WO2019142311A1 - Refrigerator, refrigerator control method, and program - Google Patents

Refrigerator, refrigerator control method, and program Download PDF

Info

Publication number
WO2019142311A1
WO2019142311A1 PCT/JP2018/001553 JP2018001553W WO2019142311A1 WO 2019142311 A1 WO2019142311 A1 WO 2019142311A1 JP 2018001553 W JP2018001553 W JP 2018001553W WO 2019142311 A1 WO2019142311 A1 WO 2019142311A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
flow rate
unit
air
refrigerator
Prior art date
Application number
PCT/JP2018/001553
Other languages
French (fr)
Japanese (ja)
Inventor
小林 史典
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019565646A priority Critical patent/JP6987156B2/en
Priority to PCT/JP2018/001553 priority patent/WO2019142311A1/en
Priority to CN201880079712.3A priority patent/CN111566423A/en
Publication of WO2019142311A1 publication Critical patent/WO2019142311A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • the present invention relates to a refrigerator, a refrigerator control method and program.
  • the temperature of the storage chamber is preset by controlling the operation of the fan based on the temperature in the storage chamber detected by the thermistor provided in the storage chamber while circulating cool air into the storage chamber by the fan. It is common to maintain the temperature.
  • a refrigerator of this type a refrigerator is proposed that adjusts the cooling rate of the storage room by controlling the operation of the cooling device according to the heat load of the storage object immediately after placing the storage object in the storage room (See, for example, Patent Document 1).
  • the amount of cold air flowing into each of the regions may not be an appropriate amount according to the heat load of the storage objects disposed in each region. That is, there is a possibility that the amount of cold air is insufficient in the region where the storage object having a large heat load is disposed, and the amount of cold air is excessive in the region where the storage object having a small heat load is disposed.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a refrigerator, a refrigerator control method, and a program capable of reducing power consumption while enhancing the cold storage property of a storage object.
  • the refrigerator according to the present invention is A storage chamber provided with a plurality of outlets for storing objects to be stored and blowing out the cooled air separately to each of the plurality of inner regions, and an inlet for sucking the air present inside;
  • a flow rate adjustment unit configured to adjust a flow rate of air blown out from each of the plurality of outlets to the plurality of areas; The flow rate of air blown out from each of the plurality of outlets to each of the plurality of regions is determined according to the physical quantity reflecting the thermal load of the storage object disposed in each of the plurality of regions, and the plurality of outlets are determined.
  • a control unit configured to control the flow rate adjustment unit such that the flow rate of the air blown out from the air flow becomes the determined flow rate.
  • the control unit determines the flow rate of the air blown out from each of the plurality of outlets to the plurality of regions according to the physical quantity reflecting the heat load of the storage object arranged in each of the plurality of regions.
  • the flow rate control unit is controlled so that the flow rate of the air blown out from the plurality of outlets becomes the determined flow rate.
  • the flow rate of the air blown out from each of the plurality of outlets into the plurality of regions can be made an optimal flow rate according to the heat load of the storage object disposed in each of the plurality of regions. Accordingly, the shortage or excess of the flow rate of the air blown into each of the plurality of regions is suppressed, so that it is possible to reduce the power consumption while enhancing the cold storage property of the storage object.
  • the perspective view of the refrigerator concerning an embodiment Sectional view of the refrigerator according to the embodiment Sectional view of a freezing room according to the embodiment Block diagram of control device according to the embodiment The flowchart which shows an example of the flow of the refrigerator control processing which is executed by the control control equipment which relates to the form of execution
  • the flowchart which shows an example of the flow of the refrigerator control processing which is executed by the control control equipment which relates to the form of execution Sectional view of a freezing room according to a modification A partial enlarged view of a cross section of a freezing room according to a modification Sectional view of a freezing room according to a modification Block diagram of control device according to modification
  • the refrigerator according to the present embodiment includes a storage for storing objects to be stored, and a control device for controlling the refrigerator.
  • the storage is provided with a plurality of outlets for blowing the cooled air separately into the plurality of regions inside the storage, and a suction port through which the air present inside is sucked.
  • the refrigerator includes a flow rate control unit that controls the flow rate of the air blown out from the plurality of outlets into the plurality of areas inside the storage.
  • control device performs heat exchange with the temperature of the air blown out from the outlet and the storage object, which is a physical quantity reflecting the heat load of the storage object arranged in each of the plurality of areas inside the storage Calculate the temperature difference with the temperature of the air warmed by Then, the control device determines the flow rate of air blown out from each of the plurality of outlets to the plurality of regions according to the temperature difference reflecting the calculated thermal load of the storage object. Then, the control device controls the flow rate adjusting unit such that the flow rate of the air blown out from the plurality of outlets becomes the determined flow rate.
  • the refrigerator 1 includes a heat insulating box 1a having a rectangular parallelepiped outer shape, and a door 121 attached to each of five openings provided in front of the heat insulating box 1a. And 122, 123, 124, 125.
  • the heat insulation box 1a is a rectangular box-like outer box formed of metal, resin, etc., an inner box formed of metal, resin etc. and having an outer dimension smaller than the outer box, and between the outer box and the inner box And a heat insulating member enclosed.
  • a refrigerating room 131 for refrigerating food for refrigerating food
  • an ice making room 132 for containing an ice making machine for containing an ice making machine
  • a switching room capable of switching the room to a temperature at which ice can be made and other temperatures.
  • 133, a freezing room 134 for storing frozen food and freezing the frozen food, and a vegetable room 135 for containing vegetables are provided.
  • the horizontal direction is the X axis direction
  • the vertical direction is the Z axis direction
  • the direction orthogonal to the X axis direction and the Z axis direction is the Y axis direction.
  • the refrigerator 1 is provided with the cooler chamber 16 and the machine chamber 18 connected to the cooler chamber 16 via the drain pipe 17, as shown in FIG.
  • the cooler room 16 is connected to the refrigerating room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 through air ducts 15A and 15B.
  • a cooler 162 and a fan 161 are accommodated in the cooler chamber 16.
  • a compressor 40 for compressing the refrigerant flowing from the cooler 162 is accommodated.
  • the refrigerator 1 includes a condenser (not shown), a pressure reducing part (not shown) and a suction pipe (not shown) in addition to the cooler 162 and the compressor 40, and the compressor 40, the condenser,
  • the pressure reducing unit, the cooler 162, the suction pipe, and the compressor 40 are connected in this order via a refrigerant pipe (not shown) so that the refrigerant circulates.
  • the condensing unit condenses the refrigerant flowing in from the compressor 40
  • the pressure reducing unit decompresses and expands the refrigerant flowing in from the condensing unit to evaporate a part of the refrigerant, thereby evaporating the refrigerant into two phases of liquid and gas. It will be in the state.
  • the cooler 162 cools the air around the cooler 162 in the cooler chamber 16 by utilizing the heat absorption function when the refrigerant in the liquid state of the two-phase refrigerant flowing from the pressure reducing section evaporates. Further, the suction pipe exchanges heat with a capillary tube (not shown) that constitutes a part of the pressure reducing section, thereby raising the temperature of the refrigerant flowing from the cooler 162 to its condensation temperature.
  • cold air the air cooled in the cooler chamber 16
  • the air cooled in the cooler chamber 16 passes through the air duct 15A, and the cold room 131, the ice making room 132, the switching room 133, the freezing room 134 and the vegetable room 135 is supplied to each of them (see arrow AR10).
  • Cold air supplied toward the refrigerator compartment 131, the switching compartment 133, the freezing compartment 134 and the vegetable compartment 135 is blown out inward from the outlets 131a, 133a, 134a, 134b, 135a provided in the respective compartments.
  • cold air supplied toward the ice making chamber 132 is also blown out inward from a blowout port (not shown) provided in the ice making chamber 132.
  • the food disposed inside each of the cold storage room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 is cooled.
  • the air warmed by the storage object which exists in the refrigerator compartment 131, the switching compartment 133, the freezer compartment 134, and the vegetable compartment 135 is an air duct from the suction ports 131b, 133b, 134c, and 135b provided in each compartment. It flows into the cooler chamber 16 through 15B.
  • the air present in the ice making chamber 132 also flows into the cooler chamber 16 through the air passage duct 15B from the suction port (not shown) provided in the ice making chamber 132. In this manner, cold air circulates through the air ducts 15A and 15B between the cooler chamber 16 and the refrigerator room 131, the ice making room 132, the switching room 133, the freezing room 134 and the vegetable room 135.
  • upstream dampers for example, upstream dampers 1511, 1513, 1514, 1515
  • upstream dampers 1511, 1513, 1514, 1515 are provided in connection portions of the air passage duct 15A with the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134 and the vegetable chamber 135, respectively. It is done.
  • Each upstream damper opens and closes separately.
  • cold air flows into the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134, or the vegetable chamber 135 corresponding to the upstream damper.
  • the upstream damper 1514 is in the open state, cold air flows into the freezer compartment 134 corresponding to the upstream damper 1514.
  • the upstream damper when the upstream damper is in the closed state, the inflow of cold air to the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134 or the vegetable chamber 135 corresponding to the upstream damper is blocked.
  • the upstream damper 1514 when the upstream damper 1514 is in the closed state, the inflow of cold air to the freezer compartment 134 corresponding to the upstream damper 1514 is blocked.
  • the freezing chamber 134 has two outlets 134a and 134b for blowing cold air into the two inner areas A1 and A2, respectively, and an inlet 134c for receiving the warmed air present inside. And are provided. Further, the upper case 21 is disposed on the upper side in the freezing chamber 134, and the lower case 22 is disposed on the lower side in the freezing chamber 134. The cool air blown out from the blowout port 134a flows into the upper case 21 located in the area A1 (see an arrow AR11 in FIG. 3). The cool air having flowed into the upper case 21 is transferred from the air stored outside the refrigerator 1 and the heat stored in the storage object disposed in the upper case 21 into the freezer compartment 134 through the wall of the heat insulation box 1a.
  • the air in the upper case 21 is discharged from the return port 21 a provided in the upper case 21 and flows out of the area A1.
  • the amount of heat entering the freezer compartment 134 from the air existing outside the refrigerator 1 can be regarded as constant unless the temperature in the freezer compartment 134 changes significantly. Therefore, as the heat stored in the storage object is larger, the temperature of the air discharged from the return port 21a is increased accordingly.
  • the cold air blown out from the blowout port 134b flows into the lower case 22 (refer to the arrow AR12 in FIG. 3) and exchanges heat with the storage object disposed in the lower case 22 located in the area A2. It is warmed. Then, the air in the lower case 22 is discharged from the return port 22a provided in the lower case 22 and flows out of the area A2. The air discharged from the return port 21a of the upper case 21 and the return port 22a of the lower case 22 is returned to the suction port 134c of the freezing chamber 134 (see arrow AR13 in FIG. 3), and the cooler chamber is Flow to 16
  • a return temperature measurement unit 10 is provided. Furthermore, in the freezing chamber 134, the temperature of the air discharged from the return port 22a of the lower case 22 and returned to the suction port 134c is measured.
  • a return temperature measurement unit 12 is provided.
  • the temperature measured by the blowout temperature measurement unit 9 is a first blowout temperature
  • the temperature measured by the return temperature measurement unit 10 is a first return temperature
  • the temperature measured by the blowout temperature measurement unit 11 is a second blowout temperature
  • the temperature measured by the return temperature measurement unit 12 is referred to as a second return temperature.
  • the freezer compartment 134 is provided with a door open / close detection unit 8 for detecting the open / close state of the door 124.
  • the heat removal amounts Q1 and Q2 due to cold air in the upper case 21 and the lower case 22 are represented by the following formulas (1) and (2), respectively.
  • Q1 F1 ⁇ ⁇ ⁇ C p ⁇ (T 1 in ⁇ T 1 out )
  • Q2 F2 ⁇ ⁇ ⁇ C p ⁇ (T2 in -T2 out ) (2)
  • F1 and F2 indicate the air volume [m 3 / sec] of cold air blown out to the upper case 21 and the lower case 22 respectively
  • indicates the density of cold air [kg / m 3 ]
  • Cp indicates the cold air Constant pressure specific heat [J / (kg ⁇ K)]
  • T1in is the first outlet temperature [K]
  • T1out is the first return temperature [K]
  • T2in is the second outlet temperature [K]
  • T2out is the second return temperature [K ] Is shown.
  • the return temperature T1out and the second return temperature T2out rise. Then, the absolute value of the temperature difference between the first blowout temperature T1in and the first return temperature T1out and the absolute value of the temperature difference between the second blowout temperature T2in and the second return temperature T2out respectively increase.
  • the temperature difference between the first blowout temperature T1in and the first return temperature T1out and the temperature difference between the second blowout temperature T2in and the second return temperature T2out are respectively in the upper case 21 of the area A1 and in the area A2. It can be said that the physical quantity reflects the heat load of the storage object disposed in the lower case 22.
  • the control device 100 includes a central processing unit (CPU) 101, a main storage unit 102 including volatile memory, an auxiliary storage unit 103 including non-volatile memory, an interface 104, and a damper drive unit. And 105, a fan drive unit 106, a compressor drive unit 107, and a bus 109 connecting the respective units. Examples of the non-volatile memory include magnetic disks and semiconductor memories.
  • the auxiliary storage unit 103 stores a program for executing a refrigerator control process described later.
  • the interface 104 is connected to the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the second blowout temperature measurement unit 11, the second return temperature measurement unit 12, and the door open / close detection unit 8.
  • the interface 104 converts the signal input from the door open / close detection unit 8 into door open / close information indicating the open / close state of the door 124 and notifies the CPU 101 of the door open / close information. Further, the interface 104 converts the signals input from the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the second blowout temperature measurement unit 11, and the second return temperature measurement unit 12 into temperature information and converts the signals into the CPU 101. To notify.
  • the damper driving unit 105 drives the upstream damper 1514, the first downstream damper 13, and the second downstream damper 14 based on control information input from the CPU 101.
  • the damper driving unit 105 also drives each upstream damper other than the upstream damper 1514.
  • the other upstream dampers are omitted in FIG.
  • the fan drive unit 106 has a motor (not shown) for rotating the fan 161 and a motor control unit (not shown) for controlling the motor based on control information input from the CPU 101.
  • the compressor drive unit 107 includes a motor (not shown) for driving the compressor 40 and a motor control unit (not shown) for controlling the motor based on control information input from the CPU 101.
  • the bus 109 connects the CPU 101, the main storage unit 102, the auxiliary storage unit 103, the interface 104, the damper drive unit 105, and the fan drive unit 106 to one another.
  • the auxiliary storage unit 103 stores a reference database (hereinafter referred to as "DB") 1031 for storing information related to the determination reference, and parameter information indicating the opening degree of each of the first downstream damper 13 and the second downstream damper 14 And a parameter DB 1032.
  • the reference DB 1031 stores temperature information indicating the upper limit management temperature Tup and the lower limit management temperature Tlow of the cold storage room 131, the ice making room 132, the switching room 133, the freezing room 134, and the freezing room 134, respectively.
  • the reference DB 1031 is a difference threshold indicating a difference threshold that is a threshold for the difference between the temperature difference between the first blowout temperature and the first return temperature and the temperature difference between the second blowout temperature and the second return temperature.
  • the parameter DB 1032 stores information indicating a unit change amount when changing the opening degree AP1 of the first downstream damper 13 and a unit change amount when changing the opening degree AP2 of the second downstream damper 14.
  • the parameter DB 1032 includes initial opening information indicating the initial opening AP1i of the first downstream damper 13 and the initial opening AP2i of the second downstream damper 14, the upper limit opening AP1max of the first downstream damper 13, and the second downstream damper And upper limit opening information indicating the upper limit opening AP2max of 14.
  • the initial openings AP1i and AP2i are set, for example, in accordance with the volumes of the regions A1 and A2 into which cold air blown out from the blowout ports 134a and 134b in the freezing chamber 134 flows.
  • the upper limit opening degrees AP1max and AP2max are set based on, for example, the operation guaranteed range with respect to the respective opening degrees of the first downstream damper 13 and the second downstream damper 14, and are set to, for example, 90%.
  • the CPU 101 reads out the program stored in the auxiliary storage unit 103 to the main storage unit 102 and executes the program to determine the first blowout temperature, the second blowout temperature, the first return temperature, and the second return temperature.
  • the temperature acquisition unit 111 to acquire, the temperature difference calculation unit 112 that calculates the temperature difference between the first blowout temperature and the first return temperature, and the temperature difference between the second blowout temperature and the second return temperature, the determination unit 113, and the control unit 114 Act as.
  • the temperature acquisition unit 111 acquires, via the interface 104, temperature information indicating the temperature measured by the blowoff temperature measurement units 9 and 11 and temperature information indicating the temperature measured by the return temperature measurement units 10 and 12. .
  • the temperature difference calculation unit 112 calculates a temperature difference ⁇ T1 between the first outlet temperature T1in and the first return temperature T1out, and a temperature difference ⁇ T2 between the second outlet temperature T2in and the second return temperature T2out.
  • the temperature difference calculation unit 112 corresponds to a physical quantity calculation unit that calculates temperature differences ⁇ T1 and ⁇ T2, which are physical quantities reflecting the heat loads of the storage objects respectively disposed in the two areas A1 and A2.
  • the determination unit 113 determines whether the first blowout temperature or the first return temperature is equal to or less than the upper limit temperature management value and equal to or more than the lower limit temperature management value. Further, the determination unit 113 determines the open / close state of the door 124 based on the door open / close information input from the door open / close detection unit 8 via the interface 104. Furthermore, the determination unit 113 calculates the difference absolute value between the temperature difference ⁇ T1 and the temperature difference ⁇ T2 and determines the magnitude relationship between the difference threshold value indicated by the difference threshold information stored in the reference DB 1031 and the calculated difference absolute value. Do. Further, the determination unit 113 determines the magnitude relationship between the temperature difference ⁇ T1 and the temperature difference ⁇ T2.
  • the control unit 114 controls the damper driving unit 105 to change the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 according to the determination result by the determination unit 113. Further, the control unit 114 controls the damper driving unit 105 to change the open / close state of the upstream damper 1514 according to the determination result of the open / close state of the door 124 by the determination unit 113. Furthermore, the control unit 114 controls the fan drive unit 106 so that the fan 161 operates in response to power being supplied to the refrigerator 1.
  • the refrigerator control process is started, for example, after the user has closed all the doors 121, 122, 123, 124, and 125 of the refrigerator 1 and turned on the power to the refrigerator 1, and then a predetermined standby time has elapsed. Ru.
  • This standby time is set to, for example, a time longer than the time until the temperatures of the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134 and the vegetable chamber 135 become stable after the refrigerator 1 is powered on. Be done.
  • control unit 114 controls the fan drive unit 106 and the compressor drive unit 107 so as to start the operation of the fan 161 and the compressor 40 in response to power being supplied to the refrigerator 1. Further, the control unit 114 controls the damper driving unit 105 so as to open all the upstream dampers including the upstream damper 1514. Furthermore, the control unit 114 refers to the initial opening degree information stored in the parameter DB 1032, and the opening degree AP1 of the first downstream damper 13 is the initial opening degree AP1i, and the opening degree AP2 of the second downstream damper 14 is the initial opening degree AP2i.
  • the damper drive unit 105 is controlled so that
  • the temperature acquisition unit 111 acquires temperature information indicating the first blowout temperature T1in measured by the blowout temperature measurement unit 9, and temperature information indicating the first return temperature T1out measured by the return temperature measurement unit 10. (Step S101).
  • the determination unit 113 determines whether the first blowing temperature T1in is higher than the upper limit management temperature Tup or the first return temperature T1out is higher than the upper limit management temperature Tup (step S102). If it is determined by the determination unit 113 that the first blowout temperature T1in is equal to or lower than the upper limit management temperature Tup and the first return temperature T1out is equal to or lower than the upper limit management temperature Tup (step S102: No), processing of step S105 described later Is executed.
  • the determination unit 113 determines that at least one of the first blowing temperature T1in and the first return temperature T1out exceeds the upper limit management temperature Tup (step S102: Yes).
  • the control unit 114 determines whether or not one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is the upper limit opening degree AP1max or AP2max (step S103). ).
  • step S103 If it is determined by the control unit 114 that either the opening degree AP1 of the first downstream damper 13 or the opening degree AP2 of the second downstream damper 14 is the upper limit opening degree AP1max or AP2max (step S103: Yes) The process of step S108 described later is executed as it is.
  • step S103 determines that one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is not the upper limit opening degrees AP1max and AP2max (step S103: No).
  • the control unit 114 controls the damper driving unit 105 so as to increase the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 by a preset size, respectively (Step S104).
  • the control unit 114 controls the damper drive unit 105 so that, for example, the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 are each raised by 5%.
  • the process of step S108 described later is performed.
  • the determination unit 113 determines that the first blowing temperature T1in is equal to or lower than the upper limit management temperature Tup and the first return temperature T1out is equal to or lower than the upper limit management temperature Tup in step S102 (step S102: No). In this case, the determination unit 113 determines whether the first blowing temperature T1in is less than the lower limit management temperature Tlow or the first return temperature T1out is less than the lower limit management temperature Tlow (step S105).
  • step S105: No the process of step S108 described later is performed. To be executed.
  • the determination unit 113 determines that at least one of the first blowing temperature T1in and the first return temperature T1out is less than the lower limit management temperature Tlow (step S105: Yes).
  • the control unit 114 determines whether or not both the first downstream damper 13 and the second downstream damper 14 are in the closed state (step S106). If it is determined by the control unit 114 that both the first downstream damper 13 and the second downstream damper 14 are in the closed state (step S106: Yes), the process of step S108 described below is performed as it is.
  • control unit 114 determines that at least one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is not in the closed state (step S106: No).
  • the control unit 114 controls the damper driving unit 105 so as to reduce the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 by a preset size, respectively (Step S107).
  • the control unit 114 controls the damper driving unit 105 so as to decrease, for example, the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 by 5%, respectively.
  • control unit 114 presets only the other opening degree.
  • the damper drive unit 105 is controlled so as to reduce the speed.
  • the determination unit 113 determines whether the door 124 has been opened based on the door open / close information input from the door open / close detection unit 8 via the interface 104 (step S108). If it is determined by the determination unit 113 that the door 124 is in the closed state (step S108: No), the process of step S101 is performed again.
  • step S108 determines that the door 124 is in the open state
  • the control unit 114 controls the damper drive unit 105 to close the upstream damper 1514 corresponding to the freezing chamber 134.
  • Step S109 the supply of cold air from the cooler chamber 16 to the freezer compartment 134 through the air duct 15A is shut off.
  • the determination unit 113 determines whether the door 124 is closed again based on the door open / close information input from the door open / close detection unit 8 via the interface 104 (step S110). Determination unit 113 repeats the process of step S110 as long as door 124 is maintained in the open state (step S110: No).
  • step S110 determines that the door 124 is in the closed state (step S110: Yes)
  • the control unit 114 causes the damper drive unit 105 to open the upstream damper 1514 corresponding to the freezing chamber 134 again. It controls (step S111). Thereby, cold air is again supplied from the cooler chamber 16 into the freezer compartment 134 through the air duct 15A.
  • control unit 114 controls the damper driving unit 105 so that the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 become the upper limit opening degrees AP1max and AP2max (step S112). .
  • the amount of cold air supplied into the freezing chamber 134 is maximized, and the storage objects disposed in the freezing chamber 134 are rapidly cooled.
  • the temperature acquisition unit 111 acquires temperature information indicating each of the first blowout temperature T1in and the second blowout temperature T2in measured by the blowout temperature measurement units 9 and 11. Further, the temperature acquisition unit 111 acquires temperature information indicating each of the first return temperature T1out and the second return temperature T2out measured by the return temperature measurement units 10 and 12 (step S113).
  • the temperature difference calculation unit 112 calculates the temperature difference ⁇ T1 between the first outlet temperature T1in and the first return temperature T1out, and the temperature difference ⁇ T2 between the second outlet temperature T2in and the second return temperature T2out. (Step S114).
  • the determination unit 113 calculates a difference absolute value between the temperature difference ⁇ T1 and the temperature difference ⁇ T2, and acquires difference threshold information from the reference DB 1031. Then, the determination unit 113 determines whether the calculated difference absolute value is larger than the difference threshold value indicated by the difference threshold information (step S115). If the determination unit 113 determines that the calculated difference absolute value is less than or equal to the difference threshold (step S115: No), the determination unit 113 executes the process of step S119 described later.
  • step S115 determines whether temperature difference ⁇ T1 is larger than temperature difference ⁇ T2 (step S116). . If determination unit 113 determines that temperature difference ⁇ T1 is larger than temperature difference ⁇ T2 (step S116: Yes), control unit 114 determines the opening degree of first downstream damper 13 with respect to opening degree AP2 of second downstream damper 14 The damper drive unit 105 is controlled such that the ratio AP1 / AP2 of AP1 increases by a preset ratio (step S117).
  • the controller 114 decreases the opening degree AP2 of the second downstream damper 14 in a state where the opening degree AP1 of the first downstream damper 13 is set to the upper limit opening degree AP1max, for example, the ratio AP1 / AP2
  • the damper drive unit 105 is controlled to be raised by 5%. Subsequently, the process of step S119 described later is performed.
  • step S116 determines that the temperature difference ⁇ T1 is equal to or less than the temperature difference ⁇ T2 (step S116: No)
  • the control unit 114 determines that the first downstream damper 13 with respect to the opening degree AP2 of the second downstream damper 14
  • the damper driving unit 105 is controlled so that the ratio AP1 / AP2 of the opening degree AP1 decreases by a preset ratio (step S118).
  • the controller 114 decreases the opening degree AP1 of the first downstream damper 13 in a state where the opening degree AP2 of the second downstream damper 14 is set to the upper limit opening degree AP2max, for example, the ratio AP1 / AP2
  • the damper drive unit 105 is controlled to decrease by 5%.
  • the temperature acquiring unit 111 acquires temperature information indicating the first blowout temperature T1in measured by the blowout temperature measurement unit 9 and temperature information indicating the first return temperature T1out measured by the return temperature measurement unit 10. (Step S119).
  • the determination unit 113 determines whether the first blowing temperature T1in is equal to or lower than the upper limit management temperature Tup and the first return temperature T1out is equal to or lower than the upper limit management temperature Tup (step S120). If determination unit 113 determines that at least one of first blowout temperature T1in and first return temperature T1out is higher than upper limit management temperature Tup (step S120: No), the process of step S113 is performed again. On the other hand, when determination unit 113 determines that both first blowout temperature T1in and first return temperature T1out are equal to or lower than upper limit management temperature Tup (step S120: Yes), the process of step S101 is performed again.
  • the temperature difference calculation unit 112 calculates the heat load of the storage object disposed in the upper case 21 of the area A1 and the lower case 22 of the area A2.
  • the reflected temperature differences ⁇ T1 and ⁇ T2 are calculated.
  • the control unit 114 is blown out from the blowout ports 134a and 134b to the upper case 21 of the area A1 and the lower case 22 of the area A2 according to the temperature differences ⁇ T1 and ⁇ T2 calculated by the temperature difference calculation unit 112.
  • the flow rate of the air is determined, and the first downstream damper 13 and the second downstream damper 14 are controlled such that the flow rate of the air blown out from the outlets 134a and 134b becomes the determined flow rate.
  • the flow rates of the air blown out from the blowout ports 134a and 134b to the upper case 21 and the lower case 22 of the area A2 are arranged in the upper case 21 of the area A1 and the lower case 22 of the area A2.
  • the flow rate can be optimized according to the heat load of the storage object. Therefore, it is possible to prevent the flow rate of the air blown out to the upper case 21 of the area A1 and the lower case 22 of the area A2 from being insufficient or excessive, so power consumption can be improved while improving the cold storage property of the storage object. It can be reduced.
  • the heat load of the storage objects disposed in the upper case 21 of the region A1 and the lower case 22 of the region A2 in the same freezing chamber 134 is different. Then, the flow rate of the air blown out to the upper case 21 and the lower case 22 is set to the optimal flow rate. Therefore, there is an advantage that power consumption can be reduced as compared with the above-mentioned conventional refrigerator. Further, the amount of cold air flowing into the upper case 21 or the lower case 22 may be insufficient or excessively large with respect to the heat load of the storage target disposed in the upper case 21 or the lower case 22. It can be suppressed.
  • the object to be stored is an increase in power consumption due to the time required for cooling until the temperature in the freezing chamber 134 falls below the upper limit management temperature Tup or an increase in the time required for heat removal of the storage object It is also possible to suppress the decrease in cold storage ability of
  • the refrigerator includes a flow rate control unit having a movable wind adjustment plate 2013 disposed at a joining portion 2134f of blowout ducts 2134d and 2134e communicating with the blowout ports 2134a and 2134b, respectively. It may be one.
  • FIG. 7A the same components as in the embodiment are denoted by the same reference numerals as in FIG.
  • the flow rate adjuster changes the ratio of the cool air flowing into the blowout ducts 2134 d and 2134 e by changing the inclination of the baffle plate 2013 as shown by an arrow AR 21 in FIG. 7B.
  • the flow rate adjusting unit may be, for example, one in which the wind adjustment plate 2013 can completely close any one of the two blowout ducts 2134 d and 2134 e.
  • the flow rate adjusting unit changes the time average value of the amount of cold air blown out from the blowout ports 2134a and 2134b by changing the ratio of time during which the baffle plate 2013 closes the blowout ducts 2134d and 2134e. It may be
  • the configuration of the flow rate adjusting unit can be simplified.
  • the refrigerator 1 includes the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the second blowout temperature measurement unit 11, and the second return temperature measurement unit 12 has been described.
  • the present invention is not limited to this, and for example, as shown in FIG. 8, a refrigerator may be provided with a heat flux sensor 3011 attached to the bottom wall of the upper case 21.
  • the heat flux sensor 3011 detects a heat flow value indicating the size of the heat flux flowing between the upper case 21 and the lower case 22 and the flow direction of the heat flux, and corresponds to the detected heat flux size and flow direction Output voltage.
  • a heat flow value indicating the size of the heat flux flowing between the upper case 21 and the lower case 22 and the flow direction of the heat flux
  • the heat flow value corresponding to the voltage signal output from the heat flux sensor 3011 is, for example, the temperature of the air in the upper case 21 and the temperature of the air in the lower case 22 when the storage object disposed in the upper case 21 is high.
  • the control device 3100 has the same hardware configuration as that of the embodiment as shown in FIG.
  • the interface 104 is connected to the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the heat flux sensor 3011, and the door open / close detection unit 8.
  • the interface 104 converts the voltage signal input from the heat flux sensor 3011 into heat flow information indicating a heat flow value, and notifies the CPU 101 of the heat flow information.
  • the absolute value of the heat flow value indicates the magnitude of the heat flux detected by the heat flux sensor 3011
  • the positive or negative heat flow value indicates the flow direction of the heat flux.
  • the heat flow value is positive, it indicates that the heat flux flowing from the upper case 21 to the lower case 22 is generated, and if the heat flow value is negative, the heat flux flowing from the lower case 22 to the upper case 21 is Indicates that it is occurring.
  • the reference DB 3131 stores, together with temperature information indicating the upper limit management temperature Tup and the lower limit management temperature Tlow, heat flow threshold information indicating the heat flow threshold
  • the CPU 101 reads out the program stored in the auxiliary storage unit 103 to the main storage unit 102 and executes the program to obtain the first blowout temperature and the first return temperature, and the heat flow detected by the heat flux sensor 3011 It functions as a heat flow value acquisition unit 3112, a determination unit 3113, and a control unit 114 that acquires information indicating the heat flow value and the flow direction of the bundle.
  • the heat flow value acquisition unit 3112 acquires heat flow value detected by the heat flux sensor 3011 and heat flow information indicating the flow direction of the heat flux via the interface 104.
  • the determination unit 3113 determines the magnitude relationship between the heat flow threshold indicated by the heat flow threshold information stored in the reference DB 3131 and the absolute value of the heat flow value indicated by the heat flow information. Further, the determination unit 3113 determines the information indicating the heat flux flow direction, that is, the positive or negative of the heat flow value.
  • the heat flow value acquiring unit 3112 acquires heat flow information indicating the heat flow value Qf from the heat flux sensor 3011 via the interface 104 (step S201).
  • the determination unit 3113 obtains heat flow threshold information from the reference DB 3131, and determines whether the absolute value
  • step S202 when the determination unit 3113 determines that the absolute value
  • step S203: Yes when the determination unit 3113 determines that the heat flow value Qf is positive (step S203: Yes), the process of step S117 described above is performed.
  • step S203: No when the determination unit 3113 determines that the heat flow value Qf is 0 or less (step S203: No), the process of step S118 described above is performed. After that, the process after step S119 is performed.
  • the temperature of the bottom wall of the upper case 21 can be measured, but between the upper case 21 and the lower case 22
  • the flow direction of the heat flux generated by can not be identified. For example, when the storage subject having a large heat load is disposed in the lower case 22, the air around the storage subject warmed by the storage subject reaches the bottom wall of the upper case 21 and the bottom wall of the upper case 21. May heat up.
  • the lower case It can not be determined whether it is due to the increase in the heat load of the storage object placed in the G.22.
  • the heat flux value of heat flux generated between the upper case 21 and the lower case 22 is obtained by the heat flux sensor 3011 to be disposed in the upper case 21 and the lower case 22 respectively.
  • the magnitude relation of the heat load of the storage object is accurately determined.
  • the flow rate of the air blown out to the upper case 21 and the lower case 22 is optimized in accordance with the magnitude relation of the thermal load of the storage objects disposed in the upper case 21 and the lower case 22 respectively. Set to flow rate. As a result, the shortage of the amount of cold air supplied to the upper case 21 or the lower case 22 or the excess of the amount of cold air supplied to the upper case 21 or the lower case 22 is suppressed.
  • the first blowout temperature measurement unit 9 is provided in the vicinity of the blowout port 134a of the freezing chamber 134, and the second blowout temperature measurement unit 11 is in the vicinity of the blowout port 134b of the freezing chamber 134.
  • the example provided is described.
  • the configuration for measuring the temperature of the cold air blown out into the freezing chamber 134 from the blowout ports 134 a and 134 b of the freezing chamber 134 is not limited to this.
  • the refrigerator may be provided with a temperature measurement unit that measures the temperature existing in the air duct 15A or in the vicinity of the cooler 162.
  • the refrigerator is provided with a temperature estimation unit for estimating the temperature of the air blown out from the outlets 134a and 134b from the temperature of the air existing in the air duct 15A or near the cooler 162 measured by the temperature measurement unit. It should be provided.
  • This temperature estimation unit blows out the temperature obtained by adding, for example, the temperature rise due to the heat exchange with the air passage duct 15A to the measured temperature of the air existing in the air passage duct 15A or in the vicinity of the cooler 162. It is estimated that the temperature of the air blown out from the ports 134a and 134b.
  • the temperature increase width may be set based on, for example, the temperature difference between the temperature of the air in the vicinity of the cooler 162 and the temperature of the air blown out from the outlets 134a and 134b, which are obtained in advance.
  • the number of necessary temperature measurement units can be reduced, and accordingly, the configuration of the refrigerator 1 can be simplified and the cost can be reduced.
  • the refrigerator 1 is provided with two outlets 134a and 134b in the freezing chamber 134, and one outlet is provided in each of the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133 and the vegetable chamber 135.
  • the storage chamber in which the plurality of outlets are provided is not limited to the freezing chamber 134. It may be a refrigerator in which a plurality of outlets are provided in one or more and five or less storage rooms selected from the refrigerating room 131, the ice making room 132, the switching room 133, the freezing room 134 and the vegetable room 135.
  • the refrigerator may be a refrigerator in which three or more outlets are provided in the freezing chamber 134 and cold air is separately blown to cases disposed in three or more regions in the freezing chamber 134, respectively.
  • the refrigerator may be provided with three or more outlets in a storage room of one or more and four or less selected from the refrigerating room 131, the ice making room 132, the switching room 133 and the vegetable room 135.
  • the determination unit 113 compares the first outlet temperature or the first return temperature with the upper limit management temperature in step S102 of the refrigerator control process, and determines the first outlet temperature or the first return temperature in step S105.
  • An example of comparing is described.
  • targets to which the determination unit 113 compares the upper limit control temperature and the lower limit control temperature are not limited to these.
  • the determination unit 113 selects one to four temperatures and upper limit management selected from among the first blowout temperature, the second blowout temperature, the first return temperature, and the second return temperature. The temperature may be compared with the lower control temperature.
  • the upstream dampers are provided in connection portions with the cold room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 in the air duct 15A.
  • dampers for controlling the introduction of cold air to the cold storage room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 are not limited to this.
  • dampers may be provided in connection portions with the refrigerating chamber 131, the ice-making chamber 132, the switching chamber 133, the freezing chamber 134, and the vegetable chamber 135 in the air duct 15B.
  • control device 100 can be realized using a computer system without using a dedicated system.
  • a program for performing the above operation can be read from a non-transitory recording medium (flexible disc, CD-ROM (Compact Disc Read-Only Memory), DVD, etc. readable by the computer system).
  • the control device 100 may be configured to execute the above-described processing by storing and distributing in (Digital Versatile Disc), MO (Magneto-Optical Disc) or the like, and installing the program in a computer system.
  • the method of providing the program to the computer is arbitrary.
  • the program may be uploaded to a server of the communication line and distributed to the computer via the communication line. Then, the computer starts this program and executes it under the control of the OS (Operating System) like other applications.
  • the computer functions as the control device 100 that executes the above-described processing.
  • the present invention is suitable for a refrigerator provided with a case for storing objects to be stored in each of a plurality of areas in a storage room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerator comprising: a refrigeration chamber provided with two blowout ports for separately blowing cooled air toward two interior regions, and an intake opening into which the interior air is drawn in; a first downstream damper (13) and a second downstream damper (14) for adjusting the flow rate of the air respectively blown toward the two regions from the two blowout ports; and a control unit (114) for determining a flow rate of the air respectively blown toward the two regions from the two blowout ports, in accordance with a temperature difference that reflects the thermal load of products to be stored which are arranged respectively in the two regions, and controlling the first downstream damper (13) and the second downstream damper (14) such that the flow rate of the air blown from the two blowout ports matches the flow rate that has been determined.

Description

冷蔵庫、冷蔵庫制御方法およびプログラムRefrigerator, refrigerator control method and program
 本発明は、冷蔵庫、冷蔵庫制御方法およびプログラムに関する。 The present invention relates to a refrigerator, a refrigerator control method and program.
 冷蔵庫は、ファンにより貯蔵室内へ冷気を循環させるとともに、貯蔵室内に設けられたサーミスタにより検知された貯蔵室内の温度に基づいてファンの動作を制御することで、貯蔵室内の温度を予め設定された温度に維持するものが一般的である。この種の冷蔵庫として、貯蔵室内へ貯蔵対象物を配置した直後において、貯蔵対象物の熱負荷に応じて冷却装置の動作を制御することにより貯蔵室の冷却速度を調節する冷蔵庫が提案されている(例えば特許文献1参照)。 In the refrigerator, the temperature of the storage chamber is preset by controlling the operation of the fan based on the temperature in the storage chamber detected by the thermistor provided in the storage chamber while circulating cool air into the storage chamber by the fan. It is common to maintain the temperature. As a refrigerator of this type, a refrigerator is proposed that adjusts the cooling rate of the storage room by controlling the operation of the cooling device according to the heat load of the storage object immediately after placing the storage object in the storage room (See, for example, Patent Document 1).
特開2017-89919号公報JP, 2017-89919, A
 しかしながら、特許文献1に記載された冷蔵庫では、貯蔵室全体の熱負荷に応じて冷却装置を制御するため、例えば貯蔵室内の複数の領域に熱負荷の異なる貯蔵対象物が配置された場合、複数の領域それぞれに流入する冷気の量が各領域に配置された貯蔵対象物の熱負荷に応じた適切な量にならない虞があった。即ち、熱負荷の大きい貯蔵対象物が配置された領域では冷気の量が不足し、熱負荷の小さい貯蔵対象物が配置された領域では冷気の量が過剰となってしまう虞があった。このように、各領域へ流入する冷気の量が、各領域における熱負荷に応じた量となっていない場合、貯蔵室内に収納された貯蔵対象物全ての冷却に要する時間が長くなり、貯蔵対象物の保冷性が低下してしまう虞があった。また、貯蔵対象物を必要以上に冷却することにより、その分、冷蔵庫の消費電力が増大してしまう虞もあった。 However, in the refrigerator described in Patent Document 1, in order to control the cooling device according to the heat load of the entire storage room, for example, when storage objects having different heat loads are arranged in a plurality of areas in the storage room, The amount of cold air flowing into each of the regions may not be an appropriate amount according to the heat load of the storage objects disposed in each region. That is, there is a possibility that the amount of cold air is insufficient in the region where the storage object having a large heat load is disposed, and the amount of cold air is excessive in the region where the storage object having a small heat load is disposed. As described above, when the amount of cold air flowing into each area does not correspond to the heat load in each area, the time required to cool all storage objects stored in the storage chamber becomes long, and the storage object There was a possibility that the cold storage property of the thing might fall. In addition, by cooling the storage object more than necessary, the power consumption of the refrigerator may be increased.
 本発明は、上記事由に鑑みてなされたものであり、貯蔵対象物の保冷性を高めつつ、消費電力を低減することができる冷蔵庫、冷蔵庫制御方法およびプログラムを提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a refrigerator, a refrigerator control method, and a program capable of reducing power consumption while enhancing the cold storage property of a storage object.
 上記目的を達成するために、本発明に係る冷蔵庫は、
 貯蔵対象物を貯蔵し、内側の複数の領域それぞれへ各別に冷やされた空気を吹き出す複数の吹き出し口と、内側に存在する空気が吸い込まれる吸い込み口と、が設けられた貯蔵室と、
 前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を調節する流量調節部と、
 前記複数の領域それぞれに配置された貯蔵対象物の熱負荷を反映した物理量に応じて、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を決定し、前記複数の吹き出し口から吹き出される空気の流量が決定した流量となるように前記流量調節部を制御する制御部と、を備える。
In order to achieve the above object, the refrigerator according to the present invention is
A storage chamber provided with a plurality of outlets for storing objects to be stored and blowing out the cooled air separately to each of the plurality of inner regions, and an inlet for sucking the air present inside;
A flow rate adjustment unit configured to adjust a flow rate of air blown out from each of the plurality of outlets to the plurality of areas;
The flow rate of air blown out from each of the plurality of outlets to each of the plurality of regions is determined according to the physical quantity reflecting the thermal load of the storage object disposed in each of the plurality of regions, and the plurality of outlets are determined. And a control unit configured to control the flow rate adjustment unit such that the flow rate of the air blown out from the air flow becomes the determined flow rate.
 本発明によれば、制御部が、複数の領域それぞれに配置された貯蔵対象物の熱負荷を反映した物理量に応じて、複数の吹き出し口それぞれから複数の領域へ吹き出される空気の流量を決定し、複数の吹き出し口から吹き出される空気の流量が決定した流量となるように流量調節部を制御する。これにより、複数の吹き出し口それぞれから複数の領域へ吹き出される空気の流量を、複数の領域それぞれに配置された貯蔵対象物の熱負荷に応じた最適な流量にすることができる。従って、複数の領域それぞれへ吹き出される空気の流量が不足したり過大になったりすることが抑制されるので、貯蔵対象物の保冷性を高めつつ、消費電力を低減することができる。 According to the present invention, the control unit determines the flow rate of the air blown out from each of the plurality of outlets to the plurality of regions according to the physical quantity reflecting the heat load of the storage object arranged in each of the plurality of regions. The flow rate control unit is controlled so that the flow rate of the air blown out from the plurality of outlets becomes the determined flow rate. As a result, the flow rate of the air blown out from each of the plurality of outlets into the plurality of regions can be made an optimal flow rate according to the heat load of the storage object disposed in each of the plurality of regions. Accordingly, the shortage or excess of the flow rate of the air blown into each of the plurality of regions is suppressed, so that it is possible to reduce the power consumption while enhancing the cold storage property of the storage object.
実施の形態に係る冷蔵庫の斜視図The perspective view of the refrigerator concerning an embodiment 実施の形態に係る冷蔵庫の断面図Sectional view of the refrigerator according to the embodiment 実施の形態に係る冷凍室の断面図Sectional view of a freezing room according to the embodiment 実施の形態に係る制御装置のブロック図Block diagram of control device according to the embodiment 実施の形態に係る制御装置により実行される冷蔵庫制御処理の流れの一例を示すフローチャートThe flowchart which shows an example of the flow of the refrigerator control processing which is executed by the control control equipment which relates to the form of execution 実施の形態に係る制御装置により実行される冷蔵庫制御処理の流れの一例を示すフローチャートThe flowchart which shows an example of the flow of the refrigerator control processing which is executed by the control control equipment which relates to the form of execution 変形例に係る冷凍室の断面図Sectional view of a freezing room according to a modification 変形例に係る冷凍室の断面の部分拡大図A partial enlarged view of a cross section of a freezing room according to a modification 変形例に係る冷凍室の断面図Sectional view of a freezing room according to a modification 変形例に係る制御装置のブロック図Block diagram of control device according to modification 変形例に係る制御装置により実行される冷蔵庫制御処理の流れの一例を示すフローチャートThe flowchart which shows an example of the flow of the refrigerator control processing executed by the control device concerning a modification
 以下、本発明の実施の形態に係る冷蔵庫について図面を参照しながら説明する。本実施の形態に係る冷蔵庫は、貯蔵対象物を貯蔵する貯蔵庫と、冷蔵庫を制御する制御装置と、を備える。貯蔵庫は、その内側の複数の領域それぞれへ各別に冷やされた空気を吹き出す複数の吹き出し口と、内側に存在する空気が吸い込まれる吸い込み口と、が設けられている。また、冷蔵庫は、複数の吹き出し口それぞれから貯蔵庫の内側の複数の領域へ吹き出される空気の流量を調節する流量調節部を備える。ここで、制御装置は、貯蔵庫の内側の複数の領域それぞれに配置された貯蔵対象物の熱負荷を反映した物理量である、吹き出し口から吹き出される空気の温度と貯蔵対象物と熱交換することにより温められた空気の温度との温度差を算出する。そして、制御装置は、算出した貯蔵対象物の熱負荷を反映する温度差に応じて、複数の吹き出し口それぞれから複数の領域へ吹き出される空気の流量を決定する。そして、制御装置は、複数の吹き出し口から吹き出される空気の流量が決定した流量となるように流量調節部を制御する。 Hereinafter, a refrigerator according to an embodiment of the present invention will be described with reference to the drawings. The refrigerator according to the present embodiment includes a storage for storing objects to be stored, and a control device for controlling the refrigerator. The storage is provided with a plurality of outlets for blowing the cooled air separately into the plurality of regions inside the storage, and a suction port through which the air present inside is sucked. In addition, the refrigerator includes a flow rate control unit that controls the flow rate of the air blown out from the plurality of outlets into the plurality of areas inside the storage. Here, the control device performs heat exchange with the temperature of the air blown out from the outlet and the storage object, which is a physical quantity reflecting the heat load of the storage object arranged in each of the plurality of areas inside the storage Calculate the temperature difference with the temperature of the air warmed by Then, the control device determines the flow rate of air blown out from each of the plurality of outlets to the plurality of regions according to the temperature difference reflecting the calculated thermal load of the storage object. Then, the control device controls the flow rate adjusting unit such that the flow rate of the air blown out from the plurality of outlets becomes the determined flow rate.
 図1に示すように、本実施の形態に係る冷蔵庫1は、外形が直方体状の断熱箱体1aと、断熱箱体1aの前方に設けられた5つの開口部それぞれに取り付けられた扉121、122、123、124、125と、を備える。断熱箱体1aは、金属、樹脂等から形成された矩形箱状の外箱と、金属、樹脂等から形成され外形寸法が外箱よりも小さい内箱と、外箱と内箱との間に封入された断熱部材と、を有する。そして、断熱箱体1aの内部には、例えば、食品を冷蔵する冷蔵室131と、製氷器を収容する製氷室132と、室内を製氷可能な温度とそれ以外の温度とに切り換え可能な切換室133と、冷凍食品を収納し冷凍食品を冷凍する冷凍室134と、野菜を収容する野菜室135と、が設けられている。なお、図1において、冷蔵庫1の正面側から見て、左右方向をX軸方向、上下方向をZ軸方向、X軸方向とZ軸方向とに直交する方向をY軸方向としている。 As shown in FIG. 1, the refrigerator 1 according to the present embodiment includes a heat insulating box 1a having a rectangular parallelepiped outer shape, and a door 121 attached to each of five openings provided in front of the heat insulating box 1a. And 122, 123, 124, 125. The heat insulation box 1a is a rectangular box-like outer box formed of metal, resin, etc., an inner box formed of metal, resin etc. and having an outer dimension smaller than the outer box, and between the outer box and the inner box And a heat insulating member enclosed. And, inside the heat insulation box 1a, for example, a refrigerating room 131 for refrigerating food, an ice making room 132 for containing an ice making machine, and a switching room capable of switching the room to a temperature at which ice can be made and other temperatures. 133, a freezing room 134 for storing frozen food and freezing the frozen food, and a vegetable room 135 for containing vegetables are provided. Note that in FIG. 1, when viewed from the front side of the refrigerator 1, the horizontal direction is the X axis direction, the vertical direction is the Z axis direction, and the direction orthogonal to the X axis direction and the Z axis direction is the Y axis direction.
 また、冷蔵庫1は、図2に示すように、冷却器室16と、冷却器室16に排水管17を介して接続された機械室18と、を備える。冷却器室16は、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれに風路ダクト15A、15Bを介して接続されている。冷却器室16には、冷却器162とファン161とが収容されている。また、機械室18には、冷却器162から流入する冷媒を圧縮する圧縮機40が収容されている。冷蔵庫1は、冷却器162および圧縮機40の他に、凝縮部(図示せず)、減圧部(図示せず)およびサクションパイプ(図示せず)を備えており、圧縮機40、凝縮部、減圧部、冷却器162、サクションパイプ、圧縮機40の順に冷媒が循環するように冷媒管(図示せず)を介して接続されている。ここで、凝縮部は、圧縮機40から流入する冷媒を凝縮し、減圧部は、凝縮部から流入する冷媒を減圧膨張させて冷媒の一部を蒸発させることにより冷媒を液体と気体の二相状態とする。冷却器162は、減圧部から流入する二相状態の冷媒のうちの液体状態の冷媒が蒸発するときの吸熱作用を利用して冷却器室16内における冷却器162の周囲の空気を冷却する。また、サクションパイプは、減圧部の一部を構成する毛細管(図示せず)と熱交換することにより、冷却器162から流入する冷媒を、その凝縮温度まで昇温させる。 Moreover, the refrigerator 1 is provided with the cooler chamber 16 and the machine chamber 18 connected to the cooler chamber 16 via the drain pipe 17, as shown in FIG. The cooler room 16 is connected to the refrigerating room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 through air ducts 15A and 15B. A cooler 162 and a fan 161 are accommodated in the cooler chamber 16. Further, in the machine room 18, a compressor 40 for compressing the refrigerant flowing from the cooler 162 is accommodated. The refrigerator 1 includes a condenser (not shown), a pressure reducing part (not shown) and a suction pipe (not shown) in addition to the cooler 162 and the compressor 40, and the compressor 40, the condenser, The pressure reducing unit, the cooler 162, the suction pipe, and the compressor 40 are connected in this order via a refrigerant pipe (not shown) so that the refrigerant circulates. Here, the condensing unit condenses the refrigerant flowing in from the compressor 40, and the pressure reducing unit decompresses and expands the refrigerant flowing in from the condensing unit to evaporate a part of the refrigerant, thereby evaporating the refrigerant into two phases of liquid and gas. It will be in the state. The cooler 162 cools the air around the cooler 162 in the cooler chamber 16 by utilizing the heat absorption function when the refrigerant in the liquid state of the two-phase refrigerant flowing from the pressure reducing section evaporates. Further, the suction pipe exchanges heat with a capillary tube (not shown) that constitutes a part of the pressure reducing section, thereby raising the temperature of the refrigerant flowing from the cooler 162 to its condensation temperature.
 ファン161が動作すると、冷却器室16内で冷却された空気(以下、「冷気」と称する。)が風路ダクト15Aを通じて冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれへ供給される(矢印AR10参照)。冷蔵室131、切換室133、冷凍室134および野菜室135それぞれへ向けて供給される冷気は、各室に設けられた吹き出し口131a、133a、134a、134b、135aから内側へ吹き出される。また、製氷室132へ向けて供給される冷気も同様に製氷室132に設けられた吹き出し口(図示せず)から内側へ吹き出される。これにより、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれの内側に配置された食品が冷却される。また、冷蔵室131、切換室133、冷凍室134および野菜室135それぞれに存在する貯蔵対象物により温められた空気は、各室に設けられた吸い込み口131b、133b、134c、135bから風路ダクト15Bを通じて冷却器室16へ流入する。また、製氷室132に存在する空気も同様に製氷室132に設けられた吸い込み口(図示せず)から風路ダクト15Bを通じて冷却器室16へ流入する。このようにして、冷気が、冷却器室16と冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135との間で風路ダクト15A、15Bを通じて循環する。 When the fan 161 operates, the air cooled in the cooler chamber 16 (hereinafter referred to as "cold air") passes through the air duct 15A, and the cold room 131, the ice making room 132, the switching room 133, the freezing room 134 and the vegetable room 135 is supplied to each of them (see arrow AR10). Cold air supplied toward the refrigerator compartment 131, the switching compartment 133, the freezing compartment 134 and the vegetable compartment 135 is blown out inward from the outlets 131a, 133a, 134a, 134b, 135a provided in the respective compartments. In addition, cold air supplied toward the ice making chamber 132 is also blown out inward from a blowout port (not shown) provided in the ice making chamber 132. As a result, the food disposed inside each of the cold storage room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 is cooled. Moreover, the air warmed by the storage object which exists in the refrigerator compartment 131, the switching compartment 133, the freezer compartment 134, and the vegetable compartment 135 is an air duct from the suction ports 131b, 133b, 134c, and 135b provided in each compartment. It flows into the cooler chamber 16 through 15B. Similarly, the air present in the ice making chamber 132 also flows into the cooler chamber 16 through the air passage duct 15B from the suction port (not shown) provided in the ice making chamber 132. In this manner, cold air circulates through the air ducts 15A and 15B between the cooler chamber 16 and the refrigerator room 131, the ice making room 132, the switching room 133, the freezing room 134 and the vegetable room 135.
 また、風路ダクト15Aにおける冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135との接続部分それぞれには、上流ダンパ(例えば上流ダンパ1511、1513、1514、1515)が設けられている。各上流ダンパは、各別に開閉動作する。上流ダンパが開状態の場合、その上流ダンパに対応する冷蔵室131、製氷室132、切換室133、冷凍室134または野菜室135へ冷気が流入する。例えば上流ダンパ1514が開状態の場合、上流ダンパ1514に対応する冷凍室134へ冷気が流入する。一方、上流ダンパが閉状態の場合、その上流ダンパに対応する冷蔵室131、製氷室132、切換室133、冷凍室134または野菜室135への冷気の流入が遮断される。例えば上流ダンパ1514が閉状態の場合、上流ダンパ1514に対応する冷凍室134への冷気の流入が遮断される。 In addition, upstream dampers (for example, upstream dampers 1511, 1513, 1514, 1515) are provided in connection portions of the air passage duct 15A with the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134 and the vegetable chamber 135, respectively. It is done. Each upstream damper opens and closes separately. When the upstream damper is in the open state, cold air flows into the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134, or the vegetable chamber 135 corresponding to the upstream damper. For example, when the upstream damper 1514 is in the open state, cold air flows into the freezer compartment 134 corresponding to the upstream damper 1514. On the other hand, when the upstream damper is in the closed state, the inflow of cold air to the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134 or the vegetable chamber 135 corresponding to the upstream damper is blocked. For example, when the upstream damper 1514 is in the closed state, the inflow of cold air to the freezer compartment 134 corresponding to the upstream damper 1514 is blocked.
 冷凍室134は、図3に示すように、内側の2つの領域A1、A2それぞれへ各別に冷気を吹き出す2つの吹き出し口134a、134bと、内側に存在する温められた空気が吸い込まれる吸い込み口134cと、が設けられている。また、冷凍室134内の上側には、上ケース21が配置され、冷凍室134内の下側には、下ケース22が配置されている。吹き出し口134aから吹き出された冷気は、領域A1に位置する上ケース21内へ流入する(図3の矢印AR11参照)。上ケース21内へ流入した冷気は、上ケース21内に配置された貯蔵対象物に蓄えられた熱と、冷蔵庫1外に存在する空気から断熱箱体1aの壁を通じて冷凍室134内へ伝達する侵入した熱と、により温められる。そして、上ケース21内の空気は、上ケース21に設けられた戻り口21aから排出され領域A1外へ流出する。ここで、冷蔵庫1外に存在する空気から冷凍室134内へ侵入する熱の量は、冷凍室134内の温度が大きく変化しない限り一定と看做すことができる。従って、貯蔵対象物に蓄えられた熱が大きいほど、その分、戻り口21aから排出される空気の温度が上昇する。 As shown in FIG. 3, the freezing chamber 134 has two outlets 134a and 134b for blowing cold air into the two inner areas A1 and A2, respectively, and an inlet 134c for receiving the warmed air present inside. And are provided. Further, the upper case 21 is disposed on the upper side in the freezing chamber 134, and the lower case 22 is disposed on the lower side in the freezing chamber 134. The cool air blown out from the blowout port 134a flows into the upper case 21 located in the area A1 (see an arrow AR11 in FIG. 3). The cool air having flowed into the upper case 21 is transferred from the air stored outside the refrigerator 1 and the heat stored in the storage object disposed in the upper case 21 into the freezer compartment 134 through the wall of the heat insulation box 1a. It is warmed by the heat that has invaded. Then, the air in the upper case 21 is discharged from the return port 21 a provided in the upper case 21 and flows out of the area A1. Here, the amount of heat entering the freezer compartment 134 from the air existing outside the refrigerator 1 can be regarded as constant unless the temperature in the freezer compartment 134 changes significantly. Therefore, as the heat stored in the storage object is larger, the temperature of the air discharged from the return port 21a is increased accordingly.
 また、吹き出し口134bから吹き出された冷気は、下ケース22内へ流入し(図3の矢印AR12参照)、領域A2に位置する下ケース22内に配置された貯蔵対象物と熱交換することにより温められる。そして、下ケース22内の空気は、下ケース22に設けられた戻り口22aから排出され領域A2外へ流出する。上ケース21の戻り口21aおよび下ケース22の戻り口22aから排出された空気は、冷凍室134の吸い込み口134cへ戻されて(図3の矢印AR13参照)、風路ダクト15Bを通じて冷却器室16へ流入する。 Further, the cold air blown out from the blowout port 134b flows into the lower case 22 (refer to the arrow AR12 in FIG. 3) and exchanges heat with the storage object disposed in the lower case 22 located in the area A2. It is warmed. Then, the air in the lower case 22 is discharged from the return port 22a provided in the lower case 22 and flows out of the area A2. The air discharged from the return port 21a of the upper case 21 and the return port 22a of the lower case 22 is returned to the suction port 134c of the freezing chamber 134 (see arrow AR13 in FIG. 3), and the cooler chamber is Flow to 16
 また、冷凍室134には、吹き出し口134aから吹き出される空気の温度を測定する吹き出し温度測定部9と、上ケース21の戻り口21aから排出され吸い込み口134cへ戻される空気の温度を測定する戻り温度測定部10と、が設けられている。更に、冷凍室134には、吹き出し口134bから吹き出される空気の温度を測定する吹き出し温度測定部11と、下ケース22の戻り口22aから排出され吸い込み口134cへ戻される空気の温度を測定する戻り温度測定部12と、が設けられている。以下、吹き出し温度測定部9により測定される温度を第1吹き出し温度、戻り温度測定部10により測定される温度を第1戻り温度、吹き出し温度測定部11により測定される温度を第2吹き出し温度、戻り温度測定部12により測定される温度を第2戻り温度、と称する。更に、冷凍室134には、扉124の開閉状態を検知する扉開閉検知部8が設けられている。 In the freezing chamber 134, the temperature of the blowout temperature measurement unit 9 for measuring the temperature of the air blown out from the blowout port 134a, and the temperature of the air discharged from the return port 21a of the upper case 21 and returned to the suction port 134c. A return temperature measurement unit 10 is provided. Furthermore, in the freezing chamber 134, the temperature of the air discharged from the return port 22a of the lower case 22 and returned to the suction port 134c is measured. A return temperature measurement unit 12 is provided. Hereinafter, the temperature measured by the blowout temperature measurement unit 9 is a first blowout temperature, the temperature measured by the return temperature measurement unit 10 is a first return temperature, the temperature measured by the blowout temperature measurement unit 11 is a second blowout temperature, The temperature measured by the return temperature measurement unit 12 is referred to as a second return temperature. Further, the freezer compartment 134 is provided with a door open / close detection unit 8 for detecting the open / close state of the door 124.
 ところで、上ケース21内および下ケース22内における冷気による除熱量Q1、Q2は、それぞれ下記式(1)、(2)で表される。
 Q1=F1×ρ×C×(T1in-T1out)・・・式(1)
 Q2=F2×ρ×C×(T2in-T2out)・・・式(2)
 ここで、F1、F2は、それぞれ上ケース21、下ケース22へ吹き出される冷気の風量[m/sec]を示し、ρは冷気の密度[kg/m]を示し、Cpは冷気の定圧比熱[J/(kg・K)]、T1inは第1吹き出し温度[K]、T1outは第1戻り温度[K]、T2inは第2吹き出し温度[K]、T2outは第2戻り温度[K]を示す。
The heat removal amounts Q1 and Q2 due to cold air in the upper case 21 and the lower case 22 are represented by the following formulas (1) and (2), respectively.
Q1 = F1 × ρ × C p × (T 1 in −T 1 out ) (1)
Q2 = F2 × ρ × C p × (T2 in -T2 out ) (2)
Here, F1 and F2 indicate the air volume [m 3 / sec] of cold air blown out to the upper case 21 and the lower case 22 respectively, ρ indicates the density of cold air [kg / m 3 ], and Cp indicates the cold air Constant pressure specific heat [J / (kg · K)], T1in is the first outlet temperature [K], T1out is the first return temperature [K], T2in is the second outlet temperature [K], T2out is the second return temperature [K ] Is shown.
 上ケース21および下ケース22内に配置された貯蔵対象物に必要な除熱量Q1、Q2が大きいほど、その分、熱負荷が大きくなる。そうすると、前述の式(1)および式(2)から、上ケース21および下ケース22内に配置された貯蔵対象物の熱負荷が大きくなると、その分、冷気が受け取る熱量が増加して第1戻り温度T1outおよび第2戻り温度T2outが上昇する。そして、第1吹き出し温度T1inと第1戻り温度T1outとの温度差の絶対値と第2吹き出し温度T2inと第2戻り温度T2outとの温度差の絶対値とがそれぞれ増大することになる。これらのことから、第1吹き出し温度T1inと第1戻り温度T1outとの温度差および第2吹き出し温度T2inと第2戻り温度T2outとの温度差は、それぞれ領域A1の上ケース21内および領域A2の下ケース22内に配置された貯蔵対象物の熱負荷を反映した物理量であると言える。 The larger the amount of heat removal Q1 and Q2 required for the objects to be stored disposed in the upper case 21 and the lower case 22, the larger the heat load. Then, when the heat load of the objects to be stored disposed in the upper case 21 and the lower case 22 becomes large, the amount of heat received by the cold air increases by the above-mentioned equations (1) and (2). The return temperature T1out and the second return temperature T2out rise. Then, the absolute value of the temperature difference between the first blowout temperature T1in and the first return temperature T1out and the absolute value of the temperature difference between the second blowout temperature T2in and the second return temperature T2out respectively increase. From these, the temperature difference between the first blowout temperature T1in and the first return temperature T1out and the temperature difference between the second blowout temperature T2in and the second return temperature T2out are respectively in the upper case 21 of the area A1 and in the area A2. It can be said that the physical quantity reflects the heat load of the storage object disposed in the lower case 22.
 制御装置100は、図4に示すように、CPU(Central Processing Unit)101と、揮発性メモリからなる主記憶部102と、不揮発性メモリからなる補助記憶部103と、インタフェース104と、ダンパ駆動部105と、ファン駆動部106と、圧縮機駆動部107と、各部を接続するバス109と、を有する。不揮発性メモリとしては、磁気ディスク、半導体メモリ等が挙げられる。補助記憶部103は、後述する冷蔵庫制御処理を実行するためのプログラムを記憶する。インタフェース104は、第1吹き出し温度測定部9、第1戻り温度測定部10、第2吹き出し温度測定部11、第2戻り温度測定部12および扉開閉検知部8に接続されている。インタフェース104は、扉開閉検知部8から入力される信号を扉124の開閉状態を示す扉開閉情報に変換してCPU101へ通知する。また、インタフェース104は、第1吹き出し温度測定部9、第1戻り温度測定部10、第2吹き出し温度測定部11および第2戻り温度測定部12から入力される信号を温度情報に変換してCPU101へ通知する。 As shown in FIG. 4, the control device 100 includes a central processing unit (CPU) 101, a main storage unit 102 including volatile memory, an auxiliary storage unit 103 including non-volatile memory, an interface 104, and a damper drive unit. And 105, a fan drive unit 106, a compressor drive unit 107, and a bus 109 connecting the respective units. Examples of the non-volatile memory include magnetic disks and semiconductor memories. The auxiliary storage unit 103 stores a program for executing a refrigerator control process described later. The interface 104 is connected to the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the second blowout temperature measurement unit 11, the second return temperature measurement unit 12, and the door open / close detection unit 8. The interface 104 converts the signal input from the door open / close detection unit 8 into door open / close information indicating the open / close state of the door 124 and notifies the CPU 101 of the door open / close information. Further, the interface 104 converts the signals input from the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the second blowout temperature measurement unit 11, and the second return temperature measurement unit 12 into temperature information and converts the signals into the CPU 101. To notify.
 ダンパ駆動部105は、CPU101から入力される制御情報に基づいて、上流ダンパ1514、第1下流ダンパ13および第2下流ダンパ14を駆動する。なお、ダンパ駆動部105は、上流ダンパ1514以外の各上流ダンパも駆動する。図4では、他の上流ダンパを省略している。ファン駆動部106は、ファン161を回転させるモータ(図示せず)と、CPU101から入力される制御情報に基づいてモータを制御するモータ制御部(図示せず)と、を有する。圧縮機駆動部107は、圧縮機40を駆動するモータ(図示せず)と、CPU101から入力される制御情報に基づいてモータを制御するモータ制御部(図示せず)と、を有する。バス109は、CPU101と主記憶部102と補助記憶部103とインタフェース104とダンパ駆動部105とファン駆動部106とを互いに接続する。 The damper driving unit 105 drives the upstream damper 1514, the first downstream damper 13, and the second downstream damper 14 based on control information input from the CPU 101. The damper driving unit 105 also drives each upstream damper other than the upstream damper 1514. The other upstream dampers are omitted in FIG. The fan drive unit 106 has a motor (not shown) for rotating the fan 161 and a motor control unit (not shown) for controlling the motor based on control information input from the CPU 101. The compressor drive unit 107 includes a motor (not shown) for driving the compressor 40 and a motor control unit (not shown) for controlling the motor based on control information input from the CPU 101. The bus 109 connects the CPU 101, the main storage unit 102, the auxiliary storage unit 103, the interface 104, the damper drive unit 105, and the fan drive unit 106 to one another.
 補助記憶部103は、判定基準に関する情報を記憶する基準データベース(以下、「DB」と称する。)1031と、第1下流ダンパ13および第2下流ダンパ14それぞれの開度を示すパラメータ情報を記憶するパラメータDB1032と、を有する。基準DB1031は、冷蔵室131、製氷室132、切換室133、冷凍室134および冷凍室134それぞれの上限管理温度Tupおよび下限管理温度Tlowを示す温度情報を記憶している。また、基準DB1031は、第1吹き出し温度と第1戻り温度との温度差と、第2吹き出し温度と第2戻り温度との温度差と、の差分絶対値に対する閾値である差分閾値を示す差分閾値情報を記憶する。 The auxiliary storage unit 103 stores a reference database (hereinafter referred to as "DB") 1031 for storing information related to the determination reference, and parameter information indicating the opening degree of each of the first downstream damper 13 and the second downstream damper 14 And a parameter DB 1032. The reference DB 1031 stores temperature information indicating the upper limit management temperature Tup and the lower limit management temperature Tlow of the cold storage room 131, the ice making room 132, the switching room 133, the freezing room 134, and the freezing room 134, respectively. The reference DB 1031 is a difference threshold indicating a difference threshold that is a threshold for the difference between the temperature difference between the first blowout temperature and the first return temperature and the temperature difference between the second blowout temperature and the second return temperature. Store information
 パラメータDB1032は、第1下流ダンパ13の開度AP1を変化させる際の単位変化量と、第2下流ダンパ14の開度AP2を変化させる際の単位変化量と、を示す情報を記憶する。また、パラメータDB1032は、第1下流ダンパ13の初期開度AP1i、第2下流ダンパ14の初期開度AP2iを示す初期開度情報と、第1下流ダンパ13の上限開度AP1maxと第2下流ダンパ14の上限開度AP2maxを示す上限開度情報と、を記憶する。ここで、初期開度AP1i、AP2iは、例えば冷凍室134内における吹き出し口134a、134bそれぞれから吹き出される冷気が流入する領域A1、A2の容積に応じて設定される。また、上限開度AP1max、AP2maxは、例えば第1下流ダンパ13、第2下流ダンパ14それぞれの開度に対する動作保証範囲に基づいて設定され、例えば90%に設定される。 The parameter DB 1032 stores information indicating a unit change amount when changing the opening degree AP1 of the first downstream damper 13 and a unit change amount when changing the opening degree AP2 of the second downstream damper 14. The parameter DB 1032 includes initial opening information indicating the initial opening AP1i of the first downstream damper 13 and the initial opening AP2i of the second downstream damper 14, the upper limit opening AP1max of the first downstream damper 13, and the second downstream damper And upper limit opening information indicating the upper limit opening AP2max of 14. Here, the initial openings AP1i and AP2i are set, for example, in accordance with the volumes of the regions A1 and A2 into which cold air blown out from the blowout ports 134a and 134b in the freezing chamber 134 flows. Further, the upper limit opening degrees AP1max and AP2max are set based on, for example, the operation guaranteed range with respect to the respective opening degrees of the first downstream damper 13 and the second downstream damper 14, and are set to, for example, 90%.
 図4に戻って、CPU101は、補助記憶部103が記憶するプログラムを主記憶部102に読み出して実行することにより、第1吹き出し温度、第2吹き出し温度、第1戻り温度および第2戻り温度を取得する温度取得部111、第1吹き出し温度と第1戻り温度との温度差および第2吹き出し温度と第2戻り温度との温度差を算出する温度差算出部112、判定部113および制御部114として機能する。温度取得部111は、吹き出し温度測定部9、11により測定される温度を示す温度情報と、戻り温度測定部10、12により測定される温度を示す温度情報とを、インタフェース104を介して取得する。 Referring back to FIG. 4, the CPU 101 reads out the program stored in the auxiliary storage unit 103 to the main storage unit 102 and executes the program to determine the first blowout temperature, the second blowout temperature, the first return temperature, and the second return temperature. The temperature acquisition unit 111 to acquire, the temperature difference calculation unit 112 that calculates the temperature difference between the first blowout temperature and the first return temperature, and the temperature difference between the second blowout temperature and the second return temperature, the determination unit 113, and the control unit 114 Act as. The temperature acquisition unit 111 acquires, via the interface 104, temperature information indicating the temperature measured by the blowoff temperature measurement units 9 and 11 and temperature information indicating the temperature measured by the return temperature measurement units 10 and 12. .
 温度差算出部112は、第1吹き出し温度T1inと第1戻り温度T1outとの温度差△T1と、第2吹き出し温度T2inと第2戻り温度T2outとの温度差△T2と、を算出する。この温度差算出部112は、2つの領域A1、A2それぞれに配置された貯蔵対象物それぞれの熱負荷を反映した物理量である温度差△T1、△T2を算出する物理量算出部に相当する。 The temperature difference calculation unit 112 calculates a temperature difference ΔT1 between the first outlet temperature T1in and the first return temperature T1out, and a temperature difference ΔT2 between the second outlet temperature T2in and the second return temperature T2out. The temperature difference calculation unit 112 corresponds to a physical quantity calculation unit that calculates temperature differences ΔT1 and ΔT2, which are physical quantities reflecting the heat loads of the storage objects respectively disposed in the two areas A1 and A2.
 判定部113は、第1吹き出し温度または第1戻り温度が、上限温度管理値以下且つ下限温度管理値以上であるか否かを判定する。また、判定部113は、扉開閉検知部8からインタフェース104を介して入力される扉開閉情報に基づいて、扉124の開閉状態を判定する。更に、判定部113は、温度差△T1と温度差△T2との差分絶対値を算出し、基準DB1031が記憶する差分閾値情報が示す差分閾値と、算出した差分絶対値との大小関係を判定する。また、判定部113は、温度差△T1と温度差△T2との大小関係を判定する。 The determination unit 113 determines whether the first blowout temperature or the first return temperature is equal to or less than the upper limit temperature management value and equal to or more than the lower limit temperature management value. Further, the determination unit 113 determines the open / close state of the door 124 based on the door open / close information input from the door open / close detection unit 8 via the interface 104. Furthermore, the determination unit 113 calculates the difference absolute value between the temperature difference ΔT1 and the temperature difference ΔT2 and determines the magnitude relationship between the difference threshold value indicated by the difference threshold information stored in the reference DB 1031 and the calculated difference absolute value. Do. Further, the determination unit 113 determines the magnitude relationship between the temperature difference ΔT1 and the temperature difference ΔT2.
 制御部114は、判定部113による判定結果に応じて、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とを変化させるようにダンパ駆動部105を制御する。また、制御部114は、判定部113による扉124の開閉状態の判定結果に応じて、上流ダンパ1514の開閉状態を変化させるようにダンパ駆動部105を制御する。更に、制御部114は、冷蔵庫1へ電源が投入されたことを契機として、ファン161が動作するようファン駆動部106を制御する。 The control unit 114 controls the damper driving unit 105 to change the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 according to the determination result by the determination unit 113. Further, the control unit 114 controls the damper driving unit 105 to change the open / close state of the upstream damper 1514 according to the determination result of the open / close state of the door 124 by the determination unit 113. Furthermore, the control unit 114 controls the fan drive unit 106 so that the fan 161 operates in response to power being supplied to the refrigerator 1.
 次に、本実施の形態に係る制御装置100が実行する冷蔵庫制御処理について図5および図6を参照しながら説明する。この冷蔵庫制御処理は、例えばユーザが冷蔵庫1の扉121、122、123、124、125の全てを閉状態にして冷蔵庫1へ電源を投入した後、予め設定された待機時間だけ経過した後に開始される。この待機時間は、例えば冷蔵庫1へ電源が投入された後、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれの温度が安定するまでの時間よりも長い時間に設定される。また、制御部114は、冷蔵庫1へ電源が投入されたことを契機として、ファン161および圧縮機40の動作を開始させるようにファン駆動部106および圧縮機駆動部107を制御する。また、制御部114は、上流ダンパ1514を含む全ての上流ダンパを開状態とするようにダンパ駆動部105を制御する。更に、制御部114は、パラメータDB1032が記憶する初期開度情報を参照して、第1下流ダンパ13の開度AP1が初期開度AP1i、第2下流ダンパ14の開度AP2が初期開度AP2iとなるようにダンパ駆動部105を制御する。 Next, a refrigerator control process performed by the control device 100 according to the present embodiment will be described with reference to FIGS. 5 and 6. The refrigerator control process is started, for example, after the user has closed all the doors 121, 122, 123, 124, and 125 of the refrigerator 1 and turned on the power to the refrigerator 1, and then a predetermined standby time has elapsed. Ru. This standby time is set to, for example, a time longer than the time until the temperatures of the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133, the freezing chamber 134 and the vegetable chamber 135 become stable after the refrigerator 1 is powered on. Be done. Further, the control unit 114 controls the fan drive unit 106 and the compressor drive unit 107 so as to start the operation of the fan 161 and the compressor 40 in response to power being supplied to the refrigerator 1. Further, the control unit 114 controls the damper driving unit 105 so as to open all the upstream dampers including the upstream damper 1514. Furthermore, the control unit 114 refers to the initial opening degree information stored in the parameter DB 1032, and the opening degree AP1 of the first downstream damper 13 is the initial opening degree AP1i, and the opening degree AP2 of the second downstream damper 14 is the initial opening degree AP2i. The damper drive unit 105 is controlled so that
 まず、温度取得部111は、吹き出し温度測定部9により測定される第1吹き出し温度T1inを示す温度情報と、戻り温度測定部10により測定される第1戻り温度T1outを示す温度情報と、を取得する(ステップS101)。 First, the temperature acquisition unit 111 acquires temperature information indicating the first blowout temperature T1in measured by the blowout temperature measurement unit 9, and temperature information indicating the first return temperature T1out measured by the return temperature measurement unit 10. (Step S101).
 次に、判定部113は、第1吹き出し温度T1inが上限管理温度Tupよりも高い、或いは第1戻り温度T1outが上限管理温度Tupよりも高いか否かを判定する(ステップS102)。判定部113により、第1吹き出し温度T1inが上限管理温度Tup以下であり且つ第1戻り温度T1outが上限管理温度Tup以下であると判定されると(ステップS102:No)、後述のステップS105の処理が実行される。 Next, the determination unit 113 determines whether the first blowing temperature T1in is higher than the upper limit management temperature Tup or the first return temperature T1out is higher than the upper limit management temperature Tup (step S102). If it is determined by the determination unit 113 that the first blowout temperature T1in is equal to or lower than the upper limit management temperature Tup and the first return temperature T1out is equal to or lower than the upper limit management temperature Tup (step S102: No), processing of step S105 described later Is executed.
 一方、判定部113が、第1吹き出し温度T1inまたは第1戻り温度T1outの少なくとも一方が上限管理温度Tupを超えていると判定したとする(ステップS102:Yes)。この場合、制御部114は、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とのいずれかが上限開度AP1max、AP2maxになっているか否かを判定する(ステップS103)。制御部114により、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とのいずれかが上限開度AP1max、AP2maxになっていると判定されると(ステップS103:Yes)、そのまま後述のステップS108の処理が実行される。 On the other hand, it is assumed that the determination unit 113 determines that at least one of the first blowing temperature T1in and the first return temperature T1out exceeds the upper limit management temperature Tup (step S102: Yes). In this case, the control unit 114 determines whether or not one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is the upper limit opening degree AP1max or AP2max (step S103). ). If it is determined by the control unit 114 that either the opening degree AP1 of the first downstream damper 13 or the opening degree AP2 of the second downstream damper 14 is the upper limit opening degree AP1max or AP2max (step S103: Yes) The process of step S108 described later is executed as it is.
 一方、制御部114が、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とのいずれかが上限開度AP1max、AP2maxでないと判定したとする(ステップS103:No)。この場合、制御部114は、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とをそれぞれ予め設定された大きさだけ上昇させるようにダンパ駆動部105を制御する(ステップS104)。具体的には、制御部114は、例えば第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とをそれぞれ5%だけ上昇させるようにダンパ駆動部105を制御する。続いて、後述のステップS108の処理が実行される。 On the other hand, it is assumed that the control unit 114 determines that one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is not the upper limit opening degrees AP1max and AP2max (step S103: No). In this case, the control unit 114 controls the damper driving unit 105 so as to increase the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 by a preset size, respectively (Step S104). Specifically, the control unit 114 controls the damper drive unit 105 so that, for example, the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 are each raised by 5%. Subsequently, the process of step S108 described later is performed.
 また、判定部113が、ステップS102において、第1吹き出し温度T1inが上限管理温度Tup以下であり且つ第1戻り温度T1outが上限管理温度Tup以下であると判定したとする(ステップS102:No)。この場合、判定部113は、第1吹き出し温度T1inが下限管理温度Tlow未満、或いは第1戻り温度T1outが下限管理温度Tlow未満であるか否かを判定する(ステップS105)。 In addition, it is assumed that the determination unit 113 determines that the first blowing temperature T1in is equal to or lower than the upper limit management temperature Tup and the first return temperature T1out is equal to or lower than the upper limit management temperature Tup in step S102 (step S102: No). In this case, the determination unit 113 determines whether the first blowing temperature T1in is less than the lower limit management temperature Tlow or the first return temperature T1out is less than the lower limit management temperature Tlow (step S105).
 判定部113が、第1吹き出し温度T1inが下限管理温度Tlow以上であり且つ第1戻り温度T1outが下限管理温度Tlow以上であると判定すると(ステップS105:No)、そのまま後述のステップS108の処理が実行される。一方、判定部113が、第1吹き出し温度T1inまたは第1戻り温度T1outの少なくとも一方が下限管理温度Tlow未満であると判定したとする(ステップS105:Yes)。この場合、制御部114は、第1下流ダンパ13および第2下流ダンパ14の両方が閉状態となっているか否かを判定する(ステップS106)。制御部114により、第1下流ダンパ13および第2下流ダンパ14の両方が閉状態であると判定されると(ステップS106:Yes)、そのまま後述のステップS108の処理が実行される。 If the determination unit 113 determines that the first blowout temperature T1in is equal to or higher than the lower limit management temperature Tlow and the first return temperature T1out is equal to or higher than the lower limit management temperature Tlow (step S105: No), the process of step S108 described later is performed. To be executed. On the other hand, it is assumed that the determination unit 113 determines that at least one of the first blowing temperature T1in and the first return temperature T1out is less than the lower limit management temperature Tlow (step S105: Yes). In this case, the control unit 114 determines whether or not both the first downstream damper 13 and the second downstream damper 14 are in the closed state (step S106). If it is determined by the control unit 114 that both the first downstream damper 13 and the second downstream damper 14 are in the closed state (step S106: Yes), the process of step S108 described below is performed as it is.
 一方、制御部114が、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2との少なくとも一方が閉状態でないと判定したとする(ステップS106:No)。この場合、制御部114は、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とをそれぞれ予め設定された大きさだけ低下させるようにダンパ駆動部105を制御する(ステップS107)。具体的には、制御部114は、例えば第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とをそれぞれ5%だけ低下させるようにダンパ駆動部105を制御する。また、制御部114は、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とのいずれか一方が閉状態である場合、他方の開度だけを予め設定された大きさだけ低下させるようにダンパ駆動部105を制御する。 On the other hand, it is assumed that the control unit 114 determines that at least one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is not in the closed state (step S106: No). In this case, the control unit 114 controls the damper driving unit 105 so as to reduce the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 by a preset size, respectively (Step S107). Specifically, the control unit 114 controls the damper driving unit 105 so as to decrease, for example, the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 by 5%, respectively. Further, when one of the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 is in the closed state, the control unit 114 presets only the other opening degree. The damper drive unit 105 is controlled so as to reduce the speed.
 その後、判定部113は、扉開閉検知部8からインタフェース104を介して入力される扉開閉情報に基づいて、扉124が開状態になったか否かを判定する(ステップS108)。判定部113により、扉124が閉状態であると判定されると(ステップS108:No)、再びステップS101の処理が実行される。 Thereafter, the determination unit 113 determines whether the door 124 has been opened based on the door open / close information input from the door open / close detection unit 8 via the interface 104 (step S108). If it is determined by the determination unit 113 that the door 124 is in the closed state (step S108: No), the process of step S101 is performed again.
 一方、判定部113が、扉124が開状態であると判定すると(ステップS108:Yes)、制御部114は、冷凍室134に対応する上流ダンパ1514を閉状態にするようダンパ駆動部105を制御する(ステップS109)。これにより、冷却器室16から風路ダクト15Aを通じて冷凍室134内への冷気の供給が遮断される。 On the other hand, when the determination unit 113 determines that the door 124 is in the open state (step S108: Yes), the control unit 114 controls the damper drive unit 105 to close the upstream damper 1514 corresponding to the freezing chamber 134. (Step S109). As a result, the supply of cold air from the cooler chamber 16 to the freezer compartment 134 through the air duct 15A is shut off.
 次に、判定部113は、扉開閉検知部8からインタフェース104を介して入力される扉開閉情報に基づいて、扉124が再び閉状態になったか否かを判定する(ステップS110)。判定部113は、扉124が開状態で維持される限り(ステップS110:No)、ステップS110の処理を繰り返す。 Next, the determination unit 113 determines whether the door 124 is closed again based on the door open / close information input from the door open / close detection unit 8 via the interface 104 (step S110). Determination unit 113 repeats the process of step S110 as long as door 124 is maintained in the open state (step S110: No).
 一方、判定部113が、扉124が閉状態であると判定すると(ステップS110:Yes)、制御部114は、冷凍室134に対応する上流ダンパ1514を再び開状態にするようダンパ駆動部105を制御する(ステップS111)。これにより、再び冷却器室16から風路ダクト15Aを通じて冷凍室134内への冷気が供給される。 On the other hand, if the determination unit 113 determines that the door 124 is in the closed state (step S110: Yes), the control unit 114 causes the damper drive unit 105 to open the upstream damper 1514 corresponding to the freezing chamber 134 again. It controls (step S111). Thereby, cold air is again supplied from the cooler chamber 16 into the freezer compartment 134 through the air duct 15A.
 次に、制御部114は、第1下流ダンパ13の開度AP1と第2下流ダンパ14の開度AP2とが上限開度AP1max、AP2maxとなるようにダンパ駆動部105を制御する(ステップS112)。これにより、冷凍室134内へ供給される冷気の量が最大となり、冷凍室134内に配置された貯蔵対象物が急速に冷却される。 Next, the control unit 114 controls the damper driving unit 105 so that the opening degree AP1 of the first downstream damper 13 and the opening degree AP2 of the second downstream damper 14 become the upper limit opening degrees AP1max and AP2max (step S112). . As a result, the amount of cold air supplied into the freezing chamber 134 is maximized, and the storage objects disposed in the freezing chamber 134 are rapidly cooled.
 続いて、温度取得部111は、吹き出し温度測定部9、11により測定される第1吹き出し温度T1inおよび第2吹き出し温度T2inそれぞれを示す温度情報を取得する。また、温度取得部111は、戻り温度測定部10、12により測定される第1戻り温度T1outおよび第2戻り温度T2outそれぞれを示す温度情報を取得する(ステップS113)。 Subsequently, the temperature acquisition unit 111 acquires temperature information indicating each of the first blowout temperature T1in and the second blowout temperature T2in measured by the blowout temperature measurement units 9 and 11. Further, the temperature acquisition unit 111 acquires temperature information indicating each of the first return temperature T1out and the second return temperature T2out measured by the return temperature measurement units 10 and 12 (step S113).
 その後、温度差算出部112は、第1吹き出し温度T1inと第1戻り温度T1outとの温度差△T1と、第2吹き出し温度T2inと第2戻り温度T2outとの温度差△T2と、を算出する(ステップS114)。 Thereafter, the temperature difference calculation unit 112 calculates the temperature difference ΔT1 between the first outlet temperature T1in and the first return temperature T1out, and the temperature difference ΔT2 between the second outlet temperature T2in and the second return temperature T2out. (Step S114).
 次に、判定部113は、温度差△T1と温度差△T2との差分絶対値を算出するとともに基準DB1031から差分閾値情報を取得する。そして、判定部113は、算出した差分絶対値が差分閾値情報の示す差分閾値よりも大きいか否かを判定する(ステップS115)。判定部113は、算出した差分絶対値が差分閾値以下であると判定すると(ステップS115:No)、後述のステップS119の処理を実行する。 Next, the determination unit 113 calculates a difference absolute value between the temperature difference ΔT1 and the temperature difference ΔT2, and acquires difference threshold information from the reference DB 1031. Then, the determination unit 113 determines whether the calculated difference absolute value is larger than the difference threshold value indicated by the difference threshold information (step S115). If the determination unit 113 determines that the calculated difference absolute value is less than or equal to the difference threshold (step S115: No), the determination unit 113 executes the process of step S119 described later.
 一方、判定部113は、算出した差分絶対値が差分閾値よりも大きいと判定すると(ステップS115:Yes)、温度差△T1が温度差△T2よりも大きいか否かを判定する(ステップS116)。判定部113が、温度差△T1が温度差△T2よりも大きいと判定すると(ステップS116:Yes)、制御部114は、第2下流ダンパ14の開度AP2に対する第1下流ダンパ13の開度AP1の比率AP1/AP2が予め設定された割合だけ上昇するようにダンパ駆動部105を制御する(ステップS117)。具体的には、制御部114は、例えば第1下流ダンパ13の開度AP1を上限開度AP1maxに設定した状態で第2下流ダンパ14の開度AP2を低下させることにより例えば比率AP1/AP2を5%だけ上昇させるようにダンパ駆動部105を制御する。続いて、後述のステップS119の処理が実行される。 On the other hand, when determining unit 113 determines that the calculated difference absolute value is larger than the difference threshold (step S115: Yes), it determines whether temperature difference ΔT1 is larger than temperature difference ΔT2 (step S116). . If determination unit 113 determines that temperature difference ΔT1 is larger than temperature difference ΔT2 (step S116: Yes), control unit 114 determines the opening degree of first downstream damper 13 with respect to opening degree AP2 of second downstream damper 14 The damper drive unit 105 is controlled such that the ratio AP1 / AP2 of AP1 increases by a preset ratio (step S117). Specifically, for example, the controller 114 decreases the opening degree AP2 of the second downstream damper 14 in a state where the opening degree AP1 of the first downstream damper 13 is set to the upper limit opening degree AP1max, for example, the ratio AP1 / AP2 The damper drive unit 105 is controlled to be raised by 5%. Subsequently, the process of step S119 described later is performed.
 一方、判定部113が、温度差△T1が温度差△T2以下であると判定すると(ステップS116:No)、制御部114は、第2下流ダンパ14の開度AP2に対する第1下流ダンパ13の開度AP1の比率AP1/AP2が予め設定された割合だけ低下するようにダンパ駆動部105を制御する(ステップS118)。具体的には、制御部114は、例えば第2下流ダンパ14の開度AP2を上限開度AP2maxに設定した状態で第1下流ダンパ13の開度AP1を低下させることにより例えば比率AP1/AP2を5%だけ低下させるようにダンパ駆動部105を制御する。 On the other hand, when the determination unit 113 determines that the temperature difference ΔT1 is equal to or less than the temperature difference ΔT2 (step S116: No), the control unit 114 determines that the first downstream damper 13 with respect to the opening degree AP2 of the second downstream damper 14 The damper driving unit 105 is controlled so that the ratio AP1 / AP2 of the opening degree AP1 decreases by a preset ratio (step S118). Specifically, for example, the controller 114 decreases the opening degree AP1 of the first downstream damper 13 in a state where the opening degree AP2 of the second downstream damper 14 is set to the upper limit opening degree AP2max, for example, the ratio AP1 / AP2 The damper drive unit 105 is controlled to decrease by 5%.
 その後、温度取得部111は、吹き出し温度測定部9により測定される第1吹き出し温度T1inを示す温度情報と、戻り温度測定部10により測定される第1戻り温度T1outを示す温度情報と、を取得する(ステップS119)。 Thereafter, the temperature acquiring unit 111 acquires temperature information indicating the first blowout temperature T1in measured by the blowout temperature measurement unit 9 and temperature information indicating the first return temperature T1out measured by the return temperature measurement unit 10. (Step S119).
 次に、判定部113は、第1吹き出し温度T1inが上限管理温度Tup以下であり、且つ第1戻り温度T1outが上限管理温度Tup以下であるか否かを判定する(ステップS120)。判定部113が、第1吹き出し温度T1inまたは第1戻り温度T1outの少なくとも一方が上限管理温度Tupよりも高いと判定すると(ステップS120:No)、再びステップS113の処理が実行される。一方、判定部113が、第1吹き出し温度T1inおよび第1戻り温度T1outの両方が上限管理温度Tup以下であると判定すると(ステップS120:Yes)、再びステップS101の処理が実行される。 Next, the determination unit 113 determines whether the first blowing temperature T1in is equal to or lower than the upper limit management temperature Tup and the first return temperature T1out is equal to or lower than the upper limit management temperature Tup (step S120). If determination unit 113 determines that at least one of first blowout temperature T1in and first return temperature T1out is higher than upper limit management temperature Tup (step S120: No), the process of step S113 is performed again. On the other hand, when determination unit 113 determines that both first blowout temperature T1in and first return temperature T1out are equal to or lower than upper limit management temperature Tup (step S120: Yes), the process of step S101 is performed again.
 以上説明したように、本実施の形態に係る冷蔵庫1によれば、温度差算出部112が、領域A1の上ケース21および領域A2の下ケース22それぞれに配置された貯蔵対象物の熱負荷を反映した温度差△T1、△T2を算出する。そして、制御部114が、温度差算出部112が算出した温度差△T1、△T2に応じて、吹き出し口134a、134bそれぞれから領域A1の上ケース21および領域A2の下ケース22へ吹き出される空気の流量を決定し、吹き出し口134a、134bから吹き出される空気の流量が決定した流量となるように第1下流ダンパ13、第2下流ダンパ14を制御する。これにより、吹き出し口134a、134bそれぞれから領域A1の上ケース21および領域A2の下ケース22へ吹き出される空気の流量を、領域A1の上ケース21および領域A2の下ケース22それぞれに配置された貯蔵対象物の熱負荷に応じた最適な流量にすることができる。従って、領域A1の上ケース21および領域A2の下ケース22へ吹き出される空気の流量が不足したり過大になったりすることを抑制できるので、貯蔵対象物の保冷性を高めつつ、消費電力を低減することができる。 As described above, according to the refrigerator 1 according to the present embodiment, the temperature difference calculation unit 112 calculates the heat load of the storage object disposed in the upper case 21 of the area A1 and the lower case 22 of the area A2. The reflected temperature differences ΔT1 and ΔT2 are calculated. Then, the control unit 114 is blown out from the blowout ports 134a and 134b to the upper case 21 of the area A1 and the lower case 22 of the area A2 according to the temperature differences ΔT1 and ΔT2 calculated by the temperature difference calculation unit 112. The flow rate of the air is determined, and the first downstream damper 13 and the second downstream damper 14 are controlled such that the flow rate of the air blown out from the outlets 134a and 134b becomes the determined flow rate. Thus, the flow rates of the air blown out from the blowout ports 134a and 134b to the upper case 21 and the lower case 22 of the area A2 are arranged in the upper case 21 of the area A1 and the lower case 22 of the area A2. The flow rate can be optimized according to the heat load of the storage object. Therefore, it is possible to prevent the flow rate of the air blown out to the upper case 21 of the area A1 and the lower case 22 of the area A2 from being insufficient or excessive, so power consumption can be improved while improving the cold storage property of the storage object. It can be reduced.
 ところで、従来、扉が開状態から閉状態へ変化したこと、或いは冷凍室内の温度が予め設定された基準温度幅以上に上昇したことを検知したときに、ファンまたは圧縮機の回転数を一定時間だけ上昇させることにより冷却速度を高める制御を行う冷蔵庫が提供されていた。この構成の冷蔵庫では、冷凍室全体の熱負荷に応じて冷却速度を調整することにより、貯蔵対象物を無駄に冷却することを抑制し冷蔵庫の消費電力を低減することができる。しかしながら、同一の冷凍室内における複数領域それぞれに配置された貯蔵対象物の熱負荷の違いまでは考慮されていなかった。 By the way, conventionally, when it is detected that the door has changed from the open state to the closed state or that the temperature in the freezer compartment has risen to a preset reference temperature width or more, the number of revolutions of the fan or compressor is fixed for a predetermined time There has been provided a refrigerator that performs control to increase the cooling rate only by raising it. In the refrigerator of this configuration, by adjusting the cooling rate in accordance with the heat load of the entire freezer compartment, it is possible to suppress the wasteful cooling of the storage object and reduce the power consumption of the refrigerator. However, the difference in the heat load of the storage objects arranged in each of the plurality of regions in the same freezing chamber has not been taken into consideration.
 これに対して、本実施の形態に係る冷蔵庫1では、同一の冷凍室134内における領域A1の上ケース21および領域A2の下ケース22それぞれに配置された貯蔵対象物の熱負荷の違いに応じて、上ケース21および下ケース22へ吹き出される空気の流量を最適な流量に設定する。従って、前述の従来の冷蔵庫に比べて、消費電力を低減することができるという利点がある。また、上ケース21または下ケース22に配置された貯蔵対象物の熱負荷に対して、上ケース21または下ケース22へ流入する冷気の量が不足したり、或いは過剰に多くなったりすることが抑制できる。更に、冷凍室134内の温度が上限管理温度Tup以下になるまで冷却するのに要する時間が長くなることによる消費電力の増大、或いは貯蔵対象物の除熱に要する時間の長期化による貯蔵対象物の保冷性低下も抑制できる。 On the other hand, in the refrigerator 1 according to the present embodiment, the heat load of the storage objects disposed in the upper case 21 of the region A1 and the lower case 22 of the region A2 in the same freezing chamber 134 is different. Then, the flow rate of the air blown out to the upper case 21 and the lower case 22 is set to the optimal flow rate. Therefore, there is an advantage that power consumption can be reduced as compared with the above-mentioned conventional refrigerator. Further, the amount of cold air flowing into the upper case 21 or the lower case 22 may be insufficient or excessively large with respect to the heat load of the storage target disposed in the upper case 21 or the lower case 22. It can be suppressed. Furthermore, the object to be stored is an increase in power consumption due to the time required for cooling until the temperature in the freezing chamber 134 falls below the upper limit management temperature Tup or an increase in the time required for heat removal of the storage object It is also possible to suppress the decrease in cold storage ability of
 以上、本発明の実施の形態について説明したが、本発明は前述の実施の形態に限定されるものではない。例えば、冷蔵庫が、図7Aおよび図7Bに示すように、吹き出し口2134a、2134bそれぞれに連通する吹き出しダクト2134d、2134eの合流部分2134fに配置された可動式の整風板2013を有する流量調節部を備えるものであってもよい。なお、図7Aにおいて、実施の形態と同様の構成については図3と同一の符号を付している。この流量調節部は、図7Bの矢印AR21に示すように、整風板2013の傾きを変化させることにより、吹き出しダクト2134d、2134eそれぞれへ流入する冷気の比率を変化させる。なお、流量調節部は、例えば整風板2013が2つの吹き出しダクト2134d、2134eのいずれか一方を完全に閉塞することが可能なものであってもよい。この場合、流量調節部は、整風板2013が吹き出しダクト2134d、2134eそれぞれを閉塞している時間の比率を変化させることにより、吹き出し口2134a、2134bから吹き出す冷気の量の時間平均値を変化させるものであってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to above-mentioned embodiment. For example, as shown in FIGS. 7A and 7B, the refrigerator includes a flow rate control unit having a movable wind adjustment plate 2013 disposed at a joining portion 2134f of blowout ducts 2134d and 2134e communicating with the blowout ports 2134a and 2134b, respectively. It may be one. In FIG. 7A, the same components as in the embodiment are denoted by the same reference numerals as in FIG. The flow rate adjuster changes the ratio of the cool air flowing into the blowout ducts 2134 d and 2134 e by changing the inclination of the baffle plate 2013 as shown by an arrow AR 21 in FIG. 7B. The flow rate adjusting unit may be, for example, one in which the wind adjustment plate 2013 can completely close any one of the two blowout ducts 2134 d and 2134 e. In this case, the flow rate adjusting unit changes the time average value of the amount of cold air blown out from the blowout ports 2134a and 2134b by changing the ratio of time during which the baffle plate 2013 closes the blowout ducts 2134d and 2134e. It may be
 本構成によれば、流量調節部の構成の簡素化を図ることができる。 According to this configuration, the configuration of the flow rate adjusting unit can be simplified.
 実施の形態では、冷蔵庫1が、第1吹き出し温度測定部9と第1戻り温度測定部10と第2吹き出し温度測定部11と第2戻り温度測定部12とを備える例について説明した。但し、これに限らず、例えば図8に示すように、上ケース21の底壁に取り付けられた熱流束センサ3011を備える冷蔵庫であってもよい。 In the embodiment, an example in which the refrigerator 1 includes the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the second blowout temperature measurement unit 11, and the second return temperature measurement unit 12 has been described. However, the present invention is not limited to this, and for example, as shown in FIG. 8, a refrigerator may be provided with a heat flux sensor 3011 attached to the bottom wall of the upper case 21.
 熱流束センサ3011は、上ケース21と下ケース22との間に流れる熱流束の大きさを示す熱流値と熱流束の流れ方向とを検知し、検知した熱流束の大きさと流れ方向に応じた電圧を出力する。上ケース21内に配置された貯蔵対象物の熱負荷が下ケース22に貯蔵された熱負荷に比べて大きい場合、上ケース21の底壁を通じて下ケース22に向かって熱流束が発生する。このとき、上ケース21の底壁に取り付けられた熱流束センサ3011は、上ケース21から下ケース22に向かって流れる熱流束に応じた電圧信号を出力する。熱流束センサ3011から出力される電圧信号に対応する熱流値は、例えば上ケース21内に配置された貯蔵対象物が高温であり上ケース21内の空気の温度と下ケース22内の空気の温度との温度差が大きいほど大きくなる。貯蔵対象物が高温であるほど貯蔵対象物の除熱量、即ち、熱負荷が大きくなる。このことから、熱流束センサ3011により得られる熱流値は、上ケース21内および下ケース22内それぞれに配置された貯蔵対象物の熱負荷の差分を反映した物理量と言える。 The heat flux sensor 3011 detects a heat flow value indicating the size of the heat flux flowing between the upper case 21 and the lower case 22 and the flow direction of the heat flux, and corresponds to the detected heat flux size and flow direction Output voltage. When the thermal load of the storage object disposed in the upper case 21 is large compared to the thermal load stored in the lower case 22, a heat flux is generated toward the lower case 22 through the bottom wall of the upper case 21. At this time, the heat flux sensor 3011 attached to the bottom wall of the upper case 21 outputs a voltage signal according to the heat flux flowing from the upper case 21 toward the lower case 22. The heat flow value corresponding to the voltage signal output from the heat flux sensor 3011 is, for example, the temperature of the air in the upper case 21 and the temperature of the air in the lower case 22 when the storage object disposed in the upper case 21 is high. The greater the temperature difference with the The higher the temperature of the storage object, the greater the heat removal, ie, the heat load, of the storage object. From this, it can be said that the heat flow value obtained by the heat flux sensor 3011 is a physical quantity reflecting the difference in the heat load of the storage objects disposed in the upper case 21 and the lower case 22 respectively.
 本変形例に係る制御装置3100は、図9に示すように、実施の形態と同様のハードウェア構成を有する。なお、図9において実施の形態に係る制御装置100と同様の構成については図4と同一の符号を付している。インタフェース104は、第1吹き出し温度測定部9、第1戻り温度測定部10、熱流束センサ3011および扉開閉検知部8に接続されている。インタフェース104は、熱流束センサ3011から入力される電圧信号を、熱流値を示す熱流情報に変換してCPU101へ通知する。ここで、例えば熱流値の絶対値が、熱流束センサ3011で検知された熱流束の大きさを示し、熱流値の正負が、熱流束の流れ方向を示す。例えば、熱流値が正であれば、上ケース21から下ケース22へ流れる熱流束が発生していることを示し、熱流値が負であれば、下ケース22から上ケース21へ流れる熱流束が発生していることを示す。 The control device 3100 according to the present modification has the same hardware configuration as that of the embodiment as shown in FIG. In FIG. 9, the same components as those of the control device 100 according to the embodiment are denoted by the same reference numerals as those in FIG. The interface 104 is connected to the first blowout temperature measurement unit 9, the first return temperature measurement unit 10, the heat flux sensor 3011, and the door open / close detection unit 8. The interface 104 converts the voltage signal input from the heat flux sensor 3011 into heat flow information indicating a heat flow value, and notifies the CPU 101 of the heat flow information. Here, for example, the absolute value of the heat flow value indicates the magnitude of the heat flux detected by the heat flux sensor 3011, and the positive or negative heat flow value indicates the flow direction of the heat flux. For example, if the heat flow value is positive, it indicates that the heat flux flowing from the upper case 21 to the lower case 22 is generated, and if the heat flow value is negative, the heat flux flowing from the lower case 22 to the upper case 21 is Indicates that it is occurring.
 基準DB3131は、上限管理温度Tupおよび下限管理温度Tlowを示す温度情報とともに、熱流値Qfの絶対値に対する閾値である熱流閾値|Qf|thを示す熱流閾値情報を記憶する。 The reference DB 3131 stores, together with temperature information indicating the upper limit management temperature Tup and the lower limit management temperature Tlow, heat flow threshold information indicating the heat flow threshold | Qf | th, which is a threshold for the absolute value of the heat flow value Qf.
 CPU101は、補助記憶部103が記憶するプログラムを主記憶部102に読み出して実行することにより、第1吹き出し温度および第1戻り温度を取得する温度取得部111、熱流束センサ3011により検知される熱流束の熱流値および流れ方向を示す情報を取得する熱流値取得部3112、判定部3113および制御部114として機能する。熱流値取得部3112は、熱流束センサ3011により検知される熱流値および熱流束の流れ方向を示す熱流情報を、インタフェース104を介して取得する。 The CPU 101 reads out the program stored in the auxiliary storage unit 103 to the main storage unit 102 and executes the program to obtain the first blowout temperature and the first return temperature, and the heat flow detected by the heat flux sensor 3011 It functions as a heat flow value acquisition unit 3112, a determination unit 3113, and a control unit 114 that acquires information indicating the heat flow value and the flow direction of the bundle. The heat flow value acquisition unit 3112 acquires heat flow value detected by the heat flux sensor 3011 and heat flow information indicating the flow direction of the heat flux via the interface 104.
 判定部3113は、基準DB3131が記憶する熱流閾値情報が示す熱流閾値と、熱流情報が示す熱流値の絶対値との大小関係を判定する。また、判定部3113は、熱流束の流れ方向を示す情報、即ち熱流値の正負を判定する。 The determination unit 3113 determines the magnitude relationship between the heat flow threshold indicated by the heat flow threshold information stored in the reference DB 3131 and the absolute value of the heat flow value indicated by the heat flow information. Further, the determination unit 3113 determines the information indicating the heat flux flow direction, that is, the positive or negative of the heat flow value.
 次に、本実施の形態に係る制御装置3100が実行する冷蔵庫制御処理について図10を参照しながら説明する。なお、図10において、実施の形態に係る冷蔵庫制御処理と同様の処理については図5および図6と同一の符号を付している。まず、ステップS101からステップS112までの処理が実行された後、熱流値取得部3112は、熱流値Qfを示す熱流情報を、熱流束センサ3011からインタフェース104を介して取得する(ステップS201)。 Next, a refrigerator control process performed by the control device 3100 according to the present embodiment will be described with reference to FIG. In FIG. 10, the same processes as the refrigerator control process according to the embodiment are denoted by the same reference numerals as those in FIGS. 5 and 6. First, after the processing from step S101 to step S112 is performed, the heat flow value acquiring unit 3112 acquires heat flow information indicating the heat flow value Qf from the heat flux sensor 3011 via the interface 104 (step S201).
 次に、判定部3113は、基準DB3131から熱流閾値情報を取得し、熱流情報が示す熱流値Qfの絶対値|Qf|が熱流閾値情報の示す熱流閾値|Qf|thよりも大きいか否かを判定する(ステップS202)。判定部3113は、熱流値Qfの絶対値|Qf|が熱流閾値|Qf|th以下であると判定すると(ステップS202:No)、そのまま前述のステップS119の処理を実行する。 Next, the determination unit 3113 obtains heat flow threshold information from the reference DB 3131, and determines whether the absolute value | Qf | of the heat flow value Qf indicated by the heat flow information is larger than the heat flow threshold | Qf | th indicated by the heat flow threshold information. It determines (step S202). If the determination unit 3113 determines that the absolute value | Qf | of the heat flow value Qf is less than or equal to the heat flow threshold value | Qf | th (step S202: No), the process of step S119 described above is performed as it is.
 一方、判定部3113は、熱流値Qfの絶対値|Qf|が熱流閾値|Qf|thよりも大きいと判定すると(ステップS202:Yes)、熱流値Qfが0よりも大きい、即ち、正であるか否かを判定する(ステップS203)。判定部3113が、熱流値Qfが正であると判定すると(ステップS203:Yes)、前述のステップS117の処理が実行される。一方、判定部3113が、熱流値Qfが0以下であると判定すると(ステップS203:No)、前述のステップS118の処理が実行される。その後、ステップS119以降の処理が実行される。 On the other hand, when the determination unit 3113 determines that the absolute value | Qf | of the heat flow value Qf is larger than the heat flow threshold | Qf | th (step S202: Yes), the heat flow value Qf is larger than 0, that is, positive. It is determined whether or not it is (step S203). When the determination unit 3113 determines that the heat flow value Qf is positive (step S203: Yes), the process of step S117 described above is performed. On the other hand, when the determination unit 3113 determines that the heat flow value Qf is 0 or less (step S203: No), the process of step S118 described above is performed. After that, the process after step S119 is performed.
 ところで、上ケース21の底壁に熱流束センサ3011に代えて温度センサを取り付けた構成では、上ケース21の底壁の温度の測定が可能であるが、上ケース21と下ケース22との間で生じる熱流束の流れ方向は特定できない。例えば、下ケース22内に熱負荷の大きい貯蔵対象物が配置された場合、貯蔵対象物により温められた貯蔵対象物の周囲の空気が、上ケース21の底壁に達し上ケース21の底壁を加熱することがある。従って、上ケース21の底壁に取り付けられた温度センサにより測定された温度が上昇したとしても、それが上ケース21内に配置された貯蔵対象物の熱負荷の増大に起因するのか、下ケース22内に配置された貯蔵対象物の熱負荷の増大に起因するのかを判別することができない。 By the way, in the configuration in which the temperature sensor is attached to the bottom wall of the upper case 21 instead of the heat flux sensor 3011, the temperature of the bottom wall of the upper case 21 can be measured, but between the upper case 21 and the lower case 22 The flow direction of the heat flux generated by can not be identified. For example, when the storage subject having a large heat load is disposed in the lower case 22, the air around the storage subject warmed by the storage subject reaches the bottom wall of the upper case 21 and the bottom wall of the upper case 21. May heat up. Therefore, even if the temperature measured by the temperature sensor attached to the bottom wall of the upper case 21 rises, is it due to the increase in the thermal load of the storage object disposed in the upper case 21, the lower case It can not be determined whether it is due to the increase in the heat load of the storage object placed in the G.22.
 これに対して、本構成では、熱流束センサ3011により上ケース21と下ケース22との間に生じる熱流束の熱流値を取得することにより、上ケース21内および下ケース22内それぞれに配置された貯蔵対象物の熱負荷の大小関係が精度良く判別される。そして、本構成によれば、上ケース21および下ケース22それぞれに配置された貯蔵対象物の熱負荷の大小関係に応じて、上ケース21および下ケース22へ吹き出される空気の流量を最適な流量に設定する。これにより、上ケース21または下ケース22へ供給する冷気の量が不足したり、上ケース21または下ケース22へ供給する冷気の量が過剰になったりすることが抑制される。 On the other hand, in the present configuration, the heat flux value of heat flux generated between the upper case 21 and the lower case 22 is obtained by the heat flux sensor 3011 to be disposed in the upper case 21 and the lower case 22 respectively. The magnitude relation of the heat load of the storage object is accurately determined. Then, according to the present configuration, the flow rate of the air blown out to the upper case 21 and the lower case 22 is optimized in accordance with the magnitude relation of the thermal load of the storage objects disposed in the upper case 21 and the lower case 22 respectively. Set to flow rate. As a result, the shortage of the amount of cold air supplied to the upper case 21 or the lower case 22 or the excess of the amount of cold air supplied to the upper case 21 or the lower case 22 is suppressed.
 実施の形態に係る冷蔵庫1では、第1吹き出し温度測定部9が、冷凍室134の吹き出し口134aの近傍に設けられ、第2吹き出し温度測定部11が、冷凍室134の吹き出し口134bの近傍に設けられている例について説明した。但し、冷凍室134の吹き出し口134a、134bから冷凍室134内へ吹き出される冷気の温度を測定する構成はこれに限定されない。例えば、冷蔵庫が、風路ダクト15A内或いは冷却器162の近傍に存在する温度を測定する温度測定部を備えるものであってもよい。この場合、冷蔵庫は、温度測定部により測定された風路ダクト15A内或いは冷却器162の近傍に存在する空気の温度から吹き出し口134a、134bから吹き出される空気の温度を推定する温度推定部を備えるものとすればよい。この温度推定部は、例えば風路ダクト15A内或いは冷却器162の近傍に存在する空気の測定温度に、風路ダクト15Aとの熱交換に起因した温度上昇幅を加算して得られる温度を吹き出し口134a、134bから吹き出される空気の温度と推定する。この温度上昇幅は、例えば予め測定して得られた冷却器162の近傍の空気の温度と吹き出し口134a、134bから吹き出される空気の温度との温度差に基づいて設定されてもよい。 In the refrigerator 1 according to the embodiment, the first blowout temperature measurement unit 9 is provided in the vicinity of the blowout port 134a of the freezing chamber 134, and the second blowout temperature measurement unit 11 is in the vicinity of the blowout port 134b of the freezing chamber 134. The example provided is described. However, the configuration for measuring the temperature of the cold air blown out into the freezing chamber 134 from the blowout ports 134 a and 134 b of the freezing chamber 134 is not limited to this. For example, the refrigerator may be provided with a temperature measurement unit that measures the temperature existing in the air duct 15A or in the vicinity of the cooler 162. In this case, the refrigerator is provided with a temperature estimation unit for estimating the temperature of the air blown out from the outlets 134a and 134b from the temperature of the air existing in the air duct 15A or near the cooler 162 measured by the temperature measurement unit. It should be provided. This temperature estimation unit blows out the temperature obtained by adding, for example, the temperature rise due to the heat exchange with the air passage duct 15A to the measured temperature of the air existing in the air passage duct 15A or in the vicinity of the cooler 162. It is estimated that the temperature of the air blown out from the ports 134a and 134b. The temperature increase width may be set based on, for example, the temperature difference between the temperature of the air in the vicinity of the cooler 162 and the temperature of the air blown out from the outlets 134a and 134b, which are obtained in advance.
 本構成によれば、必要な温度測定部の数を低減することができるので、その分、冷蔵庫1の構成の簡素化および低コスト化を図ることができる。 According to this configuration, the number of necessary temperature measurement units can be reduced, and accordingly, the configuration of the refrigerator 1 can be simplified and the cost can be reduced.
 実施の形態では、冷凍室134に2つの吹き出し口134a、134bが設けられ、冷蔵室131、製氷室132、切換室133および野菜室135には、それぞれ1つの吹き出し口が設けられた冷蔵庫1について説明した。但し、複数の吹き出し口が設けられる貯蔵室は、冷凍室134に限定されるものではない。冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135の中から選択される1つ以上5つ以下の貯蔵室に複数の吹き出し口が設けられた冷蔵庫であってもよい。 In the embodiment, the refrigerator 1 is provided with two outlets 134a and 134b in the freezing chamber 134, and one outlet is provided in each of the refrigerating chamber 131, the ice making chamber 132, the switching chamber 133 and the vegetable chamber 135. explained. However, the storage chamber in which the plurality of outlets are provided is not limited to the freezing chamber 134. It may be a refrigerator in which a plurality of outlets are provided in one or more and five or less storage rooms selected from the refrigerating room 131, the ice making room 132, the switching room 133, the freezing room 134 and the vegetable room 135.
 実施の形態では、冷凍室134に2つの吹き出し口134a、134bが設けられる例について説明したが、吹き出し口の数は2つに限定されるものではない。例えば冷凍室134に3つ以上の吹き出し口が設けられ、冷凍室134内の3つ以上の領域それぞれに配置されたケースへ各別に冷気が吹き出される冷蔵庫であってもよい。また、冷蔵室131、製氷室132、切換室133および野菜室135の中から選択される1つ以上4つ以下の貯蔵室に3つ以上の吹き出し口が設けられた冷蔵庫であってもよい。 In the embodiment, an example in which the two blowing outlets 134 a and 134 b are provided in the freezing chamber 134 has been described, but the number of the blowing outlets is not limited to two. For example, the refrigerator may be a refrigerator in which three or more outlets are provided in the freezing chamber 134 and cold air is separately blown to cases disposed in three or more regions in the freezing chamber 134, respectively. In addition, the refrigerator may be provided with three or more outlets in a storage room of one or more and four or less selected from the refrigerating room 131, the ice making room 132, the switching room 133 and the vegetable room 135.
 実施の形態では、判定部113が、冷蔵庫制御処理のステップS102において、第1吹き出し温度または第1戻り温度と上限管理温度とを比較し、ステップS105において、第1吹き出し温度または第1戻り温度とを比較する例について説明した。但し、判定部113が上限管理温度および下限管理温度を比較する対象はこれらに限定されない。例えば、判定部113が、冷蔵庫制御処理のステップS102およびステップS105において、第1吹き出し温度、第2吹き出し温度、第1戻り温度または第2戻り温度の中から選択した1から4つの温度と上限管理温度または下限管理温度とを比較するものであってもよい。 In the embodiment, the determination unit 113 compares the first outlet temperature or the first return temperature with the upper limit management temperature in step S102 of the refrigerator control process, and determines the first outlet temperature or the first return temperature in step S105. An example of comparing is described. However, targets to which the determination unit 113 compares the upper limit control temperature and the lower limit control temperature are not limited to these. For example, in the refrigerator control processing at step S102 and step S105, the determination unit 113 selects one to four temperatures and upper limit management selected from among the first blowout temperature, the second blowout temperature, the first return temperature, and the second return temperature. The temperature may be compared with the lower control temperature.
 実施の形態では、上流ダンパが、風路ダクト15Aにおける冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135との接続部分それぞれに設けられているものについて説明した。但し、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135への冷気の導入を制御するためのダンパはこれに限らない。例えば、ダンパが、風路ダクト15Bにおける冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135との接続部分それぞれに設けられているものであってもよい。 In the embodiment, the upstream dampers are provided in connection portions with the cold room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 in the air duct 15A. However, dampers for controlling the introduction of cold air to the cold storage room 131, the ice making room 132, the switching room 133, the freezing room 134, and the vegetable room 135 are not limited to this. For example, dampers may be provided in connection portions with the refrigerating chamber 131, the ice-making chamber 132, the switching chamber 133, the freezing chamber 134, and the vegetable chamber 135 in the air duct 15B.
 本発明に係る制御装置100の各種機能は、専用のシステムによらず、コンピュータシステムを用いて実現可能である。例えば、ネットワークに接続されているコンピュータに、上記動作を実行するためのプログラムを、コンピュータシステムが読み取り可能な非一時的な記録媒体(フレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disc)等)に格納して配布し、当該プログラムをコンピュータシステムにインストールすることにより、上述の処理を実行する制御装置100を構成してもよい。 The various functions of the control device 100 according to the present invention can be realized using a computer system without using a dedicated system. For example, in a computer connected to a network, a program for performing the above operation can be read from a non-transitory recording medium (flexible disc, CD-ROM (Compact Disc Read-Only Memory), DVD, etc. readable by the computer system). The control device 100 may be configured to execute the above-described processing by storing and distributing in (Digital Versatile Disc), MO (Magneto-Optical Disc) or the like, and installing the program in a computer system.
 また、コンピュータにプログラムを提供する方法は任意である。例えば、プログラムは、通信回線のサーバにアップロードされ、通信回線を介してコンピュータに配信されてもよい。そして、コンピュータは、このプログラムを起動して、OS(Operating System)の制御の下、他のアプリケーションと同様に実行する。これにより、コンピュータは、上述の処理を実行する制御装置100として機能する。 Also, the method of providing the program to the computer is arbitrary. For example, the program may be uploaded to a server of the communication line and distributed to the computer via the communication line. Then, the computer starts this program and executes it under the control of the OS (Operating System) like other applications. Thus, the computer functions as the control device 100 that executes the above-described processing.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. In addition, the embodiment described above is for describing the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiments but by the claims. And, various modifications applied within the scope of the claims and the meaning of the invention are considered to be within the scope of the present invention.
 本発明は、貯蔵室内の複数の領域それぞれに貯蔵対象物を収納するケースが設けられた冷蔵庫に好適である。 The present invention is suitable for a refrigerator provided with a case for storing objects to be stored in each of a plurality of areas in a storage room.
1 冷蔵庫、1a 断熱箱体、8 扉開閉検知部、9 第1吹き出し温度測定部、10 第1戻り温度測定部、11 第2吹き出し温度測定部、12 第2戻り温度測定部、13 第1下流ダンパ、14 第2下流ダンパ、15A,15B 風路ダクト、16 冷却器室、18 機械室、21 上ケース、21a,22a 戻り口、22 下ケース、40 圧縮機、100,3100 制御装置、101 CPU、102 主記憶部、103 補助記憶部、104 インタフェース、105 ダンパ駆動部、106 ファン駆動部、107 圧縮機駆動部、111 温度取得部、112 温度差算出部、113,3113 判定部、114 制御部、121,122,123,124,125 扉、131 冷蔵室、131a,133a,134a,134b,135a 吹き出し口、131b,133b,134c,135b 吸い込み口、132 製氷室、133 切換室、134 冷凍室、135 野菜室、161 ファン、162 冷却器、1031,3131 基準DB、1032 パラメータDB、1511,1513,1514,1515 上流ダンパ、2013 整風板、2134d,2134e 吹き出しダクト、3112 熱流値取得部、A1,A2 領域 DESCRIPTION OF SYMBOLS 1 refrigerator, 1a heat insulation box, 8 door opening / closing detection part, 9 1st blowing temperature measurement part, 10 1st return temperature measurement part, 11 2nd blowing temperature measurement part, 12 2nd return temperature measurement part, 13 1st downstream Damper, 14 second downstream damper, 15A, 15B air duct, 16 cooler room, 18 machine room, 21 upper case, 21a, 22a return port, 22 lower case, 40 compressor, 100, 3100 controller, 101 CPU , 102 main storage unit, 103 auxiliary storage unit, 104 interface, 105 damper drive unit, 106 fan drive unit, 107 compressor drive unit, 111 temperature acquisition unit, 112 temperature difference calculation unit, 113, 3113 determination unit, 114 control unit 121, 122, 123, 124, 125 doors, 131 cold storage rooms, 131a, 133a, 1 4a, 134b, 135a Air outlet, 131b, 133b, 134c, 135b Suction port, 132 ice making room, 133 switching room, 134 freezing room, 135 vegetable room, 161 fan, 162 cooler, 1031, 3131 Reference DB, 1032 Parameter DB , 1511, 1513, 1514, 1515 upstream damper, 2013 air conditioning plate, 2134d, 2134e blowout duct, 3112 heat flow value acquisition unit, A1, A2 area

Claims (6)

  1.  貯蔵対象物を貯蔵し、内側の複数の領域それぞれへ各別に冷やされた空気を吹き出す複数の吹き出し口と、内側に存在する空気が吸い込まれる吸い込み口と、が設けられた貯蔵室と、
     前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を調節する流量調節部と、
     前記複数の領域それぞれに配置された貯蔵対象物の熱負荷を反映した物理量に応じて、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を決定し、前記複数の吹き出し口から吹き出される空気の流量が決定した流量となるように前記流量調節部を制御する制御部と、を備える、
     冷蔵庫。
    A storage chamber provided with a plurality of outlets for storing objects to be stored and blowing out the cooled air separately to each of the plurality of inner regions, and an inlet for sucking the air present inside;
    A flow rate adjustment unit configured to adjust a flow rate of air blown out from each of the plurality of outlets to the plurality of areas;
    The flow rate of air blown out from each of the plurality of outlets to each of the plurality of regions is determined according to the physical quantity reflecting the thermal load of the storage object disposed in each of the plurality of regions, and the plurality of outlets are determined. And a control unit that controls the flow rate adjustment unit such that the flow rate of the air blown out from the air flow becomes the determined flow rate.
    refrigerator.
  2.  前記複数の吹き出し口から吹き出される空気の温度を測定する吹き出し温度測定部と、
     前記複数の領域それぞれに配置された貯蔵対象物と熱交換することにより温められてから前記複数の領域外へ流出し前記吸い込み口へ戻される空気の温度を測定する戻り温度測定部と、
     前記物理量を算出する物理量算出部と、を更に備え、
     前記物理量算出部は、前記吹き出し温度測定部により測定された吹き出し温度と、前記戻り温度測定部により測定された戻り温度と、の温度差を前記物理量として算出する、
     請求項1に記載の冷蔵庫。
    A blowout temperature measurement unit that measures the temperature of air blown out from the plurality of blowout ports;
    A return temperature measurement unit that measures the temperature of air that is warmed by heat exchange with the storage objects disposed in each of the plurality of regions and then flows out of the plurality of regions and is returned to the suction port;
    And a physical quantity calculation unit that calculates the physical quantity.
    The physical quantity calculation unit calculates a temperature difference between the blowout temperature measured by the blowout temperature measurement unit and the return temperature measured by the return temperature measurement unit as the physical quantity.
    The refrigerator according to claim 1.
  3.  前記複数の領域間における熱流束の大きさを示す熱流値を前記物理量として取得する熱流値取得部を更に備える、
     請求項1に記載の冷蔵庫。
    The heat flow value acquiring unit further acquiring, as the physical quantity, a heat flow value indicating the magnitude of heat flux between the plurality of regions.
    The refrigerator according to claim 1.
  4.  前記貯蔵室は、貯蔵対象物を内側へ出し入れするための開口部を更に有し、
     前記開口部に取り付けられた扉と、
     前記扉の開閉状態を検知する開閉検知部と、を更に備え、
     前記制御部は、前記開閉検知部により前記扉が開状態から閉状態に変化したことが検知された後、前記複数の領域それぞれに配置された貯蔵対象物それぞれの熱負荷に応じて、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を決定する、
     請求項1から3のいずれか1項に記載の冷蔵庫。
    The storage chamber further comprises an opening for taking in and out the storage object,
    A door attached to the opening;
    And an open / close detection unit that detects the open / close state of the door,
    The control unit is configured to control the plurality of the plurality of storage targets disposed in each of the plurality of regions after the open / close detection unit detects that the door has changed from the open state to the closed state. Determining the flow rate of air blown out from the respective blowout ports to the plurality of areas,
    The refrigerator according to any one of claims 1 to 3.
  5.  貯蔵対象物を貯蔵し、内側の複数の領域それぞれへ各別に冷やされた空気を吹き出す複数の吹き出し口と、内側に存在する空気が吸い込まれる吸い込み口と、が設けられた貯蔵室と、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を調節する流量調節部と、を備える冷蔵庫の冷蔵庫制御方法であって、
     前記複数の領域それぞれに配置された貯蔵対象物の熱負荷を反映した物理量に応じて、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を決定するステップと、
     前記複数の吹き出し口から吹き出される空気の流量が決定した流量となるように前記流量調節部を制御するステップと、を含む、
     冷蔵庫制御方法。
    A plurality of outlets for storing the objects to be stored, and blowing out the cooled air separately to the plurality of inner areas, and a plurality of storage rooms provided with suction ports for sucking the air present inside, and the plurality And a flow rate control unit for controlling a flow rate of air blown out from the respective blowout ports to the plurality of areas, the refrigerator control method of the refrigerator,
    Determining the flow rate of air blown out from each of the plurality of outlets to the plurality of regions according to the physical quantity reflecting the thermal load of the storage object disposed in each of the plurality of regions;
    Controlling the flow rate adjusting unit such that the flow rate of the air blown out from the plurality of outlets is the determined flow rate.
    Refrigerator control method.
  6.  コンピュータを、
     貯蔵対象物を貯蔵し、内側の複数の領域それぞれへ各別に冷やされた空気を吹き出す複数の吹き出し口と、内側に存在する空気が吸い込まれる吸い込み口と、が設けられた貯蔵室の前記複数の領域それぞれに配置された貯蔵対象物の熱負荷を反映した物理量に応じて、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を決定し、前記複数の吹き出し口から吹き出される空気の流量が決定した流量となるように、前記複数の吹き出し口それぞれから前記複数の領域へ吹き出される空気の流量を調節する流量調節部を制御する制御部、
     として機能させるためのプログラム。
    Computer,
    A plurality of outlets for storing the objects to be stored and blowing out the cooled air to the inner plurality of regions respectively, and the plurality of outlets provided with the inlets for sucking the air present inside. The flow rate of air blown out from each of the plurality of outlets to the plurality of regions is determined according to the physical quantity reflecting the thermal load of the storage object arranged in each region, and the plurality of outlets are blown out. A control unit that controls a flow rate adjustment unit that adjusts the flow rate of air blown out from each of the plurality of outlets to the plurality of regions so that the flow rate of the air being flowed becomes the determined flow rate;
    Program to function as.
PCT/JP2018/001553 2018-01-19 2018-01-19 Refrigerator, refrigerator control method, and program WO2019142311A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019565646A JP6987156B2 (en) 2018-01-19 2018-01-19 Refrigerator, refrigerator control method and program
PCT/JP2018/001553 WO2019142311A1 (en) 2018-01-19 2018-01-19 Refrigerator, refrigerator control method, and program
CN201880079712.3A CN111566423A (en) 2018-01-19 2018-01-19 Refrigerator, refrigerator control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001553 WO2019142311A1 (en) 2018-01-19 2018-01-19 Refrigerator, refrigerator control method, and program

Publications (1)

Publication Number Publication Date
WO2019142311A1 true WO2019142311A1 (en) 2019-07-25

Family

ID=67301355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001553 WO2019142311A1 (en) 2018-01-19 2018-01-19 Refrigerator, refrigerator control method, and program

Country Status (3)

Country Link
JP (1) JP6987156B2 (en)
CN (1) CN111566423A (en)
WO (1) WO2019142311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195660A1 (en) * 2021-03-15 2022-09-22 三菱電機株式会社 Freezing refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200174A (en) * 1983-04-27 1984-11-13 シャープ株式会社 Freezing refrigerator
JPH0593571A (en) * 1991-10-02 1993-04-16 Matsushita Refrig Co Ltd Refrigerator
JPH1054642A (en) * 1996-08-08 1998-02-24 Mitsubishi Electric Corp Freezing refrigerator
JP2000337749A (en) * 1999-05-24 2000-12-08 Hitachi Ltd Refrigerator
JP2004077111A (en) * 2002-08-14 2004-03-11 Lg Electronics Inc Concentrated cooling control apparatus for refrigerator and its control method
JP2009186174A (en) * 2008-01-30 2009-08-20 Liebherr-Hausgeraete Ochsenhausen Gmbh Operation method of cooling system and/or refrigerating unit and cooling system and/or refrigerating unit operated by this operation method
JP2013092269A (en) * 2011-10-24 2013-05-16 Toshiba Corp Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211318A (en) * 1998-01-20 1999-08-06 Fujitsu General Ltd Refrigerator
US7150109B2 (en) * 2003-08-25 2006-12-19 Isothermal Systems Research, Inc. Dry-wet thermal management system
JP2006300472A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Refrigerator
CN102901302B (en) * 2011-07-29 2015-07-08 株式会社东芝 Refrigerator
JP2013145082A (en) * 2012-01-16 2013-07-25 Mitsubishi Electric Corp Freezing refrigerator
JP6138708B2 (en) * 2014-02-03 2017-05-31 日立アプライアンス株式会社 refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200174A (en) * 1983-04-27 1984-11-13 シャープ株式会社 Freezing refrigerator
JPH0593571A (en) * 1991-10-02 1993-04-16 Matsushita Refrig Co Ltd Refrigerator
JPH1054642A (en) * 1996-08-08 1998-02-24 Mitsubishi Electric Corp Freezing refrigerator
JP2000337749A (en) * 1999-05-24 2000-12-08 Hitachi Ltd Refrigerator
JP2004077111A (en) * 2002-08-14 2004-03-11 Lg Electronics Inc Concentrated cooling control apparatus for refrigerator and its control method
JP2009186174A (en) * 2008-01-30 2009-08-20 Liebherr-Hausgeraete Ochsenhausen Gmbh Operation method of cooling system and/or refrigerating unit and cooling system and/or refrigerating unit operated by this operation method
JP2013092269A (en) * 2011-10-24 2013-05-16 Toshiba Corp Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195660A1 (en) * 2021-03-15 2022-09-22 三菱電機株式会社 Freezing refrigerator
JP7438451B2 (en) 2021-03-15 2024-02-26 三菱電機株式会社 Freezer refrigerator

Also Published As

Publication number Publication date
CN111566423A (en) 2020-08-21
JP6987156B2 (en) 2021-12-22
JPWO2019142311A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US7775058B2 (en) Cooler and refrigerator
JP5391250B2 (en) Refrigerator and freezer
US7908039B2 (en) Cooling storage cabinet and method of operating the same
US7730732B2 (en) Refrigerating storage cabinet
JP5402779B2 (en) refrigerator
EP1766304A2 (en) Free cooling activation optimized controls
JP4584107B2 (en) Cooling storage
JP4334971B2 (en) Cooling storage
WO2019142311A1 (en) Refrigerator, refrigerator control method, and program
CN114136033A (en) Natural cooling system working mode switching method and system and natural cooling system
JP7267828B2 (en) refrigerator
JP3505466B2 (en) refrigerator
JP3504188B2 (en) refrigerator
KR101872608B1 (en) Refrigerator
JPWO2005038364A1 (en) Cooling storage and cooling equipment
JP6533479B2 (en) refrigerator
JPWO2020121404A1 (en) refrigerator
JP4286106B2 (en) Freezer refrigerator
JP6972310B2 (en) Freezer refrigerator
JP7344651B2 (en) refrigerator
JP7351735B2 (en) refrigerator
JP2022134908A (en) refrigerator
WO2017212380A1 (en) Method for operating a household refrigeration device and household refrigeration device
JP2009103379A (en) Cooling storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901529

Country of ref document: EP

Kind code of ref document: A1