WO2020161831A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2020161831A1
WO2020161831A1 PCT/JP2019/004267 JP2019004267W WO2020161831A1 WO 2020161831 A1 WO2020161831 A1 WO 2020161831A1 JP 2019004267 W JP2019004267 W JP 2019004267W WO 2020161831 A1 WO2020161831 A1 WO 2020161831A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
power supply
control circuit
voltage
Prior art date
Application number
PCT/JP2019/004267
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/004267 priority Critical patent/WO2020161831A1/en
Publication of WO2020161831A1 publication Critical patent/WO2020161831A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power conversion device used for charging and discharging a storage battery.
  • the power conversion device uses the converter to convert the DC power of the storage battery into a DC link voltage and the inverter to convert the link voltage into an AC voltage.
  • the converter and the inverter are controlled by the control circuit.
  • the power supplied from the system power supply is used as the power for driving the control circuit.
  • the power conversion device can drive the control circuit using the link voltage after generating the link voltage, but in order to generate the link voltage, the power conversion device drives the control circuit and the converter. Therefore, a power source other than the system power source is required.
  • Patent Document 1 discloses an electric vehicle equipped with an auxiliary power source in addition to a storage battery for driving. By using such an auxiliary power source, the control circuit can be driven even when the system power source fails.
  • the auxiliary power supply has an upper limit on the current that can be output.
  • a charging/discharging connector that complies with the V2H (Vehicle to Home) system standard, which is a system that supplies the electric power of a storage battery mounted on an electric vehicle to home electric appliances in a home, is set at 6.4A. Therefore, there is a problem that if the current consumed by the power conversion device in the insulation test is large, the supply upper limit of the current from the auxiliary power supply is exceeded.
  • V2H Vehicle to Home
  • the present invention has been made in view of the above, and an object thereof is to obtain a power conversion device capable of reducing power consumption in an insulation test.
  • a power conversion device includes a connector that is connected to a storage battery, a converter that bidirectionally converts a DC voltage and a DC link voltage of the storage battery, and a link.
  • the control circuit includes a plurality of drivable converter units, and when performing an insulation test with a storage battery, the control circuit stops a part of the plurality of converter units and outputs a voltage to the connector. To do.
  • the power converter according to the present invention has an effect of being able to reduce power consumption in an insulation test.
  • FIG. 3 is a diagram showing dedicated hardware for realizing the control circuit according to the first to third embodiments of the present invention.
  • FIG. 3 is a diagram showing a hardware configuration of a control circuit according to the first to third embodiments of the present invention.
  • a power conversion device according to an embodiment of the present invention will be described in detail below with reference to the drawings.
  • the present invention is not limited to the embodiments.
  • FIG. 1 is a diagram showing the configuration of a power conversion device 5 according to the first embodiment of the present invention.
  • the power conversion device 5 is connected to the electric vehicle 1, the system power supply 14, and the load 13.
  • the electric vehicle 1 includes a storage battery 9 that is a power source for driving, an auxiliary battery 2, and a current limiter 3 that limits a current value supplied from the auxiliary battery 2.
  • the power conversion device 5 uses the power from the system power supply 14 to charge the storage battery 9 of the electric vehicle 1 or supply the power stored in the storage battery 9 to the load 13.
  • the electric power stored in the storage battery 9 and the electric power supplied to the load 13 have different types of electric power such as direct current and alternating current, and suitable voltage values. Therefore, the power conversion device 5 has a function of converting the type of electric power and the voltage value. Have.
  • the power conversion device 5 is a connector for electrically connecting to the storage battery 9 of the electric vehicle 1, and has a charging/discharging connector 4 having a connection line for connecting to the auxiliary battery 2, and a DC voltage and DC link of the storage battery 9. It has a converter 7 capable of bidirectionally converting a voltage and an inverter 10 capable of bidirectionally converting a link voltage and an AC voltage of the system power supply 14.
  • the converter 7 has a plurality of converter units 7a that can be activated and operated independently of each other and can be simultaneously driven in parallel.
  • the converter 7 can include a plurality of types of converter units 7a.
  • each of the plurality of converter units 7a is excellent in charge/discharge conversion efficiency at high power of about 3 kW, and low power conversion efficiency of about 0.1 kW used in the insulation test at startup. Things.
  • the plurality of converter units 7a have different power consumptions.
  • the power conversion device 5 also includes a control circuit 8 that controls the converter 7 and the inverter 10, and a control power supply 6 that can supply power to the control circuit 8 and the converter 7.
  • the control power supply 6 can supply power from the system power supply 14 or power from an auxiliary battery 2 that is an example of an auxiliary power supply different from the system power supply 14.
  • control power supply 6 is supplied with power via current limiter 3 and charge/discharge connector 4.
  • the control power supply 6 can start the control circuit 8 using the power from the auxiliary battery 2 when the power supply from the system power supply 14 is stopped.
  • the operation in which the power conversion device 5 converts the DC voltage stored in the storage battery 9 into a link voltage and supplies the link voltage is called an independent operation.
  • the control power supply 6 can start the converter 7 and the control circuit 8 by using the power from the system power supply 14 to start the self-sustained operation.
  • the operation of starting the self-sustaining operation when the power supply from the system power supply 14 is stopped, such as when the system power supply 14 fails, will be described.
  • FIG. 2 is a flow chart for explaining the operation of the power conversion device 5 shown in FIG. 1 to start the self-sustaining operation when the system power supply 14 fails.
  • the auxiliary battery 2 generates a DC voltage, and the electric power from the auxiliary battery 2 to the control power supply 6 of the power conversion device 5 is passed through the current limiter 3 and the connection line built in the charge/discharge connector 4.
  • Supply is started (step S101).
  • the control power supply 6 starts supplying power from the control power supply 6 to the converter 7 and the control circuit 8 (step S102). When power is supplied, the control circuit 8 starts operating.
  • the control circuit 8 stops the operation of some converter units 7a of the plurality of converter units 7a (step S103). For example, the control circuit 8 may operate some converter units 7a by stopping the operation of some converter units 7a after starting all converter units 7a, or may operate some converter units 7a from the beginning. It is also possible to activate only the converter unit 7a and keep the operation of the other converter units 7a stopped.
  • the control circuit 8 can select the converter unit 7a to operate based on the power consumption of each of the plurality of converter units 7a.
  • the control circuit 8 can supply a necessary electric power among the plurality of converter units 7a and can operate a part of the converter units 7a that operate at the minimum current value. For example, the control circuit 8 operates one converter unit 7a having the lowest power consumption among the plurality of converter units 7a.
  • the control circuit 8 controls the converter unit 7a to convert the voltage value of the electric power supplied from the control power supply 6 to the converter unit 7a, and to apply the voltage to the charge/discharge connector 4, thereby performing the insulation test.
  • the electric power used for the insulation test any voltage value and current value can be used as long as it can be confirmed that the electric vehicle 1 and the power conversion device 5 are electrically connected and there is no short circuit.
  • the power used for the insulation test is about 450 V and 30 mA.
  • the control circuit 8 determines whether or not there is a short circuit as a result of the insulation test (step S105). When there is no short circuit (step S105: No), the control circuit 8 operates all the converter units 7a to start power conversion (step S106). When there is a short circuit (step S105: Yes), the control circuit 8 omits the process of step S106 and ends the process.
  • the converter 7 converts the DC voltage supplied from the storage battery 9 mounted on the electric vehicle 1 via the charge/discharge connector 4 into a DC link voltage.
  • the voltage supplied from the storage battery 9 is an indefinite value that varies depending on the type of the electric vehicle 1, the charge rate, and the like, and the value of the link voltage is constant.
  • the converter 7 converts the DC voltage supplied from the storage battery 9 into a link voltage
  • the DC voltage is converted into an AC voltage by the inverter 10 controlled by the control circuit 8, and the load 13 is supplied with electric power. Is supplied.
  • the converter 7 includes the plurality of converter units 7a, and the control circuit 8 performs the insulation test performed before the start of charging/discharging. At times, some of the plurality of converter units 7a are operated. With such a configuration, power consumption in the insulation test can be reduced as compared with the case where all converter units 7a are operated. Therefore, there is an effect that the current limitation imposed on the auxiliary battery connection path from the auxiliary battery 2 via the charge/discharge connector 4 to the control power supply 6 is less likely to occur.
  • FIG. 3 is a diagram showing the configuration of the power conversion device 5a according to the second embodiment of the present invention.
  • the power converter 5a has an accessory socket 11 in addition to the configuration of the power converter 5 according to the first embodiment.
  • the accessory socket 11 has a connection line connected to the auxiliary battery 2.
  • the connection line from the control power supply 6 is connected to the auxiliary battery 2 via the charge/discharge connector 4 and the current limiter 3, whereas in the power conversion device 5a, the control power supply 6 charges the power.
  • the connection line is connected to the auxiliary battery 2 via the accessory socket 11 and the current limiter 3 without passing through the discharge connector 4.
  • the current that can be used in the accessory socket 11 is limited by a fuse or the like provided in the accessory socket 11.
  • the operation of the power conversion device 5a when the power supply from the system power supply 14 is stopped is the same as the operation of the first embodiment shown in FIG. 2, and therefore detailed description thereof is omitted here.
  • the power conversion device 5a according to the second embodiment of the present invention is charged in the state in which some of the plurality of converter units 7a are stopped during the insulation test, as in the first embodiment.
  • a voltage is applied to the discharge connector 4.
  • FIG. 4 is a diagram showing the configuration of the power conversion device 5b according to the third embodiment of the present invention.
  • the power conversion device 5b further includes a connection line that can be connected to the external power supply 12, which is an example of an auxiliary power supply, without using the charge/discharge connector 4.
  • the external power supply 12 is an example of an auxiliary power supply
  • the operation of power conversion device 5b when the power supply from system power supply 14 is stopped is the same as that of the first embodiment except that external power supply 12 is used instead of auxiliary battery 2 in step S101 shown in FIG. Therefore, detailed description is omitted here.
  • the power conversion device 5b according to the third embodiment of the present invention is charged in the state where some of the plurality of converter units 7a are stopped during the insulation test, as in the first embodiment.
  • a voltage is applied to the discharge connector 4.
  • the control circuit 8 may be realized by dedicated hardware or a circuit using a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • FIG. 5 is a diagram showing dedicated hardware for realizing the control circuit 8 according to the first to third embodiments of the present invention.
  • the processing circuit 90 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FIG. 6 is a diagram showing a hardware configuration of the control circuit 8 according to the first to third embodiments of the present invention.
  • the control circuit 8 can be realized by using a processor 92 and a memory 93.
  • the processor 92 is a CPU and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 93 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM), These include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVD (Digital Versatile Disk).
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM)
  • magnetic disks flexible disks, optical disks, compact disks, mini disks, and DVD (Digital Versatile Disk).
  • the processor 92 can realize various functions of the control circuit 8 by reading and executing a program stored in the memory 93 and corresponding to the processing of each component.
  • the memory 93 is also used as a temporary memory in each process executed by the processor 92.

Abstract

This power conversion device (5) comprises: a connector for connection to a storage battery (9); a converter (7) which bidirectionally converts a DC voltage of the storage battery (9) and a DC link voltage; an inverter (10) which bidirectionally converts the link voltage and an AC voltage of a system power supply (14); a control circuit (8) which controls the converter (7) and the inverter (10); and a control power supply (6) capable of supplying electric power to the control circuit (8) and the converter (7). The converter (7) includes a plurality of converter units (7a) that can be simultaneously driven in parallel. The control circuit (8) is characterized by stopping the operation of a part of the plurality of converter units (7a) and outputting a voltage to the connector, when performing an insulation test with the storage battery (9).

Description

電力変換装置Power converter
 本発明は、蓄電池の充放電に用いられる電力変換装置に関する。 The present invention relates to a power conversion device used for charging and discharging a storage battery.
 近年、電動車両の普及に伴って、系統電源からの交流電力を直流電力に変換して、蓄電池を搭載する電動車両などの電源装置を充電すると共に、蓄電池から放電される直流電力を交流電力に変換する電力変換装置が普及している。 With the spread of electric vehicles in recent years, AC power from a system power supply is converted to DC power to charge a power supply device such as an electric vehicle equipped with a storage battery, and DC power discharged from the storage battery is converted to AC power. Power conversion devices for conversion have become widespread.
 蓄電池の放電時には、まず、電力変換装置は、コンバータを用いて蓄電池の直流電力を直流のリンク電圧に変換し、インバータを用いてリンク電圧を交流電圧に変換する。ここで、コンバータおよびインバータは、制御回路によって制御される。通常、制御回路を駆動するための電力は、系統電源から供給される電力が使用される。系統電源の停電時には、電力変換装置は、リンク電圧を生成した後は、リンク電圧を使用して制御回路を駆動することができるが、リンク電圧を生成するためには、制御回路およびコンバータを駆動する必要があり、系統電源以外の電源が必要となる。 At the time of discharging the storage battery, first, the power conversion device uses the converter to convert the DC power of the storage battery into a DC link voltage and the inverter to convert the link voltage into an AC voltage. Here, the converter and the inverter are controlled by the control circuit. Normally, the power supplied from the system power supply is used as the power for driving the control circuit. In the event of a power failure of the system power supply, the power conversion device can drive the control circuit using the link voltage after generating the link voltage, but in order to generate the link voltage, the power conversion device drives the control circuit and the converter. Therefore, a power source other than the system power source is required.
 特許文献1には、駆動用の蓄電池以外に補助用電源を備えた電気自動車が開示されている。このような補助用電源を使用すれば、系統電源の停電時にも、制御回路を駆動することができる。 Patent Document 1 discloses an electric vehicle equipped with an auxiliary power source in addition to a storage battery for driving. By using such an auxiliary power source, the control circuit can be driven even when the system power source fails.
 また、電力変換装置が蓄電池に接続して充放電を行う場合、充放電を開始する前に、蓄電池に接続するコネクタに電圧を出力して絶縁状態が適切であるかを確認する絶縁試験の手順が求められる。系統電源の停電時には、絶縁試験で使用する電力も補助用電源から供給する必要がある。 Also, when the power converter is connected to the storage battery to perform charging/discharging, a procedure for an insulation test that outputs voltage to the connector connected to the storage battery to check if the insulation state is appropriate before starting charging/discharging. Is required. In case of a power failure of the system power supply, the power used for the insulation test must also be supplied from the auxiliary power supply.
特開2013-158218号公報JP, 2013-158218, A
 しかしながら、補助用電源は出力可能な電流に上限がある。例えば、電動車両に搭載された蓄電池の電力を宅内の家電機器に供給するシステムであるV2H(Vehicle to Home)システムの規格に準拠した充放電コネクタでは、6.4Aと定められている。このため、絶縁試験における電力変換装置の消費する電流が大きいと補助用電源からの電流の供給上限を超えてしまうという問題があった。 However, the auxiliary power supply has an upper limit on the current that can be output. For example, a charging/discharging connector that complies with the V2H (Vehicle to Home) system standard, which is a system that supplies the electric power of a storage battery mounted on an electric vehicle to home electric appliances in a home, is set at 6.4A. Therefore, there is a problem that if the current consumed by the power conversion device in the insulation test is large, the supply upper limit of the current from the auxiliary power supply is exceeded.
 本発明は、上記に鑑みてなされたものであって、絶縁試験における消費電力を低減することが可能な電力変換装置を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a power conversion device capable of reducing power consumption in an insulation test.
 上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、蓄電池と接続するコネクタと、蓄電池の直流電圧と直流のリンク電圧とを双方向に変換するコンバータと、リンク電圧と系統電源の交流電圧とを双方向に変換するインバータと、コンバータおよびインバータを制御する制御回路と、制御回路およびコンバータに電力を供給可能な制御電源と、を有し、コンバータは、同時に並列駆動可能な複数のコンバータユニットを含み、制御回路は、蓄電池との間の絶縁試験を行うときには、複数のコンバータユニットのうちの一部の動作を停止させてコネクタに電圧を出力することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, a power conversion device according to the present invention includes a connector that is connected to a storage battery, a converter that bidirectionally converts a DC voltage and a DC link voltage of the storage battery, and a link. A converter and a control circuit for controlling the inverter, and a control power supply capable of supplying power to the control circuit and the converter. The control circuit includes a plurality of drivable converter units, and when performing an insulation test with a storage battery, the control circuit stops a part of the plurality of converter units and outputs a voltage to the connector. To do.
 本発明に係る電力変換装置は、絶縁試験における消費電力を低減することが可能であるという効果を奏する。 The power converter according to the present invention has an effect of being able to reduce power consumption in an insulation test.
本発明の実施の形態1にかかる電力変換装置の構成を示す図The figure which shows the structure of the power converter device concerning Embodiment 1 of this invention. 図1に示す電力変換装置が系統電源の停電時に自立運転を開始する動作を説明するためのフローチャートThe flowchart for demonstrating the operation|movement which the electric power converter shown in FIG. 1 starts an independent operation at the time of a power failure of a grid power supply. 本発明の実施の形態2にかかる電力変換装置の構成を示す図The figure which shows the structure of the power converter device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる電力変換装置の構成を示す図The figure which shows the structure of the power converter device concerning Embodiment 3 of this invention. 本発明の実施の形態1~3にかかる制御回路を実現するための専用のハードウェアを示す図FIG. 3 is a diagram showing dedicated hardware for realizing the control circuit according to the first to third embodiments of the present invention. 本発明の実施の形態1~3にかかる制御回路のハードウェア構成を示す図FIG. 3 is a diagram showing a hardware configuration of a control circuit according to the first to third embodiments of the present invention.
 以下に、本発明の実施の形態に係る電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 A power conversion device according to an embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置5の構成を示す図である。電力変換装置5は、電動車両1、系統電源14および負荷13と接続される。電動車両1は、駆動用の電源である蓄電池9と、補機バッテリ2と、補機バッテリ2から供給する電流値を制限する電流制限器3とを有する。電力変換装置5は、系統電源14からの電力を使用して、電動車両1の蓄電池9を充電したり、蓄電池9に蓄えられた電力を負荷13に供給したりする。蓄電池9に蓄える電力と、負荷13に供給する電力とでは、直流、交流といった電力の種類、適した電圧値などが異なるため、電力変換装置5は、電力の種類および電圧値を変換する機能を有する。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a power conversion device 5 according to the first embodiment of the present invention. The power conversion device 5 is connected to the electric vehicle 1, the system power supply 14, and the load 13. The electric vehicle 1 includes a storage battery 9 that is a power source for driving, an auxiliary battery 2, and a current limiter 3 that limits a current value supplied from the auxiliary battery 2. The power conversion device 5 uses the power from the system power supply 14 to charge the storage battery 9 of the electric vehicle 1 or supply the power stored in the storage battery 9 to the load 13. The electric power stored in the storage battery 9 and the electric power supplied to the load 13 have different types of electric power such as direct current and alternating current, and suitable voltage values. Therefore, the power conversion device 5 has a function of converting the type of electric power and the voltage value. Have.
 電力変換装置5は、電動車両1の蓄電池9と電気的に接続するためのコネクタであり、補機バッテリ2と接続する接続線を有する充放電コネクタ4と、蓄電池9の直流電圧と直流のリンク電圧とを双方向に変換可能なコンバータ7と、リンク電圧と系統電源14の交流電圧とを双方向に変換可能なインバータ10とを有する。コンバータ7は、それぞれ独立に起動および動作可能であり、同時に並列駆動可能な複数のコンバータユニット7aを有する。コンバータ7は、複数の種類のコンバータユニット7aを備えることができる。例えば、複数のコンバータユニット7aのそれぞれは、3kW程度の大電力での充放電の変換効率に優れたもの、起動時の絶縁試験で使用される0.1kW程度の小電力の変換効率に優れたものなどである。複数のコンバータユニット7aは、それぞれ消費電力が異なる。 The power conversion device 5 is a connector for electrically connecting to the storage battery 9 of the electric vehicle 1, and has a charging/discharging connector 4 having a connection line for connecting to the auxiliary battery 2, and a DC voltage and DC link of the storage battery 9. It has a converter 7 capable of bidirectionally converting a voltage and an inverter 10 capable of bidirectionally converting a link voltage and an AC voltage of the system power supply 14. The converter 7 has a plurality of converter units 7a that can be activated and operated independently of each other and can be simultaneously driven in parallel. The converter 7 can include a plurality of types of converter units 7a. For example, each of the plurality of converter units 7a is excellent in charge/discharge conversion efficiency at high power of about 3 kW, and low power conversion efficiency of about 0.1 kW used in the insulation test at startup. Things. The plurality of converter units 7a have different power consumptions.
 また電力変換装置5は、コンバータ7およびインバータ10を制御する制御回路8と、制御回路8およびコンバータ7に電力を供給可能な制御電源6とを有する。制御電源6は、系統電源14からの電力、または、系統電源14と異なる補助用電源の一例である補機バッテリ2からの電力を供給することができる。補機バッテリ2からの電力を供給する場合、制御電源6には、電流制限器3および充放電コネクタ4を介して電力が供給される。例えば、制御電源6は、系統電源14からの電力供給停止時に、補機バッテリ2からの電力を用いて、制御回路8を起動することができる。 The power conversion device 5 also includes a control circuit 8 that controls the converter 7 and the inverter 10, and a control power supply 6 that can supply power to the control circuit 8 and the converter 7. The control power supply 6 can supply power from the system power supply 14 or power from an auxiliary battery 2 that is an example of an auxiliary power supply different from the system power supply 14. When power is supplied from auxiliary battery 2, control power supply 6 is supplied with power via current limiter 3 and charge/discharge connector 4. For example, the control power supply 6 can start the control circuit 8 using the power from the auxiliary battery 2 when the power supply from the system power supply 14 is stopped.
 電力変換装置5が蓄電池9に蓄えられた直流電圧をリンク電圧に変換して供給する運転を自立運転と呼ぶ。系統電源14からの電力が供給される状態においては、制御電源6は、系統電源14からの電力を用いて、コンバータ7および制御回路8を起動して、自立運転を開始することができる。以下、系統電源14の停電時など系統電源14からの電力供給停止時に自立運転を開始する動作について説明する。 The operation in which the power conversion device 5 converts the DC voltage stored in the storage battery 9 into a link voltage and supplies the link voltage is called an independent operation. In the state in which the power from the system power supply 14 is supplied, the control power supply 6 can start the converter 7 and the control circuit 8 by using the power from the system power supply 14 to start the self-sustained operation. Hereinafter, the operation of starting the self-sustaining operation when the power supply from the system power supply 14 is stopped, such as when the system power supply 14 fails, will be described.
 図2は、図1に示す電力変換装置5が系統電源14の停電時に自立運転を開始する動作を説明するためのフローチャートである。まず、補機バッテリ2が直流電圧を発生して、電流制限器3と充放電コネクタ4に内蔵された接続線とを介して、補機バッテリ2から電力変換装置5の制御電源6への電力供給を開始する(ステップS101)。制御電源6は、制御電源6からコンバータ7および制御回路8に電力供給を開始する(ステップS102)。電力が供給されると、制御回路8が動作を開始する。 FIG. 2 is a flow chart for explaining the operation of the power conversion device 5 shown in FIG. 1 to start the self-sustaining operation when the system power supply 14 fails. First, the auxiliary battery 2 generates a DC voltage, and the electric power from the auxiliary battery 2 to the control power supply 6 of the power conversion device 5 is passed through the current limiter 3 and the connection line built in the charge/discharge connector 4. Supply is started (step S101). The control power supply 6 starts supplying power from the control power supply 6 to the converter 7 and the control circuit 8 (step S102). When power is supplied, the control circuit 8 starts operating.
 制御回路8は、複数のコンバータユニット7aのうち一部のコンバータユニット7aの動作を停止させる(ステップS103)。例えば、制御回路8は、全てのコンバータユニット7aを起動した後、一部のコンバータユニット7aの動作を停止させることで、一部のコンバータユニット7aを動作させてもよいし、最初から一部のコンバータユニット7aだけを起動させて、その他のコンバータユニット7aの動作を停止させたままにしてもよい。制御回路8は、複数のコンバータユニット7aのそれぞれの消費電力に基づいて、動作させるコンバータユニット7aを選択することができる。制御回路8は、複数のコンバータユニット7aのうち、必要な電力を供給可能であり、かつ、最小の電流値で動作する一部のコンバータユニット7aを動作させることができる。例えば制御回路8は、複数のコンバータユニット7aのうち消費電力の最も低い1つのコンバータユニット7aを動作させる。 The control circuit 8 stops the operation of some converter units 7a of the plurality of converter units 7a (step S103). For example, the control circuit 8 may operate some converter units 7a by stopping the operation of some converter units 7a after starting all converter units 7a, or may operate some converter units 7a from the beginning. It is also possible to activate only the converter unit 7a and keep the operation of the other converter units 7a stopped. The control circuit 8 can select the converter unit 7a to operate based on the power consumption of each of the plurality of converter units 7a. The control circuit 8 can supply a necessary electric power among the plurality of converter units 7a and can operate a part of the converter units 7a that operate at the minimum current value. For example, the control circuit 8 operates one converter unit 7a having the lowest power consumption among the plurality of converter units 7a.
 制御回路8は、コンバータユニット7aを制御して、制御電源6からコンバータユニット7aに供給された電力の電圧値を変換させて、充放電コネクタ4に電圧をかけさせることで、絶縁試験を実施する(ステップS104)。絶縁試験に用いる電力は、電動車両1と電力変換装置5間が電気的に接続されており、短絡がないことを確認することができれば、任意の電圧値および電流値を用いることができる。例えば、絶縁試験に用いる電力は、450V、30mA程度である。 The control circuit 8 controls the converter unit 7a to convert the voltage value of the electric power supplied from the control power supply 6 to the converter unit 7a, and to apply the voltage to the charge/discharge connector 4, thereby performing the insulation test. (Step S104). As the electric power used for the insulation test, any voltage value and current value can be used as long as it can be confirmed that the electric vehicle 1 and the power conversion device 5 are electrically connected and there is no short circuit. For example, the power used for the insulation test is about 450 V and 30 mA.
 制御回路8は、絶縁試験の結果、短絡があるか否かを判断する(ステップS105)。短絡がない場合(ステップS105:No)、制御回路8は、全てのコンバータユニット7aを動作させて、電力変換を開始させる(ステップS106)。短絡がある場合(ステップS105:Yes)、制御回路8は、ステップS106の処理は省略して、処理を終了する。 The control circuit 8 determines whether or not there is a short circuit as a result of the insulation test (step S105). When there is no short circuit (step S105: No), the control circuit 8 operates all the converter units 7a to start power conversion (step S106). When there is a short circuit (step S105: Yes), the control circuit 8 omits the process of step S106 and ends the process.
 制御回路8の指示を受けて、コンバータ7は充放電コネクタ4を介して電動車両1に搭載される蓄電池9から供給される直流電圧を直流のリンク電圧に変換する。ここで、蓄電池9から供給される電圧は、電動車両1の種類、蓄電率などによって変動する不定値であり、リンク電圧の値は一定である。 In response to the instruction from the control circuit 8, the converter 7 converts the DC voltage supplied from the storage battery 9 mounted on the electric vehicle 1 via the charge/discharge connector 4 into a DC link voltage. Here, the voltage supplied from the storage battery 9 is an indefinite value that varies depending on the type of the electric vehicle 1, the charge rate, and the like, and the value of the link voltage is constant.
 図2に示す動作が終わり、コンバータ7が蓄電池9から供給される直流電圧をリンク電圧に変換すると、直流電圧は、制御回路8により制御されるインバータ10により交流電圧に変換され、負荷13に電力が供給される。 When the operation shown in FIG. 2 ends and the converter 7 converts the DC voltage supplied from the storage battery 9 into a link voltage, the DC voltage is converted into an AC voltage by the inverter 10 controlled by the control circuit 8, and the load 13 is supplied with electric power. Is supplied.
 以上説明したように、本発明の実施の形態1にかかる電力変換装置5は、コンバータ7が複数のコンバータユニット7aから構成されており、制御回路8は、充放電の開始前に行われる絶縁試験時には、複数のコンバータユニット7aのうちの一部を動作させる。このような構成をとることによって、全てのコンバータユニット7aを動作させる場合と比較して、絶縁試験における消費電力を低減することができる。このため、補機バッテリ2から充放電コネクタ4を経由して制御電源6につながる補機バッテリ接続経路に課される電流制限を受けにくいという効果を奏する。 As described above, in the power conversion device 5 according to the first embodiment of the present invention, the converter 7 includes the plurality of converter units 7a, and the control circuit 8 performs the insulation test performed before the start of charging/discharging. At times, some of the plurality of converter units 7a are operated. With such a configuration, power consumption in the insulation test can be reduced as compared with the case where all converter units 7a are operated. Therefore, there is an effect that the current limitation imposed on the auxiliary battery connection path from the auxiliary battery 2 via the charge/discharge connector 4 to the control power supply 6 is less likely to occur.
実施の形態2.
 図3は、本発明の実施の形態2にかかる電力変換装置5aの構成を示す図である。以下、実施の形態1と異なる部分について主に説明する。電力変換装置5aは、実施の形態1にかかる電力変換装置5の構成に加えて、アクセサリソケット11を有する。アクセサリソケット11は、補機バッテリ2に接続される接続線を有する。電力変換装置5では、制御電源6から充放電コネクタ4および電流制限器3を介して接続線が補機バッテリ2に接続されていたのに対して、電力変換装置5aでは、制御電源6から充放電コネクタ4を介さずにアクセサリソケット11および電流制限器3を介して接続線が補機バッテリ2に接続される。アクセサリソケット11で使用できる電流は、アクセサリソケット11に備わるヒューズなどで制限される。系統電源14からの電力供給停止時における電力変換装置5aにおける動作は、図2に示す実施の形態1の動作と同様であるためここでは詳しい説明を省略する。
Embodiment 2.
FIG. 3 is a diagram showing the configuration of the power conversion device 5a according to the second embodiment of the present invention. Hereinafter, parts different from the first embodiment will be mainly described. The power converter 5a has an accessory socket 11 in addition to the configuration of the power converter 5 according to the first embodiment. The accessory socket 11 has a connection line connected to the auxiliary battery 2. In the power conversion device 5, the connection line from the control power supply 6 is connected to the auxiliary battery 2 via the charge/discharge connector 4 and the current limiter 3, whereas in the power conversion device 5a, the control power supply 6 charges the power. The connection line is connected to the auxiliary battery 2 via the accessory socket 11 and the current limiter 3 without passing through the discharge connector 4. The current that can be used in the accessory socket 11 is limited by a fuse or the like provided in the accessory socket 11. The operation of the power conversion device 5a when the power supply from the system power supply 14 is stopped is the same as the operation of the first embodiment shown in FIG. 2, and therefore detailed description thereof is omitted here.
 以上説明したように、本発明の実施の形態2にかかる電力変換装置5aは、実施の形態1と同様に、絶縁試験時には、複数のコンバータユニット7aのうちの一部を停止させた状態で充放電コネクタ4に電圧をかける。このような構成をとることで、絶縁試験における消費電力を低減することができ、伝達経路での電圧降下が少なく補機バッテリ2の電圧が低下しても絶縁試験を実施することができるという効果を奏する。 As described above, the power conversion device 5a according to the second embodiment of the present invention is charged in the state in which some of the plurality of converter units 7a are stopped during the insulation test, as in the first embodiment. A voltage is applied to the discharge connector 4. With such a configuration, the power consumption in the insulation test can be reduced, and the insulation test can be performed even when the voltage of the auxiliary battery 2 is reduced because the voltage drop in the transmission path is small. Play.
実施の形態3.
 図4は、本発明の実施の形態3にかかる電力変換装置5bの構成を示す図である。以下、実施の形態1と異なる部分について主に説明する。電力変換装置5bは、充放電コネクタ4を介さずに、補助用電源の一例である外部電源12と接続可能な接続線をさらに有する。系統電源14からの電力供給停止時には、外部電源12から制御電源6に電力が供給される。系統電源14からの電力供給停止時における電力変換装置5bにおける動作は、図2に示すステップS101において、補機バッテリ2の代わりに外部電源12が使用される以外は実施の形態1と同様であるためここでは詳しい説明を省略する。
Embodiment 3.
FIG. 4 is a diagram showing the configuration of the power conversion device 5b according to the third embodiment of the present invention. Hereinafter, parts different from the first embodiment will be mainly described. The power conversion device 5b further includes a connection line that can be connected to the external power supply 12, which is an example of an auxiliary power supply, without using the charge/discharge connector 4. When the power supply from the system power supply 14 is stopped, power is supplied from the external power supply 12 to the control power supply 6. The operation of power conversion device 5b when the power supply from system power supply 14 is stopped is the same as that of the first embodiment except that external power supply 12 is used instead of auxiliary battery 2 in step S101 shown in FIG. Therefore, detailed description is omitted here.
 以上説明したように、本発明の実施の形態3にかかる電力変換装置5bは、実施の形態1と同様に、絶縁試験時には、複数のコンバータユニット7aのうちの一部を停止させた状態で充放電コネクタ4に電圧をかける。このような構成をとることで、絶縁試験における消費電力を低減することができ、外部電源12の出力に制限がある場合であっても、絶縁試験を実施することができるという効果を奏する。 As described above, the power conversion device 5b according to the third embodiment of the present invention is charged in the state where some of the plurality of converter units 7a are stopped during the insulation test, as in the first embodiment. A voltage is applied to the discharge connector 4. With such a configuration, it is possible to reduce the power consumption in the insulation test and to perform the insulation test even when the output of the external power supply 12 is limited.
 続いて、本発明の実施の形態1~3にかかる制御回路8のハードウェア構成について説明する。制御回路8は、専用のハードウェアにより実現されてもよいし、CPU(Central Processing Unit)を用いた回路であってもよい。 Next, the hardware configuration of the control circuit 8 according to the first to third embodiments of the present invention will be described. The control circuit 8 may be realized by dedicated hardware or a circuit using a CPU (Central Processing Unit).
 上記の処理回路が、専用のハードウェアにより実現される場合、これらは、図5に示す処理回路90により実現される。図5は、本発明の実施の形態1~3にかかる制御回路8を実現するための専用のハードウェアを示す図である。処理回路90は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。 When the above processing circuits are realized by dedicated hardware, these are realized by the processing circuit 90 shown in FIG. FIG. 5 is a diagram showing dedicated hardware for realizing the control circuit 8 according to the first to third embodiments of the present invention. The processing circuit 90 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
 上記の処理回路が、CPUを用いた回路で実現される場合、この回路は例えば図6に示す構成の回路である。図6は、本発明の実施の形態1~3にかかる制御回路8のハードウェア構成を示す図である。図6に示すように、制御回路8は、プロセッサ92と、メモリ93とを用いて実現することができる。プロセッサ92は、CPUであり、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。メモリ93は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。 When the above processing circuit is realized by a circuit using a CPU, this circuit has a configuration shown in FIG. 6, for example. FIG. 6 is a diagram showing a hardware configuration of the control circuit 8 according to the first to third embodiments of the present invention. As shown in FIG. 6, the control circuit 8 can be realized by using a processor 92 and a memory 93. The processor 92 is a CPU and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 93 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM), These include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVD (Digital Versatile Disk).
 プロセッサ92は、メモリ93に記憶された、各構成要素の処理に対応するプログラムを読み出して実行することにより制御回路8の各種の機能を実現することができる。また、メモリ93は、プロセッサ92が実行する各処理における一時メモリとしても使用される。 The processor 92 can realize various functions of the control circuit 8 by reading and executing a program stored in the memory 93 and corresponding to the processing of each component. The memory 93 is also used as a temporary memory in each process executed by the processor 92.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with other known techniques, and the configurations of the configurations are not departing from the scope of the present invention. It is also possible to omit or change parts.
 1 電動車両、2 補機バッテリ、3 電流制限器、4 充放電コネクタ、5,5a,5b 電力変換装置、6 制御電源、7 コンバータ、7a コンバータユニット、8 制御回路、9 蓄電池、10 インバータ、11 アクセサリソケット、12 外部電源、13 負荷、14 系統電源、90 処理回路、92 プロセッサ、93 メモリ。 1 electric vehicle, 2 auxiliary battery, 3 current limiter, 4 charge/discharge connector, 5, 5a, 5b power converter, 6 control power supply, 7 converter, 7a converter unit, 8 control circuit, 9 storage battery, 10 inverter, 11 Accessory socket, 12 external power supply, 13 load, 14 system power supply, 90 processing circuit, 92 processor, 93 memory.

Claims (7)

  1.  蓄電池と接続するコネクタと、
     前記蓄電池の直流電圧と直流のリンク電圧とを双方向に変換するコンバータと、
     前記リンク電圧と系統電源の交流電圧とを双方向に変換するインバータと、
     前記コンバータおよび前記インバータを制御する制御回路と、
     前記制御回路および前記コンバータに電力を供給可能な制御電源と、
     を有し、
     前記コンバータは、同時に並列駆動可能な複数のコンバータユニットを含み、
     前記制御回路は、前記蓄電池との間の絶縁試験を行うときには、前記複数のコンバータユニットのうちの一部の動作を停止させて前記コネクタに電圧を出力することを特徴とする電力変換装置。
    A connector that connects to the storage battery,
    A converter that bidirectionally converts the DC voltage of the storage battery and the DC link voltage,
    An inverter that bidirectionally converts the link voltage and the AC voltage of the system power supply,
    A control circuit for controlling the converter and the inverter;
    A control power supply capable of supplying power to the control circuit and the converter,
    Have
    The converter includes a plurality of converter units that can be simultaneously driven in parallel,
    The power conversion device, wherein the control circuit stops operation of a part of the plurality of converter units and outputs a voltage to the connector when performing an insulation test with the storage battery.
  2.  前記制御回路は、前記絶縁試験を行うときには、前記複数のコンバータユニットのそれぞれの消費電力に基づいて、動作を停止させるコンバータユニットを選択することを特徴とする請求項1に記載の電力変換装置。 The power converter according to claim 1, wherein the control circuit selects a converter unit to stop the operation based on the power consumption of each of the plurality of converter units when performing the insulation test.
  3.  前記制御回路は、前記絶縁試験を行うときには、前記複数のコンバータユニットのうち消費電力の最も低い1つのコンバータユニットを動作させ、その他のコンバータユニットの動作を停止させることを特徴とする請求項2に記載の電力変換装置。 The control circuit operates one converter unit having the lowest power consumption among the plurality of converter units and stops the operation of the other converter units when performing the insulation test. The power converter described.
  4.  前記制御電源は、前記系統電源からの電力供給停止時に、前記系統電源と異なる補助用電源の電力を用いて前記制御回路を起動することを特徴とする請求項1から3のいずれか1項に記載の電力変換装置。 4. The control power supply activates the control circuit by using the power of an auxiliary power supply different from the system power supply when the power supply from the system power supply is stopped. The power converter described.
  5.  前記蓄電池は、電動車両に搭載されており、
     前記補助用電源は、前記電動車両に搭載された補機バッテリであり、
     前記コネクタは、前記補機バッテリと接続する接続線を有することを特徴とする請求項4に記載の電力変換装置。
    The storage battery is mounted on an electric vehicle,
    The auxiliary power source is an auxiliary battery mounted on the electric vehicle,
    The power conversion device according to claim 4, wherein the connector has a connection line that is connected to the auxiliary battery.
  6.  前記蓄電池は、電動車両に搭載されており、
     前記補助用電源は、前記電動車両に搭載された補機バッテリであり、
     前記補機バッテリと接続する接続線を有するアクセサリソケットをさらに備えることを特徴とする請求項4に記載の電力変換装置。
    The storage battery is mounted on an electric vehicle,
    The auxiliary power source is an auxiliary battery mounted on the electric vehicle,
    The power conversion device according to claim 4, further comprising an accessory socket having a connection line connected to the auxiliary battery.
  7.  前記補助用電源の電力を前記制御回路に接続する接続線をさらに備えることを特徴とする請求項4に記載の電力変換装置。 The power converter according to claim 4, further comprising a connection line that connects the power of the auxiliary power supply to the control circuit.
PCT/JP2019/004267 2019-02-06 2019-02-06 Power conversion device WO2020161831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004267 WO2020161831A1 (en) 2019-02-06 2019-02-06 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004267 WO2020161831A1 (en) 2019-02-06 2019-02-06 Power conversion device

Publications (1)

Publication Number Publication Date
WO2020161831A1 true WO2020161831A1 (en) 2020-08-13

Family

ID=71947785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004267 WO2020161831A1 (en) 2019-02-06 2019-02-06 Power conversion device

Country Status (1)

Country Link
WO (1) WO2020161831A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013270A (en) * 2011-06-30 2013-01-17 Denso Corp Insulation failure diagnostic device
JP2013081349A (en) * 2011-09-19 2013-05-02 Denso Corp Abnormality determination device of power supply system
JP2014117070A (en) * 2012-12-10 2014-06-26 Hasetekku:Kk Charger
WO2016194859A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Power conversion device and method for controlling power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013270A (en) * 2011-06-30 2013-01-17 Denso Corp Insulation failure diagnostic device
JP2013081349A (en) * 2011-09-19 2013-05-02 Denso Corp Abnormality determination device of power supply system
JP2014117070A (en) * 2012-12-10 2014-06-26 Hasetekku:Kk Charger
WO2016194859A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Power conversion device and method for controlling power conversion device

Similar Documents

Publication Publication Date Title
US7999409B2 (en) Power conditioner and method of managing the same
WO2015198704A1 (en) Uninterruptible power supply unit
CN107636949B (en) Inverter control device
JP2003235252A (en) Power circuit
JP2008035588A (en) Motor drive unit
JP2007236064A (en) Energy storage device
WO2018163494A1 (en) Vehicle power supply device
WO2014103051A1 (en) Power storage apparatus
JP2010178421A (en) Power supplying device
KR100902508B1 (en) Power conditioner and managing method thereof
US20030099121A1 (en) Random input multistage voltage trickle storage system
WO2016063517A1 (en) Power supply device, power supply system, and power supply method
JP2014110666A (en) Discharge control system, and discharge device
JP2009207328A (en) Power device
WO2020161831A1 (en) Power conversion device
JP6818835B1 (en) Power controller
TWI685179B (en) power supply system
JP6671853B2 (en) Power conversion device and industrial machine using the same
JP6902719B2 (en) Converter system
JP6145777B2 (en) Power converter
JP5292599B2 (en) Uninterruptible power system
JP7279570B2 (en) Voltage measuring device
JP6362794B2 (en) Inverter
JP2010068651A (en) Power conversion apparatus
WO2021176649A1 (en) Power conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP