WO2020162394A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2020162394A1
WO2020162394A1 PCT/JP2020/003928 JP2020003928W WO2020162394A1 WO 2020162394 A1 WO2020162394 A1 WO 2020162394A1 JP 2020003928 W JP2020003928 W JP 2020003928W WO 2020162394 A1 WO2020162394 A1 WO 2020162394A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
chamber
back pressure
compression
discharge
Prior art date
Application number
PCT/JP2020/003928
Other languages
French (fr)
Japanese (ja)
Inventor
啓晶 中井
裕文 吉田
淳 作田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080004563.1A priority Critical patent/CN112567136B/en
Priority to JP2020571182A priority patent/JP7165901B2/en
Publication of WO2020162394A1 publication Critical patent/WO2020162394A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Definitions

  • the present disclosure relates to a scroll compressor that compresses a refrigerant gas used in, for example, a refrigerating device such as a cooling and heating air conditioner and a refrigerator, or a heat pump hot water supply device.
  • a refrigerating device such as a cooling and heating air conditioner and a refrigerator
  • a heat pump hot water supply device such as a heat pump hot water supply device.
  • a back pressure chamber that presses the back surface of an orbiting scroll or a fixed scroll is formed.
  • An intermediate pressure hole that connects the back pressure chamber and the compression chamber is provided in the orbiting scroll or the fixed scroll so that the pressure in the back pressure chamber becomes an intermediate pressure between the suction side pressure and the discharge side pressure.
  • the scroll compressor has an oil supply mechanism that supplies oil to the back pressure chamber by the pressure difference between the discharge side pressure in the closed container and the intermediate pressure in the back pressure chamber.
  • the scroll compressor is provided with a relief hole that connects the compression chamber and the discharge side in the closed container, and a relief valve that opens and closes the relief hole due to the pressure difference between the compression chamber and the discharge side in the closed container. There is.
  • the relief valve is provided at a position where the relief hole and the intermediate pressure hole communicate intermittently (Patent Document 1).
  • a flow path including an opening that connects to any one of a pair of compression chambers and an opening that connects to a back pressure chamber is provided in an orbiting scroll or a fixed scroll. ing.
  • the volume ratio of the compression chamber on the side where the opening on the closed space side of the flow path is connected is smaller than the volume ratio of the compression chamber on the side where the opening is not connected (Patent Document 2).
  • the pressure in the back pressure chamber is an intermediate pressure between the suction pressure and the discharge pressure.
  • Patent Document 2 by adjusting the volume ratio of the compression chamber, the increase in required power due to overcompression is suppressed.
  • the over-compression state is prevented during the high compression ratio operation, which is the operation at a relatively high compression ratio (ratio of discharge pressure to suction pressure).
  • Avoiding the over-compression state is effective in reducing the pressure in the compression chamber, but at the same time, the pressure in the back pressure chamber also decreases, which does not lead to stable compression operation. Furthermore, due to the energy saving of air conditioning, refrigeration and refueling equipment, and the technology of controlling the rotation speed of the compressor, the scroll compressor is required to operate at a slower compression ratio and lower compression ratio. There is.
  • the present disclosure has been made in view of the above problems, and provides a scroll compressor that performs stable compression operation by eliminating capsizing, which is a phenomenon in which an orbiting scroll and a fixed scroll separate from each other, during low compression ratio operation. is there.
  • the scroll compressor of the present disclosure includes a fixed scroll having a first end plate and a first spiral wrap, an orbiting scroll having a second end plate and a second spiral wrap, the fixed scroll and the orbit.
  • a compression chamber configured by engaging a scroll with each other, and a back pressure chamber for holding a back pressure for pressing the orbiting scroll against the fixed scroll are provided.
  • the compression chamber has an outer compression chamber located outside the second spiral wrap of the orbiting scroll and an inner compression chamber located inside the second spiral wrap of the orbiting scroll. ing.
  • the back pressure chamber communicates only with the outer compression chamber or the inner compression chamber during compression.
  • Each of the outer compression chamber and the inner compression chamber has a suction confined volume when the confinement of the working fluid is completed.
  • one of the outer compression chamber and the inner compression chamber communicates with the back pressure chamber.
  • the ratio of the suction closed volume of the one compression chamber to the volume of the one compression chamber when the communication between the one compression chamber and the back pressure chamber ends is defined as the back pressure chamber closed volume ratio. To do.
  • the ratio of the suction confined volume to the volume of the working fluid that the internal pressure rises to the discharge pressure or more and can be discharged to the discharge path is the dischargeable volume ratio.
  • the volume ratio when the back pressure chamber is closed is smaller than the dischargeable volume ratio of the one compression chamber.
  • the communication between the back pressure chamber and the compression chamber is closed, and the compression chamber drops to the discharge pressure when the dischargeable volume ratio is reached.
  • the back pressure chamber is separated from the compression chamber, it maintains an overcompressed state.
  • FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present disclosure as viewed from the side.
  • FIG. 2 is an enlarged sectional view of a main part of a compression mechanism of the scroll compressor.
  • FIG. 3 is a sectional view taken along the line CC in FIG.
  • FIG. 4 is a diagram showing an opening state of a communication path with a back pressure chamber and an injection port, which accompanies the orbiting motion of the scroll compressor.
  • FIG. 5 is a figure explaining the positional relationship of the communicating path with a back pressure chamber, and a sealing member accompanying the turning motion of the same scroll compressor.
  • FIG. 6 is a refrigeration cycle diagram using the scroll compressor according to the embodiment of the present disclosure.
  • FIG. 7 is a sectional view taken along the line AA of FIG.
  • FIG. 8 is a sectional view taken along the line BB of FIG.
  • the scroll compressor of the present disclosure includes a fixed scroll having a first end plate and a first spiral wrap, an orbiting scroll having a second end plate and a second spiral wrap, the fixed scroll and the orbit.
  • a scroll compressor including: a compression chamber configured to mesh with a scroll; and a back pressure chamber that holds a back pressure that presses the orbiting scroll against the fixed scroll.
  • the compression chamber has an outer compression chamber located outside the second spiral wrap of the orbiting scroll and an inner compression chamber located inside the second spiral wrap of the orbiting scroll. ing.
  • the back pressure chamber communicates only with the outer compression chamber or the inner compression chamber during compression.
  • Each of the outer compression chamber and the inner compression chamber has a suction confined volume when the confinement of the working fluid is completed.
  • one of the outer compression chamber and the inner compression chamber communicates with the back pressure chamber.
  • the ratio of the suction closed volume of the one compression chamber to the volume of the one compression chamber when the communication between the one compression chamber and the back pressure chamber ends is defined as the back pressure chamber closed volume ratio. To do.
  • the ratio of the suction confined volume to the volume of the working fluid that the internal pressure rises to the discharge pressure or more and can be discharged to the discharge path is the dischargeable volume ratio.
  • the volume ratio when the back pressure chamber is closed is smaller than the dischargeable volume ratio of the one compression chamber.
  • volume ratio when the back pressure chamber is closed may be larger than the dischargeable volume ratio of the other compression chamber, which is not in communication with the back pressure chamber, of the outer compression chamber and the inner compression chamber.
  • the other compression chamber that is not in communication with the back pressure chamber will not be in an over-compression state that is higher than the back pressure chamber, and pressing force will be generated by the high pressure from the back pressure chamber side, resulting in stable compression operation. realizable.
  • the suction closed volume of the outer compression chamber may be larger than the suction closed volume of the inner compression chamber, and one compression chamber on the side where the back pressure chamber communicates may be the inner compression chamber. ..
  • one of the compression chambers that communicates with the back pressure chamber by increasing the dischargeable volume ratio is an inner compression chamber with a smaller volume and an outer compression chamber with a larger volume.
  • the dischargeable volume ratio of the chamber can be kept small.
  • the pressing force on the orbiting scroll is determined by the product of the area of the compression chamber projected in the pressing direction and the pressure. Therefore, in the compression chamber that creates the over-compressed state, the smaller the volume is, the less the force for canceling the pressing force is generated, and the more stable compression operation can be realized.
  • a discharge chamber for discharging the working fluid that has reached the discharge pressure, a discharge port provided in the central portion of the fixed scroll, and the other compression chamber that is not in communication with the back pressure chamber, are provided with the discharge port.
  • a discharge bypass port that connects the other compression chamber and the discharge chamber may be provided earlier. Further, the discharge bypass port makes the dischargeable volume ratio of the other compression chamber not communicating with the back pressure chamber smaller than the dischargeable volume ratio of the one compression chamber communicating with the back pressure chamber. It may be configured.
  • one compression chamber on the side communicating with the back pressure chamber is communicated with the discharge port or the discharge bypass port after the communication with the back pressure chamber is closed, is released from the overcompression state, and drops to the discharge pressure.
  • the pressure in the back pressure chamber is higher than the discharge pressure because there is no pressure release point and the overcompressed state is maintained. Therefore, a pressing force from the back pressure chamber side to the fixed scroll side acts on the orbiting scroll, and the compression operation can be continued while maintaining the airtightness of the compression chamber.
  • discharge bypass port regardless of the wrap shape of the orbiting scroll and the wrap shape of the fixed scroll, it is possible to arbitrarily adjust the dischargeable volume ratio of only one of the inner compression chamber and the outer compression chamber,
  • the dischargeable volume ratio of each compression chamber that realizes the present disclosure can be configured with respect to the volume ratio when the back pressure chamber is closed.
  • the back pressure chamber when the communication between the back pressure chamber and the one compression chamber is completed is a closed space partitioned from another space having a pressure difference from the back pressure chamber. Good.
  • FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present disclosure viewed from a side
  • FIG. 2 is an enlarged cross-sectional view of a main part of a compression mechanism of the scroll compressor.
  • a scroll compressor 91 As shown in FIG. 1, a scroll compressor 91 according to the present embodiment includes a closed container 1, a compression mechanism 2 located inside the closed container 1, a motor unit 3 that drives the compression mechanism 2, and a closed container. And an oil storage portion 20 provided at the bottom of the No. 1 unit.
  • the compression mechanism 2 has a main bearing member 11 fixed in the closed container 1 by welding, shrink fitting, etc., and bolted onto the main bearing member 11 to form an end plate (first end plate).
  • the compression mechanism 2 includes a compression chamber 15 formed by engaging the fixed scroll 12 and the orbiting scroll 13 with each other, and a back pressure chamber 29 that holds pressure for pressing the orbiting scroll 13 against the fixed scroll 12.
  • a rotation restraint mechanism 14 including an Oldham ring or the like for preventing the orbiting scroll 13 from rotating and guiding it in a circular orbital motion is provided.
  • the shaft 4 is rotationally driven by the motor unit 3.
  • the shaft 4 is axially supported by the main bearing member 11, and the orbiting scroll 13 is eccentrically driven by the eccentric shaft portion 4 a at the upper end of the shaft 4.
  • the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves while reducing the volume from the outer peripheral side toward the central portion. Utilizing this, the working fluid is sucked from the suction pipe 16 (see FIG. 1) communicating with the outside of the closed container 1 and the suction port 17 at the outer peripheral portion of the fixed scroll 12, and after being confined in the compression chamber 15, Compressed.
  • the working fluid that has reached a predetermined pressure pushes open the discharge reed valve 19 from the discharge port 18 provided in the center of the fixed scroll 12.
  • the working fluid that has reached the discharge pressure passes through the discharge chamber 31, is discharged into the closed container 1, and is discharged from the discharge pipe 22 (see FIG. 1) to the outside of the closed container 1.
  • a pump 25 is provided on the lower end of the shaft 4.
  • the pump 25 is arranged so that its suction port exists inside the oil storage section 20.
  • the pump 25 is driven simultaneously with the orbiting scroll 13. As a result, the pump 25 can reliably suck up the oil 6 in the oil reservoir 20 regardless of the pressure condition and the operating speed. Therefore, the oil will not run out.
  • the oil 6 sucked up by the pump 25 is supplied to the compression mechanism 2 through the oil supply hole 26 that extends vertically through the shaft 4.
  • the pressure of the oil 6 guided to the compression mechanism 2 is almost the same as the discharge pressure of the scroll compressor 91 and serves as a back pressure source for the orbiting scroll 13. Further, a part of the oil 6 seeks an escape area by the supply pressure and its own weight, so that a fitting portion between the eccentric shaft portion 4a and the orbiting scroll 13 and a bearing between the shaft 4 and the main bearing member 11 are formed. After entering the portion 66 and lubricating each portion, it falls and returns to the oil storage portion 20.
  • FIG. 3 is a sectional view taken along the line CC in FIG.
  • the compression chamber 15 formed by the fixed scroll 12 and the orbiting scroll 13 includes an outer compression chamber 15a located outside the wrap of the orbiting scroll 13 and an inner compression chamber 15b located inside the wrap.
  • the scroll compressor 91 is an asymmetric scroll compressor in which the suction closed volume of the outer compression chamber 15a and the suction closed volume of the inner compression chamber 15b are different.
  • the suction confined volume is the volume of the compression chamber immediately after the working fluid sucked from the suction port 17 is confined.
  • the scroll compressor 91 is an asymmetric scroll compressor in which the suction closed volume of the outer compression chamber 15a is larger than the suction closed volume of the inner compression chamber 15b.
  • the working fluid sucked from the suction port 17 can be confined in the vicinity of the suction port 17 in the outer compression chamber 15a to enter the compression process. For this reason, the low-pressure low-temperature working fluid is heated by the compression mechanism 2, and the density decrease of the working fluid can be suppressed.
  • the difference in the suction closed volume between the outer compression chamber 15a and the inner compression chamber 15b affects the volume ratio.
  • the volume ratio is the ratio of the suction closed volume to the volume of the compression chamber at a certain point in the compression process.
  • the volume ratio can be defined for each of the outer compression chamber and the inner compression chamber.
  • the volumes of the compression chambers when the inner compression chamber and the outer compression chamber communicate with the discharge port 18 provided in the central portion of the fixed scroll 12 are substantially equal.
  • the dischargeable volume ratio of each compression chamber is determined by the suction closed volume.
  • the dischargeable volume ratio is the ratio of the suction closed volume to the volume of the compression chamber at the time when the compression chamber becomes dischargeable, that is, when the compression chamber and the discharge chamber 31 communicate with each other.
  • the dischargeable volume ratio can be defined for each of the outer compression chamber and the inner compression chamber.
  • the suction closed volume of the outer compression chamber 15a is larger than the suction closed volume of the inner compression chamber 15b, the compression process of the outer compression chamber 15a is longer than that of the inner compression chamber 15b, and the discharge The possible volume ratio increases.
  • the outer compression chamber 15a is more likely to be overcompressed than the inner compression chamber 15b.
  • the compression ratio is the ratio of the discharge pressure to the suction pressure.
  • the outer compression chamber 15a has a larger area than the inner compression chamber 15b when the compression chamber is pressed and projected in the direction view. Therefore, the overcompression of the outer compression chamber 15a easily increases the force for pushing the orbiting scroll 13 away from the fixed scroll 12.
  • the wrap tip 13c of the orbiting scroll 13 (see FIG. 2), based on the result of measuring the temperature distribution during operation, from the winding start portion, which is the central portion, to the winding end portion, which is the outer peripheral portion, gradually The slope shape is provided so that the lap height becomes high. This makes it possible to absorb dimensional changes due to thermal expansion and prevent local sliding.
  • the scroll compressor 91 includes a connection path 55-1 and a supply path 55-2 as an oil supply path 55 that guides oil from the oil storage section 20 to the compression chamber 15.
  • a passage 13a formed inside the orbiting scroll 13 and a recess 12a formed on the lap surface side end plate of the fixed scroll 12 are provided as an oil supply path to the compression chamber 15.
  • the passage 13a includes a supply passage 55-2.
  • One open end 55-2b of the passage 13a is formed in the wrap tip 13c and periodically opens in the recess 12a in accordance with the turning motion.
  • the other open end 55-2a of the passage 13a is always open to the back pressure chamber 29. Thereby, the back pressure chamber 29 is intermittently communicated only with the inner compression chamber 15b and is not communicated with the outer compression chamber 15a.
  • the oil is formed next from the inner compression chamber 15b-1 (see FIG. 3) formed immediately before in the compression step. Leakage into the inner compression chamber 15b-2 (see FIG. 3) can be suppressed.
  • the back surface 13e of the orbiting scroll 13 is provided with a seal member 78, a high-pressure region 30 for holding a working fluid having a discharge pressure, and a working fluid having a pressure intermediate between the discharge pressure and the suction pressure.
  • a back pressure chamber 29 for holding is provided.
  • the seal member 78 divides the inside of the seal member 78 into the high-pressure region 30 and the outside of the seal member 78 into the back pressure chamber 29.
  • At least one of the refueling routes is configured to pass through the back pressure chamber 29. That is, the oil supply passage 55 is composed of a connection passage 55-1 from the high pressure region 30 to the back pressure chamber 29 and a supply passage 55-2 from the back pressure chamber 29 to the inner compression chamber 15b.
  • the seal member 78 the pressure in the high pressure region 30 and the pressure in the back pressure chamber 29 (hereinafter, back pressure) are completely separated, and the pressure applied from the back surface of the orbiting scroll 13 can be stably applied. You can control.
  • connection path 55-1 from the high pressure region 30 to the back pressure chamber 29 the oil 6 is applied to the sliding portion of the rotation restraint mechanism 14 and the thrust sliding portion of the fixed scroll 12 and the orbiting scroll 13. Can be supplied.
  • the amount of oil supplied to the inner compression chamber 15b can be positively increased, and the leakage loss in the inner compression chamber 15b can be suppressed. ..
  • connection path 55-1 is formed on the back surface 13e of the orbiting scroll 13, the sealing member 78 is moved in and out, and the other opening end 55-1a is always opened in the high pressure region 30. Let Thereby, intermittent refueling and adjustment of back pressure can be realized.
  • FIG. 5 is a diagram illustrating the positional relationship between the communication passage with the back pressure chamber and the seal member, which accompanies the orbiting motion of the scroll compressor.
  • FIG. 5 shows the states of (I) 0° to 90°, (II) 90° to 180°, (III) 180° to 270°, and (IV) 270° to 360° by shifting the phase by 90°. Showing.
  • FIG. 5 is a state in which the shaft 4 is rotated 90 degrees from (I) of FIG. 5, and (III) of FIG. 5 is a state of being further rotated 90 degrees from (II) of FIG. 5(IV) shows a state further rotated by 90 degrees from FIG. 5(III), and FIG. 5(I) shows a state further rotated by 90 degrees from FIG. 5(IV).
  • one opening end 55-1b of the connection path 55-1 is located on the rear surface 13e of the orbiting scroll 13.
  • the back surface 13e of the orbiting scroll 13 is partitioned by a seal member 78 into an inner high pressure region 30 and an outer back pressure chamber 29.
  • one open end 55-1b is open to the back pressure chamber 29 outside the seal member 78. Therefore, the back pressure chamber 29 and the high pressure region 30 communicate with each other. As a result, the oil 6 is supplied from the high pressure region 30 to the back pressure chamber 29.
  • the opening end 55-1b opens inside the seal member 78. Therefore, the back pressure chamber 29 does not communicate with the high pressure region 30. Therefore, the oil 6 is not supplied from the high pressure region 30 to the back pressure chamber 29.
  • connection passage 55-1 can be configured to be 10 times or more the size of the oil filter.
  • the case where the other open end 55-1a is always in the high pressure region 30 and the one open end 55-1b moves between the high pressure region 30 and the back pressure chamber 29 is described as an example. did.
  • the present disclosure is not limited to this example.
  • the other open end 55-1a moves back and forth between the high pressure region 30 and the back pressure chamber 29, and one open end 55-1b is always in the back pressure chamber 29. Even in such a case, a pressure difference occurs between the open ends 55-1a and 55-1b, so that intermittent oil supply can be realized and the same effect can be obtained.
  • FIG. 4 is a diagram showing a communication path with the back pressure chamber and an opening state of the injection port, which accompanies the orbiting motion of the scroll compressor.
  • FIG. 4 shows a state in which the fixed scroll 12 and the orbiting scroll 13 are meshed with each other and seen from the back surface 13e of the orbiting scroll 13, and the phases are shifted by 90 degrees. Similar to FIG. 5, FIG. 4 shows the states of (I) 0° to 90°, (II) 90° to 180°, (III) 180° to 270°, and (IV) 270° to 360°. There is.
  • FIG. 4 shows the shaft 4 rotated 90 degrees from (I) of FIG. 4, (III) of FIG. 4 further rotates 90 degrees from (II) of FIG. (IV) of FIG. 4 shows a state further rotated by 90 degrees from (III) of FIG. 4, and (I) of FIG. 4 shows a state of further rotated by 90 degrees from (IV) of FIG.
  • the state shown in (I) of FIG. 4 is the position where the outer compression chamber 15a confines the working fluid, and the state shown in (III) of FIG. 4 is the position where the inner compression chamber 15b confines the working fluid.
  • outer compression chamber 15a located on the outer peripheral side is in a low pressure state immediately after confining the working fluid, and the outer compression chamber 15a located on the inner peripheral side is in an intermediate pressure state.
  • the outer compression chamber 15a formed on the inner peripheral side is in a high pressure state before discharge.
  • two inner compression chambers 15b are formed, and the inner compression chamber 15b located on the outer peripheral side is in a low pressure state immediately after confining the working fluid and is on the inner peripheral side.
  • the located inner compression chamber 15b is in an intermediate pressure state.
  • the inner compression chamber 15b formed on the inner peripheral side is in a high pressure state before discharge.
  • one opening end 55-2b opens in the recess 12a. Therefore, the inner compression chamber 15b communicates with the back pressure chamber 29. During the high compression ratio operation, the oil 6 is supplied from the back pressure chamber 29 to the inner compression chamber 15b through the supply passage 55-2 and the passage 13a (see FIG. 2).
  • the recess 12a is provided at a position where one opening end 55-2b is opened immediately after the inner compression chamber 15b traps the sucked working fluid (also referred to as suction refrigerant) (see (IV) in FIG. 4). ).
  • suction refrigerant also referred to as suction refrigerant
  • the oil supply path is provided at a position that opens into the inner compression chamber 15b in the compression process after the suction refrigerant is closed. Therefore, the pressure of the back pressure chamber 29 while communicating with the inner compression chamber 15b becomes substantially equal to the pressure of the inner compression chamber 15b.
  • the back pressure chamber 29 can be adjusted to an intermediate pressure state between the suction pressure and the discharge pressure, and this pressure functions as the pressing force against the orbiting scroll during the low compression ratio operation.
  • the pressure of the inner compression chamber 15b which communicates with the back pressure chamber 29 and is located on the outer peripheral side, increases to the discharge pressure or more, and at the same time, the back pressure chamber 29 also The pressure exceeds the discharge pressure.
  • the back pressure chamber 29 is not in communication with the high pressure region 30, and the space formed by the inner compression chamber 15b and the back pressure chamber 29 is a closed space. Therefore, the back pressure chamber 29 is in a higher pressure state than the high pressure region 30 which is equal to the discharge pressure.
  • the back pressure chamber 29 becomes an independent closed space. Therefore, the pressure in the back pressure chamber 29 does not depend on the pressure in the inner compression chamber 15b and the pressure in the high pressure region 30.
  • the compression in the inner compression chamber 15b progresses to the dischargeable volume ratio or more, the working fluid in the compression chamber is discharged into the discharge chamber 31 and is reduced to the discharge pressure.
  • the pressure in the back pressure chamber 29 continues until the back compression chamber 29 communicates with the inner compression chamber 15b or the high pressure region 30 again in the overcompressed state when separated from the inner compression chamber 15b.
  • a discharge bypass port 21 (see FIG. 2) is provided in the scroll compressor 91 as a passage for guiding the working fluid compressed in the compression chamber 15 to the discharge chamber 31.
  • the discharge bypass port 21 is equipped with a reed valve.
  • the reed valve When the pressure in the compression chamber 15 reaches the pressure in the discharge chamber 31, the reed valve is pushed open and the working fluid is discharged to the discharge chamber 31.
  • the reed valve When the pressure in the compression chamber 15 is less than the pressure in the discharge chamber 31, the reed valve is closed and the backflow of the working fluid from the discharge chamber 31 to the compression chamber 15 is suppressed.
  • the discharge bypass port 21 needs to exist at a position communicating with the compression chamber 15.
  • the discharge bypass port 21 is a fixed passage provided in the end plate of the fixed scroll 12.
  • the compression chamber 15 moves toward the center while reducing its volume, and only when the compression chamber 15 reaches the position where it communicates with the discharge port 18 or the discharge bypass port 21, the working fluid of the compression chamber 15 is reached. Can be discharged to the discharge chamber 31.
  • the discharge bypass port 21 is provided so as to connect the compression chamber 15 and the discharge chamber 31 before being connected to the discharge chamber 31 by the discharge port 18 in the compression process.
  • the scroll compressor 91 is provided with a discharge bypass port 21a communicating with the outer compression chamber 15a and a discharge bypass port 21b communicating with the inner compression chamber 15b, respectively. The timing to do is shifted.
  • the discharge bypass port 21a does not communicate with the outer compression chamber 15a in the state of (I) of FIG. 4, and does not communicate with the outer compression chamber 15a located on the outer peripheral side in the states of (II) to (IV) of FIG. It is provided at the position where it communicates.
  • the discharge bypass port 21b does not communicate with the inner compression chamber 15b in the state of (IV) of FIG. 4, and does not communicate with the inner compression chamber 15b located on the outer peripheral side in the states of (I) to (III) of FIG. It is provided at the position where it communicates.
  • the outer compression chamber 15a completes the suction process at the timing of (I) in FIG. 4, and the outer compression chamber 15a is confined.
  • the outer compression chamber 15a is already in communication with the discharge bypass port 21a.
  • the dischargeable volume ratio of the outer compression chamber 15a is determined by the ratio of the suction closed volume of the outer compression chamber 15a to the compression chamber volume at the timing when the outer compression chamber 15a communicates with the discharge bypass port 21a, and is substantially determined. , Does not depend on the communication timing with the discharge port 18.
  • the inner compression chamber 15b completes the suction process at the timing of (III) in FIG. 4, and the inner compression chamber 15b is confined.
  • the inner compression chamber 15b is not in communication with the discharge bypass port 21b.
  • the inner compression chamber 15b communicates with the discharge bypass port 21b.
  • the inner compression chamber 15b communicates with the back pressure chamber 29 via the supply passage 55-2 and the passage 13a.
  • the dischargeable volume ratio of the inner compression chamber 15b is determined by the communication timing with the discharge bypass port 21b.
  • the dischargeable volume ratio of the inner compression chamber 15b communicating with the back pressure chamber 29 is larger than the back pressure chamber closed volume ratio and the dischargeable volume ratio of the outer compression chamber 15a.
  • the volume ratio when the back pressure chamber is closed means the compression chamber on the side where the back pressure chamber 29 communicates, that is, in the inner compression chamber 15b, the communication between the back pressure chamber 29 and the inner compression chamber 15b in the middle of compression is completed.
  • This is the ratio of the intake confined volume to the volume of the inner compression chamber 15b on the outer peripheral side at the time of (that is, the timing immediately after (IV) in FIG. 4).
  • FIG. 6 is a refrigeration cycle diagram using the scroll compressor according to the embodiment of the present disclosure.
  • the refrigeration cycle device includes a scroll compressor 91, a condenser 92, an evaporator 93, two pressure reducers 94, an injection pipe 95, and a gas-liquid separator 96.
  • the scroll compressor 91, the condenser 92, the upstream pressure reducer 94a, the gas-liquid separator 96, and the downstream pressure reducer 94b are connected in an annular shape by pipes.
  • the injection pipe 95 connects the gas-liquid separator 96 and the scroll compressor 91.
  • the working fluid (hereinafter, also referred to as a refrigerant) condensed in the condenser 92 is depressurized to an intermediate pressure by the depressurizer 94a on the upstream side and flows into the gas-liquid separator 96.
  • the gas-liquid separator 96 separates the intermediate-pressure refrigerant into a gas phase component (gas refrigerant) and a liquid phase component (liquid refrigerant).
  • the intermediate-pressure liquid refrigerant passes through the pressure reducer 94 on the further downstream side, becomes a low-pressure refrigerant, and flows into the evaporator 93.
  • the liquid refrigerant flowing into the evaporator 93 evaporates by heat exchange and is discharged as a gas refrigerant or a gas refrigerant partially mixed with the liquid refrigerant.
  • the refrigerant discharged from the evaporator 93 flows into the compression chamber 15 of the scroll compressor 91.
  • the intermediate-pressure gas refrigerant separated by the gas-liquid separator 96 passes through the injection pipe 95 and is injected (injected) into the compression chamber 15 in the scroll compressor 91.
  • the injection pipe 95 may be provided with means for adjusting and stopping the injection pressure, such as a closing valve or a pressure reducer 94.
  • the scroll compressor 91 injects the intermediate-pressure refrigerant of the gas-liquid separator 96 into the compression chamber 15 to compress the refrigerant and discharge the high-temperature high-pressure refrigerant into the discharge pipe. 22 (see FIG. 1) to the condenser 92.
  • the gas phase component increases as the pressure difference between the inlet side pressure and the outlet side pressure of the upstream expansion valve (pressure reducer 94a) increases. Further, the smaller the degree of supercooling of the refrigerant at the outlet of the condenser 92 or the greater the degree of dryness, the more the gas phase component.
  • the amount of the refrigerant sucked by the scroll compressor 91 through the injection pipe 95 increases as the intermediate pressure increases. If more refrigerant than the gas phase component ratio of the refrigerant separated in the gas-liquid separator 96 is sucked in from the injection pipe 95, the gas refrigerant in the gas-liquid separator 96 will be depleted, and the liquid refrigerant will flow into the injection pipe 95. ..
  • the gas refrigerant separated in the gas-liquid separator 96 is sucked into the scroll compressor 91 through the injection pipe 95 without exhaustion. If it goes out of the equilibrium state, the liquid refrigerant flows from the injection pipe 95 into the scroll compressor 91. Therefore, it is necessary to configure the scroll compressor 91 so as to maintain high reliability even when the liquid refrigerant flows in from the injection pipe 95.
  • FIG. 7 is a sectional view taken along the line AA of FIG. 8 is a sectional view taken along the line BB of FIG.
  • the refrigerant flows into the intermediate pressure chamber 41 and opens the check valve 42 provided in the injection port 43. It is injected into the compression chamber 15 after being closed. The injected refrigerant is discharged from the discharge port 18 into the closed container 1 together with the refrigerant sucked from the suction port 17.
  • the injection port 43 for injecting the intermediate pressure refrigerant is provided through the end plate of the fixed scroll 12.
  • the injection port 43 sequentially opens to the outer compression chamber 15a and the inner compression chamber 15b.
  • the injection port 43 is provided at a position that opens to each compression chamber during the compression process after closing in each of the outer compression chamber 15a and the inner compression chamber 15b.
  • the scroll compressor 91 is provided with an intermediate pressure chamber 41 that is fed from the injection pipe 95 and guides the intermediate pressure working fluid before being injected into the compression chamber 15.
  • the intermediate pressure chamber 41 is formed of the fixed scroll 12 that is a compression chamber partition member, an intermediate pressure plate 44, and an intermediate pressure cover 45 (see FIG. 2).
  • the intermediate pressure chamber 41 and the compression chamber 15 face each other with the fixed scroll 12 in between.
  • the intermediate pressure chamber 41 is located at a position lower than the intermediate pressure chamber inlet 41a into which the intermediate pressure working fluid flows, the injection port inlet 43a of the injection port 43 that injects the intermediate pressure working fluid into the compression chamber 15, and the intermediate pressure chamber inlet 41a. It has the formed liquid storage part 41b.
  • the liquid reservoir 41b is formed on the upper surface of the end plate of the fixed scroll 12.
  • the intermediate pressure plate 44 is provided with a check valve 42 that prevents the reverse flow of the refrigerant from the compression chamber 15 to the intermediate pressure chamber 41.
  • a check valve 42 that prevents the reverse flow of the refrigerant from the compression chamber 15 to the intermediate pressure chamber 41.
  • the check valve 42 is configured by a reed valve 42a that lifts to the compression chamber 15 side and connects the compression chamber 15 and the intermediate pressure chamber 41. Therefore, the intermediate pressure chamber 41 can be communicated with the compression chamber 15 only when the internal pressure of the compression chamber 15 is lower than the pressure of the intermediate pressure chamber 41.
  • the check valve 42 When the check valve 42 is not provided and when the check valve 42 is provided in the injection pipe 95, the refrigerant in the compression chamber 15 flows back to the injection pipe 95, consuming useless compression power.
  • the check valve 42 is provided on the intermediate pressure plate 44 near the compression chamber 15 to suppress the backflow from the compression chamber 15.
  • the top surface of the end plate of the fixed scroll 12 is located lower than the intermediate pressure chamber inlet 41a.
  • a liquid storage portion 41b in which the refrigerant of the liquid phase component is stored is provided.
  • the injection port inlet 43a is provided at a position higher than the height of the intermediate pressure chamber inlet 41a. Therefore, of the intermediate-pressure working fluid, the refrigerant of the gas phase component is guided to the injection port 43, and the refrigerant of the liquid phase component accumulated in the liquid reservoir 41b is vaporized on the surface of the fixed scroll 12 in the high temperature state. It is difficult for the refrigerant of the liquid phase component to flow into the compression chamber 15.
  • the intermediate pressure chamber 41 and the discharge chamber 31 are provided at positions adjacent to each other via the intermediate pressure plate 44. As a result, vaporization when the working fluid of the liquid phase component flows into the intermediate pressure chamber 41 is promoted, and the temperature rise of the high pressure refrigerant in the discharge chamber 31 can be suppressed. Therefore, the operation can be performed up to that high discharge pressure condition.
  • the intermediate-pressure refrigerant guided to the injection port 43 pushes the reed valve 42a open due to the pressure difference between the injection port 43 and the compression chamber 15, and joins the low-pressure refrigerant sucked from the suction port 17 in the compression chamber 15.
  • the intermediate-pressure refrigerant remaining in the injection port 43 between the check valve 42 and the compression chamber 15 repeats re-expansion and re-compression, which causes a reduction in the efficiency of the scroll compressor 91. Therefore, the thickness of the valve stop 42b that regulates the maximum displacement amount of the reed valve 42a is changed according to the lift regulation portion of the reed valve 42a, so that the internal volume of the injection port 43 downstream of the reed valve 42a is made small.
  • the reed valve 42a and the valve stop 42b are fixed to the intermediate pressure plate 44 by bolts 48 that are fixing members.
  • the fixing hole of the bolt 48 provided in the valve stop 42b is opened only on the insertion side of the bolt 48 without penetrating the valve stop 42b. Therefore, as a result, the fixing member 48 is configured to open only to the intermediate pressure chamber 41. As a result, the working fluid can be prevented from leaking between the intermediate pressure chamber 41 and the compression chamber 15 through the gap of the fixing member 48, and the injection rate can be improved.
  • the volume of the intermediate pressure chamber 41 is set to be equal to or larger than the suction volume of the compression chamber 15 so that the injection amount into the compression chamber 15 can be sufficiently supplied.
  • the suction volume is the volume of the compression chamber 15 at the time when the working fluid introduced from the suction port 17 is closed in the compression chamber 15, that is, at the time of completion of the suction process, and is the outer compression chamber 15a and the inner compression chamber 15b. And is the total volume.
  • the intermediate pressure chamber 41 is provided so as to spread on the plane of the end plate of the fixed scroll 12 to increase the volume.
  • the volume of the intermediate pressure chamber 41 is equal to or larger than the suction volume of the compression chamber 15 and equal to or smaller than 1/2 of the oil volume of the oil 6 to be enclosed.
  • the injection port 43 is provided in the first compression chamber (outer compression chamber 15a) and the second compression chamber (inner compression chamber 15b) at positions that are sequentially opened. Further, as shown in (II) and (III) of FIG. 4, the injection port 43 is located at a position where it is opened to the outer compression chamber 15a in the compression stroke after the suction refrigerant is closed, or (in FIG. As shown in I), the end plate of the fixed scroll 12 is provided through the end plate at a position where it is opened to the inner compression chamber 15b in the compression stroke after closing the suction refrigerant.
  • the oil supply path is used as the communication path between the compression chamber and the back pressure chamber, but the same effect can be obtained by providing an independent path separately from the oil supply path.
  • the back pressure chamber is not limited to the back side of the orbiting scroll, but may be provided on the back side of the fixed scroll so that the fixed scroll is pressed against the orbiting scroll.
  • the present embodiment has been described by using the scroll compressor having the injection pipe, the scroll compressor without the injection pipe may be used.
  • the scroll compressor according to the present disclosure is useful for a refrigerating device such as an air conditioner and air conditioner and a refrigerator, or a heat pump type hot water supply device.

Abstract

This scroll compressor is provided with: a fixed scroll; a turning scroll; a compression chamber; and a back pressure chamber. The compression chamber has an outer compression chamber positioned outside a second spiral wrap of the turning scroll, and an inner compression chamber positioned inside the second spiral wrap. The back pressure chamber is connected with the outer compression chamber or the inner compression chamber through the course of compression. The ratio of a suction enclosure volume of one of the compression chambers with respect to the volume of said one compression chamber when connection between said one compression chamber and the back pressure chamber is ended, is defined as a back pressure chamber closed volume ratio. The ratio of the suction enclosure volume with respect to the volume of an operation fluid dischargeable through a discharge path when the inner pressure increases and becomes equal to or more than a discharge pressure, is defined as a dischargeable volume ratio for each of the outer compression chamber and the inner compression chamber. The back pressure chamber closed volume ratio is lower than the dischargeable volume ratio of one of the compression chambers.

Description

スクロール圧縮機Scroll compressor
 本開示は、例えば、冷暖房空調装置および冷蔵庫等の冷凍装置、または、ヒートポンプ式の給湯装置等に用いられる、冷媒ガスを圧縮するスクロール圧縮機に関する。 The present disclosure relates to a scroll compressor that compresses a refrigerant gas used in, for example, a refrigerating device such as a cooling and heating air conditioner and a refrigerator, or a heat pump hot water supply device.
 従来の冷凍装置を構成するスクロール圧縮機においては、旋回スクロールまたは固定スクロールの背面を押圧する背圧室が形成されている。 In a conventional scroll compressor that constitutes a refrigeration system, a back pressure chamber that presses the back surface of an orbiting scroll or a fixed scroll is formed.
 背圧室内の圧力が、吸入側圧力と吐出側圧力との中間圧力になるように、背圧室と圧縮室とを連通する中間圧孔が、旋回スクロールまたは固定スクロールに設けられている。 An intermediate pressure hole that connects the back pressure chamber and the compression chamber is provided in the orbiting scroll or the fixed scroll so that the pressure in the back pressure chamber becomes an intermediate pressure between the suction side pressure and the discharge side pressure.
 スクロール圧縮機には、密閉容器内の吐出側圧力と、背圧室内の中間圧力との圧力差により、背圧室に給油する給油機構が形成されている。  The scroll compressor has an oil supply mechanism that supplies oil to the back pressure chamber by the pressure difference between the discharge side pressure in the closed container and the intermediate pressure in the back pressure chamber.
 スクロール圧縮機には、圧縮室と密閉容器内の吐出側とを連通するリリーフ孔、および、圧縮室と密閉容器内の吐出側との圧力差により、リリーフ孔を開閉するリリーフ弁が設けられている。リリーフ弁は、リリーフ孔と中間圧孔とを間欠的に連通する位置に設けられている(特許文献1)。 The scroll compressor is provided with a relief hole that connects the compression chamber and the discharge side in the closed container, and a relief valve that opens and closes the relief hole due to the pressure difference between the compression chamber and the discharge side in the closed container. There is. The relief valve is provided at a position where the relief hole and the intermediate pressure hole communicate intermittently (Patent Document 1).
 また、従来の冷凍装置を構成するスクロール圧縮機においては、一対の圧縮室のいずれかにつながる開口部と背圧室につながる開口部とを備えた流路が、旋回スクロールまたは固定スクロールに設けられている。 Further, in a scroll compressor that constitutes a conventional refrigeration system, a flow path including an opening that connects to any one of a pair of compression chambers and an opening that connects to a back pressure chamber is provided in an orbiting scroll or a fixed scroll. ing.
 流路の密閉空間側の開口部がつながる側の圧縮室の容積比は、開口部がつながらない側の圧縮室の容積比よりも小さく構成されている(特許文献2)。 The volume ratio of the compression chamber on the side where the opening on the closed space side of the flow path is connected is smaller than the volume ratio of the compression chamber on the side where the opening is not connected (Patent Document 2).
 いずれの構成においても、背圧室の圧力は、吸入圧力と吐出圧力との間の中間圧力となる。背圧室から圧縮室への給油により、圧縮室圧力が上昇し易くなる。 In both configurations, the pressure in the back pressure chamber is an intermediate pressure between the suction pressure and the discharge pressure. By supplying oil from the back pressure chamber to the compression chamber, the pressure in the compression chamber easily rises.
 このため、特許文献1では、中間圧孔とリリーフ孔とを連通させることで、過圧縮状態になるのを防止している。 Therefore, in Patent Document 1, the intermediate compression hole and the relief hole are made to communicate with each other to prevent an overcompressed state.
 また、特許文献2では、圧縮室の容積比を調整することで、過圧縮による必要動力の増加抑制を図っている。 Also, in Patent Document 2, by adjusting the volume ratio of the compression chamber, the increase in required power due to overcompression is suppressed.
日本国特許第3584781号公報Japanese Patent No. 3584781 日本国特許第4693984号公報Japanese Patent No. 4693984
 従来のスクロール圧縮機においては、圧縮比(吸入圧力に対する吐出圧力の比)が比較的高い状態での運転である高圧縮比運転時における過圧縮状態が防止されている。 In conventional scroll compressors, the over-compression state is prevented during the high compression ratio operation, which is the operation at a relatively high compression ratio (ratio of discharge pressure to suction pressure).
 過圧縮状態の回避は、圧縮室の圧力を低減するのに有効であるが、同時に背圧室の圧力も低下してしまい、安定した圧縮動作につながらない。さらに、空調、冷凍および給油装置等の省エネルギー化、ならびに、圧縮機の回転数制御技術により、スクロール圧縮機には、より緩やかで、圧縮比のより低い、低圧縮比での運転が求められている。 Avoiding the over-compression state is effective in reducing the pressure in the compression chamber, but at the same time, the pressure in the back pressure chamber also decreases, which does not lead to stable compression operation. Furthermore, due to the energy saving of air conditioning, refrigeration and refueling equipment, and the technology of controlling the rotation speed of the compressor, the scroll compressor is required to operate at a slower compression ratio and lower compression ratio. There is.
 しかしながら、従来のスクロール圧縮機は、低圧縮比運転時において、旋回スクロールと固定スクロールとの間の押し付け力が、圧縮室からの押し返し力よりも低い。このため、旋回スクロールと固定スクロールとが離れる現象である転覆が生じてしまうという問題があった。 However, in the conventional scroll compressor, the pressing force between the orbiting scroll and the fixed scroll is lower than the pushing-back force from the compression chamber during low compression ratio operation. Therefore, there is a problem that capsizing, which is a phenomenon in which the orbiting scroll and the fixed scroll are separated from each other, occurs.
 本開示は、上記の問題に鑑みてなしたもので、低圧縮比運転時に、旋回スクロールと固定スクロールとが離れる現象である転覆をなくし、安定した圧縮動作を行うスクロール圧縮機を提供するものである。 The present disclosure has been made in view of the above problems, and provides a scroll compressor that performs stable compression operation by eliminating capsizing, which is a phenomenon in which an orbiting scroll and a fixed scroll separate from each other, during low compression ratio operation. is there.
 本開示のスクロール圧縮機は、第1の鏡板および第1の渦巻き状のラップを有する固定スクロールと、第2の鏡板および第2の渦巻き状のラップを有する旋回スクロールと、前記固定スクロールと前記旋回スクロールとを噛み合わせて構成された圧縮室と、前記旋回スクロールを前記固定スクロールに対して押し付ける背圧を保持する背圧室と、を備える。 The scroll compressor of the present disclosure includes a fixed scroll having a first end plate and a first spiral wrap, an orbiting scroll having a second end plate and a second spiral wrap, the fixed scroll and the orbit. A compression chamber configured by engaging a scroll with each other, and a back pressure chamber for holding a back pressure for pressing the orbiting scroll against the fixed scroll are provided.
 前記圧縮室は、前記旋回スクロールの前記第2の渦巻き状ラップの外側に位置する外側圧縮室と、前記旋回スクロールの前記第2の渦巻き状のラップの内側に位置する内側圧縮室とを有している。 The compression chamber has an outer compression chamber located outside the second spiral wrap of the orbiting scroll and an inner compression chamber located inside the second spiral wrap of the orbiting scroll. ing.
 前記背圧室は、圧縮途中に、前記外側圧縮室または前記内側圧縮室のみと連通する。 The back pressure chamber communicates only with the outer compression chamber or the inner compression chamber during compression.
 前記外側圧縮室および前記内側圧縮室それぞれは、作動流体の閉込みを終了した時点の吸入閉込み容積を有する。 Each of the outer compression chamber and the inner compression chamber has a suction confined volume when the confinement of the working fluid is completed.
 圧縮途中に、前記外側圧縮室および前記内側圧縮室のうち一方の圧縮室と、前記背圧室とが連通する。 During compression, one of the outer compression chamber and the inner compression chamber communicates with the back pressure chamber.
 前記一方の圧縮室と前記背圧室との連通が終了する時の、前記一方の圧縮室の容積に対する、前記一方の圧縮室の前記吸入閉込み容積の比を背圧室閉口時容積比とする。 The ratio of the suction closed volume of the one compression chamber to the volume of the one compression chamber when the communication between the one compression chamber and the back pressure chamber ends is defined as the back pressure chamber closed volume ratio. To do.
 前記外側圧縮室および前記内側圧縮室それぞれについて、内部の圧力が吐出圧力以上まで上昇し、吐出経路に吐出できる前記作動流体の容積に対する前記吸入閉込み容積の比を吐出可能容積比とする。 Regarding each of the outer compression chamber and the inner compression chamber, the ratio of the suction confined volume to the volume of the working fluid that the internal pressure rises to the discharge pressure or more and can be discharged to the discharge path is the dischargeable volume ratio.
 前記背圧室閉口時容積比は、前記一方の圧縮室の前記吐出可能容積比よりも小さい。 The volume ratio when the back pressure chamber is closed is smaller than the dischargeable volume ratio of the one compression chamber.
 このような構成により、圧縮比が背圧室閉口時容積比よりも小さくなる低圧縮比運転時に、背圧室が連通する側の一方の圧縮室において過圧縮が生じ、連動して背圧室も過圧縮状態となる。 With such a configuration, during a low compression ratio operation in which the compression ratio becomes smaller than the volume ratio when the back pressure chamber is closed, overcompression occurs in one compression chamber on the side where the back pressure chamber communicates, and the back pressure chamber is linked Is also overcompressed.
 その後、背圧室と圧縮室の連通は閉じられ、圧縮室は、吐出可能容積比に到達した時点で吐出圧力まで低下する。一方、背圧室は、圧縮室と区画されているため、過圧縮状態を維持する。 After that, the communication between the back pressure chamber and the compression chamber is closed, and the compression chamber drops to the discharge pressure when the dischargeable volume ratio is reached. On the other hand, since the back pressure chamber is separated from the compression chamber, it maintains an overcompressed state.
 そのため、旋回スクロールは、吐出圧力以上となった背圧室の圧力で固定スクロールに押し付けられ、転覆が生じることを抑制できる。 Therefore, it is possible to prevent the orbiting scroll from being overturned by being pressed against the fixed scroll by the pressure of the back pressure chamber that is equal to or higher than the discharge pressure.
 本開示によれば、低圧縮比運転時に、旋回スクロールの固定スクロールからの離脱を無くし、安定した圧縮動作を行うスクロール圧縮機を提供できる。 According to the present disclosure, it is possible to provide a scroll compressor that does not separate the orbiting scroll from the fixed scroll during a low compression ratio operation and performs a stable compression operation.
図1は、本開示の実施の形態に係るスクロール圧縮機の側方から見た断面図である。FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present disclosure as viewed from the side. 図2は、同スクロール圧縮機の圧縮機構の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of a compression mechanism of the scroll compressor. 図3は、図2におけるC-C線での矢視断面図である。FIG. 3 is a sectional view taken along the line CC in FIG. 図4は、同スクロール圧縮機の旋回運動に伴う、背圧室との連通路およびインジェクションポートの開口状態を示す図である。FIG. 4 is a diagram showing an opening state of a communication path with a back pressure chamber and an injection port, which accompanies the orbiting motion of the scroll compressor. 図5は、同スクロール圧縮機の旋回運動に伴う、背圧室との連通路とシール部材との位置関係を説明する図である。FIG. 5: is a figure explaining the positional relationship of the communicating path with a back pressure chamber, and a sealing member accompanying the turning motion of the same scroll compressor. 図6は、本開示の実施の形態におけるスクロール圧縮機を用いた冷凍サイクル図である。FIG. 6 is a refrigeration cycle diagram using the scroll compressor according to the embodiment of the present disclosure. 図7は、図2のA-A線での矢視断面図である。FIG. 7 is a sectional view taken along the line AA of FIG. 図8は、図7のB-B線での矢視断面図である。FIG. 8 is a sectional view taken along the line BB of FIG.
 本開示のスクロール圧縮機は、第1の鏡板および第1の渦巻き状のラップを有する固定スクロールと、第2の鏡板および第2の渦巻き状のラップを有する旋回スクロールと、前記固定スクロールと前記旋回スクロールとを噛み合わせて構成された圧縮室と、前記旋回スクロールを前記固定スクロールに対して押し付ける背圧を保持する背圧室と、を備えるスクロール圧縮機である。 The scroll compressor of the present disclosure includes a fixed scroll having a first end plate and a first spiral wrap, an orbiting scroll having a second end plate and a second spiral wrap, the fixed scroll and the orbit. A scroll compressor including: a compression chamber configured to mesh with a scroll; and a back pressure chamber that holds a back pressure that presses the orbiting scroll against the fixed scroll.
 前記圧縮室は、前記旋回スクロールの前記第2の渦巻き状ラップの外側に位置する外側圧縮室と、前記旋回スクロールの前記第2の渦巻き状のラップの内側に位置する内側圧縮室とを有している。 The compression chamber has an outer compression chamber located outside the second spiral wrap of the orbiting scroll and an inner compression chamber located inside the second spiral wrap of the orbiting scroll. ing.
 前記背圧室は、圧縮途中に、前記外側圧縮室または前記内側圧縮室のみと連通する。 The back pressure chamber communicates only with the outer compression chamber or the inner compression chamber during compression.
 前記外側圧縮室および前記内側圧縮室それぞれは、作動流体の閉込みを終了した時点の吸入閉込み容積を有する。 Each of the outer compression chamber and the inner compression chamber has a suction confined volume when the confinement of the working fluid is completed.
 圧縮途中に、前記外側圧縮室および前記内側圧縮室のうち一方の圧縮室と、前記背圧室とが連通する。 During compression, one of the outer compression chamber and the inner compression chamber communicates with the back pressure chamber.
 前記一方の圧縮室と前記背圧室との連通が終了する時の、前記一方の圧縮室の容積に対する、前記一方の圧縮室の前記吸入閉込み容積の比を背圧室閉口時容積比とする。 The ratio of the suction closed volume of the one compression chamber to the volume of the one compression chamber when the communication between the one compression chamber and the back pressure chamber ends is defined as the back pressure chamber closed volume ratio. To do.
 前記外側圧縮室および前記内側圧縮室それぞれについて、内部の圧力が吐出圧力以上まで上昇し、吐出経路に吐出できる前記作動流体の容積に対する前記吸入閉込み容積の比を吐出可能容積比とする。 Regarding each of the outer compression chamber and the inner compression chamber, the ratio of the suction confined volume to the volume of the working fluid that the internal pressure rises to the discharge pressure or more and can be discharged to the discharge path is the dischargeable volume ratio.
 前記背圧室閉口時容積比は、前記一方の圧縮室の前記吐出可能容積比よりも小さい。 The volume ratio when the back pressure chamber is closed is smaller than the dischargeable volume ratio of the one compression chamber.
 この構成により、圧縮比が背圧室閉口時容積比よりも小さくなる低圧縮比運転時に、背圧室が連通する側の一方の圧縮室において過圧縮が生じ、背圧室が連通する側の一方の圧縮室と連動して背圧室も過圧縮状態となる。その後、背圧室と一方の圧縮室の連通は閉じられ、一方の圧縮室は吐出可能容積比に到達した時点で吐出圧力まで低下する。一方、背圧室は圧縮室と区画されているため、過圧縮状態を維持する。そのため、旋回スクロールは、吐出圧力以上となった背圧室の圧力で固定スクロールに押し付けられ、転覆が生じることを抑制できる。 With this configuration, during low compression ratio operation in which the compression ratio is smaller than the volume ratio when the back pressure chamber is closed, overcompression occurs in one of the compression chambers on the side where the back pressure chamber communicates, and on the side where the back pressure chamber communicates. The back pressure chamber is also overcompressed in conjunction with one compression chamber. After that, the communication between the back pressure chamber and the one compression chamber is closed, and when the one compression chamber reaches the dischargeable volume ratio, the pressure is reduced to the discharge pressure. On the other hand, since the back pressure chamber is separated from the compression chamber, it maintains an overcompressed state. Therefore, it is possible to prevent the orbiting scroll from being pressed against the fixed scroll by the pressure of the back pressure chamber that is equal to or higher than the discharge pressure and causing overturning.
 また、前記背圧室閉口時容積比は、前記外側圧縮室および前記内側圧縮室のうち、前記背圧室と連通しない他方の圧縮室の吐出可能容積比よりも大きい構成としてもよい。 Further, the volume ratio when the back pressure chamber is closed may be larger than the dischargeable volume ratio of the other compression chamber, which is not in communication with the back pressure chamber, of the outer compression chamber and the inner compression chamber.
 これにより、さらに、背圧室と連通しない他方の圧縮室が背圧室以上の過圧縮状態になることはなく、背圧室側からの高い圧力によって押し付け力が発生し、安定した圧縮動作を実現できる。 As a result, the other compression chamber that is not in communication with the back pressure chamber will not be in an over-compression state that is higher than the back pressure chamber, and pressing force will be generated by the high pressure from the back pressure chamber side, resulting in stable compression operation. realizable.
 また、前記外側圧縮室の前記吸入閉込み容積が前記内側圧縮室の前記吸入閉込み容積よりも大きく、前記背圧室が連通する側の一方の圧縮室は前記内側圧縮室であってもよい。 Further, the suction closed volume of the outer compression chamber may be larger than the suction closed volume of the inner compression chamber, and one compression chamber on the side where the back pressure chamber communicates may be the inner compression chamber. ..
 これにより、さらに、背圧室を過圧縮状態にするために、吐出可能容積比を大きくして背圧室と連通する一方の圧縮室は容積の小さい内側圧縮室であり、容積の大きい外側圧縮室の吐出可能容積比を小さく保つことができる。 As a result, in order to bring the back pressure chamber into an over-compressed state, one of the compression chambers that communicates with the back pressure chamber by increasing the dischargeable volume ratio is an inner compression chamber with a smaller volume and an outer compression chamber with a larger volume. The dischargeable volume ratio of the chamber can be kept small.
 旋回スクロールへの押し付け力は、圧縮室の、押し付け方向視で投影された面積と圧力との積で決まる。このため、過圧縮状態を作り出す圧縮室は、容積が小さい方が、押し付け力を打ち消す力を生じさせにくく、より安定した圧縮動作を実現できる。 The pressing force on the orbiting scroll is determined by the product of the area of the compression chamber projected in the pressing direction and the pressure. Therefore, in the compression chamber that creates the over-compressed state, the smaller the volume is, the less the force for canceling the pressing force is generated, and the more stable compression operation can be realized.
 また、吐出圧力に到達した作動流体が排出される吐出室と、前記固定スクロールの中央部に設けられた吐出ポートと、前記背圧室と連通しない前記他方の圧縮室に設けられ、前記吐出ポートより先に前記他方の圧縮室と前記吐出室とを連通させる吐出バイパスポートとを備えてもよい。また、前記吐出バイパスポートにより、前記背圧室と連通しない前記他方の圧縮室の前記吐出可能容積比が、前記背圧室と連通する前記一方の圧縮室の前記吐出可能容積比よりも小さくなる構成であってもよい。 A discharge chamber for discharging the working fluid that has reached the discharge pressure, a discharge port provided in the central portion of the fixed scroll, and the other compression chamber that is not in communication with the back pressure chamber, are provided with the discharge port. A discharge bypass port that connects the other compression chamber and the discharge chamber may be provided earlier. Further, the discharge bypass port makes the dischargeable volume ratio of the other compression chamber not communicating with the back pressure chamber smaller than the dischargeable volume ratio of the one compression chamber communicating with the back pressure chamber. It may be configured.
 これにより、背圧室と連通する側の一方の圧縮室は、背圧室との連通が閉じた後に吐出ポートまたは吐出バイパスポートと連通し、過圧縮状態から解放されて、吐出圧力まで下がる。一方、背圧室の圧力は、圧力の抜け先がなく過圧縮状態を維持するため、吐出圧力よりも大きくなる。そのため、旋回スクロールには背圧室側から固定スクロール側への押し付け力が働き、圧縮室の気密性を維持しながら、圧縮動作を続けることができる。 By this, one compression chamber on the side communicating with the back pressure chamber is communicated with the discharge port or the discharge bypass port after the communication with the back pressure chamber is closed, is released from the overcompression state, and drops to the discharge pressure. On the other hand, the pressure in the back pressure chamber is higher than the discharge pressure because there is no pressure release point and the overcompressed state is maintained. Therefore, a pressing force from the back pressure chamber side to the fixed scroll side acts on the orbiting scroll, and the compression operation can be continued while maintaining the airtightness of the compression chamber.
 また、吐出バイパスポートを備えることで、旋回スクロールのラップ形状および固定スクロールのラップ形状に関わらず、内側圧縮室および外側圧縮室いずれか一方のみの吐出可能容積比を任意に調整可能となるため、背圧室閉口時容積比に対して本開示を実現させる各圧縮室の吐出可能容積比を構成できる。 Further, by providing the discharge bypass port, regardless of the wrap shape of the orbiting scroll and the wrap shape of the fixed scroll, it is possible to arbitrarily adjust the dischargeable volume ratio of only one of the inner compression chamber and the outer compression chamber, The dischargeable volume ratio of each compression chamber that realizes the present disclosure can be configured with respect to the volume ratio when the back pressure chamber is closed.
 また、前記背圧室と前記一方の圧縮室が連通を終了する時の前記背圧室は、前記背圧室とは圧力差を有する他の空間から区画された閉空間である構成であってもよい。 Further, the back pressure chamber when the communication between the back pressure chamber and the one compression chamber is completed is a closed space partitioned from another space having a pressure difference from the back pressure chamber. Good.
 これにより、さらに、旋回スクロールには背圧室側から固定スクロール側への押し付け力が働き、圧縮室の気密性を維持しながら圧縮動作を続けることができる。 Due to this, the pressing force from the back pressure chamber side to the fixed scroll side acts on the orbiting scroll, and the compression operation can be continued while maintaining the airtightness of the compression chamber.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって、本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to these embodiments.
 (実施の形態)
 図1は、本開示の実施の形態に係るスクロール圧縮機の側方から見た断面図であり、図2は、同スクロール圧縮機の圧縮機構の要部拡大断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present disclosure viewed from a side, and FIG. 2 is an enlarged cross-sectional view of a main part of a compression mechanism of the scroll compressor.
 以下、本実施の形態に係るスクロール圧縮機について、その動作および作用を説明する。 The operation and action of the scroll compressor according to this embodiment will be described below.
 図1に示すように、本実施の形態に係るスクロール圧縮機91は、密閉容器1と、密閉容器1の内部に位置する圧縮機構2と、圧縮機構2を駆動するモータ部3と、密閉容器1の底部に設けられた貯油部20とを備えている。 As shown in FIG. 1, a scroll compressor 91 according to the present embodiment includes a closed container 1, a compression mechanism 2 located inside the closed container 1, a motor unit 3 that drives the compression mechanism 2, and a closed container. And an oil storage portion 20 provided at the bottom of the No. 1 unit.
 図2に示すように、圧縮機構2は、密閉容器1内に、溶接または焼き嵌め等で固定された主軸受部材11と、主軸受部材11上にボルト止めされ、鏡板(第1の鏡板)に渦巻き状のラップ(第1の渦巻き状のラップ)が直立した固定スクロール12と、鏡板(第2の鏡板)に渦巻き状のラップ(第2の渦巻き状のラップ)が直立した旋回スクロール13とを備えている。圧縮機構2は、固定スクロール12と旋回スクロール13とを噛み合わせてできた圧縮室15と、旋回スクロール13を固定スクロール12に対して押し付ける圧力を保持する背圧室29と、を備えている。 As shown in FIG. 2, the compression mechanism 2 has a main bearing member 11 fixed in the closed container 1 by welding, shrink fitting, etc., and bolted onto the main bearing member 11 to form an end plate (first end plate). A fixed scroll 12 in which a spiral wrap (first spiral wrap) is upright, and an orbiting scroll 13 in which a spiral wrap (second spiral wrap) is upright on an end plate (second end plate). Equipped with. The compression mechanism 2 includes a compression chamber 15 formed by engaging the fixed scroll 12 and the orbiting scroll 13 with each other, and a back pressure chamber 29 that holds pressure for pressing the orbiting scroll 13 against the fixed scroll 12.
 旋回スクロール13と主軸受部材11との間には、旋回スクロール13の自転を防止し、円軌道運動するように案内するオルダムリング等を含む自転拘束機構14が設けられている。 Between the orbiting scroll 13 and the main bearing member 11, a rotation restraint mechanism 14 including an Oldham ring or the like for preventing the orbiting scroll 13 from rotating and guiding it in a circular orbital motion is provided.
 シャフト4は、モータ部3により回転駆動される。シャフト4は、主軸受部材11により軸支され、シャフト4の上端にある偏心軸部4aによって旋回スクロール13が偏心駆動される。 The shaft 4 is rotationally driven by the motor unit 3. The shaft 4 is axially supported by the main bearing member 11, and the orbiting scroll 13 is eccentrically driven by the eccentric shaft portion 4 a at the upper end of the shaft 4.
 これにより、旋回スクロール13は円軌道運動する。固定スクロール12と旋回スクロール13との間に形成された圧縮室15が、外周側から中央部に向かって容積を縮めながら移動する。これを利用して、密閉容器1外に通じた吸入パイプ16(図1参照)、および、固定スクロール12の外周部の吸入ポート17から作動流体が吸入され、圧縮室15に閉じ込められた後、圧縮される。 This causes the orbiting scroll 13 to move in a circular orbit. The compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves while reducing the volume from the outer peripheral side toward the central portion. Utilizing this, the working fluid is sucked from the suction pipe 16 (see FIG. 1) communicating with the outside of the closed container 1 and the suction port 17 at the outer peripheral portion of the fixed scroll 12, and after being confined in the compression chamber 15, Compressed.
 所定の圧力に到達した作動流体は、固定スクロール12の中央部に設けられた吐出ポート18から吐出リード弁19を押し開く。吐出圧力に到達した作動流体は、吐出室31を通り、密閉容器1内に吐出され、吐出管22(図1参照)から密閉容器1外へ送り出される。 The working fluid that has reached a predetermined pressure pushes open the discharge reed valve 19 from the discharge port 18 provided in the center of the fixed scroll 12. The working fluid that has reached the discharge pressure passes through the discharge chamber 31, is discharged into the closed container 1, and is discharged from the discharge pipe 22 (see FIG. 1) to the outside of the closed container 1.
 図1に示すように、シャフト4の下端にはポンプ25が設けられる。ポンプ25は、その吸い込み口が貯油部20内に存在するように配置される。ポンプ25は、旋回スクロール13と同時に駆動される。これにより、ポンプ25は、貯油部20にあるオイル6を、圧力条件および運転速度に関係なく、確実に吸い上げることができる。よって、オイル切れを起こすことがない。 As shown in FIG. 1, a pump 25 is provided on the lower end of the shaft 4. The pump 25 is arranged so that its suction port exists inside the oil storage section 20. The pump 25 is driven simultaneously with the orbiting scroll 13. As a result, the pump 25 can reliably suck up the oil 6 in the oil reservoir 20 regardless of the pressure condition and the operating speed. Therefore, the oil will not run out.
 ポンプ25で吸い上げられたオイル6は、シャフト4内を通縦(貫通)しているオイル供給穴26を通じて圧縮機構2に供給される。 The oil 6 sucked up by the pump 25 is supplied to the compression mechanism 2 through the oil supply hole 26 that extends vertically through the shaft 4.
 なお、オイル6をポンプ25で吸い上げる前、または、吸い上げた後に、オイルフィルタ等でオイル6から異物を除去すると、圧縮機構2への異物混入が防止されて、更なる信頼性向上を図ることができる。 If foreign matter is removed from the oil 6 with an oil filter or the like before or after sucking the oil 6 by the pump 25, the foreign matter is prevented from being mixed into the compression mechanism 2 and the reliability can be further improved. it can.
 圧縮機構2に導かれたオイル6の圧力は、スクロール圧縮機91の吐出圧力とほぼ同等であり、旋回スクロール13に対する背圧源となる。さらに、オイル6の一部は、供給圧および自重によって、逃げ場を求めるようにして、偏心軸部4aと旋回スクロール13との嵌合部、および、シャフト4と主軸受部材11との間の軸受部66に進入して、それぞれの部分を潤滑した後、落下し、貯油部20へ戻る。 The pressure of the oil 6 guided to the compression mechanism 2 is almost the same as the discharge pressure of the scroll compressor 91 and serves as a back pressure source for the orbiting scroll 13. Further, a part of the oil 6 seeks an escape area by the supply pressure and its own weight, so that a fitting portion between the eccentric shaft portion 4a and the orbiting scroll 13 and a bearing between the shaft 4 and the main bearing member 11 are formed. After entering the portion 66 and lubricating each portion, it falls and returns to the oil storage portion 20.
 図3は、図2におけるC-C矢視断面図である。 3 is a sectional view taken along the line CC in FIG.
 固定スクロール12および旋回スクロール13により形成される圧縮室15には、旋回スクロール13のラップの外側に位置する外側圧縮室15aと、ラップの内側に位置する内側圧縮室15bとが含まれる。 The compression chamber 15 formed by the fixed scroll 12 and the orbiting scroll 13 includes an outer compression chamber 15a located outside the wrap of the orbiting scroll 13 and an inner compression chamber 15b located inside the wrap.
 スクロール圧縮機91は、外側圧縮室15aの吸入閉込み容積と、内側圧縮室15bの吸入閉込み容積とが異なる、非対称スクロール圧縮機である。 The scroll compressor 91 is an asymmetric scroll compressor in which the suction closed volume of the outer compression chamber 15a and the suction closed volume of the inner compression chamber 15b are different.
 ここで、吸入閉込み容積とは、吸入ポート17から吸い込んだ作動流体を閉じ込めた直後の圧縮室容積である。さらに、スクロール圧縮機91は、外側圧縮室15aの吸入閉込み容積が、内側圧縮室15bの吸入閉込み容積より大きい、非対称スクロール圧縮機である。 Here, the suction confined volume is the volume of the compression chamber immediately after the working fluid sucked from the suction port 17 is confined. Further, the scroll compressor 91 is an asymmetric scroll compressor in which the suction closed volume of the outer compression chamber 15a is larger than the suction closed volume of the inner compression chamber 15b.
 非対称スクロール圧縮機であることにより、圧縮機全体としての吸入閉込み容積が増えるため、圧縮機内部の空間を効率的に使うことができる。 ▽Because it is an asymmetric scroll compressor, the suction confined volume of the compressor as a whole increases, so the space inside the compressor can be used efficiently.
 また、吸入ポート17から吸い込まれた作動流体を、外側圧縮室15aにおける吸入ポート17近辺で閉じ込めて、圧縮工程に入ることができる。このため、低圧低温の作動流体が圧縮機構2により加熱されて、作動流体の密度低下を抑制できる。 Further, the working fluid sucked from the suction port 17 can be confined in the vicinity of the suction port 17 in the outer compression chamber 15a to enter the compression process. For this reason, the low-pressure low-temperature working fluid is heated by the compression mechanism 2, and the density decrease of the working fluid can be suppressed.
 外側圧縮室15aと内側圧縮室15bとの吸入閉じ込み容積の違いは、容積比に影響する。容積比とは、圧縮工程における、ある時点での、圧縮室の容積に対する吸入閉込み容積の比である。容積比は、外側圧縮室および内側圧縮室のそれぞれについて規定できる。 The difference in the suction closed volume between the outer compression chamber 15a and the inner compression chamber 15b affects the volume ratio. The volume ratio is the ratio of the suction closed volume to the volume of the compression chamber at a certain point in the compression process. The volume ratio can be defined for each of the outer compression chamber and the inner compression chamber.
 一般に、内側圧縮室および外側圧縮室が、固定スクロール12の中央部に設けられた吐出ポート18と連通する際の圧縮室容積は略等しい。吐出ポート18が圧縮室内の作動流体の唯一の排出経路である場合、各圧縮室の吐出可能容積比は、吸入閉込み容積により決まる。 Generally, the volumes of the compression chambers when the inner compression chamber and the outer compression chamber communicate with the discharge port 18 provided in the central portion of the fixed scroll 12 are substantially equal. When the discharge port 18 is the only discharge path for the working fluid in the compression chamber, the dischargeable volume ratio of each compression chamber is determined by the suction closed volume.
 ここで、吐出可能容積比とは、圧縮室が吐出可能となった、つまり、圧縮室と吐出室31とが連通した時点の圧縮室の容積に対する、吸入閉込み容積の比である。吐出可能容積比は、外側圧縮室および内側圧縮室のそれぞれについて規定できる。 Here, the dischargeable volume ratio is the ratio of the suction closed volume to the volume of the compression chamber at the time when the compression chamber becomes dischargeable, that is, when the compression chamber and the discharge chamber 31 communicate with each other. The dischargeable volume ratio can be defined for each of the outer compression chamber and the inner compression chamber.
 本実施の形態では、外側圧縮室15aの吸入閉込み容積が、内側圧縮室15bの吸入閉込み容積よりも大きいため、外側圧縮室15aは内側圧縮室15bに対して圧縮工程が長くなり、吐出可能容積比が大きくなる。 In the present embodiment, since the suction closed volume of the outer compression chamber 15a is larger than the suction closed volume of the inner compression chamber 15b, the compression process of the outer compression chamber 15a is longer than that of the inner compression chamber 15b, and the discharge The possible volume ratio increases.
 圧縮比が比較的低い状態での運転である低圧縮比運転時において、外側圧縮室15aは、内側圧縮室15bよりも過圧縮状態になり易い。ここで、圧縮比は、吸入圧力に対する吐出圧力の比である。また、外側圧縮室15aは、内側圧縮室15bに比較して、圧縮室を押し付け方向視に投影した面積が大きい。このため、外側圧縮室15aの過圧縮が、旋回スクロール13を固定スクロール12から押し離す力を増大させ易い。 During a low compression ratio operation, which is an operation at a relatively low compression ratio, the outer compression chamber 15a is more likely to be overcompressed than the inner compression chamber 15b. Here, the compression ratio is the ratio of the discharge pressure to the suction pressure. Further, the outer compression chamber 15a has a larger area than the inner compression chamber 15b when the compression chamber is pressed and projected in the direction view. Therefore, the overcompression of the outer compression chamber 15a easily increases the force for pushing the orbiting scroll 13 away from the fixed scroll 12.
 また、旋回スクロール13のラップ先端13c(図2参照)には、運転中の温度分布を測定した結果に基づいて、中心部である巻き始め部から、外周部である巻き終わり部にかけて、徐々にラップ高さが高くなるようなスロープ形状が設けられている。これにより、熱膨張による寸法変化を吸収し、局所摺動を防止することができる。 Further, at the wrap tip 13c of the orbiting scroll 13 (see FIG. 2), based on the result of measuring the temperature distribution during operation, from the winding start portion, which is the central portion, to the winding end portion, which is the outer peripheral portion, gradually The slope shape is provided so that the lap height becomes high. This makes it possible to absorb dimensional changes due to thermal expansion and prevent local sliding.
 スクロール圧縮機91は、図2に示すように、貯油部20からオイルを圧縮室15に導く給油経路55として、接続路55-1と供給路55-2とを備えている。 As shown in FIG. 2, the scroll compressor 91 includes a connection path 55-1 and a supply path 55-2 as an oil supply path 55 that guides oil from the oil storage section 20 to the compression chamber 15.
 また、圧縮室15への給油経路として、旋回スクロール13の内部に形成された通路13aと、固定スクロール12のラップ面側鏡板に形成された凹部12aとを備えている。通路13aは供給路55-2を含む。 Further, a passage 13a formed inside the orbiting scroll 13 and a recess 12a formed on the lap surface side end plate of the fixed scroll 12 are provided as an oil supply path to the compression chamber 15. The passage 13a includes a supply passage 55-2.
 通路13aの一方の開口端55-2bは、ラップ先端13cに形成され、旋回運動にあわせて周期的に凹部12aに開口する。また、通路13aの他方の開口端55-2aは、常時、背圧室29に開口する。これにより、背圧室29は、内側圧縮室15bとのみ間欠的に連通し、外側圧縮室15aとは連通しない。 One open end 55-2b of the passage 13a is formed in the wrap tip 13c and periodically opens in the recess 12a in accordance with the turning motion. The other open end 55-2a of the passage 13a is always open to the back pressure chamber 29. Thereby, the back pressure chamber 29 is intermittently communicated only with the inner compression chamber 15b and is not communicated with the outer compression chamber 15a.
 また、圧力上昇速度の速い内側圧縮室15bに積極的にオイル供給することで、圧縮工程において、1つ前に形成された内側圧縮室15b-1(図3参照)から、次に形成された内側圧縮室15b-2(図3参照)への漏れを抑制できる。 Further, by positively supplying oil to the inner compression chamber 15b having a high pressure rising speed, the oil is formed next from the inner compression chamber 15b-1 (see FIG. 3) formed immediately before in the compression step. Leakage into the inner compression chamber 15b-2 (see FIG. 3) can be suppressed.
 また、図2に示すように、旋回スクロール13の背面13eには、シール部材78と、吐出圧力の作動流体を保持する高圧領域30と、吐出圧力と吸入圧力との中間の圧力の作動流体を保持する背圧室29とが設けられている。シール部材78により、シール部材78の内側を高圧領域30に、シール部材78の外側を背圧室29に、それぞれ区画している。 As shown in FIG. 2, the back surface 13e of the orbiting scroll 13 is provided with a seal member 78, a high-pressure region 30 for holding a working fluid having a discharge pressure, and a working fluid having a pressure intermediate between the discharge pressure and the suction pressure. A back pressure chamber 29 for holding is provided. The seal member 78 divides the inside of the seal member 78 into the high-pressure region 30 and the outside of the seal member 78 into the back pressure chamber 29.
 給油経路のうち少なくとも一つが、背圧室29を経由するように構成される。つまり、給油経路55を、高圧領域30から背圧室29への接続路55-1と、背圧室29から内側圧縮室15bへの供給路55-2とから構成する。 At least one of the refueling routes is configured to pass through the back pressure chamber 29. That is, the oil supply passage 55 is composed of a connection passage 55-1 from the high pressure region 30 to the back pressure chamber 29 and a supply passage 55-2 from the back pressure chamber 29 to the inner compression chamber 15b.
 これにより、背面13eからの背圧により、旋回スクロール13は固定スクロール12に安定的に押し付けられ、背圧室29から圧縮室15への作動流体の漏れを低減するとともに、安定した運転を行うことができる。 Thereby, the orbiting scroll 13 is stably pressed against the fixed scroll 12 by the back pressure from the back surface 13e, the leakage of the working fluid from the back pressure chamber 29 to the compression chamber 15 is reduced, and the stable operation is performed. You can
 また、シール部材78を用いることにより、高圧領域30の圧力と、背圧室29の圧力(以下、背圧)とが完全に分離され、旋回スクロール13の背面からの圧力付加を、安定的に制御できる。 Further, by using the seal member 78, the pressure in the high pressure region 30 and the pressure in the back pressure chamber 29 (hereinafter, back pressure) are completely separated, and the pressure applied from the back surface of the orbiting scroll 13 can be stably applied. You can control.
 また、高圧領域30から背圧室29への接続路55-1を設けることで、自転拘束機構14の摺動部、および、固定スクロール12と旋回スクロール13とのスラスト摺動部にオイル6を供給できる。 In addition, by providing the connection path 55-1 from the high pressure region 30 to the back pressure chamber 29, the oil 6 is applied to the sliding portion of the rotation restraint mechanism 14 and the thrust sliding portion of the fixed scroll 12 and the orbiting scroll 13. Can be supplied.
 また、背圧室29から内側圧縮室15bへの供給路55-2を設けることで、内側圧縮室15bへの給油量を積極的に増やすことができ、内側圧縮室15bにおける漏れ損失を抑制できる。 Further, by providing the supply passage 55-2 from the back pressure chamber 29 to the inner compression chamber 15b, the amount of oil supplied to the inner compression chamber 15b can be positively increased, and the leakage loss in the inner compression chamber 15b can be suppressed. ..
 また、接続路55-1の一方の開口端55-1bを、旋回スクロール13の背面13eに形成し、シール部材78を往来させ、他方の開口端55-1aを、常時、高圧領域30に開口させる。これにより、間欠給油、および、背圧の調整を実現できる。 Further, one opening end 55-1b of the connection path 55-1 is formed on the back surface 13e of the orbiting scroll 13, the sealing member 78 is moved in and out, and the other opening end 55-1a is always opened in the high pressure region 30. Let Thereby, intermittent refueling and adjustment of back pressure can be realized.
 まず、間欠給油について説明する。 First, I will explain intermittent refueling.
 図5は、スクロール圧縮機の旋回運動に伴う、背圧室との連通路と、シール部材との位置関係を説明する図である。 FIG. 5 is a diagram illustrating the positional relationship between the communication passage with the back pressure chamber and the seal member, which accompanies the orbiting motion of the scroll compressor.
 図5は、位相を90度ずつずらして、(I)0°~90°、(II)90°~180°、(III)180°~270°、(IV)270°~360°の状態を示している。 FIG. 5 shows the states of (I) 0° to 90°, (II) 90° to 180°, (III) 180° to 270°, and (IV) 270° to 360° by shifting the phase by 90°. Showing.
 つまり、図5の(II)は、図5の(I)からシャフト4が90度回転した状態、図5の(III)は、図5の(II)からさらに90度回転した状態、図5の(IV)は、図5の(III)からさらに90度回転した状態、図5の(I)は、図5の(IV)からさらに90度回転した状態を、それぞれ示している。 That is, (II) of FIG. 5 is a state in which the shaft 4 is rotated 90 degrees from (I) of FIG. 5, and (III) of FIG. 5 is a state of being further rotated 90 degrees from (II) of FIG. 5(IV) shows a state further rotated by 90 degrees from FIG. 5(III), and FIG. 5(I) shows a state further rotated by 90 degrees from FIG. 5(IV).
 図5に示すように、接続路55-1の一方の開口端55-1bは、旋回スクロール13の背面13eに位置している。旋回スクロール13の背面13eは、シール部材78によって、内側の高圧領域30と外側の背圧室29とに仕切られている。 As shown in FIG. 5, one opening end 55-1b of the connection path 55-1 is located on the rear surface 13e of the orbiting scroll 13. The back surface 13e of the orbiting scroll 13 is partitioned by a seal member 78 into an inner high pressure region 30 and an outer back pressure chamber 29.
 図5の(II)の状態では、一方の開口端55-1bは、シール部材78の外側である背圧室29に開口している。このため、背圧室29と高圧領域30とが連通する。これにより、高圧領域30から背圧室29にオイル6が供給される。 In the state of (II) of FIG. 5, one open end 55-1b is open to the back pressure chamber 29 outside the seal member 78. Therefore, the back pressure chamber 29 and the high pressure region 30 communicate with each other. As a result, the oil 6 is supplied from the high pressure region 30 to the back pressure chamber 29.
 対して、図5の、(I)、(III)、(IV)の状態では、開口端55-1bはシール部材78の内側に開口している。このため、背圧室29は、高圧領域30と連通しない。このため、高圧領域30から背圧室29にオイル6は供給されない。 On the other hand, in the states (I), (III), and (IV) of FIG. 5, the opening end 55-1b opens inside the seal member 78. Therefore, the back pressure chamber 29 does not communicate with the high pressure region 30. Therefore, the oil 6 is not supplied from the high pressure region 30 to the back pressure chamber 29.
 すなわち、接続路55-1の一方の開口端55-1bは、高圧領域30と背圧室29とを往来し、接続路55-1の両側の、開口端55-1aと55-1bとの間に圧力差が生じたときのみ、背圧室29にオイル6が供給される。これにより、給油量は、一方の開口端55-1bがシール部材78を跨いで往来する時間割合で調整される。このため、接続路55-1の通路径を、オイルフィルタに対して10倍以上の寸法で構成できる。 That is, one open end 55-1b of the connecting path 55-1 moves back and forth between the high pressure region 30 and the back pressure chamber 29, and the open ends 55-1a and 55-1b on both sides of the connecting path 55-1 are connected. The oil 6 is supplied to the back pressure chamber 29 only when there is a pressure difference therebetween. As a result, the amount of refueling is adjusted by the time rate at which the one open end 55-1b travels across the seal member 78. Therefore, the passage diameter of the connection passage 55-1 can be configured to be 10 times or more the size of the oil filter.
 また、通路に異物が噛み込んで閉塞する虞がなくなるため、安定した背圧の印加ができると同時に、スラスト摺動部および自転拘束機構14の潤滑も、良好な状態を維持でき、高効率かつ高信頼性を実現できる。 In addition, since there is no risk of foreign matter being caught in the passage to be blocked, a stable back pressure can be applied, and at the same time, good lubrication of the thrust sliding portion and the rotation restraint mechanism 14 can be maintained, resulting in high efficiency. High reliability can be realized.
 なお、上述の説明では、他方の開口端55-1aが、常時、高圧領域30にあり、一方の開口端55-1bが、高圧領域30と背圧室29とを往来する場合を例として説明した。本開示はこの例に限定されず、例えば、他方の開口端55-1aが高圧領域30と背圧室29とを往来し、一方の開口端55-1bが、常時、背圧室29にある場合でも、開口端55-1aと55-1bとの間に圧力差が生じるため、間欠給油が実現でき、同様の効果が得られる。 In the above description, the case where the other open end 55-1a is always in the high pressure region 30 and the one open end 55-1b moves between the high pressure region 30 and the back pressure chamber 29 is described as an example. did. The present disclosure is not limited to this example. For example, the other open end 55-1a moves back and forth between the high pressure region 30 and the back pressure chamber 29, and one open end 55-1b is always in the back pressure chamber 29. Even in such a case, a pressure difference occurs between the open ends 55-1a and 55-1b, so that intermittent oil supply can be realized and the same effect can be obtained.
 次に、背圧の調整について説明する。 Next, I will explain the adjustment of back pressure.
 図4は、スクロール圧縮機の旋回運動に伴う、背圧室との連通路、および、インジェクションポートの開口状態を示す図である。 FIG. 4 is a diagram showing a communication path with the back pressure chamber and an opening state of the injection port, which accompanies the orbiting motion of the scroll compressor.
 図4は、固定スクロール12と旋回スクロール13とを噛み合わせて、旋回スクロール13の背面13eから見た状態であり、位相を90度ずつずらした図である。図5と同様に、図4は、(I)0°~90°、(II)90°~180°、(III)180°~270°、(IV)270°~360°の状態を示している。 FIG. 4 shows a state in which the fixed scroll 12 and the orbiting scroll 13 are meshed with each other and seen from the back surface 13e of the orbiting scroll 13, and the phases are shifted by 90 degrees. Similar to FIG. 5, FIG. 4 shows the states of (I) 0° to 90°, (II) 90° to 180°, (III) 180° to 270°, and (IV) 270° to 360°. There is.
 つまり、図4の(II)は、図4の(I)からシャフト4が90度回転した状態、図4の(III)は、図4の(II)からさらに90度回転した状態、図4の(IV)は、図4の(III)からさらに90度回転した状態、図4の(I)は、図4の(IV)からさらに90度回転した状態を、それぞれ示している。 That is, (II) of FIG. 4 shows the shaft 4 rotated 90 degrees from (I) of FIG. 4, (III) of FIG. 4 further rotates 90 degrees from (II) of FIG. (IV) of FIG. 4 shows a state further rotated by 90 degrees from (III) of FIG. 4, and (I) of FIG. 4 shows a state of further rotated by 90 degrees from (IV) of FIG.
 図4の(I)に示す状態は、外側圧縮室15aが作動流体を閉じ込める位置であり、図4の(III)に示す状態は、内側圧縮室15bが作動流体を閉じ込める位置である。 The state shown in (I) of FIG. 4 is the position where the outer compression chamber 15a confines the working fluid, and the state shown in (III) of FIG. 4 is the position where the inner compression chamber 15b confines the working fluid.
 図4の(I)に示す状態では、2つの外側圧縮室15aが形成されている。外周側に位置する外側圧縮室15aは、作動流体を閉じ込めた直後の低圧状態であり、内周側に位置する外側圧縮室15aは中間圧状態である。 In the state shown in FIG. 4(I), two outer compression chambers 15a are formed. The outer compression chamber 15a located on the outer peripheral side is in a low pressure state immediately after confining the working fluid, and the outer compression chamber 15a located on the inner peripheral side is in an intermediate pressure state.
 図4の(II)に示す状態では、内周側に形成された外側圧縮室15aは、吐出前の高圧状態である。 In the state shown in (II) of FIG. 4, the outer compression chamber 15a formed on the inner peripheral side is in a high pressure state before discharge.
 図4の(III)に示す状態では、2つの内側圧縮室15bが形成されており、外周側に位置する内側圧縮室15bは、作動流体を閉じ込めた直後の低圧状態であり、内周側に位置する内側圧縮室15bは中間圧状態である。 In the state shown in (III) of FIG. 4, two inner compression chambers 15b are formed, and the inner compression chamber 15b located on the outer peripheral side is in a low pressure state immediately after confining the working fluid and is on the inner peripheral side. The located inner compression chamber 15b is in an intermediate pressure state.
 図4の(IV)に示す状態では、内周側に形成された内側圧縮室15bは吐出前の高圧状態である。 In the state shown in (IV) of FIG. 4, the inner compression chamber 15b formed on the inner peripheral side is in a high pressure state before discharge.
 まず、高圧縮比運転の場合について説明する。 First, the case of high compression ratio operation will be explained.
 図4の(IV)の状態では、一方の開口端55-2bは、凹部12aに開口している。このため、内側圧縮室15bは背圧室29と連通する。高圧縮比運転時には、供給路55-2および通路13a(図2参照)を通って、背圧室29から内側圧縮室15bに、オイル6が供給される。 In the state of (IV) of FIG. 4, one opening end 55-2b opens in the recess 12a. Therefore, the inner compression chamber 15b communicates with the back pressure chamber 29. During the high compression ratio operation, the oil 6 is supplied from the back pressure chamber 29 to the inner compression chamber 15b through the supply passage 55-2 and the passage 13a (see FIG. 2).
 凹部12aは、内側圧縮室15bが、吸入した作動流体(吸入冷媒とも記す)を閉じ込めた直後に、一方の開口端55-2bが開口する位置に設けられている(図4の(IV)参照)。換言すると、一方の開口端55-2bによって、給油経路は、吸入冷媒を閉じ込み後の圧縮工程中にある内側圧縮室15bに開口する位置に設けている。そのため、内側圧縮室15bと連通している間の背圧室29の圧力は、内側圧縮室15bの圧力とほぼ等しくなる。 The recess 12a is provided at a position where one opening end 55-2b is opened immediately after the inner compression chamber 15b traps the sucked working fluid (also referred to as suction refrigerant) (see (IV) in FIG. 4). ). In other words, by one opening end 55-2b, the oil supply path is provided at a position that opens into the inner compression chamber 15b in the compression process after the suction refrigerant is closed. Therefore, the pressure of the back pressure chamber 29 while communicating with the inner compression chamber 15b becomes substantially equal to the pressure of the inner compression chamber 15b.
 これに対して、図4の、(I)、(II)、(III)の状態では、一方の開口端55-2bは凹部12aに開口していない。このため、背圧室29から内側圧縮室15bにオイル6は供給されない。また、背圧室29の圧力も、内側圧縮室15bから影響を受けない。 On the other hand, in the states of (I), (II), and (III) of FIG. 4, one opening end 55-2b does not open in the recess 12a. Therefore, the oil 6 is not supplied from the back pressure chamber 29 to the inner compression chamber 15b. Further, the pressure in the back pressure chamber 29 is not affected by the inner compression chamber 15b.
 また、前述のように、図4の(II)に対応する図5の(II)の状態では、背圧室29と高圧領域30とが連通する。これにより、背圧室29の圧力は、高圧領域30の圧力、つまり、吐出圧力と同等となる。 Further, as described above, in the state of (II) of FIG. 5 corresponding to (II) of FIG. 4, the back pressure chamber 29 and the high pressure region 30 communicate with each other. As a result, the pressure in the back pressure chamber 29 becomes equal to the pressure in the high pressure region 30, that is, the discharge pressure.
 つまり、高圧縮比運転時には、背圧室29を、吸入圧力と吐出圧力との中間の圧力状態に調整でき、この圧力が、低圧縮比運転時における、旋回スクロールへの押し付け力として機能する。 That is, during the high compression ratio operation, the back pressure chamber 29 can be adjusted to an intermediate pressure state between the suction pressure and the discharge pressure, and this pressure functions as the pressing force against the orbiting scroll during the low compression ratio operation.
 次に、低圧縮比運転の場合について説明する。 Next, the case of low compression ratio operation will be explained.
 低圧縮比運転時には、図4の(IV)の状態において、背圧室29と連通し、外周側に位置する内側圧縮室15bの圧力は、吐出圧力以上まで上昇し、同時に背圧室29も吐出圧力以上の圧力になる。 During the low compression ratio operation, in the state of (IV) of FIG. 4, the pressure of the inner compression chamber 15b, which communicates with the back pressure chamber 29 and is located on the outer peripheral side, increases to the discharge pressure or more, and at the same time, the back pressure chamber 29 also The pressure exceeds the discharge pressure.
 図5の(IV)の状態において、背圧室29は高圧領域30と連通しておらず、内側圧縮室15bと背圧室29とで構成された空間は閉空間である。そのため、背圧室29は、吐出圧力と等しい高圧領域30よりも高い圧力状態となる。 In the state of (IV) of FIG. 5, the back pressure chamber 29 is not in communication with the high pressure region 30, and the space formed by the inner compression chamber 15b and the back pressure chamber 29 is a closed space. Therefore, the back pressure chamber 29 is in a higher pressure state than the high pressure region 30 which is equal to the discharge pressure.
 さらに圧縮工程が進み、背圧室29と内側圧縮室15bとを連通させていた開口端55-2bが凹部12aから外れると、背圧室29は独立した閉空間となる。このため、背圧室29の圧力は、内側圧縮室15bの圧力、および、高圧領域30の圧力に依存しなくなる。内側圧縮室15bの圧力は、吐出可能容積比以上まで圧縮が進むと、圧縮室内部の作動流体が吐出室31へと排出され、吐出圧力へと下がる。これに対して、背圧室29の圧力は、内側圧縮室15bから分離した際の過圧縮状態が、再度、背圧室29が内側圧縮室15bまたは高圧領域30と連通するまで続く。 When the compression process further progresses, and the open end 55-2b communicating the back pressure chamber 29 and the inner compression chamber 15b comes out of the recess 12a, the back pressure chamber 29 becomes an independent closed space. Therefore, the pressure in the back pressure chamber 29 does not depend on the pressure in the inner compression chamber 15b and the pressure in the high pressure region 30. When the compression in the inner compression chamber 15b progresses to the dischargeable volume ratio or more, the working fluid in the compression chamber is discharged into the discharge chamber 31 and is reduced to the discharge pressure. On the other hand, the pressure in the back pressure chamber 29 continues until the back compression chamber 29 communicates with the inner compression chamber 15b or the high pressure region 30 again in the overcompressed state when separated from the inner compression chamber 15b.
 つまり、低圧縮比運転時には、図4の(I)および図5の(I)の状態において、背圧室29のみが、吐出圧力よりも高い圧力状態を維持することになり、この圧力が、旋回スクロールへの押し付け力として機能する。 That is, during the low compression ratio operation, only the back pressure chamber 29 maintains a pressure state higher than the discharge pressure in the states of (I) of FIG. 4 and (I) of FIG. 5, and this pressure is Functions as a pressing force against the orbiting scroll.
 スクロール圧縮機91には、圧縮室15で圧縮された作動流体を吐出室31に導く通路として、吐出ポート18の他に、吐出バイパスポート21(図2参照)が設けられている。 In addition to the discharge port 18, a discharge bypass port 21 (see FIG. 2) is provided in the scroll compressor 91 as a passage for guiding the working fluid compressed in the compression chamber 15 to the discharge chamber 31.
 吐出バイパスポート21は、吐出ポート18と同様に、リード弁を備えている。圧縮室15内の圧力が、吐出室31の圧力に達した場合には、リード弁が押し開らかれ、吐出室31に作動流体が排出される。圧縮室15の圧力が、吐出室31の圧力に満たない場合は、リード弁が閉じて、吐出室31から圧縮室15への作動流体の逆流が抑制される。 Like the discharge port 18, the discharge bypass port 21 is equipped with a reed valve. When the pressure in the compression chamber 15 reaches the pressure in the discharge chamber 31, the reed valve is pushed open and the working fluid is discharged to the discharge chamber 31. When the pressure in the compression chamber 15 is less than the pressure in the discharge chamber 31, the reed valve is closed and the backflow of the working fluid from the discharge chamber 31 to the compression chamber 15 is suppressed.
 ただし、吐出バイパスポート21が前述の機能を実現する条件として、圧縮室15と連通する位置に、吐出バイパスポート21が存在する必要がある。吐出バイパスポート21は、固定スクロール12の鏡板に設けられた固定通路である。 However, as a condition that the discharge bypass port 21 realizes the above-mentioned function, the discharge bypass port 21 needs to exist at a position communicating with the compression chamber 15. The discharge bypass port 21 is a fixed passage provided in the end plate of the fixed scroll 12.
 圧縮室15は、圧縮動作とともに、容積を縮めながら中心側へと移動していき、圧縮室15が、吐出ポート18または吐出バイパスポート21と連通する位置まで進んで初めて、圧縮室15の作動流体を吐出室31へ排出することが可能となる。 With the compression operation, the compression chamber 15 moves toward the center while reducing its volume, and only when the compression chamber 15 reaches the position where it communicates with the discharge port 18 or the discharge bypass port 21, the working fluid of the compression chamber 15 is reached. Can be discharged to the discharge chamber 31.
 吐出バイパスポート21は、圧縮工程において、吐出ポート18によって吐出室31と連通する前の圧縮室15と、吐出室31とを連通させるように設けられている。 The discharge bypass port 21 is provided so as to connect the compression chamber 15 and the discharge chamber 31 before being connected to the discharge chamber 31 by the discharge port 18 in the compression process.
 図4に示すように、スクロール圧縮機91には、外側圧縮室15aが連通する吐出バイパスポート21aと、内側圧縮室15bが連通する吐出バイパスポート21bとがそれぞれ別々に設けられ、これにより、連通するタイミングがずらされている。 As shown in FIG. 4, the scroll compressor 91 is provided with a discharge bypass port 21a communicating with the outer compression chamber 15a and a discharge bypass port 21b communicating with the inner compression chamber 15b, respectively. The timing to do is shifted.
 吐出バイパスポート21aは、図4の(I)の状態では、外側圧縮室15aと連通せず、図4の、(II)~(IV)の状態では、外周側に位置する外側圧縮室15aと連通する位置に設けられている。 The discharge bypass port 21a does not communicate with the outer compression chamber 15a in the state of (I) of FIG. 4, and does not communicate with the outer compression chamber 15a located on the outer peripheral side in the states of (II) to (IV) of FIG. It is provided at the position where it communicates.
 吐出バイパスポート21bは、図4の(IV)の状態では、内側圧縮室15bと連通せず、図4の、(I)~(III)の状態では、外周側に位置する内側圧縮室15bと連通する位置に設けられている。 The discharge bypass port 21b does not communicate with the inner compression chamber 15b in the state of (IV) of FIG. 4, and does not communicate with the inner compression chamber 15b located on the outer peripheral side in the states of (I) to (III) of FIG. It is provided at the position where it communicates.
 外側圧縮室15aは、図4の(I)のタイミングで吸入工程を完了して、外側圧縮室15a内は閉じ込められる。圧縮工程が90°進んだ図4の(II)において、既に、外側圧縮室15aは吐出バイパスポート21aと連通状態にある。この場合、外側圧縮室15aの吐出可能容積比は、外側圧縮室15aが吐出バイパスポート21aと連通するタイミングの圧縮室容積に対する、外側圧縮室15aの吸入閉込み容積の比で決まり、実質的に、吐出ポート18との連通タイミングには依存しない。 The outer compression chamber 15a completes the suction process at the timing of (I) in FIG. 4, and the outer compression chamber 15a is confined. In (II) of FIG. 4 where the compression process has advanced 90°, the outer compression chamber 15a is already in communication with the discharge bypass port 21a. In this case, the dischargeable volume ratio of the outer compression chamber 15a is determined by the ratio of the suction closed volume of the outer compression chamber 15a to the compression chamber volume at the timing when the outer compression chamber 15a communicates with the discharge bypass port 21a, and is substantially determined. , Does not depend on the communication timing with the discharge port 18.
 一方、内側圧縮室15bは、図4の(III)のタイミングで吸入工程を完了して、内側圧縮室15b内は閉じ込められる。圧縮工程が90°進んだ図4の(IV)において、内側圧縮室15bは、吐出バイパスポート21bとは連通していない。さらに90°進んだ図4の(I)においては、内側圧縮室15bは、吐出バイパスポート21bと連通する。また、図4の(IV)のタイミングで、内側圧縮室15bは、供給路55-2および通路13aを介して背圧室29と連通している。 On the other hand, the inner compression chamber 15b completes the suction process at the timing of (III) in FIG. 4, and the inner compression chamber 15b is confined. In (IV) of FIG. 4 where the compression process has advanced 90°, the inner compression chamber 15b is not in communication with the discharge bypass port 21b. In (I) of FIG. 4 further advanced by 90°, the inner compression chamber 15b communicates with the discharge bypass port 21b. Further, at the timing of (IV) in FIG. 4, the inner compression chamber 15b communicates with the back pressure chamber 29 via the supply passage 55-2 and the passage 13a.
 この場合も、内側圧縮室15bの吐出可能容積比は、吐出バイパスポート21bとの連通タイミングにより決められる。背圧室29が連通する内側圧縮室15bの吐出可能容積比は、背圧室閉口時容積比、および、外側圧縮室15aの吐出可能容積比よりも大きい。 Also in this case, the dischargeable volume ratio of the inner compression chamber 15b is determined by the communication timing with the discharge bypass port 21b. The dischargeable volume ratio of the inner compression chamber 15b communicating with the back pressure chamber 29 is larger than the back pressure chamber closed volume ratio and the dischargeable volume ratio of the outer compression chamber 15a.
 ここで、背圧室閉口時容積比とは、背圧室29が連通する側の圧縮室、つまり内側圧縮室15bにおいて、背圧室29と、圧縮途中の内側圧縮室15bとの連通が終了する時(つまり、図4の(IV)の直後のタイミング)の、外周側の内側圧縮室15bの容積に対する、吸入閉込み容積の比である。 Here, the volume ratio when the back pressure chamber is closed means the compression chamber on the side where the back pressure chamber 29 communicates, that is, in the inner compression chamber 15b, the communication between the back pressure chamber 29 and the inner compression chamber 15b in the middle of compression is completed. This is the ratio of the intake confined volume to the volume of the inner compression chamber 15b on the outer peripheral side at the time of (that is, the timing immediately after (IV) in FIG. 4).
 このような構成により、低圧縮比運転時には、早いタイミングで圧縮室15の圧力が吐出圧力に到達しても、投影面積の大きい外側圧縮室15aは過圧縮することなく、吐出室31へと作動流体を排出できる。 With such a configuration, during low compression ratio operation, even if the pressure of the compression chamber 15 reaches the discharge pressure at an early timing, the outer compression chamber 15a having a large projected area does not overcompress and operates to the discharge chamber 31. Fluid can be discharged.
 これに対して、内側圧縮室15bでは過圧縮が発生し、その圧力が背圧室29にも伝達して、旋回スクロール13の押し付け力を高める。内側圧縮室15bと背圧室29との連通が終了した後には、背圧室29の過圧縮状態の圧力は維持される。 On the other hand, over-compression occurs in the inner compression chamber 15b, and the pressure is transmitted to the back pressure chamber 29 to increase the pressing force of the orbiting scroll 13. After the communication between the inner compression chamber 15b and the back pressure chamber 29 is completed, the pressure of the back pressure chamber 29 in the over-compressed state is maintained.
 一方、内側圧縮室15bの過圧縮は、吐出バイパスポート21bとの連通により解消される。これにより、旋回スクロール13を固定スクロール12から引き離す方向に働く、圧縮室15側からの力を抑制しつつ、旋回スクロールの背面13eに強い押し付け力を与え、旋回スクロール13を固定スクロール12に安定して押し付けながら、圧縮動作を続けることができる。 On the other hand, overcompression of the inner compression chamber 15b is eliminated by communication with the discharge bypass port 21b. As a result, a strong pressing force is applied to the back surface 13e of the orbiting scroll while suppressing the force from the compression chamber 15 side that acts in the direction of separating the orbiting scroll 13 from the fixed scroll 12, and the orbiting scroll 13 is stabilized on the fixed scroll 12. The compression operation can be continued while pressing it.
 次に、スクロール圧縮機91を用いた冷凍サイクル装置について、説明する。 Next, a refrigeration cycle device using the scroll compressor 91 will be described.
 図6は、本開示の実施の形態におけるスクロール圧縮機を用いた冷凍サイクル図である。 FIG. 6 is a refrigeration cycle diagram using the scroll compressor according to the embodiment of the present disclosure.
 図6に示すように、冷凍サイクル装置は、スクロール圧縮機91、凝縮器92、蒸発器93、2つの減圧器94、インジェクション管95、および、気液分離器96を備えている。スクロール圧縮機91、凝縮器92、上流側の減圧器94a、気液分離器96、および、下流側の減圧器94bは、配管により環状に接続されている。インジェクション管95は、気液分離器96とスクロール圧縮機91とを接続している。 As shown in FIG. 6, the refrigeration cycle device includes a scroll compressor 91, a condenser 92, an evaporator 93, two pressure reducers 94, an injection pipe 95, and a gas-liquid separator 96. The scroll compressor 91, the condenser 92, the upstream pressure reducer 94a, the gas-liquid separator 96, and the downstream pressure reducer 94b are connected in an annular shape by pipes. The injection pipe 95 connects the gas-liquid separator 96 and the scroll compressor 91.
 凝縮器92で凝縮された作動流体(以下、冷媒とも記す)は、上流側の減圧器94aで中間圧まで減圧され、気液分離器96に流入する。気液分離器96は、中間圧の冷媒を、気相成分(ガス冷媒)と液相成分(液冷媒)とに分離する。中間圧の液冷媒は、さらに下流側の減圧器94を通り、低圧冷媒となって蒸発器93に流入する。 The working fluid (hereinafter, also referred to as a refrigerant) condensed in the condenser 92 is depressurized to an intermediate pressure by the depressurizer 94a on the upstream side and flows into the gas-liquid separator 96. The gas-liquid separator 96 separates the intermediate-pressure refrigerant into a gas phase component (gas refrigerant) and a liquid phase component (liquid refrigerant). The intermediate-pressure liquid refrigerant passes through the pressure reducer 94 on the further downstream side, becomes a low-pressure refrigerant, and flows into the evaporator 93.
 蒸発器93に流入した液冷媒は、熱交換によって蒸発し、ガス冷媒、または、一部、液冷媒の混じったガス冷媒として排出される。蒸発器93から排出された冷媒は、スクロール圧縮機91の圧縮室15に流入する。 The liquid refrigerant flowing into the evaporator 93 evaporates by heat exchange and is discharged as a gas refrigerant or a gas refrigerant partially mixed with the liquid refrigerant. The refrigerant discharged from the evaporator 93 flows into the compression chamber 15 of the scroll compressor 91.
 一方、気液分離器96で分離された中間圧のガス冷媒は、インジェクション管95を通り、スクロール圧縮機91内の圧縮室15に噴射(インジェクション)される。インジェクション管95に、閉塞弁または減圧器94等の、インジェクションする圧力を調整および停止する手段を設けてもよい。 On the other hand, the intermediate-pressure gas refrigerant separated by the gas-liquid separator 96 passes through the injection pipe 95 and is injected (injected) into the compression chamber 15 in the scroll compressor 91. The injection pipe 95 may be provided with means for adjusting and stopping the injection pressure, such as a closing valve or a pressure reducer 94.
 スクロール圧縮機91は、蒸発器93から流入する低圧冷媒を圧縮する圧縮過程において、気液分離器96の中間圧冷媒を圧縮室15にインジェクションさせて冷媒を圧縮し、高温高圧冷媒を、吐出管22(図1参照)から凝縮器92に排出する。 In the compression process of compressing the low-pressure refrigerant flowing from the evaporator 93, the scroll compressor 91 injects the intermediate-pressure refrigerant of the gas-liquid separator 96 into the compression chamber 15 to compress the refrigerant and discharge the high-temperature high-pressure refrigerant into the discharge pipe. 22 (see FIG. 1) to the condenser 92.
 気液分離器96で分離される冷媒の、気相成分と液相成分との比率について説明する。 The ratio of the gas phase component and the liquid phase component of the refrigerant separated by the gas liquid separator 96 will be described.
 上流側の膨張弁(減圧器94a)の入口側圧力と出口側圧力との圧力差が大きいほど、気相成分が多くなる。また、凝縮器92出口の冷媒の過冷却度が小さい、または、乾き度が大きいほど、気相成分が多くなる。 The gas phase component increases as the pressure difference between the inlet side pressure and the outlet side pressure of the upstream expansion valve (pressure reducer 94a) increases. Further, the smaller the degree of supercooling of the refrigerant at the outlet of the condenser 92 or the greater the degree of dryness, the more the gas phase component.
 一方、スクロール圧縮機91が、インジェクション管95を介して吸入する冷媒の量は、中間圧が高いほど多くなる。気液分離器96で分離される冷媒の気相成分比率よりも多くの冷媒を、インジェクション管95から吸い込むと、気液分離器96のガス冷媒が枯渇し、インジェクション管95に液冷媒が流入する。 On the other hand, the amount of the refrigerant sucked by the scroll compressor 91 through the injection pipe 95 increases as the intermediate pressure increases. If more refrigerant than the gas phase component ratio of the refrigerant separated in the gas-liquid separator 96 is sucked in from the injection pipe 95, the gas refrigerant in the gas-liquid separator 96 will be depleted, and the liquid refrigerant will flow into the injection pipe 95. ..
 スクロール圧縮機91の能力を最大限に発揮させるためには、気液分離器96において分離されるガス冷媒が、余すことなくインジェクション管95からスクロール圧縮機91に吸い込まれることが望ましい。仮に、その均衡状態から外れてしまうと、インジェクション管95からスクロール圧縮機91に液冷媒が流入する。そこで、インジェクション管95から液冷媒が流入する場合においても、スクロール圧縮機91が高い信頼性を維持できるように構成する必要がある。 In order to maximize the capacity of the scroll compressor 91, it is desirable that the gas refrigerant separated in the gas-liquid separator 96 is sucked into the scroll compressor 91 through the injection pipe 95 without exhaustion. If it goes out of the equilibrium state, the liquid refrigerant flows from the injection pipe 95 into the scroll compressor 91. Therefore, it is necessary to configure the scroll compressor 91 so as to maintain high reliability even when the liquid refrigerant flows in from the injection pipe 95.
 図7は、図2のA-A線矢視断面図である。図8は、図7のB-B線矢視断面図である。 FIG. 7 is a sectional view taken along the line AA of FIG. 8 is a sectional view taken along the line BB of FIG.
 インジェクション管95から流入する中間圧では、図1、図2、図7および図8に示すように、冷媒が中間圧室41に流入し、インジェクションポート43に設けられた逆止弁42を開き、閉じ込み後の圧縮室15にインジェクションされる。インジェクションされた冷媒は、吸入ポート17から吸い込まれた冷媒と共に、吐出ポート18から密閉容器1内に吐出される。 At the intermediate pressure flowing from the injection pipe 95, as shown in FIGS. 1, 2, 7, and 8, the refrigerant flows into the intermediate pressure chamber 41 and opens the check valve 42 provided in the injection port 43. It is injected into the compression chamber 15 after being closed. The injected refrigerant is discharged from the discharge port 18 into the closed container 1 together with the refrigerant sucked from the suction port 17.
 中間圧の冷媒をインジェクションするためのインジェクションポート43は、固定スクロール12の鏡板を貫通して設けられている。インジェクションポート43は、外側圧縮室15aおよび内側圧縮室15bに順次開口する。インジェクションポート43は、外側圧縮室15aおよび内側圧縮室15bそれぞれでの閉じ込み後の圧縮工程中に、それぞれの圧縮室に開口する位置に設けられている。 The injection port 43 for injecting the intermediate pressure refrigerant is provided through the end plate of the fixed scroll 12. The injection port 43 sequentially opens to the outer compression chamber 15a and the inner compression chamber 15b. The injection port 43 is provided at a position that opens to each compression chamber during the compression process after closing in each of the outer compression chamber 15a and the inner compression chamber 15b.
 図1および図2に示すように、スクロール圧縮機91には、インジェクション管95から送り込まれ、圧縮室15にインジェクションする前の中間圧作動流体を導く中間圧室41が設けられている。 As shown in FIGS. 1 and 2, the scroll compressor 91 is provided with an intermediate pressure chamber 41 that is fed from the injection pipe 95 and guides the intermediate pressure working fluid before being injected into the compression chamber 15.
 中間圧室41は、圧縮室区画部材である固定スクロール12と、中間圧プレート44と、中間圧カバー45(図2参照)とで形成されている。中間圧室41と圧縮室15とは、固定スクロール12を挟んで対向している。 The intermediate pressure chamber 41 is formed of the fixed scroll 12 that is a compression chamber partition member, an intermediate pressure plate 44, and an intermediate pressure cover 45 (see FIG. 2). The intermediate pressure chamber 41 and the compression chamber 15 face each other with the fixed scroll 12 in between.
 中間圧室41は、中間圧作動流体が流入する中間圧室入口41aと、中間圧作動流体を圧縮室15にインジェクションするインジェクションポート43のインジェクションポート入口43aと、中間圧室入口41aより低い位置に形成された液溜め部41bとを有している。 The intermediate pressure chamber 41 is located at a position lower than the intermediate pressure chamber inlet 41a into which the intermediate pressure working fluid flows, the injection port inlet 43a of the injection port 43 that injects the intermediate pressure working fluid into the compression chamber 15, and the intermediate pressure chamber inlet 41a. It has the formed liquid storage part 41b.
 液溜め部41bは、固定スクロール12の鏡板の上面で形成されている。 The liquid reservoir 41b is formed on the upper surface of the end plate of the fixed scroll 12.
 中間圧プレート44には、圧縮室15から中間圧室41への冷媒逆流を防止する逆止弁42が設けられている。インジェクションポート43が圧縮室15に開口している区間において、圧縮室15の内圧がインジェクションポート43の中間圧よりも高い場合には、圧縮室15から中間圧室41に向けて冷媒が逆流する。このように、逆止弁42を設けることにより、冷媒の逆流を阻止できる。 The intermediate pressure plate 44 is provided with a check valve 42 that prevents the reverse flow of the refrigerant from the compression chamber 15 to the intermediate pressure chamber 41. When the internal pressure of the compression chamber 15 is higher than the intermediate pressure of the injection port 43 in the section where the injection port 43 is open to the compression chamber 15, the refrigerant flows backward from the compression chamber 15 toward the intermediate pressure chamber 41. Thus, by providing the check valve 42, the reverse flow of the refrigerant can be prevented.
 本実施の形態に係るスクロール圧縮機91では、逆止弁42は、圧縮室15側にリフトして、圧縮室15と中間圧室41とを連通させるリード弁42aで構成されている。よって、圧縮室15の内圧が中間圧室41の圧力よりも低い時にのみ、中間圧室41を圧縮室15に連通させることができる。 In the scroll compressor 91 according to the present embodiment, the check valve 42 is configured by a reed valve 42a that lifts to the compression chamber 15 side and connects the compression chamber 15 and the intermediate pressure chamber 41. Therefore, the intermediate pressure chamber 41 can be communicated with the compression chamber 15 only when the internal pressure of the compression chamber 15 is lower than the pressure of the intermediate pressure chamber 41.
 リード弁42aを用いることで、可動部における摺動箇所が少なく、長期に亘ってシール性を維持できるとともに、流路面積を、必要に応じて拡大させ易い。 By using the reed valve 42a, there are few sliding parts in the movable part, the sealability can be maintained for a long time, and the flow passage area can be easily expanded as necessary.
 逆止弁42を設けない場合、および、逆止弁42をインジェクション管95に設けた場合は、圧縮室15の冷媒が、インジェクション管95まで逆流し、無駄な圧縮動力を消費することになる。本実施の形態では、逆止弁42を圧縮室15に近い中間圧プレート44に設けることで、圧縮室15からの逆流を抑制している。 When the check valve 42 is not provided and when the check valve 42 is provided in the injection pipe 95, the refrigerant in the compression chamber 15 flows back to the injection pipe 95, consuming useless compression power. In the present embodiment, the check valve 42 is provided on the intermediate pressure plate 44 near the compression chamber 15 to suppress the backflow from the compression chamber 15.
 固定スクロール12の鏡板の上面は、中間圧室入口41aよりも低い位置にある。固定スクロール12の鏡板の上面に、液相成分の冷媒が溜まる液溜め部41bが設けられている。 The top surface of the end plate of the fixed scroll 12 is located lower than the intermediate pressure chamber inlet 41a. On the upper surface of the end plate of the fixed scroll 12, a liquid storage portion 41b in which the refrigerant of the liquid phase component is stored is provided.
 インジェクションポート入口43aは、中間圧室入口41aの高さよりも高い位置に設けられている。したがって、中間圧作動流体の内、気相成分の冷媒がインジェクションポート43に導かれ、液溜め部41bに溜まった液相成分の冷媒は、高温状態にある固定スクロール12の表面で気化されるため、圧縮室15に、液相成分の冷媒が流入しにくい。 The injection port inlet 43a is provided at a position higher than the height of the intermediate pressure chamber inlet 41a. Therefore, of the intermediate-pressure working fluid, the refrigerant of the gas phase component is guided to the injection port 43, and the refrigerant of the liquid phase component accumulated in the liquid reservoir 41b is vaporized on the surface of the fixed scroll 12 in the high temperature state. It is difficult for the refrigerant of the liquid phase component to flow into the compression chamber 15.
 さらに、中間圧室41と吐出室31とは、中間圧プレート44を介して隣接する位置に設けられている。これにより、中間圧室41に液相成分の作動流体が流入した際の気化が促進されるとともに、吐出室31の高圧冷媒の温度上昇を抑制できる。このため、その分だけ、高い吐出圧条件まで運転を行うことができる。 Further, the intermediate pressure chamber 41 and the discharge chamber 31 are provided at positions adjacent to each other via the intermediate pressure plate 44. As a result, vaporization when the working fluid of the liquid phase component flows into the intermediate pressure chamber 41 is promoted, and the temperature rise of the high pressure refrigerant in the discharge chamber 31 can be suppressed. Therefore, the operation can be performed up to that high discharge pressure condition.
 インジェクションポート43に導かれた中間圧冷媒は、インジェクションポート43と圧縮室15との圧力差によりリード弁42aを押し開き、吸入ポート17から吸い込まれた低圧冷媒と、圧縮室15で合流する。 The intermediate-pressure refrigerant guided to the injection port 43 pushes the reed valve 42a open due to the pressure difference between the injection port 43 and the compression chamber 15, and joins the low-pressure refrigerant sucked from the suction port 17 in the compression chamber 15.
 逆止弁42から圧縮室15までの間のインジェクションポート43に残る中間圧冷媒は、再膨張および再圧縮を繰り返すので、スクロール圧縮機91の効率を低下させる要因となる。そこで、リード弁42aの最大変位量を規制するバルブストップ42bの厚みを、リード弁42aのリフト規制箇所に応じて変化させ、リード弁42aより下流のインジェクションポート43内体積を小さく構成している。 The intermediate-pressure refrigerant remaining in the injection port 43 between the check valve 42 and the compression chamber 15 repeats re-expansion and re-compression, which causes a reduction in the efficiency of the scroll compressor 91. Therefore, the thickness of the valve stop 42b that regulates the maximum displacement amount of the reed valve 42a is changed according to the lift regulation portion of the reed valve 42a, so that the internal volume of the injection port 43 downstream of the reed valve 42a is made small.
 また、リード弁42aおよびバルブストップ42bは、固定部材であるボルト48により中間圧プレート44に固定されている。バルブストップ42bに設けられたボルト48の固定用孔は、バルブストップ42bを貫通することなく、ボルト48の挿入側にのみ開口している。このため、結果として、固定部材48は、中間圧室41にのみ開放するように構成されている。これにより、固定部材48の隙間を介して、中間圧室41と圧縮室15との間で作動流体が漏れるのを抑制でき、インジェクション率を向上させることができる。 The reed valve 42a and the valve stop 42b are fixed to the intermediate pressure plate 44 by bolts 48 that are fixing members. The fixing hole of the bolt 48 provided in the valve stop 42b is opened only on the insertion side of the bolt 48 without penetrating the valve stop 42b. Therefore, as a result, the fixing member 48 is configured to open only to the intermediate pressure chamber 41. As a result, the working fluid can be prevented from leaking between the intermediate pressure chamber 41 and the compression chamber 15 through the gap of the fixing member 48, and the injection rate can be improved.
 中間圧室41の容積は、圧縮室15へのインジェクション量を十分に供給可能とするために、圧縮室15の吸入容積以上とする。ここで吸入容積とは、吸入ポート17から導かれた作動流体を圧縮室15に閉じ込んだ時点、すなわち吸入工程完了時点での圧縮室15の容積であり、外側圧縮室15aと内側圧縮室15bとの合計容積である。 The volume of the intermediate pressure chamber 41 is set to be equal to or larger than the suction volume of the compression chamber 15 so that the injection amount into the compression chamber 15 can be sufficiently supplied. Here, the suction volume is the volume of the compression chamber 15 at the time when the working fluid introduced from the suction port 17 is closed in the compression chamber 15, that is, at the time of completion of the suction process, and is the outer compression chamber 15a and the inner compression chamber 15b. And is the total volume.
 本実施の形態に係るスクロール圧縮機91では、中間圧室41を固定スクロール12の鏡板の平面上に広がるように設け、容積を拡大している。 In the scroll compressor 91 according to the present embodiment, the intermediate pressure chamber 41 is provided so as to spread on the plane of the end plate of the fixed scroll 12 to increase the volume.
 しかしながら、スクロール圧縮機91に封入されたオイル6の一部が、吐出冷媒と共にスクロール圧縮機91から出て、気液分離器96からインジェクション管95を通って中間圧室41に戻った場合に、液溜め部41bに残るオイル6が多すぎると、貯油部20のオイル6が不足してしまう問題を生じ得る。このため、中間圧室41の容積が大きすぎるのも適切でない。このことから、中間圧室41の容積は、圧縮室15の吸入容積以上で、封入されるオイル6のオイル容積の1/2以下とすることが好ましい。 However, when a part of the oil 6 enclosed in the scroll compressor 91 exits from the scroll compressor 91 together with the discharged refrigerant and returns from the gas-liquid separator 96 to the intermediate pressure chamber 41 through the injection pipe 95, If the amount of oil 6 remaining in the liquid reservoir 41b is too large, a problem may occur in which the amount of oil 6 in the oil reservoir 20 is insufficient. Therefore, it is not appropriate that the volume of the intermediate pressure chamber 41 is too large. From this, it is preferable that the volume of the intermediate pressure chamber 41 is equal to or larger than the suction volume of the compression chamber 15 and equal to or smaller than 1/2 of the oil volume of the oil 6 to be enclosed.
 図4に示すように、インジェクションポート43は、第1圧縮室(外側圧縮室15a)と第2圧縮室(内側圧縮室15b)とに、順次開口する位置に設けている。また、インジェクションポート43は、図4の、(II)、(III)に示すように、吸入冷媒を閉じ込み後の圧縮行程中にある外側圧縮室15aに開口する位置、または、図4の(I)に示すように吸入冷媒を閉じ込み後の圧縮行程中にある内側圧縮室15bに開口する位置に、固定スクロール12の鏡板を貫通して設けられている。 As shown in FIG. 4, the injection port 43 is provided in the first compression chamber (outer compression chamber 15a) and the second compression chamber (inner compression chamber 15b) at positions that are sequentially opened. Further, as shown in (II) and (III) of FIG. 4, the injection port 43 is located at a position where it is opened to the outer compression chamber 15a in the compression stroke after the suction refrigerant is closed, or (in FIG. As shown in I), the end plate of the fixed scroll 12 is provided through the end plate at a position where it is opened to the inner compression chamber 15b in the compression stroke after closing the suction refrigerant.
 なお、本実施の形態では、圧縮室と背圧室との連通路として給油経路を用いたが、給油経路とは別に、独立した経路を設けても同様の効果を得ることができる。また、背圧室は、旋回スクロールの背面側に限らず、固定スクロールの背面側に設けられ、固定スクロールが旋回スクロールに押し付けられる構成でもよい。また、本実施の形態では、インジェクション管を有するスクロール圧縮機を用いて説明したが、インジェクション管が設けられていないスクロール圧縮機であってもよい。 In the present embodiment, the oil supply path is used as the communication path between the compression chamber and the back pressure chamber, but the same effect can be obtained by providing an independent path separately from the oil supply path. Further, the back pressure chamber is not limited to the back side of the orbiting scroll, but may be provided on the back side of the fixed scroll so that the fixed scroll is pressed against the orbiting scroll. Further, although the present embodiment has been described by using the scroll compressor having the injection pipe, the scroll compressor without the injection pipe may be used.
 本開示のスクロール圧縮機は、冷暖房空調装置および冷蔵庫等の冷凍装置、または、ヒートポンプ式の給湯装置等に有用である。 The scroll compressor according to the present disclosure is useful for a refrigerating device such as an air conditioner and air conditioner and a refrigerator, or a heat pump type hot water supply device.
 1  密閉容器
 2  圧縮機構
 3  モータ部
 4  シャフト
 4a  偏心軸部
 6  オイル
 11  主軸受部材
 12  固定スクロール
 12a  凹部
 13  旋回スクロール
 13a  通路
 13c  ラップ先端
 13e  背面
 14  自転拘束機構
 15  圧縮室
 15a  外側圧縮室
 15b、15b-1、15b-2  内側圧縮室
 16  吸入パイプ
 17  吸入ポート
 18  吐出ポート
 19  吐出リード弁
 20  貯油部
 21、21a、21b  吐出バイパスポート
 22  吐出管
 25  ポンプ
 26  オイル供給穴
 29  背圧室
 30  高圧領域
 31  吐出室
 41  中間圧室
 41a  中間圧室入口
 41b  液溜め部
 42  逆止弁
 42a  リード弁
 42b  バルブストップ
 43  インジェクションポート
 43a  インジェクションポート入口
 44  中間圧プレート(中間圧室隔壁部材)
 45  中間圧カバー(中間圧室隔壁部材)
 48  ボルト(固定部材)
 55  給油経路
 55-1  接続路
 55-1a  他方の開口端(高圧領域側)
 55-1b  一方の開口端(背圧室側)
 55-2  供給路
 55-2a  他方の開口端(背圧室側)
 55-2b  一方の開口端(圧縮室側)
 66  軸受部
 78  シール部材
 91  スクロール圧縮機
 92  凝縮器
 93  蒸発器
 94、94a、94b  減圧器
 95  インジェクション管
 96  気液分離器
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Motor part 4 Shaft 4a Eccentric shaft part 6 Oil 11 Main bearing member 12 Fixed scroll 12a Recessed part 13 Orbiting scroll 13a Passage 13c Wrap tip 13e Rear surface 14 Rotation restraint mechanism 15 Compression chamber 15a Outside compression chamber 15b, 15b -1,15b-2 Inside compression chamber 16 Suction pipe 17 Suction port 18 Discharge port 19 Discharge reed valve 20 Oil reservoir 21, 21a, 21b Discharge bypass port 22 Discharge pipe 25 Pump 26 Oil supply hole 29 Back pressure chamber 30 High pressure region 31 Discharge chamber 41 Intermediate pressure chamber 41a Intermediate pressure chamber inlet 41b Liquid reservoir 42 Check valve 42a Reed valve 42b Valve stop 43 Injection port 43a Injection port inlet 44 Intermediate pressure plate (intermediate pressure chamber partition member)
45 Intermediate pressure cover (intermediate pressure chamber partition member)
48 bolts (fixing member)
55 Oil supply path 55-1 Connection path 55-1a Other open end (high pressure area side)
55-1b One open end (back pressure chamber side)
55-2 Supply path 55-2a Opening end of other side (back pressure chamber side)
55-2b One open end (compression chamber side)
66 Bearing part 78 Seal member 91 Scroll compressor 92 Condenser 93 Evaporator 94, 94a, 94b Pressure reducer 95 Injection pipe 96 Gas-liquid separator

Claims (5)

  1. 第1の鏡板および第1の渦巻き状のラップを有する固定スクロールと、
    第2の鏡板および第2の渦巻き状のラップを有する旋回スクロールと、
    前記固定スクロールと前記旋回スクロールとを噛み合わせて構成された圧縮室と、
    前記旋回スクロールを前記固定スクロールに対して押し付ける背圧を保持する背圧室と、を備え、
    前記圧縮室は、前記旋回スクロールの前記第2の渦巻き状ラップの外側に位置する外側圧縮室と、前記旋回スクロールの前記第2の渦巻き状のラップの内側に位置する内側圧縮室とを有し、
    前記背圧室は、圧縮途中に、前記外側圧縮室または前記内側圧縮室のみと連通し、
    前記外側圧縮室および前記内側圧縮室それぞれは、作動流体の閉込みを終了した時点の吸入閉込み容積を有し、
    圧縮途中に、前記外側圧縮室および前記内側圧縮室のうち一方の圧縮室と、前記背圧室とが連通し、
    前記一方の圧縮室と前記背圧室との連通が終了する時の、前記一方の圧縮室の容積に対する、前記一方の圧縮室の前記吸入閉込み容積の比を背圧室閉口時容積比とし、
    前記外側圧縮室および前記内側圧縮室それぞれについて、内部の圧力が吐出圧力以上まで上昇し、吐出経路に吐出できる前記作動流体の容積に対する前記吸入閉込み容積の比を吐出可能容積比としたとき、
    前記背圧室閉口時容積比は、前記一方の圧縮室の前記吐出可能容積比よりも小さいスクロール圧縮機。
    A fixed scroll having a first end plate and a first spiral wrap;
    An orbiting scroll having a second end plate and a second spiral wrap;
    A compression chamber configured by meshing the fixed scroll and the orbiting scroll,
    A back pressure chamber for holding a back pressure for pressing the orbiting scroll against the fixed scroll,
    The compression chamber has an outer compression chamber located outside the second spiral wrap of the orbiting scroll and an inner compression chamber located inside the second spiral wrap of the orbiting scroll. ,
    The back pressure chamber communicates only with the outer compression chamber or the inner compression chamber during compression,
    Each of the outer compression chamber and the inner compression chamber has a suction confined volume when the confinement of the working fluid is completed,
    During compression, one of the outer compression chamber and the inner compression chamber communicates with the back pressure chamber,
    When the communication between the one compression chamber and the back pressure chamber ends, the ratio of the suction closed volume of the one compression chamber to the volume of the one compression chamber is defined as the back pressure chamber closed volume ratio. ,
    When the internal pressure of each of the outer compression chamber and the inner compression chamber rises to the discharge pressure or more and the ratio of the suction closed volume to the volume of the working fluid that can be discharged to the discharge path is a dischargeable volume ratio,
    A scroll compressor in which the volume ratio when the back pressure chamber is closed is smaller than the dischargeable volume ratio of the one compression chamber.
  2. 前記背圧室閉口時容積比は、前記外側圧縮室および前記内側圧縮室のうち、前記背圧室と連通しない他方の圧縮室の前記吐出可能容積比よりも大きい
    請求項1に記載のスクロール圧縮機。
    The scroll compression according to claim 1, wherein the volume ratio when the back pressure chamber is closed is larger than the dischargeable volume ratio of the other compression chamber that is not in communication with the back pressure chamber, of the outer compression chamber and the inner compression chamber. Machine.
  3. 前記外側圧縮室の前記吸入閉込み容積が、前記内側圧縮室の前記吸入閉込み容積よりも大きく、前記一方の圧縮室は前記内側圧縮室である
    請求項1または請求項2に記載のスクロール圧縮機。
    The scroll compression according to claim 1 or 2, wherein the suction closed volume of the outer compression chamber is larger than the suction closed volume of the inner compression chamber, and the one compression chamber is the inner compression chamber. Machine.
  4. 吐出圧力に到達した前記作動流体が排出される吐出室と、
    前記固定スクロールの中央部に設けられた吐出ポートと、
    前記背圧室と連通しない前記他方の圧縮室に設けられ、前記吐出ポートより先に前記他方の圧縮室と前記吐出室とを連通させる吐出バイパスポートと、を備え、
    前記吐出バイパスポートにより、前記背圧室と連通しない前記他方の圧縮室の前記吐出可能容積比が、前記背圧室と連通する前記一方の圧縮室の前記吐出可能容積比よりも小さくなるように構成された
    請求項1から請求項3までのいずれか1項に記載のスクロール圧縮機。
    A discharge chamber from which the working fluid that has reached the discharge pressure is discharged,
    A discharge port provided at the center of the fixed scroll,
    A discharge bypass port that is provided in the other compression chamber that does not communicate with the back pressure chamber, and that communicates the other compression chamber and the discharge chamber prior to the discharge port,
    By the discharge bypass port, the dischargeable volume ratio of the other compression chamber that does not communicate with the back pressure chamber is smaller than the dischargeable volume ratio of the one compression chamber that communicates with the back pressure chamber. The scroll compressor according to any one of claims 1 to 3, which is configured.
  5. 前記背圧室と前記一方の圧縮室とが連通を終了する時の前記背圧室は、
    前記背圧室とは圧力差を有する他の空間から区画された閉空間である
    請求項1から請求項4までのいずれか1項に記載のスクロール圧縮機。
    The back pressure chamber when the back pressure chamber and the one compression chamber end communication with each other,
    The scroll compressor according to any one of claims 1 to 4, which is a closed space partitioned from another space having a pressure difference from the back pressure chamber.
PCT/JP2020/003928 2019-02-08 2020-02-03 Scroll compressor WO2020162394A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004563.1A CN112567136B (en) 2019-02-08 2020-02-03 Scroll compressor having a discharge port
JP2020571182A JP7165901B2 (en) 2019-02-08 2020-02-03 scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-021378 2019-02-08
JP2019021378 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162394A1 true WO2020162394A1 (en) 2020-08-13

Family

ID=71947359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003928 WO2020162394A1 (en) 2019-02-08 2020-02-03 Scroll compressor

Country Status (3)

Country Link
JP (1) JP7165901B2 (en)
CN (1) CN112567136B (en)
WO (1) WO2020162394A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112922828A (en) * 2021-03-08 2021-06-08 青岛科技大学 Prevent pressure pulsation's vortex liquid pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197684A (en) * 1986-02-26 1987-09-01 Hitachi Ltd Scroll compressor
JP2011052603A (en) * 2009-09-02 2011-03-17 Daikin Industries Ltd Scroll compressor
JP2012241680A (en) * 2011-05-24 2012-12-10 Panasonic Corp Scroll compressor
WO2018096823A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Asymmetrical scroll compressor
WO2018096824A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959457B2 (en) * 1995-12-21 1999-10-06 松下電器産業株式会社 Scroll gas compressor
US6089839A (en) * 1997-12-09 2000-07-18 Carrier Corporation Optimized location for scroll compressor economizer injection ports
US7641456B2 (en) * 2006-06-21 2010-01-05 Scroll Technologies Scroll compressor with back pressure chamber cavity for assisting in start-up
CN105545734B (en) * 2016-02-25 2017-11-21 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric scroll compressor and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197684A (en) * 1986-02-26 1987-09-01 Hitachi Ltd Scroll compressor
JP2011052603A (en) * 2009-09-02 2011-03-17 Daikin Industries Ltd Scroll compressor
JP2012241680A (en) * 2011-05-24 2012-12-10 Panasonic Corp Scroll compressor
WO2018096823A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Asymmetrical scroll compressor
WO2018096824A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112922828A (en) * 2021-03-08 2021-06-08 青岛科技大学 Prevent pressure pulsation's vortex liquid pump
CN112922828B (en) * 2021-03-08 2023-03-14 青岛科技大学 Prevent pressure pulsation's vortex liquid pump

Also Published As

Publication number Publication date
CN112567136A (en) 2021-03-26
JPWO2020162394A1 (en) 2021-09-09
JP7165901B2 (en) 2022-11-07
CN112567136B (en) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2018096824A1 (en) Scroll compressor
CN109983230B (en) Compressor with injection function
WO2018096823A1 (en) Asymmetrical scroll compressor
JP2011027076A (en) Scroll compressor
WO2020162394A1 (en) Scroll compressor
JP2010265756A (en) Scroll compressor
JP5428522B2 (en) Scroll compressor
JP2009052464A (en) Scroll compressor
JP7329771B2 (en) Compressor with injection mechanism
JP7329772B2 (en) Compressor with injection mechanism
JP2012241680A (en) Scroll compressor
JP2007032291A (en) Scroll expansion machine
JP5071355B2 (en) Scroll compressor
JP2009052463A (en) Scroll compressor
JP2006214335A (en) Scroll compressor
JP2008267140A (en) Scroll compressor
JP5671691B2 (en) Scroll compressor
JP2007032294A (en) Scroll compressor
JP2010127071A (en) Scroll compressor
JP2007023981A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20751933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20751933

Country of ref document: EP

Kind code of ref document: A1