WO2020164444A1 - 一种上行保证功率信息发送、接收方法及设备 - Google Patents

一种上行保证功率信息发送、接收方法及设备 Download PDF

Info

Publication number
WO2020164444A1
WO2020164444A1 PCT/CN2020/074553 CN2020074553W WO2020164444A1 WO 2020164444 A1 WO2020164444 A1 WO 2020164444A1 CN 2020074553 W CN2020074553 W CN 2020074553W WO 2020164444 A1 WO2020164444 A1 WO 2020164444A1
Authority
WO
WIPO (PCT)
Prior art keywords
minimum guaranteed
guaranteed power
group
indication information
powers
Prior art date
Application number
PCT/CN2020/074553
Other languages
English (en)
French (fr)
Inventor
谢信乾
郭志恒
龙毅
费永强
毕文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164444A1 publication Critical patent/WO2020164444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for transmitting and receiving uplink guaranteed power information.
  • the terminal device supports simultaneous access to two network devices. This access method is called Dual Connectivity (DC).
  • One of the network devices is the main network device.
  • the other network device is a secondary network device.
  • one or more cells served by the primary network device for the terminal device are called the master cell group (Master Cell Group, MCG), and the secondary network device provides services for the terminal device. Or multiple cells are called secondary cell group (Secondary Cell Group, SCG).
  • MCG Master Cell Group
  • SCG secondary Cell Group
  • LTE long term evolution
  • Terminal equipment also supports simultaneous access to LTE network equipment and NR network equipment, because LTE is also called Evolved Universal Terrestrial Radio Access (E-UTRA), this access method is called Evolved Universal Terrestrial Radio Access and new Air interface dual connectivity (E-UTRA NR Dual Connectivity, EN-DC).
  • E-UTRA NR Dual Connectivity EN-DC
  • the LTE network equipment is the main network equipment
  • the NR network equipment is the auxiliary network equipment.
  • NR E-UTRA Dual Connectivity NR E-UTRA Dual Connectivity
  • NE-DC NR E-UTRA Dual Connectivity
  • MR- DC Multi-RAT Dual Connectivity
  • Frequency Division Duplex (FDD) mode Frequency Division Duplex (FDD) mode and Time Division Duplex (TDD) mode.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the system usually contains only one working frequency band, so this frequency band is also called unpaired frequency band.
  • the entire working frequency band is only used for downlink communication or only for uplink communication;
  • the system It usually contains two paired frequency bands for communication.
  • One frequency band is used for downlink communication from network equipment to terminal equipment, and the other frequency band is used for uplink communication from terminal equipment to network equipment.
  • NR is deployed in unpaired frequency bands using TDD mode, such as the frequency band near 3.5 GHz.
  • TDD mode such as the frequency band near 3.5 GHz.
  • the MCG and SCG cells of the terminal equipment operating in the NR-NR DC mode are all in the TDD mode.
  • terminal equipment usually working in DC mode can simultaneously send uplink signals to network equipment on carriers in MCG and SCG within the same time period, but terminal equipment is on all carriers
  • the total power of the uplink signal sent on the uplink is often limited, such as the maximum cannot exceed 23dBm. Therefore, if the total power of the uplink signal sent by the terminal on the carrier in the MCG and SCG exceeds the maximum transmission power, the terminal needs to actively reduce one or more carriers
  • the transmit power on the is:
  • the network equipment configures the minimum guaranteed power of each cell group (CG) for the terminal equipment.
  • a CG can preferentially use the minimum guaranteed power configured by the network equipment; and when the minimum guaranteed power is not used up by the CG, The remaining power can be used by another CG.
  • the embodiments of the present application provide a method and device for transmitting and receiving uplink guaranteed power information to solve the problem that the guaranteed power of CG cannot be flexible in the prior art.
  • an embodiment of the present application provides a method for sending uplink guaranteed power information, and the method includes:
  • the first minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers correspond to N time periods one by one, the N time periods are the time periods included in one radio frame, and N is a positive integer not less than 2;
  • a method for receiving uplink guaranteed power information includes:
  • the terminal device receives first indication information; wherein, the first indication information is used to indicate the first minimum guaranteed power group N minimum guaranteed power; the first minimum guaranteed power group includes N minimum guaranteed power, and the N The minimum guaranteed power corresponds to N time periods one by one, and the N minimum guaranteed powers are the minimum guaranteed power for the terminal equipment to transmit uplink signals in the first cell group, and the N time periods are included in a radio frame N is a positive integer not less than 2;
  • the terminal device configures the minimum guaranteed power for sending uplink signals in the first cell group according to the first indication information.
  • the above method can be applied to a dual connection scenario.
  • the network device will determine the minimum power guarantee group corresponding to the time period in the wireless frame, and the minimum power guarantee group includes the minimum power guarantee group corresponding to at least two time periods.
  • Power guarantee, and the value in the minimum power guarantee group can be the same or different, and the number can also be set according to the specific situation, so through this scheme, the minimum guaranteed power configuration based on the time period in the wireless frame can be realized In this way, the terminal device can perform uplink power control based on the guaranteed power configured for different time periods in the wireless frame, thereby improving the flexibility of the terminal device's uplink power control.
  • the first indication information includes N indication fields, the N fields correspond to the N minimum guaranteed powers one-to-one, and each of the N fields indicates the minimum guaranteed power
  • the power is the minimum guaranteed power for sending the uplink signal in the first cell group in the corresponding time period.
  • the first indication information may include a field indicating each time period, so that the minimum guaranteed power of all time periods can be indicated to the terminal device through one piece of information.
  • the value of the field in the first indication information may not correspond to the time period one-to-one. For example, if the minimum guaranteed power of all time periods is the same, only one field may be included.
  • the first indication information also indicates whether the N minimum guaranteed powers in the first minimum guaranteed power group can be used to send uplink signals in the second cell group.
  • the first indication information can be divided into two parts.
  • the two parts of information also indicate whether the minimum guaranteed power of the first cell group within a certain time period can be Used by other cell groups, this allows the minimum guaranteed power for different time periods to be flexibly configured to be used by other cell groups or not to be used by other cell groups, so that when it can be used by other cell groups, avoid guaranteed power When it is wasted, when it cannot be used by other cell groups, the maximum power of other cell groups can be limited, thereby reducing interference to the uplink signal of the first cell group. In this way, the flexibility of uplink power allocation for terminal equipment is further improved.
  • the first indication information also indicates a second minimum guaranteed power group
  • the second minimum guaranteed power group includes N minimum guaranteed powers
  • the second minimum guaranteed power group The N minimum guaranteed powers correspond to the N time periods one by one, and the N minimum guaranteed powers in the second minimum guaranteed power group are only used to transmit uplink signals in the first cell group, and the first The N minimum guaranteed powers in a minimum guaranteed power group can be used to transmit uplink signals in the second cell group.
  • the first indication information can be divided into two parts.
  • the two parts of information respectively indicate the minimum guaranteed power that can be used by other cell groups corresponding to multiple time periods, and the minimum power that cannot be used by other cell groups. Guaranteed power, thereby providing the terminal equipment with the minimum guaranteed power in a variety of different sharing methods, and improving the flexibility of the terminal equipment's uplink power allocation. You can refer to the above implementation.
  • the first indication information also indicates a third minimum guaranteed power group, the third minimum guaranteed power group includes N minimum guaranteed powers, and the third minimum guaranteed power group
  • the N minimum guaranteed powers correspond to the N time periods one by one, and the N minimum guaranteed powers in the third minimum guaranteed power group are used to transmit the second type of uplink signal in the first cell group, so The N minimum guaranteed powers in the first minimum guaranteed power group are used to transmit the first type of uplink signal in the first cell group.
  • the first type of uplink signal includes a physical uplink control channel PUCCH that carries ACK/NACK
  • the second type of uplink signal includes a physical uplink shared channel PUSCH that carries URLLC services.
  • the network equipment configures different minimum guaranteed powers for different uplink signals or different services of the terminal equipment, so that the network equipment and terminal equipment can perform the minimum guaranteed power configuration after comprehensive consideration from different dimensions, thereby Under the condition that the minimum guaranteed power configuration mode is flexible, it can better meet the needs of different signals and services, and can effectively improve the utilization rate of the uplink power.
  • the first indication information includes N indication tuples, and the N indication tuples correspond to N time periods one-to-one; each indication tuple includes the first indication field n1 and The second indication field n2; where n1 and n2 correspond to the first minimum guaranteed power group and the third minimum guaranteed power group, respectively.
  • the first indication information includes two parts
  • different fields are used to indicate different parts of the first indication information, so that different indication information can be transmitted to the terminal device more quickly and effectively.
  • the first cell group is one of multiple cell groups, and the method further includes:
  • the network device sends second indication information to the terminal device, where the second indication information indicates the priority of the multiple cell groups for power allocation in the N time periods.
  • the network device may also send second indication information to the terminal device.
  • the second indication information may indicate the priority between different cell groups, so that the terminal device can be based on the priority.
  • the power configuration of the cell group is performed at a high level. This method can ensure that the power of the high-priority cell group is guaranteed when the power limit requirements are met, so that the power of different cell groups can be reasonably configured while being flexible according to the situation. Adjust the priority corresponding to the cell group.
  • the multiple cell groups include the first cell group and the second cell group, and the priority is used for the terminal equipment to be in the first cell group and the second cell group.
  • the total power of the uplink signals sent on the group at the same time exceeds the maximum transmission power, and the transmission power of the uplink signals sent on the cell group with the lower priority is reduced according to the priority.
  • the first cell group is a primary cell group MCG
  • the second cell group is a secondary cell group SCG.
  • this method can be used to realize that the priority of the SCG is higher than the priority of the MCG in a certain period of time, avoiding the problem of affecting the performance of the SCG caused by the unified priority used in the prior art.
  • the second indication information includes N indication fields, and the N fields correspond to N time periods one to one; wherein, each of the N fields is used to indicate the corresponding time
  • N is a positive integer.
  • the first cell group is one of multiple cell groups, and the method further includes:
  • the terminal device also receives second indication information sent by the network device, where the second indication information indicates the priority of the multiple cell groups for power allocation in the N time periods.
  • a method for sending information in a dual-connection scenario includes:
  • N priority levels for power allocation in multiple cell groups wherein, the N priority levels correspond to N time periods one by one, and the N time periods are the time periods included in one radio frame, and N is A positive integer not less than 2;
  • a method for sending information in a dual connection scenario includes:
  • the N priorities are used for power allocation for multiple cell groups in any time period, and the N priorities correspond to N time periods one by one, and the N time periods are time periods included in one radio frame , N is a positive integer not less than 2;
  • the multiple cell groups include the first cell group and the second cell group, and the priority is used by the terminal device in any time period between the first cell group and the The total power of simultaneous uplink signals sent on the second cell group exceeds the maximum transmission power, and the transmission power of the uplink signals sent on the cell group with a lower priority is reduced according to the priority corresponding to any time period.
  • the first cell group is a primary cell group MCG
  • the second cell group is a secondary cell group SCG.
  • the third indication information includes N indication fields, and the N fields correspond to N time periods one-to-one; wherein, each of the N fields is used to indicate the corresponding time The priority of the first cell group and the second cell group in the paragraph; N is a positive integer.
  • the network device may also send second indication information to the terminal device.
  • the second indication information may indicate the priority between different cell groups, so that the terminal
  • the device can configure the power of the cell group according to the priority.
  • a device for sending uplink guaranteed power information may be a network device or a chip in the network device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver.
  • the device for sending uplink guaranteed power information may further include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module, so that the uplink guaranteed power information sending device executes the corresponding function in the first aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes instructions stored in the storage module , So that the network device performs the corresponding functions in the first aspect or the third aspect, the storage module can be a storage unit (for example, a register, a cache, etc.) in the chip, or it can be located in the network device. A storage unit outside the chip (for example, read-only memory, random access memory, etc.).
  • an apparatus for receiving uplink guaranteed power information may be a terminal device or a chip in the terminal device.
  • the device for receiving uplink guaranteed power information may include a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver.
  • the device for receiving uplink guaranteed power information may further include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module, so that the communication device executes the corresponding function in the first aspect.
  • the processing module may be a processor, the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes instructions stored in the storage module , So that the terminal device can perform the corresponding functions in the second aspect or the fourth aspect, the storage module can be a storage unit (for example, a register, a cache, etc.) in the chip, or it can be located in the terminal device. A storage unit outside the chip (for example, read-only memory, random access memory, etc.).
  • a first communication system is provided, and the communication system may include the first communication device described in the fifth aspect.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs or The method described in the third aspect or any one of the possible designs of the third aspect.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. Or the method described in the fourth aspect or any one of the possible designs of the fourth aspect.
  • a computer program product containing instructions.
  • the computer program product stores instructions, which when run on a computer, cause the computer to execute the first to fourth aspects or any one of the possible designs. The method described in.
  • Figures 1-1 and Figure 1-2 are schematic diagrams of a scenario where a primary network device and a secondary network device applicable to the embodiments of this application are deployed on the same site;
  • Figure 2-1 and Figure 2-2 are schematic diagrams of scenarios where the main network device and the auxiliary network device applicable to the embodiments of this application are deployed on different sites;
  • FIG. 3 is a schematic flowchart of a method for transmitting and receiving uplink guaranteed power according to an embodiment of the application
  • FIG. 4 is a schematic flowchart of another method for transmitting and receiving uplink guaranteed power according to an embodiment of the application
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • the terminal device applicable to the embodiment of this application works in dual connection.
  • the scenario shown in 1 and Figure 2-2 is the second scenario in which the main network equipment and the auxiliary network equipment are deployed on different sites.
  • the terminal device is simultaneously connected to the main network device and the auxiliary network device. Both the first scenario and the second scenario can be applied.
  • LTE network equipment and NR network equipment can share the same set of hardware equipment, or use different hardware equipment.
  • the primary network device and the auxiliary network device may be network devices of the same wireless access technology, such as NR or LTE, or network devices of different wireless access technologies.
  • the network element equipment involved in the embodiments of this application may include (the network element equipment provided here is only an example, and if other network element equipment is required according to the specific implementation scheme) Participation will be processed according to the specific actual plan. The examples provided here do not limit the specific implementation of the plan):
  • Terminal equipment used to send uplink signals to network equipment or receive downlink signals from network equipment; it can be mobile phones, tablet computers, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, etc.
  • Network equipment used to receive uplink signals from terminal equipment or send downlink signals to terminal equipment; it can be LTE and/or NR network equipment, which can be base station (NodeB), evolved base station (eNodeB), 5G mobile communication system The base station of the mobile communication system, the next generation Node B (gNB), the base station in the future mobile communication system or the access node in the Wi-Fi system, etc.
  • NodeB base station
  • eNodeB evolved base station
  • 5G mobile communication system The base station of the mobile communication system, the next generation Node B (gNB), the base station in the future mobile communication system or the access node in the Wi-Fi system, etc.
  • the guaranteed power of the CG can only be configured for the entire radio frame, that is, the guaranteed power of the CG in all time periods in a radio frame is the same, so that the guaranteed power of the CG cannot be flexibly adapted to different time periods. demand.
  • the embodiment of the present application provides a method for transmitting and receiving uplink guaranteed power.
  • the following description specifically introduces the method of the embodiment of the present application through information interaction between network equipment and terminal equipment, but
  • the network equipment and terminal equipment in the embodiments of this application can be set separately and then realize the solutions provided in the embodiments of this application.
  • the specific methods provided in the embodiments of this application may include:
  • Step 301 The network device determines a first minimum guaranteed power group for sending uplink signals in a first cell group, the first minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers correspond to N one-to-one Time periods, the N time periods are time periods included in one radio frame, and N is a positive integer not less than 2;
  • the time period can be a frame, a subframe, a time slot, a mini-slot, a symbol, etc., of course, it can also be a combination of multiple frames, a combination of multiple time slots, etc., which are set as required.
  • the solution that needs to be implemented is to configure the minimum guaranteed power uniformly set in the prior art in a more flexible manner, so only the time period in this example is more detailed on the basis of the original time.
  • the granularity can be divided (that is, compared to the unified situation in the prior art, N in the embodiment of the present application is a positive integer not less than 2), and the specific frame or subframe is not specifically limited.
  • the minimum guaranteed power may also be referred to as minimum power, or guaranteed power, or other descriptions, and the name is not limited in this application.
  • the minimum guaranteed power of the first cell group is the power that the first cell group can preferentially use, and this part of the power is only possible to be used by other cell groups when the first cell group is not in use.
  • the minimum guaranteed power of the first cell group can also be understood as the power that only the first cell group can use. After the set value of power is allocated to the first cell group, the amount of power that needs to be maintained at all times is dedicated to the first cell group. In the case that the first cell group cannot be fully used, the minimum guaranteed power quota of the first cell group cannot be reduced to compensate other cell groups.
  • the power that can be used by the first cell group described here should be understood as the power that the terminal device can use to send uplink signals in the first cell group.
  • Step 302 The network device sends first indication information to the terminal device, where the first indication information is used to indicate the N minimum guaranteed powers.
  • Step 303 The terminal device receives first indication information; wherein, the first indication information is used to indicate the first minimum guaranteed power group N minimum guaranteed power; the first minimum guaranteed power group includes N minimum guaranteed power, so The N minimum guaranteed powers correspond to N time periods one by one, and the N minimum guaranteed powers are the minimum guaranteed power for the terminal equipment to transmit uplink signals in the first cell group, and the N time periods are one wireless The time period included in the frame, where N is a positive integer not less than 2;
  • Step 304 The terminal device configures the minimum guaranteed power for sending uplink signals in the first cell group according to the first indication information.
  • the network device will determine the minimum power guarantee group corresponding to the time period, and the minimum power guarantee group includes minimum power guarantees corresponding to at least two time periods, and
  • the values in the minimum power guarantee group can be the same or different, and the number can be set according to the specific situation, so through this solution, the minimum guaranteed power configuration based on the time period can be realized to maximize the terminal The flexibility of device uplink power control.
  • the first indication information may only indicate one piece of information related to the minimum guaranteed power, and of course, it may indicate multiple pieces of information related to the minimum guaranteed power; the following is specific to the indication information according to the content indicated by the first indication information.
  • the implementation method is described in further detail:
  • the first type indicates that only one piece of information related to the minimum guaranteed power is indicated, and the specific indication may be the value of the minimum guaranteed power of the cell group.
  • the first indication information may be set as follows:
  • the first indication information includes N indication fields, the N fields correspond to the N minimum guaranteed powers one-to-one, and the minimum guaranteed power indicated by each of the N fields is the minimum guaranteed power indicated in the corresponding time period.
  • the first indication information includes N indication fields, and the nth indication field indicates the minimum guaranteed power of the first cell group in the nth time period in the N time periods (the time period in this example may be a time slot as an example) .
  • the nth indication field includes a parameter Rn, where Rn is a real number between 0 and 1.
  • Rn is a real number between 0 and 1.
  • the value of Rn may be 0.5, which means that the minimum guaranteed power of the first cell group is 50% of the total power.
  • the value of Rn can be a special value X.
  • Rn is set to X, it means that all power in the nth time slot is exclusively shared by the first cell group, and other cell groups cannot use the nth cell group. Power in time slots. At this time, the terminal equipment cannot send uplink signals of other cell groups in the nth time slot.
  • the first indication information indicates 10 time slots in a frame, where the first indication information may be ⁇ 0.1,0.1,0.2,0.2,0.4 ,0.4,0.1,0.1,0.2,0.2 ⁇ , which means that the minimum guaranteed power in the first cell group in the 1, 2, 7 and 8 time slots in a frame of the terminal equipment is 0.1 ⁇ Pmax, where Pmax can be the terminal The maximum transmit power of the device.
  • the Pmax can be a value configured by the network device for the terminal device, or a value pre-defined in the protocol.
  • the minimum guaranteed power of the terminal equipment in the target cell group in the 3rd, 4th, 9th and 10th time slots in a frame is 0.2 ⁇ Pmax, and the minimum guaranteed power in the first cell group in the 5th and 6th time slots It is 0.4 ⁇ Pmax.
  • the first indication information indicates two pieces of information related to the minimum guaranteed power. Specifically, in order to achieve the purpose of indicating the N minimum guaranteed powers corresponding to N time periods by the first indication information one by one, in this embodiment , the setting mode of the first indication information may be:
  • the first indication information also indicates whether the N minimum guaranteed powers in the first minimum guaranteed power group can be used to send uplink signals in the second cell group.
  • the first indication information can be divided into two parts.
  • the two parts of information also indicate whether the minimum guaranteed power of the first cell group within a certain time period can be It is used by other cell groups, which allows the minimum guaranteed power in different time periods to be flexibly configured to be used or not used by other cell groups, which improves the flexibility of uplink power allocation for terminal equipment.
  • the first indication information also indicates a second minimum guaranteed power group, the second minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers in the second minimum guaranteed power group One-to-one corresponding to the N time periods, the N minimum guaranteed powers in the second minimum guaranteed power group are only used to transmit uplink signals in the first cell group, and the first minimum guaranteed power group The N minimum guaranteed powers can be used to transmit uplink signals in the second cell group.
  • the first indication information can be divided into two parts.
  • the two parts of information respectively indicate the minimum guaranteed power that can be used by other cell groups corresponding to multiple time periods, and the minimum power that cannot be used by other cell groups. Guaranteed power, thereby providing terminal equipment with minimum guaranteed power in a variety of different sharing methods, and improving the flexibility of uplink power allocation for terminal equipment.
  • the first indication information further indicates a third minimum guaranteed power group, the third minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers in the third minimum guaranteed power group One-to-one corresponding to the N time periods, the N minimum guaranteed powers in the third minimum guaranteed power group are used to transmit the second type of uplink signal in the first cell group, and the first minimum guaranteed power The N minimum guaranteed powers in the power group are used to transmit the first type of uplink signal in the first cell group.
  • the first type of uplink signal and the second type of uplink signal are uplink signals of different types.
  • the service type of the first type of uplink signal is different from that of the second type of uplink signal.
  • the service type of the second type of uplink signal is Ultra-Reliable Low Latency Communications (URLLC) service.
  • the service type of uplink signal is non-URLLC service, such as enhanced Mobile Broadband (eMBB) service.
  • the first type of uplink signal may be a physical-layer uplink control channel (PUCCH) including a bearer Acknowledgement/Negative Acknowledgement (ACK/NACK), and the second type
  • the uplink signal may include a physical-layer uplink shared channel (PUSCH) that carries the URLLC service.
  • PUSCH physical-layer uplink shared channel
  • the first type of uplink signal and the second type of uplink signal are only specific examples, and do not limit the first type of uplink signal and the second type of uplink signal in the embodiment of the present application to only the foregoing two specific signal types.
  • the first type of uplink signal and the second type of uplink signal may include other types of uplink signals.
  • the first type of uplink signal or the second type of uplink signal may respectively include multiple different types of uplink signals.
  • the first type of uplink signal includes PUCCH carrying ACK/NACK and a physical random access channel (Physical Random Access Channel, PRACH) Two types of uplink signals.
  • the network equipment configures different minimum guaranteed powers for different uplink signals or different services of the terminal equipment, so that the network equipment and terminal equipment can perform the minimum guaranteed power configuration after comprehensive consideration from different dimensions, thereby It can better meet the needs of different signals and services under the condition of flexible configuration of the minimum guaranteed power, and can effectively improve the utilization rate of the uplink power.
  • the first indication information can indicate two pieces of information related to the minimum guaranteed power, so according to the time period as the indicator unit, the first indicator information may be an indicator tuple including the time period as the indicator unit, The corresponding:
  • the first indication information may include N indication tuples, and the N indication tuples correspond to N time periods one-to-one; each indication tuple includes a first indication field n1 and a second indication field n2; wherein, n1 and n2 respectively correspond to the first minimum guaranteed power group and the third minimum guaranteed power group; or n1 and n2 respectively correspond to the first minimum guaranteed power group and the second minimum guaranteed power group.
  • the time period may be a time slot, and specifically may be:
  • the first indication information includes N indication tuples, and the nth indication tuple includes two indication fields, which are respectively denoted as an indication field n1 and an indication field n2, such as "n1, n2".
  • the indication field n1 indicates the N minimum guaranteed powers
  • the indication field n2 indicates whether the N minimum guaranteed powers in the first minimum guaranteed power group can be used to send uplink signals in the second cell group, that is, the n1 Whether the indicated minimum guaranteed power corresponding to the first cell group can be used to send uplink signals in the second cell group.
  • the indication field n2 is a 1-bit field, and the value corresponding to this 1-bit can be 0 or 1.
  • the value of the 1-bit is 0, it means that the minimum guaranteed power indicated by the indication field n1 cannot be used in the first
  • the second cell group sends uplink signals; when the 1-bit value is 1, it indicates that the minimum guaranteed power indicated by the indication field n1 can be used to send uplink signals in the second cell group.
  • the first indication information can be ⁇ "0.1, 0", “0.1, 0", “0.05, 0”, “0.05, 0", “0.1, 1", “0.1, 1", “0.4, 1 ", “0.4, 1", "0.3, 1", “0.3, 1” ⁇ .
  • the specific meaning of the indication is: the minimum guaranteed power indicated in the first field n1 to the fourth field n1 cannot be used to transmit uplink signals in the second cell group, and the minimum guaranteed power indicated in the remaining field n1 can be used in The second cell group sends uplink signals. Because the field n1 corresponds to the time slot, in the above example, the minimum guaranteed power corresponding to the first to fourth time slots cannot be used to send the uplink signal in the second cell group, and the remaining time slots can.
  • the specific implementation of the first indication information may include N indicator tuples, N indicator tuples and N There is a one-to-one correspondence between time periods (time slots); the nth indicator tuple includes two indicator fields, which are respectively marked as indicator field n1 and indicator field n2.
  • the indication field n1 indicates that the N minimum guaranteed powers in the first minimum guaranteed power group can be used to transmit uplink signals in the second cell group
  • the indication field n2 indicates the N minimum guaranteed powers in the second minimum guaranteed power group.
  • the power is only used to send uplink signals in the first cell group; that is, the minimum guaranteed power in the second minimum guaranteed power group can only be used by the first cell group to send uplink signals, and cannot be shared with other cell groups.
  • the first indication information indicates ⁇ "0.1, 0.05", “0.1, 0.05", “0.05, 0”, “0.05, 0 ", “0.1, 0.05", “0.1, 0.05”, “0.2, 0.1", “0.2, 0.1", “0.2, 0.1", “0.2, 0.1” ⁇ ;
  • n1 and n2 are In a specific application environment, the minimum guaranteed power indication can be achieved in different ways, specifically:
  • the minimum guaranteed power that can be used to transmit uplink signals in the second cell group in time slot 1 is 0.1 ⁇ Pmax; it can only be used for
  • the minimum guaranteed power for sending uplink signals in the first cell group is 0.05 ⁇ Pmax. That is, the minimum guaranteed power that can be used to transmit uplink signals in the first cell group is (0.1+0.05) ⁇ Pmax; the one dedicated to the first cell group is 0.05 ⁇ Pmax, and the one shared by the first cell group and the second cell group is 0.1 ⁇ Pmax.
  • the minimum guaranteed power that can be used to transmit uplink signals in the first cell group in time slot 1 is 0.1 ⁇ Pmax, where only The minimum guaranteed power used to transmit the uplink signal in the first cell group is 0.05 ⁇ Pmax, so the minimum guaranteed power that can also be used to transmit the uplink signal in the second cell group is (0.1-0.05) ⁇ Pmax.
  • the specific implementation of the first indication information may include two sub-parts, where the first sub-part includes N fields, and the first The n fields are denoted as n1, the second sub-part also includes N fields, and the nth field is denoted as n2.
  • the indication field n1 indicates that the N minimum guaranteed powers in the first minimum guaranteed power group can be used to transmit uplink signals in the second cell group
  • the indication field n2 indicates the N minimum guaranteed powers in the second minimum guaranteed power group.
  • the power is only used to send uplink signals in the first cell group; that is, the minimum guaranteed power in the second minimum guaranteed power group can only be used by the first cell group to send uplink signals, and cannot be shared with other cell groups.
  • the first word part in the first indication information includes ⁇ 0.1, 0.1, 0.05, 0.05, 0.1, 0.1, 0.2, 0.2, 0.2,0.2 ⁇
  • the second sub-part includes ⁇ 0.05,0.05,0,0 0.05,0.05,0.1,0.1,0.1,0.1 ⁇ .
  • the network equipment configures two minimum guaranteed powers for the terminal equipment, which maximizes the flexibility of the terminal equipment to perform uplink power control.
  • the specific implementation of the first indication information may include N indicator tuples, N indicator tuples and N There is a one-to-one correspondence between time periods (time slots); the nth indicator tuple includes two indicator fields, which are respectively marked as indicator field n1 and indicator field n2.
  • the indication field n1 indicates that the N minimum guaranteed powers in the first minimum guaranteed power group are used to transmit the first type of uplink signal in the first cell group
  • the indication field n2 indicates the N in the third minimum guaranteed power group.
  • a minimum guaranteed power is used to send the second type of uplink signal in the first cell group.
  • the first indication information indicates ⁇ "0.1,0.05",”0.1,0.05",”0.05,0”,”0.05,0 “, “0.1, 0.05", “0.1, 0.05", “0.2, 0.1", “0.2, 0.1", “0.2, 0.1”, “0.2, 0.1” ⁇ ; use the first one to indicate the tuple "0.1, 0.05" as an example, that is, the minimum guaranteed power of 0.1 ⁇ Pmax in time slot 1 is used to transmit the first type of uplink signal in the first cell group; the minimum guaranteed power of 0.05 ⁇ Pmax is only used to transmit the second type of uplink signal in the first cell group.
  • Type of uplink signal the specific meaning of other indicator tuples is exactly the same as that of the first indicator tuple mentioned above, so I won’t repeat them here.
  • the specific implementation of the first indication information may include two sub-parts, where the first sub-part includes N fields, and the first The n fields are denoted as n1, the second sub-part also includes N fields, and the nth field is denoted as n2.
  • the indication field n1 indicates that the N minimum guaranteed powers in the first minimum guaranteed power group are used to transmit the first type of uplink signal in the first cell group
  • the indication field n2 indicates the N in the third minimum guaranteed power group.
  • a minimum guaranteed power is used to send the second type of uplink signal in the first cell group.
  • the network equipment is different uplink signals or different services of the terminal equipment Configured with different minimum guaranteed powers, which can further improve power usage efficiency.
  • the terminal device needs a feasible way to configure the power resources of each cell group in the case of limited power resources. Then, in each implementation shown in Figure 3 above, Based on the steps, the method provided in the embodiments of the present application may further include the steps:
  • Step 305 The network device sends second indication information to the terminal device, where the second indication information indicates the priority of the multiple cell groups for power allocation in the N time periods.
  • the network device may also send second indication information to the terminal device.
  • the second indication information may indicate the priority between different cell groups in the same time period, so that the terminal device
  • the power configuration of the cell group can be performed according to the priority.
  • the multiple cell groups may include the first cell group and the second cell group, and the priority is used for the terminal device to be in the first cell group and the second cell group At the same time, the total power of sending uplink signals exceeds the maximum transmission power, and the transmission power of the uplink signals sent on the cell group with low priority is reduced according to the priority.
  • the first cell group may be a primary cell group (for example, MCG), and the second cell group may be a secondary cell group (for example, SCG).
  • MCG primary cell group
  • SCG secondary cell group
  • this method can be used to realize that the priority of the SCG is higher than the priority of the MCG in a certain period of time, avoiding the problem of affecting the performance of the SCG caused by the unified priority used in the prior art.
  • the second indication information includes N indication fields, and the N fields correspond to the N time periods one-to-one; wherein, in the N fields Each is used to indicate the priority of the first cell group and the second cell group in the corresponding time period; N is a positive integer.
  • the time period in this embodiment takes N time slots contained in one frame as an example, and the first indication information indicates the priority of the first cell group and the second cell group in at least one of the N time slots. level.
  • the nth indication field includes 1 bit. When the value of 1 bit is 0, the priority of the first cell group is lower than that of the second cell group. When the value of 1 bit is 1, the priority of the first cell group is Higher than the second cell group.
  • the first indication information includes 10 bits, and its value can be 110110011, indicating the first 1, 2, 5, 6 and The priority of the first cell group in the 9 and 10 time slots is higher than that of the second cell group, and the priority of the second cell group in the 3, 4, 7 and 8 time slots in a frame is higher than that of the first cell group .
  • At least one of the first indication information and the second indication information may be carried in downlink control information (Downlink Control Information, DCI), or may be carried in radio access control (Radio Resource Control, RRC). ) Signaling can also be carried in medium access control (Medium Access Control, MAC) signaling. Further, the signaling carrying at least one of the first indication information and the second indication information may be cell-common signaling, terminal-specific signaling, or terminal group-common signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • Signaling can also be carried in medium access control (Medium Access Control, MAC) signaling.
  • the signaling carrying at least one of the first indication information and the second indication information may be cell-common signaling, terminal-specific signaling, or terminal group-common signaling.
  • the first minimum guaranteed power/second minimum guaranteed power group is only a unified description of the N first minimum guaranteed power/second minimum guaranteed power, and it is not necessarily a truly newly defined group.
  • entity In a specific implementation, a group entity may be defined to contain all N minimum guaranteed powers, or it may not be defined, which is not limited here.
  • the priorities of different signals and channels are predefined in the protocol.
  • the terminal equipment can determine the priority of the signal according to the type of uplink signal sent on the carrier in the MCG and SCG in the same time period, and reduce the priority.
  • the power of the signal (the power of the signal can be reduced to 0), so as to give priority to the power of the high-priority signal.
  • the signal type and the CG type are considered to determine the priority, and if the signal types sent at the same time on the two CGs are the same, the priority of the signal on the MCG is higher than the priority of the signal on the SCG .
  • the priority between CGs is in accordance with the default rules.
  • an embodiment of the present application also provides an information sending method in a dual-connection scenario, which includes (as shown in Figure 4):
  • Step 401 The network device determines N priorities for power allocation in multiple cell groups; wherein, the N priorities correspond to N time periods one by one, and the N time periods are included in one radio frame. Time period, N is a positive integer not less than 2;
  • a priority is set for a time period. If the total transmission power of multiple cell groups exceeds the maximum transmission power in the same time period, it can be based on the corresponding time period in the time period. The priority adjusts the transmit power of each cell group. The priority between each time period is set independently. If the total transmission power exceeds the maximum transmission power in any time period, the power of each cell group can be adjusted according to the priority of the corresponding time period.
  • Step 402 The network device sends third indication information to the terminal device, where the third indication information indicates the N priority levels.
  • Step 403 The terminal device receives third indication information sent by the network device; where the third indication information indicates N priorities; the N priorities are used for power allocation by multiple cell groups in any time period;
  • Step 404 The terminal device allocates power to the cell group in any time period according to the third indication information.
  • the time period can be a frame, a subframe, a time slot, a mini-slot, a symbol, etc., of course, it can also be a combination of multiple frames, a combination of multiple time slots, etc., which are set as required.
  • the solution that needs to be implemented is to configure the minimum guaranteed power uniformly set in the prior art in a more flexible manner, so only the time period in this example is more detailed on the basis of the original time.
  • the granularity can be divided (that is, compared to the unified situation in the prior art, N in the embodiment of the present application is a positive integer not less than 2), and the specific frame or subframe is not specifically limited.
  • the multiple cell groups in this example may include the first cell group and the second cell group, and the priority is used by the terminal device to simultaneously transmit uplinks on the first cell group and the second cell group. If the total power of the signal exceeds the maximum transmission power, the transmission power of the uplink signal sent on the cell group with the lower priority is reduced according to the priority.
  • the first cell group is a primary cell group (for example, MCG), and the second cell group is a secondary cell group (for example, SCG).
  • MCG primary cell group
  • SCG secondary cell group
  • the third indication information may be carried in downlink control information (Downlink Control Information, DCI), may also be carried in radio access control (Radio Resource Control, RRC) signaling, or It is carried in Medium Access Control (MAC) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the signaling of the at least one indication information carrying the third indication information may be cell-common signaling, terminal-specific signaling, or terminal group-common signaling.
  • the third indication information includes N indication fields, and the N fields have a one-to-one correspondence with the N time periods; wherein, each of the N fields is used to indicate the first time period in the corresponding time period.
  • the priority of a cell group and the second cell group; N is a positive integer.
  • the third indication information may be implicitly carried in other signaling sent by the network device to the terminal device.
  • the third indication information is implicitly contained in the uplink and downlink time domain resource configuration signaling.
  • TDD Time Division Duplex
  • the network device will configure this to the terminal device.
  • the uplink and downlink time domain resource configuration of the cell group allows the terminal equipment to determine which time periods in the cell group are uplink, which time periods are downlink, and which time periods are flexible time periods (flexible time periods can be used for uplink communication, It can also be used for downlink communication time period).
  • a feasible way is: for the uplink and downlink time domains corresponding to the first cell group For the uplink time period indicated by the resource configuration signaling, the priority of the first cell group is higher than that of the second cell group, and/or for the flexible time period indicated by the uplink and downlink time domain resource configuration signaling corresponding to the first cell group, The priority of one cell group is lower than that of the second cell group.
  • Another feasible way is: for the uplink time period and flexible time period indicated by the uplink and downlink time domain resource configuration signaling corresponding to the first cell group, the priority of the first cell group is higher than that of the second cell group.
  • the network device may also send second indication information to the terminal device.
  • the second indication information may indicate the priority between different cell groups, so that the terminal device
  • the power configuration of the cell group can be performed according to the priority.
  • the terminal device may According to the priority in the third indication information, the transmission power of the uplink signal sent on the cell group with the lower priority is reduced, so as to meet the power transmission requirement of the uplink signal.
  • the specific implementation manner may refer to the specific implementation manner of the terminal device in the embodiment corresponding to FIG. 3, which will not be repeated here.
  • an embodiment of the present application also provides a network device, and the network device 500 includes:
  • the processor 501 is configured to determine a first minimum guaranteed power group for transmitting an uplink signal in a first cell group, where the first minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers correspond to N Time periods, the N time periods are time periods included in one radio frame, and N is a positive integer not less than 2;
  • the transceiver 502 is configured to send first indication information to a terminal device, where the first indication information is used to indicate the N minimum guaranteed powers.
  • the first indication information includes N indication fields, the N fields correspond to the N minimum guaranteed powers one-to-one, and the minimum guaranteed power indicated by each of the N fields is the corresponding time The minimum guaranteed power for sending uplink signals in the first cell group in the section.
  • the first indication information further indicates whether the N minimum guaranteed powers in the first minimum guaranteed power group can be used to send uplink signals in the second cell group.
  • the first indication information further indicates a second minimum guaranteed power group
  • the second minimum guaranteed power group includes N minimum guaranteed powers
  • the N minimum guaranteed powers in the second minimum guaranteed power group The power corresponds to the N time periods one by one
  • the N minimum guaranteed powers in the second minimum guaranteed power group are only used to transmit uplink signals in the first cell group
  • the first minimum guaranteed power The N minimum guaranteed powers in the group can be used to transmit uplink signals in the second cell group.
  • the first indication information further indicates a third minimum guaranteed power group, the third minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers in the third minimum guaranteed power group
  • the power corresponds to the N time periods one by one, and the N minimum guaranteed powers in the third minimum guaranteed power group are used to transmit the second type of uplink signal in the first cell group, and the first minimum guaranteed power
  • the N minimum guaranteed powers in the guaranteed power group are used to transmit the first type of uplink signal in the first cell group.
  • the first type of uplink signal includes a physical uplink control channel PUCCH that carries ACK/NACK
  • the second type of uplink signal includes a physical uplink shared channel PUSCH that carries a URLLC service.
  • the first indication information includes N indication tuples, and the N indication tuples correspond to N time periods one to one; each indication tuple includes a first indication field n1 and a second indication field n2; where n1 and n2 correspond to the first minimum guaranteed power group and the third minimum guaranteed power group, respectively.
  • the first cell group is one of multiple cell groups
  • the transceiver is further configured to send second indication information to the terminal device, where the second indication information indicates the N times The priority of the multiple cell groups for power allocation in the paragraph.
  • an embodiment of the present application also provides a terminal device, and the terminal device 600 includes:
  • the transceiver 601 is configured to receive first indication information; wherein, the first indication information is used to indicate the first minimum guaranteed power group N minimum guaranteed power; the first minimum guaranteed power group includes N minimum guaranteed power, The N minimum guaranteed powers correspond to N time periods one by one, and the N minimum guaranteed powers are the minimum guaranteed power for the terminal equipment to transmit uplink signals in the first cell group, and the N time periods are one For the time period included in the radio frame, N is a positive integer not less than 2;
  • the processor 602 is configured to configure, according to the first indication information, a minimum guaranteed power for sending an uplink signal in the first cell group.
  • the first indication information includes N indication fields, the N fields correspond to the N minimum guaranteed powers one-to-one, and the minimum guaranteed power indicated by each of the N fields is the corresponding time The minimum guaranteed power for sending uplink signals in the first cell group in the section.
  • the first indication information further indicates whether the N minimum guaranteed powers in the first minimum guaranteed power group can be used to send uplink signals in the second cell group.
  • the first indication information further indicates a second minimum guaranteed power group
  • the second minimum guaranteed power group includes N minimum guaranteed powers
  • the N minimum guaranteed powers in the second minimum guaranteed power group The power corresponds to the N time periods one by one
  • the N minimum guaranteed powers in the second minimum guaranteed power group are only used to transmit uplink signals in the first cell group
  • the first minimum guaranteed power The N minimum guaranteed powers in the group can be used to transmit uplink signals in the second cell group.
  • the first indication information further indicates a third minimum guaranteed power group, the third minimum guaranteed power group includes N minimum guaranteed powers, and the N minimum guaranteed powers in the third minimum guaranteed power group
  • the power corresponds to the N time periods one by one, and the N minimum guaranteed powers in the third minimum guaranteed power group are used to transmit the second type of uplink signal in the first cell group, and the first minimum guaranteed power
  • the N minimum guaranteed powers in the guaranteed power group are used to transmit the first type of uplink signal in the first cell group.
  • the first type of uplink signal includes a physical uplink control channel PUCCH that carries ACK/NACK
  • the second type of uplink signal includes a physical uplink shared channel PUSCH that carries a URLLC service.
  • the first indication information includes N indication tuples, and the N indication tuples correspond to N time periods one to one; each indication tuple includes a first indication field n1 and a second indication field n2; where n1 and n2 correspond to the first minimum guaranteed power group and the third minimum guaranteed power group, respectively.
  • the first cell group is one of multiple cell groups, and the method further includes:
  • the terminal device also receives second indication information sent by the network device, where the second indication information indicates the priority of the multiple cell groups for power allocation in the N time periods.
  • the embodiment of the present application also provides another network device, including:
  • a processor configured to determine N priorities for power allocation in multiple cell groups; wherein the N priorities correspond to N time periods one by one, and the N time periods are included in one radio frame Time period, N is a positive integer not less than 2;
  • the transceiver is configured to send third indication information to the terminal device, where the third indication information indicates the N priority levels.
  • the multiple cell groups include the first cell group and the second cell group, and the priority is used by the terminal device for the first cell group and the second cell group in any time period If the total power of the uplink signals sent at the same time exceeds the maximum transmission power, the transmission power of the uplink signals sent on the cell group with the lower priority is reduced according to the priority corresponding to any one of the time periods.
  • the third indication information includes N indication fields, and the N fields have a one-to-one correspondence with N time periods; wherein, each of the N fields is used to indicate the corresponding time period.
  • the priority of the first cell group and the second cell group; N is a positive integer.
  • the embodiment of the present application also provides another terminal device, including
  • the transceiver is configured to receive third indication information sent by a network device; wherein the third indication information indicates N priority levels; the N priority levels are used for power allocation by multiple cell groups in any time period, so The N priority levels correspond to N time periods one by one, the N time periods are time periods included in one radio frame, and N is a positive integer not less than 2;
  • the processor is configured to perform power allocation to the cell group in any time period according to the third indication information.
  • the multiple cell groups include the first cell group and the second cell group, and the priority is used by the terminal device for the first cell group and the second cell group in any time period If the total power of the uplink signals sent at the same time exceeds the maximum transmission power, the transmission power of the uplink signals sent on the cell group with the lower priority is reduced according to the priority corresponding to any one of the time periods.
  • the first cell group is a primary cell group; the second cell group is a secondary cell group.
  • the third indication information includes N indication fields, and the N fields have a one-to-one correspondence with N time periods; wherein, each of the N fields is used to indicate the corresponding time period.
  • the priority of the first cell group and the second cell group; N is a positive integer.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc., integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (DVD for short)), or semiconductor media (for example, SSD).
  • the method provided in the embodiments of the present application is introduced from the perspective of the terminal as the execution subject.
  • the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种上行保证功率信息发送、接收方法及设备。网络设备确定在第一小区组发送上行信号的第一最小保证功率组,该第一最小保证功率组包括N个最小保证功率,该N个最小保证功率一一对应于N个时间段。该N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数。进一步的,网络设备向终端设备发送第一指示信息,该第一指示信息用于指示所述N个最小保证功率。该方法及设备解决现有技术中小区组(CG)的保证功率不能灵活配置的问题。

Description

一种上行保证功率信息发送、接收方法及设备
相关申请的交叉引用
本申请要求在2019年02月15日提交中国专利局、申请号为201910117891.1、申请名称为“一种上行保证功率信息发送、接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行保证功率信息发送、接收方法及设备。
背景技术
在长期演进(Long term evolution,LTE)系统中,终端设备支持同时接入到两个网络设备,这种接入方式称为双连接(Dual Connectivity,DC),其中一个网络设备为主网络设备,另一个网络设备为辅网络设备,其中,由主网络设备为终端设备提供服务的一个或多个小区称为主小区组(Master Cell Group,MCG),而辅网络设备为终端设备提供服务的一个或多个小区称为辅小区组(Secondary Cell Group,SCG)。在无线通信系统的发展演进过程中,运营商会同时部署5G新空口(New radio interface,NR)系统和长期演进(Long term evolution,LTE)系统,终端设备也支持同时接入到LTE的网络设备和NR的网络设备,因为LTE又被称为演进的通用陆面无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA),所以这种接入方式被称为演进的通用陆面无线接入与新空口双连接(E-UTRA NR Dual Connectivity,EN-DC)。在EN-DC模式下,LTE的网络设备为主网络设备,NR的网络设备为辅网络设备,当然随着系统的演进,未来也可以支持新空口与演进的通用陆面无线接入双连接(NR E-UTRA Dual Connectivity,NE-DC),即NR的网络设备为主网络设备,LTE的网络设备为辅网络设备。由于EN-DC和NE-DC的终端都会接入到两个不同的无线接入技术的网络设备,所以这些DC模式也可以统称为多无线接入技术双连接(Multi-RAT Dual Connectivity,MR-DC)。另外,对于仅支持NR的终端设备,其也可以同时接入到两个不同的NR的网络设备,这类连接方式称为NR-NR DC。
对于无线通信系统,按照双工模式的不同主要可以分为频分双工(Frequency Division Duplex,FDD)模式和时分双工(Time Division Duplex,TDD)模式,其中,对于工作在TDD模式下的无线通信系统,系统通常仅包含一个工作频段,故又称该频段为非成对频段。对于使用非成对频段的系统,在一段时间内,同一网络设备覆盖的区域内,整个工作频段仅用于下行通信,或者仅用于上行通信;对于工作在FDD模式下的无线通信系统,系统通常包含两个成对的频段用于通信,其中一个频段用于网络设备到终端设备的下行通信,另一个频段用于终端设备到网络设备的上行通信。
目前,一种典型的部署方式是,NR部署在非成对频段上采用TDD模式,如3.5GHz附近的频段。在这种部署场景下,工作在NR-NR DC模式下的终端设备的MCG和SCG中的小区都为TDD模式。
为了提升终端设备向网络设备发送上行信号的速率,通常工作在DC模式下的终端设备可以在同一时间段内同时在MCG和SCG中的载波上向网络设备发送上行信号,但是终端设 备在所有载波上发送上行信号的总功率往往受限,如最大不能超过23dBm,因此,若终端在MCG和SCG中载波上发送上行信号的总功率超过了最大发送功率,则终端需要主动降低一个或多个载波上的发送功率。具体实现方式是:
网络设备为终端设备配置每个小区组(Cell Group,CG)的最小保证功率,一个CG可以优先使用网络设备为其配置的最小保证功率;而且在该最小保证功率未被该CG使用完时,剩余的功率可以被另一CG使用。例如,对于给定的两个CG,包括CG1和CG2,网络设备给CG1配置参数r1=0.2,则终端设备确定CG1的保证功率为总功率的20%,这部分功率终端优先用于CG1;给CG2配置参数r2=0.3,则确定CG2的保证功率为总功率的30%,这部分功率终端优先用于CG2。从而对于除去CG1和CG2的保证功率之后剩余的功率(总功率的50%),终端可以根据上述信号优先级或CG优先级来确定功率的分配。
然而,现有技术CG的保证功率的配置不够灵活。
发明内容
本申请实施例提供一种上行保证功率信息发送、接收方法及设备,用以解决现有技术中CG的保证功率不能灵活的问题。
第一方面,本申请实施例提供一种上行保证功率信息发送方法,该方法包括:
确定在第一小区组发送上行信号的第一最小保证功率组,所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
向终端设备发送第一指示信息,所述第一指示信息用于指示所述N个最小保证功率。
第二方面,提供一种上行保证功率信息接收方法,该方法包括:
终端设备接收第一指示信息;其中,所述第一指示信息用于指示第一最小保证功率组N个最小保证功率;所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,并且所述N个最小保证功率为所述终端设备在第一小区组发送上行信号的最小保证功率,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
终端设备根据所述第一指示信息配置在所述第一小区组发送上行信号的最小保证功率。
上述方法可以应用于双连接场景。
在该实现方式中,对于工作在DC模式下的终端设备,网络设备会确定与无线帧中的时间段对应的最小功率保证组,该最小功率保证组中包括至少两个时间段所对应的最小功率保证,而且最小功率保证组中的值可以相同也可以不相同,而且数量也可以根据具体的情况进行设定,所以通过该方案,可以实现基于无线帧中时间段相关联的最小保证功率配置,这样终端设备可以在无线帧中基于为不同时间段配置的保证功率进行上行功率控制,从而提升终端设备上行功率控制的灵活度。
一种可实现的方式中,所述第一指示信息包括N个指示字段,所述N个字段与所述N个最小保证功率一一对应,所述N个字段中的每一个指示的最小保证功率是对应时间段中在所述第一小区组发送上行信号的最小保证功率。
在该实现方式中,第一指示信息可以包括指示每个时间段的字段,从而能够通过一个信息将所有时间段的最小保证功率指示给终端设备。当然该第一指示信息中字段的值也可 以不与时间段一一对应,例如:所有时间段的最小保证功率相同则可以只包括一个字段。
一种可实现的方式中,所述第一指示信息还指示所述第一最小保证功率组中的N个最小保证功率是否能够用于在第二小区组发送上行信号。
在该实现方式中,第一指示信息可以分为两部分,该两部分信息除了指示多个时间段的最小保证功率外,还指示某一时间段内的第一小区组的最小保证功率是否能够被其他小区组使用,这让不同时间段的最小保证功率能够灵活的被配置为能够被其他小区组使用或不能够被其他小区组使用,这样,当能够被其他小区组使用时,避免保证功率被浪费,当不能够被其他小区组使用则能够限制其他小区组的最大功率,从而降低对第一小区组的上行信号的干扰,通过这种方式进一步提升了终端设备上行功率分配的灵活度。
一种可实现的方式中,所述第一指示信息还指示第二最小保证功率组,所述第二最小保证功率组包括N个最小保证功率,所述第二最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号,所述第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号。
在该实现方式中,第一指示信息可以分为两部分,该两部分信息分别指示了多个时间段对应的能够被其他小区组使用的最小保证功率,和不能够被其他小区组使用的最小保证功率,从而为终端设备提供了多种不同共享方式的最小保证功率,提升了终端设备上行功率分配的灵活度,可以参照上述实现方式。
一种可实现的方式中,所述第一指示信息还指示第三最小保证功率组,所述第三最小保证功率组包括N个最小保证功率,所述第三最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号,所述第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号。
一种可实现的方式中,所述第一类型上行信号包括承载ACK/NACK的物理上行控制信道PUCCH,所述第二类型上行信号包括承载URLLC业务的物理上行共享信道PUSCH。
在该实现方式中,网络设备为终端设备的不同的上行信号或不同的业务配置了不同的最小保证功率,从而使得网络设备以及终端设备能够从不同维度综合考量之后进行最小保证功率的配置,从而使得最小保证功率配置方式功能灵活的情况下,更能满足不同信号以及业务的需求,能够有效的提高上行功率的利用率。
一种可实现的方式中,所述第一指示信息包括N个指示元组,所述N个指示元组与N个时间段一一对应;每个指示元组中包括第一指示字段n1和第二指示字段n2;其中,n1和n2分别对应第一最小保证功率组和第三最小保证功率组。
在该实现方式中,如果第一指示信息包括两部分,则通过不同的字段来分别指示第一指示信息中的不同部分,从而能够更迅速有效的将不同的指示信息传输到终端设备。
一种可实现的方式中,所述第一小区组为多个小区组中的一个,所述方法还包括:
所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
在小区组包括多个的时候,上述实现方式中,网络设备还可以给终端设备发送第二指示信息,该第二指示信息可以指示不同小区组之间的优先级,从而终端设备可以根据该优先级进行小区组的功率配置,通过该方法可以在保障在满足功率限制要求的情况下,优先 保障高优先级小区组的功率,从而能够实现合理配置不同小区组功率的同时,还能根据情况灵活的调整小区组所对应的优先级。
一种可实现的方式中,所述多个小区组包括所述第一小区组和第二小区组,所述优先级用于所述终端设备在所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则根据所述优先级降低优先级低的小区组上发送的上行信号的发送功率。
一种可实现的方式中,所述第一小区组为主小区组MCG,所述第二小区组为辅小区组SCG。
在该实现方式中,通过该方法可以在某些时间段内实现SCG的优先级高于MCG的优先级,避免现有技术中使用的统一优先级所导致的对SCG的性能造成影响的问题。
一种可实现的方式中,所述第二指示信息包括N个指示字段,所述N个字段与N个时间段一一对应;其中,所述N个字段中的每一个用于指示对应时间段中所述第一小区组与所述第二小区组的优先级;N为正整数。
一种可实现的方式中,所述第一小区组为多个小区组中的一个,所述方法还包括:
所述终端设备还接收网络设备发送的第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
第三方面,提供一种双连接场景中的信息发送方法,该方法包括:
确定多个小区组用于功率分配的N个优先级;其中,所述N个优先级一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
给终端设备发送第三指示信息,所述第三指示信息指示所述N个优先级。
第四方面,提供一种双连接场景中的信息发送方法,该方法包括:
接收网络设备发送的第三指示信息;其中,所述第三指示信息指示N个优先级;
所述N个优先级用于任一时间段多个小区组进行功率分配,所述N个优先级一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
根据所述第三指示信息在任一时间段对所述小区组进行功率分配。
一种可实现的方式中,所述多个小区组包括所述第一小区组和第二小区组,所述优先级用于所述终端设备在任一时间段所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则根据所述任一时间段对应的优先级降低优先级低的小区组上发送的上行信号的发送功率。
一种可实现的方式中,所述第一小区组为主小区组MCG,所述第二小区组为辅小区组SCG。
一种可实现的方式中,所述第三指示信息包括N个指示字段,所述N个字段与N个时间段一一对应;其中,所述N个字段中的每一个用于指示对应时间段中所述第一小区组与所述第二小区组的优先级;N为正整数。
通过上述第三方面的各实现方式,在小区组包括多个的时候,网络设备还可以给终端设备发送第二指示信息,该第二指示信息可以指示不同小区组之间的优先级,从而终端设备可以根据该优先级进行小区组的功率配置,通过该方法可以在保障在满足功率限制要求的情况下,优先保障高优先级小区组的功率,从而能够实现合理配置不同小区组功率的同时,还能根据情况灵活的调整小区组所对应的优先级,避免现有技术中使用统一优先级所导致的对SCG的性能造成影响的问题。
第五方面,提供一种上行保证功率信息发送装置,该装置可以是网络设备,也可以是网络设备内的芯片。该通信装置可以包括处理模块和收发模块。例如,该处理模块可以是处理器,该收发模块可以是收发器。可选的,该上行保证功率信息发送装置还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该上行保证功率信息发送装置执行上述第一方面中相应的功能。当该上行保证功率信息发送装置是网络设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该网络设备执行上述第一方面或第三方面中相应的功能,该存储模块可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,提供一种上行保证功率信息接收装置,该装置可以是终端设备,也可以是终端设备内的芯片。该上行保证功率信息接收装置可以包括处理模块和收发模块。例如,该处理模块可以是处理器,该收发模块可以是收发器。可选的,该上行保证功率信息接收装置还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该通信装置执行上述第一方面中相应的功能。当该上行保证功率信息接收装置是终端设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该终端设备执行上述第二方面或第四方面中相应的功能,该存储模块可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第七方面,提供第一种通信系统,该通信系统可以包括第五方面所述的第一种通信装置。
第八方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计或第三方面或第三方面的任意一种可能的设计中所述的方法。
第九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中或第四方面或第四方面的任意一种可能的设计中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面或任意一种可能的设计中所述的方法。
附图说明
图1-1和图1-2为本申请实施例所适用的主网络设备和辅网络设备部署在同一个站点上的场景示意图;
图2-1和图2-2为本申请实施例所适用的主网络设备和辅网络设备部署在不同站点上的场景示意图;
图3为本申请实施例所提供的一种上行保证功率发送和接收方法流程示意图;
图4为本申请实施例提供的另外一种上行保证功率发送和接收方法流程示意图;
图5为本申请实施例提供的一种网络设备的结构示意图;
图6为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
在介绍本申请实施例所提供的方法之前,首先根据图1-1、图1-2、图2-1和图2-2所示的场景对本申请实施例所适用的终端设备工作在双连接的模式下的适用场景做一个简单的描述;其中如下图1-1和图1-2所示的场景是主网络设备和辅网络设备部署在同一个站点上的第一种场景;图2-1和图2-2所示场景是主网络设备和辅网络设备部署在不同的站点上的第二场景。本申请实施例所提供的方法中,终端设备同时接入到主网络设备和辅网络设备,不管是第一中场景还是第二种场景都可以适用,进一步需要说明的是,在第一种场景下,LTE的网络设备和NR的网络设备可以共享同一套硬件设备,也可以使用不同的硬件设备。另外,主网络设备和辅网络设备可以是相同无线接入技术的网络设备,如都是NR或LTE,也可以是不同无线接入技术的网络设备。不管在第一种场景还是第二种场景中,本申请实施例所涉及的网元设备可以包括(该处所提供的网元设备只是一个实例,根据具体的实现方案如果还需要其他网元设备的参与,则根据具体的实际方案进行处理,此处所提供的实例并不对方案的具体实现做限制):
终端设备:用于向网络设备发送上行信号,或从网络设备接收下行信号;可以是手机、平板电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端等。
网络设备:用于从终端设备接收上行信号,或向终端设备发送下行信号;可以是LTE和/或NR的网络设备,可以是基站(NodeB)、演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(next generation Node B,gNB),未来移动通信系统中的基站或Wi-Fi系统中的接入节点等。
现有技术中,CG的保证功率只能针对无线帧整体进行配置,即一个无线帧内的所有时间段内CG的保证功率均相等,从而导致CG的保证功率并不能灵活地适应不同时间段的需求。
结合上述适用场景以及网元结构的具体描述,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图3所示,本申请实施例提供一种上行保证功率发送和接收方法,为了便于理解,在以下描述中通过网络设备与终端设备进行信息交互的方式具体介绍本申请实施例的方法,但是在具体实现的时候,本申请实施例中的网络设备以及终端设备都可以单独设置然后实现本申请实施例所提供的方案,具体的本申请实施例所提供的方法可以包括:
步骤301,网络设备确定在第一小区组发送上行信号的第一最小保证功率组,所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
在该实施例中,时间段可以是帧、子帧、时隙、微时隙、符号等,当然也可以是根据需要设置的多个帧的组合、多个时隙的组合等等,在该实施例中,需要实现的方案是将现有技术中统一设置的最小保证功率,以更灵活的方式进行配置,所以只该实例中的时间段只要是在原有时间统一的基础上做了更细粒度的划分即可(即相对于现有技术中统一的情况,本申请实施例中N为不小于2的正整数),并不具体限定具体是帧或子帧等。进一步的,N的取值可以是小于等于一个无线帧中的时间段个数的正整数,以时间段为时隙为例,N可以为10,20,40,80,160中的一个,以时间段是子帧为例,N=10。N的取值也可以 是小于等于一个无线帧中的上行时间段个数的正整数,其具体取值与第一小区组中小区的上下行时间资源配置相关。
进一步,在该实施例中最小保证功率也可以称为最小功率,或保证功率,或其他描述,本申请中并不对其名称进行限定。应理解,第一小区组的最小保证功率为第一小区组能够优先使用的功率,这部分功率只有在第一小区组没有使用时,其他小区组才有可能使用。第一小区组的最小保证功率还可以理解为只有第一小区组能够使用的功率,设定数值的功率配置给第一小区组之后,则需要始终保持的数量的功率为第一小区组专用,在第一小区组不能完全使用的情况下,也不能降低第一小区组的最小保证功率配额后补偿其他小区组。另外,此处描述的第一小区组能够使用的功率应理解为终端设备能够用于在第一小区组中发送上行信号的功率。
步骤302,所述网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述N个最小保证功率。
步骤303,终端设备接收第一指示信息;其中,所述第一指示信息用于指示第一最小保证功率组N个最小保证功率;所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,并且所述N个最小保证功率为所述终端设备在第一小区组发送上行信号的最小保证功率,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
步骤304,终端设备根据所述第一指示信息配置在所述第一小区组发送上行信号的最小保证功率。
在该实施例中,对于工作在DC模式下的终端设备,网络设备会确定与时间段对应的最小功率保证组,该最小功率保证组中包括至少两个时间段所对应的最小功率保证,而且最小功率保证组中的值可以相同也可以不相同,而且数量也可以根据具体的情况进行设定,所以通过该方案,可以实现基于时间段相关联的最小保证功率配置,以最大限度的提升终端设备上行功率控制的灵活度。
在该实例中,第一指示信息可以仅指示一个与最小保证功率相关的信息,当然也可以指示多个与最小保证功率相关的信息;以下根据第一指示信息所指示的内容对指示信息的具体实现方式做进一步详细的描述:
第一种:第一指示信息指示仅指示一个与最小保证功率相关的信息,具体指示的可以是小区组最小保证功率的值。为了达到第一指示信息一一指示N个时间段所对应的N个最小保证功率的目的,该实施例中,所述第一指示信息的设置方式可以是:
该第一指示信息包括N个指示字段,所述N个字段与所述N个最小保证功率一一对应,所述N个字段中的每一个指示的最小保证功率是对应时间段中在所述第一小区组发送上行信号的最小保证功率。
例如,第一指示信息包括N个指示字段,第n个指示字段指示N个时间段(该实例中时间段可以时隙为例)中的第n个时间段中第一小区组的最小保证功率。
具体的,第n指示字段包括参数Rn,其中,Rn为0到1之间的实数。例如,Rn取值可以为0.5,其含义为第一小区组的最小保证功率为总功率的50%。进一步可选的,Rn的取值可以为一个特殊值X,当Rn其取为X时,则表示第n个时隙中所有功率都被第一小区组独享,其他小区组无法使用第n个时隙中的功率。此时,终端设备无法在第n个时隙中发送其他小区组的上行信号。
以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组,第一指示信息指示一个帧中10个时隙,其中第一指示信息可以是{0.1,0.1,0.2,0.2,0.4,0.4,0.1,0.1,0.2,0.2},表示终端设备一帧中第1、2、7和8个时隙中在第一小区组的最小保证功率为0.1×Pmax,其中,Pmax可以是终端设备的最大发送功率,该Pmax可以是由网络设备给终端设备配置的值,也可以是协议中预先规定的值。终端设备在一帧中的第3、4、9和10个时隙中在目标小区组的最小保证功率为0.2×Pmax,在第5和6个时隙中在第一小区组的最小保证功率为0.4×Pmax。
第二种,第一指示信息指示两个与最小保证功率相关的信息,具体的,为了达到第一指示信息一一指示N个时间段所对应的N个最小保证功率的目的,该实施例中,所述第一指示信息的设置方式可以是:
方式一、该第一指示信息还指示所述第一最小保证功率组中的N个最小保证功率是否能够用于在第二小区组发送上行信号。
在该实现方式中,第一指示信息可以分为两部分,该两部分信息除了指示多个时间段的最小保证功率外,还指示某一时间段内的第一小区组的最小保证功率是否能够被其他小区组使用,这让不同时间段的最小保证功率能够灵活的被配置为能够被其他小区组使用或不能够被其他小区组使用,提升了终端设备上行功率分配的灵活度。
方式二、所述第一指示信息还指示第二最小保证功率组,所述第二最小保证功率组包括N个最小保证功率,所述第二最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号,所述第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号。
在该实现方式中,第一指示信息可以分为两部分,该两部分信息分别指示了多个时间段对应的能够被其他小区组使用的最小保证功率,和不能够被其他小区组使用的最小保证功率,从而为终端设备提供了多种不同共享方式的最小保证功率,提升了终端设备上行功率分配的灵活度。
方式三、所述第一指示信息还指示第三最小保证功率组,所述第三最小保证功率组包括N个最小保证功率,所述第三最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号,所述第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号。
在该方式中,第一类型上行信号与第二类型上行信号为类型不同的上行信号。例如,第一类型上行信号与第二类型上行信号的业务类型不同,具体的,第二类型上行信号的业务类型为高可靠低时延通信(Ultra-Reliable Low Latency Communications,URLLC)业务,第一类型上行信号的业务类型为非URLLC业务,如增强的移动宽带(enhanced Mobile Broadband,eMBB)业务。进一步的,所述第一类型上行信号可以是包括承载肯定应答/否定应答(Acknowledgement/Negative Acknowledgement,ACK/NACK)的物理上行控制信道(Physical-layer uplink control channel,PUCCH),所述第二类型上行信号可以是包括承载URLLC业务的物理上行共享信道(Physical-layer uplink shared channel,PUSCH)。上述第一类型上行信号和第二类型上行信号只是一种具体的举例,并不限定本申请实施例中的第一类型上行信号和第二类型上行信号只能是上述两种具体的信号类型,根据本申请实施 例所提供的方案第一类型上行信号和第二类型上行信号可以包括其他类型的上行信号。另外,第一类型上行信号或第二类型上行信号可以分别包括多种不同类型的上行信号,例如,第一类型上行信号包括承载ACK/NACK的PUCCH和物理随机接入信道(Physical Random Access Channel,PRACH)两种类型的上行信号。
在该实现方式中,网络设备为终端设备的不同的上行信号或不同的业务配置了不同的最小保证功率,从而使得网络设备以及终端设备能够从不同维度综合考量之后进行最小保证功率的配置,从而使得在灵活配置最小保证功率的情况下,更能满足不同信号以及业务的需求,能够有效的提高上行功率的利用率。
因为上述方式一到方式三,第一指示信息可以指示两个与最小保证功率相关的信息所以按照时间段为指示单位,则第一指示信息可以是包括以时间段为指示单位的指示元组,则对应的:
该第一指示信息可以包括N个指示元组,所述N个指示元组与N个时间段一一对应;每个指示元组中包括第一指示字段n1和第二指示字段n2;其中,n1和n2分别对应第一最小保证功率组和第三最小保证功率组;或者,n1和n2分别对应第一最小保证功率组和第二最小保证功率组。
以下结合第一指示信息的指示元组实现方式,对上述方式一到方式三的方案进行具体示例性的描述,其中,在该实例中时间段可以是时隙,则具体可以是:
针对上述方式一,第一指示信息包括N个指示元组,第n个指示元组中包括两个指示字段,分别记为指示字段n1和指示字段n2,例如『n1,n2』。具体的,指示字段n1指示所述N个最小保证功率;指示字段n2指示所述第一最小保证功率组中的N个最小保证功率是否能够用于在第二小区组发送上行信号,即n1所指示的第一小区组对应的最小保证功率是否能够用于在第二小区组发送上行信号。
具体的,指示字段n2为1比特的字段,该1比特对应的值可以是0或1,当该1比特的值为0时,则表示指示字段n1指示的最小保证功率不能够用于在第二小区组发送上行信号;该1比特的值为1时,则表示指示字段n1指示的最小保证功率能够用于在第二小区组发送上行信号。以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组。
例如:第一指示信息指示可以是{『0.1,0』,『0.1,0』,『0.05,0』,『0.05,0』,『0.1,1』,『0.1,1』,『0.4,1』,『0.4,1』,『0.3,1』,『0.3,1』}。指示的具体含义是:第一个字段n1到第四个字段n1所指示的最小保证功率不能够用于在第二小区组发送上行信号,剩余的字段n1所指示的最小保证功率能够用于在第二小区组发送上行信号。因为字段n1与时隙对应,所以在上述实例中第一到第四时隙对应的最小保证功率不能够用于在第二小区组发送上行信号,其余时隙的则可以。
针对上述方式二,若针对同一时间段既配置第一最小保证功率又配置第二最小保证功率,则第一指示信息的具体实现方式可以是包括N个指示元组,N个指示元组与N个时间段(时隙)一一对应;第n个指示元组中包括两个指示字段,分别记为指示字段n1和指示字段n2。具体的,指示字段n1指示第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号,而指示字段n2第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号;即第二最小保证功率组中所述的最小保证功率只能被第一小区组用于发送上行信号,不能共享给其他小区组。
例如,以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组,第一指示信息 指示{『0.1,0.05』,『0.1,0.05』,『0.05,0』,『0.05,0』,『0.1,0.05』,『0.1,0.05』,『0.2,0.1』,『0.2,0.1』,『0.2,0.1』,『0.2,0.1』};在本申请实施例中,n1和n2在具体的应用环境中,可以通过不同的方式实现最小保证功率的指示,具体可以是:
A1,以第一指示信息中第一个指示元组『0.1,0.05』为例,时隙1中能够用于在第二小区组发送上行信号的最小保证功率为0.1×Pmax;仅能够用于在所述第一小区组发送上行信号的最小保证功率为0.05×Pmax。即能够用于在第一小区组发送上行信号的最小保证功率为(0.1+0.05)×Pmax;第一小区组专用的为0.05×Pmax,第一小区组和第二小区组共享的为0.1×Pmax。
A2,以第一指示信息中第一个指示元组『0.1,0.05』为例,时隙1中能够用于在第一小区组发送上行信号的最小保证功率为0.1×Pmax,其中,仅能够用于在所述第一小区组发送上行信号的最小保证功率为0.05×Pmax,从而,还能够用于在第二小区组发送上行信号的最小保证功率为(0.1-0.05)×Pmax。
其他指示元组的具体含义和上述第一时隙的完全一致,所以此处不在赘述。
另外,若针对同一时间段既配置第一最小保证功率又配置第二最小保证功率,则第一指示信息的具体实现方式可以是包括两个子部分,其中,第一子部分包括N个字段,第n个字段记为n1,第二子部分也包括N个字段,第n个字段记为n2。具体的,指示字段n1指示第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号,而指示字段n2第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号;即第二最小保证功率组中所述的最小保证功率只能被第一小区组用于发送上行信号,不能共享给其他小区组。
例如,以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组,第一指示信息中的第一字部分包括{0.1,0.1,0.05,0.05,0.1,0.1,0.2,0.2,0.2,0.2},第二子部分包括{0.05,0.05,0,0 0.05,0.05,0.1,0.1,0.1,0.1}。
在该实例中,网络设备为终端设备配置了两种最小保证功率,最大限度的提升了终端设备进行上行功率控制的灵活度。
针对上述方式三、若针对同一时间段既配置第一最小保证功率又配置第三最小保证功率,则第一指示信息的具体实现方式可以是包括N个指示元组,N个指示元组与N个时间段(时隙)一一对应;第n个指示元组中包括两个指示字段,分别记为指示字段n1和指示字段n2。具体的,指示字段n1指示第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号,而指示字段n2指示第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号。
例如:以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组,第一指示信息指示{『0.1,0.05』,『0.1,0.05』,『0.05,0』,『0.05,0』,『0.1,0.05』,『0.1,0.05』,『0.2,0.1』,『0.2,0.1』,『0.2,0.1』,『0.2,0.1』};以其中第一个指示元组『0.1,0.05』为例,即时隙1中0.1×Pmax的最小保证功率用于在第一小区组发送第一类型上行信号;0.05×Pmax的最小保证功率仅用于在所述第一小区组发送第二类型上行信号;其他指示元组的具体含义和上述第一个指示元组的完全一致,所以此处不在赘述。
另外,若针对同一时间段既配置第一最小保证功率又配置第二最小保证功率,则第一指示信息的具体实现方式可以是包括两个子部分,其中,第一子部分包括N个字段,第n个字段记为n1,第二子部分也包括N个字段,第n个字段记为n2。具体的,指示字段n1指示第 一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号,而指示字段n2指示第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号。
例如,以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组,第一指示信息中的第一字部分包括{0.1,0.1,0.05,0.05,0.1,0.1,0.2,0.2,0.2,0.2},第二子部分包括{0.05,0.05,0,0 0.05,0.05,0.1,0.1,0.1,0.1}.在该示例中,网络设备为终端设备的不同的上行信号或不同的业务配置了不同的最小保证功率,能够进一步的提升功率使用效率。
当第一小区组为多个小区组中的一个,则终端设备在有限的功率资源的情况下,还需要一个可行的方式配置各个小区组的功率资源,则在上述图3所示的各实现步骤的基础上,本申请实施例所提供的方法还可以包括步骤:
步骤305,所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
在小区组包括多个的时候,上述实现方式中,网络设备还可以给终端设备发送第二指示信息,该第二指示信息可以指示同一时间段内不同小区组之间的优先级,从而终端设备可以根据该优先级进行小区组的功率配置,通过该方法可以在保障在满足功率限制要求的情况下,优先保障高优先级小区组的功率,从而能够实现合理配置不同小区组功率的同时,还能根据情况灵活的调整小区组所对应的优先级。
结合具体的使用场景,该多个小区组可以包括所述第一小区组和第二小区组,所述优先级用于所述终端设备在所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则根据所述优先级降低优先级低的小区组上发送的上行信号的发送功率。
其中,第一小区组可以是主小区组(例如MCG),第二小区组可以是辅小区组(例如SCG)。
在该实现方式中,通过该方法可以在某些时间段内实现SCG的优先级高于MCG的优先级,避免现有技术中使用的统一优先级所导致的对SCG的性能造成影响的问题。
当然,为了第二指示信息为了达到指示不同时间段的目的,该第二指示信息包括N个指示字段,所述N个字段与N个时间段一一对应;其中,所述N个字段中的每一个用于指示对应时间段中所述第一小区组与所述第二小区组的优先级;N为正整数。
例如,该实施例中时间段以一个帧中所包含的N个时隙为例,则第一指示信息指示这N个时隙中至少一个时隙中第一小区组与第二小区组的优先级。例如,第一指示信息包括N个指示字段,第n个指示字段指示这N个时隙中的第n个时隙中小区组的优先级,其中1<=n<=N。具体的,第n指示字段包括1比特,该1比特取值为0时,第一小区组的优先级低于第二小区组,该1比特取值为1时,第一小区组的优先级高于第二小区组。
以N=10为例进行描述,可对应采用15kHz子载波间隔的小区组,第一指示信息包括10个比特,其取值可以为1100110011,表示一个帧中的第1、2、5、6、9和10个时隙中第一小区组的优先级高于第二小区组,一个帧中的第3、4、7和8个时隙中第二小区组的优先级高于第一小区组。
在该实施例中,第一指示信息和第二指示信息中的至少一个指示信息可以携带在下行控制信息(Downlink Control Information,DCI)中,也可以携带在无线接入控制(Radio Resource Control,RRC)信令中,还可以携带在媒体接入控制(Medium Access Control, MAC)信令中等。进一步的,携带第一指示信息和第二指示信息中的至少一个指示信息的信令可以是小区公共的信令,也可以是终端专用的信令,还可以是终端组公共的信令等。
在该实施例中,第一最小保证功率/第二最小保证功率组仅是对N个第一最小保证功率/第二最小保证功率进行统一的描述,并不一定是真正的新定义了一个组实体。在具体实现中,可以定义一个组实体用于包含所有N个最小保证功率,也可以不定义,此处并不限定。
现有技术中,协议中预先定义了不同信号、信道的优先级,终端设备可以根据同一时间段内在MCG和SCG中的载波上发送上行信号的类型来确定信号的优先级,并降低优先级低的信号的功率(可以将信号的功率降为0),从而优先保证优先级高信号的功率。在该现有技术中考虑了信号的类型和CG的类型来确定优先级,并且若两个CG上同时发送的信号类型相同,则MCG上的信号的优先级高于SCG上的信号的优先级。CG间的优先级按照默认的规则,如MCG优先级高于SCG,这使得所有在时间段上MCG都有更高的优先级来使用功率,这会对SCG的性能造成影响。所以针对该现有技术问题,本申请实施例还提供另外提供一种双连接场景中的信息发送方法,该方法包括(如图4所示):
步骤401,网络设备确定多个小区组用于功率分配的N个优先级;其中,所述N个优先级一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
在该实施例中,一个优先级是针对一个时间段设置的,在同一时间段内如果多个小区组的总发送功率超过了最大发送功率,则可以在该时间段内根据该时间段对应的优先级对各个小区组的发送功率进行调整。各个时间段之间的优先级是独立设置,在任一时间段出现总发送功率超过了最大发送功率的现象,都可以根据对应时间段的优先级进行各小区组的功率调整。
步骤402,网络设备给终端设备发送第三指示信息,所述第三指示信息指示所述N个优先级。
步骤403,终端设备接收网络设备发送的第三指示信息;其中,所述第三指示信息指示N个优先级;所述N个优先级用于任一时间段多个小区组进行功率分配;
步骤404,终端设备根据所述第三指示信息在任一时间段对所述小区组进行功率分配。
在该实施例中,时间段可以是帧、子帧、时隙、微时隙、符号等,当然也可以是根据需要设置的多个帧的组合、多个时隙的组合等等,在该实施例中,需要实现的方案是将现有技术中统一设置的最小保证功率,以更灵活的方式进行配置,所以只该实例中的时间段只要是在原有时间统一的基础上做了更细粒度的划分即可(即相对于现有技术中统一的情况,本申请实施例中N为不小于2的正整数),并不具体限定具体是帧或子帧等。进一步的,N的取值可以是小于等于一个无线帧中的时间段个数的正整数,以时间段为时隙为例,N可以为10,20,40,80,160中的一个,以时间段是子帧为例,N=10。N的取值也可以是小于等于一个无线帧中的上行时间段个数的正整数,其具体取值与第一小区组中小区的上下行时间资源配置相关。
该实例中的多个小区组可以包括所述第一小区组和第二小区组,所述优先级用于所述终端设备在所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则根据所述优先级降低优先级低的小区组上发送的上行信号的发送功率。
可选的,所述第一小区组为主小区组(例如MCG),所述第二小区组为辅小区组(例如SCG)。
可选的,在该实施例中,第三指示信息可以携带在下行控制信息(Downlink Control Information,DCI)中,也可以携带在无线接入控制(Radio Resource Control,RRC)信令中,还可以携带在媒体接入控制(Medium Access Control,MAC)信令中等。进一步的,携带第三指示信息的至少一个指示信息的信令可以是小区公共的信令,也可以是终端专用的信令,还可以是终端组公共的信令等。
可选的,该第三指示信息包括N个指示字段,所述N个字段与N个时间段一一对应;其中,所述N个字段中的每一个用于指示对应时间段中所述第一小区组与所述第二小区组的优先级;N为正整数。
可选的,该第三指示信息可以隐含的携带在其他由网络设备发送给终端设备的信令中。例如,第三指示信息隐含在上下行时域资源配置信令中,在现有技术中,对于工作在时分双工(Time division duplex,TDD)的小区组,网络设备会向终端设备配置该小区组的上下行时域资源配置,以让终端设备确定在该小区组中哪些时间段为上行,哪些时间段为下行,哪些时间段为灵活时间段(灵活时间段为可以用于上行通信,也可以用于下行通信的时间段)。在第一小区组为TDD小区组,第二小区组为频分双工(Frequency division duplex,FDD)小区组的情况下,一种可行的方式为:对于第一小区组对应的上下行时域资源配置信令指示的上行时间段,第一小区组的优先级高于第二小区组,和/或,对于第一小区组对应的上下行时域资源配置信令指示的灵活时间段,第一小区组的优先级低于第二小区组。另一中可行的方式为:对于第一小区组对应的上下行时域资源配置信令指示的上行时间段和灵活时间段,第一小区组的优先级高于第二小区组。
通过上述实施例所提供的方法,在小区组包括多个的时候,网络设备还可以给终端设备发送第二指示信息,该第二指示信息可以指示不同小区组之间的优先级,从而终端设备可以根据该优先级进行小区组的功率配置,通过该方法可以在保障在满足功率限制要求的情况下,优先保障高优先级小区组的功率,从而能够实现合理配置不同小区组功率的同时,还能根据情况灵活的调整小区组所对应的优先级,避免现有技术中使用统一优先级所导致的对SCG的性能造成影响的问题。
在该实施例中,终端设备在接收到该第三指示信息之后,在所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则终端设备可以根据该第三指示信息中的优先级降低优先级低的小区组上发送的上行信号的发送功率,从而满足上行信号的功率发送需要。具体实现方式可以是参照图3所对应实施例中终端设备的具体实现方式,此处不再赘述。
如图5所示,本申请实施例还提供一种网络设备,该网络设备500包括:
处理器501,用于确定在第一小区组发送上行信号的第一最小保证功率组,所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
收发器502,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述N个最小保证功率。
可选的,所述第一指示信息包括N个指示字段,所述N个字段与所述N个最小保证功率一一对应,所述N个字段中的每一个指示的最小保证功率是对应时间段中在所述第一小区组发送上行信号的最小保证功率。
可选的,所述第一指示信息还指示所述第一最小保证功率组中的N个最小保证功率是 否能够用于在第二小区组发送上行信号。
可选的,所述第一指示信息还指示第二最小保证功率组,所述第二最小保证功率组包括N个最小保证功率,所述第二最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号,所述第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号。
可选的,所述第一指示信息还指示第三最小保证功率组,所述第三最小保证功率组包括N个最小保证功率,所述第三最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号,所述第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号。
可选的,所述第一类型上行信号包括承载ACK/NACK的物理上行控制信道PUCCH,所述第二类型上行信号包括承载URLLC业务的物理上行共享信道PUSCH。
可选的,所述第一指示信息包括N个指示元组,所述N个指示元组与N个时间段一一对应;每个指示元组中包括第一指示字段n1和第二指示字段n2;其中,n1和n2分别对应第一最小保证功率组和第三最小保证功率组。
可选的,所述第一小区组为多个小区组中的一个,则所述收发器还用于向所述终端设备发送第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
上述网络设备的具体实现是与图3所示方法对应的,所以具体的实现方式描述以及对应的有益效果是一致的,所以此处不再赘述。
如图6所示,本申请实施例还提供一种终端设备,该终端设备600包括:
收发器601,用于接收第一指示信息;其中,所述第一指示信息用于指示第一最小保证功率组N个最小保证功率;所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,并且所述N个最小保证功率为所述终端设备在第一小区组发送上行信号的最小保证功率,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
处理器602,用于根据所述第一指示信息配置在所述第一小区组发送上行信号的最小保证功率。
可选的,所述第一指示信息包括N个指示字段,所述N个字段与所述N个最小保证功率一一对应,所述N个字段中的每一个指示的最小保证功率是对应时间段中在所述第一小区组发送上行信号的最小保证功率。
可选的,所述第一指示信息还指示所述第一最小保证功率组中的N个最小保证功率是否能够用于在第二小区组发送上行信号。
可选的,所述第一指示信息还指示第二最小保证功率组,所述第二最小保证功率组包括N个最小保证功率,所述第二最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号,所述第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号。
可选的,所述第一指示信息还指示第三最小保证功率组,所述第三最小保证功率组包 括N个最小保证功率,所述第三最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号,所述第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号。
可选的,所述第一类型上行信号包括承载ACK/NACK的物理上行控制信道PUCCH,所述第二类型上行信号包括承载URLLC业务的物理上行共享信道PUSCH。
可选的,所述第一指示信息包括N个指示元组,所述N个指示元组与N个时间段一一对应;每个指示元组中包括第一指示字段n1和第二指示字段n2;其中,n1和n2分别对应第一最小保证功率组和第三最小保证功率组。
可选的,所述第一小区组为多个小区组中的一个,所述方法还包括:
所述终端设备还接收网络设备发送的第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
上述终端设备的具体实现是与图3所示方法对应的,所以具体的实现方式描述以及对应的有益效果是一致的,所以此处不再赘述。
本申请实施例还提供另外一种网络设备,包括:
处理器,用于确定多个小区组用于功率分配的N个优先级;其中,所述N个优先级一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
收发器,用于给终端设备发送第三指示信息,所述第三指示信息指示所述N个优先级。
可选的,所述多个小区组包括所述第一小区组和第二小区组,所述优先级用于所述终端设备在任一时间段所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则根据所述任一时间段对应的优先级降低优先级低的小区组上发送的上行信号的发送功率。
可选的,所述第三指示信息包括N个指示字段,所述N个字段与N个时间段一一对应;其中,所述N个字段中的每一个用于指示对应时间段中所述第一小区组与所述第二小区组的优先级;N为正整数。
本申请实施例还提供另外一种终端设备,包括
收发器,用于接收网络设备发送的第三指示信息;其中,所述第三指示信息指示N个优先级;所述N个优先级用于任一时间段多个小区组进行功率分配,所述N个优先级一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
处理器,用于根据所述第三指示信息在任一时间段对所述小区组进行功率分配。
可选的,所述多个小区组包括所述第一小区组和第二小区组,所述优先级用于所述终端设备在任一时间段所述第一小区组和所述第二小区组上同时发送上行信号的总功率超过了最大发送功率,则根据所述任一时间段对应的优先级降低优先级低的小区组上发送的上行信号的发送功率。
可选的,所述第一小区组为主小区组;所述第二小区组为辅小区组。
可选的,所述第三指示信息包括N个指示字段,所述N个字段与N个时间段一一对应;其中,所述N个字段中的每一个用于指示对应时间段中所述第一小区组与所述第二小区组的优先级;N为正整数。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计 算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
上述本申请提供的实施例中,从终端作为执行主体的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。

Claims (24)

  1. 一种上行保证功率信息发送方法,其特征在于,该方法包括:
    确定在第一小区组发送上行信号的第一最小保证功率组,其中,所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
    向终端设备发送第一指示信息,其中,所述第一指示信息用于指示所述N个最小保证功率。
  2. 一种上行保证功率信息接收方法,其特征在于,该方法包括:
    接收第一指示信息,其中,所述第一指示信息用于指示第一最小保证功率组N个最小保证功率,所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,并且所述N个最小保证功率为终端设备在第一小区组发送上行信号的最小保证功率,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
    根据所述第一指示信息确定在所述第一小区组发送上行信号的最小保证功率。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息包括N个指示字段,所述N个字段与所述N个最小保证功率一一对应,所述N个字段中的每一个指示的最小保证功率是对应时间段中在所述第一小区组发送上行信号的最小保证功率。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一指示信息还指示所述第一最小保证功率组中的N个最小保证功率是否能够用于在第二小区组发送上行信号。
  5. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一指示信息还指示第二最小保证功率组,所述第二最小保证功率组包括N个最小保证功率,所述第二最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号,所述第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号。
  6. 如权利要求1至5中任一项任一所述的方法,其特征在于,所述第一指示信息还指示第三最小保证功率组,所述第三最小保证功率组包括N个最小保证功率,所述第三最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号,所述第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号。
  7. 如权利要求6所述的方法,其特征在于,所述第一类型上行信号包括承载ACK/NACK的物理上行控制信道PUCCH,所述第二类型上行信号包括承载URLLC业务的物理上行共享信道PUSCH。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一指示信息包括N个指示元组,所述N个指示元组与N个时间段一一对应,每个指示元组中包括第一指示字段n1和第二指示字段n2,其中,n1和n2分别对应第一最小保证功率组和第三最小保证功率组。
  9. 如权利要求1或3至8中任一项所述的方法,其特征在于,所述第一小区组为多个小区组中的一个,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
  10. 如权利要求2至8中任一项所述的方法,其特征在于,所述第一小区组为多个小区 组中的一个,所述方法还包括:
    接收网络设备发送的第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
  11. 一种网络设备,其特征在于,包括:
    处理器,用于确定在第一小区组发送上行信号的第一最小保证功率组,所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
    收发器,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述N个最小保证功率。
  12. 一种终端设备,其特征在于,包括:
    收发器,用于接收第一指示信息;其中,所述第一指示信息用于指示第一最小保证功率组N个最小保证功率;所述第一最小保证功率组包括N个最小保证功率,所述N个最小保证功率一一对应于N个时间段,并且所述N个最小保证功率为所述终端设备在第一小区组发送上行信号的最小保证功率,所述N个时间段为一个无线帧中包括的时间段,N为不小于2的正整数;
    处理器,用于根据所述第一指示信息确定在所述第一小区组发送上行信号的最小保证功率。
  13. 如权利要求11或12所述的设备,其特征在于,所述第一指示信息包括N个指示字段,所述N个字段与所述N个最小保证功率一一对应,所述N个字段中的每一个指示的最小保证功率是对应时间段中在所述第一小区组发送上行信号的最小保证功率。
  14. 如权利要求11至13中任一项所述的设备,其特征在于,所述第一指示信息还指示所述第一最小保证功率组中的N个最小保证功率是否能够用于在第二小区组发送上行信号。
  15. 如权利要求11至13中任一项所述的设备,其特征在于,所述第一指示信息还指示第二最小保证功率组,所述第二最小保证功率组包括N个最小保证功率,所述第二最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第二最小保证功率组中的所述N个最小保证功率仅用于在所述第一小区组发送上行信号,所述第一最小保证功率组中的N个最小保证功率能够用于在第二小区组发送上行信号。
  16. 如权利要求11至15中任一项所述的设备,其特征在于,所述第一指示信息还指示第三最小保证功率组,所述第三最小保证功率组包括N个最小保证功率,所述第三最小保证功率组中的所述N个最小保证功率一一对应于所述N个时间段,所述第三最小保证功率组中的所述N个最小保证功率用于在所述第一小区组发送第二类型上行信号,所述第一最小保证功率组中的N个最小保证功率用于在第一小区组发送第一类型上行信号。
  17. 如权利要求16所述的设备,其特征在于,所述第一类型上行信号包括承载ACK/NACK的物理上行控制信道PUCCH,所述第二类型上行信号包括承载URLLC业务的物理上行共享信道PUSCH。
  18. 如权利要求16或17所述的设备,其特征在于,所述第一指示信息包括N个指示元组,所述N个指示元组与N个时间段一一对应,每个指示元组中包括第一指示字段n1和第二指示字段n2,其中,n1和n2分别对应第一最小保证功率组和第三最小保证功率组。
  19. 如权利要求11或13至18中任一项所述的设备,其特征在于,所述第一小区组为多个小区组中的一个,则所述收发器还用于向所述终端设备发送第二指示信息,所述第二指 示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
  20. 如权利要求12至18中任一项所述的设备,其特征在于,所述第一小区组为多个小区组中的一个,则所述收发器还用于接收第二指示信息,所述第二指示信息指示所述N个时间段中所述多个小区组用于功率分配的优先级。
  21. 一种上行保证功率信息发送装置,其特征在于,包括:
    存储器,用于存储指令;以及
    处理器,用于执行所述指令,其中,当所述指令被执行时,使得所述装置实现权利要求1或3至9中任一项所述的方法。
  22. 一种上行保证功率信息接收装置,其特征在于,包括:
    存储器,用于存储指令;以及
    处理器,用于执行所述指令,其中,当所述指令被执行时,使得所述装置实现权利要求2至8或10中任一项所述的方法。
  23. 一种计算机存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10任一所述的方法。
  24. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至10任一项所述的方法。
PCT/CN2020/074553 2019-02-15 2020-02-07 一种上行保证功率信息发送、接收方法及设备 WO2020164444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910117891.1 2019-02-15
CN201910117891.1A CN111586819B (zh) 2019-02-15 2019-02-15 一种上行保证功率信息发送、接收方法及设备

Publications (1)

Publication Number Publication Date
WO2020164444A1 true WO2020164444A1 (zh) 2020-08-20

Family

ID=72045102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074553 WO2020164444A1 (zh) 2019-02-15 2020-02-07 一种上行保证功率信息发送、接收方法及设备

Country Status (2)

Country Link
CN (1) CN111586819B (zh)
WO (1) WO2020164444A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851809A (zh) * 2015-12-03 2017-06-13 华为技术有限公司 确定功率的方法及用户设备
US20170230843A1 (en) * 2014-08-08 2017-08-10 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and method
CN108024323A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 功率分配方法、功率调整方法、终端和接入网设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743267B2 (en) * 2006-11-08 2010-06-22 Xerox Corporation System and method for reducing power consumption in a device
US9282463B2 (en) * 2013-09-13 2016-03-08 Fujitsu Limited Spectrum sharing in white space bands using joint power control and channel assignment
US9357510B2 (en) * 2014-03-31 2016-05-31 Qualcomm Incorporated Power sharing and power headroom reporting in dual connectivity scenarios
WO2016122233A2 (ko) * 2015-01-28 2016-08-04 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
CN108377552B (zh) * 2016-11-04 2023-10-24 华为技术有限公司 一种功率控制方法和通信设备
WO2018174794A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Uplink power prioritization for short transmission time interval with partial knowledge of scheduling information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170230843A1 (en) * 2014-08-08 2017-08-10 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and method
CN106851809A (zh) * 2015-12-03 2017-06-13 华为技术有限公司 确定功率的方法及用户设备
CN108024323A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 功率分配方法、功率调整方法、终端和接入网设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Summary for Uplink Power Control For Supporting NR-NR Dual Connectivity", 3GPP DRAFT; R1-1901452, 25 January 2019 (2019-01-25), Taipei, Taiwan, pages 1 - 11, XP051601365 *

Also Published As

Publication number Publication date
CN111586819A (zh) 2020-08-25
CN111586819B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
EP3883315B1 (en) Method for switching between uplinks, communication apparatus, and communication system
US11039448B2 (en) Resource scheduling method and apparatus
US10834730B2 (en) Transmission direction configuration method, device, and system
WO2018228511A1 (zh) 通信方法、网络设备和终端
US20210243807A1 (en) Method, system and apparatus for new radio bandwidth part operations
RU2713603C1 (ru) Способ и устройство для пропуска передачи транспортного блока в зависимости от передачи управляющей информации восходящего канала
JP2022520588A (ja) 送信動作および受信動作を実行するユーザ機器およびシステム
WO2018202169A1 (zh) 一种功率控制方法和装置
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
US20230362924A1 (en) Transmission processing method and related device
WO2018228536A1 (zh) 功率余量的确定方法及网络设备
JP2019536351A (ja) 電力割振り方法、電力調整方法、端末、およびアクセスネットワークデバイス
US12004228B2 (en) Information transmission method, terminal device, and network device
WO2019137319A1 (zh) 一种用于反馈的方法、装置及系统
EP4152852A1 (en) Method for determining feedback information transmission location and device
CN111436085B (zh) 通信方法及装置
WO2019214523A1 (zh) 一种通信方法及装置
WO2019149073A1 (zh) 信息指示方法、终端设备、网络设备和系统
US20200351915A1 (en) Method of allocating uplink data packet resource and user equipment
WO2021036375A1 (zh) 一种通信方法和装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2020164444A1 (zh) 一种上行保证功率信息发送、接收方法及设备
WO2023005679A1 (zh) 资源分配方法、通信装置以及通信设备
WO2022077351A1 (zh) 通信方法和通信装置
WO2020143056A1 (zh) 一种发送上行信号的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756025

Country of ref document: EP

Kind code of ref document: A1