, more preferably 60° to 80°, and its thickness is, for example, 0.3 mm to 5 mm. If the hardness is too high, the imprint of the clamping means may remain. If the hardness is too low or too thick, the jig may be deformed to cause misalignment, resulting in insufficient cutting accuracy.
 次に、ワーク1の外周面を、エンドミル20により切削する。切削は、エンドミルの切削刃をワーク1の外周面に当接させることにより行われる。切削は、ワークの外周面の全周にわたって行ってもよく、所定の位置のみに行ってもよい。また、穴部を有するワークについて、該穴部の内周面にエンドミルの切削刃を当接させて、該内周面を切削してもよい。エンドミル20としては、代表的にはストレートエンドミルが用いられ得る。切削加工においては、エンドミルのみを移動させてもよく、ワークのみを移動させてもよく、エンドミルおよびワークの両方を移動させてもよい。 Next, the outer peripheral surface of the work 1 is cut by the end mill 20. The cutting is performed by bringing the cutting blade of the end mill into contact with the outer peripheral surface of the work 1. The cutting may be performed over the entire circumference of the outer peripheral surface of the work, or may be performed only at a predetermined position. Further, for a work having a hole, the inner peripheral surface of the hole may be brought into contact with a cutting blade of an end mill to cut the inner peripheral surface. A straight end mill can be typically used as the end mill 20. In the cutting process, only the end mill may be moved, only the work may be moved, or both the end mill and the work may be moved.
 エンドミル20は、図2および図3に示すように、ワーク1の積層方向(鉛直方向)に延びる回転軸21と、回転軸21を中心として回転する本体の最外径として構成される切削刃22と、を有する。切削刃22は、図2に示すように回転軸21に沿ってねじれた最外径として構成されてもよく(所定のねじれ角を有していてもよく)、図3に示すように回転軸21に実質的に平行な方向に延びるよう構成されていてもよい(ねじれ角が0°であってもよい)。なお、「0°」は実質的に0°であるという意味であり、加工誤差等によりわずかな角度ねじれている場合も包含する。切削刃が所定のねじれ角を有する場合、ねじれ角は好ましくは70°以下であり、より好ましくは65°以下であり、さらに好ましくは45°以下である。切削刃22は、刃先22aと、すくい面22bと、逃がし面22cと、を含む。切削刃22の刃数は、後述の所望の接触回数が得られる限りにおいて適切に設定され得る。図2における刃数は3枚であり図3における刃数は2枚であるが、刃数は1枚であってもよく、4枚であってもよく、5枚以上であってもよい。好ましくは、刃数は2枚である。このような構成であれば、刃の剛性が確保され、かつ、ポケットが確保されて削りカスを良好に排出することができる。1つの実施形態においては、ねじれ角が0°のエンドミルが用いられる。本発明においては、ワーク接触時に不要な凹部を形成しやすいねじれ角が0°のエンドミルを用いても、当該凹部の発生を防止することができる。 As shown in FIGS. 2 and 3, the end mill 20 includes a rotary shaft 21 extending in the stacking direction (vertical direction) of the works 1, and a cutting blade 22 configured as an outermost diameter of a main body rotating about the rotary shaft 21. And. The cutting blade 22 may be configured as an outermost diameter twisted along the rotating shaft 21 as shown in FIG. 2 (may have a predetermined helix angle), and as shown in FIG. It may be configured to extend in a direction substantially parallel to 21 (the twist angle may be 0°). It should be noted that “0°” means substantially 0°, and also includes the case where a slight angle twist is caused by a processing error or the like. When the cutting blade has a predetermined helix angle, the helix angle is preferably 70° or less, more preferably 65° or less, and further preferably 45° or less. The cutting blade 22 includes a cutting edge 22a, a rake surface 22b, and a relief surface 22c. The number of blades of the cutting blade 22 can be appropriately set as long as a desired number of contacts described later can be obtained. Although the number of blades in FIG. 2 is three and the number of blades in FIG. 3 is two, the number of blades may be one, four, or five or more. Preferably, the number of blades is two. With such a configuration, the rigidity of the blade is ensured and the pocket is secured, so that the scraps can be satisfactorily discharged. In one embodiment, an end mill with a twist angle of 0° is used. In the present invention, even if an end mill having a twist angle of 0° that easily forms an unnecessary concave portion when the workpiece is in contact is used, the generation of the concave portion can be prevented.
 1つの実施形態においては、エンドミルの外径は10mm以下であり、好ましくは3mm~9mmであり、より好ましくは4mm~6mmである。なお、本明細書において「エンドミルの外径」とは、回転軸から1つの刃先までの距離を2倍したものをいう。 In one embodiment, the outer diameter of the end mill is 10 mm or less, preferably 3 mm to 9 mm, and more preferably 4 mm to 6 mm. In the present specification, the “outer diameter of the end mill” refers to a value obtained by doubling the distance from the rotary shaft to one cutting edge.
 切削加工の条件は、所望の形状に応じて適切に設定され得る。例えば、エンドミル回転数は、好ましくは1000rpm~60000rpmであり、より好ましくは10000rpm~40000rpmである。エンドミルの送り速度は、好ましくは500mm/分~10000mm/分であり、より好ましくは500mm/分~2500mm/分である。なお、本明細書において、エンドミルの速度は、ワークに対する相対速度である。 The cutting conditions can be set appropriately according to the desired shape. For example, the rotation speed of the end mill is preferably 1000 rpm to 60000 rpm, more preferably 10,000 rpm to 40,000 rpm. The feed rate of the end mill is preferably 500 mm/min to 10000 mm/min, more preferably 500 mm/min to 2500 mm/min. In this specification, the speed of the end mill is a relative speed with respect to the work.
 1つの実施形態においては、切削開始時、平面視でワークに対して斜め方向からエンドミルを走行させながら、当該エンドミルをワークに接触させる。本明細書において、切削開始時における「ワークに対して斜め方向」とは、切削開始点a(エンドミルをワークに最初に当接させる箇所)を基準に、切削開始後のエンドミルの走行方向の後方において、切削開始点aを含むワークの辺Aまたは切削開始点aでのワークの接線Bとのなす角度x(図4における角度x)が60°以下である方向を意味する。また、「ワークに対して斜め方向」とは、ワークに対して垂直方向または垂直に近い方向を含まない方向を意味し、すなわち、上記角度xが0°である方向も含む。なお、本明細書においては、上記角度xを、切削開始時のエンドミルの走行角度xと称する。切削開始点aが直線上にある場合には、切削開始点aを含むワークの辺Aとエンドミルの走行軌跡とから上記切削開始時のエンドミルの走行角度xが規定され(図4)、切削開始点aが曲線上にある場合には、切削開始点aでのワークの接線Bとエンドミルの走行軌跡とから上記切削開始時のエンドミルの走行角度xが規定される(図5)。 In one embodiment, at the start of cutting, the end mill is brought into contact with the work while traveling in an oblique direction with respect to the work in plan view. In this specification, the “oblique direction with respect to the work” at the start of cutting refers to the rear in the traveling direction of the end mill after the start of cutting, with reference to the cutting start point a (where the end mill first contacts the work). In, the angle x (angle x in FIG. 4) formed by the side A of the work including the cutting start point a or the tangent line B of the work at the cutting start point a is a direction of 60° or less. Further, the “oblique direction with respect to the work” means a direction that does not include a direction perpendicular to the work or a direction close to the perpendicular, that is, a direction in which the angle x is 0° is also included. In the present specification, the angle x is referred to as the running angle x of the end mill at the start of cutting. When the cutting start point a is on a straight line, the traveling angle x of the end mill at the start of the cutting is defined from the side A of the work including the cutting start point a and the traveling locus of the end mill (Fig. 4). When the point a is on a curve, the traveling angle x of the end mill at the start of the cutting is defined from the tangent line B of the workpiece at the cutting start point a and the traveling locus of the end mill (FIG. 5).
 図4(a)および図4(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。図5(a)および図5(b)は、本発明の別の実施形態による切削加工を説明する概略平面図である。図4(a)および図4(b)、ならびに図5(a)および図5(b)においては、切削開始時のエンドミルの動き(ワーク1に対する相対的な動き)を、平面視における走行軌跡tsとして示している。図4(a)および(b)においては、ワーク1が略矩形状である。また、図5(a)および(b)においては、ワーク1の外郭が曲線を含む。切削開始時のエンドミルの走行軌跡tsは、図4(a)および図5(a)に示すように曲線状であってもよく、図4(b)および図5(b)に示すように直線状であってもよい。切削開始時のエンドミルの走行角度xは、上記のとおり60°以下であり、好ましくは0°以上60°以下であり、より好ましくは0°以上45°以下であり、さらに好ましくは0°以上40°以下であり、特に好ましくは0°以上35°以下である。本発明においては、ワークに対して斜め方向からエンドミルを走行させながら、当該エンドミルをワークに接触させることにより、切削開始点における不要な凹部の発生を防止することができる。切削開始時のエンドミルの走行角度xは、0°に近いほど好ましく、1つの実施形態においては、走行角度xは5°以下(好ましくは3°以下、より好ましくは1°以下、さらに好ましくは0.5°以下)である。なお、走行軌跡tsは、切削開始時に上記走行角度xを満足していればよく、切削開始に至るまでの間(例えば、エンドミルがワークに接触する2秒前より以前)は、如何なる軌跡でエンドミルを走行させてもよい。 4(a) and 4(b) are schematic plan views for explaining the cutting process according to one embodiment of the present invention. 5(a) and 5(b) are schematic plan views for explaining the cutting process according to another embodiment of the present invention. In FIGS. 4(a) and 4(b), and FIGS. 5(a) and 5(b), the movement of the end mill (relative movement with respect to the work 1) at the start of cutting is shown by a running locus in plan view. Shown as ts. In FIGS. 4A and 4B, the work 1 has a substantially rectangular shape. In addition, in FIGS. 5A and 5B, the outer contour of the work 1 includes a curved line. The running locus ts of the end mill at the start of cutting may be curved as shown in FIGS. 4(a) and 5(a), or may be straight as shown in FIGS. 4(b) and 5(b). It may be a shape. The running angle x of the end mill at the start of cutting is 60° or less as described above, preferably 0° or more and 60° or less, more preferably 0° or more and 45° or less, and further preferably 0° or more 40. Or less, and particularly preferably 0° or more and 35° or less. In the present invention, by causing the end mill to come into contact with the work while the end mill travels in an oblique direction with respect to the work, it is possible to prevent generation of an unnecessary concave portion at the cutting start point. The running angle x of the end mill at the start of cutting is preferably closer to 0°, and in one embodiment, the running angle x is 5° or less (preferably 3° or less, more preferably 1° or less, and further preferably 0). 0.5° or less). The traveling locus ts only needs to satisfy the traveling angle x at the start of cutting, and any locus may be used until the start of cutting (for example, 2 seconds before the end mill comes into contact with the work). May be run.
 上記のとおり、走行角度xは0°であってもよく、例えば、ワークが矩形状の場合、当該ワークの頂点を切削開始点とし、ワークの一辺と平行な方向からエンドミルを走行させながら、エンドミルをワークに接触させてもよいが、好ましくは、ワークの頂点を切削開始点とはしない(すなわち、ワークが矩形状の場合、走行角度xは、0°より大きいことが好ましい)。ワークの頂点を切削開始点とした場合、切削開始点においてケバの発生するおそれがある。 As described above, the traveling angle x may be 0°. For example, when the work has a rectangular shape, the apex of the work is used as a cutting start point, and the end mill is run while traveling from a direction parallel to one side of the work. May be brought into contact with the work, but preferably, the apex of the work is not used as the cutting start point (that is, when the work has a rectangular shape, the traveling angle x is preferably larger than 0°). When the apex of the work is used as the cutting start point, there is a possibility that fluff occurs at the cutting start point.
 好ましくは、切削開始時のエンドミルの走行軌跡tsは曲線状である。切削開始時のエンドミルの走行軌跡tsを曲線状とすることにより、上記本願発明の効果はより顕著となる。走行軌跡tsが曲線状である場合、上記切削開始時のエンドミルの走行角度xは、切削開始点aにおける走行軌跡tsの接線usと、ワークの辺Aまたは切削開始点aでの接線Bとにより規定される。1つの実施形態においては、ワークを面内回転させつつ、エンドミルとワークとを近づけ当接させることにより、曲線状の走行軌跡tsでエンドミルをワークに対して相対的に走行させる。エンドミルとワークとを近づける際には、固定されたエンドミルにワークを近づけてもよく、エンドミルを直線的に移動させて当該エンドミルとワークとを近づけてもよく、エンドミルおよびワークの両方を直線的に移動させて当該エンドミルとワークとを近づけてもよい。 Preferably, the running trace ts of the end mill at the start of cutting is curved. By making the traveling locus ts of the end mill at the start of cutting into a curved shape, the effect of the invention of the present application becomes more remarkable. When the traveling locus ts has a curved shape, the traveling angle x of the end mill at the start of cutting is determined by the tangent line us of the traveling locus ts at the cutting start point a and the side A of the workpiece or the tangent line B at the cutting start point a. Stipulated. In one embodiment, the end mill and the work are brought into close contact with each other while rotating the work in the plane, so that the end mill travels relative to the work along a curved travel locus ts. When the end mill and the work are brought close to each other, the work may be brought close to the fixed end mill, the end mill may be moved linearly to bring the end mill and the work close together, and both the end mill and the work may be made linear. The end mill and the work may be moved closer to each other by moving.
 切削開始時のエンドミルの走行軌跡tsが曲線状である場合、当該走行軌跡tsの曲率半径は、エンドミルの外径の1/2以上であることが好ましく、エンドミルの外径よりも大きいことがより好ましく、エンドミルの外径に対して110%以上であることがさらに好ましく、エンドミルの外径に対して130%以上であることが特に好ましく、エンドミルの外径に対して150%以上であることが最も好ましい。このような範囲とすることにより、切削開始点aにおける不要な凹部の発生を防止することができる。また、切削開始時のエンドミルの走行軌跡tsが曲線状である場合、当該走行軌跡tsの曲率半径は、好ましくは4mm以上であり、より好ましくは6mm以上であり、さらに好ましくは7.5mm以上である。 When the traveling locus ts of the end mill at the start of cutting is curved, the radius of curvature of the traveling locus ts is preferably 1/2 or more of the outer diameter of the end mill, and more preferably larger than the outer diameter of the end mill. It is more preferably 110% or more with respect to the outer diameter of the end mill, particularly preferably 130% or more with respect to the outer diameter of the end mill, and particularly preferably 150% or more with respect to the outer diameter of the end mill. Most preferred. With such a range, it is possible to prevent the generation of unnecessary recesses at the cutting start point a. Further, when the running locus ts of the end mill at the start of cutting is curved, the radius of curvature of the running locus ts is preferably 4 mm or more, more preferably 6 mm or more, and further preferably 7.5 mm or more. is there.
 エンドミルをワークに接触させる際の該エンドミルの速度は、切削加工時(ワークの被切削面をエンドミルで切削する際)のエンドミルの送り速度よりも遅いことが好ましい。切削開始時のエンドミルの速度を遅くすることにより、ワークのがたつきを抑制することができる。1つの実施形態において、エンドミルをワークに接触させる際の該エンドミルの速度は、好ましくは400mm/min~1200mm/minであり、より好ましくは500mm/min~900mm/minである。1つの実施形態において、例えば、穴部を有するワークについて、該穴部の内周面を切削する場合、エンドミルをワークに接触させる際の該エンドミルの速度は、好ましくは30mm/min~1200mm/minであり、より好ましくは50mm/min~1000mm/minである。 The speed of the end mill when the end mill is brought into contact with the work is preferably slower than the feed speed of the end mill during cutting (when the surface to be cut of the work is cut by the end mill). By reducing the speed of the end mill at the start of cutting, rattling of the work can be suppressed. In one embodiment, the speed of the end mill when the end mill is brought into contact with the work is preferably 400 mm/min to 1200 mm/min, more preferably 500 mm/min to 900 mm/min. In one embodiment, for example, when cutting the inner peripheral surface of the hole for a work having a hole, the speed of the end mill when the end mill is brought into contact with the work is preferably 30 mm/min to 1200 mm/min. And more preferably 50 mm/min to 1000 mm/min.
 ワーク(すなわち、光学フィルム)の形状は、任意の適切な形状とすることができる。ワークの形状としては、例えば、図4に示すような略矩形状の他、略多角形状、略円形状、略楕円形状等が挙げられる。また、ワークの形状は、直線と曲線とを適宜組み合わせた形状、曲率の異なる複数の曲線から構成された形状であってもよい。なお、上記ワークは、純粋な矩形状、多角形状、円形状、楕円形状等でなくてもよく、これらの形状に異形部分が加えられた形状であってもよい。本明細書においては、例えば、異形部分が加えられた矩形状は、「略矩形状」に含まれる。異形部分としては、例えば、図4に示すような凹部の他、凸部、穴等が挙げられる。また、上記ワークは、矩形の角部を曲線化したような形状であってもよい。 The shape of the work (that is, the optical film) can be any appropriate shape. Examples of the shape of the work include a substantially rectangular shape as shown in FIG. 4, a substantially polygonal shape, a substantially circular shape, and a substantially elliptical shape. Further, the shape of the work may be a shape in which a straight line and a curve are appropriately combined, or a shape configured by a plurality of curves having different curvatures. The work may not have a pure rectangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like, and may have a shape in which a deformed portion is added to these shapes. In the present specification, for example, a rectangular shape to which a modified portion is added is included in the “substantially rectangular shape”. As the deformed portion, for example, in addition to the concave portion as shown in FIG. The work may have a shape in which a rectangular corner is curved.
 また、上記切削方法(具体的には、上記切削開始時のエンドミルの走行軌跡、および、後述の切削終了時のエンドミルの走行軌跡)は、図6に示すような、穴部11を有するワーク1’について、当該穴部11の内周面を切削する際にも適用され得る。 Further, the cutting method (specifically, the running locus of the end mill at the start of cutting and the running locus of the end mill at the end of cutting, which will be described later), has a work 1 having a hole 11 as shown in FIG. 'Can also be applied when cutting the inner peripheral surface of the hole 11.
 1つの実施形態においては、切削終了時、平面視でワークに対して斜め方向にエンドミルを走行させながら、当該エンドミルをワークから離間させる。本明細書において、切削終了時における「ワークに対して斜め方向」とは、切削終了点b(エンドミルをワークから離間させる点)を基準に、切削終了前のエンドミルの走行方向の前方において、切削終了点bを含むワークの辺Aまたは切削終了点bでのワークの接線B’とのなす角度y(図7における角度y)が60°以下である方向を意味する。上記のとおり、「ワークに対して斜め方向」とは、ワークに対して垂直方向または垂直に近い方向を含まない方向を意味し、すなわち、上記角度yが0°である方向も含む。なお、本明細書においては、上記角度yを、切削終了時のエンドミルの走行角度yと称する。切削終了点bが直線上にある場合には、切削終了点bを含むワークの辺Aとエンドミルの走行軌跡とから上記切削終了時のエンドミルの走行角度yが規定され(図7)、切削終了点bが曲線上にある場合には、切削終了点bでのワークの接線B’とエンドミルの走行軌跡とから上記切削終了時のエンドミルの走行角度yが規定される(図8)。 In one embodiment, at the end of cutting, the end mill is moved away from the work while traveling in an oblique direction with respect to the work in plan view. In the present specification, the “oblique direction with respect to the work” at the end of cutting refers to the cutting in front of the running direction of the end mill before the end of cutting with reference to the cutting end point b (the point where the end mill is separated from the work). It means a direction in which an angle y (angle y in FIG. 7) between the side A of the work including the end point b or the tangent line B′ of the work at the cutting end point b is 60° or less. As described above, the “oblique direction with respect to the work” means a direction that does not include a direction perpendicular to the work or a direction close to the vertical, that is, a direction in which the angle y is 0°. In the present specification, the angle y is referred to as the running angle y of the end mill at the end of cutting. When the cutting end point b is on a straight line, the traveling angle y of the end mill at the end of the cutting is defined from the side A of the work including the cutting end point b and the traveling locus of the end mill (Fig. 7). When the point b is on a curve, the traveling angle y of the end mill at the end of cutting is defined from the tangent line B′ of the workpiece at the cutting end point b and the traveling locus of the end mill (FIG. 8).
 図7(a)および図7(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。図8(a)および図8(b)は、本発明の別の実施形態による切削加工を説明する概略平面図である。図7(a)および図7(b)、ならびに図8(a)および図8(b)においては、切削終了時のエンドミルの動き(ワーク1に対する相対的な動き)を平面視における走行軌跡teとして示している。図7(a)および(b)においては、ワーク1が略矩形状である。また、図8(a)および(b)においては、ワーク1の外郭が曲線を含む。切削終了時のエンドミルの走行軌跡teは、図7(a)および図8(a)に示すように曲線状であってもよく、図7(b)および図8(b)に示すように直線状であってもよい。切削終了時のエンドミルの走行角度yは、上記のとおり60°以下であり、好ましくは0°以上60°以下であり、より好ましくは0°以上45°以下であり、さらに好ましくは0°以上40°以下であり、特に好ましくは0°以上35°以下である。本発明においては、ワークに対して斜め方向にエンドミルを走行させながら、当該エンドミルをワークから離間させることにより、切削終了点に不要な段差が生じること、およびケバの発生を防止することができる。切削終了時のエンドミルの走行角度yは、0°に近いほど好ましく、1つの実施形態においては、走行角度yは5°以下(好ましくは3°以下、より好ましくは1°以下、さらに好ましくは0.5°以下)である。なお、走行軌跡teは、切削終了時に上記走行角度yを満足していればよく、エンドミルが所定距離ワークから離間した後は、如何なる軌跡でエンドミルを走行させてもよい。 7(a) and 7(b) are schematic plan views for explaining cutting processing according to one embodiment of the present invention. FIG. 8A and FIG. 8B are schematic plan views illustrating the cutting process according to another embodiment of the present invention. In FIGS. 7A and 7B and FIGS. 8A and 8B, the movement of the end mill (relative movement with respect to the work 1) at the end of cutting is shown by a traveling locus te in plan view. Is shown as. In FIGS. 7A and 7B, the work 1 has a substantially rectangular shape. Further, in FIGS. 8A and 8B, the outer contour of the work 1 includes a curved line. The traveling locus te of the end mill at the end of cutting may be curved as shown in FIGS. 7(a) and 8(a), or may be straight as shown in FIGS. 7(b) and 8(b). It may be a shape. The running angle y of the end mill at the end of cutting is 60° or less as described above, preferably 0° or more and 60° or less, more preferably 0° or more and 45° or less, and further preferably 0° or more and 40° or more. Or less, and particularly preferably 0° or more and 35° or less. In the present invention, by causing the end mill to move away from the work while the end mill travels in an oblique direction with respect to the work, it is possible to prevent an unnecessary step from occurring at the cutting end point and to prevent the occurrence of fluff. The running angle y of the end mill at the end of cutting is preferably closer to 0°, and in one embodiment, the running angle y is 5° or less (preferably 3° or less, more preferably 1° or less, and further preferably 0). 0.5° or less). The traveling locus te has only to satisfy the traveling angle y at the end of cutting, and after the end mill is separated from the work by a predetermined distance, the end mill may travel along any locus.
 上記のとおり、走行角度yは0°であってもよく、例えば、ワークが矩形状の場合、当該ワークの頂点を切削終了点とし、ワークの一辺と平行な方向にエンドミルをワークから離間させもよい。1つの実施形態においては、ワークが矩形状の場合、ワークの頂点を切削終了点とはしない(すなわち、ワークが矩形状の場合、走行角度yは、0°より大きく設定される)。 As described above, the traveling angle y may be 0°. For example, when the work has a rectangular shape, the apex of the work is set as the cutting end point and the end mill may be separated from the work in a direction parallel to one side of the work. Good. In one embodiment, when the work has a rectangular shape, the apex of the work is not set as the cutting end point (that is, when the work has a rectangular shape, the traveling angle y is set to be larger than 0°).
 好ましくは、切削終了時のエンドミルの走行軌跡teは曲線状である。切削終了時のエンドミルの走行軌跡teを曲線状とすることにより、上記の効果はより顕著となる。走行軌跡teが曲線状である場合、上記切削終了時のエンドミルの走行角度yは、切削終了点bにおける走行軌跡teの接線ueと、ワークの辺Aまたは切削終了点aでの接線B’とにより規定される。1つの実施形態においては、ワークを面内回転させつつ、エンドミルとワークとを離間させることにより、曲線状の走行軌跡teでエンドミルをワークに対して相対的に走行させる。エンドミルとワークとを離間させる際には、固定されたエンドミルからワークを離してもよく、エンドミルを直線的に移動させて当該エンドミルをワークから離してもよく、エンドミルおよびワークの両方を直線的に移動させて当該エンドミルとワークとを離してもよい。 Preferably, the running locus te of the end mill at the end of cutting is curved. By making the running locus te of the end mill at the end of cutting into a curved shape, the above effect becomes more remarkable. When the traveling locus te is curved, the traveling angle y of the end mill at the end of cutting is the tangent line ue of the traveling locus te at the cutting end point b and the tangent line B′ at the side A of the work or the cutting end point a. Stipulated by In one embodiment, the end mill and the work are separated from each other while the work is rotated in-plane, so that the end mill travels relatively to the work along a curved travel locus te. When separating the end mill from the work, the work may be separated from the fixed end mill, the end mill may be moved linearly to separate the end mill from the work, and both the end mill and the work may be linearly moved. The end mill and the work may be separated by moving.
 切削終了時のエンドミルの走行軌跡teが曲線状である場合、当該走行軌跡teの曲率半径は、エンドミルの外径の1/2以上であることが好ましく、エンドミルの外径よりも大きいことがより好ましく、エンドミルの外径に対して110%以上であることがさらに好ましく、エンドミルの外径に対して130%以上であることが特に好ましく、エンドミルの外径に対して150%以上であることが最も好ましい。このような範囲とすることにより、切削終了点bにおける不要な段差およびケバの発生を防止することができる。また、切削終了時のエンドミルの走行軌跡teが曲線状である場合、当該走行軌跡teの曲率半径は、好ましくは4mm以上であり、より好ましくは6mm以上であり、さらに好ましくは7.5mm以上である。 When the running locus te of the end mill at the end of cutting is curved, the radius of curvature of the running locus te is preferably 1/2 or more of the outer diameter of the end mill, and more preferably larger than the outer diameter of the end mill. It is more preferably 110% or more with respect to the outer diameter of the end mill, particularly preferably 130% or more with respect to the outer diameter of the end mill, and particularly preferably 150% or more with respect to the outer diameter of the end mill. Most preferred. With such a range, it is possible to prevent the generation of unnecessary steps and fluff at the cutting end point b. Further, when the traveling locus te of the end mill at the end of cutting is curved, the radius of curvature of the traveling locus te is preferably 4 mm or more, more preferably 6 mm or more, and further preferably 7.5 mm or more. is there.
 エンドミルをワークから離間させる際の該エンドミルの速度は、切削加工時(ワークの被切削面をエンドミルで切削する際)のエンドミルの送り速度よりも遅いことが好ましい。切削終了時のエンドミルの速度を遅くすることにより、ワークのがたつきを抑制することができる。1つの実施形態において、エンドミルをワークから離間させる際の該エンドミルの速度は、好ましくは400mm/min~1200mm/minであり、より好ましくは500mm/min~900mm/minである。1つの実施形態において、例えば、穴部を有するワークについて、該穴部の内周面を切削する場合、エンドミルをワークから離間させる際の該エンドミルの速度は、好ましくは30mm/min~1200mm/minであり、より好ましくは50mm/min~1000mm/minである。 The speed of the end mill when separating the end mill from the work is preferably slower than the feed speed of the end mill during cutting (when the surface to be cut of the work is cut by the end mill). By reducing the speed of the end mill at the end of cutting, rattling of the work can be suppressed. In one embodiment, the speed of the end mill when separating the end mill from the work is preferably 400 mm/min to 1200 mm/min, more preferably 500 mm/min to 900 mm/min. In one embodiment, for example, when cutting the inner peripheral surface of the hole for a work having a hole, the speed of the end mill when separating the end mill from the work is preferably 30 mm/min to 1200 mm/min. And more preferably 50 mm/min to 1000 mm/min.
 ワークの外周面または穴部の内周面の全周にわたって切削加工を行う場合、切削開始点aと切削終了点bとは同じ位置であってもよく、また、切削開始点aと切削終了点bとを異なる位置とし、切削開始点aよりエンドミルの走行方向前方を切削終了点bとしてもよい。好ましくは、切削開始点aと切削終了点bとを異なる位置とし、切削開始点aよりエンドミルの走行方向前方に切削終了点bが設定される。このように、切削加工時のエンドミルの走行軌跡が部分的にオーバラップするようにして切削を終了させれば、切削終了時に不要な段差およびケバが発生することを好ましく防止することができる。上記のように、切削開始点aよりエンドミルの走行方向前方に切削終了点bを設定する場合、切削開始点aと切削終了点bとの距離は、好ましくは0.1mm~5mmであり、より好ましくは0.3mm~4mmであり、さらに好ましくは0.5mm~2mmである。 When performing cutting on the entire circumference of the outer peripheral surface of the workpiece or the inner peripheral surface of the hole, the cutting start point a and the cutting end point b may be at the same position, and the cutting start point a and the cutting end point may be the same. b may be set at a different position, and the cutting end point b may be located ahead of the cutting start point a in the traveling direction of the end mill. Preferably, the cutting start point a and the cutting end point b are set to different positions, and the cutting end point b is set in front of the cutting start point a in the traveling direction of the end mill. In this way, if the cutting is ended by partially overlapping the running trajectories of the end mills during cutting, it is possible to preferably prevent the generation of unnecessary steps and fluff at the end of cutting. As described above, when the cutting end point b is set ahead of the cutting start point a in the traveling direction of the end mill, the distance between the cutting start point a and the cutting end point b is preferably 0.1 mm to 5 mm. It is preferably 0.3 mm to 4 mm, more preferably 0.5 mm to 2 mm.
 1つの実施形態においては、切削開始時においてエンドミルを上記のとおり走行させ、かつ、切削終了時においてエンドミルを上記のとおり走行させる。別の実施形態においては、切削開始時においてエンドミルを上記のとおり走行させ、切削終了時には任意の方法によりエンドミルを走行させる。さらに別の実施形態においては、切削開始時には任意の方法によりエンドミルを走行させ、切削終了時においてエンドミルを上記のとおり走行させる。 In one embodiment, the end mill is run as described above at the start of cutting and the end mill is run as described above at the end of cutting. In another embodiment, the end mill is run as described above at the start of cutting and is run by an arbitrary method at the end of cutting. In yet another embodiment, the end mill is run by an arbitrary method at the start of cutting and is run as described above at the end of cutting.
 1つの実施形態においては、上記光学フィルムは、偏光子を含む。 In one embodiment, the optical film includes a polarizer.
 偏光子を含む光学フィルムは、偏光子単体であってもよく、偏光子とその他の層とを含むフィルムであってもよい。その他の層としては、偏光子を保護する保護層、任意の適切な光学機能層から構成される層等が挙げられる。1つの実施形態においては、偏光子を含む光学フィルムとして偏光板が用いられる。偏光板は、偏光子と該偏光子の少なくとも片側に配置された保護層とを備え得る。また、偏光子を含むフィルムとして、偏光板と、表面保護フィルムおよび/またはセパレーターとの積層体を用いてもよい。表面保護フィルムまたはセパレーターは、任意の適切な粘着剤を介して偏光板に剥離可能に積層される。本明細書において「表面保護フィルム」とは偏光板を一時的に保護するフィルムであり、偏光板が備える保護層(偏光子を保護する層)とは異なるものである。 The optical film including a polarizer may be a polarizer alone or a film including a polarizer and other layers. Examples of the other layer include a protective layer that protects the polarizer and a layer formed of any appropriate optical functional layer. In one embodiment, a polarizing plate is used as the optical film containing a polarizer. The polarizing plate may include a polarizer and a protective layer disposed on at least one side of the polarizer. Moreover, you may use the laminated body of a polarizing plate and a surface protection film and/or a separator as a film containing a polarizer. The surface protective film or the separator is releasably laminated on the polarizing plate via any appropriate pressure-sensitive adhesive. In the present specification, the “surface protective film” is a film that temporarily protects the polarizing plate, and is different from the protective layer (layer that protects the polarizer) included in the polarizing plate.
 偏光子は、代表的には、樹脂フィルム(例えば、ポリビニルアルコール系樹脂フィルム)に膨潤処理、延伸処理、二色性物質(例えば、ヨウ素、有機染料等)による染色処理、架橋処理、洗浄処理、乾燥処理等の各種処理を施すことにより得られる。一般に、延伸処理を経て得られた偏光子はクラックが生じやすいという特性を有するが、本発明によれば、クラックを防止しつつ、偏光子を含む光学フィルムを切削することができる。 The polarizer is typically a resin film (for example, polyvinyl alcohol resin film) swelling treatment, stretching treatment, dichroic substance (for example, iodine, organic dye, etc.) dyeing treatment, crosslinking treatment, washing treatment, It can be obtained by performing various treatments such as drying treatment. Generally, a polarizer obtained through a stretching treatment has a property that cracks are likely to occur, but according to the present invention, an optical film containing a polarizer can be cut while preventing cracks.
 偏光子を含む光学フィルムの厚みは、特に制限されず、目的に応じて適切な厚みが採用され得、例えば、20μm~200μmである。偏光子の厚みもまた特に制限されず、目的に応じて適切な厚みが採用され得る。偏光子の厚みは、代表的には、1μm~80μm程度であり、好ましくは3μm~40μmである。 The thickness of the optical film including the polarizer is not particularly limited, and an appropriate thickness can be adopted according to the purpose, for example, 20 μm to 200 μm. The thickness of the polarizer is also not particularly limited, and an appropriate thickness can be adopted depending on the purpose. The thickness of the polarizer is typically about 1 μm to 80 μm, preferably 3 μm to 40 μm.
 偏光子を含む光学フィルムのサイズは、特に制限されず、目的に応じて適切なサイズとされ得る。1つの実施形態においては、偏光子を含む光学フィルムは、偏光子の吸収軸と平行である辺を含む矩形状であり、偏光子の吸収軸と平行である辺の長さが10mm~400mmであり、その他の辺の長さが10mm~500mmである。本明細書において、「平行である」とは、実質的に平行である場合を包含し、具体的には、2方向のなす角が0°~5°である場合を包含する。 The size of the optical film including the polarizer is not particularly limited, and may be an appropriate size depending on the purpose. In one embodiment, the optical film including the polarizer has a rectangular shape including a side parallel to the absorption axis of the polarizer, and a length of the side parallel to the absorption axis of the polarizer is 10 mm to 400 mm. Yes, the other sides have a length of 10 mm to 500 mm. In the present specification, “parallel” includes a case of being substantially parallel, and specifically includes a case of forming an angle between two directions of 0° to 5°.
 本発明の製造方法により得られた切削加工された光学フィルムは、液晶画像表示装置、有機EL画像表示装置等に用いられ得る。また、切削加工された光学フィルムは、上記パーソナルコンピューター(PC)やタブレット端末に代表される矩形の画像表示部、および/または、自動車のインストゥルメントパネルやスマートウォッチに代表される異形の画像表示部に好適に用いられ得る。 The cut optical film obtained by the manufacturing method of the present invention can be used for a liquid crystal image display device, an organic EL image display device, and the like. In addition, the cut optical film has a rectangular image display portion typified by the personal computer (PC) or tablet terminal, and/or an odd-shaped image display typified by an automobile instrument panel or smart watch. It can be preferably used for parts.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例には限定されない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[実施例1]
 常法により、視認側から順に表面保護フィルム(48μm)/ハードコート層(5μm)/シクロオレフィン系保護フィルム(47μm)/偏光子(5μm)/シクロオレフィン系保護フィルム(24μm)/粘着剤層(20μm)/セパレーターの構成を有する光学フィルム(偏光板)を作製した。粘着剤層は、特開2016-190996号公報の[0121]および[0124]に準じて作製した。得られた光学フィルムを図4に類似した形状(概略サイズ140mm程度×65mm程度で)に打ち抜いた。打ち抜いた光学フィルムを複数枚重ねてワーク(総厚み約10mm)とした。得られたワークをクランプ(治具)で挟んだ状態で、エンドミルにより、ワークの外周面全周を切削した。切削開始時には、平面視でワークに対して斜め方向からエンドミルを走行させながら(切削開始時のエンドミルの走行軌跡ts:曲率半径が7.5mmの曲線状、切削開始時のエンドミルの走行角度x:13°、切削開始時のエンドミル速度:700mm/min)、当該エンドミルをワークに接触させた。また、エンドミルの外径は5mm、刃数は2枚、ねじれ角は0°であった。また、エンドミルの送り速度(直線部を切削する際の送り速度)は1000mm/分であり、回転数は25000rpmであった。
 上記の切削加工により、切削開始点における不要な凹部の発生なく、切削加工された光学フィルムを得ることができた。
[Example 1]
A surface protection film (48 μm)/hard coat layer (5 μm)/cycloolefin-based protection film (47 μm)/polarizer (5 μm)/cycloolefin-based protection film (24 μm)/adhesive layer ( An optical film (polarizing plate) having a constitution of 20 μm)/separator was produced. The pressure-sensitive adhesive layer was produced according to [0121] and [0124] of JP-A-2016-190996. The obtained optical film was punched into a shape similar to that shown in FIG. 4 (approximately a size of about 140 mm×about 65 mm). A plurality of punched optical films were stacked to form a work (total thickness: about 10 mm). With the obtained work sandwiched by clamps (jigs), the entire periphery of the work was cut by an end mill. At the start of cutting, while the end mill travels in an oblique direction with respect to the work piece in plan view (travel locus ts of the end mill at the start of cutting: curved shape with a radius of curvature of 7.5 mm, travel angle x of the end mill at the start of cutting: The end mill was brought into contact with the work at 13° and the end mill speed at the start of cutting: 700 mm/min). The outer diameter of the end mill was 5 mm, the number of blades was 2, and the helix angle was 0°. Further, the feed rate of the end mill (the feed rate at the time of cutting the straight portion) was 1000 mm/min, and the rotation speed was 25000 rpm.
By the above cutting process, it was possible to obtain a cut optical film without generation of an unnecessary recess at the cutting start point.
[実施例2]
 実施例1と同様にして、切削を開始し、切削終了時に、平面視でワークに対して斜め方向にエンドミルを走行させながら、当該エンドミルをワークから離間させた(切削終了時のエンドミルの走行軌跡te:曲率半径が7.5mmの曲線状、切削終了時のエンドミルの走行角度y:0°、切削終了時のエンドミル速度:700mm/min)。なお、切削終了点bは、切削開始点aよりエンドミルの走行方向前方とし、切削開始点aと切削終了点bとの距離は1mmとした。
 上記の切削加工により、切削開始点における不要な凹部の発生なく、また、切削終了点における段差およびケバの発生なく、切削加工された光学フィルムを得ることができた。
[Example 2]
In the same manner as in Example 1, the cutting was started, and when the cutting was completed, the end mill was moved away from the work while the end mill was running in an oblique direction with respect to the work in plan view (the end mill travel locus at the end of cutting). te: curved shape with a radius of curvature of 7.5 mm, running angle y of the end mill at the end of cutting: 0°, end mill speed at the end of cutting: 700 mm/min). The cutting end point b was set ahead of the cutting start point a in the running direction of the end mill, and the distance between the cutting start point a and the cutting end point b was 1 mm.
By the above cutting process, it was possible to obtain a cut optical film without generation of unnecessary concave portions at the cutting start point and generation of steps and fluff at the cutting end point.
[実施例3]
 切削開始時、ワークの頂点を切削開始点とし、ワークの長辺と平行な方向からエンドミルを走行させながら(切削開始時のエンドミルの走行軌跡ts:直線状、切削開始時のエンドミルの走行角度x:0°、切削開始時のエンドミル速度:700mm/min)、当該エンドミルをワークに接触させたこと以外は、実施例1と同様にして、切削加工を行った。
 上記の切削加工により、切削開始点における不要な凹部の発生なく、切削加工された光学フィルムを得ることができたが、切削開始点においてケバの発生が見られた。
[Example 3]
At the start of cutting, the apex of the work is set as the cutting start point, and the end mill travels in a direction parallel to the long side of the work (end mill travel locus ts at the start of cutting: straight line, end mill travel angle x at the start of cutting). :0°, end mill speed at the start of cutting: 700 mm/min), and cutting was performed in the same manner as in Example 1 except that the end mill was brought into contact with the work.
By the above cutting process, a cut optical film could be obtained without generating unnecessary recesses at the cutting start point, but fluffing was observed at the cutting start point.
[実施例4]
 常法により、視認側から順に表面保護フィルム(48μm)/ハードコート層(5μm)/シクロオレフィン系保護フィルム(47μm)/偏光子(5μm)/シクロオレフィン系保護フィルム(24μm)/粘着剤層(20μm)/セパレーターの構成を有する光学フィルム(偏光板)を作製した。粘着剤層は、特開2016-190996号公報の[0121]および[0124]に準じて作製した。得られた光学フィルムを図4に類似した形状(概略サイズ140mm程度×65mm程度で)に打ち抜いた。打ち抜いた光学フィルムを複数枚重ねてワーク(総厚み約10mm)とした。得られたワークをクランプ(治具)で挟んだ状態で、エンドミルにより、ワークの外周面全周を切削した。切削終了時には、平面視でワークに対して斜め方向にエンドミルを走行させながら、当該エンドミルをワークから離間させた(切削終了時のエンドミルの走行軌跡te:曲率半径が7.5mmの曲線状、切削終了時のエンドミルの走行角度y:30°、切削終了時のエンドミル速度:700mm/min)。また、エンドミルの外径は5mm、刃数は2枚、ねじれ角は0°であった。また、エンドミルの送り速度(直線部を切削する際の送り速度)は1000mm/分であり、回転数は25000rpmであった。
 上記の切削加工により、切削終了点における段差およびケバの発生なく、切削加工された光学フィルムを得ることができた。
[Example 4]
A surface protection film (48 μm)/hard coat layer (5 μm)/cycloolefin-based protection film (47 μm)/polarizer (5 μm)/cycloolefin-based protection film (24 μm)/adhesive layer ( An optical film (polarizing plate) having a constitution of 20 μm)/separator was produced. The pressure-sensitive adhesive layer was produced according to [0121] and [0124] of JP-A-2016-190996. The obtained optical film was punched into a shape similar to that shown in FIG. 4 (approximately a size of about 140 mm×about 65 mm). A plurality of punched optical films were stacked to form a work (total thickness: about 10 mm). With the obtained work sandwiched by clamps (jigs), the entire periphery of the work was cut by an end mill. At the end of cutting, the end mill was moved away from the work while the end mill was running in an oblique direction with respect to the work in plan view (running trajectory te of the end mill at the end of cutting: curved shape with a radius of curvature of 7.5 mm, cutting The running angle y of the end mill at the end: 30°, the end mill speed at the end of cutting: 700 mm/min). The outer diameter of the end mill was 5 mm, the number of blades was 2, and the helix angle was 0°. Further, the feed rate of the end mill (the feed rate at the time of cutting the straight portion) was 1000 mm/min, and the rotation speed was 25000 rpm.
By the above cutting process, a cut optical film could be obtained without generating a step and a fluff at the cutting end point.
[比較例1]
 切削開始時、平面視でワークに対して垂直方向からエンドミルを走行させながら、当該エンドミルをワークに接触させたこと以外は、実施例1と同様にして切削加工を行った。
 上記の切削加工によると、切削開始点における不要な凹部が見られた。
[Comparative Example 1]
At the start of cutting, cutting was performed in the same manner as in Example 1 except that the end mill was brought into contact with the work while the end mill was running in a direction perpendicular to the work in plan view.
According to the above cutting process, an unnecessary concave portion was found at the cutting start point.
 本発明の切削加工された光学フィルムは、パーソナルコンピューター(PC)やタブレット端末に代表される矩形の画像表示部、および/または、自動車のインストゥルメントパネルやスマートウォッチに代表される異形の画像表示部に好適に用いられ得る。 The machined optical film of the present invention has a rectangular image display portion typified by a personal computer (PC) or a tablet terminal, and/or a deformed image display typified by an instrument panel of a car or a smart watch. It can be preferably used for parts.
  1   ワーク
 20   エンドミル
 
 
1 work 20 end mill

Claims (12)

  1.  光学フィルムを複数枚重ねてワークを形成すること、および
     該ワークをエンドミルで切削することを含み、
     切削開始時、平面視で該ワークに対して斜め方向から該エンドミルを走行させながら、該エンドミルを該ワークに接触させること、および/または、切削終了時、平面視で前記ワークに対して斜め方向に前記エンドミルを走行させながら、該エンドミルを該ワークから離間させることを含む、
     切削加工された光学フィルムの製造方法。
    Laminating a plurality of optical films to form a work, and cutting the work with an end mill,
    When the cutting is started, the end mill is brought into contact with the work while running the end mill from an oblique direction with respect to the work in a plan view, and/or at the end of cutting, the end mill is oblique with respect to the work in a plan view. Including moving the end mill away from the work while the end mill is running.
    A method for manufacturing a machined optical film.
  2.  切削開始時の前記エンドミルの走行軌跡tsが、曲線状である、請求項1に記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to claim 1, wherein the traveling locus ts of the end mill at the start of cutting is curved.
  3.  前記切削開始時のエンドミルの走行軌跡tsの曲率半径が、該エンドミルの外径の1/2より大きい、請求項2に記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to claim 2, wherein the radius of curvature of the running locus ts of the end mill at the start of cutting is larger than 1/2 of the outer diameter of the end mill.
  4.  前記切削開始時のエンドミルの走行軌跡tsの曲率半径が、該エンドミルの外径より大きい、請求項2に記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to claim 2, wherein the radius of curvature of the traveling locus ts of the end mill at the start of cutting is larger than the outer diameter of the end mill.
  5.  切削終了時の前記エンドミルの走行軌跡teが、曲線状である、請求項1から4のいずれかに記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to any one of claims 1 to 4, wherein the running locus te of the end mill at the end of cutting is curved.
  6.  前記切削終了時のエンドミルの走行軌跡teの曲率半径が、該エンドミルの外径の1/2より大きい、請求項5に記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to claim 5, wherein the radius of curvature of the traveling locus te of the end mill at the end of the cutting is larger than 1/2 of the outer diameter of the end mill.
  7.  前記切削終了時のエンドミルの走行軌跡teの曲率半径が、該エンドミルの外径より大きい、請求項5に記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to claim 5, wherein the radius of curvature of the running locus te of the end mill at the end of the cutting is larger than the outer diameter of the end mill.
  8.  前記エンドミルを前記ワークに接触させる際の該エンドミルの速度が、該ワークの外周面を該エンドミルで切削する際の該エンドミルの送り速度よりも遅い、請求項1から7のいずれかに記載の切削加工された光学フィルムの製造方法。 The cutting according to any one of claims 1 to 7, wherein a speed of the end mill when the end mill is brought into contact with the work is slower than a feed speed of the end mill when the outer peripheral surface of the work is cut by the end mill. A method for producing a processed optical film.
  9.  前記エンドミルを前記ワークから離間させる際の該エンドミルの速度が、該ワークの外周面を該エンドミルで切削する際の該エンドミルの送り速度よりも遅い、請求項1から8のいずれかに記載の切削加工された光学フィルムの製造方法。 9. The cutting according to claim 1, wherein a speed of the end mill when separating the end mill from the work is slower than a feed speed of the end mill when cutting the outer peripheral surface of the work with the end mill. A method for producing a processed optical film.
  10.  前記ワークの外周面の全周にわたって切削加工を行い、切削開始点aと切削終了点bとを異なる位置とし、切削開始点aよりエンドミルの走行方向前方に切削終了点bが設定される、請求項1から9のいずれかに記載の切削加工された光学フィルムの製造方法。 Cutting is performed over the entire circumference of the outer peripheral surface of the work, the cutting start point a and the cutting end point b are set to different positions, and the cutting end point b is set in front of the cutting start point a in the traveling direction of the end mill. Item 10. A method for producing a machined optical film according to any one of Items 1 to 9.
  11.  前記エンドミルの外径が、10mm以下である、請求項1から10のいずれかに記載の切削加工された光学フィルムの製造方法。 The method for producing a machined optical film according to claim 1, wherein the end mill has an outer diameter of 10 mm or less.
  12.  前記エンドミルのねじれ角が、0°である、請求項1から11のいずれかに記載の切削加工された光学フィルムの製造方法。
     
     
    The method for producing a machined optical film according to claim 1, wherein a twist angle of the end mill is 0°.

PCT/JP2020/000978 2019-02-13 2020-01-15 Method for manufacturing optical film WO2020166257A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080013911.1A CN113423527A (en) 2019-02-13 2020-01-15 Method for producing optical film
KR1020217024596A KR20210125487A (en) 2019-02-13 2020-01-15 Manufacturing method of optical film
JP2020572130A JP7475289B2 (en) 2019-02-13 2020-01-15 Method for manufacturing optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-023570 2019-02-13
JP2019023570 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020166257A1 true WO2020166257A1 (en) 2020-08-20

Family

ID=72044547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000978 WO2020166257A1 (en) 2019-02-13 2020-01-15 Method for manufacturing optical film

Country Status (5)

Country Link
JP (1) JP7475289B2 (en)
KR (1) KR20210125487A (en)
CN (1) CN113423527A (en)
TW (1) TW202040180A (en)
WO (1) WO2020166257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134582A (en) * 2019-02-14 2020-08-31 日東電工株式会社 Method for manufacturing optical film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240043A (en) * 1991-01-25 1992-08-27 Nippon Seiko Kk Control method for cutting device
JPH11202926A (en) * 1998-01-14 1999-07-30 Makino Milling Mach Co Ltd Method and device for feed speed control in numerical control
JP2000317773A (en) * 1999-05-10 2000-11-21 Toyota Motor Corp Helical machining method and recording medium
JP2001054845A (en) * 1999-08-11 2001-02-27 Sumitomo Chem Co Ltd Laminated film circumferential edge finishing method
JP2005043986A (en) * 2003-07-23 2005-02-17 Yamazaki Mazak Corp End mill machining device
JP2018022140A (en) * 2016-07-22 2018-02-08 日東電工株式会社 Manufacturing method of polarizing plate and manufacturing apparatus thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187781A (en) 2006-01-12 2007-07-26 Sumitomo Chemical Co Ltd Method for manufacturing optical film product
EP2476497B1 (en) * 2010-04-19 2015-05-13 Yamazaki Mazak Corporation Cutting method and cutting device
MX2017016459A (en) * 2015-06-29 2019-05-30 Kanefusa Knife & Saw Dimpling method using end mill and end mill.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240043A (en) * 1991-01-25 1992-08-27 Nippon Seiko Kk Control method for cutting device
JPH11202926A (en) * 1998-01-14 1999-07-30 Makino Milling Mach Co Ltd Method and device for feed speed control in numerical control
JP2000317773A (en) * 1999-05-10 2000-11-21 Toyota Motor Corp Helical machining method and recording medium
JP2001054845A (en) * 1999-08-11 2001-02-27 Sumitomo Chem Co Ltd Laminated film circumferential edge finishing method
JP2005043986A (en) * 2003-07-23 2005-02-17 Yamazaki Mazak Corp End mill machining device
JP2018022140A (en) * 2016-07-22 2018-02-08 日東電工株式会社 Manufacturing method of polarizing plate and manufacturing apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134582A (en) * 2019-02-14 2020-08-31 日東電工株式会社 Method for manufacturing optical film
JP7278091B2 (en) 2019-02-14 2023-05-19 日東電工株式会社 Method for manufacturing optical film

Also Published As

Publication number Publication date
JP7475289B2 (en) 2024-04-26
CN113423527A (en) 2021-09-21
JPWO2020166257A1 (en) 2021-12-16
TW202040180A (en) 2020-11-01
KR20210125487A (en) 2021-10-18

Similar Documents

Publication Publication Date Title
JP7278091B2 (en) Method for manufacturing optical film
KR102561432B1 (en) Manufacturing method of an optical laminate with a pressure-sensitive adhesive layer subjected to non-linear processing
TWI762619B (en) Manufacturing method of optical laminate
CN111971598B (en) Method for manufacturing optical laminate with adhesive layer by cutting
WO2020166257A1 (en) Method for manufacturing optical film
WO2019181100A1 (en) Method for manufacturing non-linearly machined resin sheet
WO2018180977A1 (en) Manufacturing method for nonlinear machined optical laminate with pressure-sensitive adhesive layer
TWI821291B (en) End mill for optical film cutting and method for manufacturing optical film using the end mill
WO2020162116A1 (en) Method for manufacturing optical film
JP2021062448A (en) Method of manufacturing optical member
WO2019198617A1 (en) Method for manufacturing machined optical laminate with hard coat layer
JP7335125B2 (en) Method for manufacturing optical member
WO2018220959A1 (en) Optical laminate production method
WO2019244505A1 (en) Optical film cutting end mill and optical film production method using said end mill
JP7446721B2 (en) Polarizing plate, polarizing plate intermediate, polarizing plate manufacturing method, and punching blade type
TW201829098A (en) End face cutting device and end face cutting method
WO2021131120A1 (en) Endmill for cutting optical film and optical film manufacturing method using said end mill
TW202037432A (en) Method for manufacturing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756621

Country of ref document: EP

Kind code of ref document: A1