WO2020166056A1 - Coating agent, thin film, substrate with thin film, and method for producing thin film - Google Patents

Coating agent, thin film, substrate with thin film, and method for producing thin film Download PDF

Info

Publication number
WO2020166056A1
WO2020166056A1 PCT/JP2019/005518 JP2019005518W WO2020166056A1 WO 2020166056 A1 WO2020166056 A1 WO 2020166056A1 JP 2019005518 W JP2019005518 W JP 2019005518W WO 2020166056 A1 WO2020166056 A1 WO 2020166056A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating agent
thin film
mass
parts
oxide
Prior art date
Application number
PCT/JP2019/005518
Other languages
French (fr)
Japanese (ja)
Inventor
誠之 島田
Original Assignee
誠之 島田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 誠之 島田 filed Critical 誠之 島田
Priority to JP2020572034A priority Critical patent/JP7121149B2/en
Priority to PCT/JP2019/005518 priority patent/WO2020166056A1/en
Publication of WO2020166056A1 publication Critical patent/WO2020166056A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a coating agent, a thin film, a substrate with a thin film, and a method for manufacturing a thin film.
  • Patent Document 1 the mainstream polyphosphoric acid-based flame retardant (Patent Document 1) is usually an aqueous solution in which the polyphosphoric acid-based component elutes in water and the flame-retardant effect cannot be exhibited.
  • the crystal size of the polyphosphoric acid-based component increases to about 30 ⁇ m, but if the crystal size of the polyphosphoric acid-based component is 10 ⁇ m or less, the flame-retardant effect is lost. It cannot be used and cannot be used for thin fibers that easily burn (for example, paragraph 0002 of Patent Document 2).
  • the effect is not obtained unless about 25 to 30% of the polyphosphoric acid component is used with respect to 100% of the total of the polyphosphoric acid component and the fiber (for example, Also, the unit price burden is large due to, for example, Patent Document 3, paragraph 0013).
  • the flame retardant used in the kneading of polyphosphoric acid affects the physical properties of the base material, even if a flame retardant is added, it does not change the physical properties of the base material and does not change the texture. Is required.
  • World Heritage sites there are many tourists, and it is very important to secure time for tourists to escape as a measure against accidents such as a fire.
  • SARS Severe Acute Respiratory Syndrome
  • MERS Middle East Respiratory Syndrome
  • Ebola hemorrhagic fever have a history of increasing damage across countries.
  • the photocatalyst As the photocatalyst has higher capacity, the organic substance of the base material as the base is decomposed, and a countermeasure is required. Further, the photocatalyst changes its catalytic ability depending on the ambient temperature, and the performance deteriorates especially at 10° C. or lower. In addition, since a photocatalyst compatible with visible light has an absorption wavelength range in the visible light wavelength range, the larger the particle size and the higher the degree of coloring, the higher the performance tends to be, and the texture of the base material should not be changed. As for things, it is difficult to use. In addition, if the decomposition function is increased too much, there is a problem that organic substances of the base material that is the base are decomposed.
  • the problem to be solved by the present invention is to provide a coating agent that imparts flame retardancy without changing the texture of the base material that is the base and without damaging the base material.
  • the present invention relates to a coating agent, a thin film, a substrate with a thin film, and a method for producing a thin film, which have the following configurations to solve the above problems.
  • a coating agent comprising a powder of tungsten oxide, silica, tin oxide, molybdenum, selenium, and platinum having an average particle size of 5 nm or less, a powder of graphene having an average thickness of 5 nm or less, and a solvent. ..
  • the coating agent according to the above [1] further containing a phosphorus compound.
  • the coating agent according to [1] or [2] above which comprises a powder having an average particle diameter of 5 nm or less.
  • [5] A thin film-containing substrate containing the thin film according to [4] or [5] above, which has a thickness of 5 to 200 nm.
  • a method for producing a thin film which comprises a step of applying the coating agent according to any one of the above [1] to [3] and then drying it.
  • the present invention [4] it is possible to provide a thin film having flame retardancy on a base material without changing the texture of the base material which is a base and without damaging the base material.
  • the present invention [5] it is possible to provide a base material having flame retardancy without changing the texture of the base material which is the base and without damaging the base material.
  • a flame-retardant base material can be easily produced without changing the texture of the base material and without damaging the base material.
  • the coating agent of the present invention (hereinafter, also referred to as a coating agent) includes a powder of tungsten oxide, silica, tin oxide, molybdenum, selenium, and platinum having an average particle diameter of 5 nm or less, and a graphene having an average thickness of 5 nm or less. And a solvent.
  • a coating agent By including the nanoparticles in the coating agent, it is possible to provide a coating agent that imparts flame retardancy to the substrate without changing the texture of the substrate that is the base and without damaging the substrate. .. If the particles contained in the coating agent are larger than 5 nm, the pores in the thin film formed from the coating agent will be large and the flame retardancy will decrease.
  • the powder having an average particle diameter of 5 nm or less preferably has a small particle diameter, and preferably has an average particle diameter of less than 5 nm.
  • the binder By forming the binder with silica nanoparticles of 5 nanometers or less, the surface area is increased, and all the materials other than silica are also 5 nanometers or less (only graphene has a thickness of 5 nm or less), which is not preferable such as aggregation and sedimentation. It becomes possible to exert a synergistic effect of preferable functions such as conductivity, antibacterial property and deodorant property in addition to flame retardancy while reducing the effect of canceling the function.
  • a powder of tungsten oxide (WO 3 ) having an average particle diameter of 5 nm or less (hereinafter, also referred to as tungsten oxide nanopowder) imparts flame retardancy and visible light photocatalytic property to a thin film formed from a coating agent.
  • the average particle diameter of tungsten oxide is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
  • the average particle diameter is a value based on the number standard measured by the dynamic light scattering method using Zetasizer-nano manufactured by Malvern Panalytical.
  • a powder of silica (SiO 2 ) having an average particle size of 5 nm or less (hereinafter, also referred to as silica nanopowder) imparts flame retardancy to a thin film formed from a coating agent.
  • the average particle size of silica is preferably 1 to 3 nm, more preferably 1 to 2 nm, from the viewpoint of flame retardancy, flame retardancy, and film formation with a uniform thickness.
  • a powder of tin oxide (SnO 2 ) having an average particle diameter of 5 nm or less (hereinafter, also referred to as tin oxide nanopowder) imparts flame retardancy and antistatic property to a thin film formed from a coating agent.
  • the average particle diameter of tin oxide is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
  • a powder of molybdenum having an average particle size of 5 nm or less (hereinafter, also referred to as molybdenum nano powder) imparts flame retardancy, visible light photocatalytic property, antibacterial property, and abrasion resistance to a thin film formed from a coating agent.
  • the average particle size of molybdenum is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
  • a powder of selenium having an average particle size of 5 nm or less (hereinafter, also referred to as selenium nanopowder) imparts flame retardancy and antibacterial property to a thin film formed from a coating agent.
  • the average particle size of selenium is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
  • Powder of platinum with an average particle size of 5 nm or less (hereinafter also referred to as platinum nanopowder) imparts flame retardancy to a thin film formed from a coating agent.
  • the average particle size of platinum is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
  • Powder having an average thickness of graphene of 5 nm or less (hereinafter, also referred to as graphene nanopowder) imparts flame retardancy, visible light photocatalytic property, antistatic property, and abrasion resistance to a thin film formed from a coating agent.
  • An example of the length of graphene is 5 nm to 3 ⁇ m.
  • the average thickness of graphene is preferably 1 to 5 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
  • the amount of the tungsten oxide nanopowder is preferably 1 to 3 parts by mass, more preferably 1.5 to 2.5 parts by mass with respect to 100 parts by mass of the coating agent.
  • the silica nanopowder is preferably 1.0 to 1.5 parts by mass with respect to 100 parts by mass of the coating agent.
  • the tin oxide nanopowder is preferably 0.5 to 1.2 parts by mass, more preferably 0.8 to 1.0 part by mass with respect to 100 parts by mass of the coating agent.
  • the molybdenum nanopowder is preferably 0.02 to 0.05 parts by mass (200 to 500 ppm) with respect to 100 parts by mass of the coating agent.
  • the selenium nanopowder is preferably 0.02 to 0.05 parts by mass (200 to 500 ppm) with respect to 100 parts by mass of the coating agent.
  • the platinum nanopowder is preferably 0.005 to 0.01 parts by mass (50 to 100 ppm) with respect to 100 parts by mass of the coating agent.
  • Graphene nanopowder is preferably 0.005 to 0.01 parts by mass (50 to 100 ppm) per 100 parts by mass of the coating agent.
  • the coating agent further contains a phosphorus compound from the viewpoint of flame retardancy of a thin film formed from the coating agent.
  • a phosphorus compound examples include orthophosphoric acid, calcium phosphate, sodium phosphate, ammonium polyphosphate and the like.
  • the phosphorus compound is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the coating agent, from the viewpoint of flame retardancy of a thin film formed from the coating agent.
  • the phosphorus compounds may be used alone or in combination of two or more.
  • the coating agent further comprises at least one selected from the group consisting of ruthenium, rhodium, palladium, iridium, manganese oxide, iron oxide, copper oxide, silver, gold, niobium oxide, antimony oxide, tantalum oxide, gallium oxide, and sulfur. It is preferable to include a powder of seeds having an average particle diameter of 5 nm or less.
  • ruthenium is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
  • rhodium is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
  • palladium is preferably 0.001 to 0.01 parts by mass with respect to 100 parts by mass of the coating agent.
  • iridium is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
  • manganese oxide (MnO) is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
  • Iron oxide (Fe 2 O 3 ) is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the coating agent, from the viewpoint of visible light photocatalytic property of a thin film formed from the coating agent.
  • Copper oxide (CuO) is preferably 0.01 to 0.1 parts by mass based on 100 parts by mass of the coating agent from the viewpoint of visible light photocatalytic property and antibacterial property of the thin film formed from the coating agent.
  • silver is preferably 0.005 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
  • Gold is preferably 0.001 to 0.01 parts by mass with respect to 100 parts by mass of the coating agent from the viewpoint of antibacterial property and visible light photocatalytic property of a thin film formed from the coating agent.
  • Niobium oxide (Nb 2 O 5 ) is 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the coating agent from the viewpoint of abrasion resistance and visible light photocatalytic property of a thin film formed from the coating agent. Is preferable.
  • Antimony oxide (Sb 2 O 5 ) is 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the coating agent from the viewpoint of flame retardancy and antistatic property of a thin film formed from the coating agent. ,preferable.
  • tantalum oxide (Ta 2 O 5 ) is preferably 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the coating agent.
  • gallium oxide (Ga 2 O 3 ) is preferably 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the coating agent.
  • sulfur is preferably 0.001 to 0.01 parts by mass with respect to 100 parts by mass of the coating agent.
  • the coating agent can be obtained, for example, by stirring, melting, mixing, or dispersing various kinds of nanopowder, solvent, other additives, etc. simultaneously or separately while applying heat treatment if necessary.
  • the devices for mixing, stirring, dispersing and the like are not particularly limited, but a lei kai machine, a ball mill, a planetary mixer, a bead mill and the like can be used. Further, these devices may be appropriately combined and used.
  • the coating agent may further contain additives and the like within a range that does not impair the object of the present invention.
  • the thin film of the present invention is a thin film containing powder and graphene contained in the above coating agent, and is obtained by removing the solvent from the above coating agent.
  • the thin film of the present invention preferably has a thickness of 5 to 200 nm.
  • the thickness of the thin film is thicker than 200 nm, the thin film is likely to be broken, so that the flame retardancy is likely to be lowered, the tint is apt to be deteriorated, and the texture is apt to change.
  • the thickness is less than 5 nm, the flame retardancy is likely to decrease, but other effects such as visible light can be maintained.
  • the thickness of the thin film is 100 nm or more, the conductivity becomes good.
  • This thin film is usually formed on the base material.
  • This thin film can impart flame retardancy to the base material without changing the texture of the base material and without damaging the base material.
  • this thin film also has visible light photocatalytic performance at room temperature, antistatic performance, and antibacterial performance.
  • the visible light photocatalytic performance at room temperature can bring deodorant, superhydrophilic, antibacterial, antifungal, algaeproof, mossproof, etc. to the thin film in addition to flame retardancy.
  • the thin film of the present invention acts as a photocatalyst at a visible light illuminance of 500 lx (500 lux) or less and decomposes dyes such as 10 ppm methylene blue and rhodamine B.
  • the photocatalytic effect has been confirmed even with visible light of 50 lx (50 lux), but the higher the illuminance, the higher the decomposition ability.
  • it since it does not act as a photocatalyst with ultraviolet rays, it is possible to form a visible light photocatalyst coat that does not decompose the base of an organic material such as a base material.
  • the thin film of the present invention can decompose carbon monoxide into carbon dioxide from a low temperature of around 100° C. due to its visible light photocatalytic property.
  • the catalytic catalyst decomposes toxic gases at high temperatures, instantly decomposing carbon monoxide into carbon dioxide, and interrupting the oxygen on the surface of the combustion products. It is also expected to have the effect of exhibiting flammability and making it easier to secure a safe time to escape.
  • the thin film of the present invention also has a deodorizing effect due to the visible light photocatalytic property.
  • the instantaneous deodorizing effect is exerted by the catalytic contact effect, and the continuous decomposition effect is exerted by the visible light photocatalytic effect.
  • the thin film of the present invention has a high surface area and is extremely dense, it has excellent flame retardancy and also has very high antibacterial properties against antibacterial and antifungal. From this, it is possible to easily deodorize and antibacterial not only in airports but also in general places where people are likely to be infected, such as hospitals, railways, buses, stations, city halls, etc. In addition, even in a place where there is no light, visible light photocatalytic property is not exhibited, but the component having an antibacterial agent in the inorganic nanopowder has an antibacterial effect.
  • the thin film of the present invention can be applied with a film thickness of around 10 nm, and can also exhibit the antistatic function of the surface resistivity of 10 9 (unit: ⁇ /sq).
  • the thin film of the present invention can have a contact angle with water of less than 5° due to the visible light photocatalytic property.
  • the method for producing a thin film of the present invention includes a step of applying the above-mentioned coating agent and then drying. More specifically, a substrate with a thin film can be manufactured by a step of applying the above-mentioned coating agent on the substrate and then drying.
  • the method of application includes brush application, dipping, spray coating, etc., but is not particularly limited.
  • the above coating agent can be dried at room temperature to form a film.
  • the method for drying is also not particularly limited.
  • An example of drying conditions is 0 to 40° C. and 5 to 60 minutes.
  • tungsten oxide nanopowder dispersion a mixture of 4 parts by mass of tungsten oxide nanopowder having an average particle diameter of 3 nm and 96 parts by mass of water was used.
  • silica nanopowder dispersion a silica binder manufactured by Japan Nanocoat (average particle size: 1.3 nm, silica particles: 3%, water: 97%) was used.
  • tin oxide nanopowder dispersion a mixture of 1 part by mass of tin oxide nanopowder having an average particle diameter of 2 nm and 99 parts by mass of water was used.
  • molybdenum nanopowder dispersion a mixture of 0.3 parts by mass of molybdenum nanopowder having an average particle size of 2 nm and 99.7 parts by mass of water was used.
  • selenium nanopowder dispersion a mixture of 0.9 part by mass of water and 0.9 part by mass of selenium nanopowder having an average particle diameter of 2 nm was used.
  • platinum nanopowder dispersion a mixture of 0.05 parts by mass of platinum nanopowder having an average particle diameter of 2 nm and 99.95 parts by mass of water was used.
  • graphene dispersion nano-powder a mixture of 0.1 parts by mass of graphene having an average thickness of 2 nm and an average length of 5 ⁇ m and 99.9 parts by mass of water was used.
  • ruthenium nanopowder dispersion a mixture of 0.05 parts by mass of ruthenium nanopowder having an average particle diameter of 2 nm and 99.95 parts by mass of water was used.
  • palladium nanopowder dispersion a mixture of 0.05 parts by mass of palladium nanopowder having an average particle diameter of 2 nm and 99.95 parts by mass of water was used.
  • iron oxide (Fe 2 O 3 ) nanopowder dispersion a mixture of 3 parts by mass of iron oxide nanopowder having an average particle diameter of 3 nm and 97 parts by mass of water was used.
  • copper oxide (CuO) nanopowder dispersion a mixture of 3 parts by mass of copper oxide nanopowder having an average particle diameter of 3 nm and 97 parts by mass of water was used.
  • silver nanopowder dispersion a mixture of 0.5 parts by mass of silver nanopowder having an average particle diameter of 2 nm and 99.5 parts by mass of water was used.
  • niobium oxide (Nb 2 O 5 ) nanopowder dispersion a mixture of 3 parts by mass of niobium oxide nanopowder having an average particle diameter of 4 nm and 97 parts by mass of water was used.
  • calcium phosphate (Ca 3 (PO 4 ) 2 ) powder dispersion liquid a mixture of 0.3 parts by mass of calcium phosphate powder having an average particle size of 3 nm and 99.7 parts by mass of water was used.
  • FIG. 1 shows the results of measuring the average particle size of the silica nanopowder dispersion by the dynamic light scattering method using Zetasizer-nano manufactured by Malvern Panalytical. Other nanopowder particles (excluding graphene nanopowder) were similarly measured for average particle diameter.
  • Tungsten oxide nanoparticle aqueous solution 2 parts by mass, silica nanoparticle aqueous solution: 1 part by mass, tin oxide nanoparticle aqueous solution: 0.8 parts by mass, molybdenum nanoparticle aqueous solution: 0.075 parts by mass, selenium nanoparticle aqueous solution: 0.025 parts by mass.
  • a platinum nanoparticle aqueous solution 0.0025 parts by mass, a graphene aqueous solution: 0.0025 parts by mass, and the balance: water were mixed to prepare a coating agent having a standard composition (hereinafter referred to as a standard coating agent).
  • the standard coating agent was applied on a glass plate, dried, and then observed with a transmission electron microscope. It was found from the transmission electron micrograph that the particles were uniformly dispersed.
  • FIG. 2 shows a transmission electron micrograph of the cross section of the formed thin film. As can be seen from FIG. 2, the film had a uniform thickness of about 9 nm.
  • Kanaquin No. 3 (according to JIS L 0803) of 100% cotton was prepared by dipping a standard coating agent (10 parts by mass) and pure water (90 parts by mass). The coating material thus prepared was dehydrated until the mass thereof was twice the mass of Kanakin No. 3, and a test sample was prepared.
  • the limiting oxygen index (LOI) of the test sample was measured at the General Incorporated Foundation Kaken Test Center in accordance with JIS L 1901 (E-2). The measurement was performed twice, and the limiting oxygen index was a high value of 26.6. Generally, if the limiting oxygen index is 26 or more, it is considered to have flameproofness (self-extinguishing property).
  • the evaluation film was placed in an evaluation box having an internal volume of 10 dm 3 .
  • a test gas was introduced into an evaluation box with a humidity of 21%, and in a static test without air convection, a visible gas of 200 lx (200 lux) was irradiated to detect a change in gas concentration, and a gastec detector tube was used.
  • Ammonia 60 ppm or formaldehyde: 50 ppm was used as the evaluation gas.
  • the initial ammonia concentration which was 60 ppm, dropped to 35 ppm after 25 minutes and to 22 ppm after 140 minutes.
  • the test was conducted in the same manner except that only the graphene nanopowder dispersion was removed from the standard coating agent diluted 10 times with water and ammonia: 50 ppm was used as the evaluation gas. At this time, the ammonia concentration, which was initially 50 ppm, decreased to 30 ppm after 80 minutes and to 25 ppm after 120 minutes, showing sufficient photocatalytic performance with visible light. When only the graphene nanopowder dispersion was removed, the ammonia concentration decreased more slowly than the standard coating agent, but it showed photocatalytic performance under visible light.
  • the formaldehyde concentration which was initially 50 ppm, decreased to 45 ppm after 60 minutes and to 30 ppm after 120 minutes, showing sufficient photocatalytic performance with visible light.
  • This glass container for evaluation was placed on a hot plate and covered with aluminum foil for uniform heating.
  • the change in carbon monoxide (CO) gas concentration was measured.
  • the initial concentration of carbon monoxide was 400 ppm (80 vol% He gas containing 500 ppm CO gas+20 vol% atmospheric air).
  • visible light was irradiated at room temperature (25° C.). After 1 minute, CO gas was reduced to 398 ppm, and the visible light photocatalytic property at room temperature was confirmed.
  • the initial concentration of carbon monoxide was returned to, and the hot plate was heated. The hot plate was heated to 400° C. after 5 minutes. After reaching 400° C., the CO gas concentration after 1 minute had decreased to 0 ppm, indicating a very good catalytic catalytic performance.
  • the methylene blue concentration (unit: ⁇ mol/dm 3 ) is plotted on the vertical axis and the ultraviolet irradiation time (unit: minutes) is plotted on the horizontal axis, and the decomposition activity index, which is the slope when plotted, is 0.3 or less [(nmol /Dm 3 )/min], and it was found that photocatalytic performance was not exhibited with ultraviolet rays.
  • Kanaquin No. 3 (according to JIS L 0803) of 100% cotton was prepared by dipping a standard coating agent (10 parts by mass) and pure water (90 parts by mass). Repeated dehydration was carried out until the mass of the prepared coating agent became twice the mass of Kanakin No. 3 to prepare a test sample.
  • the Kaken Test Center a general incorporated foundation, measured the test samples using Staphylococcus aureus NBRC 12732 in accordance with the “bacteria solution absorption method” specified in JIS L 1902.
  • the common logarithm of the viable cell count was 4.61 (0.1) immediately after inoculation and 7.09 (0.1) after 18 hours of culture, and the growth value F was 2.6, which was a good antibacterial property.
  • an antibacterial test was performed on a doormat: chenille using a spray gun to which 10 parts by mass of a standard coating agent and 90 parts by mass of 90 parts of pure water were applied at 10 cm 3 /m 2 .
  • the common logarithm of the viable cell count of the original chenille is 3.86 (0.1) immediately after inoculation and 1.90 (0.0) after 18 hours of culture.
  • the antibacterial activity value was 5.8.
  • the common logarithm of the viable cell count of chenille after washing 5 times (maximum difference between parentheses) was 4.38 (0.1) immediately after inoculation, and 1.30 (0. 0), and the antibacterial activity value was 5.8.
  • the washing method was the washing method (for standard washing) of the SKE mark textile product of the Fiber Evaluation Technology Council.
  • ⁇ Mold resistance test> 1 Preparation of medium A mold resistance test was carried out by MIC Co., Ltd. by the Pacific Beam Mold Method (Pacific Beam Mold Method). An inorganic salt agar medium was used as the medium. The medium composition component names and contents are shown below.
  • KH 2 PO 4 0.7 g K 2 HPO 4 : 0.7 g MgSO 4 ⁇ 7H 2 O: 0.7g NH 4 NO 3 : 1.0 g NaCl: 0.005 g FeSO 4 ⁇ 7H 2 O: 0.002g ZnSO 4 ⁇ 7H 2 O: 0.002g MnSO 4 ⁇ 7H 2 O: 0.001g
  • the medium prepared by mixing the above culture components was heat-treated at 121° C. for 20 minutes to sterilize it.
  • the pH of the solution was adjusted to 6.0-6.5 by adding 0.01% NaOH.
  • test bacterial solution Preparation of test bacterial solution
  • Mixing spore solution Equal amounts of an aqueous solution obtained by filtering agar from a medium and a solution adjusted to a spore amount of 10 6 ⁇ 200,000 cells/cm 3 are mixed. The test bacteria will be described later.
  • (2) Preparation of Wetting Liquid An aqueous solution of sodium lauryl sulfate 0.05 g/dm 3 was prepared.
  • Test Bacterial Fluid The mixed spore fluid was added to the wetting fluid and sufficiently dispersed.
  • Test bacterium The test bacterium (71 fungi) used was a stock culture pure culture strain stored at 6 ⁇ 4°C for 30 days or less.
  • the test bacteria (71 fungi) used are as follows. 1. Alternaria alternata, 2. 2. Aspergillus niger. 3. Aspergillus oryzae, 4. 4. Aspergillus flavus 5. Aspergillus versicolor, 6. 6. Aspergillus humigatus, 7. Aspergillus terreus, 8. 8. Aspergillus restrictus, 9. Aspergillus ocraceus, 10. Aspergillus candidus, 11. Alternaria tenuis, 12. Alcaligenes faecalis, 13. Alternaria brassicola, 14.
  • Aureobasidium pullulans 15. Candida albicans, 16. Chaetomium globosum, 17. Cladosporium cladosporioides, 18. Cladosporium sphaerospermum, 19. Cladosporium herbarum, 20. Cladosporium resinae, 21. Curvularia lunata, 22. Dressresla australiensis, 23. Epicoccum purpurascens, 24. Eurotium tonophilum, 25. Eurotium rubrum, 26. Eurotium chevalieri, 27. Eurotium amsterodami, 28. Fusarium semitectum, 29. Fusarium oxysporum, 30. Fusarium solani, 31. Fusarium roseum, 31.
  • Penicillium citreo-viride 52. Penicillium funiculosum, 53. Penicillium niglycans, 54. Penicillium lilacinum, 55. Pestalotia adusta, 56. 57. Pestalotia neglecta, 57. Forma citricarpa, 58. Forma terrestius, 59. Forma glomerata, 60. Rhizopus niglycans, 61. Rhizopus oryzae, 62. Rhizopus stolonifer, 63. Rhizopus solani, 64. Sedosporium abiospermum, 65. Trichophyton mentagrophytes, 66. Trichoderma viride, 67. Trichoderma koningii, 68. T-1 Trichoderma, 69. Trichoderma harzianum, 70. Ulocladium atrum, 71. Wallemia sevi
  • Test Standard coating agent 10 parts by mass A solution of 90 parts by mass of pure water was prepared, and the sample was applied with a spray gun at 10 cm 3 /m 2 and the mold resistance was 71 days by the Pacific Beam Mold method for 28 days. A sex test was conducted. As a result, after 28 days, mold growth was not observed in the sample to which PBM was added, and therefore it is considered that the sample has mold resistance.
  • a polyethylene bag coated with the above liquid agent was used as the test sample. A polyethylene bag was used as a blank.
  • Test Results The test sample was evaluated as “0” even after 28 days, and was good. On the other hand, in the blank, after 14 days, the evaluation was "1", and after 24 days, the evaluation was "2", and the reproduction of the bacteria was recognized.
  • Example 2 5 parts by mass of the ruthenium nanopowder dispersion was added to 95 parts by mass of the standard coating agent. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
  • Example 3 5 parts by mass of the palladium nanopowder dispersion was added to 95 parts by mass of the standard coating agent.
  • the visible light photocatalytic function was improved.
  • the dye decomposition rate was improved as compared with the standard coating solution.
  • Example 4 2 parts by mass of the iron oxide nanopowder dispersion was added to 98 parts by mass of the standard coating agent.
  • the visible light photocatalytic function was improved.
  • the dye decomposition rate was improved as compared with the standard coating solution.
  • Example 5 2 parts by mass of the copper oxide nanopowder dispersion was added to 98 parts by mass of the standard coating agent.
  • the visible light photocatalytic function was improved.
  • the dye decomposition rate was improved as compared with the standard coating solution.
  • Example 6 1 part by mass of the silver nanopowder dispersion was added to 99 parts by mass of the standard coating agent.
  • the visible light photocatalytic function was improved.
  • the dye decomposition rate was improved as compared with the standard coating solution.
  • Example 7 To 99 parts by mass of the standard coating agent, 1 part by mass of the niobium oxide nanopowder dispersion was added. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
  • Example 8 A standard coating agent of 20 parts by mass and pure water of 76 parts by mass was prepared, and 3.8 parts by mass of orthophosphoric acid (85% by volume) was used as phosphoric acid, and tricalcium phosphate was additionally used as tricalcium phosphate. A liquid containing 2 parts by mass was prepared.
  • the standard coating solution was 10 8th power, whereas 10 6th power (unit: ⁇
  • the standard coating liquid has an oxygen index of 26.6, while the oxygen index of 29.8 is further improved and the texture is improved.
  • the surface resistance value was measured by a surface resistance meter (model number: WA-400, two-point resistance method) manufactured by Taiyo Denki Sangyo.
  • a coating liquid containing no platinum nanopowder dispersion liquid was prepared as a standard coating agent. Visible light photocatalytic property and flame retardancy were lowered.
  • the coating agent of the present invention is very useful because it can provide a coating agent that imparts flame retardancy to a base material without changing the texture of the base material and not damaging the base material. is there.

Abstract

The objective of the present invention is to provide a coating agent which imparts flame retardancy to a substrate which is a base material, without changing the texture of the substrate and without damaging the substrate. This coating agent is characterized by comprising: powder having an average particle size of at most 5 nm and composed of tungsten oxide, silica, tin oxide, molybdenum, selenium, and platinum; graphene powder having an average thickness of at most 5 nm; and a solvent. Furthermore, a coating agent comprising a phosphorus compound is preferable. Furthermore, more preferable is a coating agent comprising at least one kind of powder which has an average particle size of at most 5 nm and is selected from the group consisting of ruthenium, rhodium, palladium, iridium, manganese, iron, copper, silver, gold, niobium, antimony, tantalum, bismuth, gallium, and sulfur.

Description

コーティング剤、薄膜、薄膜付き基材、および薄膜の製造方法Coating agent, thin film, substrate with thin film, and method for manufacturing thin film
 本発明は、コーティング剤、薄膜、薄膜付き基材、および薄膜の製造方法に関する。 The present invention relates to a coating agent, a thin film, a substrate with a thin film, and a method for manufacturing a thin film.
 現在、難燃剤市場は、環境負荷が高いハロゲン系難燃には規制があり、環境負荷が低い新たな材料が求められている。現在、主流のポリリン酸系の難燃剤(特許文献1)は、水溶液にすると、水にポリリン酸系成分が溶出し、難燃性効果が発揮できず、ポリリン酸系成分が結晶化すると、通常、ポリリン酸系成分の結晶のサイズが約30μm前後と大きくなるが、ポリリン酸系成分の結晶のサイズを10μm以下にすると難燃性効果がなくなるため、ポリリン酸系成分の結晶が大きい状態でしか使用できず、燃えやすい細い繊維には使用することができない(例えば、特許文献2の第0002段落)。また、ポリリン酸系成分の結晶を繊維にしようするときには、ポリリン酸系成分を、ポリリン酸系成分と繊維との合計100%に対して、25~30%程度を使用しないと効果がない(例えば、特許文献3の第0013段落)等による、単価負担も大きい。また、ポリリン酸系の練りこみで使用される難燃剤は、基材の物性に影響を与えてしまうため、難燃剤を付与しても、基材の物性を変えない、風合いを変えない難燃剤が求められている。特に、木造建築や世界遺産等、風合いは変えたくないが、劣化防止しつつ難燃化したい、という需要が多い。世界遺産等では、特に、観光客が多く、万が一の火事等事故への対策として、観光客が逃げる時間の確保は、重要が高い。 Currently, in the flame retardant market, there are regulations on halogen-based flame retardants that have a high environmental impact, and new materials with a low environmental impact are required. Currently, the mainstream polyphosphoric acid-based flame retardant (Patent Document 1) is usually an aqueous solution in which the polyphosphoric acid-based component elutes in water and the flame-retardant effect cannot be exhibited. However, the crystal size of the polyphosphoric acid-based component increases to about 30 μm, but if the crystal size of the polyphosphoric acid-based component is 10 μm or less, the flame-retardant effect is lost. It cannot be used and cannot be used for thin fibers that easily burn (for example, paragraph 0002 of Patent Document 2). Further, when the crystal of the polyphosphoric acid component is used as the fiber, the effect is not obtained unless about 25 to 30% of the polyphosphoric acid component is used with respect to 100% of the total of the polyphosphoric acid component and the fiber (for example, Also, the unit price burden is large due to, for example, Patent Document 3, paragraph 0013). In addition, since the flame retardant used in the kneading of polyphosphoric acid affects the physical properties of the base material, even if a flame retardant is added, it does not change the physical properties of the base material and does not change the texture. Is required. In particular, there is a great demand for wooden structures and world heritage sites that do not want to change the texture, but want to be flame retardant while preventing deterioration. Especially in World Heritage sites, there are many tourists, and it is very important to secure time for tourists to escape as a measure against accidents such as a fire.
 一方、近年、グローバル化に伴い、重症急性呼吸器症候群(SARS)、中東呼吸器症候群(MERS)、エボラ出血熱等、海外由来のウイルス感染症が、国をまたいで被害を増やした過去がある。 On the other hand, in recent years, with globalization, viral infections of foreign origin such as Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Ebola hemorrhagic fever have a history of increasing damage across countries.
 これらのウイルス感染症への水際対策として、各国の玄関口である空港(人が多く、2次感染が発生しやすい)の抗菌、消臭ニーズが、先進国、後進国問わず高くなっている。単体で抗菌作用があるものとしては、銀等があるが、人から人への空気感染に対しては、効果が発揮されない。そこで、空間中での抗菌および消臭効果のある光触媒技術への関心が高いが、光触媒は、基本的に紫外線に反応するものであり、可視光に対応しているものであっても、室内の実環境照度において、十分な消臭、抗菌効果を発揮できていない(例えば、特許医文献4の第0002、0003段落)。そして、光触媒は、能力が上がれば上がるほど、下地である基材の有機物も分解してしまうため、その対応策も必要となる。また、光触媒は、環境温度によって触媒能力が変化し、特に10℃以下になると、性能が低下してしまう。加えて、可視光に対応した光触媒は、可視光波長域に吸収波長域を持たせるため、粒径が大きく、着色度が高い物ほど性能が高い傾向があり、基材の風合いを変えたくないものに関しては、使用が難しい。加えて、分解機能を上げすぎると、下地である基材の有機物を分解してしまう等の問題点がある。 In order to prevent these viral infectious diseases, the need for antibacterial and deodorant at airports (there are many people and secondary infections are likely to occur), which is the gateway to each country, is increasing in both advanced and underdeveloped countries. .. As a substance having an antibacterial action as a single substance, there is silver, etc., but it is not effective against airborne transmission from person to person. Therefore, there is great interest in photocatalyst technology that has antibacterial and deodorant effects in space, but photocatalysts basically react to ultraviolet light, and even if they are compatible with visible light, In the actual environment illuminance, the deodorizing effect and the antibacterial effect cannot be sufficiently exerted (for example, paragraphs 0002 and 0003 of Patent Literature 4). As the photocatalyst has higher capacity, the organic substance of the base material as the base is decomposed, and a countermeasure is required. Further, the photocatalyst changes its catalytic ability depending on the ambient temperature, and the performance deteriorates especially at 10° C. or lower. In addition, since a photocatalyst compatible with visible light has an absorption wavelength range in the visible light wavelength range, the larger the particle size and the higher the degree of coloring, the higher the performance tends to be, and the texture of the base material should not be changed. As for things, it is difficult to use. In addition, if the decomposition function is increased too much, there is a problem that organic substances of the base material that is the base are decomposed.
特開昭56-20058号公報JP-A-56-20058 特開2006-63464号公報JP, 2006-63464, A 特開平7-187626号公報JP, 7-187626, A 特開2005―169216号公報JP, 2005-169216, A
 本発明が解決しようとする課題は、下地である基材の風合いを変化させず、かつ基材を傷めずに、難燃性を付与するコーティング剤を提供することである。 The problem to be solved by the present invention is to provide a coating agent that imparts flame retardancy without changing the texture of the base material that is the base and without damaging the base material.
 本発明は、以下の構成を有することによって上記問題を解決したコーティング剤、薄膜、薄膜付き基材、および薄膜の製造方法に関する。
〔1〕酸化タングステン、シリカ、酸化錫、モリブデン、セレン、およびプラチナの平均粒子径5nm以下の粉末と、グラフェンの平均厚さが5nm以下の粉末と、溶媒を含むことを特徴とする、コーティング剤。
〔2〕さらに、リン化合物を含む、上記〔1〕記載のコーティング剤。
〔3〕さらに、ルテニウム、ロジウム、パラジウム、イリジウム、酸化マンガン、酸化鉄、酸化銅、銀、金、酸化ニオブ、酸化アンチモン、酸化タンタル、酸化ガリウム、および硫黄からなる群から選択される少なくとも1種の平均粒子径5nm以下の粉末を含む、上記〔1〕または〔2〕記載のコーティング剤。
〔4〕上記〔1〕~〔3〕のいずれか記載のコーティング剤に含まれる粉末およびグラフェンを有する、薄膜。
〔5〕厚さが、5~200nmである、上記〔4〕記載の薄膜
〔5〕上記〔4〕または〔5〕記載の薄膜を含む、薄膜付き基材。
〔6〕上記〔1〕~〔3〕のいずれか記載のコーティング剤を塗布した後、乾燥する工程を含む、薄膜の製造方法。
The present invention relates to a coating agent, a thin film, a substrate with a thin film, and a method for producing a thin film, which have the following configurations to solve the above problems.
[1] A coating agent comprising a powder of tungsten oxide, silica, tin oxide, molybdenum, selenium, and platinum having an average particle size of 5 nm or less, a powder of graphene having an average thickness of 5 nm or less, and a solvent. ..
[2] The coating agent according to the above [1], further containing a phosphorus compound.
[3] Further, at least one selected from the group consisting of ruthenium, rhodium, palladium, iridium, manganese oxide, iron oxide, copper oxide, silver, gold, niobium oxide, antimony oxide, tantalum oxide, gallium oxide, and sulfur. The coating agent according to [1] or [2] above, which comprises a powder having an average particle diameter of 5 nm or less.
[4] A thin film having powder and graphene contained in the coating agent according to any one of [1] to [3] above.
[5] A thin film-containing substrate containing the thin film according to [4] or [5] above, which has a thickness of 5 to 200 nm.
[6] A method for producing a thin film, which comprises a step of applying the coating agent according to any one of the above [1] to [3] and then drying it.
 本発明〔1〕によれば、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を付与するコーティング剤を提供することができる。 According to the present invention [1], it is possible to provide a coating agent which imparts flame retardancy to a base material without changing the texture of the base material and without damaging the base material.
 本発明〔4〕によれば、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を有する薄膜を提供することができる。本発明〔5〕によれば、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を有する基材を提供することができる。本発明〔6〕によれば、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を有する基材を、容易に製造することができる。 According to the present invention [4], it is possible to provide a thin film having flame retardancy on a base material without changing the texture of the base material which is a base and without damaging the base material. According to the present invention [5], it is possible to provide a base material having flame retardancy without changing the texture of the base material which is the base and without damaging the base material. According to the present invention [6], a flame-retardant base material can be easily produced without changing the texture of the base material and without damaging the base material.
シリカナノ粉末分散液の平均粒子径を測定したときの結果である。It is a result when the average particle diameter of the silica nanopowder dispersion is measured. 標準コーティング剤で形成した薄膜の断面の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the cross section of the thin film formed by the standard coating agent.
〔コーティング剤〕
 本発明のコーティング剤(以下、コーティング剤ともいう)は、酸化タングステン、シリカ、酸化錫、モリブデン、セレン、およびプラチナの平均粒子径5nm以下の粉末と、グラフェンの平均厚さが5nm以下の粉末と、溶媒を含むことを特徴とする。コーティング剤に、上記ナノ粒子を含有させることにより、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を付与するコーティング剤を提供することができる。コーティング剤に含まれる粒子が、5nmより大きくなると、コーティング剤から形成される薄膜中の孔が大きくなり、難燃性が低下してしまう。なお、平均粒子径5nm以下の粉末は、粒子径が小さい方が好ましく、平均粒子径5nm未満が好ましい。
〔Coating agent〕
The coating agent of the present invention (hereinafter, also referred to as a coating agent) includes a powder of tungsten oxide, silica, tin oxide, molybdenum, selenium, and platinum having an average particle diameter of 5 nm or less, and a graphene having an average thickness of 5 nm or less. And a solvent. By including the nanoparticles in the coating agent, it is possible to provide a coating agent that imparts flame retardancy to the substrate without changing the texture of the substrate that is the base and without damaging the substrate. .. If the particles contained in the coating agent are larger than 5 nm, the pores in the thin film formed from the coating agent will be large and the flame retardancy will decrease. The powder having an average particle diameter of 5 nm or less preferably has a small particle diameter, and preferably has an average particle diameter of less than 5 nm.
 バインダーを、5ナノ以下のシリカナノ粒子で構成することにより、表面積を増大し、シリカ以外の材料もすべて5ナノ以下(グラフェンのみ厚さが5nm以下)にすることで、凝集、沈降等の好ましくない機能の相殺効果を低減しつつ、難燃性に加えて、導電性、抗菌性、消臭性等の好ましい機能の相乗効果を発揮することが可能になる。コーティング剤に含まれる上記材料は、すべて高温での1酸化炭素を2酸化炭素にする触媒効果があることが、試験により判明しており、その触媒効果をより低温下で発揮させるためには、材料自身の粒子を小さくし、表面積を稼ぐことが重要となる。粒子サイズを5nm未満とし、小さくなればなるほど、その接触触媒効率は高くなる。さらに、追加触媒機能として、可視光光触媒効果のある5nm以下の酸化タングステン粉末が入ることにより、500lx(500ルクス)以下の低照度でも可視光による光触媒機能を発生させることが可能となる。継続分解性のために、導電材料としても機能する酸化スズ、グラフェン等の無機ナノ粒子を入れることにより、触媒機能との相乗併用効果も可能となる。 By forming the binder with silica nanoparticles of 5 nanometers or less, the surface area is increased, and all the materials other than silica are also 5 nanometers or less (only graphene has a thickness of 5 nm or less), which is not preferable such as aggregation and sedimentation. It becomes possible to exert a synergistic effect of preferable functions such as conductivity, antibacterial property and deodorant property in addition to flame retardancy while reducing the effect of canceling the function. Tests have shown that all of the above materials contained in the coating agent have a catalytic effect of converting carbon monoxide at high temperature to carbon dioxide, and in order to exert the catalytic effect at a lower temperature, It is important to reduce the particle size of the material itself and increase the surface area. The particle size is less than 5 nm, and the smaller, the higher the catalytic efficiency of the catalyst. Further, as an additional catalyst function, by incorporating a tungsten oxide powder having a visible light photocatalytic effect of 5 nm or less, it becomes possible to generate a photocatalytic function by visible light even at a low illuminance of 500 lx (500 lux) or less. By incorporating inorganic nanoparticles such as tin oxide and graphene that also function as a conductive material for continuous decomposability, a synergistic combined effect with the catalytic function is also possible.
 酸化タングステン(WO)の平均粒子径5nm以下の粉末(以下、酸化タングステンナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性、可視光光触媒性を付与する。酸化タングステンの平均粒子径は、難燃性、均一な厚さの成膜の観点から、1~3nmであると、好ましい。ここで、平均粒子径は、マルバーン・パナリティカル(Malvern Panalytical)社製ゼータサイザーナノ(Zetasize-nano)を用い、動的光散乱法で測定した個数基準に基づく値とする。 A powder of tungsten oxide (WO 3 ) having an average particle diameter of 5 nm or less (hereinafter, also referred to as tungsten oxide nanopowder) imparts flame retardancy and visible light photocatalytic property to a thin film formed from a coating agent. The average particle diameter of tungsten oxide is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness. Here, the average particle diameter is a value based on the number standard measured by the dynamic light scattering method using Zetasizer-nano manufactured by Malvern Panalytical.
 シリカ(SiO)の平均粒子径5nm以下の粉末(以下、シリカナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性を付与する。シリカの平均粒子径は、難燃性、難燃性、均一な厚さの成膜の観点から、1~3nmであると、好ましく、1~2nmであると、より好ましい。 A powder of silica (SiO 2 ) having an average particle size of 5 nm or less (hereinafter, also referred to as silica nanopowder) imparts flame retardancy to a thin film formed from a coating agent. The average particle size of silica is preferably 1 to 3 nm, more preferably 1 to 2 nm, from the viewpoint of flame retardancy, flame retardancy, and film formation with a uniform thickness.
 酸化錫(SnO)の平均粒子径5nm以下の粉末(以下、酸化錫ナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性、帯電防止性を付与する。酸化錫の平均粒子径は、難燃性、均一な厚さの成膜の観点から、1~3nmであると、好ましい。 A powder of tin oxide (SnO 2 ) having an average particle diameter of 5 nm or less (hereinafter, also referred to as tin oxide nanopowder) imparts flame retardancy and antistatic property to a thin film formed from a coating agent. The average particle diameter of tin oxide is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
 モリブデンの平均粒子径5nm以下の粉末(以下、モリブデンナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性、可視光光触媒性、抗菌性、耐摩耗性を付与する。モリブデンの平均粒子径は、難燃性、均一な厚さの成膜の観点から、1~3nmであると、好ましい。 A powder of molybdenum having an average particle size of 5 nm or less (hereinafter, also referred to as molybdenum nano powder) imparts flame retardancy, visible light photocatalytic property, antibacterial property, and abrasion resistance to a thin film formed from a coating agent. The average particle size of molybdenum is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
 セレンの平均粒子径5nm以下の粉末(以下、セレンナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性、抗菌性を付与する。セレンの平均粒子径は、難燃性、均一な厚さの成膜の観点から、1~3nmであると、好ましい。 A powder of selenium having an average particle size of 5 nm or less (hereinafter, also referred to as selenium nanopowder) imparts flame retardancy and antibacterial property to a thin film formed from a coating agent. The average particle size of selenium is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
 プラチナの平均粒子径5nm以下の粉末(以下、プラチナナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性を付与する。プラチナの平均粒子径は、難燃性、均一な厚さの成膜の観点から、1~3nmであると、好ましい。 Powder of platinum with an average particle size of 5 nm or less (hereinafter also referred to as platinum nanopowder) imparts flame retardancy to a thin film formed from a coating agent. The average particle size of platinum is preferably 1 to 3 nm from the viewpoint of flame retardancy and film formation with a uniform thickness.
 グラフェンの平均厚さが5nm以下の粉末(以下、グラフェンナノ粉末ともいう)は、コーティング剤から形成される薄膜に、難燃性、可視光光触媒性、帯電防止性、耐摩耗性を付与する。グラフェンの長さの一例は、5nm~3μmである。グラフェンの平均厚さは、難燃性、均一な厚さの成膜の観点から、1~5nmであると、好ましい。ここで、グラフェンの平均厚さと長さは、透過型電子顕微鏡写真(倍率10万倍)を観察して求めた質量平均粒子径である(n=50)。 Powder having an average thickness of graphene of 5 nm or less (hereinafter, also referred to as graphene nanopowder) imparts flame retardancy, visible light photocatalytic property, antistatic property, and abrasion resistance to a thin film formed from a coating agent. An example of the length of graphene is 5 nm to 3 μm. The average thickness of graphene is preferably 1 to 5 nm from the viewpoint of flame retardancy and film formation with a uniform thickness. Here, the average thickness and length of graphene are mass average particle diameters obtained by observing a transmission electron micrograph (magnification: 100,000 times) (n=50).
 酸化タングステンナノ粉末は、コーティング剤100質量部に対して、1~3質量部であると好ましく、1.5~2.5質量部であると、より好ましい。 The amount of the tungsten oxide nanopowder is preferably 1 to 3 parts by mass, more preferably 1.5 to 2.5 parts by mass with respect to 100 parts by mass of the coating agent.
 シリカナノ粉末は、コーティング剤100質量部に対して、1.0~1.5質量部であると好ましい。 The silica nanopowder is preferably 1.0 to 1.5 parts by mass with respect to 100 parts by mass of the coating agent.
 酸化錫ナノ粉末は、コーティング剤100質量部に対して、0.5~1.2質量部であると好ましく、0.8~1.0質量部であると、より好ましい。 The tin oxide nanopowder is preferably 0.5 to 1.2 parts by mass, more preferably 0.8 to 1.0 part by mass with respect to 100 parts by mass of the coating agent.
 モリブデンナノ粉末は、コーティング剤100質量部に対して、0.02~0.05質量部(200~500ppm)であると、好ましい。 The molybdenum nanopowder is preferably 0.02 to 0.05 parts by mass (200 to 500 ppm) with respect to 100 parts by mass of the coating agent.
 セレンナノ粉末は、コーティング剤100質量部に対して、0.02~0.05質量部(200~500ppm)であると、好ましい。 The selenium nanopowder is preferably 0.02 to 0.05 parts by mass (200 to 500 ppm) with respect to 100 parts by mass of the coating agent.
 プラチナナノ粉末は、コーティング剤100質量部に対して、0.005~0.01質量部(50~100ppm)であると、好ましい。 The platinum nanopowder is preferably 0.005 to 0.01 parts by mass (50 to 100 ppm) with respect to 100 parts by mass of the coating agent.
 グラフェンナノ粉末は、コーティング剤100質量部に対して、0.005~0.01質量部(50~100ppm)であると、好ましい。 Graphene nanopowder is preferably 0.005 to 0.01 parts by mass (50 to 100 ppm) per 100 parts by mass of the coating agent.
 コーティング剤は、さらに、リン化合物を含むと、コーティング剤から形成される薄膜の難燃性の観点から、好ましい。リン化合物としては、オルトリン酸、リン酸カルシウム、リン酸ナトリウム、ポリリン酸アンモニウム等が、挙げられる。 It is preferable that the coating agent further contains a phosphorus compound from the viewpoint of flame retardancy of a thin film formed from the coating agent. Examples of the phosphorus compound include orthophosphoric acid, calcium phosphate, sodium phosphate, ammonium polyphosphate and the like.
 リン化合物は、85体積%オルトリン酸水溶液の場合、コーティング剤から形成される薄膜の難燃性の観点から、コーティング剤100質量部に対して、0.5~5質量部であると、好ましい。リン化合物は、単独でも2種以上を併用してもよい。 In the case of an 85% by volume aqueous solution of orthophosphoric acid, the phosphorus compound is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the coating agent, from the viewpoint of flame retardancy of a thin film formed from the coating agent. The phosphorus compounds may be used alone or in combination of two or more.
 コーティング剤は、さらに、ルテニウム、ロジウム、パラジウム、イリジウム、酸化マンガン、酸化鉄、酸化銅、銀、金、酸化ニオブ、酸化アンチモン、酸化タンタル、酸化ガリウム、および硫黄からなる群から選択される少なくとも1種の平均粒子径5nm以下の粉末を含むと、好ましい。 The coating agent further comprises at least one selected from the group consisting of ruthenium, rhodium, palladium, iridium, manganese oxide, iron oxide, copper oxide, silver, gold, niobium oxide, antimony oxide, tantalum oxide, gallium oxide, and sulfur. It is preferable to include a powder of seeds having an average particle diameter of 5 nm or less.
 ルテニウムは、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 From the viewpoint of visible light photocatalytic property of the thin film formed from the coating agent, ruthenium is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
 ロジウムは、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 From the viewpoint of the visible light photocatalytic property of the thin film formed from the coating agent, rhodium is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
 パラジウムは、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 From the viewpoint of visible light photocatalytic property of the thin film formed from the coating agent, palladium is preferably 0.001 to 0.01 parts by mass with respect to 100 parts by mass of the coating agent.
 イリジウムは、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 From the viewpoint of the visible light photocatalytic property of the thin film formed from the coating agent, iridium is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
 酸化マンガン(MnO)は、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 From the viewpoint of the visible light photocatalytic property of the thin film formed from the coating agent, manganese oxide (MnO) is preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
 酸化鉄(Fe)は、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.01~0.1質量部であると、好ましい。 Iron oxide (Fe 2 O 3 ) is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the coating agent, from the viewpoint of visible light photocatalytic property of a thin film formed from the coating agent.
 酸化銅(CuO)は、コーティング剤から形成される薄膜の可視光光触媒性及び抗菌性の観点から、コーティング剤100質量部に対して、0.01~0.1質量部であると、好ましい。 Copper oxide (CuO) is preferably 0.01 to 0.1 parts by mass based on 100 parts by mass of the coating agent from the viewpoint of visible light photocatalytic property and antibacterial property of the thin film formed from the coating agent.
 銀は、コーティング剤から形成される薄膜の抗菌性の観点から、コーティング剤100質量部に対して、0.005~0.01質量部であると、好ましい。 From the viewpoint of antibacterial property of the thin film formed from the coating agent, silver is preferably 0.005 to 0.01 parts by weight with respect to 100 parts by weight of the coating agent.
 金は、コーティング剤から形成される薄膜の抗菌性及び可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 Gold is preferably 0.001 to 0.01 parts by mass with respect to 100 parts by mass of the coating agent from the viewpoint of antibacterial property and visible light photocatalytic property of a thin film formed from the coating agent.
 酸化ニオブ(Nb)は、コーティング剤から形成される薄膜の耐摩耗性及び可視光光触媒性の観点から、コーティング剤100質量部に対して、0.01~0.1質量部であると、好ましい。 Niobium oxide (Nb 2 O 5 ) is 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the coating agent from the viewpoint of abrasion resistance and visible light photocatalytic property of a thin film formed from the coating agent. Is preferable.
 酸化アンチモン(Sb)は、コーティング剤から形成される薄膜の難燃性及び帯電防止性の観点から、コーティング剤100質量部に対して、0.01~0.1質量部であると、好ましい。 Antimony oxide (Sb 2 O 5 ) is 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the coating agent from the viewpoint of flame retardancy and antistatic property of a thin film formed from the coating agent. ,preferable.
 酸化タンタル(Ta)は、コーティング剤から形成される薄膜の耐摩耗性の観点から、コーティング剤100質量部に対して、0.01~0.1質量部であると、好ましい。 From the viewpoint of wear resistance of the thin film formed from the coating agent, tantalum oxide (Ta 2 O 5 ) is preferably 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the coating agent.
 酸化ガリウム(Ga)は、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.01~0.1質量部であると、好ましい。 From the viewpoint of visible light photocatalytic property of the thin film formed from the coating agent, gallium oxide (Ga 2 O 3 ) is preferably 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the coating agent.
 硫黄は、コーティング剤から形成される薄膜の可視光光触媒性の観点から、コーティング剤100質量部に対して、0.001~0.01質量部であると、好ましい。 From the viewpoint of visible light photocatalytic property of the thin film formed from the coating agent, sulfur is preferably 0.001 to 0.01 parts by mass with respect to 100 parts by mass of the coating agent.
 コーティング剤は、例えば、各種ナノ粉末、溶媒、およびその他添加剤等を、同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、ライカイ機、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。 The coating agent can be obtained, for example, by stirring, melting, mixing, or dispersing various kinds of nanopowder, solvent, other additives, etc. simultaneously or separately while applying heat treatment if necessary. The devices for mixing, stirring, dispersing and the like are not particularly limited, but a lei kai machine, a ball mill, a planetary mixer, a bead mill and the like can be used. Further, these devices may be appropriately combined and used.
 コーティング剤には、本発明の目的を損なわない範囲で、更に必要に応じ、添加剤等を配合することができる。 The coating agent may further contain additives and the like within a range that does not impair the object of the present invention.
〔薄膜および薄膜付き基材〕
 本発明の薄膜は、上述のコーティング剤に含まれる粉末およびグラフェンを有する薄膜であり、上述のコーティング剤から溶媒が除去されたものである。本発明の薄膜は、厚さが、5~200nmであると、好ましい。薄膜の厚さが、200nmより厚くなると、薄膜が割れやすくなるため、難燃性が低下しやすくなる、色味が悪くなりやすい、風合いが変わりやすい、等になる。5nmより薄いと、難燃性が低下しやすくなるが、他の可視光などの効果は維持されうる。なお、薄膜の厚さが、100nm以上になると、導電性が良好になる。
[Thin film and substrate with thin film]
The thin film of the present invention is a thin film containing powder and graphene contained in the above coating agent, and is obtained by removing the solvent from the above coating agent. The thin film of the present invention preferably has a thickness of 5 to 200 nm. When the thickness of the thin film is thicker than 200 nm, the thin film is likely to be broken, so that the flame retardancy is likely to be lowered, the tint is apt to be deteriorated, and the texture is apt to change. When the thickness is less than 5 nm, the flame retardancy is likely to decrease, but other effects such as visible light can be maintained. When the thickness of the thin film is 100 nm or more, the conductivity becomes good.
 この薄膜は、通常、基材の上に形成される。 This thin film is usually formed on the base material.
 この薄膜は、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を付与することができる。 -This thin film can impart flame retardancy to the base material without changing the texture of the base material and without damaging the base material.
 加えて、この薄膜は、常温での可視光光触媒性能、帯電防止性能、抗菌性能も有する。 In addition, this thin film also has visible light photocatalytic performance at room temperature, antistatic performance, and antibacterial performance.
 常温での可視光光触媒性能は、薄膜に、難燃性に加えて、消臭性、超親水性、抗菌性・防カビ性・防藻性・防苔性等を、もたらし得る。 The visible light photocatalytic performance at room temperature can bring deodorant, superhydrophilic, antibacterial, antifungal, algaeproof, mossproof, etc. to the thin film in addition to flame retardancy.
 本発明の薄膜は、500lx(500ルクス)以下の可視光照度で、光触媒として作用し、10ppmメチレンブルー、ローダミンB等色素を分解することが確認されている。50lx(50ルクス)の可視光でも、光触媒効果が確認されているが、照度を上げれば上げるほど、分解能力が向上する。また、紫外線では、光触媒として作用しないため、基材などの有機素材の下地を分解しない可視光光触媒コートを形成することができる。光触媒反応は、ナノ粉末で形成された薄膜表面で起こるため、下地に対して光触媒分解反応が起こらないからである。なお、基材(布など)に先に色素を染み込ませた後に、コーティング剤を塗布しても色素を分解することはできないが、予め基材にコーティング剤を塗布して皮膜化した後に、色素を滴下するときには、色素を分解する。このことから、分解反応はあくまでコート剤被膜表面でのみ発生していることが、確認されている。 It has been confirmed that the thin film of the present invention acts as a photocatalyst at a visible light illuminance of 500 lx (500 lux) or less and decomposes dyes such as 10 ppm methylene blue and rhodamine B. The photocatalytic effect has been confirmed even with visible light of 50 lx (50 lux), but the higher the illuminance, the higher the decomposition ability. In addition, since it does not act as a photocatalyst with ultraviolet rays, it is possible to form a visible light photocatalyst coat that does not decompose the base of an organic material such as a base material. This is because the photocatalytic reaction occurs on the surface of the thin film formed of nanopowder, so that the photocatalytic decomposition reaction does not occur on the base. Although it is not possible to decompose the dye by applying the coating agent after the base material (cloth etc.) has been soaked with the dye, it is necessary to apply the coating agent to the base material in advance to form a film. When is dropped, the dye is decomposed. From this, it has been confirmed that the decomposition reaction occurs only on the surface of the coating film.
 また、本発明の薄膜は、可視光光触媒性により、100℃前後の低温度から1酸化炭素を2酸化炭素に分解することができる。万が一に火事が起こった際も、高温による接触触媒による有害性ガス分解を発揮し、1酸化炭素を瞬時に2酸化炭素に分解することで、燃焼物の表面上の酸素を遮断することによる難燃性を発揮し、逃げるために安全な時間を確保しやすくなるという効果も期待される。 Further, the thin film of the present invention can decompose carbon monoxide into carbon dioxide from a low temperature of around 100° C. due to its visible light photocatalytic property. In the unlikely event of a fire, the catalytic catalyst decomposes toxic gases at high temperatures, instantly decomposing carbon monoxide into carbon dioxide, and interrupting the oxygen on the surface of the combustion products. It is also expected to have the effect of exhibiting flammability and making it easier to secure a safe time to escape.
 本発明の薄膜は、可視光光触媒性により、消臭効果も有する。ここで、瞬間的な消臭効果は、接触触媒効果により発揮され、持続的な分解効果は、可視光光触媒効果により発揮される。また、本発明の薄膜は、表面積が高く、非常に緻密であるため、難燃性が非常に優れており、抗菌防カビ防苔にも非常に高い抗菌性を有する。このことから、空港に限らず、2次感染の可能性が高い場所である、病院、鉄道、バス、駅、市役所等人の集まる場所全般に簡便に消臭抗菌することが可能となる。なお、光がない場所であっても、可視光光触媒性は発揮されないものの、無機ナノ粉末の中の抗菌剤を有する成分による抗菌効果は有する。 The thin film of the present invention also has a deodorizing effect due to the visible light photocatalytic property. Here, the instantaneous deodorizing effect is exerted by the catalytic contact effect, and the continuous decomposition effect is exerted by the visible light photocatalytic effect. Further, since the thin film of the present invention has a high surface area and is extremely dense, it has excellent flame retardancy and also has very high antibacterial properties against antibacterial and antifungal. From this, it is possible to easily deodorize and antibacterial not only in airports but also in general places where people are likely to be infected, such as hospitals, railways, buses, stations, city halls, etc. In addition, even in a place where there is no light, visible light photocatalytic property is not exhibited, but the component having an antibacterial agent in the inorganic nanopowder has an antibacterial effect.
 本発明の薄膜は、膜厚10nm前後で塗布することが可能で、表面抵抗率10の9乗台(単位:Ω/sq)の帯電防止機能も発揮することができる。本発明の薄膜は、可視光光触媒性により、水との接触角を5°未満にすることができる。 The thin film of the present invention can be applied with a film thickness of around 10 nm, and can also exhibit the antistatic function of the surface resistivity of 10 9 (unit: Ω/sq). The thin film of the present invention can have a contact angle with water of less than 5° due to the visible light photocatalytic property.
〔薄膜の製造方法〕
 本発明の薄膜の製造方法は、上述のコーティング剤を塗布した後、乾燥する工程を含む。より具体的には、上述のコーティング剤を基材の上に塗布した後、乾燥する工程により、薄膜付き基材を製造することができる。
[Method of manufacturing thin film]
The method for producing a thin film of the present invention includes a step of applying the above-mentioned coating agent and then drying. More specifically, a substrate with a thin film can be manufactured by a step of applying the above-mentioned coating agent on the substrate and then drying.
 塗布する方法としては、刷毛塗り、ディッピング、スプレーコート等が挙げられるが、特に限定されない。 The method of application includes brush application, dipping, spray coating, etc., but is not particularly limited.
 上述のコーティング剤は、常温乾燥で成膜することができる。乾燥する方法も、特に限定されない。乾燥条件の一例は、0~40℃で、5~60分間である。 The above coating agent can be dried at room temperature to form a film. The method for drying is also not particularly limited. An example of drying conditions is 0 to 40° C. and 5 to 60 minutes.
 本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。 The present invention will be described with reference to examples, but the present invention is not limited to these. In the following examples, parts and% mean parts by mass and% by mass, unless otherwise specified.
 酸化タングステンナノ粉末分散液には、平均粒径3nmの酸化タングステンナノ粉末4質量部と、水96質量部を混合したものを用いた。
 シリカナノ粉末分散液には、ジャパンナノコート製シリカバインダー(平均粒径1.3nmシリカ粒子3%、水97%)を用いた。
 酸化錫ナノ粉末分散液には、平均粒径2nmの酸化錫ナノ粉末1質量部と、水99質量部を混合したものを用いた。
 モリブデンナノ粉末分散液には、平均粒径2nmのモリブデンナノ粉末0.3質量部と、水99.7質量部を混合したものを用いた。
 セレンナノ粉末分散液には、平均粒径2nmのセレンナノ粉末0.9質量部と、水99.1質量部を混合したものを用いた。
 プラチナナノ粉末分散液には、平均粒径2nmのプラチナナノ粉末0.05質量部と、水99.95質量部を混合したものを用いた。
 グラフェン分散液ナノ粉末には、平均厚さ2nmで、平均長さ5μmのグラフェン0.1質量部と、水99.9質量部を混合したものを用いた。
 ルテニウムナノ粉末分散液には、平均粒径2nmのルテニウムナノ粉末0.05質量部と、水99.95質量部を混合したものを用いた。
 パラジウムナノ粉末分散液には、平均粒径2nmのパラジウムナノ粉末0.05質量部と、水99.95質量部を混合したものを用いた。
 酸化鉄(Fe)ナノ粉末分散液には、平均粒径3nmの酸化鉄ナノ粉末3質量部と、水97質量部を混合したものを用いた。
 酸化銅(CuO)ナノ粉末分散液には、平均粒径3nmの酸化銅ナノ粉末3質量部と、水97質量部を混合したものを用いた。
 銀ナノ粉末分散液には、平均粒径2nmの銀ナノ粉末0.5質量部と、水99.5質量部を混合したものを用いた。
 酸化ニオブ(Nb)ナノ粉末分散液には、平均粒径4nmの酸化ニオブナノ粉末3質量部と、水97質量部を混合したものを用いた。
 リン酸カルシウム(Ca(PO)粉末分散液には、平均粒径3nmのリン酸カルシウム粉末0.3質量部と、水99.7質量部を混合したものを用いた。
As the tungsten oxide nanopowder dispersion, a mixture of 4 parts by mass of tungsten oxide nanopowder having an average particle diameter of 3 nm and 96 parts by mass of water was used.
For the silica nanopowder dispersion, a silica binder manufactured by Japan Nanocoat (average particle size: 1.3 nm, silica particles: 3%, water: 97%) was used.
As the tin oxide nanopowder dispersion, a mixture of 1 part by mass of tin oxide nanopowder having an average particle diameter of 2 nm and 99 parts by mass of water was used.
As the molybdenum nanopowder dispersion, a mixture of 0.3 parts by mass of molybdenum nanopowder having an average particle size of 2 nm and 99.7 parts by mass of water was used.
As the selenium nanopowder dispersion, a mixture of 0.9 part by mass of water and 0.9 part by mass of selenium nanopowder having an average particle diameter of 2 nm was used.
As the platinum nanopowder dispersion, a mixture of 0.05 parts by mass of platinum nanopowder having an average particle diameter of 2 nm and 99.95 parts by mass of water was used.
As the graphene dispersion nano-powder, a mixture of 0.1 parts by mass of graphene having an average thickness of 2 nm and an average length of 5 μm and 99.9 parts by mass of water was used.
As the ruthenium nanopowder dispersion, a mixture of 0.05 parts by mass of ruthenium nanopowder having an average particle diameter of 2 nm and 99.95 parts by mass of water was used.
As the palladium nanopowder dispersion, a mixture of 0.05 parts by mass of palladium nanopowder having an average particle diameter of 2 nm and 99.95 parts by mass of water was used.
As the iron oxide (Fe 2 O 3 ) nanopowder dispersion, a mixture of 3 parts by mass of iron oxide nanopowder having an average particle diameter of 3 nm and 97 parts by mass of water was used.
As the copper oxide (CuO) nanopowder dispersion, a mixture of 3 parts by mass of copper oxide nanopowder having an average particle diameter of 3 nm and 97 parts by mass of water was used.
As the silver nanopowder dispersion, a mixture of 0.5 parts by mass of silver nanopowder having an average particle diameter of 2 nm and 99.5 parts by mass of water was used.
As the niobium oxide (Nb 2 O 5 ) nanopowder dispersion, a mixture of 3 parts by mass of niobium oxide nanopowder having an average particle diameter of 4 nm and 97 parts by mass of water was used.
As the calcium phosphate (Ca 3 (PO 4 ) 2 ) powder dispersion liquid, a mixture of 0.3 parts by mass of calcium phosphate powder having an average particle size of 3 nm and 99.7 parts by mass of water was used.
 図1に、シリカナノ粉末分散液を、マルバーン・パナリティカル(Malvern Panalytical)社製ゼータサイザーナノ(Zetasize-nano)を用い、動的光散乱法で、平均粒子径を測定したときの結果を示す。他のナノ粉末粒子(グラフェンナノ粉末を除く)も同様にして、平均粒子径を測定した。 FIG. 1 shows the results of measuring the average particle size of the silica nanopowder dispersion by the dynamic light scattering method using Zetasizer-nano manufactured by Malvern Panalytical. Other nanopowder particles (excluding graphene nanopowder) were similarly measured for average particle diameter.
〔実施例1〕
 酸化タングステンナノ粒子水溶液:2質量部、シリカナノ粒子水溶液:1質量部、酸化錫ナノ粒子水溶液:0.8質量部、モリブデンナノ粒子水溶液:0.075質量部、セレンナノ粒子水溶液:0.025質量部、プラチナナノ粒子水溶液:0.0025質量部、グラフェン水溶液:0.0025質量部、残部:水を混合し、標準組成のコーティング剤(以下、標準コーティング剤という)を作製した。
[Example 1]
Tungsten oxide nanoparticle aqueous solution: 2 parts by mass, silica nanoparticle aqueous solution: 1 part by mass, tin oxide nanoparticle aqueous solution: 0.8 parts by mass, molybdenum nanoparticle aqueous solution: 0.075 parts by mass, selenium nanoparticle aqueous solution: 0.025 parts by mass. A platinum nanoparticle aqueous solution: 0.0025 parts by mass, a graphene aqueous solution: 0.0025 parts by mass, and the balance: water were mixed to prepare a coating agent having a standard composition (hereinafter referred to as a standard coating agent).
 標準コーティング剤を、ガラス板上に塗布し、乾燥した後、透過型電子顕微鏡で観察した。透過型電子顕微鏡写真から、均一に分散していることがわかった。 The standard coating agent was applied on a glass plate, dried, and then observed with a transmission electron microscope. It was found from the transmission electron micrograph that the particles were uniformly dispersed.
 標準コーティング剤を、ガラス基板上に塗布し、自然乾燥して、薄膜を形成した。
図2に、形成した薄膜の断面の透過型電子顕微鏡写真を示す。図2からわかるように、約9nmの均一な厚さの膜であった。
A standard coating agent was applied on a glass substrate and naturally dried to form a thin film.
FIG. 2 shows a transmission electron micrograph of the cross section of the formed thin film. As can be seen from FIG. 2, the film had a uniform thickness of about 9 nm.
《難燃性試験》
 綿100%のカナキン3号(JIS L 0803準拠)を、標準コーティング剤10質量部純水90質量部の液を作製し、ディッピングした。作製したコーティング剤の質量が、カナキン3号の質量の2倍になるまで、脱水し、テスト用試料を作製した。
<Flame resistance test>
Kanaquin No. 3 (according to JIS L 0803) of 100% cotton was prepared by dipping a standard coating agent (10 parts by mass) and pure water (90 parts by mass). The coating material thus prepared was dehydrated until the mass thereof was twice the mass of Kanakin No. 3, and a test sample was prepared.
 一般財団法人カケンテストセンターで、テスト用試料を、JIS L 1901(E-2号)に準拠し、限界酸素指数(L.O.I.)を測定した。2回測定を行い、限界酸素指数は、26.6と、高い値であった。一般に、限界酸素指数が、26以上であれば、防炎性(自己消火性)を有している、とされる。 The limiting oxygen index (LOI) of the test sample was measured at the General Incorporated Foundation Kaken Test Center in accordance with JIS L 1901 (E-2). The measurement was performed twice, and the limiting oxygen index was a high value of 26.6. Generally, if the limiting oxygen index is 26 or more, it is considered to have flameproofness (self-extinguishing property).
《光触媒性能テスト》
<アンモニア、ホルムアルデヒドの分解テスト>
 幅:10cm×長さ:10cm×厚さ:3mmのガラス板に標準コーティング剤10質量部純水90質量部の液を塗布し、乾燥し、厚さ:約0.1μmの評価用膜を作製した。
<Photocatalytic performance test>
<Ammonia and formaldehyde decomposition test>
Width: 10 cm x length: 10 cm x thickness: 3 mm A glass plate having a standard coating agent of 10 parts by mass of pure water of 90 parts by mass is applied and dried to form an evaluation film having a thickness of about 0.1 μm. did.
 内容積:10dmの評価用ボックス内に、評価膜を載置した。湿度21%の評価用ボックス内に、試験ガスを導入し、空気の対流が無い静的試験で、200lx(200ルクス)の可視光を照射して、ガス濃度の変化を、ガステック社検知管を用いて、測定した。評価ガスには、アンモニア:60ppm、またはホルムアルデヒド:50ppmを用いた。 The evaluation film was placed in an evaluation box having an internal volume of 10 dm 3 . A test gas was introduced into an evaluation box with a humidity of 21%, and in a static test without air convection, a visible gas of 200 lx (200 lux) was irradiated to detect a change in gas concentration, and a gastec detector tube was used. Was measured. Ammonia: 60 ppm or formaldehyde: 50 ppm was used as the evaluation gas.
 評価ガスにアンモニアを使用したとき、初期に60ppmであったアンモニア濃度が、25分後に35ppmまで、140分後に22ppmまで低下した。なお、水で10倍に希釈した標準コーティング剤からグラフェンナノ粉末分散液のみを除き、評価ガスにアンモニア:50ppmを用いたこと以外は、同様にして試験を行った。このときは、初期に50ppmであったアンモニア濃度が、80分後に30ppm、120分後に25ppmまで低下し、可視光で十分な光触媒性能を示した。グラフェンナノ粉末分散液のみを除いた場合は、標準コーティング剤の場合より、アンモニア濃度の低下速度は遅いが、可視光で光触媒性能を示した。 When ammonia was used as the evaluation gas, the initial ammonia concentration, which was 60 ppm, dropped to 35 ppm after 25 minutes and to 22 ppm after 140 minutes. The test was conducted in the same manner except that only the graphene nanopowder dispersion was removed from the standard coating agent diluted 10 times with water and ammonia: 50 ppm was used as the evaluation gas. At this time, the ammonia concentration, which was initially 50 ppm, decreased to 30 ppm after 80 minutes and to 25 ppm after 120 minutes, showing sufficient photocatalytic performance with visible light. When only the graphene nanopowder dispersion was removed, the ammonia concentration decreased more slowly than the standard coating agent, but it showed photocatalytic performance under visible light.
 評価ガスにホルムアルデヒドを使用したとき、初期に50ppmであったホルムアルデヒド濃度が、60分後に45ppmまで、120分後に30ppmまで低下し、可視光で十分な光触媒性能を示した。 When formaldehyde was used as the evaluation gas, the formaldehyde concentration, which was initially 50 ppm, decreased to 45 ppm after 60 minutes and to 30 ppm after 120 minutes, showing sufficient photocatalytic performance with visible light.
<一酸化炭素分解テスト>
 幅:26mm×長さ:76mm×厚さ:3mmのスライドガラス状に、標準コーティング剤:3gを塗布し、乾燥し、評価用膜を作製した。
<Carbon monoxide decomposition test>
A standard coating agent: 3 g was applied to a glass slide having a width of 26 mm, a length of 76 mm, and a thickness of 3 mm, and dried to prepare a film for evaluation.
 内容積:の93cm評価用ガラス試験管容器内に、評価用膜を載置し、試験ガスを封入した。この評価用ガラス容器は、評価用ガラス容器内の一酸化炭素(CO)ガス濃度を測定するため、ガスクロマトグラフ/熱伝導度検出器(GC/TCD)に、ノズルを介して接続されている。 Inner volume: 93 cm 3 An evaluation membrane was placed in a glass test tube container for evaluation, and a test gas was enclosed. This evaluation glass container is connected to a gas chromatograph/thermal conductivity detector (GC/TCD) via a nozzle in order to measure the carbon monoxide (CO) gas concentration in the evaluation glass container.
 この評価用ガラス容器を、ホットプレート上に載置し、均熱のため、アルミ箔で覆った。次に、一酸化炭素(CO)ガス濃度の変化を、測定した。一酸化炭素の初期濃度は、400ppm(COガス500ppmを含むHeガス80vol%+大気20vol%)であった。まず、常温(25℃)で、可視光を照射した。1分後に、COガスが398ppmに減少し、常温での可視光光触媒性を確認した。次に、一酸化炭素の初期濃度に戻し、ホットプレートを加熱した。ホットプレートは、5分後に400℃まで昇温した。400℃になった後、1分後のCOガス濃度は、0ppmまで減少し、非常に良好な接触触媒性能であった。 This glass container for evaluation was placed on a hot plate and covered with aluminum foil for uniform heating. Next, the change in carbon monoxide (CO) gas concentration was measured. The initial concentration of carbon monoxide was 400 ppm (80 vol% He gas containing 500 ppm CO gas+20 vol% atmospheric air). First, visible light was irradiated at room temperature (25° C.). After 1 minute, CO gas was reduced to 398 ppm, and the visible light photocatalytic property at room temperature was confirmed. Next, the initial concentration of carbon monoxide was returned to, and the hot plate was heated. The hot plate was heated to 400° C. after 5 minutes. After reaching 400° C., the CO gas concentration after 1 minute had decreased to 0 ppm, indicating a very good catalytic catalytic performance.
<紫外線での湿式分解による光触媒性能評価>
 JIS1703-2に基づき10μmol/dmのメチレンブルー水溶液35cmを、標準コーティングの液を100mm×100mm×厚み3mmのガラスに0.2g塗布し、乾燥した後、上記メチレンブルー水溶液を内径40mm×高さ3cmの試験セルに入れた後(紫外線放射照度1.00mW/cm、波長351nm)を照射した。このときのメチレンブルー濃度を、島津製作所製分光光度計UV-3100PCで測定した。メチレンブルー濃度(単位:μmol/dm)を縦軸に、紫外線照射時間(単位:分)を横軸に、プロットしたときの傾きである分解活性指数が3検体平均により0.3以下〔(nmol/dm)/分〕であり、紫外線では、光触媒性能を示さないことがわかった。
<Photocatalytic performance evaluation by wet decomposition with ultraviolet rays>
Methylene blue aqueous solution 35 cm 3 of 10 .mu.mol / dm 3 based on JIS1703-2, and 0.2g coating liquid of standard coated on a glass of 100 mm × 100 mm × thickness 3 mm, dried, inner diameter 40 mm × height 3cm the methylene blue aqueous solution (UV irradiance 1.00 mW/cm 2 , wavelength 351 nm). The methylene blue concentration at this time was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation. The methylene blue concentration (unit: μmol/dm 3 ) is plotted on the vertical axis and the ultraviolet irradiation time (unit: minutes) is plotted on the horizontal axis, and the decomposition activity index, which is the slope when plotted, is 0.3 or less [(nmol /Dm 3 )/min], and it was found that photocatalytic performance was not exhibited with ultraviolet rays.
《抗菌性テスト》
 綿100%のカナキン3号(JIS L 0803準拠)を、標準コーティング剤10質量部純水90質量部の液を作製し、ディッピングした。作製したコーティング剤の質量が、カナキン3号の質量の2倍になるまで、繰り返し脱水し、テスト用試料を作製した。
<Antibacterial test>
Kanaquin No. 3 (according to JIS L 0803) of 100% cotton was prepared by dipping a standard coating agent (10 parts by mass) and pure water (90 parts by mass). Repeated dehydration was carried out until the mass of the prepared coating agent became twice the mass of Kanakin No. 3 to prepare a test sample.
 一般財団法人カケンテストセンターで、テスト用試料を、JIS L 1902で規定されている「菌液吸収法」に準拠し、黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)を用いて、測定した。生菌数の常用対数値(カッコ内は、最大最小差)は、接種直後で4.61(0.1)、18時間培養後で、7.09(0.1)であり、増殖値Fは、2.6と、良好な抗菌性であった。 The Kaken Test Center, a general incorporated foundation, measured the test samples using Staphylococcus aureus NBRC 12732 in accordance with the “bacteria solution absorption method” specified in JIS L 1902. The common logarithm of the viable cell count (maximum and minimum difference in parentheses) was 4.61 (0.1) immediately after inoculation and 7.09 (0.1) after 18 hours of culture, and the growth value F Was 2.6, which was a good antibacterial property.
 同様に、玄関マット:シェニールに対して、スプレーガンにて標準コーティング剤10質量部純水90質量部90の液を10cm/m塗布したものを用い、抗菌性テストを行った。シェニール原品の生菌数の常用対数値(カッコ内は、最大最小差)は、接種直後で、3.86(0.1)、18時間培養後で、1.90(0.0)であり、抗菌活性値は、5.8であった。洗濯5回後のシェニールの生菌数の常用対数値(カッコ内は、最大最小差)は、接種直後で、4.38(0.1)、18時間培養後で、1.30(0.0)であり、抗菌活性値は、5.8であった。一般に、抗菌活性値は、2.0以上であると、抗菌性が良好である、とされる。ここで、洗濯方法は、繊維評価技術協議会のSKEマーク繊維製品の洗濯方法(標準洗濯用)により行った。 Similarly, an antibacterial test was performed on a doormat: chenille using a spray gun to which 10 parts by mass of a standard coating agent and 90 parts by mass of 90 parts of pure water were applied at 10 cm 3 /m 2 . The common logarithm of the viable cell count of the original chenille (maximum difference between parentheses) is 3.86 (0.1) immediately after inoculation and 1.90 (0.0) after 18 hours of culture. And the antibacterial activity value was 5.8. The common logarithm of the viable cell count of chenille after washing 5 times (maximum difference between parentheses) was 4.38 (0.1) immediately after inoculation, and 1.30 (0. 0), and the antibacterial activity value was 5.8. In general, it is considered that the antibacterial activity is good when the antibacterial activity value is 2.0 or more. Here, the washing method was the washing method (for standard washing) of the SKE mark textile product of the Fiber Evaluation Technology Council.
<カビ抵抗性試験>
1)培地の作製
 株式会社エム・アイ・シーで、パシフィックビーム・モールド法(PacificBeam MOLD test method)によるカビ抵抗性試験を行った。培地には、無機塩寒天培地を用いた。培地組成成分名および内容量を以下に示す。
 KHPO:0.7g
 KHPO:0.7g
 MgSO・7HO:0.7g
 NHNO:1.0g
 NaCl:0.005g
 FeSO・7HO:0.002g
 ZnSO・7HO:0.002g
 MnSO・7HO:0.001g
 寒天:15g
 純水:1000cm
 上記の培養成分を混合して作製した培地を、121℃で20分加熱処理し、殺菌した。0.01%のNaOHを添加して、溶液のpHを6.0~6.5に調整した。
<Mold resistance test>
1) Preparation of medium A mold resistance test was carried out by MIC Co., Ltd. by the Pacific Beam Mold Method (Pacific Beam Mold Method). An inorganic salt agar medium was used as the medium. The medium composition component names and contents are shown below.
KH 2 PO 4 : 0.7 g
K 2 HPO 4 : 0.7 g
MgSO 4 · 7H 2 O: 0.7g
NH 4 NO 3 : 1.0 g
NaCl: 0.005 g
FeSO 4 · 7H 2 O: 0.002g
ZnSO 4 · 7H 2 O: 0.002g
MnSO 4 · 7H 2 O: 0.001g
Agar: 15g
Pure water: 1000 cm 3
The medium prepared by mixing the above culture components was heat-treated at 121° C. for 20 minutes to sterilize it. The pH of the solution was adjusted to 6.0-6.5 by adding 0.01% NaOH.
2)試験菌液の作製
(1)混合胞子液の作製
 培地から寒天をろ過した水溶液と、10±200,000個/cmの胞子量に調整した液と、等量混和させる。試験菌については、後述する。
(2)湿潤液の作製
 ラウリル硫酸ナトリウム0.05g/dmの水溶液を作製した。
(3)試験菌液の調合
 湿潤液に、混合胞子液に加え、十分に分散させた。
2) Preparation of test bacterial solution (1) Preparation of mixed spore solution Equal amounts of an aqueous solution obtained by filtering agar from a medium and a solution adjusted to a spore amount of 10 6 ± 200,000 cells/cm 3 are mixed. The test bacteria will be described later.
(2) Preparation of Wetting Liquid An aqueous solution of sodium lauryl sulfate 0.05 g/dm 3 was prepared.
(3) Preparation of Test Bacterial Fluid The mixed spore fluid was added to the wetting fluid and sufficiently dispersed.
3)培養
(1)培容器と培養条件
 温度・湿度サーモスタット付きサーキュレーターを使用して、温度:28~30℃、湿度:85%R・H以上の条件で培養した。
(2)培養期間は、28日間で行った。
3) Culture (1) Culture container and culture conditions Using a circulator with temperature/humidity thermostat, culture was performed under the conditions of temperature: 28 to 30° C. and humidity: 85% RH or higher.
(2) The culture period was 28 days.
4)試験菌
 試験菌(真菌 71菌)は、6±4℃で30日以内保存したストックカルチャー純培養菌使用を、使用した。使用した試験菌(真菌 71菌)は、以下である。
 1.アルタルナリア アルタナータ(Alternaria alternata)、2.アスペルギルス ニガー(Aspergillus niger)、3.アスペルギルス オリザエ (Aspergillus oryzae)、4.アスペルギルス フラバス(Aspergillus flavus)、5.アスペルギルス バーシカラ(Aspergillus versicolor)、6.アスペルギルス フミガータス(Aspergillus humigatus)、7.アスペルギルス テレーズ(Aspergillus terreus)、8.アスペルギルス レストリクタス(Aspergillus restrictus)、9.アスペルギルス オクロシアス(Aspergillus ochraceus)、10.アスペルギルス カンジダス(Aspergillus candidus)、11.アルタルナリア テヌイス(Alternaria tenuis)、12.アルカリゲネス フェカリス(Alcaligenes faecalis)、13.アルタルナリア ブラシコラ(Alternaria brassicicola)、14.オーレオバシディウム プルランス(Aureobasidium pullulans)、15.カンジダ アルビカンス(Candide albicans)、16.ケトミウム グラボサム(Chaetomium globosum)、17.クラドスポリウム クラドスポリオイダス(Cladosporium cladosporioides)、18.クラドスポリウム サファエロスペルマム(Cladosporium sphaerospermum)、19.クラドスポリウム ハーボラム(Cladosporium herbarum)、20.クラドスポリューム レジナエ(Cladosporium resinae)、21.カルバラリア ルナータ(Curvularia lunata)、22.ドレッシラ オストラライン(Drechslera australiensis)、23.エピコッカム パーパラセン(Epicoccum purpurascens)、24.ユーロチウム タネフィラム(Eurotium tonophilum)、25.ユーロチウム ルブラム(Eurotium rubrum)、26.ユーロチウム シバリエリ(Eurotium chevalieri)、27.ユーロチウム アムステロダミ(Eurotium amstelodami)、28.フザリウム セミテクタム(Fusarium semitectum)、29.フザリウム オキシスポラム(Fusarium oxysporum)、30.フザリウム ソラニ(Fusarium solani)、31. フザリウム ロゼアム(Fusarium roseum)、31.フザリウム モニリフォルメ(Fusarium moniliforme)、33.フザリウム プラリフェラタム(Fusarium proliferatum)、34.ゲオトリカム カンディダム(Geotricham candidum)、35.ゲオトリカム ラクタス(Geotricham lactus)、36.グリオクラディウム ビレン(Gliocladium virens)、37.モニリア フルクティガネ(Monilia fructigena)、38.モニリア ニグラ(Monilia nigral)、39.ムコール ラセマウセス(Mucor racemosus)、40.ミロテシウム バルカリア(Myrothecium verrucaria)、41.ムコール スピネッセンス(Mucor spinescens)、42.ニグロスポラ オリザエ(Nigrospora oryzae)、43.ニグロスポラ スフェリカ(Nigrospora sphaerica)、44.ニューロスポラ ストフィラ(Neurospora sitophila)、45.ペニシリウム フリークェンタス(Penicillium frequentance)、46.ペニシリウム イスランディカム(Penicillium islandicum)、47.ペニシリウム シトリナム(Penicillium citrinum)、48.プルラリア プルランス(Pullularia pullulans)、49.ペニシリウム イクパンザム(Penicillium expansum)、50.ペニシリウム シクロピアム(Penicillium cyclopium)、51.ペニシリウム シトレオビリデ(Penicillium citreo-viride)、52.ペニシリウム ファニキュロザム(Penicillium funiculosum)、53.ペニシリウム ニグリカンス(Penicillium nigricans)、54.ペニシリウム リラシナム(Penicillium lilacinum)、55.ペスタロティア アダスタ(Pestalotia adusta)、56.ペスタロティア ネグレクタ(Pestalotia neglecta)、57.フォーマ シトリカルパ(Phoma citricarpa)、58.フォーマ テレスチアス(Phoma terrestius)、59.フォーマ グロミタラ(Phoma glomerata)、60.リゾプス ニグリカンス(Rhizopus nigricans)、61.リゾプス オリザエ(Rhizopus oryzae)、62.リゾプス ストロニファー(Rhizopus storonifer)、63.リゾプス ソラニ(Rhizopus solani)、64.セドスポリウム アビオスペルマム(Scedosporium apiospermum)、65.トリコフィートン ミンタグルフィテス(Trichophyton mentagrophytes)、66.トリコデルマ ビリデ(Trichoderma viride)、67.トリコデルマ コニンギー(Trichoderma koningii)、68.トリコデルマT-1(T-1 Trichoderma)、69.トリコデルマ ハルジアナム(Trichoderma harzianum)、70.ウロクラディウム アトラム(Ulocladium atrum)、71.ワレミア セビ(Wallemia sebi)
4) Test bacterium The test bacterium (71 fungi) used was a stock culture pure culture strain stored at 6 ± 4°C for 30 days or less. The test bacteria (71 fungi) used are as follows.
1. Alternaria alternata, 2. 2. Aspergillus niger. 3. Aspergillus oryzae, 4. 4. Aspergillus flavus 5. Aspergillus versicolor, 6. 6. Aspergillus humigatus, 7. Aspergillus terreus, 8. 8. Aspergillus restrictus, 9. Aspergillus ocraceus, 10. Aspergillus candidus, 11. Alternaria tenuis, 12. Alcaligenes faecalis, 13. Alternaria brassicola, 14. Aureobasidium pullulans, 15. Candida albicans, 16. Chaetomium globosum, 17. Cladosporium cladosporioides, 18. Cladosporium sphaerospermum, 19. Cladosporium herbarum, 20. Cladosporium resinae, 21. Curvularia lunata, 22. Dressresla australiensis, 23. Epicoccum purpurascens, 24. Eurotium tonophilum, 25. Eurotium rubrum, 26. Eurotium chevalieri, 27. Eurotium amsterodami, 28. Fusarium semitectum, 29. Fusarium oxysporum, 30. Fusarium solani, 31. Fusarium roseum, 31. Fusarium moniliforme, 33. Fusarium proliferatum, 34. Geotricham candidum, 35. Geotricham lactus, 36. Gliocladium virens, 37. Monilia fructigene, 38. Monilia nigra, 39. Mucor racemosus, 40. Myrothecium vulcaria, 41. Mucor spinescens, 42. Nigrospora oryzae, 43. Nigrospora sperica, 44. Neurospora sitophila, 45. Penicillium Frequentance, 46. Penicillium islandicum, 47. Penicillium citrinum, 48. Pullularia pullulans, 49. Penicillium Expansum, 50. Penicillium cyclopium, 51. Penicillium citreo-viride, 52. Penicillium funiculosum, 53. Penicillium niglycans, 54. Penicillium lilacinum, 55. Pestalotia adusta, 56. 57. Pestalotia neglecta, 57. Forma citricarpa, 58. Forma terrestius, 59. Forma glomerata, 60. Rhizopus niglycans, 61. Rhizopus oryzae, 62. Rhizopus stolonifer, 63. Rhizopus solani, 64. Sedosporium abiospermum, 65. Trichophyton mentagrophytes, 66. Trichoderma viride, 67. Trichoderma koningii, 68. T-1 Trichoderma, 69. Trichoderma harzianum, 70. Ulocladium atrum, 71. Wallemia sevi
3)評価方法
 菌の発育状態を、以下の基準で評価した。
0:全く菌が発育しない
1:10%以下の発育
2:10~30%以下の発育
3:30~60%以下の発育
4:60%以上の完全発育
3) Evaluation method The growth state of the bacteria was evaluated according to the following criteria.
0: No bacterial growth 1:10% or less growth 2:10-30% or less growth 3:30-60% or less growth 4: 60% or more complete growth
4)試験
 標準コーティング剤10質量部純水90質量部の液を作製し、スプレーガンにて10cm/mで塗布した検体をパシフィックビーム・モールド法による71菌を使用した28日間のカビ抵抗性試験を行った。その結果、28日後において、PBMを添加した検体においてカビの発育が認めらなかったことから、カビ抵抗性がある、と考えられる。ここで、試験検体には、ポリエチレン袋に、上記液剤を塗布したものを使用した。ブランクには、ポリエチレン袋そのままを使用した。
4) Test Standard coating agent 10 parts by mass A solution of 90 parts by mass of pure water was prepared, and the sample was applied with a spray gun at 10 cm 3 /m 2 and the mold resistance was 71 days by the Pacific Beam Mold method for 28 days. A sex test was conducted. As a result, after 28 days, mold growth was not observed in the sample to which PBM was added, and therefore it is considered that the sample has mold resistance. Here, as the test sample, a polyethylene bag coated with the above liquid agent was used. A polyethylene bag was used as a blank.
5)試験結果
 試験検体は、28日経過後も評価が「0」と、良好であった。これに対して、ブランクは、14日経過後で、評価が「1」になり、24日経過後で、評価が「2」と菌の繁殖が認められた。
5) Test Results The test sample was evaluated as “0” even after 28 days, and was good. On the other hand, in the blank, after 14 days, the evaluation was "1", and after 24 days, the evaluation was "2", and the reproduction of the bacteria was recognized.
〔実施例2〕
 標準コーティング剤95質量部に、ルテニウムナノ粉末分散液5質量部を添加した。可視光光触媒機能が、向上した。*500ルクス(lx)下で、標準コーティング液よりも色素分解速度が向上した。
[Example 2]
5 parts by mass of the ruthenium nanopowder dispersion was added to 95 parts by mass of the standard coating agent. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
〔実施例3〕
 標準コーティング剤95質量部に、パラジウムナノ粉末分散液5質量部を添加した。可視光光触媒機能が、向上した。*500ルクス(lx)下で、標準コーティング液よりも色素分解速度が向上した。
[Example 3]
5 parts by mass of the palladium nanopowder dispersion was added to 95 parts by mass of the standard coating agent. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
〔実施例4〕
 標準コーティング剤98質量部に、酸化鉄ナノ粉末分散液2質量部を添加した。可視光光触媒機能が、向上した。*500ルクス(lx)下で、標準コーティング液よりも色素分解速度が向上した。
[Example 4]
2 parts by mass of the iron oxide nanopowder dispersion was added to 98 parts by mass of the standard coating agent. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
〔実施例5〕
 標準コーティング剤98質量部に、酸化銅ナノ粉末分散液2質量部を添加した。可視光光触媒機能が、向上した。*500ルクス(lx)下で標準コーティング液よりも色素分解速度が向上した。
[Example 5]
2 parts by mass of the copper oxide nanopowder dispersion was added to 98 parts by mass of the standard coating agent. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
〔実施例6〕
 標準コーティング剤99質量部に、銀ナノ粉末分散液1質量部を添加した。可視光光触媒機能が、向上した。*500ルクス(lx)下で標準コーティング液よりも色素分解速度が向上した。
[Example 6]
1 part by mass of the silver nanopowder dispersion was added to 99 parts by mass of the standard coating agent. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
〔実施例7〕
 標準コーティング剤99質量部に、酸化ニオブナノ粉末分散液1質量部を添加した。可視光光触媒機能が、向上した。*500ルクス(lx)下で標準コーティング液よりも色素分解速度が向上した。
[Example 7]
To 99 parts by mass of the standard coating agent, 1 part by mass of the niobium oxide nanopowder dispersion was added. The visible light photocatalytic function was improved. * Under 500 lux (lx), the dye decomposition rate was improved as compared with the standard coating solution.
〔実施例8〕
 標準コーティング剤20質量部純水76質量部の液を作製し、オルトリン酸(85体積%)をリン酸として3.8質量部、および追加でリン酸3カルシウムを、リン酸3カルシウムとして0.2質量部を加えた液を用意した。金巾3号に、標準コーティング剤と同様に形成された膜の表面抵抗値を計測した結果、標準コーティング液の場合が10の8乗台であるのに対し、10の6乗台(単位:Ω/sq)に向上しつつ、難燃性能としては、標準コーティング液の場合が酸素指数26.6であるのに対し、酸素指数29.8とさらに向上し、かつ風合いもよくなった。ここで、表面抵抗値は、太洋電機産業製表面抵抗計(型番:WA-400、2点間抵抗法)で測定した。
[Example 8]
A standard coating agent of 20 parts by mass and pure water of 76 parts by mass was prepared, and 3.8 parts by mass of orthophosphoric acid (85% by volume) was used as phosphoric acid, and tricalcium phosphate was additionally used as tricalcium phosphate. A liquid containing 2 parts by mass was prepared. As a result of measuring the surface resistance value of the film formed on Kinnkin No. 3 in the same manner as the standard coating agent, the standard coating solution was 10 8th power, whereas 10 6th power (unit: Ω As to the flame retardant performance, the standard coating liquid has an oxygen index of 26.6, while the oxygen index of 29.8 is further improved and the texture is improved. Here, the surface resistance value was measured by a surface resistance meter (model number: WA-400, two-point resistance method) manufactured by Taiyo Denki Sangyo.
〔比較例1〕
 標準コーティング剤に、酸化タングステンナノ粉末分散液を含まないコーティング液を作製した。可視光光触媒機能が発揮されなかった。
[Comparative Example 1]
A coating solution containing no tungsten oxide nanopowder dispersion was prepared as a standard coating agent. The visible light photocatalytic function was not exhibited.
〔比較例2〕
 標準コーティング剤に、シリカナノ粉末分散液を含まないコーティング液を作製した。密着性、難燃性が、低下した。
[Comparative Example 2]
A coating liquid containing no silica nanopowder dispersion was prepared as a standard coating agent. Adhesiveness and flame retardancy decreased.
〔比較例3〕
 標準コーティング剤に、酸化錫粉末分散液を含まないコーティング液を作製した。帯電防止性能が、低下した。
[Comparative Example 3]
A coating solution containing no tin oxide powder dispersion was prepared as a standard coating agent. Antistatic performance is degraded.
〔比較例4〕
 標準コーティング剤に、モリブデンナノ粉末分散液を含まないコーティング液を作製した。可視光光触媒性能が、低下した。
[Comparative Example 4]
A coating solution containing no molybdenum nano-powder dispersion was prepared as a standard coating agent. Visible light photocatalytic performance was reduced.
〔比較例5〕
 標準コーティング剤に、セレンナノ粉末分散液を含まないコーティング液を作製した。抗菌性が、低下した。
[Comparative Example 5]
A coating liquid containing no selenium nanopowder dispersion was prepared as a standard coating agent. Antibacterial properties are reduced.
〔比較例6〕
 標準コーティング剤に、プラチナナノ粉末分散液を含まないコーティング液を作製した。可視光光触媒性、難燃性が、低下した。
[Comparative Example 6]
A coating liquid containing no platinum nanopowder dispersion liquid was prepared as a standard coating agent. Visible light photocatalytic property and flame retardancy were lowered.
〔比較例7〕
 標準コーティング剤に、グラフェンナノ粉末分散液を含まないコーティング液を作製した。可視光光触媒性、導電性が、低下した。
[Comparative Example 7]
A coating solution containing no graphene nanopowder dispersion was prepared as a standard coating agent. Visible light photocatalytic property and conductivity decreased.
 本発明のコーティング剤は、下地である基材の風合いを変化させず、かつ基材を傷めずに、基材に難燃性を付与するコーティング剤を提供することができるので、非常に有用である。 INDUSTRIAL APPLICABILITY The coating agent of the present invention is very useful because it can provide a coating agent that imparts flame retardancy to a base material without changing the texture of the base material and not damaging the base material. is there.

Claims (7)

  1.  酸化タングステン、シリカ、酸化錫、モリブデン、セレン、およびプラチナの平均粒子径5nm以下の粉末と、グラフェンの平均厚さが5nm以下の粉末と、溶媒を含むことを特徴とする、コーティング剤。 A coating agent comprising a powder of tungsten oxide, silica, tin oxide, molybdenum, selenium, and platinum having an average particle size of 5 nm or less, a graphene powder having an average thickness of 5 nm or less, and a solvent.
  2.  さらに、リン化合物を含む、請求項1記載のコーティング剤。 The coating agent according to claim 1, further comprising a phosphorus compound.
  3.  さらに、ルテニウム、ロジウム、パラジウム、イリジウム、酸化マンガン、酸化鉄、酸化銅、銀、金、酸化ニオブ、酸化アンチモン、酸化タンタル、酸化ガリウム、および硫黄からなる群から選択される少なくとも1種の平均粒子径5nm以下の粉末を含む、請求項1または2記載のコーティング剤。 Further, at least one average particle selected from the group consisting of ruthenium, rhodium, palladium, iridium, manganese oxide, iron oxide, copper oxide, silver, gold, niobium oxide, antimony oxide, tantalum oxide, gallium oxide, and sulfur. The coating agent according to claim 1 or 2, which contains a powder having a diameter of 5 nm or less.
  4.  請求項1~3のいずれか1項記載のコーティング剤に含まれる粉末およびグラフェンを有する、薄膜。 A thin film comprising powder and graphene contained in the coating agent according to any one of claims 1 to 3.
  5.  厚さが、5~200nmである、請求項4記載の薄膜。 The thin film according to claim 4, which has a thickness of 5 to 200 nm.
  6.  請求項4または5記載の薄膜を含む、薄膜付き基材。 A substrate with a thin film, comprising the thin film according to claim 4 or 5.
  7.  請求項1~3のいずれか1項記載のコーティング剤を塗布した後、乾燥する工程を含む、薄膜の製造方法。 A method for producing a thin film, comprising a step of applying the coating agent according to any one of claims 1 to 3 and then drying.
PCT/JP2019/005518 2019-02-15 2019-02-15 Coating agent, thin film, substrate with thin film, and method for producing thin film WO2020166056A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020572034A JP7121149B2 (en) 2019-02-15 2019-02-15 Coating agent, thin film, substrate with thin film, and method for producing thin film
PCT/JP2019/005518 WO2020166056A1 (en) 2019-02-15 2019-02-15 Coating agent, thin film, substrate with thin film, and method for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005518 WO2020166056A1 (en) 2019-02-15 2019-02-15 Coating agent, thin film, substrate with thin film, and method for producing thin film

Publications (1)

Publication Number Publication Date
WO2020166056A1 true WO2020166056A1 (en) 2020-08-20

Family

ID=72045358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005518 WO2020166056A1 (en) 2019-02-15 2019-02-15 Coating agent, thin film, substrate with thin film, and method for producing thin film

Country Status (2)

Country Link
JP (1) JP7121149B2 (en)
WO (1) WO2020166056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176188A (en) * 2020-09-15 2022-03-15 中国农业科学院油料作物研究所 Green method and application for inhibiting aspergillus flavus producing toxin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161864A (en) * 2002-11-12 2004-06-10 Bando Chem Ind Ltd Metal colloidal liquid and conductive coating film
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
WO2012008427A1 (en) * 2010-07-12 2012-01-19 セントラル硝子株式会社 Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith
JP2012511083A (en) * 2008-12-08 2012-05-17 スリーエム イノベイティブ プロパティズ カンパニー Halogen-free flame retardant for epoxy resins
JP2013079176A (en) * 2011-10-05 2013-05-02 Dic Corp Modified graphene, film and molding
JP2015504926A (en) * 2011-12-05 2015-02-16 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Flame retardant mixture containing flame retardant and aluminum phosphite, method for producing the same, and use thereof
WO2015152279A1 (en) * 2014-03-31 2015-10-08 国立大学法人信州大学 Dispersion of hydrotalcite-like compound and flame-resistant coating using same
JP2018059002A (en) * 2016-10-06 2018-04-12 株式会社バイオミミック Photocatalytic composite coating film that transmits visible light and blocks ultraviolet and infrared light, and production method thereof
JP2018095782A (en) * 2016-12-15 2018-06-21 有限会社エフ・イニシャルズ Solution for inner surface coating of transportation box for food or pharmaceutical product, solution for outer surface coating of transportation box for food or pharmaceutical product, inner surface coating of transportation box for food or pharmaceutical product, outer surface coating of transportation box for food or pharmaceutical product and transportation box for food or pharmaceutical food

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161864A (en) * 2002-11-12 2004-06-10 Bando Chem Ind Ltd Metal colloidal liquid and conductive coating film
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
JP2012511083A (en) * 2008-12-08 2012-05-17 スリーエム イノベイティブ プロパティズ カンパニー Halogen-free flame retardant for epoxy resins
WO2012008427A1 (en) * 2010-07-12 2012-01-19 セントラル硝子株式会社 Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith
JP2013079176A (en) * 2011-10-05 2013-05-02 Dic Corp Modified graphene, film and molding
JP2015504926A (en) * 2011-12-05 2015-02-16 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Flame retardant mixture containing flame retardant and aluminum phosphite, method for producing the same, and use thereof
WO2015152279A1 (en) * 2014-03-31 2015-10-08 国立大学法人信州大学 Dispersion of hydrotalcite-like compound and flame-resistant coating using same
JP2018059002A (en) * 2016-10-06 2018-04-12 株式会社バイオミミック Photocatalytic composite coating film that transmits visible light and blocks ultraviolet and infrared light, and production method thereof
JP2018095782A (en) * 2016-12-15 2018-06-21 有限会社エフ・イニシャルズ Solution for inner surface coating of transportation box for food or pharmaceutical product, solution for outer surface coating of transportation box for food or pharmaceutical product, inner surface coating of transportation box for food or pharmaceutical product, outer surface coating of transportation box for food or pharmaceutical product and transportation box for food or pharmaceutical food

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176188A (en) * 2020-09-15 2022-03-15 中国农业科学院油料作物研究所 Green method and application for inhibiting aspergillus flavus producing toxin

Also Published As

Publication number Publication date
JP7121149B2 (en) 2022-08-17
JPWO2020166056A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
Rehan et al. Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag 2 CO 3 and Ag/Ag 3 PO 4 nanoparticles
Zille et al. Application of nanotechnology in antimicrobial finishing of biomedical textiles
Haile et al. Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam
EP1833763B1 (en) Process for preparing dispersions of tio2 in the form of nanoparticles, and dispersions obtainable with this process and fuctionalization of surfaces by application of tio2 dispersions
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
CN103614719B (en) A kind of preparation method of anti-bacteria stainless steel
KR101265781B1 (en) Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst
Blosi et al. Polyvinyl alcohol/silver electrospun nanofibers: biocidal filter media capturing virus‐size particles
CN107082444A (en) Antiseptic, antibacterial filter membrane and its preparation method and application
WO2020166056A1 (en) Coating agent, thin film, substrate with thin film, and method for producing thin film
JP2012096133A (en) Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film
KR20200103054A (en) Composition and method for reducing odor
JP2013216596A (en) Antimicrobial agent, antimicrobial agent dispersion, and antimicrobial-treated product using the same
CN107649109A (en) The preparation method of the graphene oxide titanium dioxide composite photocatalyst aqueous solution
CN112080178A (en) Visible light response anti-fouling antibacterial coating, coating and preparation method thereof
Silva et al. Cationic release behaviour of antimicrobial cellulose/silver nanocomposites
CN104854196B (en) It can application type composition, antimicrobial compositions, antimicrobial articles and their preparation method
JP2012095699A (en) Antibacterial and deodorization treating agent, and antibacterial and deodorization treating article
KR101153554B1 (en) Photocatalyst dispersing element, method for manufacturing photocatalyst dispersing element, photocatalyst element, method for manufacturing photocatalyst element
Arreche et al. Synthesis of antimicrobial siliceous materials by adding sunflowers ashes with silver and copper particles
US7799728B2 (en) Photocatalyst dispersing element, method for manufacturing photocatalyst dispersing element, photocatalyst element, method for manufacturing photocatalyst element
WO2013077805A1 (en) A process for making an antimicrobial coating
JP2011236106A (en) Method of manufacturing titanium oxide based fine particle, the titanium oxide based fine particle, antibacterial deodorant using the titanium oxide based fine particle, coating liquid for forming antibacterial deodorant coating film, and substrate having antibacterial deodorant coating film
JPH1133100A (en) Photocatalyst fine grain containing solid porous silica particle, using method thereof, and photocatalyst containing polymer solid body
JP2020040984A (en) Aqueous composition and powder composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914993

Country of ref document: EP

Kind code of ref document: A1