JP2020134582A - Method for manufacturing optical film - Google Patents

Method for manufacturing optical film Download PDF

Info

Publication number
JP2020134582A
JP2020134582A JP2019024585A JP2019024585A JP2020134582A JP 2020134582 A JP2020134582 A JP 2020134582A JP 2019024585 A JP2019024585 A JP 2019024585A JP 2019024585 A JP2019024585 A JP 2019024585A JP 2020134582 A JP2020134582 A JP 2020134582A
Authority
JP
Japan
Prior art keywords
cutting
work
end mill
optical film
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019024585A
Other languages
Japanese (ja)
Other versions
JP7278091B2 (en
Inventor
誠 中市
Makoto Nakaichi
誠 中市
能満 池内
Yoshimitsu Ikeuchi
能満 池内
昌幸 大本
Masayuki Omoto
昌幸 大本
尚宏 戸田
Naohiro Toda
尚宏 戸田
純一 居倉
Junichi Ikura
純一 居倉
裕俊 谷本
Hirotoshi Tanimoto
裕俊 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2019024585A priority Critical patent/JP7278091B2/en
Priority to CN202010088117.5A priority patent/CN111558741A/en
Publication of JP2020134582A publication Critical patent/JP2020134582A/en
Application granted granted Critical
Publication of JP7278091B2 publication Critical patent/JP7278091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1081Shank-type cutters, i.e. with an integral shaft with permanently fixed cutting inserts 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2220/00Details of milling processes
    • B23C2220/60Roughing
    • B23C2220/605Roughing and finishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Polarising Elements (AREA)

Abstract

To provide a method for manufacturing an optical film cut by end mill machining performed two or more times, capable of easily determining the existence of finish-machining.SOLUTION: The method for manufacturing an optical film includes the step of stacking a plurality of optical films to form a work piece and the end mill machining step of cutting the outer peripheral surface of the work piece by an end mill. The end mill machining step includes roughly cutting the outer peripheral surface of the work piece by the end mill and finish-machining the roughly cut outer peripheral surface of the work piece by the end mill; the roughly cutting step includes providing an uncut portion in the outer peripheral surface of the work piece; and the finish-machining includes cutting the uncut portion.SELECTED DRAWING: Figure 5

Description

本発明は、光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film.

携帯電話、ノート型パーソナルコンピューター等の画像表示装置には、画像表示を実現し、および/または当該画像表示の性能を高めるために、種々の光学フィルム(例えば、偏光板)が使用されている。近年、自動車のインストゥルメントパネルやスマートウォッチなどにも光学積層体の使用が望まれており、光学積層体の形状を所望の形状に加工することが望まれている。このような加工の際、エンドミルにより、端面を切削する場合がある。このような場合おいては、粗削りした後に仕上げ加工するといったように、被研削面に複数回のエンドミル加工を施すことが行われている。 Various optical films (for example, polarizing plates) are used in image display devices such as mobile phones and notebook personal computers in order to realize image display and / or enhance the performance of the image display. In recent years, it has been desired to use an optical laminate for an automobile instrument panel, a smart watch, and the like, and it is desired to process the shape of the optical laminate into a desired shape. During such processing, the end face may be cut by an end mill. In such a case, the surface to be ground is subjected to a plurality of times of end milling, such as rough cutting and then finishing.

上記エンドミル加工においては、粗削りした後、仕上げ加工されずに、製品とされたり次工程に流出するという工程上のミスが想定される。目視による品質検査で、仕上げ加工されたか否かを判断することは困難であり、また、所定の検査装置を導入すると工程が煩雑になりコスト面で不利となる。 In the above-mentioned end mill processing, it is assumed that there is a process error that the product is made into a product or flows out to the next process without being finished after rough cutting. It is difficult to judge whether or not finish processing is performed by visual quality inspection, and if a predetermined inspection device is introduced, the process becomes complicated and it is disadvantageous in terms of cost.

特開2007−187781号公報JP-A-2007-187781 特開2018−022140号公報Japanese Unexamined Patent Publication No. 2018-022140

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、複数回のエンドミル加工により切削された光学フィルムを製造する方法であって、仕上げ加工の有無を容易に判断することが可能な製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is a method for manufacturing an optical film cut by a plurality of end milling processes, and it is easy to determine whether or not there is a finishing process. The purpose is to provide a manufacturing method that can be used.

本発明の光学フィルムの製造方法は、光学フィルムを複数枚重ねてワークを形成すること、および該ワークの外周面をエンドミルで切削するエンドミル加工工程とを含み、該エンドミル加工工程が、該ワークの外周面をエンドミルで粗削りする粗削り工程と、粗削りされた該ワークの外周面をエンドミルで仕上げ加工することとを含み、該粗削り工程が、該ワークの外周面に未切削部分を設けることを含み、該仕上げ加工が、該未切削部分を切削することを含む。
1つの実施形態においては、上記光学フィルムの製造方法は、上記粗削り工程において、切削開始時、平面視で前記ワークに対して斜め方向から上記エンドミルを走行させながら、該エンドミルを該ワークに接触させ、該ワーク上で、切削を開始する箇所と切削を終了する箇所とを異なる位置とすることにより、前記未切削部分を形成することを含む。
1つの実施形態においては、上記光学フィルムの製造方法は、上記粗削り工程において、切削終了時、平面視で上記ワークに対して斜め方向に前記エンドミルを走行させながら、該エンドミルを該ワークから離間させることを含む。
The method for producing an optical film of the present invention includes forming a work by stacking a plurality of optical films and an end milling step of cutting the outer peripheral surface of the work with an end mill, and the end milling step is the work. A roughing step of roughing the outer peripheral surface with an end mill and finishing of the outer peripheral surface of the roughed work with an end mill are included, and the roughing step includes providing an uncut portion on the outer peripheral surface of the work. The finishing process includes cutting the uncut portion.
In one embodiment, in the method for manufacturing an optical film, in the rough cutting step, at the start of cutting, the end mill is brought into contact with the work while running the end mill from an oblique direction with respect to the work in a plan view. This includes forming the uncut portion by setting a portion where cutting starts and a portion where cutting ends on the work at different positions.
In one embodiment, the method for manufacturing an optical film is to separate the end mill from the work while running the end mill diagonally with respect to the work in a plan view at the end of cutting in the rough cutting step. Including that.

本発明によれば、複数回のエンドミル加工により切削された光学フィルムを製造する方法であって、仕上げ加工の有無を容易に判断することが可能な製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an optical film cut by a plurality of end milling processes, and a manufacturing method capable of easily determining the presence or absence of finish processing.

本発明の光学フィルムの切削加工の一例を説明するための概略斜視図である。It is the schematic perspective view for demonstrating an example of the cutting process of the optical film of this invention. 本発明の光学フィルムの製造方法における切削加工に用いられるエンドミルの一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating an example of an end mill used for cutting in the method of manufacturing an optical film of this invention. 図3(a)は、本発明の光学フィルムの製造方法における切削加工に用いられる切削手段の別の例を説明するための軸方向から見た概略断面図であり;図3(b)は、図3(a)の切削手段の概略斜視図である。FIG. 3 (a) is a schematic cross-sectional view seen from the axial direction for explaining another example of the cutting means used for cutting in the method for manufacturing an optical film of the present invention; FIG. 3 (b) is a schematic cross-sectional view. It is a schematic perspective view of the cutting means of FIG. 3A. 図4(a)〜(c)は、本発明の光学フィルムの製造方法における未切削部分を説明するワークの概略部分平面図である。4 (a) to 4 (c) are schematic partial plan views of a work for explaining an uncut portion in the method for manufacturing an optical film of the present invention. 図5(a)および図5(b)は、本発明の1つの実施形態による光学フィルムの製造方法における粗削り工程を説明する概略平面図である。5 (a) and 5 (b) are schematic plan views illustrating a rough cutting step in the method for manufacturing an optical film according to one embodiment of the present invention. 図6(a)および図6(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。6 (a) and 6 (b) are schematic plan views illustrating the cutting process according to one embodiment of the present invention. 図7(a)および図7(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。7 (a) and 7 (b) are schematic plan views illustrating the cutting process according to one embodiment of the present invention. 本発明の1つの実施形態におけるワークを説明する概略平面図である。It is a schematic plan view explaining the work in one Embodiment of this invention. 図9(a)および図9(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。9 (a) and 9 (b) are schematic plan views illustrating the cutting process according to one embodiment of the present invention. 図10(a)および図10(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。10 (a) and 10 (b) are schematic plan views illustrating the cutting process according to one embodiment of the present invention.

以下、図面を参照して本発明の具体的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、見やすくするために図面は模式的に表されており、さらに、図面における長さ、幅、厚み等の比率、ならびに角度等は、実際とは異なっている。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. The drawings are schematically shown for easy viewing, and the ratios of length, width, thickness, etc., angles, etc. in the drawings are different from the actual ones.

本発明の切削加工された光学フィルムの製造方法は、光学フィルムを複数枚重ねてワークを形成すること、および該ワークの外周面をエンドミルで切削するエンドミル加工工程とを含む。 The method for producing a machined optical film of the present invention includes stacking a plurality of optical films to form a work, and an end milling step of cutting the outer peripheral surface of the work with an end mill.

<<ワークの形成>>
図1は、切削加工を説明するための概略斜視図であり、本図にワーク1が示されている。図1に示すように、光学フィルムを複数枚重ねたワーク1が形成される。光学フィルムは、ワーク形成に際し、代表的には任意の適切な形状に切断されている。具体的には、光学フィルムは矩形状に切断されていてもよく、矩形状に類似する形状に切断されていてもよく、目的に応じた適切な形状(例えば、円形)に切断されていてもよい。図示例では、光学フィルムは矩形状に切断されており、ワーク1は、互いに対向する外周面(切削面)1a、1bおよびそれらと直交する外周面(切削面)1c、1dを有している。ワーク1は、好ましくは、クランプ手段(図示せず)により上下からクランプされている。ワークの総厚みは、例えば、8mm〜100mmであり、好ましくは8mm〜50mmであり、より好ましくは8mm〜20mmであり、さらに好ましくは9mm〜15mmであり、さらに好ましくは約10mmである。このような厚みであれば、クランプ手段による押圧または切削加工時の衝撃による損傷を防止し得る。光学フィルムは、ワークがこのような総厚みとなるように重ねられる。ワークを構成する光学フィルムの枚数は、例えば10枚〜500枚(1つの実施形態においては、10枚〜300枚;別の実施形態においては、10枚〜50枚)であり得る。クランプ手段(例えば、治具)は、軟質材料で構成されてもよく硬質材料で構成されてもよい。軟質材料で構成される場合、その硬度(JIS A)は、好ましくは20°〜80°であり、より好ましくは60°〜80°であり、その厚みは例えば0.3mm〜5mmである。硬度が高すぎると、クランプ手段による押し跡が残る場合がある。硬度が低すぎるまたは厚すぎると、治具の変形により位置ずれが生じ、切削精度が不十分となる場合がある。
<< Work formation >>
FIG. 1 is a schematic perspective view for explaining a cutting process, and the work 1 is shown in this figure. As shown in FIG. 1, a work 1 in which a plurality of optical films are stacked is formed. The optical film is typically cut into any suitable shape when the work is formed. Specifically, the optical film may be cut into a rectangular shape, may be cut into a shape similar to a rectangular shape, or may be cut into an appropriate shape (for example, a circle) according to the purpose. Good. In the illustrated example, the optical film is cut into a rectangular shape, and the work 1 has outer peripheral surfaces (cutting surfaces) 1a and 1b facing each other and outer peripheral surfaces (cutting surfaces) 1c and 1d orthogonal to them. .. The work 1 is preferably clamped from above and below by clamping means (not shown). The total thickness of the work is, for example, 8 mm to 100 mm, preferably 8 mm to 50 mm, more preferably 8 mm to 20 mm, further preferably 9 mm to 15 mm, still more preferably about 10 mm. With such a thickness, damage due to pressing by the clamping means or impact during cutting can be prevented. The optical films are stacked so that the workpieces have such a total thickness. The number of optical films constituting the work can be, for example, 10 to 500 (in one embodiment, 10 to 300; in another embodiment, 10 to 50). The clamping means (for example, a jig) may be made of a soft material or a hard material. When composed of a soft material, its hardness (JIS A) is preferably 20 ° to 80 °, more preferably 60 ° to 80 °, and its thickness is, for example, 0.3 mm to 5 mm. If the hardness is too high, imprints may remain due to the clamping means. If the hardness is too low or too thick, the jig may be deformed and misaligned, resulting in insufficient cutting accuracy.

<<エンドミル加工工程>>
次に、エンドミル加工工程において、ワーク1の外周面を、エンドミル20により切削する。切削は、エンドミルの切削刃をワーク1の外周面に当接させることにより行われる。切削は、ワークの外周面の全周にわたって行ってもよく、所定の位置のみに行ってもよい。また、穴部を有するワークについて、該穴部の内周面にエンドミルの切削刃を当接させて、該内周面を切削してもよい。エンドミル20としては、代表的にはストレートエンドミルが用いられ得る。切削加工においては、エンドミルのみを移動させてもよく、ワークのみを移動させてもよく、エンドミルおよびワークの両方を移動させてもよい。
<< End mill processing process >>
Next, in the end mill processing step, the outer peripheral surface of the work 1 is cut by the end mill 20. Cutting is performed by bringing the cutting blade of the end mill into contact with the outer peripheral surface of the work 1. The cutting may be performed over the entire circumference of the outer peripheral surface of the work, or may be performed only at a predetermined position. Further, for a work having a hole, the cutting blade of the end mill may be brought into contact with the inner peripheral surface of the hole to cut the inner peripheral surface. As the end mill 20, a straight end mill can be typically used. In the cutting process, only the end mill may be moved, only the work may be moved, or both the end mill and the work may be moved.

エンドミル20は、図2および図3に示すように、ワーク1の積層方向(鉛直方向)に延びる回転軸21と、回転軸21を中心として回転する本体の最外径として構成される切削刃22と、を有する。切削刃22は、図2に示すように回転軸21に沿ってねじれた最外径として構成されてもよく(所定のねじれ角を有していてもよく)、図3に示すように回転軸21に実質的に平行な方向に延びるよう構成されていてもよい(ねじれ角が0°であってもよい)。なお、「0°」は実質的に0°であるという意味であり、加工誤差等によりわずかな角度ねじれている場合も包含する。切削刃が所定のねじれ角を有する場合、ねじれ角は好ましくは70°以下であり、より好ましくは65°以下であり、さらに好ましくは45°以下である。切削刃22は、刃先22aと、すくい面22bと、逃がし面22cと、を含む。切削刃22の刃数は、後述の所望の接触回数が得られる限りにおいて適切に設定され得る。図2における刃数は3枚であり図3における刃数は2枚であるが、刃数は1枚であってもよく、4枚であってもよく、5枚以上であってもよい。好ましくは、刃数は2枚である。このような構成であれば、刃の剛性が確保され、かつ、ポケットが確保されて削りカスを良好に排出することができる。1つの実施形態においては、ねじれ角が0°のエンドミルが用いられる。 As shown in FIGS. 2 and 3, the end mill 20 includes a rotating shaft 21 extending in the stacking direction (vertical direction) of the work 1 and a cutting blade 22 formed as the outermost diameter of a main body rotating around the rotating shaft 21. And have. The cutting blade 22 may be configured as the outermost diameter twisted along the rotation shaft 21 as shown in FIG. 2 (may have a predetermined twist angle), or may have a rotation shaft as shown in FIG. It may be configured to extend in a direction substantially parallel to 21 (the twist angle may be 0 °). In addition, "0 °" means that it is substantially 0 °, and includes the case where the angle is slightly twisted due to a processing error or the like. When the cutting blade has a predetermined twist angle, the twist angle is preferably 70 ° or less, more preferably 65 ° or less, still more preferably 45 ° or less. The cutting blade 22 includes a cutting edge 22a, a rake surface 22b, and a relief surface 22c. The number of cutting blades 22 can be appropriately set as long as the desired number of contacts described later can be obtained. The number of blades in FIG. 2 is three and the number of blades in FIG. 3 is two, but the number of blades may be one, four, or five or more. Preferably, the number of blades is two. With such a configuration, the rigidity of the blade is ensured, the pocket is secured, and the shavings can be discharged satisfactorily. In one embodiment, an end mill with a twist angle of 0 ° is used.

エンドミル加工工程においては、ワークの外周面をエンドミルで粗削りする粗削り工程が行われ、さらに、粗削りされたワークの外周面をエンドミルで仕上げ加工することが行われる。粗削り工程と仕上げ加工とは、切削精度向上のため行われ、粗削り工程においては、例えば、ワークの外周面が0.1mm〜0.5mmの厚さで切削され、仕上げ加工においては、粗削り後のワークの外周面が、例えば、0.01mm〜0.2mmの厚さで切削される。なお、粗削り工程および仕上げ加工においては、被研削面に対して複数回のエンドミルによる切削を行ってもよい。 In the end mill processing step, a rough cutting step of rough cutting the outer peripheral surface of the work with an end mill is performed, and further, the outer peripheral surface of the roughed work is finished with an end mill. The rough cutting process and the finishing process are performed to improve the cutting accuracy. In the rough cutting process, for example, the outer peripheral surface of the work is cut to a thickness of 0.1 mm to 0.5 mm, and in the finishing process, after the rough cutting. The outer peripheral surface of the work is cut to a thickness of, for example, 0.01 mm to 0.2 mm. In the rough cutting process and the finishing process, the surface to be ground may be cut by the end mill a plurality of times.

<粗削り工程>
本発明においては、粗削り工程において、ワークの外周面に未切削部分を設ける。図4(a)〜(c)は、未切削部分を説明するワークの概略部分平面図である。未切削部分11とは、エンドミルによる切削加工が施されなかった部分である。代表的には、未切削部分11は、図4(a)〜(c)に示すように、ワーク1の外周面に形成された凸部として形成される。
<Roughing process>
In the present invention, in the rough cutting process, an uncut portion is provided on the outer peripheral surface of the work. 4 (a) to 4 (c) are schematic partial plan views of a work for explaining an uncut portion. The uncut portion 11 is a portion that has not been cut by an end mill. Typically, the uncut portion 11 is formed as a convex portion formed on the outer peripheral surface of the work 1 as shown in FIGS. 4A to 4C.

上記未切削部分は、後工程である仕上げ加工において、切削される。本発明によれば、粗削り工程において未切削部分を設けることにより、未切削部分の有無により仕上げ加工を経て得られた製品(または半製品)か否かの判断を容易にすることが可能となる。すなわち、未切削部分を有さないワークまたは光学フィルムは、仕上げ加工を経て得られた正常品と判断され得、一方、未切削部分を有するワークまたは光学フィルムは、仕上げ加工がなされていない不良品または仕上げ加工をすべき半製品であると判断され得る。 The uncut portion is cut in a finishing process which is a subsequent process. According to the present invention, by providing the uncut portion in the rough cutting process, it is possible to easily determine whether or not the product (or semi-finished product) is obtained through the finishing process depending on the presence or absence of the uncut portion. .. That is, a work or optical film having no uncut portion can be judged to be a normal product obtained through finishing, while a work or optical film having an uncut portion is a defective product not finished. Alternatively, it may be judged that the semi-finished product should be finished.

未切削部分11の形状は、エンドミルの走行軌跡により規定され得る。1つの実施形態においては、ワーク上で、切削を開始する箇所と切削を終了する箇所とを異なる位置とすることにより、未切削部分が形成される。より具体的には、図5(a)に示すエンドミルの走行軌跡tのように、エンドミルにより切削を開始し、エンドミルが切削開始点aに到達する前に、切削を終了しワークからエンドミルを逃がすように走行させることにより、図5(b)に示す未切削部分11が形成される。 The shape of the uncut portion 11 can be defined by the running locus of the end mill. In one embodiment, an uncut portion is formed by setting a portion on the work where cutting starts and a portion where cutting ends at different positions. More specifically, as shown in the running locus t of the end mill shown in FIG. 5A, cutting is started by the end mill, cutting is finished and the end mill is released from the work before the end mill reaches the cutting start point a. By running in this way, the uncut portion 11 shown in FIG. 5B is formed.

未切削部分11の形状は、特に限定されず、図4(a)〜(c)に示すような形状が例示される。未切削部分の幅(図4における幅w)は、好ましくは0.1mm〜30mmであり、より好ましくは0.5mm〜10mmであり、さらに好ましくは1mm〜2mmである。未切削部分の高さ(図4における高さh)は、好ましくは0.05mm〜1mmであり、より好ましくは0.1mm〜0.5mmである。 The shape of the uncut portion 11 is not particularly limited, and the shapes shown in FIGS. 4A to 4C are exemplified. The width of the uncut portion (width w in FIG. 4) is preferably 0.1 mm to 30 mm, more preferably 0.5 mm to 10 mm, and further preferably 1 mm to 2 mm. The height of the uncut portion (height h in FIG. 4) is preferably 0.05 mm to 1 mm, more preferably 0.1 mm to 0.5 mm.

1つの実施形態においては、粗削り工程で用いるエンドミルの外径は10mm以下であり、好ましくは3mm〜9mmであり、より好ましくは4mm〜6mmである。なお、本明細書において「エンドミルの外径」とは、回転軸から1つの刃先までの距離を2倍したものをいう。 In one embodiment, the outer diameter of the end mill used in the rough cutting step is 10 mm or less, preferably 3 mm to 9 mm, and more preferably 4 mm to 6 mm. In the present specification, the "outer diameter of the end mill" means that the distance from the rotating shaft to one cutting edge is doubled.

粗削り工程における切削加工の条件は、所望の形状に応じて適切に設定され得る。例えば、エンドミル回転数は、好ましくは1000rpm〜60000rpmであり、より好ましくは10000rpm〜40000rpmである。エンドミルの送り速度は、好ましくは500mm/分〜10000mm/分であり、より好ましくは500mm/分〜2500mm/分である。なお、本明細書において、エンドミルの速度は、ワークに対する相対速度である。 The cutting conditions in the rough cutting process can be appropriately set according to the desired shape. For example, the end mill rotation speed is preferably 1000 rpm to 60,000 rpm, more preferably 10000 rpm to 40,000 rpm. The feed rate of the end mill is preferably 500 mm / min to 10000 mm / min, and more preferably 500 mm / min to 2500 mm / min. In this specification, the speed of the end mill is a relative speed with respect to the work.

1つの実施形態においては、切削開始時、平面視でワークに対して斜め方向からエンドミルを走行させながら、当該エンドミルをワークに接触させる。本明細書において、切削開始時における「ワークに対して斜め方向」とは、切削開始点aを基準に、切削開始後のエンドミルの走行方向の後方において、切削開始点aを含むワークの辺Aまたは切削開始点aでのワークの接線Bとのなす角度x(図6における角度x)が60°以下である方向を意味する。また、「ワークに対して斜め方向」とは、ワークに対して垂直方向または垂直に近い方向を含まない方向を意味し、すなわち、上記角度xが0°である方向も含む。なお、本明細書においては、上記角度xを、切削開始時のエンドミルの走行角度xと称する。切削開始点aが直線上にある場合には、切削開始点aを含むワークの辺Aとエンドミルの走行軌跡とから上記切削開始時のエンドミルの走行角度xが規定され(図6)、切削開始点aが曲線上にある場合には、切削開始点aでのワークの接線Bとエンドミルの走行軌跡とから上記切削開始時のエンドミルの走行角度xが規定される(図7)。なお、本明細書において、「切削開始点a」とは、エンドミルが、所定厚みのワーク外周を削るように走行し始める箇所を意味する。 In one embodiment, at the start of cutting, the end mill is brought into contact with the work while running the end mill from an oblique direction with respect to the work in a plan view. In the present specification, the "diagonal direction with respect to the work" at the start of cutting means the side A of the work including the start point a of the work behind the running direction of the end mill after the start of cutting with reference to the start point a of cutting. Alternatively, it means a direction in which the angle x (angle x in FIG. 6) formed by the tangent line B of the work at the cutting start point a is 60 ° or less. Further, the “oblique direction with respect to the work” means a direction not including a direction perpendicular to the work or a direction close to vertical, that is, a direction in which the angle x is 0 ° is also included. In this specification, the angle x is referred to as a running angle x of the end mill at the start of cutting. When the cutting start point a is on a straight line, the running angle x of the end mill at the start of cutting is defined from the side A of the work including the cutting start point a and the running locus of the end mill (FIG. 6), and the cutting start is started. When the point a is on the curve, the running angle x of the end mill at the start of cutting is defined from the tangent line B of the work at the cutting start point a and the running locus of the end mill (FIG. 7). In the present specification, the “cutting start point a” means a point where the end mill starts running so as to scrape the outer periphery of the work having a predetermined thickness.

1つの実施形態においては、粗削り工程において、切削開始時、平面視でワークに対して斜め方向からエンドミルを走行させながら、当該エンドミルをワークに接触させ、かつ、ワーク上で、切削を開始する箇所と切削を終了する箇所とを異なる位置とすることにより、未切削部分が形成される。 In one embodiment, in the rough cutting step, at the start of cutting, a portion where the end mill is brought into contact with the work and cutting is started on the work while the end mill is running from an oblique direction with respect to the work in a plan view. An uncut portion is formed by setting the position where the cutting is finished and the position where the cutting is finished at different positions.

図6(a)および図6(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。図7(a)および図7(b)は、本発明の別の実施形態による切削加工を説明する概略平面図である。図6(a)および図6(b)、ならびに図7(a)および図7(b)においては、切削開始時のエンドミルの動き(ワーク1に対する相対的な動き)を、平面視における走行軌跡tsとして示している。図6(a)および(b)においては、ワーク1が略矩形状である。図7(a)および(b)においては、ワーク1の外郭が曲線を含む。切削開始時のエンドミルの走行軌跡tsは、図6(a)および図7(a)に示すように曲線状であってもよく、図6(b)および図7(b)に示すように直線状であってもよい。切削開始時のエンドミルの走行角度xは、上記のとおり60°以下であり、好ましくは0°以上60°以下であり、より好ましくは0°以上45°以下であり、さらに好ましくは0°以上40°以下であり、特に好ましくは0°以上35°以下である。上記のとおり、走行角度xは0°であってもよく、例えば、ワーク1の外郭が曲線を含む場合、走行角度xは0°に設定され得る。1つの実施形態においては、ワーク1が略矩形状である場合、走行角度xは0°より大きい角度に設定され得る。ワークに対して斜め方向からエンドミルを走行させながら、当該エンドミルをワークに接触させることにより、切削開始点における不要な凹部の発生を防止することができる。切削開始時のエンドミルの走行角度xは、0°に近いほど好ましく、1つの実施形態においては、走行角度xは5°以下(好ましくは3°以下、より好ましくは1°以下、さらに好ましくは0.5°以下)である。 6 (a) and 6 (b) are schematic plan views illustrating the cutting process according to one embodiment of the present invention. 7 (a) and 7 (b) are schematic plan views illustrating a cutting process according to another embodiment of the present invention. In FIGS. 6 (a) and 6 (b), and in FIGS. 7 (a) and 7 (b), the movement of the end mill (movement relative to the work 1) at the start of cutting is the traveling locus in a plan view. It is shown as ts. In FIGS. 6A and 6B, the work 1 has a substantially rectangular shape. In FIGS. 7A and 7B, the outer shell of the work 1 includes a curved line. The running locus ts of the end mill at the start of cutting may be curved as shown in FIGS. 6 (a) and 7 (a), and may be a straight line as shown in FIGS. 6 (b) and 7 (b). It may be in the shape. The traveling angle x of the end mill at the start of cutting is 60 ° or less, preferably 0 ° or more and 60 ° or less, more preferably 0 ° or more and 45 ° or less, and further preferably 0 ° or more and 40 ° or less as described above. ° or less, particularly preferably 0 ° or more and 35 ° or less. As described above, the traveling angle x may be 0 °. For example, when the outer shell of the work 1 includes a curve, the traveling angle x can be set to 0 °. In one embodiment, when the work 1 has a substantially rectangular shape, the traveling angle x can be set to an angle larger than 0 °. By bringing the end mill into contact with the work while running the end mill from an oblique direction with respect to the work, it is possible to prevent the occurrence of unnecessary recesses at the cutting start point. The traveling angle x of the end mill at the start of cutting is preferably closer to 0 °, and in one embodiment, the traveling angle x is 5 ° or less (preferably 3 ° or less, more preferably 1 ° or less, still more preferably 0). .5 ° or less).

1つの実施形態においては、切削開始時のエンドミルの走行軌跡tsは曲線状である。切削開始時のエンドミルの走行軌跡tsを曲線状とすることにより、上記本願発明の効果はより顕著となる。走行軌跡tsが曲線状である場合、上記切削開始時のエンドミルの走行角度xは、切削開始点aにおける走行軌跡tsの接線usと、ワークの辺Aまたは切削開始点aでの接線Bとにより規定される。1つの実施形態においては、ワークを面内回転させつつ、エンドミルとワークとを近づけ当接させることにより、曲線状の走行軌跡tsでエンドミルをワークに対して相対的に走行させる。エンドミルとワークとを近づける際には、固定されたエンドミルにワークを近づけてもよく、エンドミルを直線的に移動させて当該エンドミルとワークとを近づけてもよく、エンドミルおよびワークの両方を直線的に移動させて当該エンドミルとワークとを近づけてもよい。 In one embodiment, the running locus ts of the end mill at the start of cutting is curved. By making the traveling locus ts of the end mill at the start of cutting curved, the effect of the present invention becomes more remarkable. When the traveling locus ts is curved, the traveling angle x of the end mill at the start of cutting depends on the tangent us of the traveling locus ts at the cutting start point a and the tangent line B at the side A of the work or the cutting start point a. Is regulated. In one embodiment, the end mill and the work are brought into close contact with each other while rotating the work in an in-plane manner, so that the end mill runs relative to the work on a curved running locus ts. When bringing the end mill and the work closer to each other, the work may be brought closer to the fixed end mill, the end mill may be moved linearly to bring the end mill and the work closer to each other, and both the end mill and the work may be brought closer to each other linearly. It may be moved so that the end mill and the work are brought closer to each other.

切削開始時のエンドミルの走行軌跡tsが曲線状である場合、当該走行軌跡tsの曲率半径は、エンドミルの外径の1/2以上であることが好ましく、エンドミルの外径よりも大きいことがより好ましく、エンドミルの外径に対して110%以上であることがさらに好ましく、エンドミルの外径に対して130%以上であることが特に好ましく、エンドミルの外径に対して150%以上であることが最も好ましい。このような範囲とすることにより、切削開始点aにおける不要な凹部の発生を防止することができる。また、切削開始時のエンドミルの走行軌跡tsが曲線状である場合、当該走行軌跡tsの曲率半径は、好ましくは4mm以上であり、より好ましくは6mm以上であり、さらに好ましくは7.5mm以上である。 When the running locus ts of the end mill at the start of cutting is curved, the radius of curvature of the running locus ts is preferably ½ or more of the outer diameter of the end mill, and more preferably larger than the outer diameter of the end mill. It is more preferably 110% or more with respect to the outer diameter of the end mill, particularly preferably 130% or more with respect to the outer diameter of the end mill, and 150% or more with respect to the outer diameter of the end mill. Most preferred. By setting the range to such a range, it is possible to prevent the occurrence of unnecessary recesses at the cutting start point a. When the traveling locus ts of the end mill at the start of cutting is curved, the radius of curvature of the traveling locus ts is preferably 4 mm or more, more preferably 6 mm or more, still more preferably 7.5 mm or more. is there.

エンドミルをワークに接触させる際の該エンドミルの速度は、切削加工時(ワークの被切削面をエンドミルで切削する際)のエンドミルの送り速度よりも遅いことが好ましい。切削開始時のエンドミルの速度を遅くすることにより、ワークのがたつきを抑制することができる。1つの実施形態において、エンドミルをワークに接触させる際の該エンドミルの速度は、好ましくは400mm/min〜1200mm/minであり、より好ましくは500mm/min〜900mm/minである。1つの実施形態において、例えば、穴部を有するワークについて、該穴部の内周面を切削する場合、エンドミルをワークに接触させる際の該エンドミルの速度は、好ましくは30mm/min〜1200mm/minであり、より好ましくは50mm/min〜1000mm/minである。 The speed of the end mill when the end mill is brought into contact with the work is preferably slower than the feed speed of the end mill during cutting (when the surface to be cut of the work is cut by the end mill). By slowing the speed of the end mill at the start of cutting, rattling of the work can be suppressed. In one embodiment, the speed of the end mill when it comes into contact with the work is preferably 400 mm / min to 1200 mm / min, more preferably 500 mm / min to 900 mm / min. In one embodiment, for example, when cutting the inner peripheral surface of a work having a hole, the speed of the end mill when the end mill is brought into contact with the work is preferably 30 mm / min to 1200 mm / min. It is more preferably 50 mm / min to 1000 mm / min.

ワーク(すなわち、光学フィルム)の形状は、任意の適切な形状とすることができる。ワークの形状としては、例えば、図6に示すような略矩形状の他、略多角形状、略円形状、略楕円形状等が挙げられる。また、ワークの形状は、直線と曲線とを適宜組み合わせた形状、曲率の異なる複数の曲線から構成された形状であってもよい。なお、上記ワークは、純粋な矩形状、多角形状、円形状、楕円形状等でなくてもよく、これらの形状に異形部分が加えられた形状であってもよい。本明細書においては、例えば、異形部分が加えられた矩形状は、「略矩形状」に含まれる。異形部分としては、例えば、図6に示すような凹部の他、凸部、穴等が挙げられる。また、上記ワークは、矩形の角部を曲線化したような形状であってもよい。 The shape of the work (that is, the optical film) can be any suitable shape. Examples of the shape of the work include a substantially rectangular shape as shown in FIG. 6, a substantially polygonal shape, a substantially circular shape, a substantially elliptical shape, and the like. Further, the shape of the work may be a shape in which a straight line and a curved line are appropriately combined, or a shape composed of a plurality of curves having different curvatures. The work may not be a pure rectangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like, and may be a shape in which a deformed portion is added to these shapes. In the present specification, for example, a rectangular shape to which a deformed portion is added is included in the "substantially rectangular shape". Examples of the deformed portion include a concave portion as shown in FIG. 6, a convex portion, a hole, and the like. Further, the work may have a shape in which the corners of the rectangle are curved.

また、上記切削方法(具体的には、上記切削開始時のエンドミルの走行軌跡、および、後述の切削終了時のエンドミルの走行軌跡)は、図8に示すような、穴部11を有するワーク1’について、当該穴部11の内周面を切削する際にも適用され得る。 Further, the cutting method (specifically, the running locus of the end mill at the start of cutting and the running locus of the end mill at the end of cutting described later) is a work 1 having a hole 11 as shown in FIG. With respect to', it can also be applied when cutting the inner peripheral surface of the hole portion 11.

1つの実施形態においては、切削終了時、平面視でワークに対して斜め方向にエンドミルを走行させながら、当該エンドミルをワークから離間させる。本明細書において、切削終了時における「ワークに対して斜め方向」とは、切削終了点bを基準に、切削終了前のエンドミルの走行方向の前方において、切削終了点bを含むワークの辺Aまたは切削終了点bでのワークの接線B’とのなす角度y(図9における角度y)が60°以下である方向を意味する。上記のとおり、「ワークに対して斜め方向」とは、ワークに対して垂直方向または垂直に近い方向を含まない方向を意味し、すなわち、上記角度yが0°である方向も含む。なお、本明細書においては、上記角度yを、切削終了時のエンドミルの走行角度yと称する。切削終了点bが直線上にある場合には、切削終了点bを含むワークの辺Aとエンドミルの走行軌跡とから上記切削終了時のエンドミルの走行角度yが規定され(図9)、切削終了点bが曲線上にある場合には、切削終了点bでのワークの接線B’とエンドミルの走行軌跡とから上記切削終了時のエンドミルの走行角度yが規定される(図10)。 In one embodiment, at the end of cutting, the end mill is separated from the work while running the end mill diagonally with respect to the work in a plan view. In the present specification, the "diagonal direction with respect to the work" at the end of cutting means the side A of the work including the end point b in front of the running direction of the end mill before the end of cutting with reference to the end point b of cutting. Alternatively, it means a direction in which the angle y (angle y in FIG. 9) formed by the tangent line B'of the work at the cutting end point b is 60 ° or less. As described above, the "oblique direction with respect to the work" means a direction not including a direction perpendicular to the work or a direction close to vertical, that is, a direction in which the angle y is 0 ° is also included. In this specification, the angle y is referred to as a running angle y of the end mill at the end of cutting. When the cutting end point b is on a straight line, the running angle y of the end mill at the end of cutting is defined from the side A of the work including the cutting end point b and the running locus of the end mill (FIG. 9), and the cutting ends. When the point b is on the curve, the running angle y of the end mill at the end of cutting is defined from the tangent line B'of the work at the cutting end point b and the running locus of the end mill (FIG. 10).

図9(a)および図9(b)は、本発明の1つの実施形態による切削加工を説明する概略平面図である。図10(a)および図10(b)は、本発明の別の実施形態による切削加工を説明する概略平面図である。図9(a)および図9(b)、ならびに図10(a)および図10(b)においては、切削終了時のエンドミルの動き(ワーク1に対する相対的な動き)を平面視における走行軌跡teとして示している。図9(a)および(b)においては、ワーク1が略矩形状である。また、図10(a)および(b)においては、ワーク1の外郭が曲線を含む。切削終了時のエンドミルの走行軌跡teは、図9(a)および図10(a)に示すように曲線状であってもよく、図9(b)および図10(b)に示すように直線状であってもよい。切削終了時のエンドミルの走行角度yは、上記のとおり60°以下であり、好ましくは0°以上60°以下であり、より好ましくは0°以上45°以下であり、さらに好ましくは0°以上40°以下であり、特に好ましくは0°以上35°以下である。上記のとおり、走行角度yは0°であってもよく、例えば、ワーク1の外郭が曲線を含む場合、走行角度yは0°に設定され得る。1つの実施形態においては、ワーク1が略矩形状である場合、走行角度yは0°より大きい角度に設定され得る。本明細書において、「切削終了点b」とは、所定厚みのワーク外周を削るように走行していたエンドミルが、ワークから離間する方向にその走行方向を変えて、切削を終了する箇所を意味する。1つの実施形態においては、「切削開始点a」と「切削終了点b」との距離は、未切削部分の幅wに相当する。 9 (a) and 9 (b) are schematic plan views illustrating the cutting process according to one embodiment of the present invention. 10 (a) and 10 (b) are schematic plan views illustrating a cutting process according to another embodiment of the present invention. In FIGS. 9 (a) and 9 (b), and in FIGS. 10 (a) and 10 (b), the movement of the end mill (movement relative to the work 1) at the end of cutting is the traveling locus te in a plan view. It is shown as. In FIGS. 9A and 9B, the work 1 has a substantially rectangular shape. Further, in FIGS. 10A and 10B, the outer shell of the work 1 includes a curved line. The running locus te of the end mill at the end of cutting may be curved as shown in FIGS. 9 (a) and 10 (a), and may be a straight line as shown in FIGS. 9 (b) and 10 (b). It may be in the shape. The running angle y of the end mill at the end of cutting is 60 ° or less, preferably 0 ° or more and 60 ° or less, more preferably 0 ° or more and 45 ° or less, and further preferably 0 ° or more and 40 ° or less as described above. ° or less, particularly preferably 0 ° or more and 35 ° or less. As described above, the traveling angle y may be 0 °. For example, when the outer shell of the work 1 includes a curve, the traveling angle y may be set to 0 °. In one embodiment, when the work 1 has a substantially rectangular shape, the traveling angle y can be set to an angle larger than 0 °. In the present specification, the "cutting end point b" means a point where an end mill that has been running so as to scrape the outer circumference of a work having a predetermined thickness changes its running direction in a direction away from the work and ends cutting. To do. In one embodiment, the distance between the "cutting start point a" and the "cutting end point b" corresponds to the width w of the uncut portion.

好ましくは、切削終了時のエンドミルの走行軌跡teは曲線状である。切削終了時のエンドミルの走行軌跡teを曲線状とすることにより、上記の効果はより顕著となる。走行軌跡teが曲線状である場合、上記切削終了時のエンドミルの走行角度yは、切削終了点bにおける走行軌跡teの接線ueと、ワークの辺Aまたは切削終了点aでの接線B’とにより規定される。1つの実施形態においては、ワークを面内回転させつつ、エンドミルとワークとを離間させることにより、曲線状の走行軌跡teでエンドミルをワークに対して相対的に走行させる。エンドミルとワークとを離間させる際には、固定されたエンドミルからワークを離してもよく、エンドミルを直線的に移動させて当該エンドミルをワークから離してもよく、エンドミルおよびワークの両方を直線的に移動させて当該エンドミルとワークとを離してもよい。 Preferably, the running locus te of the end mill at the end of cutting is curved. The above effect becomes more remarkable by making the traveling locus te of the end mill at the end of cutting curved. When the traveling locus te is curved, the traveling angle y of the end mill at the end of cutting is the tangent line ue of the traveling locus te at the cutting end point b and the tangent line B'at the side A of the work or the cutting end point a. Specified by. In one embodiment, the end mill and the work are separated from each other while rotating the work in-plane, so that the end mill runs relative to the work on a curved running locus te. When separating the end mill and the work, the work may be separated from the fixed end mill, the end mill may be moved linearly to separate the end mill from the work, and both the end mill and the work may be linearly separated. It may be moved to separate the end mill from the work.

切削終了時のエンドミルの走行軌跡teが曲線状である場合、当該走行軌跡teの曲率半径は、エンドミルの外径の1/2以上であることが好ましく、エンドミルの外径よりも大きいことがより好ましく、エンドミルの外径に対して110%以上であることがさらに好ましく、エンドミルの外径に対して130%以上であることが特に好ましく、エンドミルの外径に対して150%以上であることが最も好ましい。このような範囲とすることにより、切削終了点bにおける不要な段差およびケバの発生を防止することができる。また、切削終了時のエンドミルの走行軌跡teが曲線状である場合、当該走行軌跡teの曲率半径は、好ましくは4mm以上であり、より好ましくは6mm以上であり、さらに好ましくは7.5mm以上である。 When the running locus te of the end mill at the end of cutting is curved, the radius of curvature of the running locus te is preferably ½ or more of the outer diameter of the end mill, and more preferably larger than the outer diameter of the end mill. It is more preferably 110% or more with respect to the outer diameter of the end mill, particularly preferably 130% or more with respect to the outer diameter of the end mill, and 150% or more with respect to the outer diameter of the end mill. Most preferred. By setting it in such a range, it is possible to prevent the occurrence of unnecessary steps and fluff at the cutting end point b. When the traveling locus te of the end mill at the end of cutting is curved, the radius of curvature of the traveling locus te is preferably 4 mm or more, more preferably 6 mm or more, and further preferably 7.5 mm or more. is there.

エンドミルをワークから離間させる際の該エンドミルの速度は、切削加工時(ワークの被切削面をエンドミルで切削する際)のエンドミルの送り速度よりも遅いことが好ましい。切削終了時のエンドミルの速度を遅くすることにより、ワークのがたつきを抑制することができる。1つの実施形態において、エンドミルをワークから離間させる際の該エンドミルの速度は、好ましくは400mm/min〜1200mm/minであり、より好ましくは500mm/min〜900mm/minである。1つの実施形態において、例えば、穴部を有するワークについて、該穴部の内周面を切削する場合、エンドミルをワークから離間させる際の該エンドミルの速度は、好ましくは30mm/min〜1200mm/minであり、より好ましくは50mm/min〜1000mm/minである。 The speed of the end mill when the end mill is separated from the work is preferably slower than the feed speed of the end mill during cutting (when the surface to be cut of the work is cut by the end mill). By slowing the speed of the end mill at the end of cutting, rattling of the work can be suppressed. In one embodiment, the speed of the end mill when separating it from the work is preferably 400 mm / min to 1200 mm / min, more preferably 500 mm / min to 900 mm / min. In one embodiment, for example, when cutting the inner peripheral surface of a work having a hole, the speed of the end mill when separating the end mill from the work is preferably 30 mm / min to 1200 mm / min. It is more preferably 50 mm / min to 1000 mm / min.

<仕上げ加工>
粗削り工程の後、粗削りされた該ワークの外周面は、エンドミルでの切削により、仕上げ加工される。仕上げ加工においては、上記未切削部分を含むワークの外周面が切削される。
<Finishing>
After the rough cutting step, the outer peripheral surface of the roughed work is finished by cutting with an end mill. In the finishing process, the outer peripheral surface of the work including the uncut portion is cut.

1つの実施形態においては、仕上げ加工で用いるエンドミルの外径は10mm以下であり、好ましくは3mm〜9mmであり、より好ましくは4mm〜6mmである。 In one embodiment, the outer diameter of the end mill used in the finishing process is 10 mm or less, preferably 3 mm to 9 mm, and more preferably 4 mm to 6 mm.

仕上げ加工における切削加工の条件は、所望の形状に応じて適切に設定され得る。例えば、エンドミル回転数は、好ましくは1000rpm〜60000rpmであり、より好ましくは10000rpm〜40000rpmである。エンドミルの送り速度は、好ましくは500mm/分〜10000mm/分であり、より好ましくは500mm/分〜2500mm/分である。 The cutting conditions in the finishing process can be appropriately set according to the desired shape. For example, the end mill rotation speed is preferably 1000 rpm to 60,000 rpm, more preferably 10000 rpm to 40,000 rpm. The feed rate of the end mill is preferably 500 mm / min to 10000 mm / min, and more preferably 500 mm / min to 2500 mm / min.

仕上げ加工においても、上記のように、切削開始時、平面視で前記ワークに対して斜め方向からエンドミルを走行させながら、該エンドミルを該ワークに接触させてもよい。また、切削終了時、平面視でワークに対して斜め方向にエンドミルを走行させながら、当該エンドミルをワークから離間させてもよい。仕上げ加工において、切削開始点と切削終了点とは同じ位置であってもよく、また、切削開始点と切削終了点とを異なる位置とし、切削開始点よりエンドミルの走行方向前方を切削終了点としてもよい。好ましくは、切削開始点と切削終了点とを異なる位置とし、切削開始点よりエンドミルの走行方向前方に切削終了点bが設定される。このように、切削加工時のエンドミルの走行軌跡が部分的にオーバラップするようにして切削を終了させれば、切削終了時に不要な段差およびケバが発生することを好ましく防止することができる。 Also in the finishing process, as described above, at the start of cutting, the end mill may be brought into contact with the work while running the end mill from an oblique direction with respect to the work in a plan view. Further, at the end of cutting, the end mill may be separated from the work while running the end mill in a diagonal direction with respect to the work in a plan view. In the finishing process, the cutting start point and the cutting end point may be at the same position, the cutting start point and the cutting end point are set to different positions, and the cutting end point is ahead of the cutting start point in the traveling direction of the end mill. May be good. Preferably, the cutting start point and the cutting end point are set to different positions, and the cutting end point b is set ahead of the cutting start point in the traveling direction of the end mill. In this way, if the cutting is completed so that the traveling trajectories of the end mills at the time of cutting partially overlap each other, it is possible to preferably prevent unnecessary steps and fluff from occurring at the end of cutting.

<<光学フィルム>>
1つの実施形態においては、上記光学フィルムは、偏光子を含む。
<< Optical film >>
In one embodiment, the optical film comprises a polarizer.

偏光子を含む光学フィルムは、偏光子単体であってもよく、偏光子とその他の層とを含むフィルムであってもよい。その他の層としては、偏光子を保護する保護層、任意の適切な光学機能層から構成される層等が挙げられる。1つの実施形態においては、偏光子を含む光学フィルムとして偏光板が用いられる。偏光板は、偏光子と該偏光子の少なくとも片側に配置された保護層とを備え得る。また、偏光子を含むフィルムとして、偏光板と、表面保護フィルムおよび/またはセパレーターとの積層体を用いてもよい。表面保護フィルムまたはセパレーターは、任意の適切な粘着剤を介して偏光板に剥離可能に積層される。本明細書において「表面保護フィルム」とは偏光板を一時的に保護するフィルムであり、偏光板が備える保護層(偏光子を保護する層)とは異なるものである。 The optical film containing the polarizer may be a single polarizer or a film containing the polarizer and other layers. Other layers include a protective layer that protects the polarizer, a layer composed of any suitable optical functional layer, and the like. In one embodiment, a polarizing plate is used as an optical film containing a polarizer. The polarizing plate may include a polarizing element and a protective layer arranged on at least one side of the polarizer. Further, as the film containing the polarizer, a laminate of a polarizing plate and a surface protective film and / or a separator may be used. The surface protective film or separator is detachably laminated on the polarizing plate via any suitable adhesive. In the present specification, the "surface protective film" is a film that temporarily protects the polarizing plate, and is different from the protective layer (layer that protects the polarizer) included in the polarizing plate.

偏光子は、代表的には、樹脂フィルム(例えば、ポリビニルアルコール系樹脂フィルム)に膨潤処理、延伸処理、二色性物質(例えば、ヨウ素、有機染料等)による染色処理、架橋処理、洗浄処理、乾燥処理等の各種処理を施すことにより得られる。一般に、延伸処理を経て得られた偏光子はクラックが生じやすいという特性を有するが、本発明によれば、クラックを防止しつつ、偏光子を含む光学フィルムを切削することができる。 The polarizer is typically a resin film (for example, a polyvinyl alcohol-based resin film) that is swelled, stretched, dyed with a dichroic substance (for example, iodine, an organic dye, etc.), crosslinked, or washed. It is obtained by performing various treatments such as drying treatment. Generally, the polarizer obtained through the stretching treatment has a characteristic that cracks are likely to occur, but according to the present invention, it is possible to cut an optical film containing a polarizer while preventing cracks.

偏光子を含む光学フィルムの厚みは、特に制限されず、目的に応じて適切な厚みが採用され得、例えば、20μm〜200μmである。偏光子の厚みもまた特に制限されず、目的に応じて適切な厚みが採用され得る。偏光子の厚みは、代表的には、1μm〜80μm程度であり、好ましくは3μm〜40μmである。 The thickness of the optical film containing the polarizer is not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose, for example, 20 μm to 200 μm. The thickness of the polarizer is also not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose. The thickness of the polarizer is typically about 1 μm to 80 μm, preferably 3 μm to 40 μm.

偏光子を含む光学フィルムのサイズは、特に制限されず、目的に応じて適切なサイズとされ得る。1つの実施形態においては、偏光子を含む光学フィルムは、偏光子の吸収軸と平行である辺を含む矩形状であり、偏光子の吸収軸と平行である辺の長さが10mm〜400mmであり、その他の辺の長さが10mm〜500mmである。本明細書において、「平行である」とは、実質的に平行である場合を包含し、具体的には、2方向のなす角が0°〜5°である場合を包含する。 The size of the optical film including the polarizer is not particularly limited, and may be an appropriate size depending on the purpose. In one embodiment, the optical film containing the polarizer has a rectangular shape including a side parallel to the absorption axis of the polarizer, and the length of the side parallel to the absorption axis of the polarizer is 10 mm to 400 mm. Yes, the length of the other side is 10 mm to 500 mm. As used herein, the term "parallel" includes the case of being substantially parallel, and specifically includes the case where the angle formed by the two directions is 0 ° to 5 °.

本発明の製造方法により得られた切削加工された光学フィルムは、液晶画像表示装置、有機EL画像表示装置等に用いられ得る。また、切削加工された光学フィルムは、上記パーソナルコンピューター(PC)やタブレット端末に代表される矩形の画像表示部、および/または、自動車のインストゥルメントパネルやスマートウォッチに代表される異形の画像表示部に好適に用いられ得る。 The machined optical film obtained by the production method of the present invention can be used in a liquid crystal image display device, an organic EL image display device, or the like. In addition, the machined optical film is a rectangular image display unit represented by the personal computer (PC) or tablet terminal, and / or a deformed image display represented by an automobile instrument panel or smart watch. It can be suitably used for a part.

1 ワーク
20 エンドミル

1 work 20 end mill

Claims (3)

光学フィルムを複数枚重ねてワークを形成すること、および
該ワークの外周面をエンドミルで切削するエンドミル加工工程とを含み、
該エンドミル加工工程が、該ワークの外周面をエンドミルで粗削りする粗削り工程と、粗削りされた該ワークの外周面をエンドミルで仕上げ加工することとを含み、
該粗削り工程が、該ワークの外周面に未切削部分を設けることを含み、
該仕上げ加工が、該未切削部分を切削することを含む、
切削加工された光学フィルムの製造方法。
It includes forming a work by stacking a plurality of optical films and an end milling step of cutting the outer peripheral surface of the work with an end mill.
The end milling step includes a roughing step of roughing the outer peripheral surface of the work with an end mill and finishing of the outer peripheral surface of the roughed work with an end mill.
The rough cutting step includes providing an uncut portion on the outer peripheral surface of the work.
The finishing process involves cutting the uncut portion.
A method for manufacturing a machined optical film.
前記粗削り工程において、切削開始時、平面視で前記ワークに対して斜め方向から前記エンドミルを走行させながら、該エンドミルを該ワークに接触させ、
該ワーク上で、切削を開始する箇所と切削を終了する箇所とを異なる位置とすることにより、前記未切削部分を形成することを含む、
請求項1に記載の切削加工された光学フィルムの製造方法。
In the rough cutting step, at the start of cutting, the end mill is brought into contact with the work while running the end mill from an oblique direction with respect to the work in a plan view.
The uncut portion is formed by setting a portion where cutting starts and a portion where cutting ends on the work at different positions.
The method for producing a machined optical film according to claim 1.
切削終了時、平面視で前記ワークに対して斜め方向に前記エンドミルを走行させながら、該エンドミルを該ワークから離間させることを含む、
請求項1または2に記載の切削加工された光学フィルムの製造方法。

At the end of cutting, the end mill is separated from the work while the end mill is run in a diagonal direction with respect to the work in a plan view.
The method for producing a machined optical film according to claim 1 or 2.

JP2019024585A 2019-02-14 2019-02-14 Method for manufacturing optical film Active JP7278091B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019024585A JP7278091B2 (en) 2019-02-14 2019-02-14 Method for manufacturing optical film
CN202010088117.5A CN111558741A (en) 2019-02-14 2020-02-12 Method for producing optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024585A JP7278091B2 (en) 2019-02-14 2019-02-14 Method for manufacturing optical film

Publications (2)

Publication Number Publication Date
JP2020134582A true JP2020134582A (en) 2020-08-31
JP7278091B2 JP7278091B2 (en) 2023-05-19

Family

ID=72067724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024585A Active JP7278091B2 (en) 2019-02-14 2019-02-14 Method for manufacturing optical film

Country Status (2)

Country Link
JP (1) JP7278091B2 (en)
CN (1) CN111558741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021182143A (en) * 2019-09-19 2021-11-25 住友化学株式会社 Polarizing plate
JP2022047611A (en) * 2020-09-14 2022-03-25 日東電工株式会社 Polarizing plate, polarizing plate with phase difference layer, and image display device including polarizing plate or polarizing plate with phase difference layer
WO2022201708A1 (en) * 2021-03-25 2022-09-29 日東電工株式会社 Polarizing plate production method and polarizing plate
WO2024024546A1 (en) * 2022-07-29 2024-02-01 日東電工株式会社 Method for manufacturing cut film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366510B2 (en) * 2022-03-14 2023-10-23 日東電工株式会社 Composite cutting tool and method for manufacturing resin sheet using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054845A (en) * 1999-08-11 2001-02-27 Sumitomo Chem Co Ltd Laminated film circumferential edge finishing method
JP2003220512A (en) * 2002-01-30 2003-08-05 Sumitomo Chem Co Ltd Mirror finishing method, chamfering method and mirror finishing apparatus, and method for finishing rim of laminated film
JP2005043986A (en) * 2003-07-23 2005-02-17 Yamazaki Mazak Corp End mill machining device
US20150060309A1 (en) * 2013-09-04 2015-03-05 Apple Inc. Accessory covers for mobile phones or other consumer electronic devices
JP2018012182A (en) * 2016-07-22 2018-01-25 日東電工株式会社 Method and apparatus for manufacturing polarization plate
JP2018022140A (en) * 2016-07-22 2018-02-08 日東電工株式会社 Manufacturing method of polarizing plate and manufacturing apparatus thereof
JP2019020648A (en) * 2017-07-20 2019-02-07 住友化学株式会社 Method for manufacturing polarizing plate
JP2019018308A (en) * 2017-07-20 2019-02-07 住友化学株式会社 Cutting device and polarizer manufacturing method
WO2020166257A1 (en) * 2019-02-13 2020-08-20 日東電工株式会社 Method for manufacturing optical film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240043A (en) * 1991-01-25 1992-08-27 Nippon Seiko Kk Control method for cutting device
JPH11202926A (en) * 1998-01-14 1999-07-30 Makino Milling Mach Co Ltd Method and device for feed speed control in numerical control
CN106903357B (en) * 2017-04-18 2019-07-19 成都飞机工业(集团)有限责任公司 The processing method in thin-walled honeycomb core material Curve Machining type face

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054845A (en) * 1999-08-11 2001-02-27 Sumitomo Chem Co Ltd Laminated film circumferential edge finishing method
JP2003220512A (en) * 2002-01-30 2003-08-05 Sumitomo Chem Co Ltd Mirror finishing method, chamfering method and mirror finishing apparatus, and method for finishing rim of laminated film
JP2005043986A (en) * 2003-07-23 2005-02-17 Yamazaki Mazak Corp End mill machining device
US20150060309A1 (en) * 2013-09-04 2015-03-05 Apple Inc. Accessory covers for mobile phones or other consumer electronic devices
JP2018012182A (en) * 2016-07-22 2018-01-25 日東電工株式会社 Method and apparatus for manufacturing polarization plate
JP2018022140A (en) * 2016-07-22 2018-02-08 日東電工株式会社 Manufacturing method of polarizing plate and manufacturing apparatus thereof
JP2019020648A (en) * 2017-07-20 2019-02-07 住友化学株式会社 Method for manufacturing polarizing plate
JP2019018308A (en) * 2017-07-20 2019-02-07 住友化学株式会社 Cutting device and polarizer manufacturing method
WO2020166257A1 (en) * 2019-02-13 2020-08-20 日東電工株式会社 Method for manufacturing optical film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021182143A (en) * 2019-09-19 2021-11-25 住友化学株式会社 Polarizing plate
JP2022047611A (en) * 2020-09-14 2022-03-25 日東電工株式会社 Polarizing plate, polarizing plate with phase difference layer, and image display device including polarizing plate or polarizing plate with phase difference layer
WO2022201708A1 (en) * 2021-03-25 2022-09-29 日東電工株式会社 Polarizing plate production method and polarizing plate
JP2022149242A (en) * 2021-03-25 2022-10-06 日東電工株式会社 Method of manufacturing polarizing plate, and polarizing plate
JP7203879B2 (en) 2021-03-25 2023-01-13 日東電工株式会社 Method for manufacturing polarizing plate and polarizing plate
WO2024024546A1 (en) * 2022-07-29 2024-02-01 日東電工株式会社 Method for manufacturing cut film

Also Published As

Publication number Publication date
CN111558741A (en) 2020-08-21
JP7278091B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP7278091B2 (en) Method for manufacturing optical film
JP7014653B2 (en) Method for manufacturing a non-linearly processed optical laminate with an adhesive layer
CN109477932B (en) Method for manufacturing optical laminate
KR101752256B1 (en) Method for trimming an ophthalmic eyeglass lens comprising a coating film
US20140341661A1 (en) Milling cutter
JP7475289B2 (en) Method for manufacturing optical film
JP7255974B2 (en) Resin sheet and its manufacturing method
JP2022092624A (en) Optical laminate, optical laminate with cover glass, method for producing them, and image display device with cover glass
JP2021062448A (en) Method of manufacturing optical member
WO2019181100A1 (en) Method for manufacturing non-linearly machined resin sheet
WO2018180977A1 (en) Manufacturing method for nonlinear machined optical laminate with pressure-sensitive adhesive layer
WO2020162116A1 (en) Method for manufacturing optical film
JP2020001160A (en) End mill for cutting optical film, and optical film manufacturing method using the same
JP7335125B2 (en) Method for manufacturing optical member
JP7446721B2 (en) Polarizing plate, polarizing plate intermediate, polarizing plate manufacturing method, and punching blade type
CN109313303B (en) Film cutting method
WO2018116761A1 (en) End surface cutting device and end surface cutting method
JP7203879B2 (en) Method for manufacturing polarizing plate and polarizing plate
JP7221256B2 (en) A polarizing plate, a polarizing plate with a retardation layer, and an image display device comprising the polarizing plate or the polarizing plate with the retardation layer
TW202037432A (en) Method for manufacturing optical film
WO2021131120A1 (en) Endmill for cutting optical film and optical film manufacturing method using said end mill
WO2019244505A1 (en) Optical film cutting end mill and optical film production method using said end mill
JP2010169971A (en) Optical element and method for working the same, and chamfering and grinding stone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150