WO2020159282A1 - Polycarbonate-nanocellulose composite material and method for manufacturing same - Google Patents

Polycarbonate-nanocellulose composite material and method for manufacturing same Download PDF

Info

Publication number
WO2020159282A1
WO2020159282A1 PCT/KR2020/001484 KR2020001484W WO2020159282A1 WO 2020159282 A1 WO2020159282 A1 WO 2020159282A1 KR 2020001484 W KR2020001484 W KR 2020001484W WO 2020159282 A1 WO2020159282 A1 WO 2020159282A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
nanocellulose
composite material
present
formula
Prior art date
Application number
PCT/KR2020/001484
Other languages
French (fr)
Korean (ko)
Inventor
박제영
오동엽
황성연
제갈종건
박슬아
전현열
차현길
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70920186&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020159282(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2020159282A1 publication Critical patent/WO2020159282A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/38General preparatory processes using other monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the present invention relates to a polycarbonate-nanocellulose composite material and a method for manufacturing the same.
  • Polycarbonate is well known as a thermoplastic resin having excellent mechanical properties such as impact strength, flame retardancy, dimensional stability, heat resistance and transparency, and is widely applied to exterior materials of electric and electronic products, automobile parts, and the like.
  • polycarbonate is a transparent plastic material that can replace fragile glass, and a composite material containing an inorganic filler and composited to increase mechanical properties has been commercialized.
  • the present inventors completed the present invention to provide a composite material that realizes a synergistic effect of a higher level of mechanical properties than the existing petroleum-based polycarbonate.
  • An object of the present invention for solving the above problems is to provide a polycarbonate-nanocellulose composite material having a significant increase in tensile elongation and tensile toughness compared to a polycarbonate resin containing no nanocellulose and a method for manufacturing the same.
  • another object of the present invention is to provide a polycarbonate-nanocellulose composite material having significantly improved mechanical properties with excellent miscibility with nanocellulose without a pretreatment process such as surface hydrophobization and a method for manufacturing the same.
  • the polycarbonate-nanocellulose composite material according to the present invention includes polycarbonate and nanocellulose comprising a repeating unit represented by Formula 1 below.
  • the nanocellulose according to an aspect of the present invention may be included in 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
  • the polycarbonate according to an aspect of the present invention may contain 50 to 90% by weight of the repeating unit represented by Formula 1 with respect to the total weight.
  • the nanocellulose according to an aspect of the present invention may include cellulose having an average diameter of 2 to 200 nm and a longest length of 100 nm to 10 ⁇ m.
  • the polycarbonate-nanocellulose composite material according to an aspect of the present invention may have a tensile elongation (Tensile Elongation) satisfying the following equation 1.
  • the TE 0 is the tensile elongation (%) of the polycarbonate that does not contain nanocellulose
  • the TE 1 is the tensile elongation (%) of the polycarbonate-nanocellulose composite material.
  • the polycarbonate-nanocellulose composite material according to an aspect of the present invention may have a tensile toughness that satisfies Expression 2 below.
  • the TT 0 is the tensile toughness (MJ/m3) of the polycarbonate that does not contain nanocellulose
  • the TT 1 is the tensile toughness (MJ/m3) of the polycarbonate-nanocellulose composite material.
  • a method for preparing a polycarbonate-nanocellulose composite material comprises: a) mixing and dispersing polycarbonate and nanocellulose containing a repeating unit represented by the following Chemical Formula 1 in a solvent to prepare a dispersion liquid, and b ) Drying the dispersion to prepare a composite material.
  • the nanocellulose according to an aspect of the present invention may be included in 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
  • a method of manufacturing a polycarbonate-nanocellulose composite material comprises: A) mixing and dispersing isosorbide and nanocellulose to prepare a dispersion, and B) introducing a carbonic acid diester into the dispersion. It comprises the step of polymerizing a polycarbonate containing a repeating unit represented by the formula (1).
  • step A after the step A), it may be to further comprise a diol compound in the dispersion to polymerize.
  • the diol compound and isosorbide according to an aspect of the present invention may include 10:90 to 50:50 weight ratio.
  • the polycarbonate-nanocellulose composite material according to the present invention has an advantage of not only having excellent tensile strength but also a remarkably high tensile elongation and an increase in tensile toughness compared to a basic polycarbonate containing no nanocellulose.
  • the method of manufacturing a polycarbonate-nanocellulose composite material according to the present invention has an advantage of having a synergistic effect of excellent mechanical properties by excellent combination of polycarbonate and nanocellulose without a pretreatment process that causes an increase in cost.
  • 1 is a photograph of a composite material of one embodiment of the present invention and a fracture surface of a polycarbonate of one comparative example observed by a scanning electron microscope.
  • 1(a) is Comparative Example 1
  • (b) is Example 3
  • (c) is Example 9.
  • alkylene refers to a divalent organic radical having two bonding positions derived from a straight chain or pulverized hydrocarbon having 1 to 20 carbon atoms. Specifically, it is meant to include 1 to 20 aliphatic alkylene having 1 to 20 carbon atoms, alicyclic alkylene having 3 to 20 carbon atoms, or a combination thereof.
  • a cycloaliphatic alkylene refers to a divalent organic radical having two bonding positions derived from saturated hydrocarbon containing a ring having 3 to 20 carbon atoms.
  • the present invention for achieving the above object relates to a polycarbonate-nanocellulose composite material and a manufacturing method thereof.
  • the polycarbonate-nanocellulose composite material according to the present invention includes polycarbonate and nanocellulose comprising repeating units represented by the following formula (1).
  • the polycarbonate according to the present invention by including the repeating unit as described above, is mixed with nanocellulose, while having excellent tensile strength, compared to the basic polycarbonate that does not contain nanocellulose, significantly improves tensile elongation and tensile toughness Can. In addition, it has excellent mechanical properties as well as hardness, optical and UV resistance.
  • a repeating unit having a repeating unit represented by Chemical Formula 1 and a carbonate group (-R 2 -O(C O)O-) containing an alicyclic group.
  • a repeating unit having a carbonate containing the alicyclic group may be represented by Formula 2 below.
  • R 2 is a C3-C20 alkylene group.
  • R 2 may be a divalent substituent containing a C3-C10 alicyclic alkylene group. More specifically, in Chemical Formula 2, R 2 may be a divalent substituent consisting of a combination of a C1-C10 aliphatic alkylene group and a C3-C10 alicyclic alkylene group.
  • the polycarbonate may further include a repeating unit represented by the following formula (3) in addition to the repeating unit represented by the formula (1).
  • R 3 is a C1-C10 alkylene group.
  • R 3 may be a C1-C3 alkylene group.
  • the tensile elongation and the tensile toughness of the composite material compared to the basic polycarbonate are significantly improved, thereby realizing excellent mechanical properties.
  • the polycarbonate may include 50 to 90% by weight of the repeating unit represented by Formula 1 with respect to the total weight.
  • the repeating unit represented by Chemical Formula 1 may include 55 to 85% by weight.
  • the polycarbonate is not particularly limited, but for a specific example, the weight average molecular weight may satisfy 10,000 to 200,000 g/mol, but is not limited thereto.
  • the nanocellulose refers to a nano- or micrometer-sized rod-shaped particle or fiber form in which cellulose chains are bundled together. According to a specific extraction method, it may be classified into cellulose nanofibril (CNF) or cellulose nanocrystal (CNC).
  • CNF cellulose nanofibril
  • CNC cellulose nanocrystal
  • the nanocellulose may include cellulose having an average diameter of 2 to 200 nm and a longest length of 100 nm to 10 ⁇ m.
  • the nanocellulose has an average diameter of 2 to 100 nm, a longest length of 100 nm to 5 ⁇ m, more preferably an average diameter of 5 to 50 nm, and a longest length of 100 to 900 nm. It may include.
  • the synergistic effect of the mechanical properties of the polycarbonate according to the present invention in particular, tensile elongation and tensile toughness is superior, which is preferable.
  • the nanocellulose may be included in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
  • it may be included in 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight.
  • the polycarbonate-nanocellulose composite material may have excellent tensile strength.
  • the tensile strength measured according to ASTM D638 may be 71 MPa or more, preferably 73 MPa or more, and more preferably 75 MPa or more.
  • the upper limit is not particularly limited, but may preferably be 71 to 120 MPa, preferably 73 to 115 MPa, more preferably 75 to 110 MPa.
  • the improvement of mechanical properties was very slight without excessive reinforcing material.
  • the polycarbonate according to the present invention shows a significantly superior tensile elongation and tensile toughness increase compared to basic polycarbonate properties, in particular by complexing with nanocellulose.
  • the polycarbonate-nanocellulose composite material may have a tensile elongation that satisfies Expression 1 below.
  • the TE 0 is the tensile elongation (%) of the polycarbonate that does not contain nanocellulose
  • the TE 1 is the tensile elongation (%) of the polycarbonate-nanocellulose composite material.
  • Equation 1 may satisfy 150% or more.
  • the formula 1 when manufacturing a composite material, when the nano-cellulose is mixed with polycarbonate during the in-situ method, the formula 1 is more preferable because it can satisfy 200% or more, preferably 250% or more.
  • the polycarbonate-nanocellulose composite material according to the present invention can secure a superior tensile elongation increase rate as described above without an excessive amount of reinforcing material, thereby increasing the bending energy and increasing the practical impact strength of the molded product, injection mold release and continuous work. The castle is very good.
  • polycarbonate-nanocellulose composite material according to an aspect of the present invention may have a tensile toughness that satisfies Expression 2 below.
  • the TT 0 is the tensile toughness (MJ/m3) of the polycarbonate that does not contain nanocellulose
  • the TT 1 is the tensile toughness (MJ/m3) of the polycarbonate-nanocellulose composite material.
  • Equation 2 may satisfy 150% or more.
  • Equation 2 when manufacturing a composite material, when the nano-cellulose is mixed and polymerized during the polycarbonate polymerization by an in-situ method, Equation 2 is more preferable because it can satisfy 200% or more, preferably 240% or more.
  • the polycarbonate-nanocellulose composite material according to the present invention can secure a superior tensile toughness increase rate as described above without an excessive amount of reinforcing material, thereby preventing deformation and damage due to external impact and having long-term durability. .
  • Another method of manufacturing a polycarbonate-nanocellulose composite material which is another aspect of the present invention, can be prepared by a solution process (Solution method) of complexing polycarbonate and nanocellulose on a solvent, and mixing polycarbonate precursor and nanocellulose to polymerize.
  • Solution method solution process of complexing polycarbonate and nanocellulose on a solvent, and mixing polycarbonate precursor and nanocellulose to polymerize.
  • the solution process (Solution method) of the method for producing a polycarbonate-nanocellulose composite material according to the present invention is a) a dispersion solution by mixing and dispersing polycarbonate and nanocellulose containing a repeating unit represented by the following formula (1) in a solvent And b) drying the dispersion to prepare a composite material.
  • the solvent in step a) is not particularly limited as long as polycarbonate can be dissolved and nanocellulose can be dispersed, for example, methylene chloride, chloroform, tetrahydrofuran, It may be any one or two or more mixed solvents selected from metacresol, cyclohexane, dioxane, dimethylformaldehyde and pyridine.
  • the dispersion is 5 to 20 parts by weight, preferably 5 to 15 parts by weight, more preferably 10 to 15 parts by weight, based on 100 parts by weight of the solvent, and the total weight of polycarbonate and nanocellulose. It may be manufactured, but is not limited thereto.
  • the condition is not particularly limited as long as volatilization of the solvent is possible, but is preferably dried for 1 to 60 hours at normal temperature or 250° C. under normal pressure or vacuum. However, it is not limited thereto.
  • the polycarbonate-nanocellulose composite material not only can easily manufacture the composite material in a solution process as described above, but also has excellent tensile strength through the combination of polycarbonate and nanocellulose, nanocellulose Compared to a polycarbonate that does not contain, it can significantly improve the tensile elongation and tensile toughness.
  • nanocellulose in step a), may be included in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
  • it may be included in 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight.
  • the in-situ method comprises: A) preparing a dispersion by mixing and dispersing isosorbide and nanocellulose and B) the And introducing a carbonic acid diester into the dispersion to polymerize the polycarbonate containing the repeating unit represented by the following Chemical Formula 1.
  • the method of manufacturing the polycarbonate-nanocellulose composite material according to the present invention can significantly improve the mechanical properties of the composite material compared to the mechanical properties of the polycarbonate alone, but if it is manufactured by the in-situ method, it has better mechanical properties and its Improvement effect can be realized.
  • the isosorbide is an anhydrosugar alcohol form through a dehydration reaction from hexitol, a representative substance of hydrogenated sugar, which can be obtained by reducing the glucose isomer, which is a biomass. It may be obtained.
  • step A) in order to mix nanocellulose with isosorbide, after melting the isosorbide, nanocellulose may be introduced to mix and disperse.
  • molten isosorbide may be added to nanocellulose to be mixed and dispersed. In this way, if the structure capable of mixing and dispersing isosorbide and nanocellulose is not particularly limited.
  • the dispersion may further include a diol compound.
  • the diol compound refers to a compound containing two -OH groups that serve as precursors of the polycarbonate excluding the isosorbide.
  • the diol compound may be any one or a mixture of two or more selected from, for example, alkylene glycol, polyalkylene glycol, and alicyclic diol.
  • the present invention may further include an alicyclic diol in order to achieve the desired physical properties. More specifically, 1,4-cyclohexanedimethanol may be included.
  • the diol compound and isosorbide may be included in a weight ratio of 10:90 to 50:50. Preferably it may be included in a weight ratio of 15:85 to 40:60.
  • a weight ratio of 10:90 to 50:50 Preferably it may be included in a weight ratio of 15:85 to 40:60.
  • a polycarbonate precursor in step B), may be further mixed to polymerize the polycarbonate complexed with nanocellulose.
  • the carbonic acid diester is not particularly limited as long as it is a material used as a polycarbonate precursor, for example, any one selected from aromatic carbonic acid diesters, alicyclic carbonic acid diesters and aliphatic carbonic acid diesters, etc. It may include one or more. Specifically, any one selected from diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl)carbonate, m-cresyl carbonate, dinaphthyl carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate and dicyclohexyl carbonate, or It may include two or more. Preferably, it may be an aromatic carbonic acid diester such as diphenyl carbonate, but is not limited thereto.
  • the polycarbonate-nanocellulose composite material according to the present invention not only has excellent tensile strength, but also exhibits excellent mechanical properties by significantly increasing tensile toughness and tensile elongation compared to basic polycarbonate that does not contain nanocellulose. Accordingly, it is applicable to various applications requiring excellent mechanical properties, such as automobiles, electronics, biomedicine, sterilization household products, and other fields.
  • the unit of the additive not specifically described in the specification may be weight%.
  • Examples and comparative examples were placed in the cylinder of a HaakeTM Minijet (Thermo Scientific) injection machine, and a dog-bone-shaped specimen was set by setting the cylinder temperature to 200°C, exposure time 5 minutes, injection pressure 500 bar, and mold temperature 150°C. 25.5 mm, width: 3.11 mm, thickness: 3.1 mm) was prepared, and a tensile test was performed according to ASTM D 638 using a universal testing machine (UTM 5982, INSTRON).
  • a HaakeTM Minijet Thermo Scientific
  • the increase rate of tensile elongation (%) was calculated from the polycarbonate tensile elongation corresponding to the comparative example through the following equation (1).
  • the increase rate of tensile toughness (%) was calculated from the polycarbonate tensile toughness compared to the comparative example through the following equation (2).
  • the weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene by gel permeation chromatography (GPC) measurement using chloroform as a solvent.
  • Example 1 the same procedure was performed except that 10 mg of nanocellulose was used.
  • Example 1 the same procedure was performed except that 30 mg of nanocellulose was used.
  • Example 1 the same procedure was performed except that 50 mg of nanocellulose was used.
  • Example 1 except for using 0.5 mg of nanocellulose, the same procedure was performed.
  • Example 1 the same procedure was performed except that 500 mg of nanocellulose was used.
  • Isosorbide 29.81 g, 0.204 mol was heated to 60°C in a nitrogen atmosphere and melted, and then 25 mg of nanocellulose was added. Nano-cellulose was uniformly dispersed by probe-tip sonication for 2 minutes. 1,4-cyclohexanedimethanol (1,4-Cyclohexanedimethanol, 12.61 g, 0.087 mol), diphenyl carbonate (62.43 g, 0.291 mol), tetramethylammonium hydroxide (100 mg, 0.55 mmol) was added to the reactor and then heated to 150°C to initiate polymerization and mechanical stirring was performed in a nitrogen atmosphere for 2 hours.
  • Example 7 the same procedure was performed except that 50 mg of nanocellulose was used. (Yield: 49 g, 98%, weight average molecular weight: 69,000 g/mol)
  • Example 7 the same procedure was performed except that 150 mg of nanocellulose was used. (Yield: 48 g, 97.5%, Weight average molecular weight: 81,000 g/mol)
  • Example 7 nanocellulose was used in the same manner, except that 250 mg was used. (Yield: 49 g, 98%, weight average molecular weight: 61,000 g/mol)
  • Example 7 the same procedure was performed except that 2.5 mg of nanocellulose was used (yield: 49 g, 98%, weight average molecular weight: 70,000 g/mol).
  • Example 7 nanocellulose was used in the same manner, except that 2,500 mg was used. (Yield: 49 g, 98%, weight average molecular weight: 27,000 g/mol)
  • Example 1 in place of the polycarbonate prepared in Synthesis Example 1, bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) was used in the same manner.
  • Example 3 in place of the polycarbonate prepared in Synthesis Example 1, bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) was used in the same manner.
  • Example 4 in place of the polycarbonate prepared in Synthesis Example 1, bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) was used in the same manner.
  • polypropylene carbonate Sigma Aldrich, weight average molecular weight: 50,000 g/mol
  • Example 3 30 mg of cellulose (average diameter 5 ⁇ m, longest length 20 ⁇ m) was used instead of 30 mg of nanocellulose, and the same procedure was performed.
  • Example 1 81 30 200 18 194
  • Example 2 85 24 160 15 161
  • Example 4 75 28 187 16 172
  • Example 5 81 17 113 9.5 102
  • Example 6 45 3 20
  • Example 7 81 38 253 23 247
  • Example 8 79 50 333 31 333
  • Example 9 77 55 367 33 355
  • Example 10 73 45 300 28 301
  • Example 11 80 18 120 23 103
  • Example 12 35 2 13 0.3 3
  • Comparative Example 4 70 57 111 33 113
  • Comparative Example 6 38 270 - 55 - Comparative Example 7 40 275 102 57 104
  • aromatic polycarbonates as well as aliphatic polycarbonates, include nanocellulose, and even under the same conditions, the tensile elongation and the increase in tensile toughness are insignificant. It was confirmed that it is an excellent effect expressed by.
  • the polycarbonate-nanocellulose composite material according to the present invention has a significantly lower tensile elongation and tensile toughness when manufactured by including micro-scale cellulose rather than nano-sized nanocellulose.

Abstract

The present invention relates to a specifically structured polycarbonate-nanocellulose composite material comprising polycarbonate and nanocellulose, and to a method for manufacturing same. The polycarbonate-nanocellulose composite material according to the present invention has not only excellent tensile strength but also is significantly higher in tensile elongation and increase rate of tensile toughness than a basic polycarbonate not having nanocellulose. In addition, the method for manufacturing a polycarbonate-nanocellulose composite material according to the present invention provides excellent complexation of polycarbonate and nanocellulose without a pretreatment process which increases cost, thereby showing excellent and advantageous synergistic effects in mechanical properties.

Description

폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법Polycarbonate-nanocellulose composite material and manufacturing method thereof
본 발명은 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법에 관한 것이다.The present invention relates to a polycarbonate-nanocellulose composite material and a method for manufacturing the same.
폴리카보네이트는 충격강도 등과 같은 기계적 물성이 우수하고, 난연성, 치수안정성, 내열성 및 투명성이 우수한 열가소성 수지로 잘 알려져 있고, 전기전자 제품의 외장재, 자동차 부품 등에 폭 넓게 적용되고 있다.Polycarbonate is well known as a thermoplastic resin having excellent mechanical properties such as impact strength, flame retardancy, dimensional stability, heat resistance and transparency, and is widely applied to exterior materials of electric and electronic products, automobile parts, and the like.
더욱이, 폴리카보네이트는 깨지기 쉬운 유리를 대체할 수 있는 투명플라스틱 소재로 기계적 물성을 높이기 위하여 무기 필러를 함유하여 복합화시킨 복합소재가 상용화되고 있다.Moreover, polycarbonate is a transparent plastic material that can replace fragile glass, and a composite material containing an inorganic filler and composited to increase mechanical properties has been commercialized.
그러나 상기 무기 필러로 유리섬유를 포함하는 복합소재의 경우 사출 성형 시, 성형품 표면에 유리섬유가 돌출되어 투명성, 외관 특성 등이 저하될 우려가 있으며, 이를 개선하기 위하여, 계면활성제 등의 첨가제를 필히 사용하게 되어 굴곡탄성, 내충격성 등이 저하되는 문제점이 있다. 또한, 소각이나 화재 시에 미세입자화되어 폐질환을 일으킬 수 있는 문제점이 지적되었다.However, in the case of a composite material containing glass fibers as the inorganic filler, there is a possibility that the glass fibers protrude on the surface of the molded article during injection molding, and there is a possibility that transparency, appearance characteristics, etc. may be deteriorated. In order to improve this, additives such as surfactants are essential. As it is used, there is a problem in that flexural elasticity, impact resistance, and the like are lowered. In addition, it has been pointed out that a problem that can be caused by microparticles in the case of incineration or fire and cause lung disease.
또한, 많은 문헌에서 폴리카보네이트 복합소재를 제조하기 위하여 나노클레이 또는 나노카본 필러를 사용하였지만, 원하는 물성강화 효과를 위하여 과도하게 필러가 투입되었고, 원하는 물성강화도 원활하게 얻을 수 없을 뿐만 아니라 취성이 발생되는 문제점이 지적되었다. In addition, in many literatures, nanoclay or nanocarbon fillers were used to manufacture polycarbonate composite materials, but fillers were excessively added for a desired property enhancement effect, and desired property enhancements could not be obtained smoothly and brittleness occurred. The problem was pointed out.
이 외에도 석유계 Bisphenol-A (비스페놀-A)기반의 폴리카보네이트는 석유자원 고갈에 따라 그 제조 및 사용에 제약이 우려될 뿐만 아니라 비스페놀-A 단량체가 내분비계 교란물질로 알려져 사용에 제한이 되어 왔다.In addition to this, petroleum-based Bisphenol-A (bisphenol-A)-based polycarbonates have been restricted in their use because of the petroleum resource depletion, as well as concerns about manufacturing and use restrictions, and bisphenol-A monomers are known as endocrine disruptors. .
이와 같은 석유계 기반 폴리카보네이트는 이러한 제약에도 불구하고 기계적 물성 향상효과를 달성하기 위하여 복합화가 이루어졌지만, 기계적 물성을 혁신적으로 향상시킬 수 있는 효과를 구현하는 데에는 어려움이 있었다.Despite such limitations, the petroleum-based polycarbonate was complexed to achieve an effect of improving mechanical properties, but there was a difficulty in implementing an effect capable of innovatively improving the mechanical properties.
이에 본 발명자들은 이를 대체함과 동시에 기존 석유계 폴리카보네이트 대비 높은 수준의 기계적 물성의 상승효과를 구현하는 복합소재를 제공하고자 본 발명을 완성하였다. Accordingly, the present inventors completed the present invention to provide a composite material that realizes a synergistic effect of a higher level of mechanical properties than the existing petroleum-based polycarbonate.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 나노셀룰로오스를 포함하지 않는 폴리카보네이트 수지 대비 현저한 인장신율 및 인장인성의 증가율을 갖는 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a polycarbonate-nanocellulose composite material having a significant increase in tensile elongation and tensile toughness compared to a polycarbonate resin containing no nanocellulose and a method for manufacturing the same.
또한, 본 발명의 또 다른 목적은 표면 소수화 등의 전처리 공정 없이 나노셀룰로오스와 우수한 혼화성으로 현격히 향상된 기계적 물성을 갖는 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법을 제공하는 것이다.In addition, another object of the present invention is to provide a polycarbonate-nanocellulose composite material having significantly improved mechanical properties with excellent miscibility with nanocellulose without a pretreatment process such as surface hydrophobization and a method for manufacturing the same.
상기 목적을 달성하기 위하여 연구한 결과, 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트 및 나노셀룰로오스를 포함한다.As a result of research in order to achieve the above object, the polycarbonate-nanocellulose composite material according to the present invention includes polycarbonate and nanocellulose comprising a repeating unit represented by Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2020001484-appb-img-000001
Figure PCTKR2020001484-appb-img-000001
본 발명의 일 양태에 따른 상기 나노셀룰로오스는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 4중량부로 포함될 수 있다.The nanocellulose according to an aspect of the present invention may be included in 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
본 발명의 일 양태에 따른 상기 폴리카보네이트는 총 중량에 대하여, 상기 화학식 1로 표시되는 반복단위를 50 내지 90중량% 포함할 수 있다.The polycarbonate according to an aspect of the present invention may contain 50 to 90% by weight of the repeating unit represented by Formula 1 with respect to the total weight.
본 발명의 일 양태에 따른 상기 나노셀룰로오스는 평균직경이 2 내지 200㎚이고, 최장길이가 100㎚ 내지 10㎛인 셀룰로오스를 포함할 수 있다.The nanocellulose according to an aspect of the present invention may include cellulose having an average diameter of 2 to 200 nm and a longest length of 100 nm to 10 μm.
본 발명의 일 양태에 따른 상기 폴리카보네이트-나노셀룰로오스 복합소재는 하기 식 1을 만족하는 인장신율(Tensile Elongation)을 가질 수 있다.The polycarbonate-nanocellulose composite material according to an aspect of the present invention may have a tensile elongation (Tensile Elongation) satisfying the following equation 1.
[식 1][Equation 1]
Figure PCTKR2020001484-appb-img-000002
Figure PCTKR2020001484-appb-img-000002
상기 식 1에 있어서,In the above formula 1,
상기 TE 0는 나노셀룰로오스를 포함하지 않는 폴리카보네이트의 인장신율(%)이고, 상기 TE 1은 폴리카보네이트-나노셀룰로오스 복합소재의 인장신율(%)이다.The TE 0 is the tensile elongation (%) of the polycarbonate that does not contain nanocellulose, and the TE 1 is the tensile elongation (%) of the polycarbonate-nanocellulose composite material.
본 발명의 일 양태에 따른 상기 폴리카보네이트-나노셀룰로오스 복합소재는 하기 식 2를 만족하는 인장인성(Tensile Toughness)을 가질 수 있다.The polycarbonate-nanocellulose composite material according to an aspect of the present invention may have a tensile toughness that satisfies Expression 2 below.
[식 2][Equation 2]
Figure PCTKR2020001484-appb-img-000003
Figure PCTKR2020001484-appb-img-000003
상기 식 2에 있어서,In the formula 2,
상기 TT 0는 나노셀룰로오스를 포함하지 않는 폴리카보네이트의 인장인성(MJ/㎥)이고, 상기 TT 1은 폴리카보네이트-나노셀룰로오스 복합소재의 인장인성(MJ/㎥)이다.The TT 0 is the tensile toughness (MJ/㎥) of the polycarbonate that does not contain nanocellulose, and the TT 1 is the tensile toughness (MJ/㎥) of the polycarbonate-nanocellulose composite material.
본 발명의 또 다른 양태인 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법은 a) 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트 및 나노셀룰로오스를 용매에 혼합 및 분산하여 분산액을 제조하는 단계 및 b) 상기 분산액을 건조하여 복합소재를 제조하는 단계를 포함한다.In another aspect of the present invention, a method for preparing a polycarbonate-nanocellulose composite material comprises: a) mixing and dispersing polycarbonate and nanocellulose containing a repeating unit represented by the following Chemical Formula 1 in a solvent to prepare a dispersion liquid, and b ) Drying the dispersion to prepare a composite material.
[화학식 1][Formula 1]
Figure PCTKR2020001484-appb-img-000004
Figure PCTKR2020001484-appb-img-000004
본 발명의 일 양태에 따른 상기 나노셀룰로오스는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 4중량부로 포함될 수 있다.The nanocellulose according to an aspect of the present invention may be included in 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
본 발명의 또 다른 양태인 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법은 A) 아이소소바이드 및 나노셀룰로오스를 혼합 및 분산하여 분산물을 제조하는 단계 및 B) 상기 분산물에 탄산디에스테르를 투입하여 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트를 중합하는 단계를 포함한다.In another aspect of the present invention, a method of manufacturing a polycarbonate-nanocellulose composite material comprises: A) mixing and dispersing isosorbide and nanocellulose to prepare a dispersion, and B) introducing a carbonic acid diester into the dispersion. It comprises the step of polymerizing a polycarbonate containing a repeating unit represented by the formula (1).
[화학식 1][Formula 1]
Figure PCTKR2020001484-appb-img-000005
Figure PCTKR2020001484-appb-img-000005
본 발명의 일 양태에 따라 상기 A)단계 이후, 상기 분산물에 디올 화합물을 더 포함하여 중합하는 것일 수 있다.According to an aspect of the present invention, after the step A), it may be to further comprise a diol compound in the dispersion to polymerize.
본 발명의 일 양태에 따른 상기 디올 화합물 및 아이소소바이드는 10:90 내지 50:50중량비로 포함할 수 있다.The diol compound and isosorbide according to an aspect of the present invention may include 10:90 to 50:50 weight ratio.
본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 우수한 인장강도를 가질 뿐만 아니라 나노셀룰로오스를 포함하지 않는 기본 폴리카보네이트 대비 현저히 높은 인장신율 및 인장인성의 증가율을 갖는다는 장점이 있다.The polycarbonate-nanocellulose composite material according to the present invention has an advantage of not only having excellent tensile strength but also a remarkably high tensile elongation and an increase in tensile toughness compared to a basic polycarbonate containing no nanocellulose.
또한, 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법은 비용 상승을 초래하는 전처리 공정없이도 폴리카보네이트와 나노셀룰로오스의 우수한 복합화로 우수한 기계적 물성의 상승효과를 갖는다는 장점이 있다.In addition, the method of manufacturing a polycarbonate-nanocellulose composite material according to the present invention has an advantage of having a synergistic effect of excellent mechanical properties by excellent combination of polycarbonate and nanocellulose without a pretreatment process that causes an increase in cost.
도 1은 본 발명의 일 실시예의 복합소재 및 일 비교실시예의 폴리카보네이트의 파단면을 주사전자현미경으로 관찰한 사진이다. 도 1의 (a)는 비교예 1이고, (b)는 실시예 3이며, (c)는 실시예 9이다.1 is a photograph of a composite material of one embodiment of the present invention and a fracture surface of a polycarbonate of one comparative example observed by a scanning electron microscope. 1(a) is Comparative Example 1, (b) is Example 3, and (c) is Example 9.
이하 실시예를 통해 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 참조일 뿐 본 발명이 이에 제한되는 것은 아니며, 여러 형태로 구현 될 수 있다.Hereinafter, a polycarbonate-nanocellulose composite material and a method for manufacturing the same according to the present invention will be described in more detail through examples. However, the following examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.Also, unless defined otherwise, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used in the description herein are only intended to effectively describe specific embodiments and are not intended to limit the present invention.
본 명세서에서 “알킬렌”은 탄소수 1 내지 20을 가지는 직쇄 또는 분쇄 형태의 탄화수소로부터 유도된 2개의 결합위치를 갖는 2가의 유기라디칼을 의미한다. 구체적으로는 탄소수 1 내지 20 지방족 알킬렌, 탄소수 3 내지 20의 지환족 알킬렌 또는 이들의 조합을 포함하는 것을 의미한다.As used herein, “alkylene” refers to a divalent organic radical having two bonding positions derived from a straight chain or pulverized hydrocarbon having 1 to 20 carbon atoms. Specifically, it is meant to include 1 to 20 aliphatic alkylene having 1 to 20 carbon atoms, alicyclic alkylene having 3 to 20 carbon atoms, or a combination thereof.
“지환족 알킬렌”은 탄소수 3 내지 20을 가지는 고리를 포함하는 포화탄화수소로부터 유도된 2개의 결합위치를 갖는 2가의 유기라디칼을 의미한다.“A cycloaliphatic alkylene” refers to a divalent organic radical having two bonding positions derived from saturated hydrocarbon containing a ring having 3 to 20 carbon atoms.
상기 목적을 달성하기 위한 본 발명은 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법에 관한 것이다.The present invention for achieving the above object relates to a polycarbonate-nanocellulose composite material and a manufacturing method thereof.
기존의 방향족 폴리카보네이트인 석유계 비스페놀 A기반 폴리카보네이트는 비스페놀 A 단량체의 사용제약이 우려될 뿐만 아니라 이를 사용하여서는 기계적 물성을 혁신적으로 향상시키기에는 어려움이 있었다. 이에 본 발명자는 기존 석유계 폴리카보네이트 대비 높은 수준의 기계적 물성의 상승효과를 구현할 수 있는 복합소재를 발견하여 본 발명을 완성하였다.Conventional aromatic polycarbonate, a petroleum-based bisphenol A-based polycarbonate, is not only concerned about the use of the bisphenol A monomer, but also has a difficulty in innovatively improving the mechanical properties. Accordingly, the present inventor has completed the present invention by discovering a composite material capable of realizing a synergistic effect of high mechanical properties compared to the existing petroleum-based polycarbonate.
본 발명을 구체적으로 설명하면 다음과 같다.The present invention will be described in detail as follows.
본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트 및 나노셀룰로오스를 포함한다.The polycarbonate-nanocellulose composite material according to the present invention includes polycarbonate and nanocellulose comprising repeating units represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2020001484-appb-img-000006
Figure PCTKR2020001484-appb-img-000006
본 발명에 따른 폴리카보네이트는 상기와 같은 반복단위를 포함함으로써, 나노셀룰로오스와 함께 혼합되어 우수한 인장강도를 가지면서, 나노셀룰로오스를 포함하지 않는 기본 폴리카보네이트 대비, 인장신율 및 인장인성을 현저하게 향상시킬 수 있다. 또한, 기계적 물성뿐 만 아니라 경도, 광학 및 자외선 저항성이 우수하다.The polycarbonate according to the present invention, by including the repeating unit as described above, is mixed with nanocellulose, while having excellent tensile strength, compared to the basic polycarbonate that does not contain nanocellulose, significantly improves tensile elongation and tensile toughness Can. In addition, it has excellent mechanical properties as well as hardness, optical and UV resistance.
본 발명의 일 양태에 따라, 상기 폴리카보네이트는 상기 화학식 1로 표시되는 반복단위를 포함하는 단독중합체일 수 있고, 이 외에 카보네이트기(-O(C=O)O-)를 갖는 반복단위를 더 포함하여 제조된 공중합체일 수 있다. According to an aspect of the present invention, the polycarbonate may be a homopolymer containing a repeating unit represented by Chemical Formula 1, in addition to repeating units having a carbonate group (-O(C=O)O-) It may be a copolymer prepared by including.
바람직하게는 상기 폴리카보네이트는 상기 화학식 1로 표시되는 반복단위를 포함하고, 지방족기를 포함하는 카보네이트기(-R 1-O(C=O)O-, R 1은 C1-C20지방족 알킬렌기이다.) 및 지환족기를 포함하는 카보네이트기(-R 2-O(C=O)O-, R 2는 C3-C20지환족 알킬렌기이다.)를 갖는 반복단위에서 선택되는 추가 반복단위를 더 포함하여 제조된 공중합체일 수 있다. 더 바람직하게는 상기 폴리카보네이트는 상기 화학식 1로 표시되는 반복단위 및 지환족기를 포함하는 카보네이트기(-R 2-O(C=O)O-)를 갖는 반복단위를 포함하여 제조된 공중합체일 수 있다.Preferably, the polycarbonate includes a repeating unit represented by Chemical Formula 1, and a carbonate group containing an aliphatic group (-R 1 -O(C=O)O-, R 1 is a C1-C20 aliphatic alkylene group. ) And an additional repeating unit selected from a repeating unit having a carbonate group including an alicyclic group (-R 2 -O(C=O)O-, R 2 is a C3-C20 alicyclic alkylene group). It may be a prepared copolymer. More preferably, the polycarbonate is a copolymer prepared by including a repeating unit having a repeating unit represented by Chemical Formula 1 and a carbonate group (-R 2 -O(C=O)O-) containing an alicyclic group. Can be.
구체적으로 예를 들면, 상기 지환족기를 포함하는 카보네이트를 갖는 반복단위는 하기 화학식 2로 표시될 수 있다.Specifically, for example, a repeating unit having a carbonate containing the alicyclic group may be represented by Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2020001484-appb-img-000007
Figure PCTKR2020001484-appb-img-000007
상기 화학식 2에 있어서, 상기 R 2은 C3-C20알킬렌기이다. In Chemical Formula 2, R 2 is a C3-C20 alkylene group.
구체적으로는 상기 화학식 2에 있어서, 상기 R 2은 C3-C10지환족 알킬렌기를 포함하는 2가 치환체일 수 있다. 보다 구체적으로는 상기 화학식 2에 있어서, 상기 R 2은 C1-C10지방족 알킬렌기 및 C3-C10지환족 알킬렌기의 조합으로 이루어진 2가 치환체일 수 있다.Specifically, in Chemical Formula 2, R 2 may be a divalent substituent containing a C3-C10 alicyclic alkylene group. More specifically, in Chemical Formula 2, R 2 may be a divalent substituent consisting of a combination of a C1-C10 aliphatic alkylene group and a C3-C10 alicyclic alkylene group.
더욱이 본 발명이 목적으로 하는 물성을 달성하기 위하여 본 발명에 일 양태에 따라, 상기 폴리카보네이트는 상기 화학식 1로 표시되는 반복단위 외에 하기 화학식 3으로 표시되는 반복단위를 더 포함할 수 있다. Moreover, according to an aspect of the present invention, in order to achieve the properties desired by the present invention, the polycarbonate may further include a repeating unit represented by the following formula (3) in addition to the repeating unit represented by the formula (1).
[화학식 3][Formula 3]
Figure PCTKR2020001484-appb-img-000008
Figure PCTKR2020001484-appb-img-000008
상기 화학식 3에 있어서, 상기 R 3은 C1-C10알킬렌기이다. In Chemical Formula 3, R 3 is a C1-C10 alkylene group.
바람직하게는 상기 화학식 3에 있어서, 상기 R 3은 C1-C3알킬렌기일 수 있다.Preferably in Chemical Formula 3, R 3 may be a C1-C3 alkylene group.
상기와 같이 폴리카보네이트는 반복단위를 구성함으로써, 기본 폴리카보네이트 대비 복합소재의 인장신율 및 인장인성이 현격하게 향상되어 우수한 기계적 물성을 구현할 수 있다. As described above, by forming the repeating unit of the polycarbonate, the tensile elongation and the tensile toughness of the composite material compared to the basic polycarbonate are significantly improved, thereby realizing excellent mechanical properties.
본 발명의 일 양태에 따라, 상기 폴리카보네이트는 총 중량에 대하여, 상기 화학식 1로 표시되는 반복단위를 50 내지 90중량% 포함할 수 있다. 바람직하게는 상기 화학식 1로 표시되는 반복단위를 55 내지 85중량% 포함할 수 있다. 상기와 같은 범위로 포함할 경우 나노셀룰로오스와의 혼화성 향상은 물론 기본 폴리카보네이트 대비 복합소재의 인장신율 및 인장인성을 현저히 향상시킬 수 있다.According to an aspect of the present invention, the polycarbonate may include 50 to 90% by weight of the repeating unit represented by Formula 1 with respect to the total weight. Preferably, the repeating unit represented by Chemical Formula 1 may include 55 to 85% by weight. When included in the above range, it is possible to not only improve the miscibility with nanocellulose, but also significantly improve the tensile elongation and tensile toughness of the composite material compared to the basic polycarbonate.
본 발명의 일 양태에 따라, 상기 폴리카보네이트는 특별히 제한되지 않지만, 구체적인 예를 들어, 중량평균분자량은 10,000 내지 200,000g/mol을 만족할 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, the polycarbonate is not particularly limited, but for a specific example, the weight average molecular weight may satisfy 10,000 to 200,000 g/mol, but is not limited thereto.
본 발명의 일 양태에 따라, 상기 나노셀룰로오스는 셀룰로오스 사슬이 다발을 이루며 결합한 나노/마이크로미터 크기의 막대형태 입자 또는 섬유형태를 의미한다. 구체적으로 추출하는 방법에 따라 셀룰로오스 나노섬유(cellulose nanofibril, CNF) 또는 셀룰로오스 나노결정(cellulose nanocrystal, CNC) 등으로 구분될 수 있다. According to an aspect of the present invention, the nanocellulose refers to a nano- or micrometer-sized rod-shaped particle or fiber form in which cellulose chains are bundled together. According to a specific extraction method, it may be classified into cellulose nanofibril (CNF) or cellulose nanocrystal (CNC).
본 발명의 일 양태에 따라, 상기 나노셀룰로오스는 평균직경이 2 내지 200㎚이고, 최장길이가 100㎚ 내지 10㎛인 셀룰로오스를 포함할 수 있다. 바람직하게는 상기 나노셀룰로오스는 평균직경이 2 내지 100㎚이고, 최장길이가 100㎚ 내지 5㎛일 수 있고, 더 바람직하게는 평균직경이 5 내지 50㎚이고, 최장길이가 100 내지 900㎚인 셀룰로오스를 포함할 수 있다. 상기와 같은 나노셀룰로오스를 포함할 경우, 본 발명에 따른 폴리카보네이트의 기계적 물성, 특히 인장신율 및 인장인성의 상승효과가 월등하여 바람직하다.According to an aspect of the present invention, the nanocellulose may include cellulose having an average diameter of 2 to 200 nm and a longest length of 100 nm to 10 μm. Preferably, the nanocellulose has an average diameter of 2 to 100 nm, a longest length of 100 nm to 5 μm, more preferably an average diameter of 5 to 50 nm, and a longest length of 100 to 900 nm. It may include. When the nanocellulose as described above is included, the synergistic effect of the mechanical properties of the polycarbonate according to the present invention, in particular, tensile elongation and tensile toughness is superior, which is preferable.
본 발명의 일 양태에 따라, 상기 나노셀룰로오스는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 4중량부로 포함될 수 있다. 바람직하게는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 3중량부로 포함될 수 있고, 더 바람직하게는 0.03 내지 2중량부로 포함될 수 있다. 상기와 같은 범위로 포함되는 경우, 본 발명에 따른 폴리카보네이트와의 결합에 의하여 우수한 인장강도를 가지면서, 폴리카보네이트의 인장신율 및 인장인성을 현저하게 향상시킬 수 있다.According to an aspect of the present invention, the nanocellulose may be included in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate. Preferably, with respect to 100 parts by weight of the polycarbonate, it may be included in 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight. When included in the above range, while having excellent tensile strength by bonding with the polycarbonate according to the present invention, it is possible to significantly improve the tensile elongation and tensile toughness of the polycarbonate.
본 발명의 일 양태에 따라, 상기 폴리카보네이트-나노셀룰로오스 복합소재는 우수한 인장강도를 가질 수 있다. 구체적인 예를 들어, ASTM D638에 의거하여 측정된 인장강도가 71MPa이상일 수 있고, 바람직하게는 73MPa이상일 수 있고, 더 바람직하게는 75MPa이상일 수 있다. 상한가는 특별히 제한되는 것은 아니지만 바람직하게는 71 내지 120MPa일 수 있고, 바람직하게는 73 내지 115MPa, 더 바람직하게는 75 내지 110MPa일 수 있다. 상기와 같은 인장강도를 가짐으로써, 외부 충격에 의하여 구조적 변화를 최소화할 수 있다.According to an aspect of the present invention, the polycarbonate-nanocellulose composite material may have excellent tensile strength. For a specific example, the tensile strength measured according to ASTM D638 may be 71 MPa or more, preferably 73 MPa or more, and more preferably 75 MPa or more. The upper limit is not particularly limited, but may preferably be 71 to 120 MPa, preferably 73 to 115 MPa, more preferably 75 to 110 MPa. By having the above tensile strength, it is possible to minimize structural changes due to external impact.
기존의 석유계 방향족 폴리카보네이트를 포함하여 제조된 복합소재는 과량의 보강재없이는 기계적 물성 향상은 매우 미미하였다. 이와 달리 본 발명에 따른 폴리카보네이트는 특히, 나노셀룰로오스와 복합화함으로써 기본 폴리카보네이트 물성 대비 현격히 우수한 인장신율 및 인장인성 증가율을 보인다.In the case of the existing composite material including petroleum-based aromatic polycarbonate, the improvement of mechanical properties was very slight without excessive reinforcing material. On the other hand, the polycarbonate according to the present invention shows a significantly superior tensile elongation and tensile toughness increase compared to basic polycarbonate properties, in particular by complexing with nanocellulose.
구체적으로는 본 발명의 일 양태에 따라, 상기 폴리카보네이트-나노셀룰로오스 복합소재는 하기 식 1을 만족하는 인장신율을 가질 수 있다.Specifically, according to an aspect of the present invention, the polycarbonate-nanocellulose composite material may have a tensile elongation that satisfies Expression 1 below.
[식 1][Equation 1]
Figure PCTKR2020001484-appb-img-000009
Figure PCTKR2020001484-appb-img-000009
상기 식 1에 있어서,In the above formula 1,
상기 TE 0는 나노셀룰로오스를 포함하지 않는 폴리카보네이트의 인장신율(%)이고, 상기 TE 1은 폴리카보네이트-나노셀룰로오스 복합소재의 인장신율(%)이다.The TE 0 is the tensile elongation (%) of the polycarbonate that does not contain nanocellulose, and the TE 1 is the tensile elongation (%) of the polycarbonate-nanocellulose composite material.
바람직하게는 상기 식 1은 150%이상을 만족할 수 있다. 더욱이, 복합소재 제조할 때, in-situ방법으로 나노셀룰로오스를 폴리카보네이트 중합 시 혼합하여 제조할 경우 상기 식 1은 200%이상, 바람직하게는 250%이상을 만족할 수 있어 더욱 바람직하다. 과량의 보강재없이도 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 상기와 같이 우수한 인장신율 증가율을 확보할 수 있으며, 이로써 굴곡 에너지의 증가로 나타나 성형품의 실용충격강도를 증가시키며, 사출 이형성과 연속작업성이 매우 우수하다.Preferably, Equation 1 may satisfy 150% or more. Moreover, when manufacturing a composite material, when the nano-cellulose is mixed with polycarbonate during the in-situ method, the formula 1 is more preferable because it can satisfy 200% or more, preferably 250% or more. The polycarbonate-nanocellulose composite material according to the present invention can secure a superior tensile elongation increase rate as described above without an excessive amount of reinforcing material, thereby increasing the bending energy and increasing the practical impact strength of the molded product, injection mold release and continuous work. The castle is very good.
또한, 본 발명의 일 양태에 따른 상기 폴리카보네이트-나노셀룰로오스 복합소재는 하기 식 2를 만족하는 인장인성을 가질 수 있다.In addition, the polycarbonate-nanocellulose composite material according to an aspect of the present invention may have a tensile toughness that satisfies Expression 2 below.
[식 2][Equation 2]
Figure PCTKR2020001484-appb-img-000010
Figure PCTKR2020001484-appb-img-000010
상기 식 2에 있어서,In the formula 2,
상기 TT 0는 나노셀룰로오스를 포함하지 않는 폴리카보네이트의 인장인성(MJ/㎥)이고, 상기 TT 1은 폴리카보네이트-나노셀룰로오스 복합소재의 인장인성(MJ/㎥)이다.The TT 0 is the tensile toughness (MJ/㎥) of the polycarbonate that does not contain nanocellulose, and the TT 1 is the tensile toughness (MJ/㎥) of the polycarbonate-nanocellulose composite material.
바람직하게는 상기 식 2는 150%이상을 만족할 수 있다. 더욱이, 복합소재 제조할 때, in-situ방법으로 나노셀룰로오스를 폴리카보네이트 중합 시 혼합하여 제조할 경우 상기 식 2는 200%이상, 바람직하게는 240%이상을 만족할 수 있어 더욱 바람직하다. 과량의 보강재없이도 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 상기와 같이 우수한 인장인성 증가율을 확보할 수 있으며, 이로써 외부 충격에 의한 변형 및 손상을 방지할 수 있을 뿐만 아니라 장기적인 내구성을 가질 수 있다.Preferably, Equation 2 may satisfy 150% or more. Moreover, when manufacturing a composite material, when the nano-cellulose is mixed and polymerized during the polycarbonate polymerization by an in-situ method, Equation 2 is more preferable because it can satisfy 200% or more, preferably 240% or more. The polycarbonate-nanocellulose composite material according to the present invention can secure a superior tensile toughness increase rate as described above without an excessive amount of reinforcing material, thereby preventing deformation and damage due to external impact and having long-term durability. .
본 발명의 또 다른 양태인 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법은 폴리카보네이트 및 나노셀룰로오스를 용매 상에서 복합화하는 용액공정(Solution법)으로 제조될 수 있고, 폴리카보네이트 전구체와 나노셀룰로오스를 혼합하여 중합하는 in-situ법으로 제조될 수 있다.Another method of manufacturing a polycarbonate-nanocellulose composite material, which is another aspect of the present invention, can be prepared by a solution process (Solution method) of complexing polycarbonate and nanocellulose on a solvent, and mixing polycarbonate precursor and nanocellulose to polymerize. Can be prepared by in-situ method.
구체적으로 설명드리면 하기와 같다.Specifically, it is as follows.
먼저, 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법 중 용액공정(Solution법)은 a) 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트 및 나노셀룰로오스를 용매에 혼합 및 분산하여 분산액을 제조하는 단계 및 b) 상기 분산액을 건조하여 복합소재를 제조하는 단계를 포함한다.First, the solution process (Solution method) of the method for producing a polycarbonate-nanocellulose composite material according to the present invention is a) a dispersion solution by mixing and dispersing polycarbonate and nanocellulose containing a repeating unit represented by the following formula (1) in a solvent And b) drying the dispersion to prepare a composite material.
[화학식 1][Formula 1]
Figure PCTKR2020001484-appb-img-000011
Figure PCTKR2020001484-appb-img-000011
본 발명의 일 양태에 따라, 상기 a)단계에서 용매는 폴리카보네이트가 용해시킬 수 있고, 나노셀룰로오스가 분산될 수 있는 것이라면 특별히 제한되지 않으나, 구체적인 예를 들면, 메틸렌클로라이드, 클로로포름, 테트라하이드로퓨란, 메타크레졸, 시클로헥산, 디옥산, 디메틸포름알데히드 및 피리딘 등에서 선택되는 어느 하나 또는 둘 이상의 혼합용매일 수 있다.According to an aspect of the present invention, the solvent in step a) is not particularly limited as long as polycarbonate can be dissolved and nanocellulose can be dispersed, for example, methylene chloride, chloroform, tetrahydrofuran, It may be any one or two or more mixed solvents selected from metacresol, cyclohexane, dioxane, dimethylformaldehyde and pyridine.
상기와 같이 a)단계에서 용매에 혼합 및 분산 시 건조가 용이하다면 분산액의 농도 및 혼합방법에 특별히 제한되지 않는다. 구체적인 예를 들면, 상기 분산액은 용매 100중량부에 대하여, 폴리카보네이트 및 나노셀룰로오스 총 중량을 5 내지 20중량부, 바람직하게는 5 내지 15중량부, 더 바람직하게는 10 내지 15중량부 포함하는 농도로 제조될 수 있으나, 이에 제한되는 것은 아니다. If it is easy to dry when mixing and dispersing in a solvent in step a) as described above, it is not particularly limited to the concentration and mixing method of the dispersion. For a specific example, the dispersion is 5 to 20 parts by weight, preferably 5 to 15 parts by weight, more preferably 10 to 15 parts by weight, based on 100 parts by weight of the solvent, and the total weight of polycarbonate and nanocellulose. It may be manufactured, but is not limited thereto.
본 발명의 일 양태에 따라, 상기 b)단계에서 상기 분산액은 용매의 휘발이 가능하다면 조건이 특별히 제한되는 것은 아니지만, 바람직하게는 상온 내지 250℃에서 상압 또는 진공상태에서 1 내지 60시간동안 건조할 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, in the step b), the condition is not particularly limited as long as volatilization of the solvent is possible, but is preferably dried for 1 to 60 hours at normal temperature or 250° C. under normal pressure or vacuum. However, it is not limited thereto.
본 발명의 일 양태에 따라, 폴리카보네이트-나노셀룰로오스 복합소재는 상기와 같이 용액공정에서 복합소재를 용이하게 제조할 수 있을 뿐만 아니라 폴리카보네이트 및 나노셀룰로오스의 결합으로 우수한 인장강도를 가지면서, 나노셀룰로오스를 포함하지 않는 폴리카보네이트 대비, 인장신율 및 인장인성을 현저하게 향상시킬 수 있다.According to an aspect of the present invention, the polycarbonate-nanocellulose composite material not only can easily manufacture the composite material in a solution process as described above, but also has excellent tensile strength through the combination of polycarbonate and nanocellulose, nanocellulose Compared to a polycarbonate that does not contain, it can significantly improve the tensile elongation and tensile toughness.
본 발명의 일 양태에 따라, 상기 a)단계에서 나노셀룰로오스는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 4중량부로 포함될 수 있다. 바람직하게는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 3중량부로 포함될 수 있고, 더 바람직하게는 0.03 내지 2중량부로 포함될 수 있다. 상기와 같은 범위로 포함되는 경우, 우수한 인장강도를 가지면서, 인장신율 및 인장인성의 증가율을 현저히 높은 값으로 구현할 수 있다.According to an aspect of the present invention, in step a), nanocellulose may be included in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate. Preferably, with respect to 100 parts by weight of the polycarbonate, it may be included in 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight. When included in the above range, while having excellent tensile strength, the tensile elongation and the increase rate of the tensile toughness can be implemented at a remarkably high value.
본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법 중 또 다른 방법으로 in-situ법은 A) 아이소소바이드(isosorbide) 및 나노셀룰로오스를 혼합 및 분산하여 분산물을 제조하는 단계 및 B) 상기 분산물에 탄산디에스테르를 투입하여 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트를 중합하는 단계를 포함한다.In another method of the polycarbonate-nanocellulose composite material production method according to the present invention, the in-situ method comprises: A) preparing a dispersion by mixing and dispersing isosorbide and nanocellulose and B) the And introducing a carbonic acid diester into the dispersion to polymerize the polycarbonate containing the repeating unit represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2020001484-appb-img-000012
Figure PCTKR2020001484-appb-img-000012
본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법은 모두 폴리카보네이트 단독 기계적 물성 대비 복합소재의 기계적 물성을 현격히 향상시킬 수 있으나, 이 중 in-situ법으로 제조될 경우 더욱 우수한 기계적 물성 및 이의 향상효과를 구현할 수 있다. The method of manufacturing the polycarbonate-nanocellulose composite material according to the present invention can significantly improve the mechanical properties of the composite material compared to the mechanical properties of the polycarbonate alone, but if it is manufactured by the in-situ method, it has better mechanical properties and its Improvement effect can be realized.
본 발명의 일 양태에 따라, 상기 아이소소바이드(isosorbide)는 바이오매스(biomass)인 글루코오스 이성질체를 환원하여 얻을 수 있는 수소화 당의 대표적 물질인 헥시톨(hexitol)로부터 탈수반응을 통하여 무수당 알콜 형태로 수득된 것일 수 있다.According to an aspect of the present invention, the isosorbide is an anhydrosugar alcohol form through a dehydration reaction from hexitol, a representative substance of hydrogenated sugar, which can be obtained by reducing the glucose isomer, which is a biomass. It may be obtained.
본 발명의 일 양태에 따라, 상기 A)단계에서 아이소소바이드에 나노셀룰로오스를 혼합하기 위하여 아이소소바이드를 용융시킨 후 나노셀룰로오스를 투입하여 혼합 및 분산시킬 수 있다. 또 다른 방법으로는 나노셀룰로오스에 용융된 아이소소바이드를 투입하여 혼합 및 분산시킬 수 있다. 이와 같이 아이소소바이드 및 나노셀룰로오스를 혼합하여 분산시킬 수 있는 구성이라면 특별히 제한되는 것은 아니다.According to an aspect of the present invention, in step A), in order to mix nanocellulose with isosorbide, after melting the isosorbide, nanocellulose may be introduced to mix and disperse. As another method, molten isosorbide may be added to nanocellulose to be mixed and dispersed. In this way, if the structure capable of mixing and dispersing isosorbide and nanocellulose is not particularly limited.
본 발명의 일 양태에 따라 상기 A)단계 이후, 상기 분산물에 디올 화합물을 더 포함할 수 있다. 상기 디올 화합물은 상기 아이소소바이드를 제외한 폴리카보네이트의 전구체 역할을 하는 -OH기를 두 개 포함하는 화합물을 의미한다.According to an aspect of the present invention, after step A), the dispersion may further include a diol compound. The diol compound refers to a compound containing two -OH groups that serve as precursors of the polycarbonate excluding the isosorbide.
본 발명의 일 양태에 따라, 상기 디올 화합물은 구체적인 예를 들어, 알킬렌 글리콜, 폴리알킬렌 글리콜 및 지환족 디올 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 바람직하게는 본 발명이 목적으로 하는 물성을 달성하기 위하여 지환족 디올을 더 포함할 수 있다. 더욱 구체적으로는 1,4-시클로헥산디메탄올을 포함할 수 있다. 상기와 같은 디올 화합물을 포함하여 폴리카보네이트를 중합함으로써, 나노셀룰로오스와 복합화되었을 때, 기본 폴리카보네이트 대비 복합소재의 인장신율 및 인장인성이 현격하게 향상되어 우수한 기계적 물성을 구현할 수 있다. According to an aspect of the present invention, the diol compound may be any one or a mixture of two or more selected from, for example, alkylene glycol, polyalkylene glycol, and alicyclic diol. Preferably, the present invention may further include an alicyclic diol in order to achieve the desired physical properties. More specifically, 1,4-cyclohexanedimethanol may be included. By polymerizing the polycarbonate containing the diol compound as described above, when composited with nanocellulose, the tensile elongation and tensile toughness of the composite material compared to the basic polycarbonate is markedly improved to realize excellent mechanical properties.
본 발명의 일 양태에 따라, 상기 디올 화합물 및 아이소소바이드는 10:90 내지 50:50중량비로 포함할 수 있다. 바람직하게는 15:85 내지 40:60중량비로 포함할 수 있다. 상기와 같은 범위로 포함할 경우 나노셀룰로오스를 포함함에도 강한 결합력으로 우수한 복합화를 구현함으로써 기본 폴리카보네이트 대비 복합소재의 인장신율 및 인장인성을 현저히 향상시킬 수 있다.According to an aspect of the present invention, the diol compound and isosorbide may be included in a weight ratio of 10:90 to 50:50. Preferably it may be included in a weight ratio of 15:85 to 40:60. When included in the above range, it is possible to remarkably improve the tensile elongation and tensile toughness of the composite material compared to the basic polycarbonate by implementing excellent complexing with strong bonding strength even when including nanocellulose.
본 발명의 일 양태에 따라, 상기 B) 단계에서, 폴리카보네이트 전구체인 탄산디에스테르를 더 혼합하여 나노셀룰로오스가 복합화된 폴리카보네이트를 중합할 수 있다.According to an aspect of the present invention, in step B), a polycarbonate precursor, a carbonic acid diester, may be further mixed to polymerize the polycarbonate complexed with nanocellulose.
본 발명의 일 양태에 따라, 상기 탄산디에스테르는 폴리카보네이트 전구체로 사용되는 물질이라면 특별히 제한되는 것은 아니지만, 예를 들어, 방향족 탄산디에스테르, 지환족 탄산디에스테르 및 지방족 탄산디에스테르 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 구체적으로는 디페닐 카보네이트, 디톨릴 카보네이트, 비스(클로로페닐)카보네이트, m-크레실 카보네이트, 디나프틸 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 디부틸 카보네이트 및 디사이클로헥실 카보네이트 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 바람직하게는 디페닐 카보네이트 등과 같은 방향족 탄산디에스테르일 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, the carbonic acid diester is not particularly limited as long as it is a material used as a polycarbonate precursor, for example, any one selected from aromatic carbonic acid diesters, alicyclic carbonic acid diesters and aliphatic carbonic acid diesters, etc. It may include one or more. Specifically, any one selected from diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl)carbonate, m-cresyl carbonate, dinaphthyl carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate and dicyclohexyl carbonate, or It may include two or more. Preferably, it may be an aromatic carbonic acid diester such as diphenyl carbonate, but is not limited thereto.
본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 우수한 인장강도를 가질 뿐만 아니라 나노셀룰로오스를 포함하지 않는 기본 폴리카보네이트 대비 인장인성 및 인장신율이 현격하게 증가하여 우수한 기계적 물성을 구현할 수 있다. 이로써, 자동차, 전자, 생물 의학, 살균용 생활 용품 및 기타 분야 등의 우수한 기계적 물성을 요구하는 다양한 응용 분야에 적용가능하다.The polycarbonate-nanocellulose composite material according to the present invention not only has excellent tensile strength, but also exhibits excellent mechanical properties by significantly increasing tensile toughness and tensile elongation compared to basic polycarbonate that does not contain nanocellulose. Accordingly, it is applicable to various applications requiring excellent mechanical properties, such as automobiles, electronics, biomedicine, sterilization household products, and other fields.
이하 본 발명을 실시예를 참조하여 상세히 설명한다. 그러나 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로, 본 발명의 권리범위가 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples. However, these are for explaining the present invention in more detail, and the scope of the present invention is not limited by the following examples.
또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.In addition, the unit of the additive not specifically described in the specification may be weight%.
[물성측정방법][Method of measuring properties]
(1) 인장강도, 인장신율 및 인장인성(1) Tensile strength, tensile elongation and tensile toughness
Haake™ Minijet (Thermo Scientific) 사출기의 실린더에 실시예 및 비교예를 넣고, 실린더 온도 200℃, 노출시간 5분, 사출압 500 bar, 몰드 온도 150℃로 설정하여 Dog-bone 모양의 시편(길이: 25.5 ㎜, 넓이: 3.11 ㎜, 두께: 3.1 ㎜)을 제작하고, 만능재료시험기 (UTM 5982, INSTRON)를 사용하여 ASTM D 638에 의거하여 인장시험을 하였다. Examples and comparative examples were placed in the cylinder of a Haake™ Minijet (Thermo Scientific) injection machine, and a dog-bone-shaped specimen was set by setting the cylinder temperature to 200°C, exposure time 5 minutes, injection pressure 500 bar, and mold temperature 150°C. 25.5 ㎜, width: 3.11 ㎜, thickness: 3.1 ㎜) was prepared, and a tensile test was performed according to ASTM D 638 using a universal testing machine (UTM 5982, INSTRON).
인장신율 증가율(%)은 하기 계산식 1을 통해 비교예에 해당되는 폴리카보네이트 인장신율 대비 증가율을 계산하였다.The increase rate of tensile elongation (%) was calculated from the polycarbonate tensile elongation corresponding to the comparative example through the following equation (1).
[계산식 1][Calculation formula 1]
인장신율 증가율 = (실시예의 인장신율/비교예의 인장신율) × 100Tensile elongation increase rate = (Tensile elongation in Examples/Tensile elongation in Comparative Examples) × 100
인장인성 증가율(%)은 하기 계산식 2를 통해 비교예에 해당되는 폴리카보네이트 인장인성 대비 증가율을 계산하였다.The increase rate of tensile toughness (%) was calculated from the polycarbonate tensile toughness compared to the comparative example through the following equation (2).
[계산식 2][Calculation formula 2]
인장인성 증가율 = (실시예의 인장인성/비교예의 인장인성) × 100Increase in tensile toughness = (Tensile toughness in Examples/Tensile toughness in Comparative Examples) × 100
(2) 중량평균분자량(2) Weight average molecular weight
중량평균분자량은 용매로서 클로로포름을 사용한 겔투과 크로마토그래피(GPC) 측정에 의한 표준 폴리스티렌 환산의 중량평균분자량 값이다.The weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene by gel permeation chromatography (GPC) measurement using chloroform as a solvent.
GPC장비 : Waters사의 ACQUITY APC,GPC equipment: ACQUITY APC from Waters,
컬럼 : Waters사의 ACQUITY APC XTColumn: Waters ACQUITY APC XT
칼럼 온도: 40 ℃Column temperature: 40 ℃
유량: 0.6 ㎖/minFlow rate: 0.6 ml/min
[합성예 1][Synthesis Example 1]
Figure PCTKR2020001484-appb-img-000013
Figure PCTKR2020001484-appb-img-000013
아이소소바이드 (29.81 g, 0.204 mol), 1,4-시클로헥산디메탄올(1,4-Cyclohexanedimethanol, 12.61 g, 0.087 mol), 디페닐 카보네이트(diphenyl carbonate, 62.43 g, 0.291 mol), 테트라메틸암모늄 하이드록사이드(Tetramethylammonium hydroxide, 100 ㎎, 0.55 mmol)를 반응기에 투입한 후 150℃로 승온하여 중합을 시작하고 2시간동안 질소 분위기하에 기계적 교반을 진행하였다. 이 후, 180℃, 100 Torr 조건에서 1시간동안 페놀 부산물을 제거하였다. 이 후, 온도를 천천히 240℃까지 승온하고, 진공도를 0.1 mTorr이하까지 낮추었다. 30분 후, 반응을 멈추고 아이소소바이드 기반 폴리카보네이트를 수득하였다 (수득률: 49 g, 98%, 중량평균 분자량 : 71,000 g/mol, 몰분율 : n:m=0.7:0.3)Isosorbide (29.81 g, 0.204 mol), 1,4-Cyclohexanedimethanol (12.61 g, 0.087 mol), diphenyl carbonate (62.43 g, 0.291 mol), tetramethylammonium After adding hydroxide (Tetramethylammonium hydroxide, 100 mg, 0.55 mmol) to the reactor, the temperature was raised to 150°C to start polymerization, and mechanical stirring was performed under a nitrogen atmosphere for 2 hours. Thereafter, phenol by-products were removed for 1 hour at 180°C and 100 Torr. Thereafter, the temperature was slowly raised to 240°C, and the degree of vacuum was lowered to 0.1 mTorr or less. After 30 minutes, the reaction was stopped and an isosorbide-based polycarbonate was obtained (yield: 49 g, 98%, weight average molecular weight: 71,000 g/mol, molar fraction: n:m=0.7:0.3)
[실시예 1][Example 1]
상기 합성예 1에서 제조된 폴리카보네이트 10 g 및 나노셀룰로오스(평균직경 20㎚, 평균 길이 300㎚) 5 ㎎을 클로로포름 용매 100 g에 용해시킨 후 상온에서 2시간 동안 교반하였다. Bath sonicator를 이용하여 초음파 처리를 10분하고 용매를 50℃에서 24시간동안 휘발 건조시켜 폴리카보네이트 복합소재를 제조하였다.10 g of polycarbonate prepared in Synthesis Example 1 and 5 mg of nanocellulose (average diameter 20 nm, average length 300 nm) were dissolved in 100 g of a chloroform solvent, followed by stirring at room temperature for 2 hours. 10 minutes of sonication using a bath sonicator and the solvent was evaporated to dryness at 50° C. for 24 hours to prepare a polycarbonate composite material.
[실시예 2][Example 2]
상기 실시예 1에서 나노셀룰로오스를 10㎎을 사용한 것을 제외하고는 동일하게 실시하였다.In Example 1, the same procedure was performed except that 10 mg of nanocellulose was used.
[실시예 3][Example 3]
상기 실시예 1에서 나노셀룰로오스를 30㎎을 사용한 것을 제외하고는 동일하게 실시하였다.In Example 1, the same procedure was performed except that 30 mg of nanocellulose was used.
[실시예 4][Example 4]
상기 실시예 1에서 나노셀룰로오스를 50㎎을 사용한 것을 제외하고는 동일하게 실시하였다.In Example 1, the same procedure was performed except that 50 mg of nanocellulose was used.
[실시예 5][Example 5]
상기 실시예 1에서 나노셀룰로오스를 0.5㎎을 사용한 것을 제외하고는 동일하게 실시하였다.In Example 1, except for using 0.5 mg of nanocellulose, the same procedure was performed.
[실시예 6][Example 6]
상기 실시예 1에서 나노셀룰로오스를 500㎎을 사용한 것을 제외하고는 동일하게 실시하였다.In Example 1, the same procedure was performed except that 500 mg of nanocellulose was used.
[실시예 7][Example 7]
아이소소바이드 (29.81 g, 0.204 mol)을 질소 분위기에서 60℃로 승온하여 용융시킨 후 나노셀룰로오스 25㎎을 투입하였다. 상기 물질을 2분 동안 probe-tip 초음파 처리하여 나노셀룰로오스를 균일하게 분산시켰다. 상기 분산물에 1,4-시클로헥산디메탄올(1,4-Cyclohexanedimethanol, 12.61 g, 0.087 mol), 디페닐 카보네이트(diphenyl carbonate, 62.43 g, 0.291 mol), 테트라메틸암모늄 하이드록사이드(100 ㎎, 0.55 mmol)를 반응기에 투입한 후 150℃로 승온하여 중합을 시작하고 2시간동안 질소 분위기에서 기계적 교반을 진행하였다. 이 후, 180℃, 100 Torr 조건에서 1시간동안 페놀 부산물을 제거하였다. 그 후, 온도를 천천히 240℃까지 승온하고, 진공도를 0.1 mTorr이하까지 낮추었다. 30분 후, 반응을 멈추고 폴리카보네이트 복합소재를 수득하였다 (수득률: 49 g, 98%, 중량평균 분자량 : 69,000 g/mol)Isosorbide (29.81 g, 0.204 mol) was heated to 60°C in a nitrogen atmosphere and melted, and then 25 mg of nanocellulose was added. Nano-cellulose was uniformly dispersed by probe-tip sonication for 2 minutes. 1,4-cyclohexanedimethanol (1,4-Cyclohexanedimethanol, 12.61 g, 0.087 mol), diphenyl carbonate (62.43 g, 0.291 mol), tetramethylammonium hydroxide (100 mg, 0.55 mmol) was added to the reactor and then heated to 150°C to initiate polymerization and mechanical stirring was performed in a nitrogen atmosphere for 2 hours. Thereafter, phenol by-products were removed for 1 hour at 180°C and 100 Torr. Thereafter, the temperature was slowly raised to 240°C, and the degree of vacuum was lowered to 0.1 mTorr or less. After 30 minutes, the reaction was stopped and a polycarbonate composite material was obtained (yield: 49 g, 98%, weight average molecular weight: 69,000 g/mol)
[실시예 8][Example 8]
상기 실시예 7에서 나노셀룰로오스를 50㎎을 사용한 것을 제외하고는 동일하게 실시하였다.(수득률: 49 g, 98%, 중량평균 분자량 : 69,000 g/mol)In Example 7, the same procedure was performed except that 50 mg of nanocellulose was used. (Yield: 49 g, 98%, weight average molecular weight: 69,000 g/mol)
[실시예 9][Example 9]
상기 실시예 7에서 나노셀룰로오스를 150㎎을 사용한 것을 제외하고는 동일하게 실시하였다.(수득률: 48 g, 97.5%, 중량평균 분자량 : 81,000 g/mol)In Example 7, the same procedure was performed except that 150 mg of nanocellulose was used. (Yield: 48 g, 97.5%, Weight average molecular weight: 81,000 g/mol)
[실시예 10][Example 10]
상기 실시예 7에서 나노셀룰로오스를 250㎎을 사용한 것을 제외하고는 동일하게 실시하였다.(수득률: 49 g, 98%, 중량평균 분자량 : 61,000 g/mol)In Example 7, nanocellulose was used in the same manner, except that 250 mg was used. (Yield: 49 g, 98%, weight average molecular weight: 61,000 g/mol)
[실시예 11][Example 11]
상기 실시예 7에서 나노셀룰로오스를 2.5㎎을 사용한 것을 제외하고는 동일하게 실시하였다.(수득률: 49 g, 98%, 중량평균 분자량 : 70,000 g/mol)In Example 7, the same procedure was performed except that 2.5 mg of nanocellulose was used (yield: 49 g, 98%, weight average molecular weight: 70,000 g/mol).
[실시예 12][Example 12]
상기 실시예 7에서 나노셀룰로오스를 2,500㎎을 사용한 것을 제외하고는 동일하게 실시하였다.(수득률: 49 g, 98%, 중량평균 분자량 : 27,000 g/mol)In Example 7, nanocellulose was used in the same manner, except that 2,500 mg was used. (Yield: 49 g, 98%, weight average molecular weight: 27,000 g/mol)
[비교예 1][Comparative Example 1]
합성예 1로 제조된 폴리카보네이트의 물성을 측정하였다.The physical properties of the polycarbonate prepared in Synthesis Example 1 were measured.
[비교예 2][Comparative Example 2]
Figure PCTKR2020001484-appb-img-000014
Figure PCTKR2020001484-appb-img-000014
비스페놀-A기반 폴리카보네이트(시그마 알드리치사, 중량평균분자량 : 45,000g/mol)의 물성을 측정하였다.The properties of bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) were measured.
[비교예 3][Comparative Example 3]
상기 실시예 1에서 합성예 1에서 제조된 폴리카보네이트를 대신하여 비스페놀-A기반 폴리카보네이트(시그마 알드리치사, 중량평균분자량 : 45,000g/mol)를 사용한 것을 제외하고는 동일하게 실시하였다.In Example 1, in place of the polycarbonate prepared in Synthesis Example 1, bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) was used in the same manner.
[비교예 4][Comparative Example 4]
상기 실시예 3에서 합성예 1에서 제조된 폴리카보네이트를 대신하여 비스페놀-A기반 폴리카보네이트(시그마 알드리치사, 중량평균분자량 : 45,000g/mol)를 사용한 것을 제외하고는 동일하게 실시하였다.In Example 3, in place of the polycarbonate prepared in Synthesis Example 1, bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) was used in the same manner.
[비교예 5][Comparative Example 5]
상기 실시예 4에서 합성예 1에서 제조된 폴리카보네이트를 대신하여 비스페놀-A기반 폴리카보네이트(시그마 알드리치사, 중량평균분자량 : 45,000g/mol)를 사용한 것을 제외하고는 동일하게 실시하였다.In Example 4, in place of the polycarbonate prepared in Synthesis Example 1, bisphenol-A-based polycarbonate (Sigma Aldrich, weight average molecular weight: 45,000 g/mol) was used in the same manner.
[비교예 6][Comparative Example 6]
Figure PCTKR2020001484-appb-img-000015
Figure PCTKR2020001484-appb-img-000015
폴리프로필렌카보네이트(시그마 알드리치사, 중량평균분자량 : 50,000g/mol)의 물성을 측정하였다.The properties of polypropylene carbonate (Sigma Aldrich, weight average molecular weight: 50,000 g/mol) were measured.
[비교예 7][Comparative Example 7]
상기 실시예 3에서 합성예 1에서 제조된 폴리카보네이트를 대신하여 폴리프로필렌카보네이트(시그마 알드리치사, 중량평균분자량 : 50,000g/mol)를 사용한 것을 제외하고는 동일하게 실시하였다.It was carried out in the same manner as in Example 3, except that polypropylene carbonate (Sigma Aldrich, weight average molecular weight: 50,000 g/mol) was used instead of the polycarbonate prepared in Synthesis Example 1.
[비교예 8][Comparative Example 8]
상기 실시예 3에서 나노셀룰로오스 30 mg을 대신하여 셀룰로오스(평균직경 5㎛, 최장길이 20㎛) 30 mg을 사용한 것을 제외하고는 동일하게 실시하였다.In Example 3, 30 mg of cellulose (average diameter 5 μm, longest length 20 μm) was used instead of 30 mg of nanocellulose, and the same procedure was performed.
인장강도(MPa)Tensile strength (MPa) 인장신율(%)Tensile Elongation (%) 인장신율 증가율(%) Tensile elongation increase rate (%) 인장인성(MJ/㎥)Tensile Toughness (MJ/㎥) 인장인성 증가율(%)Tensile toughness increase rate (%)
실시예 1Example 1 8181 3030 200200 1818 194194
실시예 2Example 2 8585 2424 160160 1515 161161
실시예 3Example 3 9393 5454 360360 4040 430430
실시예 4Example 4 7575 2828 187187 1616 172172
실시예 5Example 5 8181 1717 113113 9.59.5 102102
실시예 6Example 6 4545 33 2020 1One 1111
실시예 7Example 7 8181 3838 253253 2323 247247
실시예 8Example 8 7979 5050 333333 3131 333333
실시예 9Example 9 7777 5555 367367 3333 355355
실시예 10Example 10 7373 4545 300300 2828 301301
실시예 11Example 11 8080 1818 120120 2323 103103
실시예 12Example 12 3535 22 1313 0.30.3 33
비교예 1Comparative Example 1 8383 1515 -- 9.39.3 --
비교예 2Comparative Example 2 6767 5151 -- 2929 --
비교예 3Comparative Example 3 6969 5151 100100 2828 9797
비교예 4Comparative Example 4 7070 5757 111111 3333 113113
비교예 5Comparative Example 5 6969 5656 109109 3131 107107
비교예 6Comparative Example 6 3838 270270 -- 5555 --
비교예 7Comparative Example 7 4040 275275 102102 5757 104104
비교예 8Comparative Example 8 8585 55 3333 33 3232
표 1에 나타낸 바와 같이, 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 우수한 인장강도를 구현하면서, 나노셀룰로오스를 포함하지 않는 폴리카보네이트 대비, 인장인성 및 인장신율이 현저하게 증가되는 것을 확인할 수 있었다. 이는 도 1에 도시된 바와 같이 나노셀룰로오스를 포함하지 않는 비교예 1(a)의 계면에 대비하여 본 발명의 복합소재의 계면의 거칠기가 증대함을 통하여 기계적 강도의 향상을 대변할 수 있는 것이다.As shown in Table 1, while the polycarbonate-nanocellulose composite material according to the present invention realizes excellent tensile strength, it was confirmed that tensile strength and tensile elongation are significantly increased compared to polycarbonate that does not contain nanocellulose. . This can represent an improvement in mechanical strength by increasing the roughness of the interface of the composite material of the present invention as compared to the interface of Comparative Example 1(a) not containing nanocellulose as shown in FIG. 1.
더욱이, 폴리카보네이트 100중량부 대비 나노셀룰로오스의 함량을 0.01 내지 4중량부로 포함하였을 때, 더욱 우수한 기계적 물성 상승효과를 구현할 수 있는 것을 확인하였다. Moreover, when the content of nanocellulose compared to 100 parts by weight of polycarbonate was included in an amount of 0.01 to 4 parts by weight, it was confirmed that a better synergistic effect of mechanical properties could be realized.
더욱이, 용액공정 뿐만 아니라 in-situ법으로 제조될 경우 더욱 우수한 향상효과를 구현할 수 있음을 확인하였다.Moreover, it was confirmed that a better improvement effect can be realized when it is manufactured by an in-situ method as well as a solution process.
또한, 방향족 폴리카보네이트는 물론이고, 지방족 폴리카보네이트의 경우도 나노셀룰로오스를 포함하고, 같은 조건으로 제조하여도 인장신율 및 인장인성의 증가율은 미미한 것을 통하여 본 발명에 따른 폴리카보네이트와 나노셀룰로오스 만의 조합에 의하여 발현되는 우수한 효과임을 확인할 수 있었다. In addition, aromatic polycarbonates, as well as aliphatic polycarbonates, include nanocellulose, and even under the same conditions, the tensile elongation and the increase in tensile toughness are insignificant. It was confirmed that it is an excellent effect expressed by.
또한, 본 발명에 따른 폴리카보네이트-나노셀룰로오스 복합소재는 나노크기의 나노셀룰로오스가 아닌 마이크로 단위의 셀룰로오스를 포함하여 제조할 경우 인장신율 및 인장인성이 현저히 낮은 값을 가지는 것을 확인할 수 있었다. In addition, it was confirmed that the polycarbonate-nanocellulose composite material according to the present invention has a significantly lower tensile elongation and tensile toughness when manufactured by including micro-scale cellulose rather than nano-sized nanocellulose.
이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.The present invention described above is merely exemplary, and those skilled in the art to which the present invention pertains will appreciate that various modifications and other equivalent embodiments are possible. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and should not be determined, and all claims that are equivalent or equivalent to the scope of the claims as well as the claims described below will be included in the scope of the spirit of the invention. .

Claims (11)

  1. 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트 및 나노셀룰로오스를 포함하는 폴리카보네이트-나노셀룰로오스 복합소재.A polycarbonate-nanocellulose composite material comprising polycarbonate and nanocellulose comprising a repeating unit represented by Formula 1 below.
    [화학식 1][Formula 1]
    Figure PCTKR2020001484-appb-img-000016
    Figure PCTKR2020001484-appb-img-000016
  2. 제 1항에 있어서,According to claim 1,
    상기 나노셀룰로오스는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 4중량부로 포함되는 폴리카보네이트-나노셀룰로오스 복합소재.The nanocellulose is a polycarbonate-nanocellulose composite material contained in 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
  3. 제 1항에 있어서,According to claim 1,
    상기 폴리카보네이트는 총 중량에 대하여, 상기 화학식 1로 표시되는 반복단위를 50 내지 90중량% 포함하는 폴리카보네이트-나노셀룰로오스 복합소재.The polycarbonate is a polycarbonate-nanocellulose composite material containing 50 to 90% by weight of the repeating unit represented by Formula 1, based on the total weight.
  4. 제 1항에 있어서,According to claim 1,
    상기 나노셀룰로오스는 평균직경이 2 내지 200㎚이고, 최장길이가 100㎚ 내지 10㎛인 셀룰로오스를 포함하는 폴리카보네이트-나노셀룰로오스 복합소재.The nanocellulose is a polycarbonate-nanocellulose composite material comprising cellulose having an average diameter of 2 to 200 nm and a longest length of 100 nm to 10 μm.
  5. 제 1항에 있어서,According to claim 1,
    상기 폴리카보네이트-나노셀룰로오스 복합소재는 하기 식 1을 만족하는 인장신율을 갖는 폴리카보네이트-나노셀룰로오스 복합소재.The polycarbonate-nanocellulose composite material is a polycarbonate-nanocellulose composite material having a tensile elongation that satisfies Equation 1 below.
    [식 1][Equation 1]
    Figure PCTKR2020001484-appb-img-000017
    Figure PCTKR2020001484-appb-img-000017
    상기 식 1에 있어서,In the above formula 1,
    상기 TE 0는 나노셀룰로오스를 포함하지 않는 폴리카보네이트의 인장신율(%)이고, 상기 TE 1은 폴리카보네이트-나노셀룰로오스 복합소재의 인장신율(%)이다.The TE 0 is the tensile elongation (%) of the polycarbonate that does not contain nanocellulose, and the TE 1 is the tensile elongation (%) of the polycarbonate-nanocellulose composite material.
  6. 제 1항에 있어서,According to claim 1,
    상기 폴리카보네이트-나노셀룰로오스 복합소재는 하기 식 2를 만족하는 인장인성을 갖는 폴리카보네이트-나노셀룰로오스 복합소재.The polycarbonate-nanocellulose composite material is a polycarbonate-nanocellulose composite material having a tensile toughness that satisfies Expression 2 below.
    [식 2][Equation 2]
    Figure PCTKR2020001484-appb-img-000018
    Figure PCTKR2020001484-appb-img-000018
    상기 식 2에 있어서,In the formula 2,
    상기 TT 0는 나노셀룰로오스를 포함하지 않는 폴리카보네이트의 인장인성(MJ/㎥)이고, 상기 TT 1은 폴리카보네이트-나노셀룰로오스 복합소재의 인장인성(MJ/㎥)이다.The TT 0 is the tensile toughness (MJ/㎥) of the polycarbonate that does not contain nanocellulose, and the TT 1 is the tensile toughness (MJ/㎥) of the polycarbonate-nanocellulose composite material.
  7. a) 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트 및 나노셀룰로오스를 용매에 혼합 및 분산하여 분산액을 제조하는 단계 및a) preparing a dispersion by mixing and dispersing polycarbonate and nanocellulose containing a repeating unit represented by the following Chemical Formula 1 in a solvent, and
    b) 상기 분산액을 건조하여 복합소재를 제조하는 단계b) drying the dispersion to prepare a composite material
    를 포함하는 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법.Method for producing a polycarbonate-nanocellulose composite material comprising a.
    [화학식 1][Formula 1]
    Figure PCTKR2020001484-appb-img-000019
    Figure PCTKR2020001484-appb-img-000019
  8. 제 7항에 있어서,The method of claim 7,
    상기 나노셀룰로오스는 상기 폴리카보네이트 100중량부에 대하여, 0.01 내지 4중량부로 포함되는 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법.The nanocellulose is a method for producing a polycarbonate-nanocellulose composite material contained in 0.01 to 4 parts by weight based on 100 parts by weight of the polycarbonate.
  9. A) 아이소소바이드 및 나노셀룰로오스를 혼합 및 분산하여 분산물을 제조하는 단계 및A) preparing a dispersion by mixing and dispersing isosorbide and nanocellulose, and
    B) 상기 분산물에 탄산디에스테르를 투입하여 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리카보네이트를 중합하는 단계B) polymerizing a polycarbonate containing a repeating unit represented by the following Chemical Formula 1 by injecting diester carbonate into the dispersion.
    를 포함하는 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법.Method for producing a polycarbonate-nanocellulose composite material comprising a.
    [화학식 1][Formula 1]
    Figure PCTKR2020001484-appb-img-000020
    Figure PCTKR2020001484-appb-img-000020
  10. 제 9항에 있어서,The method of claim 9,
    상기 A)단계 이후, 상기 분산물에 디올 화합물을 더 포함하여 중합하는 것인 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법.After the step A), a method for producing a polycarbonate-nanocellulose composite material that is further polymerized by further containing a diol compound in the dispersion.
  11. 제 10항에 있어서,The method of claim 10,
    상기 디올 화합물 및 아이소소바이드는 10:90 내지 50:50중량비로 포함하는 폴리카보네이트-나노셀룰로오스 복합소재의 제조방법.The method for producing a polycarbonate-nanocellulose composite material comprising the diol compound and isosorbide in a weight ratio of 10:90 to 50:50.
PCT/KR2020/001484 2019-02-01 2020-01-31 Polycarbonate-nanocellulose composite material and method for manufacturing same WO2020159282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190013580A KR102116440B1 (en) 2019-02-01 2019-02-01 Polycarbonate-nanocellulose composite material and method for preparing the same
KR10-2019-0013580 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020159282A1 true WO2020159282A1 (en) 2020-08-06

Family

ID=70920186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001484 WO2020159282A1 (en) 2019-02-01 2020-01-31 Polycarbonate-nanocellulose composite material and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6858284B2 (en)
KR (1) KR102116440B1 (en)
WO (1) WO2020159282A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059980A4 (en) * 2019-11-11 2023-12-13 Samyang Corporation Polycarbonate composite using solid dispersion or molten dispersion of anhydrosugar alcohol, producing method thereof, and molded article comprising same
KR102485784B1 (en) * 2020-07-21 2023-01-09 한국화학연구원 Nanocellulose-polyester-composite material and method for preparing the same
JPWO2022019198A1 (en) 2020-07-22 2022-01-27
KR20220026152A (en) * 2020-08-25 2022-03-04 현대자동차주식회사 Composite film and method for preparing the same
KR102454215B1 (en) * 2021-01-22 2022-10-14 한국화학연구원 Polybutylene succinate-carbonate cross-linked copolymer-nanocellulose composite material and its manufacturing method.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036954A (en) * 2004-07-28 2006-02-09 Teijin Ltd Polycarbonate composition and method for producing the same
KR20150004084A (en) * 2013-07-02 2015-01-12 주식회사 삼양사 Isosorbide-aromatic polycarbonate copolymer and method for preparing the same
JP2016156031A (en) * 2010-08-25 2016-09-01 三菱化学株式会社 Polycarbonate resin composition and molded part
KR20170070576A (en) * 2015-12-14 2017-06-22 주식회사 엘지화학 Isosobide polycarbonate resin composition and molded article comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332210B2 (en) * 2008-01-16 2013-11-06 三菱化学株式会社 Cellulose fiber composite material and method for producing the same
JP2014001263A (en) * 2012-06-15 2014-01-09 Sumitomo Seika Chem Co Ltd Aliphatic polycarbonate resin composition
JP5940933B2 (en) * 2012-08-08 2016-06-29 花王株式会社 Resin composition
JP2014074145A (en) * 2012-10-05 2014-04-24 Olympus Corp Cellulose nanofiber and method for producing the same, composite resin composition, and molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036954A (en) * 2004-07-28 2006-02-09 Teijin Ltd Polycarbonate composition and method for producing the same
JP2016156031A (en) * 2010-08-25 2016-09-01 三菱化学株式会社 Polycarbonate resin composition and molded part
KR20150004084A (en) * 2013-07-02 2015-01-12 주식회사 삼양사 Isosorbide-aromatic polycarbonate copolymer and method for preparing the same
KR20170070576A (en) * 2015-12-14 2017-06-22 주식회사 엘지화학 Isosobide polycarbonate resin composition and molded article comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, GWANG-SEOK ET AL.: "The Properties of Polyurethane with Dispersed Nanocellulose", PROCEEDINGS OF CONFERENCE OF THE KOREA TECHNICAL ASSOCIATION OF THE PULP AND PAPER INDUSTRY, October 2018 (2018-10-01), pages 19 *

Also Published As

Publication number Publication date
KR102116440B1 (en) 2020-05-28
JP2020125473A (en) 2020-08-20
JP6858284B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2020159282A1 (en) Polycarbonate-nanocellulose composite material and method for manufacturing same
WO2015002427A1 (en) Polyorganosiloxane compound, method for preparing same, and copolycarbonate resin comprising same
WO2015041441A1 (en) Copolycarbonate resin and product comprising same
WO2012060516A1 (en) Polycarbonate resin and thermoplastic resin composition including polycarbonate resin
WO2013047955A1 (en) Polycarbonate and method for preparing same
WO2014092243A1 (en) Polycarbonate resin, production method for same, and moulded article comprising same
WO2017164504A1 (en) Poly(lactic acid) resin composition and molded product comprising same
WO2013100288A1 (en) Branched polycarbonate-polysiloxane copolymer and preparation method thereof
WO2013077490A1 (en) Polycarbonate, production method for same and optical film comprising same
WO2014181999A1 (en) Polyoxymethylene composition
WO2020138802A1 (en) Thermoplastic resin composition and molded article therefrom
WO2016195312A1 (en) Polycarbonate resin and preparation method therefor
WO2021066438A1 (en) Polymer composite material comprising aramid nanofiber, and method for preparing same
WO2013176349A1 (en) Novel polysiloxane, method for preparing same and polycarbonate-polysiloxane copolymer comprising same
WO2013042827A1 (en) Polycarbonate and a production method therefor
WO2023234584A1 (en) Polycarbonate copolymer
WO2020138772A1 (en) Thermoplastic resin composition and molded article therefrom
WO2021112473A1 (en) Polycarbonate composition and optical product formed therefrom
WO2017073929A1 (en) Ionizing radiation resistant polycarbonate resin composition and molded article containing same
WO2021085867A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2018182328A1 (en) Polymer composition and film using same
WO2010140804A2 (en) Norbornene resins for encapsulating optical device
WO2016137065A1 (en) Polyester carbonate resin, preparation method therefor, and molded product comprising same
WO2023018136A1 (en) Polycarbonate copolymer
WO2019212222A1 (en) Thermoplastic resin composition and molded article comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749664

Country of ref document: EP

Kind code of ref document: A1