WO2020166239A1 - 睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラム - Google Patents

睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラム Download PDF

Info

Publication number
WO2020166239A1
WO2020166239A1 PCT/JP2020/000529 JP2020000529W WO2020166239A1 WO 2020166239 A1 WO2020166239 A1 WO 2020166239A1 JP 2020000529 W JP2020000529 W JP 2020000529W WO 2020166239 A1 WO2020166239 A1 WO 2020166239A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
sleep
feature vector
sleep apnea
subject
Prior art date
Application number
PCT/JP2020/000529
Other languages
English (en)
French (fr)
Inventor
幸一 藤原
千佳夫 仲山
絢子 岩▲崎▼
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2020572122A priority Critical patent/JP7403166B2/ja
Priority to US17/430,424 priority patent/US20220125376A1/en
Publication of WO2020166239A1 publication Critical patent/WO2020166239A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Definitions

  • the present disclosure relates to a sleep apnea syndrome determination device, a sleep apnea syndrome determination method, and a sleep apnea syndrome determination program.
  • Sleep apnea syndrome is a disease in which respiratory arrest or respiratory volume decreases during sleep (hereinafter, this condition is also referred to as apnea). Specifically, apnea is a symptom that occurs 30 times or more during 7 hours of sleep, or 5 times or more per hour. Apnea refers to a stasis of 10 seconds or more that occurs during sleep.
  • Patent Document 1 calculates a heart rate variability (HRV: Heart Rate Variability) index from heart rate data of a subject obtained by a heart rate measuring device, and based on the heart rate variability index, the subject is apnea or low for each predetermined period during sleep. It distinguishes between breathing and normal breathing. As a result, it is possible to know the temporal change in the breathing state of the subject.
  • HRV Heart Rate Variability
  • SAS is a risk factor for traffic accidents because it causes excessive daytime sleepiness and poor concentration.
  • SAS is known to cause various lifestyle-related diseases and aggravation thereof, causing cardiovascular disorders, glucose metabolism disorders, fat metabolism disorders, and the like. Therefore, it is desired that the determination as to whether or not the SAS is performed with high accuracy.
  • the inventors of the present application apply the method of determining the breathing state for each predetermined period during the sleep period as in Patent Document 1, and further, it is possible to highly accurately determine whether or not the subject has SAS. To propose.
  • the sleep apnea syndrome determination apparatus determines whether or not the subject has sleep apnea syndrome using RRI data indicating a heartbeat interval (RR Interval: RRI) in the sleep period of the subject.
  • a processing unit that generates a feature vector including a plurality of continuous heartbeat intervals in a sleep period, and outputs the feature vector by inputting the feature vector to a recurrent neural network, and includes the input feature vector.
  • the index based on the ratio of the period of the apnea state to the period of the normal breathing state in the sleep period is calculated from the values for each of the identification target periods corresponding to the plurality of heartbeat intervals that are set, and based on the index, the subject is It operates so as to determine whether it is a respiratory syndrome.
  • a sleep apnea syndrome determination method is a method of determining whether or not a subject has sleep apnea syndrome by using RRI data indicating a heartbeat interval in a sleep period of the subject. Corresponding to a plurality of heartbeat intervals included in the input feature vector, which is output by inputting the feature vector to the recurrent neural network, and a step of generating a feature vector including a plurality of consecutive heartbeat intervals in the sleep period.
  • the sleep apnea syndrome determination program uses a computer to determine whether the subject has sleep apnea syndrome by using RRI data indicating a heartbeat interval in the sleep period of the subject. And a step of generating a feature vector including a plurality of continuous heartbeat intervals in a sleep period, and a feature vector that is output by inputting the feature vector to a recurrent neural network. From the values for each identification target period corresponding to a plurality of heartbeat intervals, the step of calculating an index based on the ratio of the period of the apnea state to the period of the normal respiratory state in the sleep period, and the subject sleeps based on the index. And a step of determining whether or not it is temporal apnea syndrome.
  • FIG. 1 is a diagram showing an outline of a configuration of a system including a sleep apnea determination apparatus (hereinafter, determination apparatus) according to an embodiment.
  • FIG. 2A is a diagram showing an example of an electrocardiographic signal
  • FIG. 2B is a diagram showing R wave data.
  • FIG. 3 is a diagram for explaining the feature vector.
  • FIG. 4 is a flowchart showing the flow of the determination process in the determination device.
  • FIG. 5 is a diagram showing the determination conditions of each method evaluated by the evaluation test by the inventors.
  • FIG. 6 is a diagram showing the attributes of the subject in the evaluation test.
  • FIG. 7: is the figure which showed the determination result by the 1st method in an evaluation test.
  • FIG. 1 is a diagram showing an outline of a configuration of a system including a sleep apnea determination apparatus (hereinafter, determination apparatus) according to an embodiment.
  • FIG. 2A is a diagram showing an example of an electrocardiographic signal
  • FIG. 8 is a diagram showing a determination result by the second method in the evaluation test.
  • FIG. 9 is a diagram showing the determination result of the third method in the evaluation test.
  • FIG. 10 is a figure which showed the determination result by the 4th method in an evaluation test.
  • FIG. 11 is the figure which showed the determination result by the 5th method in an evaluation test.
  • FIG. 12 is a diagram showing the evaluation value of the determination result by each method in the evaluation test.
  • the sleep apnea syndrome determination apparatus included in the present embodiment uses the RRI data indicating the heartbeat interval (RR Interval: RRI) in the sleep period of the subject to determine whether the subject has the sleep apnea syndrome.
  • the processing unit that determines whether or not the processing unit generates a feature vector including a plurality of continuous heartbeat intervals in the sleep period, and outputs the feature vector by inputting the feature vector to the recurrent neural network. From the value for each identification target period corresponding to a plurality of heartbeat intervals included in the vector, calculate an index based on the ratio of the period of apnea and normal breathing state in the sleep period, based on the index, the subject It operates so as to determine whether it is sleep apnea.
  • the adoption of a recursive neural network as a discriminant model is far more accurate than the input of the index value calculated from the heartbeat interval to a discriminant model other than the recursive neural network.
  • the sleep apnea syndrome determination apparatus can determine the SAS patient with high accuracy.
  • the recurrent neural network is preliminarily learned by machine learning so as to output a value indicating the sleep state in the identification target period in response to the input of the feature vector.
  • a feature vector including a plurality of heartbeat intervals in the identification target period is used as an input value, and a value indicating the sleep state in the identification target period is output in response to the input of the feature vector.
  • the recursive neural network is LSTM (Long Short-Term Memory).
  • LSTM Long Short-Term Memory
  • the accuracy of the determination is further improved by using the LSTM as the recursive neural network. It was verified.
  • the identification target period has a fixed period length
  • the feature vector is a variable length vector consisting of a time series of RRI data groups indicating each of a plurality of heartbeat intervals of the identification target period.
  • the processing unit when inputting the feature vector to the recursive neural network, the processing unit recursively uses the feature vector generated from a plurality of heartbeat intervals including a heartbeat interval larger than a threshold indicating an abnormal value of the heartbeat interval. Do not input to the neural network. As a result, it is determined whether or not the input value is a normal value (normal value determination), and as a result, only the feature vector generated from only the heartbeat interval determined to be a normal value is input to the recurrent neural network. As a result of the evaluation test by the inventors of the present application, it was verified that the determination accuracy is further improved by performing the normal value determination.
  • generating the feature vector includes normalizing the value of each of the plurality of heartbeat intervals.
  • the index is a ratio of an apnea period to a sleep period, and in the determining step, when the ratio is larger than a threshold value indicating sleep apnea syndrome, the subject is asleep apnea. Determined to have respiratory syndrome. This makes it easy to determine whether the subject has SAS.
  • the sleep apnea syndrome determination method included in the present embodiment is a method of determining whether or not a subject has sleep apnea syndrome by using RRI data indicating a heartbeat interval in the sleep period of the subject. And a step of generating a feature vector including a plurality of heartbeat intervals of the identification target period in the sleep period, and an identification target corresponding to the plurality of heartbeat intervals included in the feature vector in response to the input of the feature vector.
  • the sleep apnea syndrome determination program included in the present embodiment uses a computer to determine whether the subject has sleep apnea syndrome by using RRI data indicating a heartbeat interval in the sleep period of the subject.
  • a step of calculating an index based on the ratio of the period of apnea and the period of normal breathing in the sleep period, based on the index, whether the subject has sleep apnea The determining step and the executing step are executed.
  • the computer can be caused to function as the sleep apnea syndrome determination device of (1) to (7). Therefore, this program has the same effect as the sleep apnea syndrome determination device of (1) to (7).
  • a system 100 including the sleep apnea determination apparatus 1 according to the present embodiment shown in FIG. 1 includes a sleep apnea determination apparatus (hereinafter, referred to as “determination apparatus”) 1 and a heartbeat measuring device 2. ..
  • the determination device 1 and the heartbeat measuring device 2 can communicate with each other.
  • the communication may be wireless communication or wire communication.
  • the heartbeat measuring device 2 is a small and lightweight wearable terminal that is attached to the body of the subject P and measures the heartbeat of the subject P.
  • a plurality of (three in FIG. 1) electrodes 21A attached to the body surface of the subject P are connected to the heartbeat measuring device 2.
  • the three electrodes 21A are, for example, a plus electrode, a minus electrode, and a ground electrode.
  • the wearable terminal that functions as the heartbeat measuring device 2 may be, for example, a smart watch having a heartbeat measuring function.
  • the wearable terminal itself may function as the determination device 1 and the heartbeat measuring device 2.
  • the vertical axis of FIG. 2(a) shows the electric potential
  • the horizontal axis shows the time.
  • the electrocardiographic signal periodically shows a potential change composed of P to T waves.
  • the peak with the highest potential in the potential change in a unit cycle is called an R wave, and the ventricular muscle contracts at the timing of the R wave.
  • the heartbeat measuring device 2 transmits the heartbeat data to the determination device 1.
  • the heartbeat data is, for example, RRI data.
  • RRI data indicates RRI (R-R Interval).
  • RRI is a characteristic value obtained from the R wave.
  • the RRI data corresponding to the electrocardiographic signal in FIG. 2A has a period (the signal intensity I exceeds a predetermined intensity threshold value Ith) corresponding to the R wave in the electrocardiographic signal.
  • the RRI is the interval between R waves in the rectangular pulse train in which the period) is set to “1” and the other periods are set to “0”.
  • the determination device 1 receives the RRI data in the sleep period of the subject P transmitted from the heartbeat measuring device 2 and executes the determination process using the RRI data to determine whether the subject P has sleep apnea syndrome. Determine whether.
  • the heartbeat data transmitted from the heartbeat measuring device 2 may be a numerical value group representing the electrocardiographic waveform or data representing the electrocardiographic waveform itself.
  • the determination device 1 calculates the RRI from the data received from the heartbeat measuring device 2 and uses it for the determination process described later.
  • the determination device 1 is composed of a computer including a processing unit 10 and a storage device 20.
  • the storage device 20 is connected to the processing unit 10.
  • the processing unit 10 is, for example, a CPU (Central Processing Unit).
  • the determination device 1 also includes a communication unit 30 for communicating with the heartbeat measuring device 2.
  • the communication unit 30 may be a communication mechanism for short-distance wireless communication such as Bluetooth (registered trademark) or may be a communication mechanism for wireless LAN (Local Area Network).
  • the communication unit 30 is connected to the processing unit 10.
  • the communication unit 30 functions as an input unit that inputs the heartbeat data from the heartbeat measuring device 2.
  • the computer forming the determination device 1 is preferably a mobile terminal such as a smartphone or a tablet.
  • the mobile terminal held by the subject P can be utilized as the determination device 1, which is preferable.
  • the mobile terminal may be a wearable device such as a smart watch.
  • a plurality of computers may be included in the determination device 1.
  • the determination device 1 may be configured by cooperation of a plurality of mobile terminals.
  • the plurality of mobile terminals are, for example, smartphones and smart watches.
  • the computer that constitutes the determination device 1 may be a server computer on a network such as the Internet.
  • the RRI data transmitted from the heartbeat measuring device 2 of the subject P is transmitted to the server computer via a network such as the Internet.
  • the server computer When determining whether or not the server computer has sleep apnea, it is sufficient to notify the terminal of the subject P (mobile terminal or the like) via the network.
  • the storage device 20 of the determination device 1 stores a computer program 21 for causing the processing unit 10 to perform determination processing.
  • the computer functions as the determination device 1 when the processing unit 10 executes the computer program 21.
  • the determination process is a process of determining whether the subject P has sleep apnea using the RRI data in the sleep period of the subject P, and includes a generation process, an identification process, and a calculation process. ..
  • the generation process is a process of generating a feature vector from the RRI data group for a predetermined period in the sleep period.
  • the feature vector is used as an input value in the identification process described later, and is a collection of a plurality of features indicating the sleep state of the subject in the predetermined period.
  • the processing unit 10 functions as the generation unit 11 that executes the generation process. That is, a predetermined period is set as an identification target period that is a target of the identification process described later, and RRIs are arranged in time series from electrocardiographic waveforms measured within the identification target period to form a feature vector. ..
  • the number of RRIs measured during the fixed period, which is the identification target period, is not a fixed number. Therefore, the number of elements of the feature vector is variable. That is, the generated feature vector is a variable length vector.
  • the generation unit 11 causes the feature vector FV1 in the periods T1 and T2 shown below. , FV2 are generated.
  • FV1 ⁇ 925, 905,..., 885 ⁇
  • FV2 ⁇ 935,...,915 ⁇
  • the generation process includes a normal value determination process for determining whether the RRI is a normal value.
  • the generation unit 11 includes a normal value determination unit 12 that executes normal value determination processing.
  • the normal value determination unit 12 stores a threshold value of RRI (for example, 2000 msec) in advance and compares it with RRI to determine whether it is abnormal or normal.
  • An abnormal value of RRI occurs due to factors such as artifacts.
  • the generation unit 11 generates a feature vector only in the identification target period in which all included RRIs are determined to be normal among the identification target periods in the sleep period, and identifies the identification target period in which at least one abnormal RRI is included. Does not generate a feature vector.
  • the feature vector for the identification target period in which even one RRI is determined to be abnormal is not used as the feature vector for the determination process.
  • the generated feature vector does not include an abnormal value. That is, only the feature vector having the normal value of RRI is used for the determination process. As a result, the determination accuracy can be improved.
  • the feature vector may be generated using a fixed number of continuous RRIs.
  • the number of elements of the feature vector is constant and the feature vector has a fixed length.
  • the identification target period has a variable length.
  • the determination device 1 generates a variable-length feature vector from a plurality of consecutive RRIs included in the identification target period, which is a fixed-length period, and uses it for the determination process, rather than using a fixed number of RRIs. It is preferable.
  • a recursive neural network hereinafter also referred to as RNN
  • RNN recursive neural network
  • the generation process includes a standardization process for standardizing the RRI group in the identification target period.
  • the generation unit 11 includes a standardization processing unit 13 that executes standardization processing.
  • the standardization process is, for example, a normalization process, for example, a process of converting the RRI group in the identification target period into data having an average RRI of 0 and a variance of 1 in a predetermined period using the following formula. ..
  • zi (xi- ⁇ )/ ⁇ (Xi represents each RRI, ⁇ represents the average value, and ⁇ represents the standard deviation.)
  • the feature vector it may be considered to be a vector composed of a plurality of HRV indexes.
  • the HRV index can be, for example, two or more of the following (1) to (11).
  • the sleep state identification using the HRV index identifies whether the subject is apnea or normal breathing for each time during sleep, and determines whether the subject is apnea or normal breathing. It is performed in the determination method that acquires the dynamic variation.
  • a discrimination model a support vector machine that discriminates between an apnea state and a normal breathing state when an HRV index is given is used.
  • meanNN average of RRI.
  • SDNN standard deviation of RRI.
  • Total Power Total power spectrum of RRI.
  • RMSSD Square root of the mean value of the square of the difference between the nth RRI and the (n+1)th RRI. The greater the RRI variation, the greater the value, which is an indicator of the activity of the autonomic nervous system.
  • NN50 The number in which the difference between the nth and the n+1th RRI exceeds 50 milliseconds. Normal RRI variation is less than 50 ms and NN50 is an indicator of severe variation.
  • pNN50 Ratio of the value of NN50 to the number of all R waves. Since the NN50 is the number of times, it generally has a large value if the window width is long.
  • LF Power spectrum in the frequency band of the LF band (0.04 Hz to 0.15 Hz). LF is mainly used as an index of sympathetic nervous system activity.
  • HF Power spectrum in the HF band (0.15 Hz to 0.4 Hz) frequency band. HF is mainly used as an index of parasympathetic nervous system activity.
  • LF/HF A ratio of LF and HF defined by LF/HF, which is considered to be a ratio of activity states of the sympathetic nervous system and the parasympathetic nervous system. The value of LF/HF is large when the sympathetic nerve is dominant, and is small when the parasympathetic nerve is dominant.
  • LFnu correction LF defined by LF/(LF+HF). Emphasize changes in sympathetic nerve activity.
  • HFnu corrected HF defined by HF/(LF+HF). Emphasize changes in parasympathetic activity.
  • the RRI is a value directly obtained from the electrocardiographic waveform of the subject
  • the continuous RRI is a group of values that directly represent the features of the electrocardiographic waveform during the sleep period of the subject.
  • the inventors analyzed that the HRV index is not expressed as directly as RRI because it is an index calculated from RRI or a value related to RRI. Therefore, based on this analysis, the inventors decided to generate a feature vector from the RRI itself and use it for the identification processing described later. As a result, rather than using the feature vector generated from the HRV index, a more direct feature of the electrocardiographic waveform is used for the identification process described later. As a result, the determination accuracy can be improved.
  • the identification process is a process of identifying whether the sleep state is an apnea state or a normal state for each identification target period.
  • the processing unit 10 functions as the identification unit 14 that executes the identification process.
  • the identification unit 14 includes an identification model 15.
  • the identification model 15 is preliminarily learned by machine learning in response to the input of the feature vector so as to output a value indicating the sleep state in the identification target period corresponding to the feature vector.
  • the identification model 15 receives, for example, "1" indicating an apnea state with respect to the input of the feature vectors FV1 and FV2. , And “0” indicating a normal breathing state are output.
  • Apnea states refer to apnea or hypopnea.
  • An apnea condition is defined as a condition where ventilation is stopped for 10 seconds or longer.
  • the hypopnea state is defined as a state in which the respiratory airflow is reduced by 50% or more for 10 seconds or more. Thereby, the output of the value indicating the respiratory state is obtained for each identification target period.
  • a recursive neural network is used as the identification model 15.
  • the RNN is, for example, Simple RNN (Simple Recursive Neural Network), LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit), Bi-directional RNN, Attention RNN, QRNN (Quasi-Recurrent Neural Network). ..
  • an identification model different from RNN is SVM (Support Vector Machine).
  • SVM Small Vector Machine
  • the SVM is used in the above-mentioned Patent Document 1. Therefore, it is conceivable to use a model other than the RNN such as SVM as the identification model 15.
  • the RNN is a model in which the output of a certain layer of the intermediate layers from the input value to the output value in the neural network is used as the input of the intermediate layer from the next input value to the output value.
  • the neural network has a recursive structure in which the output of the neural network is used as the input of another network.
  • the intermediate layers are linearly connected in time series. Therefore, in the RNN, the input value at a certain time affects the output value for the input value after that time. That is, the RNN is a model that performs prediction based on past data, in other words, performs learning based on time series data. This point is different from the non-RNN model such as SVM.
  • the determination apparatus 1 inputs the feature vector configured by arranging the RRIs of the identification target period in time series into the identification model 15. Therefore, the input value to the identification model 15 has temporal continuity. Since the continuous RRI is a value that continuously represents the sleep state of the subject, the continuous RRI has a time-series relationship. Therefore, when such feature vectors are used, the inventors have found that RNNs that perform learning based on time-series data are more suitable for continuous biological reactions than models that do not, such as SVMs. We have reached the conclusion that will be output with higher accuracy. Therefore, RNN is used as the identification model 15.
  • the identification unit 14 inputs the feature vector for each predetermined period in the sleep period to the identification model 15, and obtains the output of the value for each identification target period from the identification model 15.
  • the value for each identification target period is, for example, “1” indicating the apnea state and “0” indicating the normal breathing state.
  • the calculation process calculates an index based on the ratio between the period of the apnea and the period of the normal breathing in the sleep period.
  • the processing unit 10 functions as the calculation unit 16 that executes the calculation process.
  • the index is, for example, the AS (Apnea/Sleep) ratio A, which is the ratio of the apnea period ta to the sleep period t, which is represented by the following equation.
  • the period ta of the apnea state is the total of the identification target periods that are identified as the apnea state.
  • the index is not limited to the AS ratio, and may be the ratio of the period of the apnea state to the period of the normal breathing state as another example.
  • A ta/t ⁇ 100 [%]
  • the determination processing it is determined whether or not the subject P is SAS based on the comparison between the index value (AS ratio) A of the calculated index and the threshold TH that can be determined as SAS.
  • the processing unit 10 functions as a determination unit 17 that makes this determination.
  • the determination unit 17 determines that the subject P is SAS when the AS ratio A is equal to or greater than the threshold value TH (A ⁇ TH). If not (A ⁇ TH), the subject P is determined not to be SAS. By using the AS ratio A, whether or not the subject P has SAS can be easily determined.
  • a user of the system 100 attaches the heartbeat measuring device 2 to his/her body, places the determination device 1 at a position communicable with the heartbeat measuring device 2 such as a bedside, and sleeps. Then, the determination device 1 determines whether or not the subject P is SAS by the method shown in the flowchart of FIG.
  • the RRI data of the subject P measured by the heartbeat measuring device 2 is input to the determination device 1 (step S101).
  • the measurement of the heartbeat by the heartbeat measuring device 2 is performed until the subject P wakes up, and in step S101, RRI data until the subject P wakes up is input.
  • the processing unit 10 of the determination device 1 arranges the RRI data for each identification target period in time series to generate a feature vector (step S103). At that time, the processing unit 10 determines whether each value (RRI) indicated by the RRI data is a normal value by comparing it with a threshold value stored in advance (step S1031). Then, the feature vector is generated for all the identification target periods that are normal values. Further, the processing unit 10 normalizes the RRI within the identification target period (step S1033) and generates a feature vector with the normalized RRI.
  • the processing unit 10 inputs the feature vector generated for each identification target period into the identification model 15 which is a recursive neural network (step S105).
  • the identification model 15 which is a recursive neural network.
  • the processing unit refers to the apnea period ta for the entire sleep period t and calculates the AS ratio A which is the ratio to the entire sleep period t (step S107).
  • the AS ratio A is equal to or greater than the threshold value TH stored in advance (A ⁇ TH) (YES in step S109)
  • the processing unit 10 outputs a determination result that the subject P is SAS (SAS patient) (Ste S111). If not (A ⁇ TH) (NO in step S109), the processing unit 10 outputs a determination result that the subject P is normal (non-SAS patient) (step S113).
  • the determination result of step S111 or step S113 may be transmitted to the output device. Accordingly, it is possible to know the determination result of whether the subject P is SAS by the output from the output device such as the display. Alternatively, the determination result may be transmitted from the communication unit 30 to another device. Examples of other devices include a wearable terminal of the subject P, a server device owned by a medical institution, and the like. Thereby, the determination result of whether the subject P is SAS can be known by using another device.
  • the inventors conducted an evaluation test using clinical data in order to evaluate the performance of the sleep apnea syndrome determination method according to the above-described embodiment (hereinafter referred to as “proposed method”).
  • the evaluation test it was determined whether the SAS was the first method to the fifth method under the determination conditions shown in FIG.
  • the first method to the third method are the proposed methods, and the fourth method and the fifth method are the determination methods as comparative examples used as evaluation criteria.
  • input value indicates the value used for input to the identification model
  • identification model indicates the identification model used for identifying the sleep state for a predetermined period.
  • the “input method” indicates how to measure the RRI used for generating the feature vector.
  • a feature vector was generated from the RRI data as an “input value” and input to the identification model that is a recursive neural network (RNN).
  • the discrimination model of the first method and the third method is the LSTM of the RNN.
  • SimpleRNN was used as another example of RNN.
  • the feature vector in the first method and the second method is a variable-length vector using continuous RRI obtained from a fixed identification target period. The length of the identification target period was 60 seconds.
  • the feature vector in the third method is a fixed length vector using a fixed number of continuous RRIs. The fixed number was 60 immediately before calculation.
  • a normal value determination is performed on the RRI, and the feature vector obtained from the RRI in the identification target period including only the RRI that is the normal value is used as the identification model. I input it.
  • the fourth method is a determination method adopted in Patent Document 1 described above, which uses a support vector machine (SVM) for distinguishing an apnea state from a normal breathing state when an HRV index is given.
  • the fifth method is a method in which the identification model used in the fourth method is changed from SVM to the RNN used in the proposed method.
  • the fifth method is also a method in which the input value to the identification model of the first method is changed from RRI to HRV index.
  • an HRV index different from RRI was input to the identification model.
  • the HRV index input to the discriminant model was all of (1) to (11) above.
  • the identification model of the fourth method is SVM different from RNN as shown in Patent Document 1.
  • a heartbeat for 3 minutes was measured, and a feature vector composed of a plurality of HRV indexes calculated at each calculation was input to the SVM. At this time, the fourth method does not determine the normal value of the measured heartbeat.
  • the continuous HRV index is calculated from the continuous RRI measured in the first fixed period (here, 180 seconds) to obtain the feature vector, and the second was input to the LSTM every fixed period (here, 60 seconds). Also in the fifth method, a normal value determination was performed on the measured RRI, and the HRV index obtained from the RRI in a fixed period consisting of only the normal RRI was input to the discrimination model.
  • FIGS. 7 to 11 were obtained by the first method to the fifth method, respectively.
  • the left side of each figure shows the AS ratio of each subject at the time of learning the discrimination model, and the right side shows the AS ratio of each subject as a determination result using the learned discrimination model.
  • the threshold of the AS ratio between the SAS patient and the non-SAS patient was set at the time of learning the discrimination model. The threshold value was used in the determination process.
  • the discriminant model was learned and judged using the electrocardiographic measurement results of the group of subjects whose attributes are shown in Fig. 6.
  • the subjects who measured the RRI data used for learning the discriminant model in each determination method were 13 SAS patients and 18 non-SAS patients.
  • the subjects who measured the RRI data used for the determination process were 11 SAS patients and 17 non-SAS patients.
  • “AHI (Apnea Hypopnea Index)” in FIG. 6 is an index of the severity of SAS, and is defined as the number of occurrences of an apnea condition of 10 seconds or more per hour, and SAS is AHI ⁇ 15. Has been diagnosed.
  • the evaluation values shown in FIG. 12 are the sensitivity SE, the specificity SP, the positive reactive intermediate degree PO, and the negative reactive intermediate degree NE, which are represented by the following equations (1) to (4).
  • a is the number of SAS patients and “positive” subjects
  • b is the number of non-SAS patients and “positive” subjects
  • c is the number of SAS patients and “negative” subjects
  • D represent the number of non-SAS patients and “negative” subjects.
  • “positive” is a subject whose AS ratio is larger than a threshold value (for example, AS ⁇ threshold value TH or AS>threshold value TH), and “negative” is smaller than the threshold value (for example, AS ⁇ threshold value TH or AS ⁇ threshold value TH).
  • SE [%] a/(a+c) ⁇ 100 Equation (1)
  • SP[%] d/(b+d) ⁇ 100 Equation (2)
  • PO [%] a/(a+b) ⁇ 100 Equation (3)
  • NE [%] d/(c+d) ⁇ 100 Equation (4)
  • the evaluation values of the first method to the third method are higher than those of the fourth method.
  • the fourth method is a determination method using a support vector machine for distinguishing an apnea state and a normal breathing state when the HRV index is given in the above Patent Document 1, these first to third methods are used.
  • the evaluation values of the first method and the second method exceed 90%, and the accuracy is very high. Further, the first method is extremely high in accuracy because all evaluation values show 100%. That is, the determination accuracy can be extremely improved by using the LSTM of the RNNs as the identification model. Therefore, it was verified that the first method and the second method are significantly more effective than the conventional determination method.
  • the third method is a method in which the feature vector generation method in the first method is changed from a variable length vector to a fixed length vector.
  • the first method is significantly higher than the third method. Therefore, the determination accuracy is higher when the feature vector is a variable length vector than when it is a fixed length vector. Therefore, it was verified that the variable length vector is more effective than the fixed length vector.
  • the evaluation values of the first method and the second method among the first method to the third method are significantly higher than those of the fifth method, and the judgment accuracy is higher than that of the fifth method. Therefore, even if the identification method is changed from SVM to RNN in the fourth method, it is verified that the first method and the second method of the proposed method are significantly effective.
  • the first method and the fifth method are different only in that the input to the LSTM, which is the identification model, is the RRI and the HRV index. All the evaluation values of the first method are significantly higher than those of the fifth method, and the determination accuracy is higher than that of the fifth method. Therefore, it was verified that RRI is more effective than the HRV index as the input to the LSTM. Furthermore, since the second method has the same RNN as the identification model and a different Simple RNN from the first method, the determination accuracy is slightly inferior to the first method, but all evaluation values are higher than the fifth method. Therefore, it was verified that the input to the RNN is not limited to the LSTM and the RRI is more effective than the HRV index.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

睡眠時無呼吸症候群判定装置は、被験者の睡眠期間における心拍間隔(R-RInterval: RRI)を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する処理部(10)を備え、処理部は、睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成し、再帰型ニューラルネットワークに特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出し、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定する、よう動作する。

Description

睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラム
 本開示は、睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラムに関する。本出願は、2019年2月13日出願の日本出願第2019-023217号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 睡眠時無呼吸症候群(Sleep Apnea Syndrome; SAS)とは、睡眠時に呼吸停止又は呼吸量が減少する(以下、この状態を無呼吸とも言う)疾患である。具体的には、無呼吸が7時間の睡眠中に30回以上、又は、1時間あたり5回以上生じる症状である。無呼吸は、睡眠中に生じる10秒以上の気流停止状態を指す。
特開2016-214491号公報
 特許文献1は、心拍計測器で得られる被験者の心拍データから心拍変動(HRV:Heart Rate Variability)指標を算出し、心拍変動指標に基づいて、睡眠中における所定期間ごとに被験者が無呼吸又は低呼吸であるか正常呼吸であるかを識別するものである。これにより、被験者の呼吸状態の時間的な変動を知ることができる。
 SASは、日中の過度な眠気及び集中力の低下をもたらすため、交通事故のリスク要因になる。また、SASは、様々な生活習慣病及びその重症化の原因となり、循環器障害、糖代謝異常、脂肪代謝異常などを引き起こすことが知られている。そのため、SASであるか否かの判定が高精度で行われることが望まれる。
 そこで、本願発明者らは、特許文献1のような睡眠期間中における所定期間ごとの呼吸状態を判定する手法を応用して、さらに、被験者がSASであるか否かを高精度で判定できる手法を提案する。
 ある実施の形態に従うと、睡眠時無呼吸症候群判定装置は、被験者の睡眠期間における心拍間隔(R-R Interval: RRI)を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する処理部を備え、処理部は、睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成し、再帰型ニューラルネットワークに特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出し、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定する、よう動作する。
 他の実施の形態に従うと、睡眠時無呼吸症候群判定方法は、被験者の睡眠期間における心拍間隔を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する方法であって、睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成するステップと、再帰型ニューラルネットワークに特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出するステップと、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定するステップと、を備える。
 他の実施の形態に従うと、睡眠時無呼吸症候群判定プログラムは、コンピュータに、被験者の睡眠期間における心拍間隔を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する処理を実行させるプログラムであって、睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成するステップと、再帰型ニューラルネットワークに特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出するステップと、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定するステップと、を実行させる。
図1は、実施の形態に係る睡眠時無呼吸判定装置(以下、判定装置)を備えるシステムの構成の概略を示す図である。 図2(a)は心電信号の一例を示す図であり、図2(b)はR波データを示す図である。 図3は、特徴ベクトルを説明するための図である。 図4は、判定装置での判定処理の流れを表したフローチャートである。 図5は、発明者らによる評価試験で評価された各手法の判定条件を表した図である。 図6は、評価試験における被験者の属性を示した図である。 図7は、評価試験における第1手法での判定結果を示した図である。 図8は、評価試験における第2手法での判定結果を示した図である。 図9は、評価試験における第3手法での判定結果を示した図である。 図10は、評価試験における第4手法での判定結果を示した図である。 図11は、評価試験における第5手法での判定結果を示した図である。 図12は、評価試験における各手法での判定結果の評価値を示した図である。
[1.睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラムの概要]
(1)本実施の形態に含まれる睡眠時無呼吸症候群判定装置は、被験者の睡眠期間における心拍間隔(R-R Interval: RRI)を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する処理部を備え、処理部は、睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成し、再帰型ニューラルネットワークに特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出し、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定する、よう動作する。
 本願発明者らによる評価試験の結果、識別モデルとして再帰型ニューラルネットワークを採用することが、再帰型ニューラルネットワーク以外の識別モデルに対して心拍間隔から算出された指標値を入力するより格段に判定精度が向上することが検証された。従って、この睡眠時無呼吸症候群判定装置は、高精度でSAS患者を判定することができる。
(2)好ましくは、再帰型ニューラルネットワークは、特徴ベクトルが入力されたことに応答して識別対象期間の睡眠状態を示す値を出力するよう予め機械学習により学習されている。本願発明者らによる評価試験の結果、識別対象期間の複数の心拍間隔を含む特徴ベクトルを入力値とし、特徴ベクトルが入力されたことに応答して識別対象期間の睡眠状態を示す値を出力するよう予め機械学習により学習されている再帰型ニューラルネットワーク採用することが、再帰型ニューラルネットワーク以外の識別モデルに対して心拍間隔から算出された指標値を入力するより格段に判定精度が向上することが検証された。従って、この睡眠時無呼吸症候群判定装置は、高精度でSAS患者を判定することができる。
(3)好ましくは、再帰型ニューラルネットワークはLSTMで(Long Short-Term Memory)ある。本願発明者らが再帰型ニューラルネットワークの中で高い性能を誇ることが知られているLSTMを用いて評価試験を行った結果、再帰型ニューラルネットワークとしてLSTMを用いることによって、より判定精度が向上することが検証された。
(4)好ましくは、識別対象期間は固定の期間長を有し、特徴ベクトルは、識別対象期間の複数の心拍間隔それぞれを示すRRIデータ群の時系列からなる可変長ベクトルである。本願発明者らによる評価試験の結果、特徴ベクトルを可変長とする方が固定長とするよりも、より判定精度が向上することが検証された。
(5)好ましくは、処理部は、再帰型ニューラルネットワークに特徴ベクトルを入力する際に、心拍間隔の異常値を示す閾値より大きい心拍間隔を含む複数の心拍間隔から生成された特徴ベクトルを再帰型ニューラルネットワークに入力しない。これにより、入力値が正常値であるか否かの判定(正常値判定)を行った結果、正常値と判定された心拍間隔のみから生成された特徴ベクトルのみ再帰型ニューラルネットワークに入力される。本願発明者らによる評価試験の結果、正常値判定を行うことによってより判定精度が向上することが検証された。
(6)好ましくは、特徴ベクトルを生成することは、複数の心拍間隔それぞれの値を標準化することを含む。これにより、被検者の個人差が排除され、判定精度を向上させることができる。
(7)好ましくは、指標は、睡眠期間に対する無呼吸状態の期間の比率であり、判定するステップでは、比率が睡眠時無呼吸症候群であることを示す閾値より大きい場合に、被験者を睡眠時無呼吸症候群であると判定する。これにより、被験者がSASであるか否かが容易に判定される。
(8)本実施の形態に含まれる睡眠時無呼吸症候群判定方法は、被験者の睡眠期間における心拍間隔を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する方法であって、睡眠期間における識別対象期間の複数の心拍間隔を含む特徴ベクトルを生成するステップと、特徴ベクトルが入力されたことに応答して当該特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間の睡眠状態を示す値を出力するよう予め機械学習により学習された再帰型ニューラルネットワークに特徴ベクトルを入力するステップと、入力に応答して再帰型ニューラルネットワークの出力する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出するステップと、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定するステップと、を備える。この方法は、(1)~(7)の睡眠時無呼吸症候群判定装置における判定方法である。そのため、この方法は(1)~(7)の睡眠時無呼吸症候群判定装置と同じ効果を奏する。
(9)本実施の形態に含まれる睡眠時無呼吸症候群判定プログラムは、コンピュータに、被験者の睡眠期間における心拍間隔を示すRRIデータを用いて被験者が睡眠時無呼吸症候群であるか否かを判定する処理を実行させるプログラムであって、睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成するステップと、特徴ベクトルが入力されたことに応答して当該特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間の睡眠状態を示す値を出力するよう予め機械学習により学習された再帰型ニューラルネットワークに特徴ベクトルを入力するステップと、入力に応答して再帰型ニューラルネットワークの出力する識別対象期間ごとの値から、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出するステップと、指標に基づいて、被験者が睡眠時無呼吸症候群であるか否かを判定するステップと、を実行させる。このプログラムによりコンピュータを(1)~(7)の睡眠時無呼吸症候群判定装置として機能させることができる。そのため、このプログラムは(1)~(7)の睡眠時無呼吸症候群判定装置と同じ効果を奏する。
[2.睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラムの例]
 図1に示された、本実施の形態に係る睡眠時無呼吸判定装置1を備えるシステム100は、睡眠時無呼吸判定装置(以下、「判定装置」という)1と心拍計測器2とを含む。判定装置1と心拍計測器2とは互いに通信可能である。通信は、無線通信であってもよいし、有線通信であってもよい。
 心拍計測器2は、被験者Pの身体に取り付けられ、被験者Pの心拍を計測するための小型軽量なウェアラブル端末である。心拍計測器2には、被験者Pの体表に取り付けられる複数(図1では3つ)の電極21Aが接続されている。3つの電極21Aは、たとえばプラス電極、マイナス電極、及び、接地電極である。なお、心拍計測器2として機能するウェアラブル端末としては、例えば、心拍計測機能を有するスマートウォッチがあげられる。なお、ウェアラブル端末自体が、判定装置1及び心拍計測器2として機能してもよい。
 図2(a)の縦軸は電位、横軸は時間を示している。電極21Aを用いて心拍を計測すると、図2(a)に示されたように、心電信号には、P~T波からなる電位変化が周期的に現れる。単位周期の電位変化の中で最も電位の高いピークをR波といい、R波のタイミングで心室筋が収縮する。心拍計測器2は、心拍データを判定装置1に送信する。心拍データは、一例としてRRIデータである。RRIデータはRRI(R-R Interval)を示す。
 RRIは、R波から得られる特徴値である。図2(a)の心電信号に対応するRRIデータは、図2(b)に示されたように、心電信号におけるR波に対応する期間(信号強度Iが所定の強度閾値Ithを超える期間)が「1」に設定され、それ以外の期間が「0」に設定された矩形パルス列における、R波の各間隔であるRRIを示す。
 判定装置1は、心拍計測器2から送信された被験者Pの睡眠期間におけるRRIデータを受信し、RRIデータを用いて判定処理を実行することで、被験者Pが睡眠時無呼吸症候群であるか否かを判定する。
 なお、他の例として、心拍計測器2から送信される心拍データは、心電波形を表す数値群、又は、心電波形そのものを示すデータであってもよい。この場合、判定装置1は、心拍計測器2から受信したデータからRRIを算出し、後述の判定処理に用いる。
 図1に示されたように、判定装置1は、処理部10及び記憶装置20を備えるコンピュータによって構成される。記憶装置20は、処理部10に接続されている。処理部10は、例えば、CPU(Central Processing Unit)である。判定装置1は、心拍計測器2との間で通信するための通信部30をも備える。通信部30は、Bluetooth(登録商標)などの近距離無線通信のための通信機構であってもよいし、無線LAN(Local Area Network)のための通信機構であってもよい。通信部30は、処理部10に接続されている。通信部30は、心拍計測器2からの心拍データを入力する入力部として機能する。
 判定装置1を構成するコンピュータは、例えば、スマートフォン、タブレットなどのモバイル端末であるのが好ましい。この場合、被験者Pが保有するモバイル端末を判定装置1として活用できて、好ましい。なお、モバイル端末は、スマートウォッチなどのウェアラブルデバイスであってもよい。判定装置1を構成するコンピュータは、複数であってもよい。例えば、判定装置1は、複数台のモバイル端末の連携によって構成されてもよい。複数台のモバイル端末は、例えば、スマートフォン及びスマートウォッチである。
 また、判定装置1を構成するコンピュータは、インターネット等のネットワーク上のサーバコンピュータであってもよい。この場合、被験者Pの心拍計測器2から送信されたRRIデータは、インターネット等のネットワークを介して、サーバコンピュータに送信される。サーバコンピュータが睡眠時無呼吸症候群であるか否かを判定する場合には、ネットワークを介して、被験者Pの端末(モバイル端末等)へ報知すればよい。
 判定装置1の記憶装置20には、判定処理を処理部10に実行させるためのコンピュータプログラム21が記憶されている。処理部10が、コンピュータプログラム21を実行することで、コンピュータは、判定装置1として機能する。
 判定処理は、被験者Pの睡眠期間におけるRRIデータを用いて被験者Pが睡眠時無呼吸症候群であるか否かを判定する処理であって、生成処理と、識別処理と、算出処理と、を含む。
 生成処理は、睡眠期間における所定期間のRRIデータ群から特徴ベクトルを生成する処理である。特徴ベクトルは、後述する識別処理に入力値として用いられるものであって、上記所定期間における被験者の睡眠状態を示す複数の特徴を1つにまとめたものである。処理部10は、生成処理を実行する生成部11として機能する。すなわち、後述する識別処理の対象となる期間である識別対象期間として、予め規定された期間が設定され、その識別対象期間内に測定された心電波形からRRIを時系列に並べて特徴ベクトルとする。
 固定された期間である識別対象期間に測定されるRRIの数は、一定数ではない。そのため、特徴ベクトルの要素数は可変である。つまり、生成される特徴ベクトルは可変長ベクトルとなる。心拍計測器2で、期間T1,T2について図3に示された心電波形が測定され、RRIデータが得られた場合、生成部11は、下に示された期間T1,T2における特徴ベクトルFV1,FV2を生成する。
   FV1={925,905,…,885}
   FV2={935,…,915}
 好ましくは、生成処理は、RRIが正常値であるか否かを判定する正常値判定処理を含む。生成部11は、正常値判定処理を実行する正常値判定部12を含む。正常値判定部12は、RRIの閾値(例えば、2000msec)を予め記憶しておき、RRIと比較して異常、正常を判定する。RRIの異常値は、例えばアーチファクトなどの要因で発生する。生成部11は、睡眠期間における各識別対象期間のうち、含まれるすべてのRRIが正常と判定された識別対象期間のみ特徴ベクトルを生成し、1つでも異常なRRIが含まれた識別対象期間については特徴ベクトルを生成しない。又は、生成された特徴ベクトルのうち、1つでもRRIが異常と判定された識別対象期間についての特徴ベクトルについては、判定処理に用いる特徴ベクトルとしない。正常値判定が行われることによって、生成された特徴ベクトルは異常値を含まなくなる。つまり、正常な値のRRIからなる特徴ベクトルのみ判定処理に用いられる。その結果、判定精度を向上させることができる。
 なお、特徴ベクトルの生成方法としては、固定数の連続するRRIを用いて生成する方法であってもよい。この場合、特徴ベクトルの要素数は一定となって特徴ベクトルは固定長となる。逆に、識別対象期間は可変長となる。
 この場合、固定数の連続するRRIの中に期外収縮による異常値が含まれると、期外収縮自体が一拍分とカウントされるため、その固定数のRRIに対応する識別対象期間は、期外収縮が生じなかった場合の識別対象期間より短くなる。
 係る点を考慮すると、判定装置1では、固定数のRRIを用いるより、固定長の期間である識別対象期間に含まれる連続する複数のRRIから可変長の特徴ベクトルを生成して判定処理に用いることが好ましい。なお、特徴ベクトルが可変長である場合、識別モデルとしては可変長ベクトルが入力可能である再帰型ニューラルネットワーク(以下、RNNとも表す)が用いられる。
 好ましくは、生成処理は、識別対象期間のRRI群を標準化する標準化処理を含む。生成部11は、標準化処理を実行する標準化処理部13を含む。標準化処理は、例えば、正規化処理であって、例えば、識別対象期間のRRI群を、下の式を用いて、所定期間におけるRRIの平均が0、分散が1のデータに変換する処理である。これにより、被検者の個人差が排除され、判定精度を向上させることができる。
    zi=(xi-μ)/σ
 (xiは各RRI、μは平均値、σは標準偏差を表す。)
 なお、特徴ベクトルの他の例として、複数のHRV指標からなるベクトルとすることも考えられる。HRV指標は、例えば、以下の(1)~(11)のうちの2以上の指標とすることができる。HRV指標を用いた睡眠状態の識別は、一例として、被験者が無呼吸であるか正常呼吸であるかを睡眠中の各時間について識別し、被験者が無呼吸であるか正常呼吸であるかの時間的変動を取得する判定手法において行われる。この判定手法では、識別モデルの一例として、HRV指標が与えられると無呼吸の状態と正常呼吸の状態とを識別するサポートベクタマシンが用いられる。
(1)meanNN:RRIの平均。
(2)SDNN:RRIの標準偏差。
(3)Total Power:RRIの全パワースペクトル。
(4)RMSSD:n番目のRRIとn+1番目のRRIの差の2乗の平均値の平方根。
RRIの変動が多いと値は大きくなり、自律神経系の活動の指標となる。
(5)NN50:n番目とn+1番目のRRIの差異が50ミリ秒を超えた数。普通のRRIの変動は50ミリ秒以下であり、NN50は激しい変動の指標となる。
(6)pNN50:NN50の値の全R波の数に対する割合。NN50は回数なので、一般に窓幅が長ければ大きな値となってしまう。pNN50を考えることで、大きな変動が起こる割合を把握できる。
(7)LF:LF帯(0.04Hz~0.15Hz)の周波数帯のパワースペクトル。LFは主に交感神経系の活動の指標とされる。
(8)HF:HF帯(0.15Hz~0.4Hz)の周波数帯のパワースペクトル。HFは主に副交感神経系の活動の指標とされる。
(9)LF/HF:LF/HFで定義されるLFとHFとの比で、交感神経系と副交感神経系との活動状況の比と考えられる。LF/HFは、交感神経優位で値が大きくなり、副交感神経優位で値が小さくなる。
(10)LFnu:LF/(LF+HF)で定義される補正LF。交感神経活動の変化を強調する。
(11)HFnu:HF/(LF+HF)で定義される補正HF。副交感神経活動の変化を強調する。
 ここで、RRIは被験者の心電波形から直接求められる値であり、連続するRRIは被験者の睡眠期間中の心電波形の特徴を直接的に表している値群であると言える。発明者らは、HRV指標がRRI又はRRIに関連した値から算出される指標であるため、RRIほど直接的に表してはいないと分析した。そこで、発明者らはこの分析に立ち、RRIそのものから特徴ベクトルを生成して後述の識別処理に用いることにした。これにより、HRV指標から生成された特徴ベクトルを用いるよりも、より直接的な心電波形の特徴を後述の識別処理に用いることになる。その結果、判定精度を向上させることができる。
 識別処理は、識別対象期間ごとに睡眠状態が無呼吸状態であるか正常状態であるかを識別する処理である。処理部10は、識別処理を実行する識別部14として機能する。識別部14は識別モデル15を含む。識別モデル15は、特徴ベクトルが入力されたことに応答して当該特徴ベクトルに対応する識別対象期間の睡眠状態を示す値を出力するよう予め機械学習により学習されている。
 識別モデル15は、例えば、図3に示された特徴ベクトルFV1,FV2を学習用の特徴ベクトルとすると、特徴ベクトルFV1,FV2の入力に対して、それぞれ、例えば、無呼吸状態を示す「1」、及び、正常呼吸状態を示す「0」を出力するように学習されている。無呼吸状態は、無呼吸又は低呼吸の状態を指す。無呼吸の状態は、10秒以上換気が停止する状態と定義されている。低呼吸の状態は、呼吸気流が50%以上低下した状態が10秒以上継続する状態と定義されている。これにより、識別対象期間ごとに、呼吸状態を示す値の出力が得られる。
 判定装置1においては、識別モデル15として再帰型ニューラルネットワーク(RNN)を利用する。RNNは、例えば、Simple RNN(単純再帰型ニューラルネットワーク)、LSTM(Long Short-Term Memory)、GRU(Gated Recurrent Unit)、Bi-directional RNN、Attention RNN、QRNN(Quasi-Recurrent Neural Network)などである。
 なお、RNNとは異なる識別モデルの他の例として、SVM(Support Vector Machine)が挙げられる。SVMは、上記の特許文献1において用いられている。従って、識別モデル15としてSVMのようなRNNではないモデルを用いることも考えられる。
 ここで、RNNは、ニューラルネットワークのうち、入力値から出力値に至る中間層のうちのある層の出力が、次の入力値から出力値に至る中間層の入力に利用されるモデルである。言い換えると、ニューラルネットワークの出力を別のネットワークの入力として利用するような再帰的構造を持ったニューラルネットワークである。RNNでは中間層同士が時系列に沿って直線的に結合されている。そのため、RNNでは、ある時点の入力値が、その時点以降の入力値に対する出力値に影響を及ぼす。つまり、RNNは過去のデータを基に予測する、言い換えると、時系列データに基づいた学習を行うモデルである。この点がSVMのようなRNNではないモデルとは異なる。
 この点、判定装置1は、識別モデル15に識別対象期間のRRIを時系列に並べて構成される特徴ベクトルを入力する。そのため、識別モデル15への入力値は時間的な連続を有する。連続するRRIは被験者の睡眠状態を連続して表している値であるため、連続するRRIは時系列的な関連を有している。そこで、発明者らは、このような特徴ベクトルを用いる場合には、時系列データに基づいた学習を行うRNNの方が、そうでないSVMのようなモデルよりも、連続した生体反応に対応した値をより高精度に出力するとの結論に達した。そこで、識別モデル15としてRNNを利用することとした。
 識別部14は、識別モデル15に睡眠期間における所定期間ごとの特徴ベクトルを入力し、識別モデル15から識別対象期間ごとの値の出力を得る。識別対象期間ごとの値は、例えば、上記の、無呼吸状態を示す「1」、及び、正常呼吸状態を示す「0」である。
 算出処理は、睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出する。処理部10は、算出処理を実行する算出部16として機能する。指標は、例えば、下の式で表される、睡眠期間tに対する無呼吸状態の期間taの比であるAS(Apnea/Sleep)比Aである。無呼吸状態の期間taは、無呼吸状態と識別された識別対象期間の合計である。なお、指標はAS比に限定されず、他の例として、正常呼吸状態の期間に対する無呼吸状態の期間の比率であってもよい。
    A=ta/t×100[%]
 判定処理においては、算出された指標の指標値(AS比)Aと、SASと判定し得る閾値THとの比較に基づいて被験者PがSASであるか否かを判定する。処理部10は、この判定を行う判定部17として機能する。判定部17は、AS比Aが閾値TH以上の場合(A≧TH)に、被験者PをSASと判定する。そうでない場合(A<TH)には、被験者PをSASではないと判定する。AS比Aを用いることにより、被験者PがSASであるか否かが容易に判定される。
 システム100のユーザ(被験者P)は、心拍計測器2を身体に取り付け、判定装置1を枕元等の心拍計測器2と通信可能な位置に配置して就寝する。そして、判定装置1では、図4のフローチャートに示される方法で被験者PがSASであるか否かが判定される。
 図4を参照して、心拍計測器2によって測定された被験者PのRRIデータが判定装置1に入力される(ステップS101)。心拍計測器2による心拍の計測は被験者Pが起床するまで行われ、ステップS101では被験者Pが起床するまでのRRIデータが入力される。
 判定装置1の処理部10は、識別対象期間ごとのRRIデータを時系列に並べて特徴ベクトルを生成する(ステップS103)。その際、処理部10は、RRIデータの示す値(RRI)それぞれについて予め記憶している閾値と比較して正常値であるか否かを判定する(ステップS1031)。そして、すべて正常値である識別対象期間について特徴ベクトルを生成する。また、処理部10は、識別対象期間内のRRIを正規化し(ステップS1033)、正規化したRRIで特徴ベクトルを生成する。
 処理部10は、各識別対象期間について生成された特徴ベクトルを再帰型ニューラルネットワークである識別モデル15に入力する(ステップS105)。これにより、再帰型ニューラルネットワークからの出力値として、識別対象期間ごとに睡眠状態が無呼吸状態であるか正常呼吸状態であるかを示す値を得ることができる。
 処理部は、睡眠期間全体tについて無呼吸状態の期間taを参照して、睡眠期間全体tに対する割合であるAS比Aを算出する(ステップS107)。AS比Aが予め記憶している閾値TH以上(A≧TH)である場合(ステップS109でYES)、処理部10は、被験者PがSASである(SAS患者)とする判定結果を出力する(ステップS111)。そうでない場合(A<TH)(ステップS109でNO)、処理部10は、被験者Pが正常である(非SAS患者)とする判定結果を出力する(ステップS113)。
 判定装置1が表示装置などの出力装置に接続されている場合、ステップS111又はステップS113の判定結果は、出力装置に送信されてもよい。これにより、表示などの出力装置での出力によって被験者PがSASであるか否かの判定結果を知ることができる。又は、判定結果は、通信部30から他の装置に送信されてもよい。他の装置としては、例えば、被験者Pのウェアラブル端末、医療機関の所有するサーバ装置、などである。これにより、他の装置を用いて被験者PがSASであるか否かの判定結果を知ることができる。
[3.評価試験]
 発明者らは、上記の実施の形態に係る睡眠時無呼吸症候群の判定方法(以下、「提案手法」という)の性能を評価するために、臨床データを用いた評価試験を実施した。評価試験では、図5に示された判定条件での第1手法~第5手法でSASか否かの判定を行った。第1手法~第3手法は提案手法であり、第4手法及び第5手法は評価の基準として用いる比較例としての判定方法である。
 図5において、「入力値」は識別モデルへの入力に用いた値を示し、「識別モデル」は、所定期間の睡眠状態を識別するために用いた識別モデルを示している。また、「入力方法」は、特徴ベクトルの生成に用いるRRIの測定の仕方を示している。
 第1手法~第3手法では、「入力値」としてRRIデータから特徴ベクトルを生成して再帰型ニューラルネットワーク(RNN)である識別モデルに入力した。第1手法及び第3手法の識別モデルはRNNのうちのLSTMである。第2手法の識別モデルでは、RNNの他の例としてSimple RNNを用いた。なお、第1手法及び第2手法における特徴ベクトルは、固定の識別対象期間から得られた連続するRRIを用いた可変長ベクトルとした。識別対象期間の長さは60秒とした。
 第3手法における特徴ベクトルは、固定数の連続するRRIを用いた、固定長ベクトルとした。固定数は、計算時直前の60個とした。なお、第1手法~第3手法では、特徴ベクトルの際に、RRIに対して正常値判定を行い、正常値であるRRIのみからなる識別対象期間のRRIから得られた特徴ベクトルを識別モデルに入力した。
 第4手法は、上記の特許文献1で採用されている、HRV指標が与えられると無呼吸の状態と正常呼吸の状態とを識別するサポートベクタマシン(SVM)を用いた判定手法である。第5手法は、第4手法で用いた識別モデルを、SVMから提案手法で用いたRNNに変更した手法である。また、第5手法は、第1手法の識別モデルへの入力値をRRIからHRV指標に変更した手法でもある。
 第4手法及び第5手法では、RRIとは異なるHRV指標を識別モデルに入力した。識別モデルに入力したHRV指標は、上記の(1)~(11)のすべてとした。
 第4手法の識別モデルは、特許文献1に示された通り、RNNとは異なるSVMとした。第4手法では、特許文献1に示された通り、3分間の心拍を測定し、各計算時に算出される複数のHRV指標からなる特徴ベクトルをSVMに入力した。このとき、第4手法では、測定した心拍の正常値判定は行っていない。
 第5手法では、第1手法の特徴ベクトルの生成と同様に、第1の固定期間(ここでは180秒)に測定された連続したRRIから連続したHRV指標を算出して特徴ベクトルとし、第2の固定期間(ここでは60秒)ごとにLSTMに入力した。第5手法でも、測定されたRRIに対して正常値判定を行い、正常値であるRRIのみからなる固定期間のRRIから得られたHRV指標を識別モデルに入力した。
 第1手法~第5手法によって、それぞれ、図7~図11に示された結果が得られた。各図の左側は識別モデル学習時の各被験者のAS比を表し、右側は学習済の識別モデルを用いた判定結果として各被験者のAS比を表している。識別モデルの学習時にSAS患者と非SAS患者とのAS比の閾値を設定した。判定処理では、その閾値を用いた。
 図6に属性が示された被験者群の心電の測定結果を用いて識別モデルの学習及び判定を行った。各判定方法での識別モデルの学習に用いたRRIデータを測定した被験者は、SAS患者13人、及び、非SAS患者18人である。また、判定処理に用いたRRIデータを測定した被験者は、SAS患者11人、及び、非SAS患者17人である。なお、図6における「AHI(Apnea Hypopnea Index)」は、SASの重症度の指標であって、1時間あたりの10秒以上の無呼吸状態の発生回数と定義されており、AHI≧15でSASと診断されている。
 図7~図11の右側に示された判定結果から、図12に示されたように、各試験の評価値を算出した。図12に示された評価値は、下の式(1)~(4)で示された感度SE、特異度SP、陽性反応的中度PO、及び、陰性反応的中度NE、である。なお、式(1)~(4)において、aはSAS患者かつ「陽性」の被験者数、bは非SAS患者かつ「陽性」の被験者数、cはSAS患者かつ「陰性」の被験者数、及び、dは非SAS患者かつ「陰性」の被験者数を示す。ここで、「陽性」はAS比が閾値より大きい(例えばAS≧閾値TH、又は、AS>閾値TH)被験者、「陰性」は閾値より小さい(例えばAS<閾値TH、又は、AS≦閾値TH)被験者とする。
    SE[%]=a/(a+c)×100  …式(1)
    SP[%]=d/(b+d)×100  …式(2)
    PO[%]=a/(a+b)×100  …式(3)
    NE[%]=d/(c+d)×100  …式(4)
 図12を参照し、第1手法~第3手法と、第4手法とを比較すると、第1手法~第3手法は、いずれの評価値も第4手法より高い。第4手法は上記の特許文献1における、HRV指標が与えられると無呼吸の状態と正常呼吸の状態とを識別するサポートベクタマシンを用いた判定手法であるため、これら第1手法~第3手法は従来の判定手法より判定精度が高い。つまり、時系列に連続するRRIからなる特徴ベクトルをRNNに入力して得られた識別結果を用いて判定処理を行う判定方法(第1手法~第3手法)は、HRV指標をSVMに入力して得られた識別結果を用いた従来の判定方法より効果的であることが検証された。
 特に、第1手法及び第2手法は、いずれの評価値も90%を超える値であり、非常に精度が高い。さらに、第1手法は、すべての評価値が100%を示し、極めて高精度である。すなわち、識別モデルとしてRNNのうちの特にLSTMを用いることで、判定精度を極めて向上させることができる。従って、第1手法及び第2手法は従来の判定方法と比較して格段に効果的であることが検証された。
 なお、第3手法は第1手法における特徴ベクトルの生成方法を、可変長ベクトルから固定長ベクトルに変更したものである。これら手法の各評価値を比較すると第1手法が第3手法より格段に高いため、特徴ベクトルを可変長ベクトルとした方が固定長ベクトルとするより判定精度が高い。従って、特徴ベクトルを可変長ベクトルとした方が固定長ベクトルとするよりも効果的であることが検証された。
 なお、第1手法~第3手法のうち第1手法及び第2手法の各評価値は、第5手法より格段に高く、第5手法より判定精度が高い。そのため、仮に、第4手法において、識別モデルをSVMからRNNに変更した場合であっても、提案手法の第1手法及び第2手法は格段に効果的であることが検証された。
 また、第1手法と第5手法とは、識別モデルであるLSTMへの入力がRRIである点とHRV指標である点とのみが異なる。第1手法のすべての評価値は第5手法より格段に高く、第5手法より判定精度が高い。そのため、LSTMへの入力は、HRV指標よりRRIの方が効果的であることが検証された。さらに、第2手法は、識別モデルが同じRNNであって第1手法とは異なるSimple RNNであるために、判定精度が第1手法からやや劣るものの、すべての評価値が第5手法より高い。そのため、LSTMに限定されず、RNNへの入力もHRV指標よりRRIの方が効果的であることが検証された。
 本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。
1     :睡眠時無呼吸判定装置(判定装置)
2     :心拍計測器
10    :処理部
11    :生成部
12    :正常値判定部
13    :標準化処理部
14    :識別部
15    :識別モデル
16    :算出部
17    :判定部
20    :記憶装置
21    :コンピュータプログラム
21A   :電極
30    :通信部
100   :システム
A     :AS比
FV1   :特徴ベクトル
FV2   :特徴ベクトル
I     :信号強度
P     :被験者
T1    :期間
T2    :期間
TH    :閾値

Claims (9)

  1.  被験者の睡眠期間における心拍間隔(R-R Interval: RRI)を示すRRIデータを用いて前記被験者が睡眠時無呼吸症候群であるか否かを判定する処理部を備え、
     前記処理部は、
     前記睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成し、
     再帰型ニューラルネットワークに、前記特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、前記睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出し、
     前記指標に基づいて、前記被験者が睡眠時無呼吸症候群であるか否かを判定する、よう動作する
     睡眠時無呼吸症候群判定装置。
  2.  前記再帰型ニューラルネットワークは、特徴ベクトルが入力されたことに応答して前記識別対象期間の睡眠状態を示す値を出力するよう予め機械学習により学習されている
     請求項1に記載の睡眠時無呼吸症候群判定装置。
  3.  前記再帰型ニューラルネットワークはLSTM(Long Short-Term Memory)である
     請求項1又は2に記載の睡眠時無呼吸症候群判定装置。
  4.  前記識別対象期間は固定の期間長を有し、
     前記特徴ベクトルは、前記識別対象期間の前記複数の心拍間隔それぞれを示すRRIデータ群の時系列からなる可変長ベクトルである
     請求項1~請求項3のいずれか一項に記載の睡眠時無呼吸症候群判定装置。
  5.  前記処理部は、前記再帰型ニューラルネットワークに前記特徴ベクトルを入力する際に、心拍間隔の異常値を示す閾値より大きい心拍間隔を含む前記複数の心拍間隔から生成された前記特徴ベクトルを入力しない
     請求項1~請求項4のいずれか一項に記載の睡眠時無呼吸症候群判定装置。
  6.  前記特徴ベクトルを生成することは、前記複数の心拍間隔それぞれの値を標準化することを含む
     請求項1~請求項5のいずれか一項に記載の睡眠時無呼吸症候群判定装置。
  7.  前記指標は、前記睡眠期間に対する前記無呼吸状態の期間の比率であり、
     前記判定することは、前記比率が睡眠時無呼吸症候群であることを示す閾値より大きい場合に、前記被験者を睡眠時無呼吸症候群であると判定することを含む
     請求項1~請求項6のいずれか一項に記載の睡眠時無呼吸症候群判定装置。
  8.  被験者の睡眠期間における心拍間隔を示すRRIデータを用いて前記被験者が睡眠時無呼吸症候群であるか否かを判定する方法であって、
     前記睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成するステップと、
     再帰型ニューラルネットワークに、前記特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、前記睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出するステップと、
     前記指標に基づいて、前記被験者が睡眠時無呼吸症候群であるか否かを判定するステップと、を備える
     睡眠時無呼吸症候群判定方法。
  9.  コンピュータに、被験者の睡眠期間における心拍間隔を示すRRIデータを用いて前記被験者が睡眠時無呼吸症候群であるか否かを判定する処理を実行させるプログラムであって、
     前記睡眠期間における連続する複数の心拍間隔を含む特徴ベクトルを生成するステップと、
     再帰型ニューラルネットワークに、前記特徴ベクトルを入力することによって出力される、入力された特徴ベクトルに含まれる複数の心拍間隔に対応する識別対象期間ごとの値から、前記睡眠期間における無呼吸状態の期間と正常呼吸状態の期間との比率に基づく指標を算出するステップと、
     前記指標に基づいて、前記被験者が睡眠時無呼吸症候群であるか否かを判定するステップと、を実行させる
     睡眠時無呼吸症候群判定プログラム。
PCT/JP2020/000529 2019-02-13 2020-01-09 睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラム WO2020166239A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020572122A JP7403166B2 (ja) 2019-02-13 2020-01-09 睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定装置の動作方法、及び、睡眠時無呼吸症候群判定プログラム
US17/430,424 US20220125376A1 (en) 2019-02-13 2020-01-09 Sleep apnea syndrome determination apparatus, sleep apnea syndrome determination method, and sleep apnea syndrome determination program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019023217 2019-02-13
JP2019-023217 2019-10-17

Publications (1)

Publication Number Publication Date
WO2020166239A1 true WO2020166239A1 (ja) 2020-08-20

Family

ID=72044810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000529 WO2020166239A1 (ja) 2019-02-13 2020-01-09 睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラム

Country Status (3)

Country Link
US (1) US20220125376A1 (ja)
JP (1) JP7403166B2 (ja)
WO (1) WO2020166239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711725A (zh) * 2022-04-15 2022-07-08 华南师范大学 一种基于双重注意力机制的睡眠呼吸暂停检测方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214491A (ja) * 2015-05-19 2016-12-22 国立大学法人京都大学 無呼吸識別システム及びコンピュータプログラム
WO2018221750A1 (ja) * 2017-06-02 2018-12-06 学校法人慶應義塾 睡眠判定装置、睡眠判定方法、および、睡眠判定プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150744A1 (ja) * 2008-06-13 2009-12-17 ハートメトリクス株式会社 睡眠状態モニタリング装置、モニタリングシステムおよびコンピュータプログラム
JP6869167B2 (ja) * 2017-11-30 2021-05-12 パラマウントベッド株式会社 異常報知装置、プログラム及び異常報知方法
CN109117730B (zh) * 2018-07-11 2021-05-11 上海夏先机电科技发展有限公司 心电图心房颤动实时判断方法、装置、系统及存储介质
WO2020047750A1 (zh) * 2018-09-04 2020-03-12 深圳先进技术研究院 心律失常的检测方法、装置、电子设备及计算机存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214491A (ja) * 2015-05-19 2016-12-22 国立大学法人京都大学 無呼吸識別システム及びコンピュータプログラム
WO2018221750A1 (ja) * 2017-06-02 2018-12-06 学校法人慶應義塾 睡眠判定装置、睡眠判定方法、および、睡眠判定プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAYAMA, CHIKAO ET AL.: "Application of suppo vector machine to heart rate during sleep for sleep apnea syndrome screening", LECTURE PROCEEDINGS OF THE ANNUAL CONFERENCE OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, vol. 59, 20 May 2015 (2015-05-20), pages 1 - 6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711725A (zh) * 2022-04-15 2022-07-08 华南师范大学 一种基于双重注意力机制的睡眠呼吸暂停检测方法及装置

Also Published As

Publication number Publication date
US20220125376A1 (en) 2022-04-28
JP7403166B2 (ja) 2023-12-22
JPWO2020166239A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
US10321871B2 (en) Determining sleep stages and sleep events using sensor data
US10687757B2 (en) Psychological acute stress measurement using a wireless sensor
US7621871B2 (en) Systems and methods for monitoring and evaluating individual performance
EP1711104B1 (en) Method and apparatus for ecg-derived sleep disordered breathing monitoring, detection and classification
EP2285270B1 (en) Method and system for determining a physiological condition
JP2018524080A (ja) 被検者の生理学的状態を監視する装置及び方法
US11075009B2 (en) System and method for sympathetic and parasympathetic activity monitoring by heartbeat
JP6691334B2 (ja) 睡眠時無呼吸症候群の疑いを検知するためのシステム、処理部及びコンピュータプログラム
JP2016016144A (ja) 生体情報処理システム及び生体情報処理システムの制御方法
JP2016073527A (ja) 睡眠状態判定装置、睡眠状態判定方法および睡眠管理システム
JP6304050B2 (ja) 生体状態推定装置
JP2006271474A (ja) 睡眠状態推定装置
JP2024100764A (ja) 健康状態判定システム、健康状態判定方法及びプログラム
WO2020166239A1 (ja) 睡眠時無呼吸症候群判定装置、睡眠時無呼吸症候群判定方法、及び、睡眠時無呼吸症候群判定プログラム
JP7521836B2 (ja) 睡眠質を点数化する装置、方法及びコンピュータプログラム
JP2017099528A (ja) 生体情報管理システム
EP4327743A1 (en) Sleeping state estimation system
JP7476508B2 (ja) 健康状態判定システム、健康状態判定方法及びプログラム
JP7528643B2 (ja) 測定装置、測定方法、およびプログラム
WO2017180617A1 (en) Psychological acute stress measurement using a wireless sensor
TWI819792B (zh) 基於腦波訊號之睡眠異常偵測方法與其裝置
JP6927492B2 (ja) 睡眠障害を判別する指標の作成方法および作成装置
CN117084646A (zh) 一种基于电子传感的训练伤监测预警方法及系统
WO2023025770A1 (en) Sleep stage determining system
CN118592907A (zh) 基于智能戒指实现用户健康监测的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755899

Country of ref document: EP

Kind code of ref document: A1