WO2020166014A1 - Control device and cooling system - Google Patents

Control device and cooling system Download PDF

Info

Publication number
WO2020166014A1
WO2020166014A1 PCT/JP2019/005395 JP2019005395W WO2020166014A1 WO 2020166014 A1 WO2020166014 A1 WO 2020166014A1 JP 2019005395 W JP2019005395 W JP 2019005395W WO 2020166014 A1 WO2020166014 A1 WO 2020166014A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooling
cooling device
control device
determined
Prior art date
Application number
PCT/JP2019/005395
Other languages
French (fr)
Japanese (ja)
Inventor
和田 誠
守 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020571997A priority Critical patent/JP6995226B2/en
Priority to PCT/JP2019/005395 priority patent/WO2020166014A1/en
Publication of WO2020166014A1 publication Critical patent/WO2020166014A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Definitions

  • the present invention relates to control of a cooling device.
  • Patent Document 1 discloses a technology for solving the problem that cold air blown from a blower outlet such as a refrigerator collides with a package and does not reach a long distance in a warehouse. More specifically, Patent Document 1 discloses disposing a plurality of air circulation devices on the ceiling to make the temperature inside the warehouse uniform. The air circulation device can attract ambient air by the Venturi effect and blow out the air.
  • Patent Document 1 has the effect of making the temperature in the storage space uniform, but when the stored item is only at a low position, the space higher than the stored item is unnecessarily cooled, resulting in an increase in power consumption. There is.
  • the main purpose of the present invention is to solve such problems. More specifically, the present invention mainly aims to reduce waste in cooling and reduce power consumption.
  • the control device is A control device for controlling a cooling device installed in a storage space where three-dimensional stored items are stored,
  • the cooling region cooled by the blown air from the cooling device includes the stored item, and a virtual boundary line between the cooling region and a non-cooled region having a higher temperature than the cooling region is located after the uppermost portion of the stored item.
  • the operation control unit controls the operation of the cooling device so that the air is blown in the air volume direction and the airflow direction in the height direction determined by the determination unit.
  • FIG. 3 is a diagram showing a cooling method according to the first embodiment.
  • FIG. 3 is a diagram showing a cooling method according to the first embodiment.
  • FIG. 3 is a diagram showing a cooling method according to the first embodiment.
  • FIG. 3 is a diagram showing a cooling method according to the first embodiment.
  • 3 is a diagram showing a hardware configuration example of the control device according to the first embodiment.
  • FIG. FIG. 3 is a diagram showing a functional configuration example of a control device according to the first embodiment.
  • 3 is a flowchart showing an operation example of the control device according to the first embodiment.
  • Embodiment 1 ***Overview*** 1, FIG. 2, FIG. 3 and FIG. 8 show the outline of the cooling method according to the present embodiment.
  • 1, 2 and 3 show the storage space 1 viewed from the horizontal direction.
  • FIG. 8 shows a state where the storage space 1 of FIG. 1 is viewed from the ceiling direction.
  • the direction from left to right in FIGS. 1, 2, 3, and 8 is referred to as the x direction.
  • the direction from bottom to top in FIG. 8 is called the y direction.
  • the direction from the bottom to the top of FIGS. 1, 2 and 3 is called the z direction.
  • the storage space 1 is a space for storing the storage items 4.
  • the storage item 4 is a three-dimensional object.
  • the stored item 4 is a set of a plurality of boxes. In the example of FIG. 1, a set of nine boxes corresponds to the storage item 4. In addition, in the example of FIG. 2, a set of five boxes corresponds to the storage item 4. In addition, in the example of FIG. 3, a set of five boxes corresponds to the storage item 4.
  • the box is, for example, a food container in which food is stored.
  • the storage space 1 is, for example, a frozen warehouse. The box is not limited to the food container. Further, the storage space 1 is not limited to the frozen warehouse.
  • the storage item 4 is a plurality of boxes, but the storage item 4 may be a single box. Further, the storage item 4 may be an object other than the box.
  • a cooling device 2 is installed in the storage space 1.
  • the cooling device 2 cools the storage space 1 by blowing cool air.
  • the cooling device 2 includes a heat exchanger 21 and a blower 22.
  • the cooling device 2 is hung from the ceiling by a hanging tool. Any method may be used as a method for installing the cooling device 2.
  • Detecting device 3 is also installed on the ceiling of storage space 1.
  • the detection device 3 detects the storage item 4.
  • the detection device 3 is, for example, a sensor.
  • the control device 10 is connected to the cooling device 2 and the detection device 3.
  • the control device 10 receives the detection result from the detection device 3. Further, the control device 10 controls the operation of the cooling device 2 using the detection result of the detection device 3. In the present embodiment, the control device 10 performs control for minimizing waste in cooling.
  • the control device 10 is installed outside the storage space 1, but the control device 10 may be installed inside the storage space 1.
  • the combination of the cooling device 2 and the control device 10 is called a cooling system.
  • Areas denoted by reference numerals 5c, 5d, and 5e or less in FIG. 1 are referred to as cooling areas. That is, the cooling region is a region cooled by the air blown from the cooling device 2. Areas above the reference numerals 5c, 5d and 5e are referred to as uncooled areas.
  • the non-cooled region is a region whose temperature is higher than that of the cooled region.
  • the virtual boundary line 6 is a virtual boundary line between the cooling region and the non-cooling region. 2 and 3, the reference numeral 5a, 5b, 5c, 5d, and 5e are shown without distinction to show the air flow 5.
  • the control device 10 determines the air volume and the wind direction of the cooling device 2 such that the cooling region includes the storage item 4 and the virtual boundary line 6 contacts the rear end of the uppermost portion of the storage item 4.
  • the heights of the columns are all the same. Therefore, the rear end of the uppermost portion of the storage item 4 in FIG. 1 is the rear end of the uppermost box body in the third row.
  • the control device 10 determines the air volume and the air direction of the cooling device 2 so that the virtual boundary line 6 contacts the rear end of the uppermost box body in the third row.
  • the front row is higher than the rear row. Therefore, the rear end of the uppermost portion of the storage item 4 in FIG.
  • the control device 10 determines the air volume and the air direction of the cooling device 2 so that the virtual boundary line 6 contacts the rear end of the uppermost box body in the front row.
  • the rear row is higher than the front row. Therefore, the rear end of the uppermost portion of the storage item 4 in FIG. 3 is the rear end of the uppermost box body in the rear row.
  • the controller 10 determines the air volume and direction of the cooling device 2 so that the virtual boundary line 6 contacts the rear end of the uppermost box in the rear row.
  • the cooling device 2 and the stored article 4 face each other as shown in FIG.
  • the control device 10 according to the present embodiment does not need to control the wind direction in the y direction. That is, the control device 10 according to the present embodiment controls only the wind direction in the z direction.
  • the control device 10 also needs to control the wind direction in the y direction. In this case, the control device 10 can control the wind direction in the y direction by an existing method.
  • the unnecessary area 7 is an area where the cooling device 2 wastefully cools.
  • the entire storage space 1 is cooled uniformly. Therefore, in the method of Patent Document 1, the non-cooling region (the region above the virtual boundary line 6) is also wastefully cooled.
  • the area that is unnecessarily cooled can be limited to the unnecessary area 7, and the power consumption can be reduced.
  • FIG. 9 shows a hardware configuration example of the control device 10 according to the present embodiment. Further, FIG. 10 shows a functional configuration example of the control device 10 according to the present embodiment. First, a hardware configuration example of the control device 10 will be described with reference to FIG. 9.
  • the control device 10 is a computer.
  • the control device 10 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and a communication device 904 as hardware.
  • the auxiliary storage device 903 stores programs that realize the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 illustrated in FIG. 10. These programs are loaded from the auxiliary storage device 903 to the main storage device 902. Then, the processor 901 executes these programs to operate the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104, which will be described later.
  • FIG. 9 schematically illustrates a state in which the processor 901 is executing a program that implements the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104.
  • the parameter storage unit 101 shown in FIG. 9 is realized by the main storage device 902 or the auxiliary storage device 903.
  • the communication device 904 is used for communication with the cooling device 2 and the detection device 3.
  • control device 10 Next, a functional configuration example of the control device 10 will be described with reference to FIG.
  • the parameter storage unit 101 stores parameters for controlling the operation of the cooling device 2.
  • the parameters stored in the parameter storage unit 101 are called static parameters.
  • the parameter storage unit 101 stores, as static parameters, for example, the size of the storage space 1, the position of the cooling device 2, the output level of the cooling device 2, and the like.
  • the parameter acquisition unit 102 acquires a parameter for controlling the operation of the cooling device 2 from the detection device 3.
  • the parameter that the parameter acquisition unit 102 acquires from the detection device 3 is called a dynamic parameter.
  • the deciding unit 103 decides the air volume of the cooling device 2 and the wind direction in the height direction (z direction) using the static parameters and the dynamic parameters.
  • the operation control unit 104 controls the operation of the cooling device 2 by transmitting the operation control value to the cooling device 2 so that the air is blown in the air volume and the height direction determined by the determination unit 103. More specifically, the operation control value is transmitted to the cooling device 2 to control the operation of the blower 22.
  • the determination unit 103 reads static parameters from the parameter storage unit 101.
  • the parameter acquisition unit 102 acquires a dynamic parameter from the detection device 3. Then, the dynamic parameter acquired by the parameter acquisition unit 102 is output to the determination unit 103.
  • the parameter acquisition unit 102 acquires, for example, the position information of the storage item 4 as a dynamic parameter. More specifically, the parameter acquisition unit 102 acquires the height H1, the distance L1, and the distance L2 shown in FIGS. 1, 2, and 3.
  • the height H1 is the height of the uppermost part of the storage item 4.
  • the distance L1 is the distance in the x direction from the blower opening 8 of the cooling device 2 to the back surface of the storage item 4.
  • the distance L2 is a distance in the x direction from the blower opening 8 of the cooling device 2 to the rear end of the uppermost portion of the storage item 4.
  • the control device 10 controls only the wind direction in the z direction, but when the control device 10 also controls the wind direction in the y direction, the parameter acquisition unit 102 uses the dynamic parameters.
  • the distance L3, the distance L4, and the distance L5 shown in FIG. 8 may be acquired.
  • the distance L3 is the width of the box body.
  • the distance L4 and the distance L5 are distances from the wall surface of the storage space 1 to the box body.
  • the determination unit 103 determines the air volume and the air direction of the cooling device 2 using the static parameters and the dynamic parameters. As described above, in the determination unit 103, the cooling region includes the stored item 4 and the virtual boundary line 6 contacts the rear end of the uppermost portion of the stored item 4 in the air volume and the height direction of the cooling device 2. Determine the wind direction. More specifically, the determination unit 103 determines that the cooling region is the minimum in a state where the cooling region includes the stored item 4 and the virtual boundary line 6 contacts the rear end of the uppermost portion of the stored item 4. Therefore, the air volume of the cooling device 2 and the wind direction in the height direction are determined.
  • the determination unit 103 generates a plurality of patterns of air volume and wind direction according to the distance L2 and the height H1, for example. Then, the determination unit 103 selects one pattern from the plurality of patterns of the wind direction and the air volume according to the acquisition result of the parameter acquisition unit 102.
  • 1 to 3 show examples in which the height H1 is the same and the distance L2 is different. That is, FIG. 1 shows an example in which the distance L2 is large.
  • FIG. 2 shows an example in which the distance L2 is small.
  • FIG. 3 shows an example in which the distance L2 is medium. In FIG.
  • a pattern having a large wind direction angle (flap opening) and a large air volume is selected from a plurality of patterns.
  • a pattern having a medium wind direction angle and a medium air volume is selected from a plurality of patterns.
  • a pattern having a large wind direction angle and a medium air volume is selected.
  • the operation control unit 104 determines the operation control value. That is, the operation control unit 104 determines the control value (operation control value) for the cooling device 2 for realizing the air volume and the air direction determined by the determination unit 103.
  • step S104 the operation control unit 104 controls the operation of the cooling device 2. That is, the operation control unit 104 transmits the operation control value determined in step S103 to the cooling device 2. By operating the cooling device 2 according to the operation control value, the cooling device 2 blows air with the air volume and the air direction determined by the determination unit 103. As a result, the storage space 1 is cooled as shown in FIGS. 1, 2 and 3.
  • the cooling device is controlled so that the cold air reaching the area where there are no stored items is minimized. For this reason, according to the present embodiment, it is possible to minimize the area that is unnecessarily cooled. As a result, according to the present embodiment, the power consumption of the cooling device can be reduced.
  • Embodiment 2 In the present embodiment, differences from the first embodiment will be mainly described. Note that matters not described below are the same as those in the first embodiment.
  • FIG. 4 shows an outline of the cooling method according to this embodiment.
  • the configuration of the cooling device 2 is different from that in FIGS. 1, 2, and 3.
  • the cooling device 2 has a plurality of open/close panels 23 and a plurality of rotating shafts 24 in addition to the heat exchanger 21 and the blower 22.
  • the cooling device 2 by arranging the plurality of open/close panels 23 and the plurality of rotary shafts 24 in the vertical direction, the cooling device 2 has a plurality of blower ports 8 arranged on the same line and having different heights. Is provided.
  • the cool air is blown from the blower port 8 of the plurality of blower ports 8 in which the unnecessary area 7 is the smallest.
  • the determining unit 103 of the control device 10 determines the airflow direction and the airflow direction in the height direction of the cooling device 2 and which of the air blower ports 8 of the plurality of air blower ports 8 is to blow air. Further, the operation control unit 104 controls the operation of the cooling device 2 so that air is blown from the blower port 8 determined by the determination unit 103 in the air volume and the wind direction in the height direction determined by the determination unit 103. That is, the operation control unit 104 controls the air volume and direction of the blower 22 and controls the opening/closing of the opening/closing panel 23 (opening the opening/closing panel 23 of the blower port 8). The cooling device 2 opens the opening/closing panel 23 of the blower port 8 determined by the control device 10 based on the operation control value, and from the blower port 8 in the air volume and the height direction determined by the control device 10. Send in the wind direction.
  • the heat exchanger 21 and the blower 22 are hung from the ceiling, but in the present embodiment, the heat exchanger 21 and the blower 22 are arranged below the storage space 1. ..
  • the heat exchanger 21 and the blower 22 are provided at any height that is 1 ⁇ 2 or less of the height of the storage space 1. Since the heat exchanger 21 and the blower 22 are provided at 1/2 or less of the height of the storage space 1, the heat exchanger 21 can suck the air below the storage space 1. That is, the heat exchanger 21 can perform efficient heat exchange by sucking the cool air below the storage space 1.
  • the unnecessary area 7 can be minimized more finely.
  • the heat exchanger 21 draws in cool air below the storage space 1 to allow efficient heat exchange. Therefore, in the present embodiment, the operating efficiency of the cooling device 2 can be improved and the power consumption can be reduced.
  • Embodiment 3 In the present embodiment, differences from the second embodiment will be mainly described. The matters not described below are the same as those in the second embodiment.
  • FIG. 5 shows an outline of the cooling method according to the present embodiment.
  • the configuration of the cooling device 2 is different from that in FIG. 4.
  • a plurality of blowers 22 are arranged in place of the plurality of open/close panels 23 and the plurality of rotary shafts 24.
  • the cooling device 2 is provided with the plurality of blower ports 8 arranged on the same line and having different heights.
  • the cool air is blown from the blower port 8 of the plurality of blower ports 8 in which the unnecessary area 7 is the smallest.
  • the determining unit 103 of the control device 10 determines the airflow direction and the airflow direction in the height direction of the cooling device 2 and which of the plurality of air blowing ports 8 should blow the air.
  • the operation control unit 104 controls the blower 22 of the blower port 8 so that the blower port 8 determined by the determination unit 103 is blown with the air volume and the wind direction in the height direction determined by the determination unit 103. (The operation of the blower 22 of the blower opening 8 is started).
  • the cooling device 2 adjusts the blower 22 of the blower port 8 determined by the control device 10 on the basis of the operation control value, and from the blower port in the air volume and the wind direction in the height direction determined by the control device 10. Blow air.
  • the unnecessary area 7 can be more finely minimized by controlling the blower 22 of the corresponding blower opening 8. Further, also in the present embodiment, the heat exchanger 21 sucks the cool air below the storage space 1 to allow efficient heat exchange. Therefore, in the present embodiment, the operating efficiency of the cooling device 2 can be improved and the power consumption can be reduced.
  • FIG. 6 and 7 show the outline of the cooling method according to the present embodiment. 6 and 7, the configuration of the cooling device 2 is different from that of FIG. In FIG. 6 and FIG. 7, a flap 25 is arranged at each blower opening 8.
  • FIG. 6 shows an example in which the open/close panel 23 at the lower position is opened to blow a large amount of air.
  • FIG. 7 shows an example in which the opening/closing panel 23 at a high position is opened and the air is blown at a low air volume.
  • the air volume since the air volume is large, the power of the blower 22 is large, but the area for useless cooling is small.
  • the power of the blower 22 is small, but the useless cooling area is large.
  • the case where the air volume is large as shown in FIG. 6 and the case where the air volume is small as shown in FIG. 7 is determined in advance in which case the power consumption is small, and the distance L2 and the height H1 are set for each condition. Generate multiple patterns. Specifically, a simulation such as an air flow analysis is performed in advance, and the air volume Qc, the area temperature Tc, the operating time tc of the cooling device 2, COPc, and the air volume when the air volume is large when the distance L2 and the height H1 are the same. When it is small, the air flow rate Qc, the area temperature Tc, the operating time tc of the cooling device 2, and the COPc are obtained.
  • the power consumption Wa is calculated using the equation (1) regarding the power consumption Wa considering the fan input, and the consumption power is calculated using the equation (2) regarding the power consumption Wb considering the cooling area.
  • the electric power Wb is calculated.
  • the power consumption Wa is calculated using the equation (1) and the power consumption Wb is calculated using the equation (2). Then, for each of the case where the air volume is large and the case where the air volume is small, the power consumption W that is the sum of the power consumption Wa and the power saving Wb is obtained.
  • Wa a*tc/t*(Qc/Q) ⁇ r (1)
  • Wb b*(To-T)/(To-Tc)*(tc/t)*(COP/COPc) (2)
  • a” and “b” in the formula are reference powers.
  • t is the standard operation time.
  • Q is the reference air volume.
  • R is an index.
  • To is the ambient space temperature.
  • T is a reference temperature.
  • COP is the reference COP. Then, the power consumption W when the air volume is large is compared with the power consumption W when the air volume is small.
  • the reference power a is the power of the blower in the reference state (FIG. 5).
  • the reference electric power b is the electric power required for the skin load processing in the reference state (FIG. 5).
  • the refrigerator requires electric power for processing loads such as door opening/closing, defrosting, a worker in the target space and a forklift. Let z be the total of these electric powers.
  • the reference power a is represented by “operating time of blower of refrigerator ⁇ input of blower”.
  • the "operating time of the blower” is generally approximately equal to the operating time t of the refrigerator.
  • the operating time t of the refrigerator can be known by storing it in the memory of the refrigerator or the centralized controller.
  • “Blower input” is described in catalogs and the like.
  • the reference power b is represented by “A ⁇ K ⁇ (To ⁇ T) ⁇ tday”.
  • A is the heat transfer area of the warehouse.
  • K is the heat transfer rate.
  • Tday is a period of time (24 hours for one day).
  • A is an area (basically a wall surface area) where heat transfer occurs inside and outside the target space, and is known from the drawing of the target space.
  • K is also known from the specifications of the heat insulating material on the wall surface.
  • q is the refrigerating capacity in the standard state (FIG. 5).
  • Qc is the refrigerating capacity when the air volume is changed.
  • a catalog value can be used for “q”.
  • Qc is measured in advance by changing the air volume by several patterns.
  • catalog values can be used for “COP” and “COPc”.
  • "COP” and "COPc” may be measured in advance by changing the air volume by several patterns.
  • the “index r” indicates that the input of the blower is proportional to the r-th power of the air volume.
  • the “index r” is a generally known value.
  • the “index r” can be obtained by measuring the relationship between the air volume and the input in advance.
  • the determination unit 103 generates a plurality of combination patterns by combining candidates of the air volume, the wind direction in the height direction, and the angles of the blower opening 8 and the flap 25. Then, the determining unit 103 estimates the power consumption of the cooling device 2 for each combination pattern. Further, the determining unit 103 determines the air volume, the wind direction in the height direction, the angles of the blower opening 8 and the flap 25 based on the estimated power consumption for each combination pattern. More specifically, the determination unit 103 selects the air volume, the air direction in the height direction, the angles of the blower port 8 and the flap 25, which correspond to the combination pattern in which the power consumption of the cooling device 2 is the minimum.
  • the operation control unit 104 controls the opening/closing panel 23 and the flap 25 of the blower port so that the air is blown from the blower port 8 selected by the determining unit 103 in the air volume and the wind direction in the height direction selected by the determining unit 103. Control the angle.
  • the cooling device 2 opens the opening/closing panel 23 of the blower port 8 determined by the control device 10 based on the operation control value, and sets the angle of the flap 25 of the blower port 8 to the angle determined by the control device 10. From the blower port 8, the air is blown in the air volume and the wind direction in the height direction determined by the control device 10.
  • the combination pattern that minimizes the power consumption of the cooling device 2 is selected from among the plurality of combination patterns, and the operation control of the cooling device 2 is performed according to the selected combination pattern. Therefore, the power consumption of the cooling device 2 can be reduced.
  • a processor 901 illustrated in FIG. 9 is an IC (Integrated Circuit) that performs processing.
  • the processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the main storage device 902 illustrated in FIG. 9 is a RAM (Random Access Memory).
  • the auxiliary storage device 903 shown in FIG. 9 is a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
  • the communication device 904 illustrated in FIG. 9 is an electronic circuit that executes a data communication process.
  • the communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
  • the auxiliary storage device 903 also stores an OS (Operating System). Then, at least part of the OS is executed by the processor 901.
  • the processor 901 executes a program that realizes the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 while executing at least a part of the OS.
  • the processor 901 executes the OS, task management, memory management, file management, communication control, etc. are performed.
  • at least one of information, data, signal value, and variable value indicating the processing results of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 is stored in the main storage device 902, the auxiliary storage device 903, and the processor 901. It is stored in at least one of the register and the cache memory.
  • the program that realizes the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 is stored in a portable recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD. It may have been done. Then, a portable recording medium storing a program that realizes the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 may be distributed commercially.
  • the “part” of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 may be replaced with “circuit” or “process” or “procedure” or “processing”.
  • the control device 10 may be realized by a processing circuit.
  • the processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
  • the superordinate concept of the processor and the processing circuit is referred to as “processing circuit”. That is, each of the processor and the processing circuit is a specific example of a “processing circuit”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

This control device (10) controls a cooling device installed in a storage space for storing a three-dimensional object. A determination unit (103) determines the air volume and air blowing direction in the height direction of a cooling device so that a cooling region cooled by air blown from the cooling device includes the stored object, and a virtual boundary line between the cooling region and a non-cooling region having a higher temperature than the cooling region is in contact with the rear end of uppermost section of the stored object. An operation control unit (104) controls the operation of the cooling device so that air is blown in the air volume and air blowing direction in the height direction which are determined by the determination unit (103).

Description

制御装置及び冷却システムController and cooling system
 本発明は、冷却装置の制御に関する。 The present invention relates to control of a cooling device.
 特許文献1では、倉庫内で、冷凍機などの吹出口から吹き出した冷気が、荷物に衝突し、遠くまで届かない課題を解決するための技術が開示されている。より具体的には、特許文献1では、天井に空気循環装置を複数個配置して、倉庫内の温度を均一にすることが開示されている。空気循環装置は、ベンチュリー効果により周辺空気を誘引して、空気を吹き出すことができる。 Patent Document 1 discloses a technology for solving the problem that cold air blown from a blower outlet such as a refrigerator collides with a package and does not reach a long distance in a warehouse. More specifically, Patent Document 1 discloses disposing a plurality of air circulation devices on the ceiling to make the temperature inside the warehouse uniform. The air circulation device can attract ambient air by the Venturi effect and blow out the air.
特開2000-02824号公報Japanese Patent Laid-Open No. 2000-02824
 特許文献1の技術では、保管空間内の温度を均一にする効果はあるが、保管物が低い位置にしかない場合、保管物より高い空間を無駄に冷却し、消費電力が増大してしまうという課題がある。 The technique of Patent Document 1 has the effect of making the temperature in the storage space uniform, but when the stored item is only at a low position, the space higher than the stored item is unnecessarily cooled, resulting in an increase in power consumption. There is.
 本発明は、このような課題を解決することを主な目的の一つとしている。より具体的には、本発明は、冷却における無駄を削減し、消費電力を低減することを主な目的とする。 The main purpose of the present invention is to solve such problems. More specifically, the present invention mainly aims to reduce waste in cooling and reduce power consumption.
 本発明に係る制御装置は、
 立体である保管物が保管される保管空間に設置される冷却装置を制御する制御装置であって、
 前記冷却装置からの送風により冷却された冷却領域が前記保管物を包含し、前記冷却領域と前記冷却領域よりも温度が高い非冷却領域との仮想境界線が前記保管物における最上位部の後端に接するように、前記冷却装置の風量及び高さ方向での風向を決定する決定部と、
 前記決定部により決定された風量及び高さ方向での風向で送風されるように前記冷却装置の運転を制御する運転制御部とを有する。
The control device according to the present invention is
A control device for controlling a cooling device installed in a storage space where three-dimensional stored items are stored,
The cooling region cooled by the blown air from the cooling device includes the stored item, and a virtual boundary line between the cooling region and a non-cooled region having a higher temperature than the cooling region is located after the uppermost portion of the stored item. A deciding unit for deciding the air volume and the air direction in the height direction of the cooling device so as to be in contact with the end,
The operation control unit controls the operation of the cooling device so that the air is blown in the air volume direction and the airflow direction in the height direction determined by the determination unit.
 本発明によれば、冷却における無駄を削減し、消費電力を低減することができる。 According to the present invention, it is possible to reduce waste in cooling and reduce power consumption.
実施の形態1に係る冷却方法を示す図。FIG. 3 is a diagram showing a cooling method according to the first embodiment. 実施の形態1に係る冷却方法を示す図。FIG. 3 is a diagram showing a cooling method according to the first embodiment. 実施の形態1に係る冷却方法を示す図。FIG. 3 is a diagram showing a cooling method according to the first embodiment. 実施の形態2に係る冷却方法を示す図。The figure which shows the cooling method which concerns on Embodiment 2. 実施の形態3に係る冷却方法を示す図。The figure which shows the cooling method which concerns on Embodiment 3. 実施の形態4に係る冷却方法を示す図。The figure which shows the cooling method which concerns on Embodiment 4. 実施の形態4に係る冷却方法を示す図。The figure which shows the cooling method which concerns on Embodiment 4. 実施の形態1に係る冷却方法を示す図。FIG. 3 is a diagram showing a cooling method according to the first embodiment. 実施の形態1に係る制御装置のハードウェア構成例を示す図。3 is a diagram showing a hardware configuration example of the control device according to the first embodiment. FIG. 実施の形態1に係る制御装置の機能構成例を示す図。FIG. 3 is a diagram showing a functional configuration example of a control device according to the first embodiment. 実施の形態1に係る制御装置の動作例を示すフローチャート。3 is a flowchart showing an operation example of the control device according to the first embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiments and drawings, the same reference numerals denote the same or corresponding parts.
 実施の形態1.
***概要***
 図1、図2、図3及び図8は、本実施の形態に係る冷却方法の概要を示す。
 図1、図2及び図3は、保管空間1を水平方向から見た状態を示す。図8は、図1の保管空間1を天井方向から見た状態を示す。
 以下では、図1、図2、図3及び図8の左から右に向かう方向をx方向という。また、図8の下から上に向かう方向をy方向という。また、図1、図2及び図3の下から上に向かう方向をz方向という。
Embodiment 1.
***Overview***
1, FIG. 2, FIG. 3 and FIG. 8 show the outline of the cooling method according to the present embodiment.
1, 2 and 3 show the storage space 1 viewed from the horizontal direction. FIG. 8 shows a state where the storage space 1 of FIG. 1 is viewed from the ceiling direction.
Hereinafter, the direction from left to right in FIGS. 1, 2, 3, and 8 is referred to as the x direction. The direction from bottom to top in FIG. 8 is called the y direction. The direction from the bottom to the top of FIGS. 1, 2 and 3 is called the z direction.
 保管空間1は、保管物4を保管する空間である。保管物4は、立体である。保管物4は、複数の箱体の集合である。図1の例では、9個の箱体の集合が保管物4に相当する。また、図2の例では、5個の箱体の集合が保管物4に相当する。また、図3の例では、5個の箱体の集合が保管物4に相当する。
 箱体は、例えば、食品が貯蔵された食品コンテナである。また、保管空間1は、例えば、冷凍倉庫である。なお、箱体は食品コンテナに限定されない。また、保管空間1も冷凍倉庫に限定されない。また、本実施の形態及び以下の実施の形態では、保管物4は複数の箱体であるが、保管物4が単一の箱体でもよい。また、保管物4が箱体以外の物体であってもよい。
The storage space 1 is a space for storing the storage items 4. The storage item 4 is a three-dimensional object. The stored item 4 is a set of a plurality of boxes. In the example of FIG. 1, a set of nine boxes corresponds to the storage item 4. In addition, in the example of FIG. 2, a set of five boxes corresponds to the storage item 4. In addition, in the example of FIG. 3, a set of five boxes corresponds to the storage item 4.
The box is, for example, a food container in which food is stored. The storage space 1 is, for example, a frozen warehouse. The box is not limited to the food container. Further, the storage space 1 is not limited to the frozen warehouse. Further, in the present embodiment and the following embodiments, the storage item 4 is a plurality of boxes, but the storage item 4 may be a single box. Further, the storage item 4 may be an object other than the box.
 保管空間1には、冷却装置2が設置されている。冷却装置2は、冷気を送風することで保管空間1を冷却する。冷却装置2には熱交換器21と送風機22が含まれる。
 また、図1の例では、冷却装置2は吊具により天井から吊るされている。冷却装置2の設置方法として、どのような方法が用いられてもよい。
A cooling device 2 is installed in the storage space 1. The cooling device 2 cools the storage space 1 by blowing cool air. The cooling device 2 includes a heat exchanger 21 and a blower 22.
Moreover, in the example of FIG. 1, the cooling device 2 is hung from the ceiling by a hanging tool. Any method may be used as a method for installing the cooling device 2.
 保管空間1の天井には、検知装置3も設置されている。検知装置3は、保管物4を検知する。検知装置3は、例えば、センサである。 Detecting device 3 is also installed on the ceiling of storage space 1. The detection device 3 detects the storage item 4. The detection device 3 is, for example, a sensor.
 制御装置10は、冷却装置2及び検知装置3に接続されている。制御装置10は、検知装置3から検知結果を受信する。また、制御装置10は、検知装置3の検知結果を用いて、冷却装置2の運転を制御する。本実施の形態では、制御装置10は、冷却における無駄を最小限にするための制御を行う。
 図1では、制御装置10は、保管空間1の外部に設置されているが、制御装置10が保管空間1の内部に設置されていてもよい。
The control device 10 is connected to the cooling device 2 and the detection device 3. The control device 10 receives the detection result from the detection device 3. Further, the control device 10 controls the operation of the cooling device 2 using the detection result of the detection device 3. In the present embodiment, the control device 10 performs control for minimizing waste in cooling.
In FIG. 1, the control device 10 is installed outside the storage space 1, but the control device 10 may be installed inside the storage space 1.
 なお、冷却装置2と制御装置10との組合せを冷却システムという。 The combination of the cooling device 2 and the control device 10 is called a cooling system.
 図1の例では、符号5a及び5bに示すように冷却装置2に空気が流れ込み、冷却装置2の送風口8から冷気が送風され、符号5c、5d及び5eに示すように冷気が流れる。図1において符号5c、5d及び5e以下の領域を冷却領域という。つまり、冷却領域は、冷却装置2からの送風により冷却された領域である。符号5c、5d及び5eよりも上の領域を非冷却領域という。非冷却領域は、冷却領域よりも温度が高い領域である。
 仮想境界線6は、冷却領域と非冷却領域との仮想的な境界線である。
 なお、図2及び図3では、符号5a、5b、5c、5d及び5eを区別せずに、空気の流れ5を示している。
In the example of FIG. 1, air flows into the cooling device 2 as indicated by reference numerals 5a and 5b, cool air is blown from the blower port 8 of the cooling device 2, and cool air flows as indicated by reference numerals 5c, 5d, and 5e. Areas denoted by reference numerals 5c, 5d, and 5e or less in FIG. 1 are referred to as cooling areas. That is, the cooling region is a region cooled by the air blown from the cooling device 2. Areas above the reference numerals 5c, 5d and 5e are referred to as uncooled areas. The non-cooled region is a region whose temperature is higher than that of the cooled region.
The virtual boundary line 6 is a virtual boundary line between the cooling region and the non-cooling region.
2 and 3, the reference numeral 5a, 5b, 5c, 5d, and 5e are shown without distinction to show the air flow 5.
 本実施の形態では、制御装置10は、冷却領域が保管物4を包含し、仮想境界線6が保管物4の最上位部の後端に接するように、冷却装置2の風量及び風向を決定する。
 図1の例では、各列の高さは全て同じである。このため、図1の保管物4の最上位部の後端は、3列目の最上段の箱体の後端である。制御装置10は、3列目の最上段の箱体の後端に仮想境界線6が接するように冷却装置2の風量及び風向を決定する。
 図2の例では、前列が後列よりも高い。このため、図2の保管物4の最上位部の後端は、前列の最上段の箱体の後端である。制御装置10は、前列の最上段の箱体の後端に仮想境界線6が接するように冷却装置2の風量及び風向を決定する。
 図3の例では、後列が前列よりも高い。このため、図3の保管物4の最上位部の後端は、後列の最上段の箱体の後端である。制御装置10は、後列の最上段の箱体の後端に仮想境界線6が接するように冷却装置2の風量及び風向を決定する。
 なお、本実施の形態では、説明の簡明のために、図8に示すように、冷却装置2と保管物4は、対向しているものとする。このため、本実施の形態に係る制御装置10は、y方向の風向は制御する必要が無いものとする。つまり、本実施の形態に係る制御装置10は、z方向の風向のみを制御するものとする。保管物4が冷却装置2に対してy方向におけるいずれかの方向にずれている場合は、制御装置10は、y方向の風向も制御する必要がある。この場合は、制御装置10は、y方向の風向の制御は既存の方法により行うことができる。
In the present embodiment, the control device 10 determines the air volume and the wind direction of the cooling device 2 such that the cooling region includes the storage item 4 and the virtual boundary line 6 contacts the rear end of the uppermost portion of the storage item 4. To do.
In the example of FIG. 1, the heights of the columns are all the same. Therefore, the rear end of the uppermost portion of the storage item 4 in FIG. 1 is the rear end of the uppermost box body in the third row. The control device 10 determines the air volume and the air direction of the cooling device 2 so that the virtual boundary line 6 contacts the rear end of the uppermost box body in the third row.
In the example of FIG. 2, the front row is higher than the rear row. Therefore, the rear end of the uppermost portion of the storage item 4 in FIG. 2 is the rear end of the uppermost box body in the front row. The control device 10 determines the air volume and the air direction of the cooling device 2 so that the virtual boundary line 6 contacts the rear end of the uppermost box body in the front row.
In the example of FIG. 3, the rear row is higher than the front row. Therefore, the rear end of the uppermost portion of the storage item 4 in FIG. 3 is the rear end of the uppermost box body in the rear row. The controller 10 determines the air volume and direction of the cooling device 2 so that the virtual boundary line 6 contacts the rear end of the uppermost box in the rear row.
In the present embodiment, for the sake of simplicity of explanation, it is assumed that the cooling device 2 and the stored article 4 face each other as shown in FIG. Therefore, the control device 10 according to the present embodiment does not need to control the wind direction in the y direction. That is, the control device 10 according to the present embodiment controls only the wind direction in the z direction. When the stored item 4 is displaced with respect to the cooling device 2 in any direction in the y direction, the control device 10 also needs to control the wind direction in the y direction. In this case, the control device 10 can control the wind direction in the y direction by an existing method.
 図1、図2及び図3において、不要領域7は、冷却装置2が無駄に冷却をしている領域である。特許文献1の方法では、保管空間1の全体が均一に冷却される。このため、特許文献1の方法では、非冷却領域(仮想境界線6よりも上の領域)も無駄に冷却されている。本実施の形態では、無駄に冷却される領域を不要領域7に限定することができ、消費電力を低減することができる。 In FIGS. 1, 2, and 3, the unnecessary area 7 is an area where the cooling device 2 wastefully cools. In the method of Patent Document 1, the entire storage space 1 is cooled uniformly. Therefore, in the method of Patent Document 1, the non-cooling region (the region above the virtual boundary line 6) is also wastefully cooled. In the present embodiment, the area that is unnecessarily cooled can be limited to the unnecessary area 7, and the power consumption can be reduced.
***構成の説明***
 図9は、本実施の形態に係る制御装置10のハードウェア構成例を示す。また、図10は、本実施の形態に係る制御装置10の機能構成例を示す。
 先ず、図9を参照して、制御装置10のハードウェア構成例を説明する。
***Composition explanation***
FIG. 9 shows a hardware configuration example of the control device 10 according to the present embodiment. Further, FIG. 10 shows a functional configuration example of the control device 10 according to the present embodiment.
First, a hardware configuration example of the control device 10 will be described with reference to FIG. 9.
 本実施の形態に係る制御装置10は、コンピュータである。
 制御装置10は、ハードウェアとして、プロセッサ901、主記憶装置902、補助記憶装置903及び通信装置904を備える。
 補助記憶装置903には、図10に示すパラメータ取得部102、決定部103及び運転制御部104の機能を実現するプログラムが記憶されている。
 これらプログラムは、補助記憶装置903から主記憶装置902にロードされる。そして、プロセッサ901がこれらプログラムを実行して、後述するパラメータ取得部102、決定部103及び運転制御部104の動作を行う。
 図9では、プロセッサ901がパラメータ取得部102、決定部103及び運転制御部104の機能を実現するプログラムを実行している状態を模式的に表している。
 また、図9に示すパラメータ記憶部101は、主記憶装置902又は補助記憶装置903により実現される。
 通信装置904は、冷却装置2及び検知装置3との通信に用いられる。
The control device 10 according to the present embodiment is a computer.
The control device 10 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and a communication device 904 as hardware.
The auxiliary storage device 903 stores programs that realize the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 illustrated in FIG. 10.
These programs are loaded from the auxiliary storage device 903 to the main storage device 902. Then, the processor 901 executes these programs to operate the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104, which will be described later.
FIG. 9 schematically illustrates a state in which the processor 901 is executing a program that implements the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104.
The parameter storage unit 101 shown in FIG. 9 is realized by the main storage device 902 or the auxiliary storage device 903.
The communication device 904 is used for communication with the cooling device 2 and the detection device 3.
 次に、図10を参照して、制御装置10の機能構成例を説明する。 Next, a functional configuration example of the control device 10 will be described with reference to FIG.
 パラメータ記憶部101は、冷却装置2の運転を制御するためのパラメータを記憶する。
 パラメータ記憶部101が記憶しているパラメータを静的パラメータという。
 パラメータ記憶部101は、静的パラメータとして、例えば、保管空間1の寸法、冷却装置2の位置、冷却装置2の出力レベル等を記憶している。
The parameter storage unit 101 stores parameters for controlling the operation of the cooling device 2.
The parameters stored in the parameter storage unit 101 are called static parameters.
The parameter storage unit 101 stores, as static parameters, for example, the size of the storage space 1, the position of the cooling device 2, the output level of the cooling device 2, and the like.
 パラメータ取得部102は、検知装置3から、冷却装置2の運転を制御するためのパラメータを取得する。パラメータ取得部102が検知装置3から取得するパラメータを動的パラメータという。 The parameter acquisition unit 102 acquires a parameter for controlling the operation of the cooling device 2 from the detection device 3. The parameter that the parameter acquisition unit 102 acquires from the detection device 3 is called a dynamic parameter.
 決定部103は、静的パラメータ及び動的パラメータを用いて、冷却装置2の風量及び高さ方向(z方向)での風向を決定する。 The deciding unit 103 decides the air volume of the cooling device 2 and the wind direction in the height direction (z direction) using the static parameters and the dynamic parameters.
 運転制御部104は、決定部103により決定された風量及び高さ方向での風向で送風されるように運転制御値を冷却装置2に送信して冷却装置2の運転を制御する。より具体的には、運転制御値を冷却装置2に送信して送風機22の運転を制御する。 The operation control unit 104 controls the operation of the cooling device 2 by transmitting the operation control value to the cooling device 2 so that the air is blown in the air volume and the height direction determined by the determination unit 103. More specifically, the operation control value is transmitted to the cooling device 2 to control the operation of the blower 22.
***動作の説明***
 次に、図11のフローチャートを参照して、本実施の形態に係る制御装置10の動作例を説明する。
***Description of operation***
Next, an operation example of the control device 10 according to the present embodiment will be described with reference to the flowchart in FIG.
 パラメータ取得処理(ステップS101)では、決定部103が、パラメータ記憶部101から静的パラメータを読み出す。
 また、パラメータ取得処理(ステップS101)では、パラメータ取得部102が検知装置3から動的パラメータを取得する。そして、パラメータ取得部102が取得した動的パラメータを決定部103に出力する。
 パラメータ取得部102は、動的パラメータとして、例えば、保管物4の位置情報を取得する。
 より具体的には、パラメータ取得部102は、図1、図2及び図3に示す、高さH1、距離L1及び距離L2を取得する。
 高さH1は、保管物4の最上位部の高さである。距離L1は、冷却装置2の送風口8から保管物4の背面までのx方向での距離である。距離L2は、冷却装置2の送風口8から保管物4の最上位部の後端までのx方向での距離である。
 前述したように、本実施の形態では、制御装置10はz方向での風向のみを制御するが、制御装置10がy方向での風向も制御する場合は、パラメータ取得部102は、動的パラメータとして、図8に示す距離L3、距離L4及び距離L5を取得してもよい。距離L3は、箱体の幅である。距離L4及び距離L5は、保管空間1の壁面から箱体までの距離である。
In the parameter acquisition process (step S101), the determination unit 103 reads static parameters from the parameter storage unit 101.
In the parameter acquisition process (step S101), the parameter acquisition unit 102 acquires a dynamic parameter from the detection device 3. Then, the dynamic parameter acquired by the parameter acquisition unit 102 is output to the determination unit 103.
The parameter acquisition unit 102 acquires, for example, the position information of the storage item 4 as a dynamic parameter.
More specifically, the parameter acquisition unit 102 acquires the height H1, the distance L1, and the distance L2 shown in FIGS. 1, 2, and 3.
The height H1 is the height of the uppermost part of the storage item 4. The distance L1 is the distance in the x direction from the blower opening 8 of the cooling device 2 to the back surface of the storage item 4. The distance L2 is a distance in the x direction from the blower opening 8 of the cooling device 2 to the rear end of the uppermost portion of the storage item 4.
As described above, in the present embodiment, the control device 10 controls only the wind direction in the z direction, but when the control device 10 also controls the wind direction in the y direction, the parameter acquisition unit 102 uses the dynamic parameters. Alternatively, the distance L3, the distance L4, and the distance L5 shown in FIG. 8 may be acquired. The distance L3 is the width of the box body. The distance L4 and the distance L5 are distances from the wall surface of the storage space 1 to the box body.
 決定処理(ステップS102)では、決定部103が、静的パラメータと動的パラメータとを用いて、冷却装置2の風量及び風向を決定する。
 前述したように、決定部103は、冷却領域が保管物4を包含し、仮想境界線6が保管物4の最上位部の後端に接するように、冷却装置2の風量及び高さ方向で風向を決定する。より具体的には、決定部103は、冷却領域が保管物4を包含し、仮想境界線6が保管物4における最上位部の後端に接するという条件を満たした状態で冷却領域が最小となるように、冷却装置2の風量及び高さ方向での風向を決定する。
 ここで、仮想境界線6が保管物4の最上位部の後端に接するように風量及び高さ方向での風向を決定する方法を説明する。
 先ず、決定部103は、例えば距離L2と高さH1に応じて風量と風向のパターンを複数生成する。そして、決定部103は、パラメータ取得部102の取得結果に応じて風向と風量の複数のパターンの中から1つのパターンを選択する。
 図1から図3は、高さH1が同じで距離L2が異なる例を示す。つまり、図1は距離L2が大きい例を示す。図2は距離L2が小さい例を示す。図3は距離L2が中程度の例を示す。図1では、複数のパターンの中から、風向角(フラップ開度)が大きく、風量も大きいパターンが選択されている。図2では、複数のパターンの中から、風向角が中程度で風量も中程度のパターンが選択されている。図3では、風向角が大きく、風量が中程度のパターンが選択されている。
In the determination process (step S102), the determination unit 103 determines the air volume and the air direction of the cooling device 2 using the static parameters and the dynamic parameters.
As described above, in the determination unit 103, the cooling region includes the stored item 4 and the virtual boundary line 6 contacts the rear end of the uppermost portion of the stored item 4 in the air volume and the height direction of the cooling device 2. Determine the wind direction. More specifically, the determination unit 103 determines that the cooling region is the minimum in a state where the cooling region includes the stored item 4 and the virtual boundary line 6 contacts the rear end of the uppermost portion of the stored item 4. Therefore, the air volume of the cooling device 2 and the wind direction in the height direction are determined.
Here, a method of determining the air volume and the wind direction in the height direction so that the virtual boundary line 6 contacts the rear end of the uppermost portion of the storage item 4 will be described.
First, the determination unit 103 generates a plurality of patterns of air volume and wind direction according to the distance L2 and the height H1, for example. Then, the determination unit 103 selects one pattern from the plurality of patterns of the wind direction and the air volume according to the acquisition result of the parameter acquisition unit 102.
1 to 3 show examples in which the height H1 is the same and the distance L2 is different. That is, FIG. 1 shows an example in which the distance L2 is large. FIG. 2 shows an example in which the distance L2 is small. FIG. 3 shows an example in which the distance L2 is medium. In FIG. 1, a pattern having a large wind direction angle (flap opening) and a large air volume is selected from a plurality of patterns. In FIG. 2, a pattern having a medium wind direction angle and a medium air volume is selected from a plurality of patterns. In FIG. 3, a pattern having a large wind direction angle and a medium air volume is selected.
 次に、運転制御値決定処理(ステップS103)で、運転制御部104が、運転制御値を決定する。つまり、運転制御部104は、決定部103により決定された風量及び風向を実現するための冷却装置2に対する制御値(運転制御値)を決定する。 Next, in the operation control value determination process (step S103), the operation control unit 104 determines the operation control value. That is, the operation control unit 104 determines the control value (operation control value) for the cooling device 2 for realizing the air volume and the air direction determined by the determination unit 103.
 次に、運転制御処理(ステップS104)で、運転制御部104が冷却装置2の運転を制御する。つまり、運転制御部104は、ステップS103で決定した運転制御値を冷却装置2に送信する。冷却装置2は、運転制御値に従って運転を行うことで、決定部103により決定された風量及び風向で送風することになる。この結果、図1、図2及び図3に示すように保管空間1が冷却される。 Next, in the operation control process (step S104), the operation control unit 104 controls the operation of the cooling device 2. That is, the operation control unit 104 transmits the operation control value determined in step S103 to the cooling device 2. By operating the cooling device 2 according to the operation control value, the cooling device 2 blows air with the air volume and the air direction determined by the determination unit 103. As a result, the storage space 1 is cooled as shown in FIGS. 1, 2 and 3.
***実施の形態の効果の説明***
 このように、本実施の形態では、保管物がない領域に到達する冷風が最小限になるように冷却装置を制御する。このため、本実施の形態によれば、無駄に冷却してしまう領域を最小限にすることができる。この結果、本実施の形態によれば、冷却装置の消費電力を削減することができる。
***Explanation of the effect of the embodiment***
As described above, in the present embodiment, the cooling device is controlled so that the cold air reaching the area where there are no stored items is minimized. For this reason, according to the present embodiment, it is possible to minimize the area that is unnecessarily cooled. As a result, according to the present embodiment, the power consumption of the cooling device can be reduced.
 実施の形態2.
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 2.
In the present embodiment, differences from the first embodiment will be mainly described.
Note that matters not described below are the same as those in the first embodiment.
 図4は、本実施の形態に係る冷却方法の概要を示す。
 図4では、図1、図2及び図3と比較して、冷却装置2の構成が異なっている。
FIG. 4 shows an outline of the cooling method according to this embodiment.
In FIG. 4, the configuration of the cooling device 2 is different from that in FIGS. 1, 2, and 3.
 本実施の形態では、冷却装置2は、熱交換器21、送風機22に加えて、複数の開閉パネル23と複数の回転軸24とを有する。
 本実施の形態では、複数の開閉パネル23と複数の回転軸24を縦方向に配置することで、冷却装置2には、同一線上に配置された、各々の高さが異なる複数の送風口8が設けられている。
 本実施の形態では、複数の送風口8のうち不要領域7が最小になる送風口8から冷風が送出される。
 本実施の形態では、制御装置10の決定部103は、冷却装置2の風量及び高さ方向での風向と、複数の送風口8のいずれの送風口8から送風するかを決定する。また、運転制御部104は、決定部103により決定された送風口8から決定部103により決定された風量及び高さ方向での風向で送風されるように冷却装置2の運転を制御する。つまり、運転制御部104は、送風機22の風量及び風向の制御と、開閉パネル23の開閉の制御(当該送風口8の開閉パネル23の開放)を行う。
 冷却装置2は、運転制御値に基づき、制御装置10により決定された送風口8の開閉パネル23を開放して、当該送風口8から、制御装置10により決定された風量及び高さ方向での風向で送風する。
In the present embodiment, the cooling device 2 has a plurality of open/close panels 23 and a plurality of rotating shafts 24 in addition to the heat exchanger 21 and the blower 22.
In the present embodiment, by arranging the plurality of open/close panels 23 and the plurality of rotary shafts 24 in the vertical direction, the cooling device 2 has a plurality of blower ports 8 arranged on the same line and having different heights. Is provided.
In the present embodiment, the cool air is blown from the blower port 8 of the plurality of blower ports 8 in which the unnecessary area 7 is the smallest.
In the present embodiment, the determining unit 103 of the control device 10 determines the airflow direction and the airflow direction in the height direction of the cooling device 2 and which of the air blower ports 8 of the plurality of air blower ports 8 is to blow air. Further, the operation control unit 104 controls the operation of the cooling device 2 so that air is blown from the blower port 8 determined by the determination unit 103 in the air volume and the wind direction in the height direction determined by the determination unit 103. That is, the operation control unit 104 controls the air volume and direction of the blower 22 and controls the opening/closing of the opening/closing panel 23 (opening the opening/closing panel 23 of the blower port 8).
The cooling device 2 opens the opening/closing panel 23 of the blower port 8 determined by the control device 10 based on the operation control value, and from the blower port 8 in the air volume and the height direction determined by the control device 10. Send in the wind direction.
 また、実施の形態1では、熱交換器21及び送風機22は、天井から吊るされていたが、本実施の形態では、熱交換器21及び送風機22は、保管空間1の下方に配置されている。例えば、熱交換器21及び送風機22は、保管空間1の高さの1/2以下のいずれかの高さに設けられている。熱交換器21及び送風機22を保管空間1の高さの1/2以下に設けているため、熱交換器21は、保管空間1の下方の空気を吸気することができる。つまり、熱交換器21は、保管空間1の下方にある冷たい空気を吸気することで、効率的な熱交換を行うことができる。 Further, in the first embodiment, the heat exchanger 21 and the blower 22 are hung from the ceiling, but in the present embodiment, the heat exchanger 21 and the blower 22 are arranged below the storage space 1. .. For example, the heat exchanger 21 and the blower 22 are provided at any height that is ½ or less of the height of the storage space 1. Since the heat exchanger 21 and the blower 22 are provided at 1/2 or less of the height of the storage space 1, the heat exchanger 21 can suck the air below the storage space 1. That is, the heat exchanger 21 can perform efficient heat exchange by sucking the cool air below the storage space 1.
 本実施の形態によれば、開閉パネル23の開閉により、より精細に不要領域7を最小化することができる。
 また、本実施の形態では、熱交換器21が保管空間1の下方にある冷たい空気を吸気することで、効率的な熱交換を行うことができる。このため、本実施の形態では、冷却装置2の運転効率を向上させることができ、消費電力を低減することができる。
According to the present embodiment, by opening/closing the open/close panel 23, the unnecessary area 7 can be minimized more finely.
Further, in the present embodiment, the heat exchanger 21 draws in cool air below the storage space 1 to allow efficient heat exchange. Therefore, in the present embodiment, the operating efficiency of the cooling device 2 can be improved and the power consumption can be reduced.
 実施の形態3.
 本実施の形態では、主に実施の形態2との差異を説明する。
 なお、以下で説明していない事項は、実施の形態2と同様である。
Embodiment 3.
In the present embodiment, differences from the second embodiment will be mainly described.
The matters not described below are the same as those in the second embodiment.
 図5は、本実施の形態に係る冷却方法の概要を示す。
 図5では、図4と比較して、冷却装置2の構成が異なっている。
FIG. 5 shows an outline of the cooling method according to the present embodiment.
In FIG. 5, the configuration of the cooling device 2 is different from that in FIG. 4.
 本実施の形態では、複数の開閉パネル23と複数の回転軸24に代えて、複数の送風機22が配置されている。複数の送風機22を縦方向に配置することで、冷却装置2には、同一線上に配置された、各々の高さが異なる複数の送風口8が設けられている。
 本実施の形態では、複数の送風口8のうち不要領域7が最小になる送風口8から冷風が送出される。
 本実施の形態では、制御装置10の決定部103は、冷却装置2の風量及び高さ方向での風向と、複数の送風口8のいずれの送風口8から送風するかを決定する。また、運転制御部104は、決定部103により決定された送風口8から決定部103により決定された風量及び高さ方向での風向で送風されるように、当該送風口8の送風機22を制御する(当該送風口8の送風機22の稼動を開始させる)。
 冷却装置2は、運転制御値に基づき、制御装置10により決定された送風口8の送風機22を調整して、当該送風口から、制御装置10により決定された風量及び高さ方向での風向で送風する。
In the present embodiment, a plurality of blowers 22 are arranged in place of the plurality of open/close panels 23 and the plurality of rotary shafts 24. By arranging the plurality of blowers 22 in the vertical direction, the cooling device 2 is provided with the plurality of blower ports 8 arranged on the same line and having different heights.
In the present embodiment, the cool air is blown from the blower port 8 of the plurality of blower ports 8 in which the unnecessary area 7 is the smallest.
In the present embodiment, the determining unit 103 of the control device 10 determines the airflow direction and the airflow direction in the height direction of the cooling device 2 and which of the plurality of air blowing ports 8 should blow the air. Further, the operation control unit 104 controls the blower 22 of the blower port 8 so that the blower port 8 determined by the determination unit 103 is blown with the air volume and the wind direction in the height direction determined by the determination unit 103. (The operation of the blower 22 of the blower opening 8 is started).
The cooling device 2 adjusts the blower 22 of the blower port 8 determined by the control device 10 on the basis of the operation control value, and from the blower port in the air volume and the wind direction in the height direction determined by the control device 10. Blow air.
 本実施の形態によれば、該当する送風口8の送風機22の制御により、より精細に不要領域7を最小化することができる。
 また、本実施の形態でも、熱交換器21が保管空間1の下方にある冷たい空気を吸気することで、効率的な熱交換を行うことができる。このため、本実施の形態では、冷却装置2の運転効率を向上させることができ、消費電力を低減することができる。
According to the present embodiment, the unnecessary area 7 can be more finely minimized by controlling the blower 22 of the corresponding blower opening 8.
Further, also in the present embodiment, the heat exchanger 21 sucks the cool air below the storage space 1 to allow efficient heat exchange. Therefore, in the present embodiment, the operating efficiency of the cooling device 2 can be improved and the power consumption can be reduced.
 実施の形態4.
 本実施の形態では、主に実施の形態2との差異を説明する。
 なお、以下で説明していない事項は、実施の形態2と同様である。
Fourth Embodiment
In the present embodiment, differences from the second embodiment will be mainly described.
The matters not described below are the same as those in the second embodiment.
 図6及び図7は、本実施の形態に係る冷却方法の概要を示す。
 図6及び図7では、図4と比較して、冷却装置2の構成が異なっている。図6及び図7では、各送風口8にフラップ25が配置されている。
 図6は、低い位置の開閉パネル23を開放し、大風量で送風している例を示す。図7は、高い位置の開閉パネル23を開放し、低風量で送風している例を示す。図6の例では風量が大きいため、送風機22の動力は大きいが、無駄に冷却するエリアは小さい。図7の例では風量が小さいため、送風機22の動力は小さいが、無駄に冷却するエリアは大きい。
 本実施の形態では図6のように風量が大きい場合と図7のように風量が小さい場合とで、どちらの場合の消費電力が少ないかをあらかじめ求め、距離L2と高さH1の条件毎に複数のパターンを生成する。
 具体的には、事前に気流解析などのシミュレーションを行い、距離L2と高さH1が同じときの風量が大きい場合の風量Qc、エリア温度Tc、冷却装置2の運転時間tc、COPcと、風量が小さい場合の風量Qc、エリア温度Tc、冷却装置2の運転時間tc、COPcを求める。
 風量が小さいとファン入力の減少により消費電力は減るが、一方で風量が小さいと冷却エリアが拡大し消費電力が増えるというトレードオフの関係が成り立つ。このため、風量が大きい場合について、ファン入力を考慮した消費電力Waに関する式(1)を用いて消費電力Waを算出し、冷却エリアを考慮した消費電力Wbに関する式(2)を用いて、消費電力Wbを算出する。同様に、風量が小さい場合について、式(1)を用いて消費電力Waを算出し、式(2)を用いて消費電力Wbを算出する。そして、風量が大きい場合と風量が小さい場合とのそれぞれで、消費電力Waと省電力Wbを合計した消費電力Wを求める。
  Wa=a*tc/t*(Qc/Q)^r   ・・・(1)
  Wb=b*(To-T)/(To-Tc)*(tc/t)*(COP/COPc)   ・・・(2)
 なお式中の「a」及び「b」は基準電力である。また、「t」は基準運転時間である。「Q」は基準風量である。「r」は指数である。「To」は周囲空間温度である。「T」は基準温度である。「COP」は基準COPである。
 その後、風量が大きい場合の消費電力Wと風量が小さい場合の消費電力Wを比較する。消費電力Wが少ない方の風量、高さ方向での風向、送風口8及びフラップ25の角度の情報を距離L2と高さH1の情報と紐付けて決定部103に登録する。
 式中の記号について説明する。
 基準電力aは、基準状態(図5)のときの、送風機の電力である。基準電力bは、基準状態(図5)のときの、外皮負荷処理に要する電力である。冷凍機は、基準電力a及び基準電力b以外にも、例えば、扉開閉、デフロスト、対象空間内での作業者やフォークリフトなどの負荷を処理するために電力を要する。これらの電力の合計をzとおく。すなわち、冷凍機の合計電力はa+b+zである。本実施の形態では、a+bを最小にすることで合計電力を削減する。
 基準電力a及び基準電力bを求める一例を説明する。
 基準電力aは、「冷凍機の送風機の動作時間×送風機の入力」で表される。「送風機の動作時間」は、一般的に、冷凍機の運転時間tとほぼ等しい。冷凍機の運転時間tは、冷凍機のメモリ又は集中コントローラに記憶させておけば知ることができる。「送風機の入力」はカタログなどに記載されている。
 基準電力bは、「A×K×(To-T)×tday」で表される。ここで、「A」は倉庫の伝熱面積である。「K」は熱通過率である。「tday」は一定期間の時間(1日であれば24時間)である。「A」は対象空間の内と外で熱移動が起こる面積(基本的に壁面面積)であり、対象空間の図面などから既知である。「K」も壁面の断熱材の仕様などにより既知である。
 次に、「運転時間tc」について説明する。「tc」は簡易的に、風量変更前後の、冷凍能力の比率で求められる。すなわち、「tc=t×qc/q」で求めることができる。ここで、「q」は基準状態(図5)のときの冷凍能力である。「qc」は風量変更時の冷凍能力である。「q」はカタログ値を用いることができる。「qc」は事前に風量を数パターン変化させて測定しておく。
 「COP」及び「COPc」も同様に、カタログ値を用いることができる。また、事前に風量を数パターン変化させて「COP」及び「COPc」を測定しておいてもよい。
 「指数r」は、送風機の入力が風量のr乗に比例することを表す。「指数r」は、一般的に知られている値である。「指数r」は予め、風量と入力の関係を測定しておけば求められる。
6 and 7 show the outline of the cooling method according to the present embodiment.
6 and 7, the configuration of the cooling device 2 is different from that of FIG. In FIG. 6 and FIG. 7, a flap 25 is arranged at each blower opening 8.
FIG. 6 shows an example in which the open/close panel 23 at the lower position is opened to blow a large amount of air. FIG. 7 shows an example in which the opening/closing panel 23 at a high position is opened and the air is blown at a low air volume. In the example of FIG. 6, since the air volume is large, the power of the blower 22 is large, but the area for useless cooling is small. In the example of FIG. 7, since the air volume is small, the power of the blower 22 is small, but the useless cooling area is large.
In the present embodiment, the case where the air volume is large as shown in FIG. 6 and the case where the air volume is small as shown in FIG. 7 is determined in advance in which case the power consumption is small, and the distance L2 and the height H1 are set for each condition. Generate multiple patterns.
Specifically, a simulation such as an air flow analysis is performed in advance, and the air volume Qc, the area temperature Tc, the operating time tc of the cooling device 2, COPc, and the air volume when the air volume is large when the distance L2 and the height H1 are the same. When it is small, the air flow rate Qc, the area temperature Tc, the operating time tc of the cooling device 2, and the COPc are obtained.
When the air volume is small, the power consumption decreases due to the reduction of the fan input. On the other hand, when the air volume is small, the cooling area expands and the power consumption increases, which is a trade-off relationship. Therefore, when the air volume is large, the power consumption Wa is calculated using the equation (1) regarding the power consumption Wa considering the fan input, and the consumption power is calculated using the equation (2) regarding the power consumption Wb considering the cooling area. The electric power Wb is calculated. Similarly, when the air volume is small, the power consumption Wa is calculated using the equation (1) and the power consumption Wb is calculated using the equation (2). Then, for each of the case where the air volume is large and the case where the air volume is small, the power consumption W that is the sum of the power consumption Wa and the power saving Wb is obtained.
Wa=a*tc/t*(Qc/Q)^r (1)
Wb=b*(To-T)/(To-Tc)*(tc/t)*(COP/COPc) (2)
Note that “a” and “b” in the formula are reference powers. Further, “t” is the standard operation time. "Q" is the reference air volume. "R" is an index. "To" is the ambient space temperature. "T" is a reference temperature. "COP" is the reference COP.
Then, the power consumption W when the air volume is large is compared with the power consumption W when the air volume is small. Information about the air volume of the one with lower power consumption W, the wind direction in the height direction, and the angle of the blower opening 8 and the flap 25 is registered in the determination unit 103 in association with the information of the distance L2 and the height H1.
The symbols in the formula will be described.
The reference power a is the power of the blower in the reference state (FIG. 5). The reference electric power b is the electric power required for the skin load processing in the reference state (FIG. 5). In addition to the reference electric power a and the reference electric power b, the refrigerator requires electric power for processing loads such as door opening/closing, defrosting, a worker in the target space and a forklift. Let z be the total of these electric powers. That is, the total electric power of the refrigerator is a+b+z. In this embodiment, the total power is reduced by minimizing a+b.
An example of obtaining the reference power a and the reference power b will be described.
The reference power a is represented by “operating time of blower of refrigerator×input of blower”. The "operating time of the blower" is generally approximately equal to the operating time t of the refrigerator. The operating time t of the refrigerator can be known by storing it in the memory of the refrigerator or the centralized controller. "Blower input" is described in catalogs and the like.
The reference power b is represented by “A×K×(To−T)×tday”. Here, "A" is the heat transfer area of the warehouse. “K” is the heat transfer rate. “Tday” is a period of time (24 hours for one day). “A” is an area (basically a wall surface area) where heat transfer occurs inside and outside the target space, and is known from the drawing of the target space. "K" is also known from the specifications of the heat insulating material on the wall surface.
Next, the "operating time tc" will be described. “Tc” is simply calculated by the ratio of the refrigerating capacity before and after the change in air volume. That is, it can be obtained by “tc=t×qc/q”. Here, “q” is the refrigerating capacity in the standard state (FIG. 5). “Qc” is the refrigerating capacity when the air volume is changed. A catalog value can be used for “q”. "Qc" is measured in advance by changing the air volume by several patterns.
Similarly, catalog values can be used for “COP” and “COPc”. Further, "COP" and "COPc" may be measured in advance by changing the air volume by several patterns.
The “index r” indicates that the input of the blower is proportional to the r-th power of the air volume. The “index r” is a generally known value. The “index r” can be obtained by measuring the relationship between the air volume and the input in advance.
 本実施の形態では、決定部103は、風量、高さ方向での風向、送風口8及びフラップ25の角度の候補を組み合わせて複数の組合せパターンを生成する。そして、決定部103は、組合せパターンごとに、冷却装置2の消費電力量を推定する。更に、決定部103は、推定した組合せパターンごとの消費電力量に基づき、風量、高さ方向での風向、送風口8及びフラップ25の角度を決定する。
 決定部103は、より具体的には、冷却装置2の消費電力量が最小となる組合せパターンに対応する風量、高さ方向での風向、送風口8及びフラップ25の角度を選択する。
 運転制御部104は、決定部103により選択された送風口8から決定部103により選択された風量及び高さ方向での風向で送風されるように、当該送風口の開閉パネル23とフラップ25の角度を制御する。
 冷却装置2は、運転制御値に基づき、制御装置10により決定された送風口8の開閉パネル23を開放し、当該送風口8のフラップ25の角度を制御装置10により決定された角度に設定し、当該送風口8から、制御装置10により決定された風量及び高さ方向での風向で送風する。
In the present embodiment, the determination unit 103 generates a plurality of combination patterns by combining candidates of the air volume, the wind direction in the height direction, and the angles of the blower opening 8 and the flap 25. Then, the determining unit 103 estimates the power consumption of the cooling device 2 for each combination pattern. Further, the determining unit 103 determines the air volume, the wind direction in the height direction, the angles of the blower opening 8 and the flap 25 based on the estimated power consumption for each combination pattern.
More specifically, the determination unit 103 selects the air volume, the air direction in the height direction, the angles of the blower port 8 and the flap 25, which correspond to the combination pattern in which the power consumption of the cooling device 2 is the minimum.
The operation control unit 104 controls the opening/closing panel 23 and the flap 25 of the blower port so that the air is blown from the blower port 8 selected by the determining unit 103 in the air volume and the wind direction in the height direction selected by the determining unit 103. Control the angle.
The cooling device 2 opens the opening/closing panel 23 of the blower port 8 determined by the control device 10 based on the operation control value, and sets the angle of the flap 25 of the blower port 8 to the angle determined by the control device 10. From the blower port 8, the air is blown in the air volume and the wind direction in the height direction determined by the control device 10.
 本実施の形態によれば、複数の組合せパターンの中から冷却装置2の消費電力量が最小となる組合せパターンを選択し、選択した組合せパターンに従って冷却装置2の運転制御を行う。このため、冷却装置2の消費電力を低減することができる。 According to the present embodiment, the combination pattern that minimizes the power consumption of the cooling device 2 is selected from among the plurality of combination patterns, and the operation control of the cooling device 2 is performed according to the selected combination pattern. Therefore, the power consumption of the cooling device 2 can be reduced.
 以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
Although the embodiments of the present invention have been described above, two or more of these embodiments may be combined and implemented.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined and implemented.
The present invention is not limited to these embodiments, and various modifications can be made if necessary.
***ハードウェア構成の説明***
 最後に、制御装置10のハードウェア構成の補足説明を行う。
 図9に示すプロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
 プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
 図9に示す主記憶装置902は、RAM(Random Access Memory)である。
 図9に示す補助記憶装置903は、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
 図9に示す通信装置904は、データの通信処理を実行する電子回路である。
 通信装置904は、例えば、通信チップ又はNIC(Network Interface Card)である。
*** Explanation of hardware configuration ***
Finally, a supplementary description of the hardware configuration of the control device 10 will be given.
A processor 901 illustrated in FIG. 9 is an IC (Integrated Circuit) that performs processing.
The processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
The main storage device 902 illustrated in FIG. 9 is a RAM (Random Access Memory).
The auxiliary storage device 903 shown in FIG. 9 is a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
The communication device 904 illustrated in FIG. 9 is an electronic circuit that executes a data communication process.
The communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
 また、補助記憶装置903には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ901により実行される。
 プロセッサ901はOSの少なくとも一部を実行しながら、パラメータ取得部102、決定部103及び運転制御部104の機能を実現するプログラムを実行する。
 プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、パラメータ取得部102、決定部103及び運転制御部104の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、主記憶装置902、補助記憶装置903、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
 また、パラメータ取得部102、決定部103及び運転制御部104の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、パラメータ取得部102、決定部103及び運転制御部104の機能を実現するプログラムが格納された可搬記録媒体を商業的に流通させてもよい。
The auxiliary storage device 903 also stores an OS (Operating System).
Then, at least part of the OS is executed by the processor 901.
The processor 901 executes a program that realizes the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 while executing at least a part of the OS.
When the processor 901 executes the OS, task management, memory management, file management, communication control, etc. are performed.
In addition, at least one of information, data, signal value, and variable value indicating the processing results of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 is stored in the main storage device 902, the auxiliary storage device 903, and the processor 901. It is stored in at least one of the register and the cache memory.
Further, the program that realizes the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 is stored in a portable recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD. It may have been done. Then, a portable recording medium storing a program that realizes the functions of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 may be distributed commercially.
 また、パラメータ取得部102、決定部103及び運転制御部104の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
 また、制御装置10は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
 なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
 つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
In addition, the “part” of the parameter acquisition unit 102, the determination unit 103, and the operation control unit 104 may be replaced with “circuit” or “process” or “procedure” or “processing”.
Further, the control device 10 may be realized by a processing circuit. The processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
In this specification, the superordinate concept of the processor and the processing circuit is referred to as “processing circuit”.
That is, each of the processor and the processing circuit is a specific example of a “processing circuit”.
 1 保管空間、2 冷却装置、3 検知装置、4 保管物、5 空気の流れ、6 仮想境界線、7 不要領域、8 送風口、10 制御装置、21 熱交換器、22 送風機、23 開閉パネル、24 回転軸、25 フラップ、101 パラメータ記憶部、102 パラメータ取得部、103 決定部、104 運転制御部、901 プロセッサ、902 主記憶装置、903 補助記憶装置、904 通信装置。 1 storage space, 2 cooling device, 3 detection device, 4 stored materials, 5 air flow, 6 virtual boundary line, 7 unnecessary area, 8 air blower, 10 control device, 21 heat exchanger, 22 air blower, 23 open/close panel, 24 rotation axis, 25 flap, 101 parameter storage unit, 102 parameter acquisition unit, 103 determination unit, 104 operation control unit, 901 processor, 902 main storage device, 903 auxiliary storage device, 904 communication device.

Claims (14)

  1.  立体である保管物が保管される保管空間に設置される冷却装置を制御する制御装置であって、
     前記冷却装置からの送風により冷却された冷却領域が前記保管物を包含し、前記冷却領域と前記冷却領域よりも温度が高い非冷却領域との仮想境界線が前記保管物における最上位部の後端に接するように、前記冷却装置の風量及び高さ方向での風向を決定する決定部と、
     前記決定部により決定された風量及び高さ方向での風向で送風されるように前記冷却装置の運転を制御する運転制御部とを有する制御装置。
    A control device for controlling a cooling device installed in a storage space where three-dimensional stored items are stored,
    The cooling region cooled by the blown air from the cooling device includes the stored item, and a virtual boundary line between the cooling region and a non-cooled region having a higher temperature than the cooling region is located after the uppermost portion of the stored item. A deciding unit for deciding the air volume and the air direction in the height direction of the cooling device so as to be in contact with the end,
    A controller including an operation controller that controls the operation of the cooling device so that the air is blown in the air volume and the height direction determined by the determination unit.
  2.  前記決定部は、
     前記冷却領域が前記保管物を包含し、前記仮想境界線が前記保管物における最上位部の後端に接するという条件を満たした状態で前記冷却領域が最小となるように、前記冷却装置の風量及び高さ方向での風向を決定する請求項1に記載の制御装置。
    The determining unit is
    The air volume of the cooling device is such that the cooling region includes the stored material and the virtual boundary line is in contact with the rear end of the uppermost portion of the stored material in the state where the cooling area is minimized. The control device according to claim 1, wherein the wind direction in the height direction is determined.
  3.  前記決定部は、
     前記冷却装置の送風口から前記保管物の背面までの距離と、前記最上位部の高さと、前記送風口から前記最上位部の後端までの距離とに基づき、前記冷却装置の風量及び高さ方向での風向を決定する請求項1に記載の制御装置。
    The determining unit is
    Based on the distance from the ventilation port of the cooling device to the back surface of the stored object, the height of the uppermost part, and the distance from the ventilation port to the rear end of the uppermost part, the air volume and the height of the cooling device. The control device according to claim 1, wherein the wind direction in the vertical direction is determined.
  4.  前記冷却装置には、同一線上に配置された、各々の高さが異なる複数の送風口が設けられており、
     前記決定部は、
     前記冷却装置の風量及び高さ方向での風向と、前記複数の送風口のいずれの送風口から送風するかを決定し、
     前記運転制御部は、
     前記決定部により決定された送風口から前記決定部により決定された風量及び高さ方向での風向で送風されるように前記冷却装置の運転を制御する請求項1に記載の制御装置。
    The cooling device is provided on the same line, a plurality of air outlets having different heights are provided,
    The determining unit is
    An air flow in the air volume and the height direction of the cooling device, and determining which of the plurality of air outlets to blow air from,
    The operation control unit,
    The control device according to claim 1, wherein operation of the cooling device is controlled so that air is blown from the air outlet determined by the determination unit in the air volume and the wind direction in the height direction determined by the determination unit.
  5.  前記複数の送風口の各々には、開閉パネルが設けられており、
     前記運転制御部は、
     前記決定部により決定された送風口から前記決定部により決定された風量及び高さ方向での風向で送風されるように、当該送風口の開閉パネルを制御する請求項4に記載の制御装置。
    An opening/closing panel is provided for each of the plurality of air outlets,
    The operation control unit,
    The control device according to claim 4, wherein the opening/closing panel of the blower opening is controlled so that air is blown from the blower opening determined by the determining unit in the air volume and the wind direction in the height direction determined by the determining unit.
  6.  前記複数の送風口の各々には、開閉パネルとフラップが設けられており、
     前記決定部は、
     風量、高さ方向での風向、送風口及びフラップの角度の候補を組み合わせて複数の組合せパターンを生成し、組合せパターンごとに、前記冷却装置の消費電力量を推定し、推定した組合せパターンごとの消費電力量に基づき、風量、高さ方向での風向、送風口及びフラップの角度を決定し、
     前記運転制御部は、
     前記決定部により決定された送風口から前記決定部により決定された風量及び高さ方向での風向で送風されるように、当該送風口の開閉パネルとフラップの角度とを制御する請求項4に記載の制御装置。
    Each of the plurality of air outlets is provided with an opening/closing panel and a flap,
    The determining unit is
    Air volume, wind direction in the height direction, a plurality of combination patterns are generated by combining the candidates of the blowing port and the angle of the flap, for each combination pattern, the power consumption of the cooling device is estimated, and for each estimated combination pattern Based on the power consumption, determine the air volume, the wind direction in the height direction, the ventilation port and the angle of the flap,
    The operation control unit,
    The opening/closing panel of the blower opening and the angle of the flap are controlled so that air is blown from the blower opening determined by the determining unit in the air volume and the wind direction in the height direction determined by the determining unit. The control device described.
  7.  前記決定部は、
     前記冷却装置の消費電力量が最小となる組合せパターンに対応する風量、高さ方向での風向、送風口及びフラップの角度を選択する請求項6に記載の制御装置。
    The determining unit is
    7. The control device according to claim 6, wherein the air flow rate, the wind direction in the height direction, the blower port, and the angle of the flap corresponding to the combination pattern in which the power consumption of the cooling device is the minimum are selected.
  8.  前記複数の送風口の各々には、送風機が設けられており、
     前記運転制御部は、
     前記決定部により決定された送風口から前記決定部により決定された風量及び高さ方向での風向で送風されるように、当該送風口の送風機を制御する請求項4に記載の制御装置。
    Each of the plurality of air outlets is provided with a blower,
    The operation control unit,
    The control device according to claim 4, wherein the blower of the blower port is controlled so that the blower port determined by the determination unit blows air in the air volume and the wind direction in the height direction determined by the determination unit.
  9.  立体である保管物が保管される保管空間に設置される冷却装置と、
     前記冷却装置を制御する制御装置とを有する冷却システムであって、
     前記制御装置は、
     前記冷却装置からの送風により冷却された冷却領域が前記保管物を包含し、前記冷却領域と前記冷却領域よりも温度が高い非冷却領域との仮想境界線が前記保管物における最上位部の後端に接するように、前記冷却装置の風量及び高さ方向での風向を決定し、
     前記冷却装置は、
     前記制御装置により決定された風量及び高さ方向での風向で送風する冷却システム。
    A cooling device installed in a storage space where three-dimensional stored items are stored,
    A cooling system having a controller for controlling the cooling device,
    The control device is
    The cooling region cooled by the blown air from the cooling device includes the stored item, and a virtual boundary line between the cooling region and a non-cooled region having a higher temperature than the cooling region is located after the uppermost portion of the stored item. The air volume of the cooling device and the wind direction in the height direction are determined so as to contact the end,
    The cooling device is
    A cooling system that blows air in the direction of air volume and height determined by the controller.
  10.  前記冷却装置には、同一線上に配置された、各々の高さが異なる複数の送風口が設けられており、
     前記制御装置は、
     前記冷却装置の風量及び高さ方向での風向と、前記複数の送風口のいずれの送風口から送風するかを決定し、
     前記冷却装置は、
     前記制御装置により決定された送風口から前記制御装置により決定された風量及び高さ方向での風向で送風する請求項9に記載の冷却システム。
    The cooling device is provided on the same line, a plurality of air outlets having different heights are provided,
    The control device is
    An air flow in the air volume and the height direction of the cooling device, and determining which of the plurality of air outlets to blow air from,
    The cooling device is
    The cooling system according to claim 9, wherein the air is blown from the air blowing port determined by the control device in the air volume and the height direction determined by the control device.
  11.  前記複数の送風口の各々には、開閉パネルが設けられており、
     前記冷却装置は、
     前記制御装置により決定された送風口の開閉パネルを開放して、当該送風口から、前記制御装置により決定された風量及び高さ方向での風向で送風する請求項10に記載の冷却システム。
    An opening/closing panel is provided for each of the plurality of air outlets,
    The cooling device is
    The cooling system according to claim 10, wherein the opening/closing panel of the blower port determined by the control device is opened, and air is blown from the blower port at the air volume and the wind direction in the height direction determined by the control device.
  12.  前記複数の送風口の各々には、開閉パネルとフラップが設けられており、
     前記制御装置は、
     風量、高さ方向での風向、送風口及びフラップの角度の候補を組み合わせて複数の組合せパターンを生成し、組合せパターンごとに、前記冷却装置の消費電力量を推定し、推定した組合せパターンごとの消費電力量に基づき、風量、高さ方向での風向、送風口及びフラップの角度を決定し、
     前記冷却装置は、
     前記制御装置により決定された送風口の開閉パネルを開放し、当該送風口のフラップの角度を前記制御装置により決定された角度に設定し、当該送風口から、前記制御装置により決定された風量及び高さ方向での風向で送風する請求項10に記載の冷却システム。
    Each of the plurality of air outlets is provided with an opening/closing panel and a flap,
    The control device is
    Air volume, wind direction in the height direction, a plurality of combination patterns are generated by combining the candidates of the blowing port and the angle of the flap, for each combination pattern, the power consumption of the cooling device is estimated, and for each estimated combination pattern Based on the power consumption, determine the air volume, the wind direction in the height direction, the ventilation port and the angle of the flap,
    The cooling device is
    Open the opening and closing panel of the blower port determined by the control device, set the angle of the flap of the blower port to the angle determined by the control device, from the blower port, the air volume determined by the control device and The cooling system according to claim 10, which blows air in a wind direction in a height direction.
  13.  前記複数の送風口の各々には、送風機が設けられており、
     前記冷却装置は、
     前記制御装置により決定された送風口の送風機を調整して、当該送風口から、前記制御装置により決定された風量及び高さ方向での風向で送風する請求項10に記載の冷却システム。
    Each of the plurality of air outlets is provided with a blower,
    The cooling device is
    The cooling system according to claim 10, wherein the blower of the blower port determined by the control device is adjusted to blow air from the blower port at the air volume and the wind direction in the height direction determined by the control device.
  14.  前記冷却装置は、
     前記保管空間の高さの1/2以下のいずれかの高さに設けられた熱交換器を有する請求項9に記載の冷却システム。
    The cooling device is
    The cooling system according to claim 9, further comprising a heat exchanger provided at a height of ½ or less of a height of the storage space.
PCT/JP2019/005395 2019-02-14 2019-02-14 Control device and cooling system WO2020166014A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020571997A JP6995226B2 (en) 2019-02-14 2019-02-14 Control device and cooling system
PCT/JP2019/005395 WO2020166014A1 (en) 2019-02-14 2019-02-14 Control device and cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005395 WO2020166014A1 (en) 2019-02-14 2019-02-14 Control device and cooling system

Publications (1)

Publication Number Publication Date
WO2020166014A1 true WO2020166014A1 (en) 2020-08-20

Family

ID=72045216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005395 WO2020166014A1 (en) 2019-02-14 2019-02-14 Control device and cooling system

Country Status (2)

Country Link
JP (1) JP6995226B2 (en)
WO (1) WO2020166014A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265450A1 (en) * 2022-04-20 2023-10-25 Thermo King LLC Method and system for controlling airflow volume and flow direction from a remote heat exchanger unit of a transport climate control system
EP4310419A1 (en) * 2022-07-22 2024-01-24 Thermo King LLC A refrigeration system for a transport unit and a method of controlling airflow in a refrigerated transport unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103447A (en) * 2009-01-16 2009-05-14 Toyo Eng Works Ltd Cooling system
JP2013113549A (en) * 2011-11-30 2013-06-10 Fuji Electric Co Ltd Cooling storage device
WO2016120927A1 (en) * 2015-01-30 2016-08-04 パナソニックIpマネジメント株式会社 Temperature control device for cargo container, communicator, and temperature control system for cargo container

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252683A (en) 2010-06-04 2011-12-15 Fuji Electric Co Ltd Refrigeration and cold storage warehouse of picking system
JP5714301B2 (en) 2010-11-11 2015-05-07 高砂熱学工業株式会社 Cooling system and cooling method
CN104346873B (en) 2013-08-05 2017-05-10 黄自升 Automatic cooking and selling system for frozen food
JP6379256B2 (en) 2017-06-02 2018-08-22 アクア株式会社 Shielding device and refrigerator having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103447A (en) * 2009-01-16 2009-05-14 Toyo Eng Works Ltd Cooling system
JP2013113549A (en) * 2011-11-30 2013-06-10 Fuji Electric Co Ltd Cooling storage device
WO2016120927A1 (en) * 2015-01-30 2016-08-04 パナソニックIpマネジメント株式会社 Temperature control device for cargo container, communicator, and temperature control system for cargo container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265450A1 (en) * 2022-04-20 2023-10-25 Thermo King LLC Method and system for controlling airflow volume and flow direction from a remote heat exchanger unit of a transport climate control system
EP4310419A1 (en) * 2022-07-22 2024-01-24 Thermo King LLC A refrigeration system for a transport unit and a method of controlling airflow in a refrigerated transport unit

Also Published As

Publication number Publication date
JP6995226B2 (en) 2022-01-14
JPWO2020166014A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US6834512B2 (en) Cooling of data centers
US7155318B2 (en) Air conditioning unit control to reduce moisture varying operations
US6862179B2 (en) Partition for varying the supply of cooling fluid
US8285420B2 (en) Control device, control method, and control program
US7640760B2 (en) Temperature control using a sensor network
US7031802B2 (en) Semi-autonomous operation of a robotic device
JP6090715B2 (en) Server cooling system
US20180192548A1 (en) Cooling control for data centers with cold aisle containment systems
US8625274B2 (en) Computer casing
WO2020166014A1 (en) Control device and cooling system
CN107259879B (en) Showcase and method for operating showcase
JP2012033105A (en) Air conditioner for ict equipment, air conditioning system for ict equipment and ict equipment room using only them
JP5745337B2 (en) Air conditioning system
JP5423080B2 (en) Local cooling system, its control device, program
JP2017068485A (en) Server cooling system
JP6466108B2 (en) Control system and air conditioning system for controlling an air conditioning system
CN106982541A (en) The cooling system and method for a kind of direct wind side energy-conservation cooling modular data center
JP2012251770A (en) Air-conditioning system
WO2019142311A1 (en) Refrigerator, refrigerator control method, and program
JP2008021128A (en) Vending machine
WO2022054122A1 (en) Air conditioning system
JP4607218B2 (en) Heating element storage box cooling device and control method thereof
KR200241262Y1 (en) Self heat management outdoor enclosure
JP2011169534A (en) Method of operating unit cooler
JP2006145150A (en) Cooling chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915100

Country of ref document: EP

Kind code of ref document: A1