WO2020164398A1 - 无线链路监测rlm方法及装置 - Google Patents

无线链路监测rlm方法及装置 Download PDF

Info

Publication number
WO2020164398A1
WO2020164398A1 PCT/CN2020/074188 CN2020074188W WO2020164398A1 WO 2020164398 A1 WO2020164398 A1 WO 2020164398A1 CN 2020074188 W CN2020074188 W CN 2020074188W WO 2020164398 A1 WO2020164398 A1 WO 2020164398A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
counting unit
rlf
rlm
unit
Prior art date
Application number
PCT/CN2020/074188
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
郭英昊
赵力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164398A1 publication Critical patent/WO2020164398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • Radio link monitoring is introduced in the communication system to monitor whether the link of the serving cell can be used for data communication between wireless network devices and terminals.
  • the terminal determines that the radio link monitoring (RLF) fails, it will trigger the radio link re-establishment process or trigger the RLF to report to the base station.
  • RLM Radio link monitoring
  • this application provides a wireless link monitoring RLM method and device, in order to provide a more accurate RLM mechanism, thereby improving the accuracy of RLF.
  • a RLM method for radio link monitoring includes the following steps: when it is determined that the RLM reference signal RS is not successfully monitored, the first counting unit of the terminal is incremented by 1. When the first counting unit reaches the first preset number of times, the terminal determines that the radio link fails RLF. Alternatively, when the first counting unit reaches the first preset number of times, the terminal activates the first timing unit, and when the first timing unit expires, the terminal determines the RLF.
  • that the first counting unit reaches the first preset number of times means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is continuously RLM RS unsuccessful monitoring (the wireless link without IS) State or wireless link state without OOS), so that the first counting unit of the terminal continuously increases by 1, reaching the first preset number of times or reaching the first preset value, or it can also be called reaching the counting unit, such as Reached N310.
  • the first timing unit is activated when the count of the first counting unit reaches a first preset number of times, the first timing unit will run within a preset time, and when the first timing unit runs for the preset time, The unit expires at a certain time. Or, when recovering from a wireless link problem before the first timing unit expires, the first timing unit stops. Wherein, once the first timing unit is started, it will run until the first timing unit expires or stops. It can be started when the first timing unit is not running, or can be restarted when the first timing unit is running.
  • the first timing unit can be started or restarted from an initial value.
  • the initial value can be 0, that is, start timing from 0.
  • the running time (preset time) of the first timing unit will not change unless the timing unit is stopped or expired.
  • the first timing unit is described.
  • the description of the first timing unit is applicable to other timing units, such as the second timing unit.
  • the above-mentioned recovery from the wireless link problem refers to: during the operation of the first timing unit (the first timing unit preset time), when the physical layer of the terminal determines the IS, it will report to the terminal RRC layer (or MAC Layer or RLC layer, etc.) to transfer IS indications, when the terminal RRC layer (or MAC layer or RLC layer, etc.) received consecutive IS indications does not reach the number of consecutive counting units (such as Counter311 or N311), that is When the IS indicates that the preset value is not reached during the operation of the first timing unit, it is considered that it has not recovered from the radio link problem, the timing unit expires, and the terminal determines the RLF.
  • the number of consecutive counting units such as Counter311 or N311
  • the continuous IS means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is IS, and there is no other (RLM RS undetected or OOS) wireless Link status; or, the wireless link status determined by the terminal on multiple pre-configured RLM RS resources is IS, and the RLM RS may not monitor the successful wireless link status during the period.
  • the first counting unit of the terminal is incremented by 1, which may include the following steps:
  • the terminal physical layer When it is determined that the RLM reference signal RS is not successfully monitored, the terminal physical layer generates First instructions.
  • the first indication is used to indicate that the terminal has not successfully monitored the RLM RS or used to indicate that the first counting unit is increased by 1.
  • the physical layer of the terminal transmits the first indication to the RRC layer of the terminal.
  • the RRC layer of the terminal adds 1 to the first counting unit according to the first instruction.
  • the first indication may also be transmitted by the physical layer to other protocol layers such as the PDCP layer (or MAC layer) of the terminal.
  • the transmission of the first indication from the physical layer to the RRC layer is only an example, and this application does not limit this.
  • other protocol layers such as the PDCP layer (or MAC layer) of the terminal add 1 to the counting unit according to the first instruction.
  • the counting unit of the terminal can not only add 1 when it is determined that the RLM reference signal RS is not successfully monitored, but can also add 1 according to the first indication.
  • the first counting unit not only does the first counting unit increase by 1 when the terminal determines that the RLM RS is not successfully monitored, but also when the terminal determines OOS, the first counting unit also increases by 1. In other words, if the terminal fails to monitor the RLM RS (or the terminal according to the first instruction) or the terminal determines OOS, the first counting unit will all increase by 1.
  • the terminal determining OOS may be determined by the physical layer of the terminal, and transmitting the OOS indication to other protocol layers, such as the MAC layer or the RLC layer or the RRC layer. Therefore, the first counting unit of the terminal can also add 1 according to the OOS indication.
  • the same counting unit is used to count the number of unsuccessful RLM RS detection and the number of OOS.
  • the first counter is N310, it can be compatible with the counting unit in the prior art.
  • the number of the first indication (or the terminal determines that the RLM reference signal RS is not successfully monitored) and the number of OOS (or OOS indication) may also be counted in different counting units. That is, when the terminal determines OOS, the second counting unit of the terminal is incremented by 1, where the second counting unit and the first counting unit are different counting units. Specifically include the following steps:
  • the terminal When it is determined that the RLM reference signal RS is not successfully monitored, and/or, the terminal adds 1 to the first counting unit of the terminal according to the first instruction.
  • the terminal determines OOS the second counting unit of the terminal is incremented by 1.
  • the terminal determining OOS may be determined by the physical layer of the terminal, and transmitting the OOS indication to other protocol layers, such as the MAC layer or the RLC layer or the RRC layer. Therefore, the second counting unit of the terminal can also add 1 according to the OOS instruction.
  • the terminal determines that the radio link fails RLF.
  • the terminal activates the first timing unit, and when the first timing unit expires When the terminal determines RLF.
  • the terminal activates the first timing unit, and the first timing unit expires, and/or when the second counting unit counts up to the second preset number of times , The terminal activates the second timing unit, and when the second timing unit expires, the terminal determines RLF.
  • the first counting unit in the embodiments of the present application reaching the first preset number of times means: the terminal determines that the radio link status on the multiple pre-configured RLM RS resources is continuously RLM RS is not successfully monitored without being mixed with other (such as IS or OOS) wireless link status, so the first counting unit of the terminal continuously increases by 1 to reach the first preset number of times or reach the first preset value, or it can also be called Reach count units, such as N310.
  • the count of the second counting unit reaches the second preset number of times means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is continuously OOS without being mixed with other (such as IS Or the RLM RS failed to monitor the status of the radio link, so that the second counting unit of the terminal continuously increases by 1 to reach the second preset number of times or reach the second preset value, or it may also be referred to as reaching the counting unit.
  • the first preset number of times and the second preset number of times may be the same or different.
  • the terminal when the terminal determines that the number of consecutive ISs reaches the third preset number, the first counting unit and/or the second counting unit are reset (or cleared).
  • the third preset number of times may be one time or multiple times in succession, which is not limited in this application.
  • the number of consecutive ISs here only refers to: within a preset time, the terminal determines that the status of the wireless link is IS, and no other wireless link status is mixed during the period, for example, the wireless link is not mixed with OOS. The link status, and/or, is not mixed with the RLM reference signal RS that has not successfully monitored the wireless link status.
  • the method may further include: the terminal sends a second indication to the RAN device, where the second indication is used to indicate the RLF type.
  • the RLF type includes: the RLF is a failure caused by OOS. Or, the RLF is a failure caused by unsuccessful monitoring of the RLM RS.
  • the RAN device determines, according to the second instruction, whether to perform a secondary cell group (Secondary Cell Group, SCG) change. Specifically, when the RLF type is a failure caused by OOS, the RAN device determines that the RLF type is a failure caused by OOS according to the second instruction, and executes the SCG change. Or, when the RLF type is a failure caused by the first indication, the SCG change is not performed.
  • SCG Secondary Cell Group
  • the RLM method provided in the embodiment of the present application may further include: the terminal sends the RLF to the RAN device. Or, the terminal triggers the wireless link re-establishment process.
  • an RLM device which includes units or means for performing the steps of the above first aspect and various embodiments of the first aspect.
  • an RLM device including a processor and a memory, the memory is used to store a program, and the processor invokes the program stored in the memory to execute the method provided in the first aspect of the application and various implementation manners of the first aspect.
  • the present application provides an RLM device, which includes at least one processing element (or chip) for executing the methods in the first aspect and various implementations of the first aspect.
  • the present application provides a program, which is used to execute the above first aspect and the methods of the various implementation manners of the first aspect when the program is executed by a processor.
  • a sixth aspect provides a program product, such as a computer-readable storage medium, including the program of the fifth aspect.
  • Figure 1 is a schematic diagram of a communication scenario in an embodiment of the application
  • FIG. 2 is a schematic diagram of a control plane protocol stack followed by a terminal and a RAN device in an embodiment of the application;
  • FIG. 3 is a schematic diagram of an RLM method provided by an embodiment of the application.
  • step S310 is a schematic diagram of a specific implementation method of step S310 according to an embodiment of this application.
  • FIG. 5 is a schematic diagram of another RLM method provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another RLM method provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another RLM method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of an RLM device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another RLM device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another RLM device provided by an embodiment of the application.
  • a terminal also known as User Equipment (UE)
  • UE User Equipment
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablet computers, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, such as smart watches, smart bracelets, and pedometers.
  • MID mobile internet devices
  • a base station also known as a radio access network (Radio Access Network, RAN) device, is a device that connects a terminal to a wireless network, including but not limited to: evolved Node B (evolved Node B, eNB) , Radio network controller (RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home Evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU).
  • RNC Radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS Base Transceiver Station
  • home base station for example, Home Evolved NodeB, or Home Node B, HNB
  • BBU BaseBand Unit
  • Wifi access point Access Point
  • the unit (or entity) in this application refers to a functional unit (or entity) or a logical unit (or entity). It can be in the form of software, and its function is realized by the processor executing the program code; it can also be in the form of hardware.
  • Multiple means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • the range described by “above” or “below” includes boundary points.
  • FIG. 1 is a schematic diagram of a communication scenario in an embodiment of the application.
  • a terminal 110 accesses a wireless network through a RAN device 120 to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other terminals through the wireless network.
  • an external network such as the Internet
  • the terminal 110 and the RAN device 120 follows the air interface protocol.
  • FIG. 2 is a schematic diagram of a control plane protocol stack followed by a terminal and a RAN device in an embodiment of the application.
  • the terminal’s protocol stack includes a non-access (Non-Access Stratum, NAS) layer, a radio resource control (Radio Resource Control, RRC) layer, and a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer.
  • Radio Link Control (RLC) layer, Media Access Control (MAC) layer, and physical (PHY) layer are examples of the PDCP layer, the RLC layer and the MAC layer constitute a layer 2 (L2) protocol stack.
  • the main functions of the NAS layer include: carrying out evolved packet system (evolved packet system, EPS) bearer management, authentication, EPS connection management, idle mobility processing, security control, etc.
  • the main functions of the RRC layer include: broadcast, paging, RRC connection management, RB control, mobility functions, UE measurement reporting and control, etc.
  • the main functions of the PDCP layer include encryption/decryption, header compression/decompression, integrity protection, etc.
  • the main functions of the RLC layer include: segmentation, splicing, reordering, automatic repeat request (ARQ), etc.
  • the main functions of the MAC layer include multiplexing, scheduling, and hybrid automatic repeat request (HARQ).
  • HARQ hybrid automatic repeat request
  • the communication quality of the wireless link may be lower than a certain level due to the mobility of the terminal and the stability of the RAN device. Threshold, which means that it causes wireless link problems. Therefore, the radio link needs to be monitored.
  • the traditional method of radio link monitoring is: the physical layer of the terminal will measure the RLM RS from the RAN device.
  • the RLM RS can be a synchronization signal and a physical broadcast channel block (Synchronization Signal and PBCH block (SSB) or channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) are used to determine the PDCCH quality, where the PDCCH quality is a preset block error rate.
  • SSB Synchronization Signal and PBCH block
  • CSI-RS Channel State Information-Reference Signal
  • the physical layer of the terminal determines the synchronization (In Sync, IS), and indicates the IS to the RRC layer of the terminal.
  • the physical layer of the terminal determines out of sync (OOS), and indicates OOS to the RRC layer of the terminal, and the terminal counting unit adds 1 according to the OOS indication, such as the counting unit 310 (Counter310 or It is called N310) or other counting unit.
  • OOS out of sync
  • N310 the counting unit 310
  • the timing unit is activated, such as the timing unit 310 (Timer310 or T310).
  • the terminal determines RLF and then performs RLF reporting. Process or trigger the wireless link re-establishment process.
  • the above method is applicable in the scenario of a licensed spectrum cell.
  • the RAN device needs to determine whether the resources prepared to send the RLM RS are already occupied:
  • the RAN device performs the radio channel access process (channel access process), in other words, it needs to listen before talk (LBT) to determine whether the resource for sending the RLM RS has been occupied.
  • LBT listen before talk
  • the existing radio link monitoring method is used to perform radio link monitoring on the scene of the unlicensed spectrum cell, during the LBT of the RAN device, or the LBT has not yet succeeded, because the RLM RS cannot be sent, the terminal cannot monitor the RLM RS.
  • the terminal will confirm the out of synchronization (OOS) prematurely, but the actual reason is that the RAN device has not sent the RLM RS, so there is a misjudgment, and the RLF is determined prematurely.
  • OOS out of synchronization
  • this application provides an RLM method and device to solve the above-mentioned problem of RLM in unlicensed spectrum cells, in order to improve the accuracy of RLF.
  • FIG. 3 is an example diagram of an RLM method provided by an embodiment of this application.
  • the method includes the following steps:
  • the first counting unit of the terminal is incremented by 1.
  • the RLM RS may be SSB or CSI-RS, which is only an example here, and this application does not limit the RLM RS.
  • S320' When the first counting unit reaches the first preset number of times, the terminal activates the first timing unit, and when the first timing unit expires, the terminal determines the RLF.
  • the first counting unit in this application may also be called a counter, such as counter310 (N310) or other counting units
  • the first timing unit may also be called a timer, such as Timer310 (T310) or other timing units, this application
  • timer310 Timer310
  • the count of the first counting unit reaching the first preset number of times means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is that the RLM RS is not monitored successfully (not mixed).
  • IS wireless link status or wireless link status not mixed with OOS so that the first counting unit of the terminal continuously increases by 1 to reach the first preset number of times or reach the first preset value, or it can also be called the reached count
  • the number of units such as N310.
  • the first timing unit is activated when the count of the first counting unit reaches a first preset number of times, the first timing unit will run within a preset time, and when the first timing unit runs for the preset time, The unit expires at a certain time. Or, when recovering from a wireless link problem before the timing unit expires, the first timing unit stops. Wherein, once the first timing unit is started, it will run until the first timing unit expires or stops. It can be started when the first timing unit is not running, or can be restarted when the first timing unit is running.
  • the first timing unit can be started or restarted from an initial value.
  • the initial value can be 0, that is, start timing from 0.
  • the running time (preset time) of the first timing unit will not change unless the timing unit is stopped or expired.
  • the first timing unit is described.
  • the description of the first timing unit is applicable to other timing units, such as the second timing unit.
  • the recovery from the wireless link problem refers to: during the operation of the first timing unit (the first timing unit preset time), when the terminal physical layer determines IS, it will report to the terminal RRC layer (or MAC layer or The RLC layer, etc.) transmits IS indications.
  • the terminal RRC layer or MAC layer or RLC layer, etc.
  • receives consecutive IS indications for less than the number of consecutive counting units such as Counter311 or N311
  • the timing unit expires, and the terminal determines the RLF.
  • the continuous IS means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is IS, and there is no other (RLM RS undetected or OOS) wireless Link status; or, the wireless link status determined by the terminal on multiple pre-configured RLM RS resources is IS, and the RLM RS may not monitor the successful wireless link status during the period.
  • the terminal performs the above step S310, and by adding the RLM reference signal RS monitoring success or failure as the basis for monitoring the wireless link, in the scenario of the unlicensed spectrum cell, it can accurately identify the wireless link of the unlicensed spectrum cell If the RLM RS is not sent due to LBT failure, it will not be judged as OOS and prematurely determined as RLF, which greatly improves the accuracy of RLF in the scenario of unlicensed spectrum cells.
  • step S320 is executed. This method is not only simple in flow, but also can save wireless resources. Alternatively, after the terminal executes step S310, step S320' is executed. Since the process of recovering from the wireless link problem during the operation of the first timing unit is added, the RLF result of this method is more accurate.
  • step S310 in an optional manner, referring to FIG. 4, may include the following steps:
  • the terminal physical layer When it is determined that the RLM reference signal RS is not successfully monitored, the terminal physical layer generates a first indication.
  • the first indication is used to indicate that the terminal has not successfully monitored the RLM RS or used to indicate that the first counting unit is increased by 1.
  • S420 The physical layer of the terminal transmits the first indication to the RRC layer of the terminal.
  • the first indication may also be transmitted by the physical layer to other protocol layers such as the PDCP layer (or MAC layer) of the terminal.
  • the transmission of the first indication from the physical layer to the RRC layer is only an example, and this application does not limit this.
  • other protocol layers such as the PDCP layer (or MAC layer) of the terminal add 1 to the counting unit according to the first instruction.
  • the first counting unit not only does the first counting unit increase by 1 when the terminal determines that the RLM RS is not successfully monitored, but also when the terminal determines OOS, the first counting unit also increases by 1. In other words, if the terminal fails to monitor the RLM RS (or the terminal according to the first instruction) or the terminal determines OOS, the first counting unit will all increase by 1.
  • FIG. 5 is an RLM method provided by an embodiment of this application, which specifically includes the following steps:
  • the terminal determining OOS may be determined by the physical layer of the terminal, and transmitting the OOS indication to other protocol layers, such as the MAC layer or the RLC layer or the RRC layer. Therefore, the first counting unit of the terminal can also add 1 according to the OOS indication.
  • S520' When the first counting unit reaches the first preset number of times, the terminal activates the first timing unit, and when the first timing unit expires, the terminal determines RLF.
  • the first counting unit in the embodiment of the present application reaches the first preset number of times refers to: the terminal determines that the state of the wireless link on the multiple pre-configured RLM RS resources is not whether the RLM RS is not successfully monitored or OOS (no IS The state of the wireless link), so that the first counting unit of the terminal continuously increases by 1 to reach the first preset number of times or the first preset value, or it can also be referred to as reaching the counting unit, such as reaching N310.
  • the first counting unit may be N310, and the first timing unit may be T310, which can not only solve the problem of accurate RLM monitoring of unlicensed spectrum cells, but also It can also be compatible with the existing technology.
  • the timing unit and counting unit are only examples.
  • the above-mentioned first timing unit or first counting unit may also be defined as other timing units or counting units, which is not limited in this application.
  • the number of first indications (or the terminal determines that the RLM reference signal RS is not successfully monitored) and the number of OOS (or OOS indications) can also be counted in different counting units. . That is, when the terminal determines OOS, the second counting unit of the terminal is incremented by 1, where the second counting unit and the first counting unit are different counting units.
  • FIG. 6 is an RLM method provided by an embodiment of this application, which specifically includes the following steps:
  • the terminal determining OOS may be determined by the physical layer of the terminal, and transmitting the OOS indication to other protocol layers, such as the MAC layer or the RLC layer or the RRC layer. Therefore, the second counting unit of the terminal can also add 1 according to the OOS instruction.
  • step S610 and step S612 are independent of each other, and the two are in no particular order.
  • S620' when the first counting unit reaches the first preset number of times, and/or, when the second counting unit counts to the second preset number of times, the terminal activates the first timing unit, and when the first timing unit expires When full, the terminal determines RLF.
  • the first counting unit reaches the first preset number of times means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is that the RLM RS is not successfully monitored without being mixed with others. (Such as IS or OOS) wireless link status, so that the first counting unit of the terminal continuously increases by 1, reaching the first preset number of times or reaching the first preset value, or it can also be called reaching the counting unit, such as reaching N310 .
  • the count of the second counting unit reaches the second preset number of times means that the wireless link status determined by the terminal on the multiple pre-configured RLM RS resources is continuously OOS without being mixed with other (such as IS Or the RLM RS failed to monitor the status of the radio link, so that the second counting unit of the terminal continuously increases by 1 to reach the second preset number of times or reach the second preset value, or it may also be referred to as reaching the counting unit.
  • the first preset number of times and the second preset number of times may be the same or different.
  • S620 When the first counting unit reaches the first preset number of times, the terminal starts the first timing unit, and the first timing unit expires, and/or, when the second counting unit counts up to the second preset number of times When the second timing unit is activated, the terminal determines the RLF when the second timing unit expires.
  • the expiration description of the first timing unit is the same as the embodiment shown in FIG. 3 above.
  • the description of the expiration of the second timing unit is similar to the expiration of the first timing unit, and will not be repeated here.
  • the counting of IS (IS indication) mentioned in this application can all be counted by N311, optionally, it can also be counted by other different counting units, which is not limited in this application.
  • the preset number of consecutive IS (IS indications) during the operation of the first timing unit and the operation of the second timing unit may also be different, for example, not all N311, which is not limited in this application.
  • step S610 when step S620 is adopted, the RLM test method is simple.
  • step S620' a timing unit (for example, Timer310) is compatible with the prior art.
  • step S620' different counting units and different timing units are used to process the first indication (RLM reference signal). RS is not successfully monitored), OOS (or OOS indication), RLM measurement results are more accurate.
  • the terminal when the terminal determines that the number of consecutive ISs reaches the third preset number, the first counting unit and/or the second counting unit are reset (or cleared).
  • the third preset number of times may be one time or multiple times in succession, which is not limited in this application.
  • the number of consecutive ISs here only refers to: within a preset time, the terminal determines that the status of the wireless link is IS, and no other wireless link status is mixed during the period, for example, the wireless link is not mixed with OOS. The link status, and/or, is not mixed with the RLM reference signal RS that has not successfully monitored the wireless link status.
  • FIG. 7 is an RLM monitoring method provided in an embodiment of this application.
  • the method may further include:
  • the terminal sends a second indication to the RAN device, where the second indication is used to indicate the RLF type.
  • the RLF type includes: the RLF is a failure caused by OOS. Or, the RLF is a failure caused by unsuccessful monitoring of the RLM RS.
  • S720 The RAN device determines, according to the second instruction, whether to perform a secondary cell group (Secondary Cell Group, SCG) change. Specifically, when the RLF type is a failure caused by OOS, the RAN device determines that the RLF type is a failure caused by OOS according to the second instruction, and executes the SCG change. Or, when the RLF type is a failure caused by the first indication, the SCG change is not performed.
  • SCG Secondary Cell Group
  • the RLM method provided in the embodiment of the present application may further include: the terminal sends the RLF to the RAN device. Or, the terminal triggers the wireless link re-establishment process.
  • the method disclosed in the above embodiments may be executed by an RLM device, and the RLM device may be a terminal, or the RLM device may be a part of the terminal.
  • the RLM device includes units that perform all or part of the steps in any of the above methods.
  • the RLM device 800 includes a first counting unit 810 and a determining unit 820.
  • the first counting unit 810 is configured to add 1 when the RLM reference signal RS is not successfully monitored.
  • the determining unit 820 is configured to determine that the radio link fails RLF when the count 810 of the first counting unit reaches a first preset number of times.
  • the determining unit 820 is configured to activate the first timing unit when the count by the first counting unit 810 reaches the first preset number of times, and determine the RLF when the first timing unit expires.
  • the first counting unit 810 may be N310 or other counting units
  • the first timing unit may be T310 or other timing units.
  • the present application does not limit the counting unit or timing unit.
  • the description of the first counting unit 810 counting reaching the first preset number of times and the description of the expiration of the first timing unit are the same as the above method embodiments, and will not be repeated here.
  • the radio link of the unlicensed spectrum cell is not sent due to LBT failure and the RLM RS is not transmitted. It will be judged as OOS and prematurely determined as RLF, which greatly improves the accuracy of RLF in the scenario of unlicensed spectrum cells.
  • the RLM device 800 may further include a generating unit 830 configured to generate a first indication at the physical layer of the device 800 when the RLM reference signal RS is not successfully monitored. Wherein, the first indication is used to indicate that the RLM RS is not successfully monitored or used to indicate that the first counting unit is increased by 1.
  • the RLM device 800 may further include a transferring unit 840, configured to transfer the first indication from the physical layer of the device 800 to the radio resource control RRC layer of the device 800. The first counting unit is incremented by 1 in the RRC layer of the device 800 according to the first instruction.
  • the first indication may be transmitted by the physical layer to the PDCP layer (or MAC layer) of the device 800 and other protocol layers.
  • the transmission of the first indication from the physical layer to the RRC layer is only an example, and this application does not limit this.
  • other protocol layers such as the PDCP layer (or MAC layer) of the device 800 increase the first counting unit 810 by 1 according to the first instruction.
  • the first counting unit 810 is further configured to add 1 when the device 800 determines that OOS is out of synchronization.
  • determining the OOS may be that the physical layer of the device 800 determines the OOS, and transmits the OOS indication to other protocol layers, such as the MAC layer or the RLC layer or the RRC layer. Therefore, the first counting unit of the device 800 can also add 1 according to the OOS indication.
  • the times of the first indication (or it is determined that the RLM reference signal RS is not successfully monitored) and the times of OOS (or OOS indication) may also be counted in different counting units.
  • the device 900 may include the above devices in addition to 800, may also include a second counting unit 910 for adding 1 when it is determined that the out-of-synchronization OOS is determined. Further, the determining unit 820 may also be configured to activate the second timing unit when the count by the second counting unit 910 reaches a second preset number of times, and when the second timing unit expires , Determine RLF.
  • the device 900 may further include a second determining unit 920 (not shown in the figure), and the second determining unit 920 is configured to activate the second determining unit 910 when the count reaches a second preset number of times.
  • the second timing unit and when the second timing unit expires, the RLF is determined.
  • the first counting unit reaches the first preset number of times
  • the second counting unit counts reaches the second preset number of times
  • the first timing unit expires expires
  • the description of the second timing unit expires is the same as the above method The embodiments are not repeated here.
  • the terminal when the terminal determines that the number of consecutive ISs reaches the third preset number, the first counting unit and/or the second counting unit are reset (or cleared).
  • the third preset number of times may be one time or multiple times in succession, which is not limited in this application.
  • the number of consecutive ISs here only refers to: within a preset time, the terminal determines that the status of the wireless link is IS, and no other wireless link status is mixed during the period, for example, the wireless link is not mixed with OOS.
  • the link status and/or the RLM reference signal RS is not included in the status of the wireless link that is not successfully monitored.
  • the apparatus 800 and/or the apparatus 900 may further include a first sending unit 860, configured to send a second indication to the RAN device, where the second indication is used to indicate the RLF Types of.
  • the RLF type includes: the RLF is a failure caused by OOS; or, the RLF is a failure caused by unsuccessful monitoring of the RLM RS.
  • the apparatus 800 and/or the apparatus 900 may further include a second sending unit 870 for sending the RLF to the RAN device.
  • the device 800 and/or the device 900 may further include a trigger unit 880 for triggering the wireless link re-establishment process.
  • the above division of the units of the RLM device 800 or the RLM device 900 is only a division of logical functions, and may be fully or partially integrated into one physical entity during actual implementation, or may be physically separated.
  • these units can all be implemented in the form of software invocation through processing elements; they can also be implemented in the form of hardware; part of the units can also be implemented in the form of software invocation through processing elements, and some of the units can be implemented in the form of hardware.
  • the processing unit may be a separate processing element, or it may be integrated in a certain chip of the terminal for implementation.
  • it may also be stored in the memory of the terminal in the form of a program, which is called and executed by a certain processing element of the terminal. The function of each unit.
  • each step of the above method or each of the above units can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital singnal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 10 is a schematic structural diagram of an RLM device 1000 according to an embodiment of the application.
  • the RLM device 1000 includes a processor 1010 and a memory 1020.
  • the processor 1010 executes various functional applications and data processing of the terminal or other devices by running software programs, instructions, and modules stored in the memory 1020, so as to implement the above-mentioned RLM method.
  • the RLM apparatus 1000 may further include a transceiver 1030, which is used to communicate with other network equipment or communication networks.
  • the RLM apparatus 1000 may be a terminal or belong to a part of the terminal.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Abstract

本申请实施例提供的一种RLM方法,包括:当确定RLM参考信号RS未监测成功时,终端的第一计数单元1。当第一计数单元达到第一预设次数时,终端确定无线链路失败RLF。或者,当第一计数单元达到第一预设次数时,终端启动第一定时单元,且当第一定时单元期满时,终端确定RLF。从而提高了非授权频谱小区的RLF准确性。

Description

无线链路监测RLM方法及装置
本申请要求于2019年2月14日提交中国专利局、申请号为201910114215.9、申请名称为“无线链路监测RLM方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
通信系统中引入了无线链路监测(radio link monitoring,RLM),以监测服务小区的链路是否可用于无线网络设备与终端之间的数据通信。当终端确定无线链路失败(radio link monitoring,RLF)时,就会触发无线链路重建立过程或者触发RLF上报给基站。随着通信系统的新频谱新带宽的引入以及复杂度提升,RLM在无线通信过程中的作用也越来越重要,因此,需要提供更加准确的RLM方法,以提高RLF的准确性。
发明内容
有鉴于此,本申请提供无线链路监测RLM方法及装置,以期提供更加准确的RLM机制,从而提高RLF的准确性。
第一方面,提供一种无线链路监测RLM方法,包括以下步骤:当确定RLM参考信号RS未监测成功时,终端的第一计数单元加1。当所述第一计数单元达到第一预设次数时,所述终端确定无线链路失败RLF。或者,当所述第一计数单元达到第一预设次数时,所述终端启动第一定时单元,且当所述第一定时单元期满(expire)时,所述终端确定RLF。
其中,所述的第一计数单元达到第一预设次数是指:终端在预配置的多个RLM RS资源上确定的无线链路状态连续都为RLM RS未监测成功(不夹杂IS的无线链路状态或者不夹杂OOS的无线链路状态),从而终端的第一计数单元连续加1,达到第一预设次数或者说达到第一预设值,或者还可以称为达到计数单元个,如达到N310个。
所述的第一定时单元在所述第一计数单元计数达到第一预设次数时启动,第一定时单元会在预设时间内运行,当第一定时单元运行达到该预设时间时,第一定时单元期满。或者,当在第一定时单元期满之前从无线链路问题中恢复时,第一定时单元停止。其中,第一定时单元一旦启动便会运行,直到该第一定时单元期满或者停止。当第一定时单元没有在运行时可以启动,或者当第一定时单元正在运行可以重新启动。 第一定时单元可以从一个初始值启动或者重新启动,如该初始值可以为0,即从0开始计时。第一定时单元的运行时间(预设时间)不会改变除非该定时单元停止或者期满。此处,为了便于说明,只是针对第一定时单元进行描述,可选的,对第一定时单元的描述适用于其他定时单元,如,第二定时单元等。
其中,上述的从无线链路问题中恢复与否是指:在第一定时单元运行期间(第一定时单元预设时间内),当终端物理层确定IS时,会向终端RRC层(或者MAC层或者RLC层等)传递IS指示,当终端RRC层(或者MAC层或者RLC层等)收到连续的IS指示的次数未达到连续计数单元(如Counter311或称为N311)个时,也即是在第一定时单元运行期间IS指示没有到达预设值时,就认为是没有从无线链路问题中恢复,定时单元期满,终端确定RLF。此外,当在第一定时单元运行期间(或者说第一定时单元期满之前),连续的IS指示的次数达到连续计数单元(如Counter311或称为N311)个时,就认为是从无线链路问题中恢复,第一定时单元也会停止计时。其中,所述连续的IS(IS指示)是指所述终端在预配置的多个RLM RS资源上确定的无线链路状态都为IS,期间没有夹杂其他(RLM RS未检测成功或者OOS)无线链路状态;或者,所述终端在预配置的多个RLM RS资源上确定的无线链路状态为IS,期间可以夹杂RLM RS未监测成功无线链路状态。
可见,通过增加将RLM参考信号RS监测成功与否作为监测无线链路的依据,在非授权频谱小区的场景下,便可以准确的识别出该非授权频谱小区的无线链路由于LBT失败导致RLM RS未发送的情况下,从而不会被判断为OOS而过早的确定为RLF,大大提高了非授权频谱小区场景下的RLF的准确性。
在一种实施方式中,所述的当确定RLM参考信号RS未监测成功时,终端的第一计数单元加1,可以包括以下步骤:当确定RLM参考信号RS未监测成功时,终端物理层生成第一指示。其中,第一指示用于指示终端未成功监测RLM RS或用于指示将第一计数单元加1。终端物理层将第一指示传递给终端RRC层。终端RRC层根据第一指示,将第一计数单元加1。
可选的,该第一指示还可以是由物理层传递给终端PDCP层(或者MAC层)等其他协议层。此处该第一指示由物理层传递给RRC层仅为示例,本申请对此不做限制。进一步的,终端PDCP层(或者MAC层)等其他协议层根据该第一指示,将所述计数单元加1。
可见,终端的计数单元不仅可以当确定RLM参考信号RS未监测成功时加1,还 可以根据第一指示加1。
在一种实施方式中,不仅当终端确定RLM RS未监测成功时,第一计数单元加1,而且,当终端确定OOS时,第一计数单元也加1。换句话说,终端未成功监测RLM RS(或者说终端根据第一指示)或者终端确定OOS,第一计数单元都会加1。
可选的,终端确定OOS可以是由终端物理层确定该OOS,并向其他协议层,如MAC层或者RLC层或者RRC层等,传递OOS指示。从而终端的第一计数单元还可以根据该OOS指示加1。
可见,通过采用同一个计数单元统计RLM RS未检测成功的次数以及OOS的次数,示例的,当该第一计数器为N310时,可以兼容现有技术中的计数单元。
在一种实施方式中,第一指示(或者终端确定RLM参考信号RS未监测成功)的次数与OOS(或者OOS指示)的次数还可以在不同的计数单元计数。也就是说,当终端确定OOS时,终端的第二计数单元加1,其中,第二计数单元与第一计数单元为不同的计数单元。具体包括以下步骤:
当确定RLM参考信号RS未监测成功时,和/或,终端根据第一指示,终端的第一计数单元加1。当终端确定OOS时,终端的第二计数单元加1。可选的,终端确定OOS可以是由终端物理层确定该OOS,并向其他协议层,如MAC层或者RLC层或者RRC层等,传递OOS指示。从而终端的第二计数单元还可以根据OOS指示加1。
当第一计数单元达到第一预设次数时,和/或,当第二计数单元计数达到第二预设次数时,终端确定无线链路失败RLF。
可选的,当第一计数单元达到第一预设次数时,和/或,当第二计数单元计数达到第二预设次数时,终端启动第一定时单元,且当第一定时单元期满时,终端确定RLF。
可选的,当第一计数单元达到第一预设次数时,终端启动第一定时单元,且第一定时单元期满时,和/或,当第二计数单元计数达到第二预设次数时,终端启动第二定时单元,且第二定时单元期满时,终端确定RLF。
其中,在本申请实施方式中,本申请实施例中所述的第一计数单元达到第一预设次数是指:终端在预配置的多个RLM RS资源上确定的无线链路状态连续都为RLM RS未监测成功而不夹杂其他(如IS或者OOS)无线链路状态,从而终端的第一计数单元连续加1,达到第一预设次数或者达到第一预设值,或者还可以称为达到计数单元个,如达到N310个。本申请实施例中所述的第二计数单元计数达到第二预设次数是指:终端在预配置的多个RLM RS资源上确定的无线链路状态连续都为OOS而不 夹杂其他(如IS或者RLM RS未监测成功)无线链路状态,从而终端的第二计数单元连续加1,达到第二预设次数或者达到第二预设值,或者还可以称为达到计数单元个。可选的,第一预设次数和第二预设次数可以相同可以不同。
其中,第一定时单元期满的描述以及第二定时单元期满的描述同以上所述的实施方式,此处不再赘述。
可见,通过采用本申请实施方式,采用不同的计数单元,和/或不同的定时单元来分别处理第一指示(RLM参考信号RS未监测成功)、OOS(或者OOS指示),RLM测量结果更准确。
在以上各个实施方式中,当终端确定连续的IS次数达到第三预设次数时,第一计数单元和/或第二计数单元重置(或者说是清零)。其中,所述的第三预设次数可以是一次,也可以是连续多次,本申请对此不作限制。需要说明的是,此处连续的IS次数仅仅是指:在预设时间内,所述终端确定无线链路的状态都为IS,期间不夹杂任何其他无线链路状态,例如不夹杂OOS的无线链路状态,和/或,不夹杂RLM参考信号RS未监测成功的无线链路状态。
在以上各个实施方式中,当终端根据以上各个实施例方法确定RLF后,该方法还可以包括:终端向RAN设备发送第二指示,该第二指示用于指示RLF类型。其中,RLF类型包括:所述RLF是由于OOS导致的失败。或者,所述RLF是由于RLM RS未监测成功导致的失败。该RAN设备根据第二指示决定是否需要执行辅小区组(Secondary Cell Group,SCG)的变更。具体的,当所述RLF类型为由OOS导致的失败时,该RAN设备根据第二指示确定所述RLF类型为由OOS导致的失败,执行所述SCG变更。或者,当所述RLF类型为由第一指示导致的失败时,不执行所述SCG变更。
在以上各个实施方式中,当终端确定RLF后,本申请实施例提供的RLM方法还可以包括:终端向RAN设备发送所述RLF。或者,终端触发无线链路重新建立过程。
第二方面,提供一种RLM装置,包括用于执行以上第一方面以及第一方面的各种实施方式的各个步骤的单元或手段(means)。
第三方面,提供一种RLM装置,包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面以及第一方面的各种实施方式提供的方法。
第四方面,本申请提供一种RLM装置,包括用于执行以上第一方面以及第一方 面的各种实施方式的方法的至少一个处理元件(或芯片)。
第五方面,本申请提供一种程序,该程序在被处理器执行时用于执行以上第一方面以及第一方面的各种实施方式的方法。
第六方面,提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
附图说明
图1为本申请实施例中一种通信场景的示意图;
图2为本申请实施例中一种终端与RAN设备通信所遵循的控制面协议栈的示意图;
图3为本申请实施例提供的一种RLM方法的示意图;
图4为本申请实施例提供的一种步骤S310具体实施方法的示意图;
图5为本申请实施例提供的另一种RLM方法的示意图;
图6为本申请实施例提供的另一种RLM方法的示意图;
图7为本申请实施例提供的另一种RLM方法的示意图;
图8为本申请实施例提供的一种RLM装置的示意图;
图9为本申请实施例提供的另一种RLM装置的示意图;
图10为本申请实施例提供的另一种RLM装置的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其它实施例,都属于本申请保护的范围。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、基站,又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、 无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)。此外,还可以包括Wifi接入点(Access Point,AP)等。
3)、本申请中的单元(或实体)是指功能单元(或实体)或逻辑单元(或实体)。其可以为软件形式,通过处理器执行程序代码来实现其功能;也可以为硬件形式。
4)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。以上”或“以下”等所描述的范围包括边界点。
请参考图1,其为本申请实施例中一种通信场景的示意图。如图1所示,终端110通过RAN设备120接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。
终端110与RAN设备120之间的通信遵循空口协议。请参考图2,其为本申请实施例中一种终端与RAN设备通信所遵循的控制面协议栈的示意图。如图2所示,终端的协议栈包括非接入(Non-Access Stratum,NAS)层,无线资源控制(Radio Resource Control,RRC)层,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层,无线链路控制(Radio Link Control,RLC)层,媒体接入控制(Media Access Control,MAC)层,和物理(physical,PHY)层。其中,PDCP层、RLC层和MAC层构成层2(L2)协议栈。
目前,NAS层得主要功能包括:执行演进分组系统(evolved packet system,EPS)承载管理、鉴权,EPS连接管理,未激活(idle)移动性处理,安全控制等。RRC层主要功能包括:有广播、寻呼、RRC连接管理、RB控制、移动性功能、UE测量上报和控制等。PDCP层的主要功能包括加/解密,头压缩/解头压缩,完整性保护等。RLC层的主要功能包括:分段,拼接,重排序,自动重传请求(automatic repeat request,ARQ)等。MAC层的主要功能包括复用,调度,混合自动重传请求(hybrid automatic repeat request,HARQ)等。
在实际通信过程中,即使是终端和RAN设备之间的无线链路已经初始连接过,但是可能由于终端的移动性,RAN设备的稳定性等,导致该无线链路的通信质量低于一定的阈值,也就是说导致了无线链路问题。所以需要对无线链路进行监测,传统的 无线链路监测的方法为:终端物理层会针对来自RAN设备的RLM RS进行测量,示例的,该RLM RS可以是同步信号和物理广播信道块(Synchronization Signal and PBCH block,SSB)或者信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),来确定PDCCH质量,其中,PDCCH质量为一个预设的的误块率。当PDCCH质量低于第一门限,终端物理层确定同步(In Sync,IS),并向终端RRC层指示IS。或者,当PDCCH质量高于第二门限,终端物理层确定失步(out of sync,OOS),并向终端RRC层指示OOS,且终端计数单元根据OOS指示加1,如计数单元310(Counter310或者称为N310)或者其他计数单元,当计数单元计数达到预设次数时,启动定时单元,如定时单元310(Timer310或者称为T310),当定时单元期满时,终端确定RLF,之后执行RLF上报过程或者触发无线链路重建立过程。
以上方法在授权频谱小区的场景下适用,然而,在非授权频谱小区的场景下,在RAN设备发送RLM RS信号之前,RAN设备需要先确定准备用来发送该RLM RS的资源是否已经被占用:RAN设备执行无线信道接入过程(进行信道接入过程),换句话说就是需要先听后说(listen before talk,LBT),来确定发送该RLM RS的资源是否已经被占用。若采用现有的无线链路监测方法对该非授权频谱小区的场景进行无线链路监测的话,在RAN设备进行LBT期间,或LBT尚未成功,由于RLM RS不能发送,终端监测不到RLM RS,终端会过早确认失步(OOS),而实际是因为RAN设备尚未发送该RLM RS,从而存在误判,过早的确定RLF。
有鉴于此,本申请提供一种RLM方法和装置,解决上述非授权频谱小区的RLM的问题,以期提高RLF的准确性。
下面结合附图进行详细描述。请参考图3,其为本申请实施例提供的一种RLM方法实例图,该方法包括如下步骤:
S310:当确定RLM参考信号RS未监测成功时,终端的第一计数单元加1。示例的,该RLM RS可以是SSB或者CSI-RS,此处仅为示例,本申请对RLM RS不作限制。
S320:当第一计数单元达到第一预设次数时,终端确定无线链路失败RLF。
或者,S320’:当第一计数单元达到第一预设次数时,终端启动第一定时单元,且当第一定时单元期满(expire)时,终端确定RLF。
示例的,本申请中第一计数单元又可以称为计数器,例如counter310(N310)或者其他计数单元,该第一定时单元又可以称为定时器,例如Timer310(T310)或者其 他定时单元,本申请对计数单元或者定时单元不做限制。
本申请实施例中所述的第一计数单元计数达到第一预设次数是指:终端在预配置的多个RLM RS资源上确定的无线链路状态连续都为RLM RS未监测成功(不夹杂IS的无线链路状态或者不夹杂OOS的无线链路状态),从而终端的第一计数单元连续加1,达到第一预设次数或者说达到第一预设值,或者还可以称为达到计数单元个,如达到N310个。
所述的第一定时单元在所述第一计数单元计数达到第一预设次数时启动,第一定时单元会在预设时间内运行,当第一定时单元运行达到该预设时间时,第一定时单元期满。或者,当在定时单元期满之前从无线链路问题中恢复时,第一定时单元停止。其中,第一定时单元一旦启动便会运行,直到该第一定时单元期满或者停止。当第一定时单元没有在运行时可以启动,或者当第一定时单元正在运行可以重新启动。第一定时单元可以从一个初始值启动或者重新启动,如该初始值可以为0,即从0开始计时。第一定时单元的运行时间(预设时间)不会改变除非该定时单元停止或者期满。此处,为了便于说明,只是针对第一定时单元进行描述,可选的,对第一定时单元的描述适用于其他定时单元,如,第二定时单元等。
其中,从无线链路问题中恢复与否是指:在第一定时单元运行期间(第一定时单元预设时间内),当终端物理层确定IS时,会向终端RRC层(或者MAC层或者RLC层等)传递IS指示,当终端RRC层(或者MAC层或者RLC层等)收到连续的IS指示的次数未达到连续计数单元(如Counter311或称为N311)个时,也即是在第一定时单元运行期间IS指示没有到达预设值时,就认为是没有从无线链路问题中恢复,定时单元期满,终端确定RLF。此外,当在第一定时单元运行期间(或者说第一定时单元期满之前),连续的IS指示的次数达到连续计数单元(如Counter311或称为N311)个时,就认为是从无线链路问题中恢复,第一定时单元也会停止计时。其中,所述连续的IS(IS指示)是指所述终端在预配置的多个RLM RS资源上确定的无线链路状态都为IS,期间没有夹杂其他(RLM RS未检测成功或者OOS)无线链路状态;或者,所述终端在预配置的多个RLM RS资源上确定的无线链路状态为IS,期间可以夹杂RLM RS未监测成功无线链路状态。
可见,终端执行以上步骤S310,通过增加将RLM参考信号RS监测成功与否作为监测无线链路的依据,在非授权频谱小区的场景下,便可以准确的识别出该非授权频谱小区的无线链路由于LBT失败导致RLM RS未发送的情况下,从而不会被判断 为OOS而过早的确定为RLF,大大提高了非授权频谱小区场景下的RLF的准确性。
图3所示的RLM方法中,当终端执行步骤S310之后,执行步骤S320,该方法不仅流程简单,还可以节约无线资源。或者,当终端执行步骤S310之后,执行步骤S320’,由于增加了第一定时单元运行期间的能否从无线链路问题中恢复的过程,因此,该种方法的RLF结果更准确。
上述步骤S310,在一种可选的方式中,请参考图4,可以包括以下步骤:
S410:当确定RLM参考信号RS未监测成功时,终端物理层生成第一指示。其中,第一指示用于指示终端未成功监测RLM RS或用于指示将第一计数单元加1。
S420:终端物理层将第一指示传递给终端RRC层。
S430:终端RRC层根据第一指示,将第一计数单元加1。
其中,在本申请实施例中,该第一指示还可以是由物理层传递给终端PDCP层(或者MAC层)等其他协议层。此处该第一指示由物理层传递给RRC层仅为示例,本申请对此不做限制。进一步的,终端PDCP层(或者MAC层)等其他协议层根据该第一指示,将所述计数单元加1。
结合以上图3和图4所示的方法,可选的,不仅当终端确定RLM RS未监测成功时,第一计数单元加1,而且,当终端确定OOS时,第一计数单元也加1。换句话说,终端未成功监测RLM RS(或者说终端根据第一指示)或者终端确定OOS,第一计数单元都会加1。请参考图5,其为本申请实施例提供的一种RLM方法,具体包括以下步骤:
S510:当确定RLM参考信号RS未监测成功时,和/或,当终端确定OOS时,和/或,终端根据第一指示,终端的第一计数单元加1。
可选的,终端确定OOS可以是由终端物理层确定该OOS,并向其他协议层,如MAC层或者RLC层或者RRC层等,传递OOS指示。从而终端的第一计数单元还可以根据该OOS指示加1。
S520:当第一计数单元达到第一预设次数时,终端确定无线链路失败RLF。
或者,S520’:当第一计数单元达到第一预设次数时,终端启动第一定时单元,且当第一定时单元期满时,终端确定RLF。
其中,本申请实施例中的第一计数单元达到第一预设次数是指:终端在预配置的多个RLM RS资源上确定无线链路的状态不是RLM RS未监测成功就是OOS(不夹杂IS无线链路的状态),从而终端的第一计数单元连续加1,达到第一预设次数或者 第一预设值,或者还可以称为达到计数单元个,如达到N310个。
可见,通过采用本申请实施例所述的RLF方法,示例的,该第一计数单元可以为N310,该第一定时单元可以为T310,这样不仅可以解决非授权频谱小区的RLM监测准确的问题,还可以兼容现有技术,通过采用一个定时单元和一个计数单元,监测流程简单。此处定时单元和计数单元仅为示例。可选的,上述第一定时单元或者第一计数单元还可以定义为其他定时单元或者计数单元,本申请对此不做限制。
结合以上图3和图4所示的方法,可选的,第一指示(或者终端确定RLM参考信号RS未监测成功)的次数与OOS(或者OOS指示)的次数还可以在不同的计数单元计数。也就是说,当终端确定OOS时,终端的第二计数单元加1,其中,第二计数单元与第一计数单元为不同的计数单元。请参考图6,其为本申请实施例提供的一种RLM方法,具体包括以下步骤:
S610:当确定RLM参考信号RS未监测成功时,和/或,终端根据第一指示,终端的第一计数单元加1。
S612:当终端确定OOS时,终端的第二计数单元加1。
可选的,终端确定OOS可以是由终端物理层确定该OOS,并向其他协议层,如MAC层或者RLC层或者RRC层等,传递OOS指示。从而终端的第二计数单元还可以根据OOS指示加1。
其中,步骤S610和步骤S612相互独立,二者不分先后。
S620:当第一计数单元达到第一预设次数时,和/或,当第二计数单元计数达到第二预设次数时,终端确定无线链路失败RLF。
或者,S620’:当第一计数单元达到第一预设次数时,和/或,当第二计数单元计数达到第二预设次数时,终端启动第一定时单元,且当第一定时单元期满时,终端确定RLF。
本申请实施例中所述的第一计数单元达到第一预设次数是指:终端在预配置的多个RLM RS资源上确定的无线链路状态连续都为RLM RS未监测成功而不夹杂其他(如IS或者OOS)无线链路状态,从而终端的第一计数单元连续加1,达到第一预设次数或者达到第一预设值,或者还可以称为达到计数单元个,如达到N310个。本申请实施例中所述的第二计数单元计数达到第二预设次数是指:终端在预配置的多个RLM RS资源上确定的无线链路状态连续都为OOS而不夹杂其他(如IS或者RLM RS未监测成功)无线链路状态,从而终端的第二计数单元连续加1,达到第二预设次数 或者达到第二预设值,或者还可以称为达到计数单元个。可选的,第一预设次数和第二预设次数可以相同可以不同。
或者,S620”:当第一计数单元达到第一预设次数时,终端启动第一定时单元,且第一定时单元期满时,和/或,当第二计数单元计数达到第二预设次数时,终端启动第二定时单元,且第二定时单元期满时,终端确定RLF。
其中,第一定时单元期满的描述同以上图3所示的实施例。第二定时单元期满的描述与第一定时单元期满的类似,此处不再赘述。本申请所述IS(IS指示)的计数可以都是由N311计数,可选的,还可以是由其他不同计数单元计数,本申请对此不做限制。可选的,在第一定时单元运行期间与在第二定时单元运行期间,连续IS(IS指示)的预设次数还可以不同,如可以不都为N311个,本申请对此不做限制。
可见,执行步骤S610之后,当采用步骤S620时,RLM测试方法简单。当采用步骤S620’时,可以兼容现有技术采用一个定时单元(示例的,Timer310),当采用步骤S620”时,采用不同的计数单元和不同的定时单元来分别处理第一指示(RLM参考信号RS未监测成功)、OOS(或者OOS指示),RLM测量结果更准确。
在以上各个实施例中,当终端确定连续的IS次数达到第三预设次数时,第一计数单元和/或第二计数单元重置(或者说是清零)。其中,所述的第三预设次数可以是一次,也可以是连续多次,本申请对此不作限制。需要说明的是,此处连续的IS次数仅仅是指:在预设时间内,所述终端确定无线链路的状态都为IS,期间不夹杂任何其他无线链路状态,例如不夹杂OOS的无线链路状态,和/或,不夹杂RLM参考信号RS未监测成功的无线链路状态。
可选的,请参考图7,其为本申请实施例提供的一种RLM监测方法,当终端根据以上各个实施例方法确定RLF后,该方法还可以包括:
S710:终端向RAN设备发送第二指示,该第二指示用于指示RLF类型。其中,RLF类型包括:所述RLF是由于OOS导致的失败。或者,所述RLF是由于RLM RS未监测成功导致的失败。
S720:该RAN设备根据第二指示决定是否需要执行辅小区组(Secondary Cell Group,SCG)的变更。具体的,当所述RLF类型为由OOS导致的失败时,该RAN设备根据第二指示确定所述RLF类型为由OOS导致的失败,执行所述SCG变更。或者,当所述RLF类型为由第一指示导致的失败时,不执行所述SCG变更。
在以上各个实施例中,当终端确定RLF后,本申请实施例提供的RLM方法还可 以包括:终端向RAN设备发送所述RLF。或者,终端触发无线链路重新建立过程。
可见,通过采用本申请提供的RLM方法,适用于非授权频谱小区的场景,从而在非授权频谱的无线链路的接入过程中不会被过早的认定为OOS。因此,监测结果更加准确。
以上实施例所揭示的方法可以由RLM装置执行,该RLM装置可以是终端,或者该RLM装置可以是终端的一部分。该RLM装置包括执行以上任一方法中全部或者部分步骤的各个单元。
请参考图8,其为本申请实施例提供的一种RLM装置的结构示意图。用于执行以上所述方法中的部分或者全部操作。如图8所示,该RLM装置800包括第一计数单元810和确定单元820。其中,第一计数单元810用于当RLM参考信号RS未监测成功时,加1。确定单元820用于当所述第一计数单元计数810达到第一预设次数时,确定无线链路失败RLF。或者,确定单元820,用于当第一计数单元810计数达到第一预设次数时,启动第一定时单元,且当在该第一定时单元期满时,确定RLF。
示例的,该第一计数单元810可以为N310或者其他计数单元,该第一定时单元可以为T310或者其他定时单元,本申请对计数单元或者定时单元不做限制。
关于第一计数单元810计数达到第一预设次数的描述以及第一定时单元期满的描述同以上方法实施例,此处不再赘述。
可见,通过采用本申请实施例提供的RLM装置800,在非授权频谱小区的场景下,便可以识别出该非授权频谱小区的无线链路由于LBT失败导致RLM RS未发送的情况下,从而不会被判断为OOS而过早的确定为RLF,大大提高了非授权频谱小区场景下的RLF的准确性。
请继续参考图8,可选的,该RLM装置800还可以包括生成单元830,用于当RLM参考信号RS未监测成功时,在该装置800的物理层生成第一指示。其中,第一指示用于指示未成功监测所述RLM RS或用于指示将所述第一计数单元加1。可选的,该RLM装置800还可以进一步包括传递单元840,用于从装置800的物理层将第一指示传递给装置800的无线资源控制RRC层。第一计数单元在装置800的RRC层根据第一指示加1。
其中,在本申请实施例中,该第一指示可以是由物理层传递给装置800的PDCP层(或者MAC层)等其他协议层。此处该第一指示由物理层传递给RRC层仅为示例,本申请对此不做限制。进一步的,装置800的PDCP层(或者MAC层)等其他协议 层根据该第一指示,将第一计数单元810加1。
可选的,第一计数单元810还用于当所述装置800确定失步OOS时,加1。在一种实施方式中,确定OOS可以是由装置800的物理层确定该OOS,并向其他协议层,如MAC层或者RLC层或者RRC层等,传递OOS指示。从而装置800的第一计数单元可以还可以根据该OOS指示加1。
可选的,第一指示(或者确定RLM参考信号RS未监测成功)的次数与OOS(或者OOS指示)的次数还可以在不同的计数单元计数,请参考图9,装置900除了可以包括以上装置800,还可以包括第二计数单元910,用于当确定失步OOS时,加1。进一步的,所述确定单元820还可以用于,当所述第二计数单元910计数达到第二预设次数时,启动所述第二定时单元,且当在所述第二定时单元期满时,确定RLF。可选的,装置900还可以包括第二确定单元920(图中未示出),该第二确定单元920用于当所述第二计数单元910计数达到第二预设次数时,启动所述第二定时单元,且当所述第二定时单元期满时,确定RLF。其中,本申请实施例中的第一计数单元达到第一预设次数,第二计数单元计数达到第二预设次数,第一定时单元期满,以及第二定时单元期满的描述同以上方法实施例,此处不再赘述。
在以上各个装置中,当终端确定连续的IS次数达到第三预设次数时,第一计数单元和/或第二计数单元重置(或者说是清零)。其中,所述的第三预设次数可以是一次,也可以是连续多次,本申请对此不作限制。需要说明的是,此处连续的IS次数仅仅是指:在预设时间内,所述终端确定无线链路的状态都为IS,期间不夹杂任何其他无线链路状态,例如不夹杂OOS的无线链路状态和/或不夹杂RLM参考信号RS未监测成功的无线链路状态。
请继续参考图8或者图9,可选的,装置800和/或装置900还可以包括第一发送单元860,用于向RAN设备发送第二指示,所述第二指示用于指示所述RLF类型。其中,所述RLF类型包括:所述RLF是由于OOS导致的失败;或者,所述RLF是由于RLM RS未监测成功导致的失败。
请继续参考图8或者图9,可选的,装置800和/或装置900还可以包括第二发送单元870,用于向RAN设备发送所述RLF。可选的,装置800和/或装置900可以进一步的包括触发单元880,用于触发无线链路重新建立过程。
应理解以上RLM装置800或者RLM装置900的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。 且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,处理单元可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序的形式存储于终端的存储器中,由终端的某一个处理元件调用并执行以上各个单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参考图10,其为本申请实施例提供的一种RLM装置1000的结构示意图。如图10所示,该RLM装置1000包括处理器1010和存储器1020。处理器1010通过运行存储在存储器1020中的软件程序、指令以及模块,从而执行终端或者其他设备的各种功能应用以及数据处理,以实现上述的RLM方法。该RLM装置1000可选的还可以包括收发装置1030,用于与其他网络设备或者通信网络进行通信。可选的,该RLM装置1000可以为终端,或者属于终端的一部分。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (19)

  1. 一种无线链路监控RLM方法,包括:
    当确定RLM参考信号RS未监测成功时,终端的第一计数单元加1;
    当所述第一计数单元达到第一预设次数时,所述终端确定无线链路失败RLF;或者,
    当所述第一计数单元达到第一预设次数时,所述终端启动第一定时单元,且当所述第一定时单元期满时,所述终端确定RLF。
  2. 如权利要求1所述的方法,其特征在于,所述当终端确定RLM参考信号RS未监测成功时,所述终端第一计数单元加1,包括:
    当确定RLM参考信号RS未监测成功时,终端物理层生成第一指示,所述第一指示用于指示所述终端未成功监测所述RLM RS或用于指示将所述第一计数单元加1;
    所述终端物理层将所述第一指示传递给终端无线资源控制RRC层;
    所述终端RRC层根据所述第一指示,将所述第一计数单元加1。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    当所述终端确定失步OOS时,所述第一计数单元加1。
  4. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    当所述终端确定失步OOS时,所述终端的第二计数单元加1。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:当所述第二计数单元计数达到第二预设次数时,启动第二定时单元,且当所述第二定时单元期满时,所述终端确定RLF。
  6. 如权利要求1至5任一所述的方法,其特征在于,当所述终端确定同步IS的次数达到第三预设次数时,所述第一计数单元和/或所述第二计数单元重置。
  7. 如权利要求1至6任一所述的方法,其征在于,所述终端确定RLF后,所述方法还包括:
    所述终端向所述RAN设备发送第二指示,其中,所述第二指示用于指示所述RLF类型。
  8. 如权利要求7所述的方法,其征在于,所述RLF类型包括:
    所述RLF是由于OOS导致的失败;或者,
    所述RLF是由于RLM RS未监测成功导致的失败。
  9. 如权利要求1至8任一所述的方法,其征在于,所述终端确定RLF后,所述 方法还包括:
    所述终端向RAN设备发送所述RLF,或者,所述终端触发无线链路重新建立过程。
  10. 一种无线链路监控RLM装置,其特征在于,包括:
    第一计数单元,用于当RLM参考信号RS未监测成功时,加1;
    确定单元,用于当所述第一计数单元达到第一预设次数时,确定无线链路失败RLF;或者,
    确定单元,用于当所述第一计数单元达到第一预设次数时,启动第一定时单元,且当所述第一定时单元期满时,确定RLF。
  11. 如权利要求10所述的装置,其特征在于,所述装置还包括:
    生成单元,用于当RLM参考信号RS未监测成功时,在所述装置物理层生成第一指示,所述第一指示用于指示未成功监测所述RLM RS或用于指示将所述第一计数单元加1;
    传递单元,用于从所述物理层将所述第一指示传递给所述装置无线资源控制RRC层;
    第一计数单元在所述装置RRC层根据所述第一指示加1。
  12. 如权利要求10或11所述的装置,其特征在于,第一计数单元还用于:
    当确定失步OOS时,加1。
  13. 如权利要求10或11所述的装置,其特征在于,所述装置还包括:
    第二计数单元,用于当确定失步OOS时,加1。
  14. 如权利要求13所述的装置,其特征在于,所述确定单元还用于:
    当所述第二计数单元计数达到第二预设次数时,启动所述第二定时单元,且当所述第二定时单元期满时,确定RLF。
  15. 如权利要求10至14任一所述的装置,其特征在于,当同步IS的次数达到第三预设次数时,所述第一计数单元和/或所述第二计数单元重置。
  16. 如权利要求10至15任一所述的装置,其征在于,所述装置还包括:
    第一发送单元,用于向所述RAN设备发送第二指示,所述第二指示用于指示所述RLF类型。
  17. 如权利要求16所述的装置,其征在于,所述RLF类型包括:
    所述RLF是由于OOS导致的失败;或者,
    所述RLF是由于RLM RS未监测成功导致的失败。
  18. 如权利要求10至17任一所述的装置,其征在于,所述装置还包括:
    第二发送单元,用于向RAN设备发送所述RLF;或者包括,触发单元,用于触发无线链路重新建立过程。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在处理器上运行时,用于执行权利要求1-9中任一项所述的方法。
PCT/CN2020/074188 2019-02-14 2020-02-03 无线链路监测rlm方法及装置 WO2020164398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910114215.9A CN111565399A (zh) 2019-02-14 2019-02-14 无线链路监测rlm方法及装置
CN201910114215.9 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020164398A1 true WO2020164398A1 (zh) 2020-08-20

Family

ID=72045482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074188 WO2020164398A1 (zh) 2019-02-14 2020-02-03 无线链路监测rlm方法及装置

Country Status (2)

Country Link
CN (1) CN111565399A (zh)
WO (1) WO2020164398A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210826A (zh) * 2015-01-30 2017-09-26 Lg 电子株式会社 无线通信系统中的无线电链路监测方法及其设备
WO2018143875A1 (en) * 2017-02-03 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods for beamforming based radio link quality monitoring in nr
CA3062523A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, base station and methods in a radio communications network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995359B2 (en) * 2010-04-05 2015-03-31 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
WO2013163902A1 (zh) * 2012-05-04 2013-11-07 华为技术有限公司 无线链路管理的方法、用户设备和基站
RU2643939C1 (ru) * 2014-01-27 2018-02-07 Телефонактиеболагет Лм Эрикссон (Пабл) Способы, сетевые узлы, оборудование пользователя и компьютерные программные продукты для адаптивного мониторинга радиосоединения
US10200897B2 (en) * 2016-04-26 2019-02-05 Apple Inc. Radio link monitoring using downlink control and data decoding performance characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210826A (zh) * 2015-01-30 2017-09-26 Lg 电子株式会社 无线通信系统中的无线电链路监测方法及其设备
WO2018143875A1 (en) * 2017-02-03 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods for beamforming based radio link quality monitoring in nr
CA3062523A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, base station and methods in a radio communications network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON,: "RRC Configuration and Re-Configuration of RLM Parameters (E396),", 3GPP TSG-RAN WG2 AH-1801 R2-1802778,, 26 January 2018 (2018-01-26), XP051400784, DOI: 20200416091057 *

Also Published As

Publication number Publication date
CN111565399A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
CN109479336B (zh) 用于连接管理的系统和方法
EP3592097B1 (en) Radio link failure handling method and related product
US20200322813A1 (en) Configuration and Indication Methods and Apparatuses for Beam Failure Recovery and Communication System
US8743896B2 (en) Method and related communication device for radio link control reconfiguration in a wireless communications system
WO2018090910A1 (zh) 下行无线链路失败的恢复方法及装置
WO2015172579A1 (zh) 一种对无线链路失败的处理方法、终端、基站及存储介质
US20170251512A1 (en) Configured condition for radio resource control connection re-establishment procedure
US20210251032A1 (en) Communication method, apparatus, and system
WO2022017400A1 (zh) 一种移动性信息上报的方法和ue
WO2018077182A1 (zh) 数据传输的方法、装置、用户设备和基站
US20220225191A1 (en) Wireless communication method for mobility control
WO2017185374A1 (zh) 一种语音业务的处理方法及基站
JP2010220215A (ja) 無線通信システムにおける無線リンク制御の再設定のための方法及び関連する通信装置
CN111556506B (zh) 异常链路的处理方法及设备
WO2020147806A1 (zh) 资源周期的配置方法及装置、链路的处理、建立方法及装置
WO2020164398A1 (zh) 无线链路监测rlm方法及装置
WO2020198961A1 (zh) 链路失败的恢复方法和设备
EP3065500B1 (en) Communication device, and layer-2 status control method
CN103517353A (zh) 一种处理数据传输的方法及终端
WO2022206668A1 (zh) 随机接入信息上报方法和用户设备
WO2022151477A1 (zh) 一种多trp系统的波束恢复方法、通信设备及可读存储介质
US20240137786A1 (en) Multi-connectivity communication method and apparatus
EP4236454A1 (en) Method and apparatus for determining daps handover failure type
WO2021022421A1 (zh) 针对参考信号配置信息的处理方法及装置
EP4344289A1 (en) Communication method and apparatus under multi-connectivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755514

Country of ref document: EP

Kind code of ref document: A1