JP2007032294A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2007032294A
JP2007032294A JP2005212505A JP2005212505A JP2007032294A JP 2007032294 A JP2007032294 A JP 2007032294A JP 2005212505 A JP2005212505 A JP 2005212505A JP 2005212505 A JP2005212505 A JP 2005212505A JP 2007032294 A JP2007032294 A JP 2007032294A
Authority
JP
Japan
Prior art keywords
scroll
end plate
orbiting scroll
compression chamber
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005212505A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Futagami
義幸 二上
Hirofumi Yoshida
裕文 吉田
Takashi Morimoto
敬 森本
Ryuichi Ono
竜一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005212505A priority Critical patent/JP2007032294A/en
Publication of JP2007032294A publication Critical patent/JP2007032294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of slide loss at a surface on which end plates of a fixed scroll and a turning scroll slide and leak loss on a compression chamber in a scroll compressor following improvement of efficiency and application of high pressure refrigerant such as carbon dioxide in refrigeration air conditioning devices of late years. <P>SOLUTION: A communication passage 80 of which one opening part intermittently opens to the compression chamber 15 and the slide surface 13a of the end plate 12a of the fixed scroll 12 and the end plate 13a of the turning scroll 13 and of which another opening part always open to the high pressure part 30 is provided inside of the end plate 13a of the turning scroll 13. Consequently, sliding loss is reduced by always supplying oil 6 to the slide surface 13a and improvement of compression efficiency and improvement of reliability are materialized by reducing leak loss of the compression chamber 15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷暖房空調装置や冷蔵庫等の冷却装置、あるいはヒートポンプ式の給湯装置等に用いられるスクロール圧縮機に関するものである。   The present invention relates to a scroll compressor used in a cooling device such as a cooling / heating air conditioner or a refrigerator, or a heat pump type hot water supply device.

従来、スクロール圧縮機において、旋回・固定鏡板間の摺動面の接触を良好な状態に保ち、摩擦損失を低減するために、旋回スクロール鏡板内部に、一方の開口部が旋回スクロール鏡板と固定スクロール鏡板の摺動部に開口し、もう一方の開口部は旋回スクロールの背面に設けて摺動仕切り環によって断続的に摺動仕切り環の内側の高圧部に開口する通路を設けた構成をとっていた(例えば、特許文献1参照)。   Conventionally, in a scroll compressor, in order to keep the sliding surface contact between the revolving and fixed end plates in a good state and reduce friction loss, one opening is provided inside the revolving scroll end plate and the fixed scroll end. It opens to the sliding part of the end plate, and the other opening part is provided on the back of the orbiting scroll, and has a configuration in which a passage is opened intermittently by the sliding partition ring to the high-pressure part inside the sliding partition ring. (For example, see Patent Document 1).

図4は、特許文献1に記載された従来のスクロール圧縮機の圧縮機構部断面図である。図4に示すように、旋回スクロール13の鏡板13aに油通路50を設け、旋回スクロール13の旋回に伴って油通路50の開口を摺動仕切り環78より中心側に臨ませることによって、高圧部30にあるオイルを旋回スクロール13の鏡板13aと固定スクロール12との摺動面13bに導くことにより、良好な潤滑状況を達成し、摩擦損失を低減するものである。
特開平6−307354号公報
FIG. 4 is a cross-sectional view of a compression mechanism portion of a conventional scroll compressor described in Patent Document 1. As shown in FIG. 4, an oil passage 50 is provided in the end plate 13 a of the orbiting scroll 13, and the opening of the oil passage 50 faces the center side from the sliding partition ring 78 as the orbiting scroll 13 turns. By guiding the oil at 30 to the sliding surface 13b between the end plate 13a of the orbiting scroll 13 and the fixed scroll 12, a good lubricating condition is achieved and the friction loss is reduced.
JP-A-6-307354

二酸化炭素冷媒を使用する場合、圧力が従来のHFC冷媒の約3倍となり、旋回スクロールの鏡板と固定スクロールの鏡板とが摺動する面には、過大な押し付け力が発生するため、従来の仕様では摺動損失の増大、あるいは、かじりや異常摩耗を引き起こしてしまう。また、大容量で多冷媒となるシステムでは、液冷媒の戻りが激しい過渡運転時においては、洗浄性の高い二酸化炭素の液冷媒により、旋回スクロールのスラスト面においてオイル切れや温度上昇が発生して焼付きに至る恐れがある。   When carbon dioxide refrigerant is used, the pressure is about three times that of the conventional HFC refrigerant, and an excessive pressing force is generated on the sliding surface of the end plate of the orbiting scroll and the end plate of the fixed scroll. In this case, sliding loss increases, or galling and abnormal wear occur. Also, in a system with a large capacity and multiple refrigerants, during transient operation where the return of the liquid refrigerant is severe, the carbon dioxide liquid refrigerant, which is highly washable, causes oil shortage and temperature rise on the thrust surface of the orbiting scroll. There is a risk of seizure.

また、二酸化炭素冷媒を使用する場合、圧縮機の吐出圧力と吸入圧力の圧力差は、フロンを冷媒とする従来の冷凍サイクルの圧力差の約7〜10倍以上高い。このため、圧縮室内での漏れにより更に性能の低下を引き起こしていた。   When carbon dioxide refrigerant is used, the pressure difference between the discharge pressure and the suction pressure of the compressor is about 7 to 10 times higher than the pressure difference of the conventional refrigeration cycle using chlorofluorocarbon as the refrigerant. For this reason, the performance was further deteriorated due to leakage in the compression chamber.

そこで、上記従来の構成のように、高圧のオイルを旋回スクロールの鏡板と固定スクロールの鏡板とが摺動する面に供給し、旋回スクロールのスラスト面での摩擦損失低減は実現できるが、圧縮室内における漏れによる体積効率低下までは考慮していない。   Therefore, as in the conventional configuration described above, high pressure oil is supplied to the surface on which the end plate of the orbiting scroll and the end plate of the fixed scroll slide to reduce the friction loss on the thrust surface of the orbiting scroll. It does not take into account the volumetric efficiency drop due to leakage.

本発明は、前記従来の課題を解決するもので、旋回スクロールの鏡板と固定スクロールの鏡板との摺動面における摺動損失を低減するとともに、圧縮室内での漏れを低減し、高効率で信頼性の高いスクロール圧縮機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and reduces the sliding loss on the sliding surface between the end plate of the orbiting scroll and the end plate of the fixed scroll, and also reduces leakage in the compression chamber, and is highly efficient and reliable. An object of the present invention is to provide a highly efficient scroll compressor.

前記従来の課題を解決するために、本発明のスクロール圧縮機は、旋回スクロールの駆動によって、固定スクロールの鏡板と旋回スクロールの鏡板とが摺動する面の一部に高圧部のオイルを間欠的に導くとともに、圧縮室内に高圧部のオイルを間欠的に導く連通路を設けたものである。   In order to solve the above-described conventional problems, the scroll compressor according to the present invention intermittently applies the oil in the high pressure portion to a part of the surface on which the end plate of the fixed scroll and the end plate of the orbiting scroll slide by driving the orbiting scroll. And a communication passage for intermittently guiding the oil in the high pressure section is provided in the compression chamber.

この構成により、旋回スクロールの鏡板と固定スクロールの鏡板の摺動面に高圧のオイ
ルを導いているため、油膜厚さを厚くでき、摺動損失を低減するとともに、オイルによる良好な潤滑により摺動面におけるかじりや異常摩耗を抑制することができる。また、圧縮室内へも適量のオイルを導いているため、吸入加熱による性能低下なく、圧縮室内の漏れ損失を低減できる。
With this configuration, high-pressure oil is guided to the sliding surfaces of the end plate of the orbiting scroll and the end plate of the fixed scroll, so that the oil film thickness can be increased, sliding loss can be reduced, and sliding with good lubrication with oil is possible. It is possible to suppress galling and abnormal wear on the surface. In addition, since an appropriate amount of oil is introduced into the compression chamber, leakage loss in the compression chamber can be reduced without deterioration in performance due to suction heating.

本発明のスクロール圧縮機は、吐出圧力と吸入圧力の圧力差が高い場合でも、摺動損失および漏れ損失低減により圧縮機効率を向上でき、冷凍空調機器の高効率化が実現できるとともに、比較的摺動の厳しいスラスト面での高信頼性化を実現することができる。   The scroll compressor of the present invention can improve the efficiency of the compressor by reducing the sliding loss and leakage loss even when the pressure difference between the discharge pressure and the suction pressure is high. High reliability can be achieved on the thrust surface where sliding is severe.

第1の発明は、旋回スクロールの駆動によって、固定スクロールの鏡板と旋回スクロールの鏡板とが摺動する面の一部に高圧部のオイルを間欠的に導くとともに、圧縮室内に高圧部のオイルを間欠的に導く連通路を設けたものである。   According to the first aspect of the invention, by driving the orbiting scroll, the high pressure oil is intermittently guided to a part of the surface on which the fixed scroll end plate and the orbiting scroll end plate slide, and the high pressure oil is introduced into the compression chamber. A communication path that leads intermittently is provided.

特に、高差圧が発生した場合、旋回スクロールの鏡板と固定スクロールの鏡板とが摺動する面には、過大な押し付け力が発生するため、摺動損失の増大、あるいは、かじりや異常摩耗を引き起こしてしまうが、本発明の構成によって、旋回スクロールの鏡板と固定スクロールの鏡板とが摺動する面に安定した圧力によって給油できるため、摺動損失を低減できると共に、摺動面におけるかじりや異常摩耗を抑制でき、高効率で高信頼性なスクロール圧縮機を実現できる。また、圧縮機の吐出圧力と吸入圧力の圧力差が高いと、圧縮室内での漏れにより、性能の低下を引き起こしていた。本発明によって、圧縮室内へ適量のオイルを導いているため、圧縮室内の漏れ損失を低減でき、更に高効率なスクロール圧縮機を実現できる。   In particular, when a high differential pressure is generated, an excessive pressing force is generated on the surface where the end plate of the orbiting scroll and the end plate of the fixed scroll slide, so that an increase in sliding loss, or galling and abnormal wear occurs. However, the configuration of the present invention allows oil to be supplied to the surface on which the end plate of the orbiting scroll and the end plate of the fixed scroll slide with a stable pressure, so that sliding loss can be reduced and galling and abnormalities on the sliding surface can be reduced. A highly efficient and reliable scroll compressor that can suppress wear can be realized. Further, if the pressure difference between the discharge pressure and the suction pressure of the compressor is high, the performance is degraded due to leakage in the compression chamber. According to the present invention, since an appropriate amount of oil is introduced into the compression chamber, leakage loss in the compression chamber can be reduced, and a more efficient scroll compressor can be realized.

第2の発明は、特に第1の発明で、連通路によって、旋回スクロールの渦巻きラップの外壁面と固定スクロールの渦巻きラップの内壁面で形成される圧縮室の圧縮開始点よりも圧縮した圧縮室に、高圧部のオイルを導いたものである。これによって、高温のオイルが圧縮室の吸入部に導かれ発生する吸入加熱による性能低下がなく、圧縮室へ適量のオイルを導くため、圧縮室内の漏れ損失を低減でき、高効率なスクロール圧縮機を実現できる。   The second invention is a compression chamber that is compressed more than the compression start point of the compression chamber formed by the outer wall surface of the swirl wrap of the orbiting scroll and the inner wall surface of the swirl wrap of the fixed scroll, in particular, in the first invention. In addition, the oil in the high pressure part is guided. As a result, there is no performance degradation due to suction heating that is caused when high-temperature oil is guided to the suction section of the compression chamber, and an appropriate amount of oil is guided to the compression chamber, so that leakage loss in the compression chamber can be reduced, and a highly efficient scroll compressor Can be realized.

第3の発明は、特に第1〜2の発明で、連通路を旋回スクロールの鏡板内部に設けたものである。これによって、圧縮機底部のオイル溜りより、旋回スクロールの内部を通り、オイルを旋回スクロールの鏡板と固定スクロールの鏡板とが摺動する面と圧縮室内に高圧部のオイルを、比較的容易に供給することができ、高効率で高信頼性のスクロール圧縮機を実現できる。   The third invention is particularly the first and second inventions, in which the communication path is provided inside the end plate of the orbiting scroll. As a result, the oil in the high-pressure section is relatively easily supplied from the oil reservoir at the bottom of the compressor, through the inside of the orbiting scroll, and into the compression chamber and the surface where the end plate of the orbiting scroll and the end plate of the fixed scroll slide. Thus, a highly efficient and highly reliable scroll compressor can be realized.

第4の発明は、連通路の一部を絞り効果をもつ細穴としたものである。これによって、固定スクロールの鏡板と旋回スクロールの鏡板とが摺動する面および圧縮室内へ適量のオイルを給油することができ、高効率なスクロール圧縮機を実現できる。   According to a fourth aspect of the present invention, a part of the communication path is a narrow hole having a throttling effect. Accordingly, an appropriate amount of oil can be supplied to the surface on which the fixed scroll end plate and the orbiting scroll end plate slide and the compression chamber, and a highly efficient scroll compressor can be realized.

第5の発明は、特に第1〜4の発明で、作動冷媒に二酸化炭素を用いたものである。
二酸化炭素冷媒は、高差圧冷媒であるため、旋回スクロールの鏡板と固定スクロールの鏡板とが摺動する面には、過大な押し付け力が発生するため、摺動損失の増大、あるいは、かじりや異常摩耗を引き起こしてしまう。また、二酸化炭素冷媒を使用する場合、圧縮機の吐出圧力と吸入圧力の圧力差は、フロンを冷媒とする従来の冷凍サイクルの圧力差の約7〜10倍以上高く、圧縮室内での漏れにより更に性能の低下を引き起こしていた。第1〜4の発明により、旋回スクロールの鏡板と固定スクロールの鏡板の摺動面に高圧のオイルを導いているため、油膜厚さを厚くでき、摺動損失を低減するとともに、オイルによる良好な潤滑により摺動面におけるかじりや異常摩耗を抑制することができる。また、圧縮
室内へも適量のオイルを導いているため、吸入加熱による性能低下なく、圧縮室内の漏れ損失を低減でき、高効率で高信頼性なスクロール圧縮機を実現できる。
The fifth invention is the first to fourth inventions, in particular, using carbon dioxide as a working refrigerant.
Since the carbon dioxide refrigerant is a high differential pressure refrigerant, an excessive pressing force is generated on the surface on which the end plate of the orbiting scroll and the end plate of the fixed scroll slide. It will cause abnormal wear. When carbon dioxide refrigerant is used, the pressure difference between the discharge pressure and the suction pressure of the compressor is about 7 to 10 times higher than the pressure difference of the conventional refrigeration cycle using chlorofluorocarbon as a refrigerant. Furthermore, the performance was reduced. According to the first to fourth inventions, the high pressure oil is guided to the sliding surfaces of the end plate of the orbiting scroll and the end plate of the fixed scroll, so that the oil film thickness can be increased, the sliding loss is reduced, and the oil is good. Lubrication can suppress galling and abnormal wear on the sliding surface. In addition, since an appropriate amount of oil is introduced into the compression chamber, the leakage loss in the compression chamber can be reduced without deterioration in performance due to suction heating, and a highly efficient and highly reliable scroll compressor can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態に係わるスクロール圧縮機の縦断面図、図2は図1の圧縮機構部の要部拡大断面図である。図のように構成されたスクロール圧縮機について、以下その動作、作用を説明する。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a scroll compressor according to the first embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the compression mechanism portion of FIG. The operation and action of the scroll compressor configured as shown in the figure will be described below.

図1に示すように、本発明のスクロール圧縮機は、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成し、旋回スクロール13と主軸受部材11との間に旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けて、クランク軸4の上端にある偏心軸部4aにて旋回スクロール13を偏心駆動することにより旋回スクロール13を円軌道運動させ、これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が外周側から中央部に移動しながら小さくなるのを利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から冷媒ガスを吸入して圧縮していき、所定圧以上になった冷媒ガスは固定スクロール12の中央部の吐出口18からリード弁19を押し開いて密閉容器1内に吐出させることを繰り返す。   As shown in FIG. 1, the scroll compressor of the present invention includes a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in an airtight container 1, and a fixed bolted on the main bearing member 11. The scroll-type compression mechanism 2 is configured by sandwiching the orbiting scroll 13 that meshes with the fixed scroll 12 between the scroll 12 and the rotation of the orbiting scroll 13 between the orbiting scroll 13 and the main bearing member 11 is prevented. A rotation restricting mechanism 14 such as an Oldham ring that guides the orbital motion is provided, and the orbiting scroll 13 is eccentrically driven by the eccentric shaft portion 4a at the upper end of the crankshaft 4, thereby causing the orbiting scroll 13 to move in a circular orbit. Thereby, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 is small while moving from the outer peripheral side to the center portion. The refrigerant gas is sucked and compressed from the suction pipe 16 communicating with the outside of the hermetic container 1 and the suction port 17 on the outer peripheral portion of the fixed scroll 12, and the refrigerant gas exceeding the predetermined pressure is fixed. The reed valve 19 is pushed open from the discharge port 18 at the center of the scroll 12 and discharged into the sealed container 1 repeatedly.

旋回スクロール13の背面部分には、主軸受部材11に配置されている摺動仕切り環78があり、旋回運動を行いながら摺動仕切り環78により、摺動仕切り環78の内側領域である高圧部30と、外側領域である高圧と低圧の中間圧に設定された背圧空間29とに仕切られている。この背面の圧力付加により旋回スクロール13は固定スクロール12に安定的に押しつけられ、漏れを低減するとともに安定して円軌道運動を行うことができる。   A sliding partition ring 78 disposed on the main bearing member 11 is provided on the back surface portion of the orbiting scroll 13, and the high pressure portion that is an inner region of the sliding partition ring 78 is formed by the sliding partition ring 78 while performing the orbiting motion. 30 and a back pressure space 29 set to an intermediate pressure of high pressure and low pressure, which is an outer region. By applying pressure on the back surface, the orbiting scroll 13 is stably pressed against the fixed scroll 12, reducing leakage and performing stable circular orbit movement.

さらに、固定スクロール12には、旋回スクロール13の背面の背圧空間29の圧力を制御する背圧調整弁9を備えている。   Further, the fixed scroll 12 includes a back pressure adjusting valve 9 that controls the pressure in the back pressure space 29 on the back surface of the orbiting scroll 13.

圧縮機運転中は、クランク軸4の下向きの他端にはポンプ25が設けられ、スクロール圧縮機と同時に駆動される。これによりポンプ25は密閉容器1の底部に設けられたオイル溜め20にあるオイル6を吸い上げてクランク軸4内を通縦しているオイル供給穴26を通じて圧縮機構2に供給する。このときの供給圧は、スクロール圧縮機の吐出圧力とほぼ同等であり、旋回スクロール13に対する背圧源ともなる。これにより、旋回スクロール13は固定スクロール12から離れたり片当たりしたりするようなことはなく、所定の圧縮機能を安定して発揮する。   During operation of the compressor, a pump 25 is provided at the other downward end of the crankshaft 4 and is driven simultaneously with the scroll compressor. As a result, the pump 25 sucks up the oil 6 in the oil reservoir 20 provided at the bottom of the hermetic container 1 and supplies it to the compression mechanism 2 through the oil supply hole 26 extending vertically through the crankshaft 4. The supply pressure at this time is substantially equal to the discharge pressure of the scroll compressor, and also serves as a back pressure source for the orbiting scroll 13. As a result, the orbiting scroll 13 does not move away from the fixed scroll 12 and does not come into contact with each other, and the predetermined compression function is stably exhibited.

このように供給されたオイル6の一部は、供給圧や自重によって、逃げ場を求めるようにして偏心軸部4aと旋回スクロール13との嵌合部、クランク軸4と主軸受部材11との間の軸受部66に進入してそれぞれの部分を潤滑した後落下し、オイル溜め20へ戻る。
高圧部30に供給されたオイル6の別の一部は、旋回スクロール13の駆動によって、30に開口を有する通路54を通って、固定スクロール12の鏡板と旋回スクロール13のラップ13cとの摺動部13dと、旋回スクロール13の外周部まわりにあって自転規制機構14が位置している背圧空間29とに分岐して進入し、摺動部13dおよび自転規制
機構14の摺動部を潤滑するのに併せ、背圧空間29にて旋回スクロール13の背圧を印加する。
A part of the oil 6 supplied in this way is obtained by a supply pressure or its own weight so as to obtain a clearance, between the fitting portion between the eccentric shaft portion 4a and the orbiting scroll 13, and between the crankshaft 4 and the main bearing member 11. The oil enters the bearing portion 66, lubricates the respective portions, falls, and returns to the oil sump 20.
Another part of the oil 6 supplied to the high-pressure unit 30 is driven by the orbiting scroll 13 to pass through the passage 54 having an opening at 30 to slide between the end plate of the fixed scroll 12 and the wrap 13c of the orbiting scroll 13. The portion 13d and the back pressure space 29 around the outer peripheral portion of the orbiting scroll 13 where the rotation restricting mechanism 14 is located branch and enter to lubricate the sliding portion 13d and the sliding portion of the rotation restricting mechanism 14. At the same time, the back pressure of the orbiting scroll 13 is applied in the back pressure space 29.

背圧空間29に進入するオイル6は、絞り57での絞り作用によって高圧部30と圧縮室15の低圧側との圧力の中間となる中間圧に設定される。背圧空間29は高圧部30の高圧側との間が環状仕切り環78によってシールされていて、進入してくるオイルが充満するにつれて圧力を増し、所定の圧力を超えると、背圧調整弁9が作用して、圧縮室15の吸入部分に戻され進入する。   The oil 6 entering the back pressure space 29 is set to an intermediate pressure that is intermediate between the pressures of the high pressure portion 30 and the low pressure side of the compression chamber 15 by the throttle action of the throttle 57. The back pressure space 29 is sealed between the high pressure portion 30 and the high pressure side by an annular partition ring 78. The pressure increases as the incoming oil is filled, and when the pressure exceeds a predetermined pressure, the back pressure adjusting valve 9 Acts to return to the suction portion of the compression chamber 15 and enter.

このオイル6の進入は所定の周期で繰り返され、この繰り返しのタイミングは吸入、圧縮、吐出の繰り返しサイクルと、絞り57による減圧設定と背圧調整機構9での圧力設定との関係の組み合わせによって決まり、固定スクロール12と旋回スクロール13のラップ13cとの摺動部13dへの意図的な潤滑となる。この意図的な潤滑は前記したように背圧調整弁9による連絡路10の凹部105への開口によって常時保証される。吸入口17へと供給されたオイル6は旋回スクロール13の旋回運動とともに圧縮室15へと移動し、圧縮室15間の漏れ防止に役立っている。   The approach of the oil 6 is repeated at a predetermined cycle, and the timing of this repetition is determined by the combination of the repetitive cycle of suction, compression and discharge and the relationship between the pressure reduction setting by the throttle 57 and the pressure setting by the back pressure adjusting mechanism 9. In addition, intentional lubrication of the sliding portion 13d between the fixed scroll 12 and the wrap 13c of the orbiting scroll 13 is achieved. This intentional lubrication is always ensured by the opening of the communication path 10 into the recess 105 by the back pressure regulating valve 9 as described above. The oil 6 supplied to the suction port 17 moves to the compression chamber 15 along with the orbiting motion of the orbiting scroll 13 and serves to prevent leakage between the compression chambers 15.

さらに、図1、2に示すように、旋回スクロール13の鏡板13aの内部に、一方の開口部が、旋回スクロール13の駆動にともなって、固定スクロール12と旋回スクロール13の鏡板13aとが摺動する摺動面13bに間欠的に開口(図2(a))および、圧縮室15に間欠的に開口(図2(b))し、もう一方の開口部が高圧部30に常時開口する連通路80を設けている。   Further, as shown in FIGS. 1 and 2, one opening portion inside the end plate 13 a of the orbiting scroll 13 slides between the fixed scroll 12 and the end plate 13 a of the orbiting scroll 13 as the orbiting scroll 13 is driven. The sliding surface 13b is intermittently opened (FIG. 2A) and intermittently opened to the compression chamber 15 (FIG. 2B), and the other opening is always open to the high-pressure portion 30. A passage 80 is provided.

図3は、スクロール圧縮機の固定スクロール12を下方より見た平面図で、旋回スクロール13に設けた連通路80の開口部の、固定スクロール12における軌跡を示す。図に示すように、旋回スクロール13の旋回運動に伴い、高圧部30のオイル6は、固定スクロール12と旋回スクロール13の鏡板13aとが摺動する摺動面13bと、圧縮室15に間欠的に開口している((a))。   FIG. 3 is a plan view of the fixed scroll 12 of the scroll compressor as viewed from below, and shows the locus of the fixed scroll 12 at the opening of the communication passage 80 provided in the orbiting scroll 13. As shown in the drawing, the oil 6 of the high-pressure unit 30 is intermittently applied to the sliding surface 13 b on which the fixed scroll 12 and the end plate 13 a of the orbiting scroll 13 slide and the compression chamber 15 along with the orbiting motion of the orbiting scroll 13. ((A)).

旋回スクロール13の駆動によって、旋回スクロール13が図2(a)のような位置にある時は、高圧部30のオイル6が、連通路80を通って、固定スクロール12と旋回スクロール13の鏡板13aとが摺動する摺動面13bに間欠的に給油される。   When the orbiting scroll 13 is in the position as shown in FIG. 2A by driving the orbiting scroll 13, the oil 6 of the high pressure section 30 passes through the communication path 80 and the end plate 13 a of the fixed scroll 12 and the orbiting scroll 13. Are intermittently supplied to the sliding surface 13b.

これにより、高差圧運転下では、固定スクロール12の鏡板と旋回スクロール13の鏡板13aにおける摺動面で、過大な押し付け力が発生し、固定スクロール12の鏡板と旋回スクロール13の鏡板13aとの摺動面13bにおいて、油膜が形成しづらく、摺動損失が大きくなり、性能低下が発生しやすいが、連通路80により、高圧のオイル6を摺動面13bに給油することにより、油膜厚さを増加させて摺動損失を低減し、圧縮機効率向上および高信頼性化を実現することができる。   Thereby, under high differential pressure operation, an excessive pressing force is generated on the sliding surfaces of the end plate of the fixed scroll 12 and the end plate 13a of the orbiting scroll 13, and the end plate of the fixed scroll 12 and the end plate 13a of the orbiting scroll 13 On the sliding surface 13b, it is difficult to form an oil film, the sliding loss increases, and the performance is likely to deteriorate. However, by supplying the high pressure oil 6 to the sliding surface 13b through the communication path 80, the oil film thickness is reduced. Can be reduced to reduce the sliding loss, and improve the compressor efficiency and increase the reliability.

また、旋回スクロール13の駆動によって、旋回スクロール13が図2(b)のような位置にある時は、高圧部30のオイル6が、連通路80を通って、圧縮室15に間欠的に給油される。   Further, when the orbiting scroll 13 is driven and the orbiting scroll 13 is in the position as shown in FIG. 2B, the oil 6 of the high-pressure unit 30 is intermittently supplied to the compression chamber 15 through the communication path 80. Is done.

これにより、圧縮機の吐出圧力と吸入圧力の圧力差が高い場合、圧縮室内での漏れにより性能の低下を引き起こしていたが、圧縮室15へ適量のオイル6を導いているため、圧縮室15の漏れ損失を低減でき、高効率なスクロール圧縮機を実現できる。   Thereby, when the pressure difference between the discharge pressure and the suction pressure of the compressor is high, the performance is deteriorated due to leakage in the compression chamber. However, since an appropriate amount of oil 6 is introduced to the compression chamber 15, the compression chamber 15 Leakage loss can be reduced, and a highly efficient scroll compressor can be realized.

また、通路80の一部に絞り部を設けておくことによって、固定スクロール12の鏡板と旋回スクロール13の鏡板13aにおける摺動面13bおよび圧縮室15に、適量のオ
イル6を供給することができ、より高効率化を実現できる。
Further, by providing a throttle part in a part of the passage 80, an appropriate amount of oil 6 can be supplied to the sliding surface 13b and the compression chamber 15 of the end plate of the fixed scroll 12 and the end plate 13a of the orbiting scroll 13. Higher efficiency can be realized.

(実施の形態2)
本発明の第2の実施の形態のスクロール圧縮機は、連通路80が、高圧部30のオイル6を、旋回スクロール13の渦巻きラップ13dの外壁面と固定スクロール12の渦巻きラップ12bの内壁面で形成される圧縮室15の圧縮開始点よりも圧縮した圧縮室15に導くような位置に設定している(図示せず)。
(Embodiment 2)
In the scroll compressor according to the second embodiment of the present invention, the communication path 80 causes the oil 6 of the high-pressure unit 30 to flow between the outer wall surface of the spiral wrap 13d of the orbiting scroll 13 and the inner wall surface of the spiral wrap 12b of the fixed scroll 12. The position is set so as to lead to the compressed compression chamber 15 from the compression start point of the compression chamber 15 to be formed (not shown).

これにより、高温のオイル6が圧縮室15の吸入部に導かれ発生する吸入加熱による性能低下がなく、圧縮室15へ適量のオイル6を導くため、圧縮室15の漏れ損失を低減でき、高効率なスクロール圧縮機を実現できる。   As a result, there is no deterioration in performance due to suction heating that is caused when the high-temperature oil 6 is guided to the suction portion of the compression chamber 15, and an appropriate amount of oil 6 is guided to the compression chamber 15. An efficient scroll compressor can be realized.

(実施の形態3)
本発明の第3の実施の形態のスクロール圧縮機は、作動冷媒に二酸化炭素を用いたものである。二酸化炭素冷媒を使用する場合、圧力が従来のHFC冷媒の約3倍となり、旋回スクロール13の鏡板13aと固定スクロール12の鏡板12aとが摺動する面13bには、過大な押し付け力が発生し、摺動損失の増大、あるいは、かじりや異常摩耗を引き起こしてしまうが、本発明の第1〜2の実施の形態により、連通路80を通って、高圧のオイル6を摺動面13bに給油するため、油膜厚さを増加させて摺動損失を低減し、圧縮機効率向上および高信頼性化を実現することができる。
(Embodiment 3)
The scroll compressor according to the third embodiment of the present invention uses carbon dioxide as a working refrigerant. When carbon dioxide refrigerant is used, the pressure is about three times that of the conventional HFC refrigerant, and an excessive pressing force is generated on the surface 13b on which the end plate 13a of the orbiting scroll 13 and the end plate 12a of the fixed scroll 12 slide. However, according to the first and second embodiments of the present invention, the high-pressure oil 6 is supplied to the sliding surface 13b through the communication path 80. Therefore, the oil film thickness can be increased to reduce the sliding loss, and the compressor efficiency can be improved and the reliability can be improved.

また、二酸化炭素冷媒を使用する場合、圧縮機の吐出圧力と吸入圧力の圧力差が、フロンを冷媒とする従来の冷凍サイクルの圧力差の約7〜10倍以上高く、圧縮室15での漏れにより更に性能の低下を引き起こしていたが、本発明の第1〜2の実施の形態により、連通路80を通って、高圧部30のオイル6を、圧縮室15に適量導くため、圧縮室15の漏れ損失を低減でき、高効率なスクロール圧縮機を実現できる。   When carbon dioxide refrigerant is used, the pressure difference between the discharge pressure and the suction pressure of the compressor is about 7 to 10 times higher than the pressure difference of the conventional refrigeration cycle using chlorofluorocarbon as a refrigerant, and leakage in the compression chamber 15 However, according to the first and second embodiments of the present invention, the oil 6 of the high-pressure unit 30 is guided to the compression chamber 15 through the communication passage 80 in an appropriate amount. Leakage loss can be reduced, and a highly efficient scroll compressor can be realized.

以上のように、本発明にかかるスクロール圧縮機は、高差圧運転下でも、圧縮効率向上を実現することがき、作動流体を冷媒と限ることなく、空気スクロール圧縮機、真空ポンプ、スクロール型膨張機等のスクロール流体機械の用途にも適用できる。   As described above, the scroll compressor according to the present invention can improve the compression efficiency even under high differential pressure operation, and the air scroll compressor, the vacuum pump, the scroll type expansion can be realized without limiting the working fluid to the refrigerant. It can also be applied to the use of scroll fluid machines such as machines.

本発明の実施の形態1におけるスクロール圧縮機の断面図Sectional drawing of the scroll compressor in Embodiment 1 of this invention 本発明の実施の形態1におけるスクロール圧縮機の圧縮機構部の断面図Sectional drawing of the compression mechanism part of the scroll compressor in Embodiment 1 of this invention 本発明の実施の形態2におけるスクロール圧縮機の固定スクロールの平面図The top view of the fixed scroll of the scroll compressor in Embodiment 2 of this invention 従来のスクロール圧縮機の断面図Sectional view of a conventional scroll compressor

符号の説明Explanation of symbols

6 オイル
11 主軸受部材
12 固定スクロール
12a 鏡板
13 旋回スクロール
13a 鏡板
13b 摺動面
14 自転規制機構
15 圧縮室
17 吸入口
29 背圧空間
30 高圧部
31 高圧空間
78 摺動仕切り環
80 連通路
90 溝
6 Oil 11 Main bearing member 12 Fixed scroll 12a End plate 13 Orbiting scroll 13a End plate 13b Sliding surface 14 Rotation restricting mechanism 15 Compression chamber 17 Suction port 29 Back pressure space 30 High pressure portion 31 High pressure space 78 Sliding partition ring 80 Communication passage 90 Groove

Claims (5)

鏡板から渦巻きラップが立ち上がる固定スクロールと旋回スクロールとを噛み合せて、前記旋回スクロールを自転の規制のもとに円軌道に沿って旋回させたときに容積を変えながら移動することで、吸入、圧縮、吐出を行う圧縮室を形成し、前記旋回スクロールとこれの鏡板背面側を略支持する軸受部材にリング状の溝部を設け、前記軸受部材と前記鏡板背面側の中央部に潤滑用オイルにより高圧を与える高圧部と、この高圧部とは前記溝部に装着された合口部を有するリング状の摺動仕切り環によって仕切られ、前記旋回スクロール鏡板背面の外周部に前記高圧部より低い所定の圧力を印加する背圧空間とを設けたスクロール圧縮機において、前記旋回スクロールの駆動によって、前記固定スクロールの鏡板と前記旋回スクロールの鏡板とが摺動する面の一部に前記高圧部のオイルを間欠的に導くとともに、前記圧縮室内に前記高圧部のオイルを間欠的に導く連通路を設けたことを特徴とするスクロール圧縮機。 By meshing the fixed scroll and the orbiting scroll where the spiral wrap rises from the end plate, and moving the orbiting scroll along a circular orbit under the regulation of rotation, the volume is changed, so that suction, compression, A compression chamber for discharging is formed, and a ring-shaped groove is provided in a bearing member that substantially supports the orbiting scroll and the back side of the end plate, and a high pressure is applied to the bearing member and the central part on the back side of the end plate by lubricating oil. The high pressure portion to be applied and the high pressure portion are partitioned by a ring-shaped sliding partition ring having a joint portion attached to the groove portion, and a predetermined pressure lower than that of the high pressure portion is applied to the outer peripheral portion of the rear surface of the orbiting scroll end plate In the scroll compressor provided with the back pressure space, the end plate of the fixed scroll and the end plate of the orbiting scroll are driven by the orbiting scroll. The high pressure of the oil in a part of the sliding surfaces with intermittent leads, scroll compressor, characterized in that a communicating path intermittently guiding the high pressure of the oil in the compression chamber. 前記連通路によって、前記旋回スクロールの前記渦巻きラップの外壁面と前記固定スクロールの前記渦巻きラップの内壁面で形成される圧縮室の圧縮開始点よりも圧縮した圧縮室に、前記高圧部のオイルを導いたことを特徴とする請求項1記載のスクロール圧縮機。 Oil in the high-pressure section is compressed into the compression chamber compressed by the communication path from the compression start point of the compression chamber formed by the outer wall surface of the spiral wrap of the orbiting scroll and the inner wall surface of the spiral wrap of the fixed scroll. The scroll compressor according to claim 1, wherein the scroll compressor is guided. 前記連通路を前記旋回スクロールの鏡板内部に設けたことを特徴とする請求項1〜2記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the communication path is provided inside a mirror plate of the orbiting scroll. 前記連通路の一部を絞り効果をもつ細穴としたことを特徴とする請求項1〜3のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 3, wherein a part of the communication path is a narrow hole having a throttling effect. 作動冷媒に二酸化炭素を用いたことを特徴とする請求項1〜4のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 4, wherein carbon dioxide is used as a working refrigerant.
JP2005212505A 2005-07-22 2005-07-22 Scroll compressor Pending JP2007032294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212505A JP2007032294A (en) 2005-07-22 2005-07-22 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212505A JP2007032294A (en) 2005-07-22 2005-07-22 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2007032294A true JP2007032294A (en) 2007-02-08

Family

ID=37791850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212505A Pending JP2007032294A (en) 2005-07-22 2005-07-22 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2007032294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232048A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229983A (en) * 1990-02-05 1991-10-11 Daikin Ind Ltd Scroll fluid machine
JPH08193583A (en) * 1995-01-17 1996-07-30 Matsushita Electric Ind Co Ltd Scroll gas compressor
JPH08193582A (en) * 1995-01-13 1996-07-30 Matsushita Electric Ind Co Ltd Scroll compressor
JPH11193789A (en) * 1997-10-27 1999-07-21 Carrier Corp Scroll compressor
JP2005048688A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229983A (en) * 1990-02-05 1991-10-11 Daikin Ind Ltd Scroll fluid machine
JPH08193582A (en) * 1995-01-13 1996-07-30 Matsushita Electric Ind Co Ltd Scroll compressor
JPH08193583A (en) * 1995-01-17 1996-07-30 Matsushita Electric Ind Co Ltd Scroll gas compressor
JPH11193789A (en) * 1997-10-27 1999-07-21 Carrier Corp Scroll compressor
JP2005048688A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232048A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Scroll compressor

Similar Documents

Publication Publication Date Title
JP4892238B2 (en) Scroll compressor
JP6302813B2 (en) Scroll compressor and refrigeration cycle apparatus using the same
JP2011027076A (en) Scroll compressor
JP2006220143A (en) Displacement fluid machine and refrigerating cycle by use of it
JP2009174406A (en) Scroll compressor
JP5428522B2 (en) Scroll compressor
JP2008309078A (en) Scroll compressor
JP2010265756A (en) Scroll compressor
JP5304178B2 (en) Scroll compressor
JP5061584B2 (en) Scroll compressor
JP2009052464A (en) Scroll compressor
JP5786130B2 (en) Scroll compressor
JP2006226210A (en) Scroll compressor
JP2006307753A (en) Scroll expander
JP2010261353A (en) Scroll compressor
JP2006214335A (en) Scroll compressor
JP2007182870A (en) Scroll compressor
JP2007032294A (en) Scroll compressor
JP2008002419A (en) Scroll compressor
JP2009052462A (en) Scroll compressor
JP2006226246A (en) Scroll compressor
JP2006009640A (en) Scroll compressor
JP2009052463A (en) Scroll compressor
JP2006037896A (en) Scroll compressor
JP2006291763A (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080722

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20091126

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A02 Decision of refusal

Effective date: 20110201

Free format text: JAPANESE INTERMEDIATE CODE: A02