WO2020161820A1 - 整流装置 - Google Patents
整流装置 Download PDFInfo
- Publication number
- WO2020161820A1 WO2020161820A1 PCT/JP2019/004208 JP2019004208W WO2020161820A1 WO 2020161820 A1 WO2020161820 A1 WO 2020161820A1 JP 2019004208 W JP2019004208 W JP 2019004208W WO 2020161820 A1 WO2020161820 A1 WO 2020161820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- resistance
- fluid
- flow
- rotating shaft
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/26—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/16—Stators
- F03B3/18—Stator blades; Guide conduits or vanes, e.g. adjustable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/02—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having a plurality of rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a rectifying device.
- the energy of fluid such as wind and tidal current is used to generate rotational force to generate power.
- a vertical axis type rotating device such as a Darrieus type in which a rotation axis is provided perpendicular to a fluid is generally used.
- the vertical shaft type rotating device is provided with a blade for receiving a fluid at the tip of an arm extending radially from the rotating shaft. Therefore, the vertical shaft type rotating device is provided with a blade having a shape that efficiently generates a lift force in order to efficiently transmit the rotating force from the fluid to the rotating shaft (for example, Patent Document 1).
- the frame manufacturing cost may increase, the frame weight may increase, the transportation cost may increase, and the frame installing cost may increase.
- the main present invention for solving the above-mentioned problems is a frame provided so as to surround a rotating body, a blade attached to a rotating shaft of the rotating body, and rotating the rotating body in response to a flow of fluid, It is pivotally supported by a frame member that constitutes the frame, and rotates along the flow of the fluid so as to suppress the resistance given to the frame member due to the fluid flowing from the upstream side of the frame member. It is characterized by comprising a frame resistance suppressor.
- a vortex such as a turbulence of a fluid flow or a Karman vortex generated in a region on the downstream side of the frame placed in the fluid. Since it is possible to suppress the occurrence of power generation, it is possible to improve the power generation efficiency by suppressing the disturbance of the tidal current caused by the frame and rectifying the flow. Furthermore, according to the present invention, viscous pressure resistance generated in the frame can be suppressed. As a result, the frame can be manufactured with low strength, so that the manufacturing cost of the frame can be reduced. Further, since the weight of the frame can be reduced and the method of fixing the frame to the harbor structure can be simplified, the installation cost of the frame can be reduced.
- the frame can be manufactured with low strength, so that the manufacturing cost of the frame can be reduced. Further, since the weight of the frame can be reduced and the method of fixing the frame to the harbor structure can be simplified, the installation cost of the frame can be reduced. Further, since the flow turbulence can be suppressed by rectifying the flow of the fluid, the power generation efficiency can be improved.
- FIG. 4 is a plan view showing an example of a situation in which the frame resistance suppressing body of the rectifying device according to the first embodiment rotates, viewed from the +Y direction.
- FIG. 3 is a plan view showing an example of a frame resistance suppressing member arranged on a horizontally provided frame member of the rectifying device according to the first embodiment as viewed from a +Z direction.
- FIG. 3 is a plan view showing an example of a flow turbulence and a Karman vortex generation situation occurring in a frame of a vertical-axis type rotating device as viewed from the +Y direction.
- FIG. 6 is a perspective view showing a state of flow turbulence and Karman vortex generation occurring on a rotation axis of a vertical axis type rotating device.
- FIG. 6 is a perspective view showing a state of flow turbulence and Karman vortex generation occurring in a frame surrounding a vertical axis type rotating device. It is a block diagram which shows an example of a power generation device.
- the Y axis is the direction along the rotation axis 100
- the X axis and the Z axis are axes that intersect perpendicularly to the Y axis.
- FIGS. 1 to 18 the same members will be described with the same numerals.
- the side in the fluid flow direction may be referred to as “downstream side”, and the side in the fluid flow direction may be referred to as “upstream side”.
- the direction along the X axis may be referred to as “X direction”
- the direction along the Y axis may be referred to as “Y direction”
- the direction along the Z axis may be referred to as “Z direction”.
- the + side may be indicated by “+”
- the ⁇ side may be indicated by “ ⁇ ”.
- a section of the rectifying device which is sectioned by a plane including the X axis and the Z axis may be referred to as an “XZ section”.
- FIG. 13 is a perspective view showing an example of a vertical axis type rotation device 200.
- FIG. 14 is a perspective view showing an example in which the frame 130 is provided in the vertical shaft type rotation device 200.
- FIG. 18 is a configuration diagram showing an example of the power generation device 1000.
- the rotating device 200 is a device that transmits a rotating force to the speed increasing device 300 of the power generating device 1000 (including a turbine (not shown)) via the rotating shaft 100.
- the speed increaser 300 is a device that increases the rotation speed of the rotating shaft 100 and transmits it to the generator 400.
- the power generation device 1000 is, for example, a wind power generation device or a tidal current power generation device.
- a wind turbine generator is a generator that uses wind energy generated by wind to rotate a wind turbine to generate power.
- the tidal power generator is a power generator that generates electric power by rotating a water turbine by utilizing tidal energy generated by tidal power.
- the rotating device 200 in which the rectifying device according to the present embodiment is arranged refers to, for example, a rotating device of a vertical axis type power generating device such as a Darrieus type.
- the rotating device 200 of the wind turbine generator includes a rotating shaft 100 and a blade 120.
- one end of the rotary shaft 100 in the X direction is connected to the speed increaser 300.
- the rotating shaft 100 transmits the rotational force to the speed increaser 300.
- the rotating shaft 100 rotates, for example, in a clockwise direction (hereinafter, referred to as “rotating direction”) when the blade 120 described below is viewed from the +Y direction.
- rotating direction a clockwise direction
- the blade 120 is a member that obtains a lift force in the rotation direction by the flow of fluid.
- the blade 120 is rotating around the rotating shaft 100.
- the blade 120 is configured to include an arm 110 provided at an end of the blade 120 in the +Y direction and an arm 111 provided at an end of the ⁇ Y direction.
- the main body of the blade 120 transmits the lift force in the rotation direction to the rotation shaft 100 as the rotation force in the rotation direction via the arms (110, 111).
- the arms (110, 111) are members that connect the rotating shaft 100 and the main body of the blade 120 to each other and transmit the lift in the rotating direction generated in the blade 120 to the rotating shaft 100.
- the arms (110, 111) are, for example, radially extended from the rotary shaft 100, and the ends on the opposite side of the rotary shaft 100 are connected to the blade 120.
- the rotating device 200 of the tidal current power generator is fixed to the frame 130 underwater.
- the frame 130 for example, one of the frame members 131 parallel to the rotating shaft 100 is fixed to a concrete structure such as a shore structure or a pier foundation.
- the frame 130 may be fixed on a foundation such as concrete installed on the sea floor, or may be fixed on a floating body installed on the sea surface.
- the frame 130 is rotatably supported by the rotating shaft 100 via bearings (140A, 140B) so that the rotating shaft 100 can rotate.
- the rotating shaft 100 and the blades 120 of the rotating device 200 of the tidal current power generator are the same as those of the rotating device 200 of the wind power generator, and thus the description thereof will be omitted.
- the rotating device 200 is described as a vertical shaft type, but for example, the rotating device 200 in which the rotating shaft 100 is provided horizontally (for example, in the Z direction) or the rotating device 200 provided obliquely with respect to the horizontal.
- the manner in which the rotary shaft 100 is installed is not limited.
- the blade 120 of the rotating device 200 may be attached to the rotating shaft 100 without using the arms (110, 111).
- the rotary device 100 in which the rotary shaft 100 is provided vertically (Y direction) will be described.
- FIG. 15 is a plan view showing an example of the flow turbulence and the Karman vortex generation situation occurring in the frame 130 of the vertical axis type rotation device 200 as viewed from the +Y direction.
- FIG. 16 is a perspective view showing a state of turbulence of a flow or a Karman vortex occurring on the rotating shaft 100 of the vertical shaft type rotating device 200.
- FIG. 17 is a perspective view showing a generation state of Karman vortices and waves generated in the frame 130 surrounding the vertical axis type rotation device 200.
- a fluid such as wind or water flows from the ⁇ X direction toward the +X direction.
- the rotating device 200 is arranged, for example, in a fluid such as wind or water so that the rotating shaft 100 is perpendicular to the X direction.
- a pressure drop portion is generated on the downstream side of the rotary shaft 100.
- Viscous pressure resistance is applied to the rotating shaft 100 by the pressure reducing portion.
- vortex forming resistance is generated on the rotating shaft 100 due to turbulence of the flow caused by the pressure drop portion and vortices such as Karman vortices (hereinafter referred to as “vortex”).
- the waves are generated near the water surface due to the turbulence of the flow and the vortex caused by the rotation shaft 100 and the frame 130 near the water surface, wave-making resistance is generated on the rotation shaft 100 and the frame 130.
- the frame member 131 is shown to cause flow turbulence or vortex, but the flow shaft turbulence or vortex also occurs in the rotating shaft 100.
- the turbulence of the flow is turbulence due to a change in the direction of the flow or separation of the fluid caused by an effect such as the shape of an object placed in the fluid.
- the vortex is a vortex that occurs alternately on the downstream side (the +X direction side) of the obstacle when the obstacle is arranged in the fluid.
- the above-described flow is provided on the downstream side of the frame member 131 provided in parallel (Y direction) and the frame member 132 provided vertically (Z direction) with respect to the rotating shaft 100.
- Turbulence or vortex causes eddy resistance.
- waves are generated due to turbulence of the flow and vortices.
- wave-making resistance due to waves is generated in the frame members (131, 132).
- the flow turbulence and the vortex are generated when the fluid reaches the rotary shaft 100 from the upstream side of the rotary shaft 100 and the fluid flows downstream along the peripheral surface of the rotary shaft 100. It occurs in the area downstream of 100.
- the turbulence or vortex of the flow reaches the blade 120 rotating around the rotating shaft 100 on the downstream side of the rotating shaft 100.
- the tidal current around the blade 120 is disturbed, which hinders its rotation.
- the flow of the fluid is disturbed by the influence of the waves generated by the rotating shaft 100 and the frame 130, which hinders the rotation of the blade 120.
- the flow turbulence and the vortex are such that the fluid reaches the frame members (131, 132) from the upstream side of the frame 130, and the fluid reaches the downstream side along the peripheral surface of the frame member (131, 132). Occurs in the region on the downstream side of the frame members (131, 132) when flowing to the.
- the turbulence or vortex of the flow reaches the blade 120 rotating around the rotation shaft 100 on the downstream side of the frame members (131, 132).
- the tidal current around the blade 120 is disturbed, which hinders its rotation. Further, when the blade 120 is near the water surface, the rotation of the blade 120 is hindered because the fluid flow is disturbed by the influence of the waves generated by the frame members (131, 132).
- the turbulence or vortex of the flow disturbs the flow around the blade 120 and reduces the efficiency with which the blade 120 converts the kinetic energy of the fluid into the rotational power of the shaft. , 30).
- the rectifying device (10, 20, 30) will be described in detail.
- FIG. 1 is a perspective view showing an example of a rectifying device 10 according to the first embodiment.
- FIG. 2 is a perspective view showing an enlarged example of the rectifying device 10 according to the first embodiment.
- FIG. 3 is a plan view showing an example of the frame resistance suppressing body 11A of the rectifying device 10 according to the first embodiment viewed from the +Y direction.
- FIG. 4 is a plan view showing an example of a situation in which the frame resistance suppressing body 11A of the rectifying device 10 according to the first embodiment is rotated, viewed from the +Y direction.
- FIG. 5 is a plan view showing an example of the frame resistance suppressing body 11B arranged on the frame member 132 provided horizontally of the rectifying device 10 according to the first embodiment as seen from the +Z direction.
- the rectifying device 10 is a device that suppresses turbulence and vortex of the flow generated on the downstream side of the frame 130 arranged in the fluid. Further, the rectifying device 10 can suppress the generation of waves near the water surface.
- the frame resistance suppressing body 11 described later rotates in the fluid flowing direction, so that the flow turbulence and the vortex generated on the downstream side of the frame members (131, 132) are prevented. It is a device to suppress.
- a temporary line passing through the centers of the frame members 131 and 132 will be described below as a center line.
- the rectifying device 10 is configured such that a frame resistance suppressing body 11 is rotatably supported by shafts of frame members (131, 132) via bearings 12 described later.
- the frame resistance suppressor 11 is arranged on the frame member 131 from the end in the +Y direction to the end in the ⁇ Y direction, and on the frame member 132 from the end in the +Z direction to the end in the ⁇ Z direction. Will be placed. Accordingly, the rectifying device 10 can suppress the turbulence and vortex of the flow generated on the downstream side of the frame member 131 and the frame member 132. In addition, the generation of waves can be suppressed near the water surface.
- the rectifying device 10 is configured to include, for example, a frame resistance suppressing body 11 and a bearing 12.
- a frame resistance suppressing body 11 and a bearing 12.
- the frame resistance suppressor 11 and the bearing 12 will be described in detail.
- the frame resistance suppressor 11 is a member that suppresses flow turbulence and vortex on the downstream side of the frame member 131 and the frame member 132.
- the frame resistance suppression body 11 includes a frame resistance suppression body 11A arranged on the frame member 131 and a frame resistance suppression body 11B arranged on the frame member 132.
- the frame resistance suppressor (11A, 11B) is provided so as to cover the peripheral surfaces of the frame member 131 and the frame member 132 via a bearing 12 described later.
- the frame resistance suppressor (11A, 11B) is made of, for example, a stainless material, and is formed so that the thickness in the Z direction becomes thinner toward the downstream side from the frame member 131 and the frame member 132.
- the shapes of the frame resistance suppression body 11A and the frame resistance suppression body 11B will be specifically described as follows. As shown in FIG. 3, in the frame resistance suppression body 11A, the width in the Z direction is called the blade width, and the length in the X direction is called the blade length.
- the frame resistance suppressing body 11A has a wing width that is not damaged by the force generated by the rotation.
- the frame resistance suppressing body 11A has a blade length that does not contact the blade 120 when arranged in the frame member 131.
- the wing width increases from one end in the -X direction (a leading edge described later) to the frame member 131, and the wing width decreases from the frame member 131 to the other end in the +X direction (a trailing edge described later).
- the XZ section has a streamlined shape.
- the streamlined shape refers to a shape in which one end on the upstream side ( ⁇ X direction side) is rounded and the other end on the downstream side (+X direction side) is sharp in a state where the frame resistance suppression body 11A is along the flow direction.
- the frame resistance suppressing body 11A is formed symmetrically in the Z direction with the X direction (chordline described later) as the center.
- the frame resistance suppressor 11A is provided continuously, for example, without a break from the end portion on the +Y direction side of the frame member 131 to the end portion on the ⁇ Y direction side.
- the frame resistance suppressing body 11A has a symmetrical streamline shape, the resistance received from the fluid passing from one end to the other end can be reduced, so that turbulence and vortex of the flow can be suppressed. In addition, the generation of waves can be suppressed near the water surface.
- the frame resistance suppression body 11A in the state along the flow direction in the fluid, one end in the ⁇ X direction is the leading edge, the other end in the +X direction is the trailing edge, and a tentative line connecting the leading edge and the trailing edge with a straight line is formed. Shown as a chord line. Further, the frame resistance suppressing body 11A is formed so that the moment in the Z direction generated around the aerodynamic center by the lift generated on the blade 120 on the chord line is constant regardless of the angle of attack. The frame resistance suppression body 11A is arranged so that the center line of the frame member 131 and the chord line intersect. The frame resistance suppressing body 11 is arranged such that the aerodynamic center is located on the downstream side (+X direction side) of the frame member 131. As a result, the frame resistance suppression body 11A can swivel quickly so that the chord line follows the fluid flow when the fluid flow changes, as shown in FIG.
- the frame resistance suppression body 11B may have the same shape as the frame resistance suppression body 11A described above. However, since the frame resistance suppressor 11B is disposed on the frame member 132 provided perpendicularly to the rotating shaft 100, it receives a force in the ⁇ Y direction due to gravity and a force in the +Y direction due to buoyancy and lift from the fluid. Therefore, in the frame resistance suppression body 11B, as a more preferable shape, as shown in FIG. 5, a fluid passing through the axis of the frame member 132 such that the resultant force of buoyancy and lift and the gravity cancel each other out. It is formed asymmetrically with respect to the direction of flow. More specifically, the XY cross section exhibits a wing shape.
- the bearing 12 is provided so as to be interposed between each of the frame members (131, 132) and the frame resistance suppressing body 11.
- the bearing 12 is a member that suppresses friction of the frame members (131, 132) to the frame resistance suppressing member 11 when the frame resistance suppressing member 11 rotates around the peripheral surface of each of the frame members (131, 132). is there. That is, the bearing 12 is a member that suppresses energy loss and heat generation that occur in the frame resistance suppression body 11 and the frame members (131, 132).
- the bearing 12 is a ball bearing made of, for example, a stainless material.
- the bearings 12 are provided at least at one end in the +Y direction and at the other end in the ⁇ Y direction of the frame resistance suppression body 11 so that the frame resistance suppression body 11 can rotate without contacting the frame members (131, 132), for example. ing.
- the bearing 12 is preferably provided with, for example, a thrust collar so that the frame resistance suppressing body 11 does not move in the Y direction with respect to the frame members (131, 132).
- the leading edge is arranged in the ⁇ X direction and the trailing edge is +X in the state where the fluid is flowing from the ⁇ X direction to the +X direction.
- the rectifying device 10 does not substantially generate lift in relation to the fluid. Since the frame resistance suppression body 11 has a streamlined shape, turbulence and vortices of the flow are suppressed on the +X direction side. In addition, the generation of waves can be suppressed near the water surface.
- the frame resistance suppressing member 11 is rotated so that the leading edge is arranged in the direction in which the fluid flows when the fluid flow is inclined in the ⁇ Z direction with respect to the X direction. Move. That is, the frame resistance suppressing body 11 rotates so that its chord line is along the direction of fluid flow. Specifically, the chord line of the frame resistance suppressing body 11 shown by the solid line rotates along the fluid flow direction shown by the broken line to become the frame resistance suppressing body 11 shown by the broken line.
- FIG. 6 is a perspective view showing an example of the rectifying device 20 according to the second embodiment.
- the rectifying device 20 is a device that suppresses turbulence and vortex of the flow generated on the downstream side of the rotating shaft 100 and the frame 130 in the rotating shaft 100 and the frame 130 arranged in the fluid. Further, the rectifying device 20 can suppress the generation of waves near the water surface.
- the rectifying device 20 is not used only for the rotating shaft 100 and the frame 130 in the present embodiment, but is provided in the fluid in the substantially Y direction or the substantially Z direction in a situation where the fluid flows in the X direction. It can also be applied to objects that are exposed.
- the rectifying device 20 according to the second embodiment is configured by adding a rotating shaft resistance suppressing body 23 described later to the rectifying device 10 according to the first embodiment.
- the frame resistance suppressing body 21 and the rotating shaft resistance suppressing body 23 rotate in the fluid flowing direction, so that flow turbulence and vortex generated on the downstream side of the rotating shaft 100 and the frame 130 are generated. It is a device to suppress.
- the generation of waves can be suppressed near the water surface.
- the rotary shaft resistance suppressing body 23 and the frame resistance suppressing body 21 are rotatably supported by the rotary shaft 100 and the frame members (131, 132) via the bearings 22, respectively. Is configured.
- the rotating shaft resistance suppressing body 23 of the rectifying device 20 is arranged over the +Y direction side arm 110 and the ⁇ Y direction side arm 111 that extend on the rotating shaft 100.
- the frame resistance suppressing body 21 is arranged on the frame member 131 from the end in the +Y direction to the end in the ⁇ Y direction, and in the frame member 132 from the end in the +Z direction to the end in the ⁇ Z direction. Placed across. Accordingly, the rectifying device 20 can suppress the turbulence and vortex of the flow generated on the downstream side of the rotating shaft 100, the frame member 131, and the frame member 132. In addition, the generation of waves can be suppressed near the water surface.
- the rectifying device 20 is configured to include, for example, a frame resistance suppressing body 21, a bearing 22, and a rotating shaft resistance suppressing body 23.
- the frame resistance suppression body 21 and the bearing 22 are the same as the frame resistance suppression body 11 and the bearing 12 of the rectifying device 10 according to the first embodiment, and thus the description thereof will be omitted.
- the rotary shaft resistance suppressor 23 will be described in detail.
- the rotary shaft resistance suppressor 23 is a member that suppresses the turbulence of the flow and the generation of vortices on the downstream side of the rotary shaft 100.
- the rotating shaft resistance suppressor 23 is provided so as to cover the peripheral surface of the rotating shaft 100 via the bearing 22.
- the rotary shaft resistance suppressor 23 is made of, for example, a stainless material, and is formed so that the thickness in the Z direction becomes thinner from the rotary shaft 100 toward the downstream side.
- the shape of the rotating shaft resistance suppressor 23 will be specifically described as follows.
- the rotating shaft resistance suppressing body 23 according to the second embodiment has a shape similar to the frame resistance suppressing body 11A according to the first embodiment. Therefore, the leading edge, the trailing edge, the chord line, and the aerodynamic center of the rotary shaft resistance suppressing body 23 according to the second embodiment are as shown in FIG.
- the width in the Z direction is called the blade width
- the length in the X direction is called the blade length.
- the rotary shaft resistance suppressing body 23 has a blade width that is not damaged by the force generated by the rotation.
- the rotating shaft resistance suppressing body 23 has a blade length that does not contact the blade 120 when arranged on the rotating shaft 100.
- the rotating shaft resistance suppressor 23 has a blade width that increases from one end in the -X direction (a leading edge described later) to the rotating shaft 100, and that decreases from the rotating shaft 100 to the other end in the +X direction (a trailing edge described later). Is formed.
- the XZ section has a streamlined shape.
- the streamlined shape refers to a shape in which one end on the upstream side ( ⁇ X direction side) is round and the other end on the downstream side (+X direction side) is sharp in a state where the rotary shaft resistance suppressing body 23 is along the flow direction.
- the rotating shaft resistance suppressor 23 is formed symmetrically in the Z direction with the X direction (a chord line described later) as the center.
- the rotary shaft resistance suppressor 23 is continuously provided, for example, without a break from below the joint of the arm 110 on the +Y direction side of the rotary shaft 100 to above the joint of the arm 111 on the ⁇ Y direction side. ing.
- the rotating shaft resistance suppressor 23 has a symmetrical streamlined shape, the resistance received from the fluid passing from one end to the other end can be reduced, so that flow turbulence and vortex can be suppressed. In addition, the generation of waves can be suppressed near the water surface.
- the rotary shaft resistance suppressor 23 is installed between the bearing 140A and the arm 110, between the arm 111 and the bearing 140B, on the ⁇ Y direction side of the bearing 140B in the rotary shaft 100, and the like. May be done. Further, the rotary shaft resistance suppressing body 23 may be installed on the rotary shaft 100 near the water surface. Thereby, the rotating shaft resistance suppressing body 23 can suppress the generation of waves generated on the water surface on the downstream side of the rotating shaft 100.
- the rotary shaft resistance suppressor 23 is arranged so that the center line of the rotary shaft 100 and the chord line intersect.
- the rotary shaft resistance suppressor 23 is arranged so that the aerodynamic center is located on the downstream side (+X direction side) of the rotary shaft 100. As a result, the rotating shaft resistance suppressor 23 can swivel quickly so that the chord line follows the fluid flow when the fluid flow changes.
- the operation of the rectifying device 20 will be described with reference to FIG. 7.
- the frame resistance suppressing body 21 of the rectifying device 20 according to the second embodiment is the same as the frame resistance suppressing body 11 of the rectifying device 10 according to the first embodiment, and therefore its description is omitted. Below, operation
- the rotating shaft resistance suppressor 23 of the rectifying device 20 has the leading edge arranged in the ⁇ X direction and the trailing edge arranged in the ⁇ X direction in the state where the fluid flows from the +X direction to the ⁇ X direction. Rotate so as to be arranged in the +X direction. That is, the rotary shaft resistance suppressor 23 rotates so that the chord line thereof is along the direction of fluid flow. As a result, the rectifying device 20 does not substantially generate lift in relation to the fluid. Since the rotating shaft resistance suppressing body 23 has a streamlined shape, turbulence and vortices of the flow are suppressed on the +X direction side thereof. In addition, the generation of waves can be suppressed near the water surface.
- the rotary shaft resistance suppressor 23 rotates so that the front edge is arranged in the direction in which the fluid flows when the fluid flow is tilted in the ⁇ Z direction with respect to the X direction. That is, the rotary shaft resistance suppressor 23 rotates so that the chord line thereof is along the direction of fluid flow.
- FIG. 8 is a perspective view showing an example of the rectifying device 30 according to the third embodiment.
- FIG. 9 is a perspective view showing an enlarged example of the rectifying device 30 according to the third embodiment.
- FIG. 10 is a plan view showing an example of the rectifying device 30 according to the third embodiment as viewed from the +Y direction.
- FIG. 11 is a perspective view showing an example in which the frame resistance suppressing body 31 of the rectifying device 30 according to the third embodiment is provided with the flange portions (33A, 33B).
- the rectifying device 30 is a device that suppresses turbulence and vortex of the flow generated on the downstream side of the rotating shaft 100 and the frame 130 in the rotating shaft 100 and the frame 130 arranged in the fluid. Further, the rectifying device 30 can suppress the generation of waves near the water surface.
- the rectifying device 30 is not used only for the rotating shaft 100 and the frame 130 in the present embodiment, but is provided in the fluid in the substantially Y direction or the substantially Z direction, for example, when the fluid flows in the X direction. It can also be applied to objects that are exposed.
- the rectifying device 30 according to the third embodiment is configured by adding a rotating shaft resistance suppressor 33 described below to the rectifying device 10 according to the first embodiment.
- the rectifying device 30 is a device that suppresses turbulence and vortex of the flow generated on the downstream side of the rotating shaft 100 and the frame 130 by rotating the frame resistance suppressing body 31 and the rotating shaft resistance suppressing 33 along the flow direction of the fluid. Is. In addition, the generation of waves can be suppressed near the water surface.
- the rectifying device 30 since the rotary shaft resistance suppressing body 33 of the rectifying device 30 is axially supported by the rotary shaft 100 via the bearing 32, the rotary shaft resistance suppressor 33 is indirectly supported by the rotary shaft 100 via the bearing 32 in the rotational direction. Receive the friction force of. Due to the frictional force, the rectifying device 30 is inclined in the rotating direction to some extent. Therefore, the rectifying device 30 according to the third embodiment is configured to correct the inclination of the rotary shaft resistance suppressor 31 by taking into consideration the frictional force from the rotary shaft 100 to the rotary shaft resistance suppressor 31.
- the rectifying device 30 is configured to include, for example, a frame resistance suppressing body 31, a bearing 32, and a rotating shaft resistance suppressing body 33.
- the frame resistance suppression body 31 and the bearing 32 are the same as the frame resistance suppression body 11 and the bearing 12 of the rectifying device 10 according to the first embodiment, and thus the description thereof will be omitted.
- the rotary shaft resistance suppressor 33 will be described in detail.
- the rotating shaft resistance suppressor 33 is a member that suppresses the turbulence of the flow and the generation of vortices on the downstream side of the rotating shaft 100. It is a member that suppresses the generation of waves near the water surface.
- the rotating shaft resistance suppressing body 33 is provided so as to cover the peripheral surface of the rotating shaft 100 via the bearing 32.
- the rotating shaft resistance suppressing body 33 is made of, for example, a stainless material, and is formed so that the thickness in the Z direction becomes thinner from the rotating shaft 100 toward the downstream side.
- the shape of the rotating shaft resistance suppressor 33 will be specifically described as follows.
- the width in the Z direction is called the blade width
- the length in the X direction is called the blade length.
- the rotary shaft resistance suppressing body 33 has a blade width that is not damaged by the force generated by the rotation.
- the rotating shaft resistance suppressing body 33 has a blade length that does not contact the blade 120 when arranged on the rotating shaft 100.
- the rotating shaft resistance suppressor 33 has a blade width that increases from one end in the -X direction (a leading edge described below) to the rotating shaft 100 and a blade width that decreases from the rotating shaft 100 to the other end in the +X direction (a trailing edge described later). Is formed.
- the XZ section has a wing shape.
- the wing shape is a shape in which one end on the upstream side (-X direction side) is rounded and the other end on the downstream side (+X direction side) is sharp in the state where the rotary shaft resistance suppressor 33 is along the flow direction. Further, in the airfoil, the peripheral surface on the ⁇ Z direction side is rounded with respect to the X axis as compared to the peripheral surface on the +Z direction side. That is, the rotation axis resistance suppressing body 33 is formed asymmetrically in the Z direction with the X direction (the chord line described later) as the center.
- the airfoil is, for example, NACA63A016 defined by NASA.
- the rotation axis resistance suppressing body 33 is formed so that the rotational frictional force and the lift force are equal to each other in order to suppress the flow turbulence and the vortex.
- the rotation axis resistance suppressing member 33 blocks the flow of the fluid, so that the pressure on the peripheral surface of the rotation axis resistance suppressing member 33 on the ⁇ Z direction side increases.
- the rotating shaft resistance suppressing member 33 does not rotate more than a certain amount, so that no turbulence or vortex is generated on the downstream side of the rotating shaft resistance suppressing member 33. Further, when the rotary shaft resistance suppressing body 33 rotates toward the +Z direction side due to a rotational frictional force and a state of interrupting the flow occurs, the angle of attack of the rotary shaft resistance suppressing body 33 increases, so that the lift force increases. In this case, the rotation axis resistance suppressing member 33 blocks the flow of the fluid, so that the pressure on the peripheral surface of the rotation axis resistance suppressing member 33 on the +Z direction side increases. Therefore, the rotating shaft resistance suppressing member 33 does not rotate more than a certain amount, so that no turbulence or vortex is generated on the downstream side of the rotating shaft resistance suppressing member 33.
- the rotating shaft resistance suppressing member 33 is continuously provided, for example, without a break from below the joint of the arm 110 on the +Y direction side of the rotating shaft 100 to above the joint of the arm 111 on the ⁇ Y direction side. ing.
- the rotary shaft resistance suppressor 33 is provided between the bearing 140A and the arm 110, between the arm 111 and the bearing 140B, on the ⁇ Y direction side of the bearing 140B in the 100 rotary shaft 100, and the like. It may be installed. Further, the rotating shaft resistance suppressing body 33 may be installed on the rotating shaft 100 near the water surface. As a result, the rotating shaft resistance suppressor 33 can suppress the generation of waves generated on the water surface on the downstream side of the rotating shaft 100.
- one end in the ⁇ X direction is a leading edge
- the other end in the +X direction is a trailing edge
- a tentative line connecting the leading edge and the trailing edge with a straight line is provided in a state along the flow direction in the fluid.
- a phantom line is shown, and a tentative line indicating the middle of the distance in the direction along the Z axis between the ⁇ Z side peripheral surface and the +Z side peripheral surface with the wing chord line as a boundary is shown as an intermediate line.
- the rotation axis resistance suppressing body 33 is formed so that the moment in the Z direction generated around the aerodynamic center by the lift generated on the blade chord line becomes constant regardless of the angle of attack.
- the angle of attack is the angle formed by the flow direction and the chord line.
- the rotating shaft resistance suppressing body 33 is arranged so that the rotating shaft 100 and the chord line intersect.
- the rotating shaft resistance suppressing body 33 is arranged so that the aerodynamic center is located on the downstream side (+X direction side) of the rotating shaft 100.
- the rotary shaft resistance suppressing body 33 can rotate so that the chord line follows the fluid flow when the fluid flow changes. At this time, as described above, the lifting force and the rotational friction force are rotated so as to be equal to each other.
- the rotating shaft resistance suppressor 33 may be provided with flange portions (21A, 21B) in order to suppress the resistance due to the vortex generated at both ends.
- the flange portions (21A, 21B) are configured by, for example, a first flange portion 21A on the +Y direction side and a second flange portion 21B on the ⁇ Y direction side.
- the first flange portion 21A and the second flange portion 21B are provided at both ends of the rotary shaft resistance suppressing body 33 in the Y direction in a flange shape with respect to the rotary shaft resistance suppressing body 33.
- the leading edge is arranged in the ⁇ X direction and the trailing edge is arranged in the state where the fluid is flowing from the +X direction to the ⁇ X direction.
- the rotation is performed so that the lift force and the rotational friction force become equal. That is, the rotation axis resistance suppressing body 33 rotates so that the chord line thereof is along the direction of fluid flow.
- the rotating shaft resistance suppressing body 33 has a wing shape, the flow turbulence and the vortex are suppressed on the +X direction side thereof.
- the generation of waves can be suppressed near the water surface. Note that when the flow of the fluid changes, the rotating shaft resistance suppressing body 33 moves in the same manner as the resistance suppressing body 11 according to the first embodiment, and therefore its description is omitted.
- the rectifying device 10 surrounds the rotating body 100 and the blade 120 that is attached to the rotating shaft 100 of the rotating body 100 and that receives the flow of fluid and rotates the rotating body 100.
- the frame members (131, 132) are rotatably supported by the frame members (131, 132) constituting the frame 130 and are caused by the fluid flowing from the upstream side of the frame members (131, 132).
- the flow turbulence and the vortex can be suppressed, the resistance to the blade 120 in the rotation direction due to the flow turbulence and the vortex can be reduced, and thus the rotation efficiency is improved.
- the generation of waves can be suppressed near the water surface.
- the frame resistance suppressing body (11, 21, 31) is pivotally supported by the frame member 131 of the frame 130, which is provided in parallel with the rotation shaft 100.
- the frame resistance suppressor (11, 21, 31, 31) is the same as the frame resistance suppressor (11A, 21A, 31A).
- the frame resistance suppressing member (11B, 21B, 31B) is supported by a frame member 132 that is provided perpendicularly to the rotating shaft 100.
- the frame resistance suppressing bodies (11, 21, 31) are symmetrical with respect to the direction of the fluid flow passing through the axes of the frame members (131, 132). It is formed. According to the present embodiment, the turbulence and vortex of the flow can be efficiently suppressed on the downstream side of the rotating shaft 100. In addition, the generation of waves can be suppressed near the water surface.
- the frame resistance suppressor (11, 21, 31) is rotated from the upstream side to the downstream side of the fluid in a state of being rotated along the flow direction of the fluid.
- the thickness of the frame member (131, 132) in the direction (Z direction) orthogonal to the direction of the fluid flow direction and the direction along the axis of the frame member (131, 132) decreases.
- the turbulence and vortex of the flow can be efficiently suppressed on the downstream side of the rotating shaft 100.
- the generation of waves can be suppressed near the water surface.
- the frame resistance suppressing body (11, 21, 31) is rotated along the direction of the flow of the fluid in the frame member (131, 132). From the frame member (131, 132) to the downstream side, the thickness of the frame member (131, 132) along the axis and the direction orthogonal to the fluid flow direction is reduced. The thickness of the frame member (131, 132) in the direction (Z direction) orthogonal to the direction of the axis of the frame member (131, 132) and the direction of the flow of the fluid becomes smaller. The distance to the side end is longer than the distance from the frame member (131, 132) to the upstream end. According to the present embodiment, the frame resistance suppressing body (11, 21, 31) has a so-called streamlined shape, so that the flow turbulence and the vortex can be efficiently suppressed.
- the frame resistance suppressing body (11, 21, 31) is formed of a stainless material. According to the present embodiment, the corrosion resistance to fluid and the durability are excellent, which leads to improvement in safety.
- the frame resistance suppressing body (11, 21, 31) is rotated so that the frame resistance suppressing body (11, 21, 31) rotates along the flow of the fluid.
- the frame resistance suppressing body (11, 21, 31) can be smoothly rotated in accordance with the direction of fluid flow.
- the fluid is wind
- the rotating body 100 is connected to the turbine of the wind power generator. According to the present embodiment, it is possible to suppress flow turbulence and vortices in the wind power generator.
- the fluid is water
- the rotating body 100 is connected to the turbine of a water current generator such as a tidal current generator. According to the present embodiment, it is possible to suppress flow turbulence and eddies in the tidal current generator.
- the frame resistance suppressor (11, 21, 31) is described as being composed of the frame resistance suppressor (11A, 21A, 31A) and the frame resistance suppressor (11B, 21B, 31B). , But is not limited to this.
- the frame resistance suppressor (11, 21, 31) may include at least the frame resistance suppressor (111A, 21A, 31A).
- the frame resistance suppressor (11, 21, 31) has been described as having a streamlined shape, but is not limited to this.
- it may be rotatably supported by the frame member 131, and a flat plate-shaped member may extend from the frame member 131.
- it may be rotatably supported by the frame member 131 and may have a triangular shape whose width becomes narrower as it goes downstream from the frame member 131.
- the frame resistance suppressor (11, 21, 31) is described as being continuously provided, for example, without a break from the end of the frame member 131 in the +Y direction to the end of the ⁇ Y direction. It is not limited to this.
- a plurality of frame resistance suppressing bodies (11, 21, 31) may be provided intermittently.
- the rectifying device (10, 20, 30) is described as including the bearings (12, 22, 32), but the present invention is not limited thereto.
- the rectifier (10, 20, 30) may not be provided with the bearings (12, 22, 32), and the vortex suppressors (11, 21, 31) and the frame resistance suppressor 33 have ends in the +Y direction. It suffices that the portion and the end portion in the ⁇ Y direction are rotatably provided so as not to move in the Y direction.
- the rotating shaft resistance suppressor 23 is described as presenting a streamline type or a wing type, but the present invention is not limited to this.
- it may be rotatably supported by the rotary shaft 100, and a flat plate-shaped member may extend from the rotary shaft 100.
- the rotary shaft 100 may be rotatably supported by the rotary shaft 100, and may have a triangular shape whose width becomes narrower as it goes downstream from the rotary shaft 100.
- the rotary shaft resistance suppressor (23, 33) is, for example, a cut line from below the joint of the arm 110 on the +Y direction side of the rotary shaft 100 to above the joint of the arm 111 on the ⁇ Y direction side.
- the present invention is not limited to this.
- a plurality of rotating shaft resistance suppressors (23, 33) may be provided intermittently.
- the rotation axis resistance suppressing body 33 is described so that the XZ section has a wing shape, but the present invention is not limited to this.
- the end surface on the +Y direction side is formed symmetrically in the Z direction about the X direction
- the intermediate portion in the Y direction is asymmetric in the Z direction about the X direction.
- the end surface on the ⁇ Y direction side may be formed symmetrically in the Z direction with the X direction as the center.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Hydraulic Turbines (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Wind Motors (AREA)
Abstract
【解決手段】 回転軸に取り付けられ、流体の流れを受けて前記回転軸を回転させるブレードと、を支えるフレームにおいて、前記フレームを構成するフレーム部材に軸支され、前記フレーム部材の上流側から流れてくる前記流体に起因して前記フレーム部材に与えられる抵抗を抑制するように、前記流体の流れに沿って回動するフレーム抵抗抑制体を備えることを特徴とする。
Description
本発明は、整流装置に関する。
例えば、風力発電や潮流発電などは、風や潮流などの流体のエネルギーを利用して回転力を起こして発電している。風力発電および潮流発電においては、流体に対して回転軸が垂直に設けられるダリウス式などの垂直軸式の回転装置が一般的に用いられている。垂直軸式の回転装置には、回転軸から放射状に延びるアームの先端に流体を受けるブレードが設けられている。よって、垂直軸式の回転装置には、流体から回転軸に回転力を効率よく伝達するために、効率よく揚力を生じる形状のブレードが設けられる(例えば特許文献1)。
しかし、風力発電や潮流発電におけるフレームおよび回転装置の回転軸の周囲を流体が通過するときに、フレームおよび回転軸の形状に起因して流体の流れが乱れることにより、フレームおよび回転軸と流体との間で所謂剥離が生じる。また、流体が通過していく方向における、フレームおよび回転軸の下流側の領域において、カルマン渦などの渦が生じる。このようなフレームおよび回転軸と流体との間で生じる剥離や渦により、フレームおよび回転軸の下流側では圧力低下が生じる。そして、フレームおよび回転軸には、圧力低下により所謂粘性圧力抵抗が加わる。さらに、剥離により生じる流れの乱れやカルマン渦がフレームおよび回転軸の下流側で回転しているブレードに到達することにより、ブレードの周囲の流れを乱すため、回転動力への変換効率を大幅に低下させる。
つまり、風力発電や潮流発電では、流体による粘性圧力抵抗によりフレームに過度な抵抗がかかるため、フレーム自体の強度やフレームを港湾構造物などに固定するときの強度を増大させる必要が生じることから、フレーム製造コストの増大、フレーム重量の増大による輸送コストの増大、フレーム設置コストの増大などを引き起こす虞があった。また、流れの乱れやカルマン渦などの渦により、ブレードの周囲の流れが乱されることで発電効率の低下を引き起こす虞があった。
また、流れの乱れやカルマン渦などの渦が水面の近くで生じると、水面に波を生じさせるため、フレームや回転軸に対して所謂造波抵抗を与えることとなる。これにより、上述したように、フレーム製造コストの増大、フレーム重量の増大による輸送コストの増大、フレーム設置コストの増大などを引き起こす虞があった。
前述した課題を解決する主たる本発明は、回転体と、前記回転体の回転軸に取り付けられ、流体の流れを受けて前記回転体を回転させるブレードと、を取り囲むように設けられるフレームにおいて、前記フレームを構成するフレーム部材に軸支され、前記フレーム部材の上流側から流れてくる前記流体に起因して前記フレーム部材に与えられる抵抗を抑制するように、前記流体の流れに沿って回動するフレーム抵抗抑制体を備えることを特徴とする。
本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
本発明によれば、流体中に置かれた回転装置を取り囲むようにフレームが設けられる状況において、流体中に置かれたフレームの下流側の領域に生じる流体の流れの乱れやカルマン渦などの渦の発生を抑制することができるため、フレームに起因する潮流の乱れを抑制するとともに流れを整流することにより、発電効率の向上が図れる。さらに、本発明によれば、フレームに生じる粘性圧力抵抗を抑制できる。これにより、フレームを低強度で製造できるため、フレームの製造コストの低減が図れる。また、フレームの軽量化やフレームの港湾構造物などへの固定方法を簡素化できるため、フレームの設置コストの低減が図れる。
また、水面の近くで流れの乱れやカルマン渦などの渦が生じることに起因して水面に生じうる波を抑制することができる。これにより、フレームを低強度で製造できるため、フレームの製造コストの低減が図れる。また、フレームの軽量化やフレームの港湾構造物などへの固定方法を簡素化できるため、フレームの設置コストの低減が図れる。また、流体の流れを整流することにより流れの乱れを抑制できるため、発電効率の向上が図れる。
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
尚、以下説明において、Y軸は回転軸100に沿う方向であり、X軸及びZ軸はY軸に垂直に交わる軸である。なお、図1~図18において、同一の部材については同一の数字を付して説明する。また、以下説明において、特に条件を明示していなければ、流体はX軸に沿う-側から+側に向かって流れているものとする。また、回転軸100およびフレーム130において流体の流れる方向の側を「下流側」と示し、流体の流れてくる方向の側を「上流側」と示すことがある。また、X軸に沿う方向を「X方向」と示し、Y軸に沿う方向を「Y方向」と示し、Z軸に沿う方向を「Z方向」と示すこともある。また、「X方向」、「Y方向」、「Z方向」のそれぞれにおける+側には「+」を付けて示し、-側には「-」を付けて示すこともある。また、整流装置におけるX軸とZ軸とを含む平面で区切った断面を「XZ断面」と示すこともある。
===整流装置を配置する回転装置200===
<<回転装置200>>
図13、図14、図18を参照しつつ、本実施形態に係る整流装置が設置される発電装置1000に係る回転装置200の構成について説明をする。
<<回転装置200>>
図13、図14、図18を参照しつつ、本実施形態に係る整流装置が設置される発電装置1000に係る回転装置200の構成について説明をする。
図13は、垂直軸式の回転装置200の一例を示す斜視図である。図14は、垂直軸式の回転装置200にフレーム130が設けられている一例を示す斜視図である。図18は、発電装置1000の一例を示す構成図である。
図18に示すように、回転装置200は、例えば発電装置1000(タービン(不図示)を含む)の増速機300に回転軸100を介して回転力を伝達する装置である。また、増速機300は、回転軸100の回転速度を増速して発電機400に伝達する装置である。発電装置1000は、例えば風力発電装置または潮流発電装置である。風力発電装置は、風により生じる風圧エネルギーを利用して風車を回転させることにより発電する発電装置である。また、潮流発電装置は、潮汐により生じる潮流エネルギーを利用して水車を回転させることにより発電する発電装置である。本実施形態に係る整流装置が配置される回転装置200とは、例えばダリウス式などの垂直軸式の発電装置の回転装置をいう。
図13に示すように、風力発電装置の回転装置200は、回転軸100と、ブレード120と、を含んで構成されている。回転軸100は、例えばX方向における一方の端部が増速機300に接続されている。回転軸100は、増速機300に回転力を伝達する。回転軸100は、後述するブレード120を+Y方向から見たときに、例えば時計周り方向(以下、「回転方向」と称する。)へ回転する。なお、回転軸100の中心を通る仮線を中心線として、以下説明をする。ブレード120は、流体の流れにより、回転方向への揚力を得る部材である。ブレード120は、回転軸100を中心に回転している。なお、ブレード120は、ブレード120の+Y方向の端部に設けられるアーム110と、-Y方向の端部に設けられるアーム111と、を含んで構成されている。ブレード120は、その本体がアーム(110,111)を介して回転方向への揚力を、回転方向への回転力として回転軸100に伝達する。アーム(110,111)は、回転軸100とブレード120の本体とをつないで、ブレード120に生じる回転方向への揚力を回転軸100に伝達する部材である。アーム(110,111)は、例えば回転軸100から放射状に延設され、回転軸100と反対側の端部がブレード120に接続されている。
図14に示すように、潮流発電装置の回転装置200は、水中でフレーム130に固定される。フレーム130は、例えば回転軸100と平行するいずれかのフレーム部材131が湾岸構造物や橋脚基礎などのコンクリート構造物に固定される。なお、フレーム130は、海底に設置されたコンクリートなどの基礎上に固定されることや、海面に設置される浮体に固定されてもよい。フレーム130は、例えば回転軸100が回動できるように軸受(140A,140B)を介して回転軸100に軸支されている。なお、潮流発電装置の回転装置200における回転軸100およびブレード120については、風力発電装置の回転装置200のものと同じであるため、その説明を省略する。
なお、上記において、回転装置200は垂直軸式であるとして説明したが、例えば回転軸100が水平(例えばZ方向)に設けられる回転装置200や、水平に対して斜めに設けられる回転装置200でもよく、回転軸100の設置される態様が限定されるものではない。また、回転装置200のブレード120がアーム(110,111)を介さずに回転軸100に取り付けられる回転装置200でもよい。以下の説明では、回転装置200の回転軸100が垂直(Y方向)に設けられているものについて説明する。
<<流体による抵抗>>
図15、図16、図17を参照しつつ、回転軸100およびフレーム130に生じる流れの乱れやカルマン渦などの渦について説明する。図15は、垂直軸式の回転装置200のフレーム130に生じる流れの乱れやカルマン渦の発生状況を+Y方向から見た一例を示す平面図である。図16は、垂直軸式の回転装置200の回転軸100に生じる流れの乱れやカルマン渦の発生状況を示す斜視図である。図17は、垂直軸式の回転装置200を取り囲むフレーム130に生じるカルマン渦や波の発生状況を示す斜視図である。なお、説明の便宜上、風や水などの流体は-X方向から+X方向に向かって流れることとする。
図15、図16、図17を参照しつつ、回転軸100およびフレーム130に生じる流れの乱れやカルマン渦などの渦について説明する。図15は、垂直軸式の回転装置200のフレーム130に生じる流れの乱れやカルマン渦の発生状況を+Y方向から見た一例を示す平面図である。図16は、垂直軸式の回転装置200の回転軸100に生じる流れの乱れやカルマン渦の発生状況を示す斜視図である。図17は、垂直軸式の回転装置200を取り囲むフレーム130に生じるカルマン渦や波の発生状況を示す斜視図である。なお、説明の便宜上、風や水などの流体は-X方向から+X方向に向かって流れることとする。
回転装置200は、風や水などの流体中において、例えば回転軸100がX方向に対して垂直になるように配置されている。このような状況では、図15に示すように、流体が回転軸100を通過するときに、回転軸100の下流側に圧力低下部を生じる。回転軸100には、圧力低下部により粘性圧力抵抗が加わる。また、回転軸100には、圧力低下部に起因して生じる流れの乱れやカルマン渦などの渦(以下、「渦」と称する。)により造渦抵抗が生じる。さらに、水面の近くの回転軸100やフレーム130に起因する流れの乱れや渦により水面の近くに波が生じるため、回転軸100やフレーム130に造波抵抗が生じる。なお、図15では、フレーム部材131が流れの乱れや渦を生じさせるように示しているが、回転軸100においても同様に流れの乱れや渦が生じる。なお、流れの乱れとは、流体中に配置される物体の形状などの効果によって生じる流れの方向変化や流体の剥離による乱れである。また、渦とは、流体中に障害物を配置したときに障害物の下流側(+X方向の側)において交互に生じる渦である。
また、フレーム130が流体中に配置されたとき、回転軸100に対して平行(Y方向)に設けられるフレーム部材131および垂直(Z方向)に設けられるフレーム部材132の下流側では、上述した流れの乱れや渦による造渦抵抗が生じる。さらに、フレーム部材(131,132)の水面の近くでは、流れの乱れや渦により波が生じる。これにより、フレーム部材(131,132)には波による造波抵抗が生じる。
図16に示すように、流れの乱れや渦は、回転軸100の上流側から流体が回転軸100に到達し、流体が回転軸100の周面に沿って下流側に流れるときに、回転軸100の下流側の領域で生じる。流れの乱れや渦は、回転軸100の下流側において、回転軸100を中心に回転しているブレード120に到達する。ブレード120は、その周りの潮流が乱されて回転に支障をきたす。また、ブレード120が水面の近くにある場合には、回転軸100やフレーム130によって生じる波の影響により、流体の流れが乱れるため、ブレード120の回転に支障をきたす。
図17に示すように、流れの乱れや渦は、流体がフレーム130の上流側からフレーム部材(131,132)に到達し、流体がフレーム部材(131,132)の周面に沿って下流側に流れるときに、フレーム部材(131,132)の下流側の領域で生じる。流れの乱れや渦は、フレーム部材(131,132)の下流側において、回転軸100を中心に回転しているブレード120に到達する。ブレード120は、その周りの潮流が乱されて回転に支障をきたす。また、ブレード120が水面の近くにある場合には、フレーム部材(131,132)によって生じる波の影響により、流体の流れが乱れるためブレード120の回転に支障をきたす。
上述したように、流れの乱れや渦は、ブレード120の周りの流れを乱して、ブレード120が流体の運動エネルギーを軸の回転動力へ変換する効率を低下させるため、整流装置(10,20,30)を配置する。以下、整流装置(10,20,30)について詳細に説明する。
===第1実施形態に係る整流装置10===
図1~図5を参照しつつ、第1実施形態に係る整流装置10について説明をする。図1は、第1実施形態に係る整流装置10の一例を示す斜視図である。図2は、第1実施形態に係る整流装置10を拡大した一例を示す斜視図である。図3は、第1実施形態に係る整流装置10のフレーム抵抗抑制体11Aを+Y方向から見た一例を示す平面図である。図4は、第1実施形態に係る整流装置10のフレーム抵抗抑制体11Aの回動する状況を+Y方向から見た一例を示す平面図である。図5は、第1実施形態に係る整流装置10の水平に設けられるフレーム部材132に配置されるフレーム抵抗抑制体11Bを+Z方向から見た一例を示す平面図である。
図1~図5を参照しつつ、第1実施形態に係る整流装置10について説明をする。図1は、第1実施形態に係る整流装置10の一例を示す斜視図である。図2は、第1実施形態に係る整流装置10を拡大した一例を示す斜視図である。図3は、第1実施形態に係る整流装置10のフレーム抵抗抑制体11Aを+Y方向から見た一例を示す平面図である。図4は、第1実施形態に係る整流装置10のフレーム抵抗抑制体11Aの回動する状況を+Y方向から見た一例を示す平面図である。図5は、第1実施形態に係る整流装置10の水平に設けられるフレーム部材132に配置されるフレーム抵抗抑制体11Bを+Z方向から見た一例を示す平面図である。
整流装置10は、流体中に配置されるフレーム130の下流側で生じる流れの乱れや渦を抑制する装置である。また、整流装置10は、水面の近くにおいて波の発生を抑制できる。
==構成==
第1実施形態に係る整流装置10は、後述するフレーム抵抗抑制体11が流体の流れる方向に沿って回動することにより、フレーム部材(131,132)の下流側で生じる流れの乱れや渦を抑制する装置である。なお、フレーム部材131,132の中心を通る仮線を中心線として以下説明する。
第1実施形態に係る整流装置10は、後述するフレーム抵抗抑制体11が流体の流れる方向に沿って回動することにより、フレーム部材(131,132)の下流側で生じる流れの乱れや渦を抑制する装置である。なお、フレーム部材131,132の中心を通る仮線を中心線として以下説明する。
図1に示すように、整流装置10は、フレーム抵抗抑制体11が後述する軸受12を介してフレーム部材(131,132)の軸に回動可能に軸支されて構成される。フレーム抵抗抑制体11は、フレーム部材131には+Y方向の端部から-Y方向の端部に亘って配置され、フレーム部材132には+Z方向の端部から-Z方向の端部に亘って配置される。これにより、整流装置10は、フレーム部材131およびフレーム部材132の下流側に生じる流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
整流装置10は、例えば、フレーム抵抗抑制体11と、軸受12と、を含んで構成されている。以下、フレーム抵抗抑制体11と、軸受12と、について詳細に説明する。
<<フレーム抵抗抑制体11>>
フレーム抵抗抑制体11は、フレーム部材131およびフレーム部材132の下流側における流れの乱れや渦を抑制する部材である。フレーム抵抗抑制体11は、フレーム部材131に配置されるフレーム抵抗抑制体11Aと、フレーム部材132に配置されるフレーム抵抗抑制体11Bと、で構成されている。 フレーム抵抗抑制体(11A,11B)は、後述する軸受12を介して、フレーム部材131およびフレーム部材132の夫々の周面を覆うように設けられている。フレーム抵抗抑制体(11A,11B)は、例えばステンレス材料で形成され、フレーム部材131およびフレーム部材132から下流側に向かうにつれてZ方向の厚みが薄くなるように形成されている。フレーム抵抗抑制体11Aとフレーム抵抗抑制体11Bの形状について、以下のとおり具体的に説明する。 図3に示すように、フレーム抵抗抑制体11Aでは、Z方向の幅を翼幅といい、X方向の長さを翼長という。フレーム抵抗抑制体11Aは、回動で生じる力により損傷しない程度の翼幅を有する。フレーム抵抗抑制体11Aは、フレーム部材131に配置された状態において、ブレード120に接触しない程度の翼長を有する。フレーム抵抗抑制体11Aは、-X方向の一端(後述する前縁)からフレーム部材131にかけて翼幅が大きくなり、フレーム部材131から+X方向の他端(後述する後縁)にかけて翼幅が小さくなるように形成されている。具体的には、例えばXZ断面が流線型を呈する。流線型とは、フレーム抵抗抑制体11Aが流れ方向に沿う状態において、上流側(-X方向側)の一端が丸く、下流側(+X方向側)の他端が尖っている形状をいう。フレーム抵抗抑制体11Aは、X方向(後述する翼弦線)を中心としてZ方向において対称に形成されている。フレーム抵抗抑制体11Aは、フレーム部材131における+Y方向側の端部から-Y方向側の端部に亘って、例えば切れ目なく連続的に設けられている。フレーム抵抗抑制体11Aは、対称な流線型を呈することにより、一端から他端にかけて通過する流体から受ける抵抗を小さくできるため流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
フレーム抵抗抑制体11は、フレーム部材131およびフレーム部材132の下流側における流れの乱れや渦を抑制する部材である。フレーム抵抗抑制体11は、フレーム部材131に配置されるフレーム抵抗抑制体11Aと、フレーム部材132に配置されるフレーム抵抗抑制体11Bと、で構成されている。 フレーム抵抗抑制体(11A,11B)は、後述する軸受12を介して、フレーム部材131およびフレーム部材132の夫々の周面を覆うように設けられている。フレーム抵抗抑制体(11A,11B)は、例えばステンレス材料で形成され、フレーム部材131およびフレーム部材132から下流側に向かうにつれてZ方向の厚みが薄くなるように形成されている。フレーム抵抗抑制体11Aとフレーム抵抗抑制体11Bの形状について、以下のとおり具体的に説明する。 図3に示すように、フレーム抵抗抑制体11Aでは、Z方向の幅を翼幅といい、X方向の長さを翼長という。フレーム抵抗抑制体11Aは、回動で生じる力により損傷しない程度の翼幅を有する。フレーム抵抗抑制体11Aは、フレーム部材131に配置された状態において、ブレード120に接触しない程度の翼長を有する。フレーム抵抗抑制体11Aは、-X方向の一端(後述する前縁)からフレーム部材131にかけて翼幅が大きくなり、フレーム部材131から+X方向の他端(後述する後縁)にかけて翼幅が小さくなるように形成されている。具体的には、例えばXZ断面が流線型を呈する。流線型とは、フレーム抵抗抑制体11Aが流れ方向に沿う状態において、上流側(-X方向側)の一端が丸く、下流側(+X方向側)の他端が尖っている形状をいう。フレーム抵抗抑制体11Aは、X方向(後述する翼弦線)を中心としてZ方向において対称に形成されている。フレーム抵抗抑制体11Aは、フレーム部材131における+Y方向側の端部から-Y方向側の端部に亘って、例えば切れ目なく連続的に設けられている。フレーム抵抗抑制体11Aは、対称な流線型を呈することにより、一端から他端にかけて通過する流体から受ける抵抗を小さくできるため流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
フレーム抵抗抑制体11Aでは、流体中において流れ方向に沿う状態において、-X方向の一端を前縁とし、+X方向の他端を後縁とし、前縁および後縁を直線で結ぶ仮線を翼弦線として示す。また、フレーム抵抗抑制体11Aは、翼弦線上においてブレード120に生じる揚力によって空力中心の周りに生じるZ方向へのモーメントが迎角の大小によらず一定となるように形成されている。フレーム抵抗抑制体11Aは、フレーム部材131の中心線と翼弦線とが交わるように配置されている。フレーム抵抗抑制体11は、フレーム部材131よりも下流側(+X方向側)に空力中心がくるように配置されている。これにより、フレーム抵抗抑制体11Aは、図4に示すように、流体の流れが変化したときに翼弦線が流体の流れに沿うように、速やかに回動できる。
フレーム抵抗抑制体11Bは、上述したフレーム抵抗抑制体11Aと同じ形状のものでもよい。しかし、フレーム抵抗抑制体11Bは、回転軸100と垂直に設けられるフレーム部材132に配置されるため、重力による-Y方向の力を受け、流体から浮力と揚力による+Y方向の力を受ける。したがって、フレーム抵抗抑制体11Bでは、より好ましい形状として、図5に示すように、そのXY断面が、浮力および揚力の合力と、重力と、が打ち消し合うように、フレーム部材132の軸を通る流体の流れの方向を境として非対称に形成される。より具体的には、XY断面が翼型を呈する。<<軸受12>>
軸受12は、フレーム部材(131,132)の夫々とフレーム抵抗抑制体11とに介在して設けられている。軸受12は、夫々のフレーム部材(131,132)の周面をフレーム抵抗抑制体11が回動するときに、フレーム部材(131,132)によるフレーム抵抗抑制体11への摩擦を抑制する部材である。つまり、軸受12は、フレーム抵抗抑制体11およびフレーム部材(131,132)に生じるエネルギー損失や発熱を抑制する部材である。軸受12は、例えばステンレス材料で形成されるボールベアリングである。軸受12は、例えばフレーム抵抗抑制体11がフレーム部材(131,132)に接触することなく回動できるように、フレーム抵抗抑制体11の少なくとも+Y方向の一端および-Y方向の他端に設けられている。なお、軸受12は、フレーム部材(131,132)に対してフレーム抵抗抑制体11がY方向に移動しないように、例えばスラストカラーを備えていることが好ましい。
軸受12は、フレーム部材(131,132)の夫々とフレーム抵抗抑制体11とに介在して設けられている。軸受12は、夫々のフレーム部材(131,132)の周面をフレーム抵抗抑制体11が回動するときに、フレーム部材(131,132)によるフレーム抵抗抑制体11への摩擦を抑制する部材である。つまり、軸受12は、フレーム抵抗抑制体11およびフレーム部材(131,132)に生じるエネルギー損失や発熱を抑制する部材である。軸受12は、例えばステンレス材料で形成されるボールベアリングである。軸受12は、例えばフレーム抵抗抑制体11がフレーム部材(131,132)に接触することなく回動できるように、フレーム抵抗抑制体11の少なくとも+Y方向の一端および-Y方向の他端に設けられている。なお、軸受12は、フレーム部材(131,132)に対してフレーム抵抗抑制体11がY方向に移動しないように、例えばスラストカラーを備えていることが好ましい。
==動作==
図3、図4を参照しつつ、整流装置10の動作について説明する。
図3、図4を参照しつつ、整流装置10の動作について説明する。
図3に示すように、整流装置10のフレーム抵抗抑制体11は、流体が-X方向から+X方向に向かって流れている状態において、前縁が-X方向に配されて、後縁が+X方向に配されるように回動する。つまり、フレーム抵抗抑制体11は、その翼弦線が流体の流れの方向に沿うように回動する。これにより、整流装置10は、流体との関係において実質的に揚力を生じない。そして、フレーム抵抗抑制体11は、流線型を呈するため、その+X方向側において流れの乱れや渦が抑制される。また、水面の近くでは波の発生を抑制できる。
図4に示すように、フレーム抵抗抑制体11は、流体の流れがX方向を基準して例えば-Z方向に傾いたときに、前縁が流体の流れてくる方向に配されるように回動する。つまり、フレーム抵抗抑制体11は、その翼弦線が流体の流れの方向に沿うように回動する。具体的には、実線で示されるフレーム抵抗抑制体11の翼弦線が、破線で示される流体の流れる方向に沿って、破線で示されるフレーム抵抗抑制体11になるように回動する。
===第2実施形態に係る整流装置20===
図6、図7を参照しつつ、第2実施形態に係る整流装置20について説明をする。図6は、第2実施形態に係る整流装置20の一例を示す斜視図である。図7は、第2実施形態に係る整流装置20の回転軸抵抗抑制体23を拡大した一例を示す斜視図である。
図6、図7を参照しつつ、第2実施形態に係る整流装置20について説明をする。図6は、第2実施形態に係る整流装置20の一例を示す斜視図である。図7は、第2実施形態に係る整流装置20の回転軸抵抗抑制体23を拡大した一例を示す斜視図である。
整流装置20は、流体中に配置される回転軸100およびフレーム130において回転軸100およびフレーム130の下流側で生じる流れの乱れや渦を抑制する装置である。また、整流装置20は、水面の近くにおいて波の発生を抑制できる。なお、整流装置20は、本実施形態における回転軸100およびフレーム130に対してのみに用いられるものではなく、X方向に流体が流れる状況において、例えば流体中に略Y方向や略Z方向に設けられる物体に対しても適用できる。
==構成==
第2実施形態に係る整流装置20は、第1実施形態に係る整流装置10に後述する回転軸抵抗抑制体23を追加して構成されたものである。整流装置20は、フレーム抵抗抑制体21および回転軸抵抗抑制体23が流体の流れる方向に沿って回動することにより、回転軸100およびフレーム130の下流側で生じる流れの乱れや渦の発生を抑制する装置である。また、水面の近くでは波の発生を抑制できる。
第2実施形態に係る整流装置20は、第1実施形態に係る整流装置10に後述する回転軸抵抗抑制体23を追加して構成されたものである。整流装置20は、フレーム抵抗抑制体21および回転軸抵抗抑制体23が流体の流れる方向に沿って回動することにより、回転軸100およびフレーム130の下流側で生じる流れの乱れや渦の発生を抑制する装置である。また、水面の近くでは波の発生を抑制できる。
図6に示すように、整流装置20は、回転軸抵抗抑制体23およびフレーム抵抗抑制体21が軸受22を介して夫々、回転軸100およびフレーム部材(131,132)に回動可能に軸支されて構成されている。整流装置20の回転軸抵抗抑制体23は、回転軸100に延設される+Y方向側のアーム110および-Y方向側のアーム111に亘って配置される。また、フレーム抵抗抑制体21は、フレーム部材131には+Y方向の端部から-Y方向の端部に亘って配置され、フレーム部材132には+Z方向の端部から-Z方向の端部に亘って配置される。これにより、整流装置20は、回転軸100、フレーム部材131およびフレーム部材132の下流側に生じる流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
整流装置20は、例えば、フレーム抵抗抑制体21と、軸受22と、回転軸抵抗抑制体23と、を含んで構成されている。なお、フレーム抵抗抑制体21および軸受22については、第1実施形態に係る整流装置10のフレーム抵抗抑制体11および軸受12と同じものであるため、その説明を省略する。以下、回転軸抵抗抑制体23について詳細に説明する。
<<回転軸抵抗抑制体23>>
回転軸抵抗抑制体23は、回転軸100の下流側における流れの乱れや渦の発生を抑制する部材である。回転軸抵抗抑制体23は、軸受22を介して、回転軸100の周面を覆うように設けられている。回転軸抵抗抑制体23は、例えばステンレス材料で形成され、回転軸100から下流側に向かうにつれてZ方向の厚みが薄くなるように形成されている。回転軸抵抗抑制体23の形状について、以下のとおり具体的に説明する。なお、第2実施形態に係る回転軸抵抗抑制体23は、第1実施形態に係るフレーム抵抗抑制体11Aと相似する形状を呈する。したがって、第2実施形態に係る回転軸抵抗抑制体23における前縁、後縁、翼弦線および空力中心については、図3に示すとおりとして、その説明を省略する。
回転軸抵抗抑制体23は、回転軸100の下流側における流れの乱れや渦の発生を抑制する部材である。回転軸抵抗抑制体23は、軸受22を介して、回転軸100の周面を覆うように設けられている。回転軸抵抗抑制体23は、例えばステンレス材料で形成され、回転軸100から下流側に向かうにつれてZ方向の厚みが薄くなるように形成されている。回転軸抵抗抑制体23の形状について、以下のとおり具体的に説明する。なお、第2実施形態に係る回転軸抵抗抑制体23は、第1実施形態に係るフレーム抵抗抑制体11Aと相似する形状を呈する。したがって、第2実施形態に係る回転軸抵抗抑制体23における前縁、後縁、翼弦線および空力中心については、図3に示すとおりとして、その説明を省略する。
図3に示すように、回転軸抵抗抑制体23では、Z方向の幅を翼幅といい、X方向の長さを翼長という。回転軸抵抗抑制体23は、回動で生じる力により損傷しない程度の翼幅を有する。回転軸抵抗抑制体23は、回転軸100に配置された状態において、ブレード120に接触しない程度の翼長を有する。回転軸抵抗抑制体23は、-X方向の一端(後述する前縁)から回転軸100にかけて翼幅が大きくなり、回転軸100から+X方向の他端(後述する後縁)にかけて翼幅が小さくなるように形成されている。具体的には、例えばXZ断面が流線型を呈する。流線型とは、回転軸抵抗抑制体23が流れ方向に沿う状態において、上流側(-X方向側)の一端が丸く、下流側(+X方向側)の他端が尖っている形状をいう。回転軸抵抗抑制体23は、X方向(後述する翼弦線)を中心としてZ方向において対称に形成されている。回転軸抵抗抑制体23は、回転軸100における+Y方向側のアーム110における接合部分の下近傍から-Y方向側のアーム111における接合部分の上近傍に亘って、例えば切れ目なく連続的に設けられている。回転軸抵抗抑制体23は、対称な流線型を呈することにより、一端から他端にかけて通過する流体から受ける抵抗を小さくできるため流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
なお、回転軸抵抗抑制体23は、図示していないが、軸受140Aとアーム110との間や、アーム111と軸受140Bとの間や、回転軸100における軸受140Bの-Y方向側などに設置されても良い。また、回転軸抵抗抑制体23は、水面の近くにおける回転軸100に設置されてもよい。これにより、回転軸抵抗抑制体23は、回転軸100の下流側の水面に生じる波の発生を抑制することができる。
回転軸抵抗抑制体23は、回転軸100の中心線と翼弦線とが交わるように配置されている。回転軸抵抗抑制体23は、回転軸100よりも下流側(+X方向側)に空力中心がくるように配置されている。これにより、回転軸抵抗抑制体23は、流体の流れが変化したときに翼弦線が流体の流れに沿うように、速やかに回動できる。
==動作==
図7を参照しつつ、整流装置20の動作について説明する。なお、第2実施形態に係る整流装置20のフレーム抵抗抑制体21は、第1実施形態に係る整流装置10のフレーム抵抗抑制体11と同じであるため、その説明を省略する。以下では、整流装置20の回転軸抵抗抑制体23の動作について説明をする。
図7を参照しつつ、整流装置20の動作について説明する。なお、第2実施形態に係る整流装置20のフレーム抵抗抑制体21は、第1実施形態に係る整流装置10のフレーム抵抗抑制体11と同じであるため、その説明を省略する。以下では、整流装置20の回転軸抵抗抑制体23の動作について説明をする。
整流装置20の回転軸抵抗抑制体23は、図7に示すように、流体が+X方向から-X方向に向かって流れている状態において、前縁が-X方向に配されて、後縁が+X方向に配されるように回動する。つまり、回転軸抵抗抑制体23は、その翼弦線が流体の流れの方向に沿うように回動する。これにより、整流装置20は、流体との関係において実質的に揚力を生じない。そして、回転軸抵抗抑制体23は、流線型を呈するため、その+X方向側において流れの乱れや渦が抑制される。また、水面の近くでは波の発生を抑制できる。
回転軸抵抗抑制体23は、流体の流れがX方向を基準して例えば-Z方向に傾いたときに、前縁が流体の流れてくる方向に配されるように回動する。つまり、回転軸抵抗抑制体23は、その翼弦線が流体の流れの方向に沿うように回動する。
===第3実施形態に係る整流装置30===
図8、図9、図10、図11を参照しつつ、第3実施形態に係る整流装置30について説明をする。図8は、第3実施形態に係る整流装置30の一例を示す斜視図である。図9は、第3実施形態に係る整流装置30を拡大した一例を示す斜視図である。図10は、第3実施形態に係る整流装置30を+Y方向から見た一例を示す平面図である。図11は、第3実施形態に係る整流装置30のフレーム抵抗抑制体31に鍔部(33A,33B)を設けた一例を示す斜視図である。
図8、図9、図10、図11を参照しつつ、第3実施形態に係る整流装置30について説明をする。図8は、第3実施形態に係る整流装置30の一例を示す斜視図である。図9は、第3実施形態に係る整流装置30を拡大した一例を示す斜視図である。図10は、第3実施形態に係る整流装置30を+Y方向から見た一例を示す平面図である。図11は、第3実施形態に係る整流装置30のフレーム抵抗抑制体31に鍔部(33A,33B)を設けた一例を示す斜視図である。
整流装置30は、流体中に配置される回転軸100およびフレーム130において回転軸100およびフレーム130の下流側で生じる流れの乱れや渦を抑制する装置である。また、整流装置30は、水面の近くにおいて波の発生を抑制できる。なお、整流装置30は、本実施形態における回転軸100およびフレーム130に対してのみに用いられるものではなく、X方向に流体が流れる状況において、例えば流体中に略Y方向や略Z方向に設けられる物体に対しても適用できる。
==構成==
第3実施形態に係る整流装置30は、第1実施形態に係る整流装置10に後述する回転軸抵抗抑制体33を追加して構成されたものである。整流装置30は、フレーム抵抗抑制体31および回転軸抵抗抑制33が流体の流れる方向に沿って回動することにより、回転軸100およびフレーム130の下流側で生じる流れの乱れや渦を抑制する装置である。また、水面の近くでは波の発生を抑制できる。
第3実施形態に係る整流装置30は、第1実施形態に係る整流装置10に後述する回転軸抵抗抑制体33を追加して構成されたものである。整流装置30は、フレーム抵抗抑制体31および回転軸抵抗抑制33が流体の流れる方向に沿って回動することにより、回転軸100およびフレーム130の下流側で生じる流れの乱れや渦を抑制する装置である。また、水面の近くでは波の発生を抑制できる。
図8に示すように、整流装置30の回転軸抵抗抑制体33は、軸受32を介して回転軸100に軸支されているため、回転軸100から軸受32を介して間接的に回転方向への摩擦力を受ける。整流装置30は、摩擦力により、少なからず回転方向への傾きが生じる。そこで、第3実施形態に係る整流装置30では、回転軸100から回転軸抵抗抑制体31への摩擦力を考慮した形状として回転軸抵抗抑制体31の傾きを是正するように構成される。
整流装置30は、例えば、フレーム抵抗抑制体31と、軸受32と、回転軸抵抗抑制体33と、を含んで構成されている。なお、フレーム抵抗抑制体31および軸受32については、第1実施形態に係る整流装置10のフレーム抵抗抑制体11および軸受12と同じものであるため、その説明を省略する。以下、回転軸抵抗抑制体33について詳細に説明する。
<<回転軸抵抗抑制体33>>
回転軸抵抗抑制体33は、回転軸100の下流側における流れの乱れや渦の発生を抑制する部材である。また、水面の近くでは波の発生を抑制する部材である。
回転軸抵抗抑制体33は、回転軸100の下流側における流れの乱れや渦の発生を抑制する部材である。また、水面の近くでは波の発生を抑制する部材である。
図9に示すように、回転軸抵抗抑制体33は、軸受32を介して、回転軸100の周面を覆うように設けられている。回転軸抵抗抑制体33は、例えば、ステンレス材料で形成され、回転軸100から下流側に向かうにつれてZ方向の厚みが薄くなるように形成される。回転軸抵抗抑制体33の形状について、以下のとおり具体的に説明する。
図10に示すように、回転軸抵抗抑制体33では、Z方向の幅を翼幅といい、X方向の長さを翼長という。回転軸抵抗抑制体33は、回動で生じる力により損傷しない程度の翼幅を有する。回転軸抵抗抑制体33は、回転軸100に配置された状態において、ブレード120に接触しない程度の翼長を有する。回転軸抵抗抑制体33は、-X方向の一端(後述する前縁)から回転軸100にかけて翼幅が大きくなり、回転軸100から+X方向の他端(後述する後縁)にかけて翼幅が小さくなるように形成されている。具体的には、例えばXZ断面が翼型を呈する。
翼型とは、回転軸抵抗抑制体33が流れ方向に沿う状態において、上流側(-X方向側)の一端が丸く、下流側(+X方向側)の他端が尖っている形状をいう。さらに、翼型では、X軸を境にして、-Z方向側の周面の方が+Z方向側の周面に比べて丸みを帯びるように形成されている。つまり、回転軸抵抗抑制体33は、X方向(後述する翼弦線)を中心としてZ方向において非対称に形成されている。翼型は、NASAが定義している例えばNACA63A016である。これにより、回転軸抵抗抑制体33の+Z方向側の流速よりも-Z方向側の流速の方が速くなるため、-Z方向側の圧力が+Z方向側の圧力よりも小さくなることにより、揚力が-Z方向に向かって生じる。なお、図10では、流体の方向および速さを矢印で示し、流速が速いほど隣り合う矢印の幅が狭くなるように示している。したがって、回転軸抵抗抑制体33では、回転方向(+Z方向)への摩擦力(以下、「回転摩擦力」と称する。)と反対方向(-Z方向)への揚力を生じる。つまり、回転軸抵抗抑制体33は、流れの乱れや渦を抑制するために、回転摩擦力と揚力とが等しくなるように形成される。なお、揚力などによって-Z方向側へ回転軸抵抗抑制体33が回転することで流体の流れを遮るような状態を生じたとき、回転軸抵抗抑制体33の迎角が小さくなるため揚力が低下する。この場合、回転軸抵抗抑制体33が流体の流れを遮ることにより、回転軸抵抗抑制体33の-Z方向側の周面上の圧力が増大する。そのため、回転軸抵抗抑制体33は、一定以上には回転しないため、回転軸抵抗抑制体33の下流側に流れの乱れや渦を発生させない。また、回転摩擦力などによって+Z方向側へ回転軸抵抗抑制体33が回転して流れを遮るような状態を生じたとき、回転軸抵抗抑制体33の迎角が大きくなるため揚力が増大する。この場合、回転軸抵抗抑制体33が流体の流れを遮ることにより、回転軸抵抗抑制体33の+Z方向側の周面上の圧力が増大する。そのため、回転軸抵抗抑制体33は、一定以上には回転しないため、回転軸抵抗抑制体33の下流側に流れの乱れや渦を発生させない。
回転軸抵抗抑制体33は、回転軸100における+Y方向側のアーム110における接合部分の下近傍から-Y方向側のアーム111における接合部分の上近傍に亘って、例えば切れ目なく連続的に設けられている。なお、回転軸抵抗抑制体33は、図示していないが、軸受140Aとアーム110との間や、アーム111と軸受140Bとの間や、100回転軸100における軸受140Bの-Y方向側などに設置されても良い。また、回転軸抵抗抑制体33は、水面の近くにおける回転軸100に設置されてもよい。これにより、回転軸抵抗抑制体33は、回転軸100の下流側の水面に生じる波の発生を抑制することができる。
回転軸抵抗抑制体33では、流体中で流れ方向に沿う状態において、-X方向の一端を前縁とし、+X方向の他端を後縁とし、前縁および後縁を直線で結ぶ仮線を翼弦線とし、翼弦線を境にして-Z側の周面と+Z側の周面とのZ軸に沿う方向の距離の中間を示す仮線を中間線として示す。また、回転軸抵抗抑制体33は、翼弦線上においてブレード120に生じる揚力によって空力中心の周りに生じるZ方向へのモーメントが迎角の大小にかかわらず一定となるように形成されている。なお、迎角とは、流れの方向と翼弦線とがなす角のことをいう。回転軸抵抗抑制体33は、回転軸100と翼弦線とが交わるように配置されている。回転軸抵抗抑制体33は、回転軸100よりも下流側(+X方向側)に空力中心がくるように配置されている。これにより、回転軸抵抗抑制体33は、流体の流れが変化したときに翼弦線が流体の流れに沿うように、回動できる。このときには、上述したように揚力と回転摩擦力とが等しくなるように回動する。
また、回転軸抵抗抑制体33では、上述したように-Z方向側の圧力が+Z方向側の圧力よりも小さくなるため、Y方向の両端部において+Z方向側から-Z方向側に向かって流れが生じる。これにより、回転軸抵抗抑制体33は、Y方向の両端部に渦を生じる。そこで、回転軸抵抗抑制体33は、図11に示すように、両端部で生じる渦による抵抗を抑制するために、鍔部(21A,21B)を備えていてもよい。鍔部(21A,21B)は、例えば、+Y方向側を第1鍔部21Aと、-Y方向側を第2鍔部21Bと、で構成されている。第1鍔部21Aおよび第2鍔部21Bは、回転軸抵抗抑制体33のY方向における両端部に、回転軸抵抗抑制体33に対して鍔状に設けられている。
==動作==
図10を参照しつつ、整流装置30の動作について説明する。
図10を参照しつつ、整流装置30の動作について説明する。
図10に示すように、整流装置30の回転軸抵抗抑制体33は、流体が+X方向から-X方向に向かって流れている状態において、前縁が-X方向に配されて、後縁が+X方向に配されるように回動する。さらに、揚力と回転摩擦力とが等しくなるように回動する。つまり、回転軸抵抗抑制体33は、その翼弦線が流体の流れの方向に沿うように回動する。そして、回転軸抵抗抑制体33は、翼型を呈するため、その+X方向側において流れの乱れや渦が抑制される。また、水面の近くでは波の発生を抑制できる。なお、流体の流れが変化したとき、回転軸抵抗抑制体33は、第1実施形態に係る抵抗抑制体11と同様の動きをするため、その説明を省略する。
===まとめ===
以上説明したように、本実施形態に係る整流装置10は、回転体100と、回転体100の回転軸100に取り付けられ、流体の流れを受けて回転体100を回転させるブレード120と、を取り囲むように設けられるフレーム130において、フレーム130を構成するフレーム部材(131,132)に軸支され、フレーム部材(131,132)の上流側から流れてくる流体に起因してフレーム部材(131,132)に与えられる抵抗を抑制するように、流体の流れに沿って回動するフレーム抵抗抑制体(11,21,31)を備える。本実施形態によれば、流れの乱れや渦を抑制できるため、流れの乱れや渦によるブレード120への回転方向への抵抗を軽減できるため回転効率が向上する。また、水面の近くにおいて波の発生を抑制できる。
以上説明したように、本実施形態に係る整流装置10は、回転体100と、回転体100の回転軸100に取り付けられ、流体の流れを受けて回転体100を回転させるブレード120と、を取り囲むように設けられるフレーム130において、フレーム130を構成するフレーム部材(131,132)に軸支され、フレーム部材(131,132)の上流側から流れてくる流体に起因してフレーム部材(131,132)に与えられる抵抗を抑制するように、流体の流れに沿って回動するフレーム抵抗抑制体(11,21,31)を備える。本実施形態によれば、流れの乱れや渦を抑制できるため、流れの乱れや渦によるブレード120への回転方向への抵抗を軽減できるため回転効率が向上する。また、水面の近くにおいて波の発生を抑制できる。
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、フレーム130のうち回転軸100に対して平行に設けられるフレーム部材131に軸支されるフレーム抵抗抑制体(11A,21A,31A)を含んで構成される
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、フレーム130のうち回転軸100に対して垂直に設けられるフレーム部材132に軸支されるフレーム抵抗抑制体(11B,21B,31B)を含んで構成される。
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、フレーム130のうち回転軸100に対して垂直に設けられるフレーム部材132に軸支されるフレーム抵抗抑制体(11B,21B,31B)を含んで構成される。
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、フレーム部材(131,132)の軸を通る流体の流れの方向を境として対称に形成される。本実施形態によれば、回転軸100の下流側において効率よく流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、流体の流れの方向に沿って回動した状態において、流体の上流側から下流側に向かうにつれて、フレーム部材(131,132)の軸に沿う方向と流体の流れの方向とに直交する方向(Z方向)の厚みが薄くなるように形成される。本実施形態によれば、回転軸100の下流側において効率よく流れの乱れや渦を抑制できる。また、水面の近くでは波の発生を抑制できる。
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、流体の流れの方向に沿って回動した状態において、フレーム部材(131,132)から下流側に向かうにつれて、フレーム部材(131,132)の軸に沿う方向と流体の流れの方向とに直交する方向の厚みが薄くなるように形成され、フレーム部材(131,132)から上流側に向かうにつれて、フレーム部材(131,132)の軸に沿う方向と流体の流れの方向とに直交する方向(Z方向)の厚みが薄くなるように形成され、フレーム部材(131,132)から下流側の端までの距離がフレーム部材(131,132)から上流側の端までの距離よりも長くなるように形成される。本実施形態によれば、フレーム抵抗抑制体(11,21,31)は所謂流線型を呈するため、流れの乱れや渦を効率よく抑制することができる。
また、本実施形態に係る(10,20,30)において、フレーム抵抗抑制体(11,21,31)は、ステンレス材料で形成される。本実施形態によれば、流体に対する腐食性、耐久性に優れたものとなるため、安全性の向上につながる。
また、本実施形態に係る(10,20,30)において、流体の流れに沿ってフレーム抵抗抑制体(11,21,31)が回動するように、フレーム抵抗抑制体(11,21,31)とフレーム部材(131,132)との間に設けられる軸受(12,22,32)と、をさらに備える。本実施形態によれば、流体の流れの方向に合わせてスムーズにフレーム抵抗抑制体(11,21,31)が回動できる。
また、本実施形態に係る整流装置(10,20,30)において、流体は、風であり、回転体100は、風力発電機のタービンに接続される。本実施形態によれば、風力発電機において流れの乱れや渦を抑制することができる。
また、本実施形態に係る整流装置(10,20,30)において、流体は、水であり、回転体100は、潮流発電機などの水流発電機のタービンに接続される。本実施形態によれば、潮流発電機において流れの乱れや渦を抑制することができる。
尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、例えば、本発明には以下のようなものも含まれる。
===他の実施形態===
<<フレーム抵抗抑制体(11,21,31)>>
上記において、フレーム抵抗抑制体(11,21,31)はフレーム抵抗抑制体(11A,21A,31A)と、フレーム抵抗抑制体(11B,21B,31B)と、で構成されているとして記載したが、これに限定されない。フレーム抵抗抑制体(11,21,31)は少なくともフレーム抵抗抑制体(111A,21A,31A)を含んで構成されていればよい。
<<フレーム抵抗抑制体(11,21,31)>>
上記において、フレーム抵抗抑制体(11,21,31)はフレーム抵抗抑制体(11A,21A,31A)と、フレーム抵抗抑制体(11B,21B,31B)と、で構成されているとして記載したが、これに限定されない。フレーム抵抗抑制体(11,21,31)は少なくともフレーム抵抗抑制体(111A,21A,31A)を含んで構成されていればよい。
上記において、フレーム抵抗抑制体(11,21,31)は流線型を呈するとして説明したが、これに限定されない。例えば、フレーム部材131に回動可能に軸支されるものであって、フレーム部材131から平板状のものが延設されていてもよい。また、例えばフレーム部材131に回動可能に軸支されるものであって、フレーム部材131から下流に向かうに従って幅が狭くなるような三角形状を呈するようなものでもよい。
上記において、フレーム抵抗抑制体(11,21,31)はフレーム部材131における+Y方向の端部から-Y方向の端部に亘って、例えば切れ目なく連続的に設けられているとして説明したが、これに限定されない。例えば、フレーム抵抗抑制体(11,21,31)は複数個が断続的に設けられていてもよい。
<<軸受(12,22,32)>>
上記において、整流装置(10,20,30)には軸受(12,22,32)が含まれて構成されるように説明したが、これに限定されない。例えば、整流装置(10,20,30)に軸受(12,22,32)は設けられていなくてもよく、渦抑制体(11,21,31)およびフレーム抵抗抑制体33の+Y方向の端部および-Y方向の端部においてY方向に移動しないように回動可能に設けられていればよい。
上記において、整流装置(10,20,30)には軸受(12,22,32)が含まれて構成されるように説明したが、これに限定されない。例えば、整流装置(10,20,30)に軸受(12,22,32)は設けられていなくてもよく、渦抑制体(11,21,31)およびフレーム抵抗抑制体33の+Y方向の端部および-Y方向の端部においてY方向に移動しないように回動可能に設けられていればよい。
<<回転軸抵抗抑制体(23,33)>>
上記において、回転軸抵抗抑制体23は流線型または翼型を呈するとして説明したが、これに限定されない。例えば、回転軸100に回動可能に軸支されるものであって、回転軸100から平板状のものが延設されていてもよい。また、例えば回転軸100に回動可能に軸支されるものであって、回転軸100から下流に向かうに従って幅が狭くなるような三角形状を呈するようなものでもよい。
上記において、回転軸抵抗抑制体23は流線型または翼型を呈するとして説明したが、これに限定されない。例えば、回転軸100に回動可能に軸支されるものであって、回転軸100から平板状のものが延設されていてもよい。また、例えば回転軸100に回動可能に軸支されるものであって、回転軸100から下流に向かうに従って幅が狭くなるような三角形状を呈するようなものでもよい。
上記において、回転軸抵抗抑制体(23,33)は回転軸100における+Y方向側のアーム110における接合部分の下近傍から-Y方向側のアーム111における接合部分の上近傍に亘って、例えば切れ目なく連続的に設けられているとして説明したが、これに限定されない。例えば、回転軸抵抗抑制体(23,33)は複数個が断続的に設けられていてもよい。
上記において、回転軸抵抗抑制体33はXZ断面が翼型を呈するように説明したが、これに限定されない。例えば、図12に示す回転軸抵抗抑制体33Cのように、+Y方向側の端面がX方向を中心としてZ方向において対称に形成され、Y方向における中間部がX方向を中心としてZ方向において非対称に形成され、-Y方向側の端面がX方向を中心としてZ方向において対称に形成されていてもよい。これにより、回転軸抵抗抑制体33は、Y方向における両端面が対称に形成されているため、Z方向への流れを生じさせず渦の発生を抑制できる。また、回転軸抵抗抑制体33は、中間部が非対称に形成されているため、回転摩擦力と揚力とが釣り合うように回動できる。
10,20,30 整流装置
11,21,31 フレーム抵抗抑制体
12,22,32 軸受
100 回転軸
120 ブレード
130 フレーム
131,132 フレーム部材
200 回転装置
11,21,31 フレーム抵抗抑制体
12,22,32 軸受
100 回転軸
120 ブレード
130 フレーム
131,132 フレーム部材
200 回転装置
Claims (10)
- 回転軸に取り付けられ、流体の流れを受けて前記回転軸を回転させるブレードと、を支えるフレームにおいて、前記フレームを構成するフレーム部材に軸支され、前記フレーム部材の上流側から流れてくる前記流体に起因して前記フレーム部材に与えられる抵抗を抑制するように、前記流体の流れに沿って回動するフレーム抵抗抑制体
を備えることを特徴とする整流装置。 - 前記フレーム抵抗抑制体は、前記フレームのうち前記回転軸に対して平行に設けられるフレーム部材に軸支される第1フレーム抵抗抑制体を含んで構成される
ことを特徴とする請求項1に記載の整流装置。 - 前記フレーム抵抗抑制体は、前記フレームのうち前記回転軸に対して垂直に設けられるフレーム部材に軸支される第2フレーム抵抗抑制体を含んで構成される
ことを特徴とする請求項1または請求項2に記載の整流装置。 - 前記フレーム抵抗抑制体は、前記フレーム部材の軸を通る前記流体の流れの方向を境として対称に形成される
ことを特徴とする請求項1乃至請求項3の何れか一項に記載の整流装置。 - 前記フレーム抵抗抑制体は、前記流体の流れの方向に沿って回動した状態において、前記流体の上流側から下流側に向かうにつれて、前記フレーム部材の軸に沿う方向と前記流体の流れの方向とに直交する方向の厚みが薄くなるように形成される
ことを特徴とする請求項4に記載の整流装置。 - 前記フレーム抵抗抑制体は、前記流体の流れの方向に沿って回動した状態において、
前記フレーム部材から下流側に向かうにつれて、前記フレーム部材の軸に沿う方向と前記流体の流れの方向とに直交する方向の厚みが薄くなるように形成され、
前記フレーム部材から上流側に向かうにつれて、前記フレーム部材の軸に沿う方向と前記流体の流れの方向とに直交する方向の厚みが薄くなるように形成され、
前記フレーム部材から下流側の端までの距離が前記フレーム部材から上流側の端までの距離よりも長くなるように形成される
ことを特徴とする請求項5に記載の整流装置 - 前記フレーム抵抗抑制体は、ステンレス材料で形成される
ことを特徴とする請求項1乃至請求項5の何れか一項に記載の整流装置。 - 前記流体の流れに沿って前記フレーム抵抗抑制体が回動するように、前記フレーム抵抗抑制体と前記フレーム部材との間に設けられる軸受と、
をさらに備えることを特徴とする請求項1乃至請求項7の何れか一項に記載の整流装置。 - 前記流体は、風であり、
前記回転軸は、風力発電機のタービンに接続される
ことを特徴とする請求項1乃至請求項8の何れか一項に記載の整流装置。 - 前記流体は、水であり、
前記回転軸は、水流発電機のタービンに接続される
ことを特徴とする請求項1乃至請求項8の何れか一項に記載の整流装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/004208 WO2020161820A1 (ja) | 2019-02-06 | 2019-02-06 | 整流装置 |
JP2019532150A JP6624349B1 (ja) | 2019-02-06 | 2019-02-06 | 整流装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/004208 WO2020161820A1 (ja) | 2019-02-06 | 2019-02-06 | 整流装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020161820A1 true WO2020161820A1 (ja) | 2020-08-13 |
Family
ID=69100923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/004208 WO2020161820A1 (ja) | 2019-02-06 | 2019-02-06 | 整流装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6624349B1 (ja) |
WO (1) | WO2020161820A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112853942B (zh) * | 2021-01-11 | 2022-04-12 | 大连理工大学 | 一类减小桥墩水阻的铰接整流板 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006022798A (ja) * | 2004-07-08 | 2006-01-26 | Yukio Hirata | 整流式風車 |
JP2015007417A (ja) * | 2013-05-25 | 2015-01-15 | 吉二 玉津 | 風切羽開閉翼システムを用いた垂直軸式水風車原動機 |
-
2019
- 2019-02-06 WO PCT/JP2019/004208 patent/WO2020161820A1/ja active Application Filing
- 2019-02-06 JP JP2019532150A patent/JP6624349B1/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006022798A (ja) * | 2004-07-08 | 2006-01-26 | Yukio Hirata | 整流式風車 |
JP2015007417A (ja) * | 2013-05-25 | 2015-01-15 | 吉二 玉津 | 風切羽開閉翼システムを用いた垂直軸式水風車原動機 |
Also Published As
Publication number | Publication date |
---|---|
JP6624349B1 (ja) | 2019-12-25 |
JPWO2020161820A1 (ja) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10458388B2 (en) | Wind turbine blade, wind turbine rotor, wind turbine power generating apparatus, and method of mounting vortex generator | |
CA2599120C (en) | Device for maintaining a hydraulic turbomachine | |
TWI510407B (zh) | 特別用於水上運輸工具之推進器裝置 | |
WO2008113349A2 (en) | Slow rotating wind turbine rotor with slender blades | |
KR102197679B1 (ko) | 종방향 스트립이 형성된 수직축 풍력발전기의 날개 | |
JP2006516698A (ja) | スクリュータービン装置 | |
WO2020161820A1 (ja) | 整流装置 | |
JP5002378B2 (ja) | 舶用推進効率改善装置およびその施工方法 | |
JP6624350B1 (ja) | 整流装置 | |
JP5409969B1 (ja) | セール型風力・水力発電機 | |
WO2016147245A1 (ja) | 水上風力発電システムおよび水上複合発電システム | |
JP6648861B1 (ja) | フレーム構造体 | |
JP7469126B2 (ja) | 風車翼アセンブリ及び風車 | |
JP6189025B2 (ja) | エネルギー変換機構 | |
JP2018090088A (ja) | 揚力体および浮体構造物 | |
JP5976414B2 (ja) | 水流発電装置 | |
EP2896822B1 (en) | Submersible generator | |
EP2940292B1 (en) | Device for a rotor blade of a wind turbine | |
JP6449372B2 (ja) | 水流制御板の設計方法 | |
TWM588736U (zh) | 用於水平軸風力發電機葉片之輔助器 | |
WO2014174654A1 (ja) | 風力発電装置 | |
US20160252074A1 (en) | Vane assembly for a fluid dynamic machine and propulsion device | |
RU2820553C1 (ru) | Свободнопоточная гидротурбина | |
JP2024029771A (ja) | 発電装置、及び波力発電システム | |
JP2018155128A (ja) | 垂直軸風車および風力発電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019532150 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19914606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19914606 Country of ref document: EP Kind code of ref document: A1 |