JP2006036954A - Polycarbonate composition and method for producing the same - Google Patents

Polycarbonate composition and method for producing the same Download PDF

Info

Publication number
JP2006036954A
JP2006036954A JP2004219931A JP2004219931A JP2006036954A JP 2006036954 A JP2006036954 A JP 2006036954A JP 2004219931 A JP2004219931 A JP 2004219931A JP 2004219931 A JP2004219931 A JP 2004219931A JP 2006036954 A JP2006036954 A JP 2006036954A
Authority
JP
Japan
Prior art keywords
polycarbonate
cellulose
polycarbonate composition
isosorbide
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219931A
Other languages
Japanese (ja)
Other versions
JP4310248B2 (en
Inventor
Fumi Ono
文 大野
Kiyotsuna Toyohara
清綱 豊原
Hiromasa Minematsu
宏昌 峯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004219931A priority Critical patent/JP4310248B2/en
Publication of JP2006036954A publication Critical patent/JP2006036954A/en
Application granted granted Critical
Publication of JP4310248B2 publication Critical patent/JP4310248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new polycarbonate that includes the parts derived from renewable resources and shows more suppressed decomposition properties than that of the conventional polycarbonate. <P>SOLUTION: This polycarbonate composition is produced by adding cellulose to a polycarbonate including a specific aliphatic alkylene glycol residual group and ether diol residual group and melt-kneading the mixture. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は再生可能資源からも誘導されうる部分を含有するポリカーボネート組成物に関する。   The present invention relates to polycarbonate compositions containing moieties that can also be derived from renewable resources.

一般にポリカーボネートは石油資源から得られる原料を用いて製造されるが、石油資源の枯渇が懸念されており、植物などの再生可能資源から得られる原料を用いたポリマーの製造が求められており、式(2)に示したエーテルジオールは、再生可能資源、たとえば糖類およびでんぷんなどから容易に作られ、3種の立体異性体が知られている。   Polycarbonate is generally produced using raw materials obtained from petroleum resources. However, there is concern about the exhaustion of petroleum resources, and there is a demand for production of polymers using raw materials obtained from renewable resources such as plants. The ether diol shown in (2) is easily made from renewable resources such as sugars and starch, and three stereoisomers are known.

Figure 2006036954
Figure 2006036954

具体的には式(3)に示す、1,4:3,6−ジアンヒドロ−D−ソルビトール(以下、「イソソルビド」と略記することがある。)、式(4)に示す、1,4:3,6−ジアンヒドロ−D−マンニトール(以下、「イソマンニド」と略記することがある。)、式(5)に示す、1,4:3,6−ジアンヒドロ−L−イジトール(以下、「イソイディッド」と略記することがある。)であり、イソソルビド、イソマンニド、イソイディッドはそれぞれD−グルコース、D−マンノース、L−イドースから得られる。たとえばイソソルビドの場合、D−グルコースを水添した後、酸触媒を用いて脱水することにより得ることができる。   Specifically, 1,4: 3,6-dianhydro-D-sorbitol (hereinafter sometimes abbreviated as “isosorbide”) represented by formula (3), 1,4: represented by formula (4). 3,6-dianhydro-D-mannitol (hereinafter sometimes abbreviated as “isomannide”), 1,4: 3,6-dianhydro-L-iditol (hereinafter “isoidid”) represented by the formula (5) And isosorbide, isomannide, and isoidide are obtained from D-glucose, D-mannose, and L-idose, respectively. For example, isosorbide can be obtained by hydrogenating D-glucose and then dehydrating it using an acid catalyst.

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

また、ポリカーボネートとして脂肪族ポリカーボネートも知られているが、上記のエーテルジオールの中でも、特に、モノマーとしてイソソルビドを中心に用いてポリカーボネートに組み込むことが検討されてきた(特許文献1、非特許文献1、2、3等参照。)。
たとえば、イソソルビドとさまざまなジフェノールとのコポリカーボネートの製造方法が報告されている(たとえば、特許文献2、非特許文献4、5、6参照。)が、これらの原料は石油のみを原料とするという問題を抱えている。
Aliphatic polycarbonates are also known as polycarbonates. Among the ether diols described above, in particular, incorporation into polycarbonate using isosorbide as a monomer has been studied (Patent Document 1, Non-Patent Document 1, (See 2, 3 etc.).
For example, a method for producing a copolycarbonate of isosorbide and various diphenols has been reported (see, for example, Patent Document 2, Non-Patent Documents 4, 5, and 6), but these raw materials are only petroleum. Have a problem.

一方、脂肪族ジオールより誘導されたポリカーボネートについてはエチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,10−デカンジオールから誘導されたポリカーボネートのガラス転移温度はそれぞれ0〜5℃、−35℃、−41℃、−50℃である(たとえば、非特許文献7、8参照。)。
これら脂肪族ジオールから誘導されるポリカーボネートはその柔軟な構造の為、通常室温下でオイル状または低融点の固体であり、汎用プラスチックとしての用途には適さない。
On the other hand, for polycarbonates derived from aliphatic diols, the glass transition of polycarbonates derived from ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,10-decanediol. The temperatures are 0 to 5 ° C., −35 ° C., −41 ° C., and −50 ° C., respectively (see, for example, Non-Patent Documents 7 and 8).
Polycarbonates derived from these aliphatic diols are usually oily or low-melting solids at room temperature because of their flexible structure, and are not suitable for use as general-purpose plastics.

これらの問題を解消すべく、成型加工性および耐熱性に優れる、イソソルビドと脂肪族ジオールとからなるポリカーボネートの開発が進められている。
その1つが1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオールなどの脂肪族ジオールとイソソルビドとの共重合ポリカーボネートである(非特許文献9、10等参照。)。
しかし、これらは石油資源由来のポリカーボネートに比べて生分解しやすいため、生分解されやすい環境にさらされるような用途への適用には問題があった(非特許文献10参照)。
In order to solve these problems, development of a polycarbonate composed of isosorbide and an aliphatic diol, which is excellent in molding processability and heat resistance, is in progress.
One of them is a copolymerized polycarbonate of an aliphatic diol such as 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, and isosorbide (Non-patent Document 9, 10 etc.).
However, since these are more easily biodegradable than petroleum-derived polycarbonate, there has been a problem in application to applications where they are exposed to an environment that is easily biodegraded (see Non-Patent Document 10).

独国特許出願公開第2938464号(特許請求の範囲)German Patent Application No. 2938464 (Claims) 特開昭56−110723号公報(特許請求の範囲)Japanese Patent Laid-Open No. 56-110723 (Claims) 「ズルナールフュアプラクティシュヘミー」(“Journal fuer praktische Chemie”)、1992年、第334巻、p.298〜310“Journal future praktische Chemie”, 1992, 334, p. 298-310 「マクロモレキュールズ」(“Macromolecules”),1996年、第29巻、p.8077〜8082“Macromolecules”, 1996, Vol. 29, p. 8077-8082 「ジャーナルオブアプライドポリマーサイエンス」(“Journal of Applied Polymer Science”)、2002年、第86巻、p.872〜880“Journal of Applied Polymer Science” (2002, Volume 86), p. 872-880 「マクロモレキュラーケミストリーアンドフィジックス」(“Macromolecular Chemistry and Physics”)1997年、第198巻、p.2197〜2210“Macromolecular Chemistry and Physics” 1997, Vol. 198, p. 2197-2210 「ジャーナルオブポリマーサイエンスパートエイ」(“Journal of Polymer Science:Part A”)、1997年、第35巻、p.1611〜1619“Journal of Polymer Science: Part A”, 1997, Vol. 35, p. 1611-1619 「ジャーナルオブポリマーサイエンスパートエイ」(“Journal of Polymer Science:Part A”)、1999年、第37巻、p.1125〜1133“Journal of Polymer Science: Part A”, 1999, vol. 37, p. 1125 to 1133 「ジャーナルオブポリマーサイエンス;ポリマーレターズエディション」(“Journal of Polymer Science: Polymer Letters Edition”),1980年、第18巻、p.599〜602“Journal of Polymer Science; Polymer Letters Edition” (“Journal of Polymer Science: Polymer Letters Edition”), 1980, Vol. 18, p. 599-602 「マクロモレキュラーケミストリーアンドフィジックス」(“Macromolecular Chemistry and Physics”)1998年、第199巻、p.97〜102“Macromolecular Chemistry and Physics” 1998, 199, p. 97-102 岡田他、文部科学省科学研究費補助金特定領域研究(B)「環境低負荷高分子」再生可能資源からの環境低負荷プラスチックの生産に基づく持続型材料システムの構築第7回公開シンポジウム講演要旨集、2002年、p.26〜29Okada et al., Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Scientific Research (B) “Environmentally low load polymer” Construction of sustainable material system based on production of environmentally low load plastic from renewable resources Shu, 2002, p. 26-29 「ジャーナルオブポリマーサイエンスパートエイ」(“Journal of Polymer Science:Part A”)、2003年、第41巻、p.2312〜2321"Journal of Polymer Science: Part A", 2003, vol. 41, p. 2312-2321

本発明は、再生可能資源からも誘導されうる部分を含有し、現状の脂肪族ポリカーボネートよりも分解性の抑制された新規なポリカーボネートを提供することを目的とする。   An object of the present invention is to provide a novel polycarbonate containing a part that can be derived from renewable resources and having a degradability suppressed as compared with the present aliphatic polycarbonate.

本発明者らは上記従来技術に鑑み、鋭意検討を重ね、特にポリカーボネートの生分解性について検討した結果、イソソルビドに代表されるエーテルジオールと脂肪族ジオールとを共重合させたポリカーボネートに更にセルロースを含有させることにより、生分解性の抑制されたポリカーボネート組成物が得られることを見出し、さらに検討を重ね、本発明を完成するに至った。   In light of the above prior art, the present inventors have made extensive studies and, in particular, have studied the biodegradability of polycarbonate, and as a result, further contain cellulose in a polycarbonate copolymerized with an ether diol typified by isosorbide and an aliphatic diol. As a result, it was found that a polycarbonate composition with suppressed biodegradability was obtained, and further studies were made to complete the present invention.

すなわち、本発明の目的は
セルロースと、下記一般式(a)で表される脂肪族アルキレングリコール残基および下記構造式(1)で表されるエーテルジオール残基を含んでなるポリカーボネートとからなるポリカーボネート組成物によって達成される。
That is, the object of the present invention is a polycarbonate comprising cellulose and a polycarbonate comprising an aliphatic alkylene glycol residue represented by the following general formula (a) and an ether diol residue represented by the following structural formula (1). Achieved by the composition.

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

本発明によれば、イソソルビドに代表されるエーテルジオールと脂肪族ジオールとを共重合させた上、セルロースを混練することにより、生分解性の抑制されたポリカーボネート組成物を得ることができる。   According to the present invention, a polycarbonate composition with suppressed biodegradability can be obtained by copolymerizing an ether diol represented by isosorbide and an aliphatic diol and then kneading cellulose.

以下に、本発明を更に詳細に説明する。
本発明にかかわるポリカーボネートは下記一般式(a)で示される脂肪族アルキレングリコール残基および下記構造式(1)で表されるエーテルジオール残基を含んでなる。
Hereinafter, the present invention will be described in more detail.
The polycarbonate according to the present invention comprises an aliphatic alkylene glycol residue represented by the following general formula (a) and an ether diol residue represented by the following structural formula (1).

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

すなわち、得られるポリカーボネートは、下記式(6)の繰り返し単位部分と下記式(7)の繰り返し単位部分とを有するものとなる。   That is, the obtained polycarbonate has a repeating unit part of the following formula (6) and a repeating unit part of the following formula (7).

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

ここで、前記構造式(1)で表されるエーテルジオール残基は全ジオール残基中、65〜98重量%を占めることが好ましく、更には全ジオール残基中、80−98重量%を占めることが好ましい。   Here, the ether diol residue represented by the structural formula (1) preferably occupies 65 to 98% by weight in all diol residues, and further occupies 80 to 98% by weight in all diol residues. It is preferable.

該エーテルジオールの含有量がこの範囲よりも少なくなると、得られる樹脂の粘度が下がり、脆いポリマーになる。一方、エーテルジオールの含有量がこの範囲よりも多くなると、ガラス転移温度や溶融粘度が非常に高くなり、成型加工が困難になる。   When the content of the ether diol is less than this range, the viscosity of the resulting resin is lowered and a brittle polymer is obtained. On the other hand, when the content of ether diol exceeds this range, the glass transition temperature and the melt viscosity become very high, and the molding process becomes difficult.

本発明にかかわるポリカーボネートに用いるエーテルジオールは、下記構造式(2)の構造を有し、それぞれ構造式(3)、(4)及び(5)で表される、イソソルビド、イソマンニド、イソイディッド、などが知られている。これら糖質由来のエーテルジオールは、自然界のバイオマスからも得られる物質で、再生可能資源と呼ばれるものの1つである。   The ether diol used in the polycarbonate according to the present invention has the structure of the following structural formula (2), and is represented by structural formulas (3), (4) and (5), respectively, such as isosorbide, isomannide, and isoidide. Are known. These saccharide-derived ether diols are substances obtained from natural biomass and are one of so-called renewable resources.

イソソルビドは、でんぷんから得られるD−グルコースに水添した後、脱水を受けさせることにより得られる。他の他のエーテルジオールについても、出発物質を除いて同様の反応により得られる。   Isosorbide is obtained by hydrogenating D-glucose obtained from starch and then dehydrating it. Other ether diols can be obtained by the same reaction except for the starting materials.

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

Figure 2006036954
Figure 2006036954

特にイソソルビドを原料の一つとして使用した、糖質由来のエーテルジオール残基としてイソソルビド残基を含んでなるポリカーボネートが好ましい。イソソルビドはでんぷんなどから簡単に作ることができるエーテルジオールであり資源として豊富に入手することができる上、イソマンニドやイソイディッドと比べても製造の容易さ、性質、用途の幅広さの全てにおいて優れている。   In particular, a polycarbonate containing an isosorbide residue as a saccharide-derived ether diol residue using isosorbide as one of the raw materials is preferable. Isosorbide is an ether diol that can be easily made from starch, etc., and can be obtained in abundant resources. In addition, it is superior in ease of manufacture, properties, and wide range of applications compared to isomannide and isoidide. .

本発明に係わるポリカーボネートは、ガラス転移温度が少なくとも80℃以上であることが好ましい。ガラス転移温度は成形物の耐熱性や、溶融成形性にとって重要であり、実用的に十分な耐熱性と成形性を維持する為にはより好ましくは100℃以上160℃以下である。   The polycarbonate according to the present invention preferably has a glass transition temperature of at least 80 ° C or higher. The glass transition temperature is important for the heat resistance and melt moldability of the molded product, and is preferably 100 ° C. or higher and 160 ° C. or lower in order to maintain practically sufficient heat resistance and moldability.

本発明にかかわるポリカーボネートの製造方法に用いる炭酸ジエステルとしては、たとえばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等があげられ、なかでも反応性、コスト面からジフェニルカーボネートが好ましい。   Examples of the carbonic acid diester used in the polycarbonate production method according to the present invention include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Diphenyl carbonate is preferred.

本発明にかかわるポリカーボネート組成物は、例えば、ホスゲンなどカルボニルハライドを出発物質とする方法、炭酸エステルを出発物質とする方法、二酸化炭素や炭酸塩を出発物質とする方法などにより重合することができるが、環境問題という点などから溶融重合法が良い。   The polycarbonate composition according to the present invention can be polymerized by, for example, a method using carbonyl halide such as phosgene as a starting material, a method using carbonate ester as a starting material, a method using carbon dioxide or carbonate as a starting material, and the like. In view of environmental problems, the melt polymerization method is preferable.

本発明にかかわる溶融重合法では、重合触媒の存在下、原料であるジオールと炭酸ジエステルとを常圧で加熱し、予備反応させた後、減圧下で280℃以下の温度で加熱しながら撹拌して、生成するフェノールを留出させる。原料であるジオールは少なくとも式(2)で表されるエーテルジオールとを含む。系は窒素などの原料、反応混合物、反応生成物に対し不活性なガスの雰囲気に保つことが好ましい。窒素以外の不活性ガスとしては、アルゴンなどを挙げることができる。   In the melt polymerization method according to the present invention, the raw material diol and carbonic acid diester are heated at normal pressure in the presence of a polymerization catalyst, preliminarily reacted, and then stirred while heating at a temperature of 280 ° C. or lower under reduced pressure. To distill the phenol produced. The diol as the raw material contains at least the ether diol represented by the formula (2). The system is preferably maintained in an atmosphere of a gas inert to the raw materials such as nitrogen, reaction mixture, and reaction products. Examples of inert gases other than nitrogen include argon.

反応初期に常圧で反応させるのは、オリゴマー化反応を進行させ、反応後期に減圧してフェノールを留去する際、未反応のモノマーが留出してモルバランスが崩れ、重合度が低下することを防ぐためである。本発明にかかわる製造方法においてはフェノールを適宜系(反応器)から除去することにより反応を進めることができる。そのためには、減圧することが効果的であり、好ましい。   The reaction at normal pressure at the beginning of the reaction is to proceed with the oligomerization reaction, and when the phenol is distilled off by reducing the pressure later in the reaction, the unreacted monomer distills out, the molar balance is lost, and the degree of polymerization decreases Is to prevent. In the production method according to the present invention, the reaction can be advanced by appropriately removing phenol from the system (reactor). For that purpose, it is effective and preferable to reduce the pressure.

本発明に係わる重合法において、エーテルジオールの分解を抑え、着色が少なく高粘度の樹脂を得るために、できるだけ低温の条件を用いることが好ましいが、重合反応を適切に進める為には重合温度は180℃以上280℃以下の範囲であることが好ましく、より好ましくは230℃以上260℃以下の範囲である。   In the polymerization method according to the present invention, it is preferable to use conditions as low as possible in order to suppress the decomposition of the ether diol and obtain a highly viscous resin with little coloration. It is preferable that it is the range of 180 degreeC or more and 280 degrees C or less, More preferably, it is the range of 230 degreeC or more and 260 degrees C or less.

本発明に係わる製造方法では触媒を用いることが好ましい。使用できる触媒は(i)含窒素塩基性化合物、(ii)アルカリ金属化合(iii)アルカリ土類金属化合物等である。これらは一種類を独立に使用しても、複数種使用してもよい。(i)と(ii)または(i)と(iii)または(i)と(ii)と(iii)の併用が好ましい場合が多い。   In the production method according to the present invention, it is preferable to use a catalyst. Catalysts that can be used are (i) nitrogen-containing basic compounds, (ii) alkali metal compounds (iii) alkaline earth metal compounds, and the like. One of these may be used independently, or a plurality of these may be used. The combination of (i) and (ii) or (i) and (iii) or (i), (ii) and (iii) is often preferred.

(i)については好ましくはテトラメチルアンモニウムヒドロキシド、(ii)については、好ましくはナトリウム塩類であり、中でも2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を用いることが特に好ましい。   (I) is preferably tetramethylammonium hydroxide, and (ii) is preferably a sodium salt, and it is particularly preferable to use 2,2-bis (4-hydroxyphenyl) propane disodium salt.

本発明にかかわるセルロースは結晶化度に関わらず用いることができるが、セルロースジアセテートやセルローストリアセテートなどのセルロース誘導体はあまり好ましくない。   Cellulose according to the present invention can be used regardless of the degree of crystallinity, but cellulose derivatives such as cellulose diacetate and cellulose triacetate are less preferred.

本発明にかかわるセルロースはポリエチレングリコール共存下で粉砕処理してから用いることが好ましい。また、用いるポリエチレングリコールは分子量20−200万のものが特に好ましい。   The cellulose according to the present invention is preferably used after being pulverized in the presence of polyethylene glycol. The polyethylene glycol used preferably has a molecular weight of 200-2 million.

本発明にかかわるセルロースの混練は溶融状態にある本発明に関わるポリカーボネートに対して少しずつ混ぜることが好ましい。   The cellulose kneading according to the present invention is preferably mixed little by little with the polycarbonate according to the present invention in a molten state.

本発明により、再生可能資源からも誘導されうる部分を含有し、現状の脂肪族ポリカーボネートよりも分解性の抑制された新規なポリカーボネートを提供することが可能となる。   According to the present invention, it is possible to provide a novel polycarbonate containing a part that can be derived from renewable resources and having a degradability suppressed as compared with the present aliphatic polycarbonate.

次に本発明に関わる実施例を詳述する。各種の評価項目は次のようにして求めた。物性についてはまとめて表1に示す。
(1)生分解試験
市販の腐葉土(サンヨーバーク(有)製樹皮堆肥)200gに、溜池の水1リットルを用いて加え、30分以上約30℃の湯浴中で曝気した。これをろ紙でろ過した液に、最適化試験培養用A液(リン酸二水素カリウム37.5g、リン酸水素二ナトリウム72.9g、塩化アンモニウム2.0gを1リットルのイオン交換水に溶解させたもの)を100ミリリットル加え、全量を2リットルとして調整し、コンポスト条件と近い50℃の恒温槽内に設置し、圧空を通気量200ミリリットル/分で流通させた。3−4日おきに培養液の半分を新規に調製したものと交換した。
Next, embodiments relating to the present invention will be described in detail. Various evaluation items were obtained as follows. The physical properties are summarized in Table 1.
(1) Biodegradation test To 200 g of commercially available humus (Sanyo bark (bare) bark compost) was added using 1 liter of water from a pond and aerated in a hot water bath at about 30 ° C. for 30 minutes or more. This solution was filtered through a filter paper and dissolved in 1 liter of ion-exchanged water for solution A for optimization test culture (37.5 g of potassium dihydrogen phosphate, 72.9 g of disodium hydrogen phosphate and 2.0 g of ammonium chloride). The total amount was adjusted to 2 liters, placed in a constant temperature bath at 50 ° C. close to the composting conditions, and compressed air was circulated at an air flow rate of 200 ml / min. Every 3-4 days, half of the culture broth was replaced with a freshly prepared one.

均一な厚さに製膜したキャストフィルム(未延伸フィルム)を約200mg切り出した上、市販の不織布製袋に入れ、上記の容器中に投入し、1ヵ月後ごとに取り出し、重量変化を調べた。   About 200 mg of cast film (unstretched film) formed into a uniform thickness was cut out, put into a commercially available non-woven bag, put into the above container, taken out every one month, and the change in weight was examined. .

[実施例1]
イソソルビド23.4gと1,6−ヘキサンジオール4.7gとジフェニルカーボネート42.8gを三口フラスコに入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドおよび2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を仕込んで窒素雰囲気下180℃で溶融した。
撹拌下、反応槽内を13.3kPaに減圧し、生成するフェノールを留去しながら20分間反応させた。次に200℃に昇温した後、徐々に減圧し、フェノールを留去しながら4.00kPaで25分間反応させ、さらに、215℃に昇温して10分間反応させた。
ついで、徐々に減圧し、2.67kPaで10分間、1.33kPaで10分間反応を続行し、さらに減圧し、40Paに到達したら、徐々に230℃まで昇温し、230℃に到達してから10分間反応せしめた。
ついで、低結晶セルロース3gを少しずつ添加し、1時間混練した。このポリマーを用いて製膜したフィルムについて生分解試験を行った。
[Example 1]
23.4 g of isosorbide, 4.7 g of 1,6-hexanediol and 42.8 g of diphenyl carbonate are placed in a three-necked flask, and tetramethylammonium hydroxide and 2,2-bis (4-hydroxyphenyl) propane disodium salt are used as polymerization catalysts. Was melted at 180 ° C. in a nitrogen atmosphere.
Under stirring, the pressure in the reaction vessel was reduced to 13.3 kPa, and the reaction was performed for 20 minutes while distilling off the produced phenol. Next, after raising the temperature to 200 ° C., the pressure was gradually reduced, the reaction was carried out at 4.00 kPa for 25 minutes while distilling off the phenol, and the temperature was further raised to 215 ° C. for 10 minutes.
Then, the pressure was gradually reduced, and the reaction was continued at 2.67 kPa for 10 minutes and 1.33 kPa for 10 minutes. Further, when the pressure was reduced and reached 40 Pa, the temperature was gradually raised to 230 ° C., and reached 230 ° C. The reaction was allowed for 10 minutes.
Next, 3 g of low crystalline cellulose was added little by little and kneaded for 1 hour. A biodegradation test was performed on a film formed using this polymer.

[実施例2]
イソソルビド23.4gと1,6−ヘキサンジオール4.7gとジフェニルカーボネート42.8gを三口フラスコに入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドおよび2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を仕込んで窒素雰囲気下180℃で溶融した。
実施例1と同様に重合させて、230℃に到達してから10分間反応せしめた後、低結晶セルロース9gを少しずつ添加し、1時間混練した。このポリマーを用いて製膜したフィルムについて生分解試験を行った。
[Example 2]
23.4 g of isosorbide, 4.7 g of 1,6-hexanediol and 42.8 g of diphenyl carbonate are placed in a three-necked flask, and tetramethylammonium hydroxide and 2,2-bis (4-hydroxyphenyl) propane disodium salt are used as polymerization catalysts. Was melted at 180 ° C. in a nitrogen atmosphere.
Polymerization was carried out in the same manner as in Example 1 and allowed to react for 10 minutes after reaching 230 ° C., 9 g of low crystalline cellulose was added little by little and kneaded for 1 hour. A biodegradation test was performed on a film formed using this polymer.

[実施例3]
イソソルビド23.4gと1,6−ヘキサンジオール4.7gとジフェニルカーボネート42.8gを三口フラスコに入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドおよび2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を仕込んで窒素雰囲気下180℃で溶融した。
実施例1と同様に重合させて、230℃に到達してから10分間反応せしめた後、微結晶セルロース9gを少しずつ添加し、1時間混練した。このポリマーを用いて製膜したフィルムについて生分解試験を行った。
[Example 3]
23.4 g of isosorbide, 4.7 g of 1,6-hexanediol and 42.8 g of diphenyl carbonate are placed in a three-necked flask, and tetramethylammonium hydroxide and 2,2-bis (4-hydroxyphenyl) propane disodium salt are used as polymerization catalysts. Was melted at 180 ° C. in a nitrogen atmosphere.
Polymerization was carried out in the same manner as in Example 1 and allowed to react for 10 minutes after reaching 230 ° C. Then, 9 g of microcrystalline cellulose was added little by little and kneaded for 1 hour. A biodegradation test was performed on a film formed using this polymer.

[実施例4]
24時間真空乾燥させた微結晶セルロース10gと分子量200万のポリエチレングリコール2gを株式会社伊藤製作所製実験用遊星回転ポットミルLA−PO.1の反応容器に入れ、400rpmにて1時間の粉砕処理を行った(これをセルロース粉砕物とする。)。
イソソルビド23.4gと1,6−ヘキサンジオール4.7gとジフェニルカーボネート42.8gを三口フラスコに入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドおよび2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を仕込んで窒素雰囲気下180℃で溶融した。
実施例1と同様に重合させて、230℃に到達してから10分間反応せしめた後、上記セルロース粉砕物3gを少しずつ添加し、1時間混練した。このポリマーを用いて製膜したフィルムについて生分解試験を行った。
[Example 4]
10 g of microcrystalline cellulose and 2 g of polyethylene glycol having a molecular weight of 2 million, which were vacuum-dried for 24 hours, were put into an experimental planetary rotary pot mill LA-PO. 1 was put into a reaction vessel and pulverized for 1 hour at 400 rpm (this is referred to as a pulverized cellulose product).
23.4 g of isosorbide, 4.7 g of 1,6-hexanediol and 42.8 g of diphenyl carbonate are placed in a three-necked flask, and tetramethylammonium hydroxide and 2,2-bis (4-hydroxyphenyl) propane disodium salt are used as polymerization catalysts. Was melted at 180 ° C. in a nitrogen atmosphere.
Polymerization was carried out in the same manner as in Example 1 and allowed to react for 10 minutes after reaching 230 ° C. Then, 3 g of the pulverized cellulose was added little by little and kneaded for 1 hour. A biodegradation test was performed on a film formed using this polymer.

[比較例1]
イソソルビド23.4gと1,6−ヘキサンジオール4.7gとジフェニルカーボネート42.8gを三口フラスコに入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドおよび2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を仕込んで窒素雰囲気下180℃で溶融した。
実施例1と同様に重合して230℃まで昇温し、最終的に250℃、66.6Paで1時間反応せしめた。このポリマーを用いて製膜したフィルムについて生分解試験を行った。
[Comparative Example 1]
23.4 g of isosorbide, 4.7 g of 1,6-hexanediol and 42.8 g of diphenyl carbonate are placed in a three-necked flask, and tetramethylammonium hydroxide and 2,2-bis (4-hydroxyphenyl) propane disodium salt are used as polymerization catalysts. Was melted at 180 ° C. in a nitrogen atmosphere.
Polymerization was carried out in the same manner as in Example 1, the temperature was raised to 230 ° C., and the reaction was finally carried out at 250 ° C. and 66.6 Pa for 1 hour. A biodegradation test was performed on a film formed using this polymer.

[比較例2]
イソソルビド23.4gと1,6−ヘキサンジオール4.7gとジフェニルカーボネート42.8gを三口フラスコに入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドおよび2,2−ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩を仕込んで窒素雰囲気下180℃で溶融した。
実施例1と同様に重合させて、230℃に到達してから10分間反応せしめた後、低結晶セルロースジアセテート3gを少しずつ添加し、1時間混練した。このポリマーを用いて製膜したフィルムについて生分解試験を行った。
[Comparative Example 2]
23.4 g of isosorbide, 4.7 g of 1,6-hexanediol and 42.8 g of diphenyl carbonate are placed in a three-necked flask, and tetramethylammonium hydroxide and 2,2-bis (4-hydroxyphenyl) propane disodium salt are used as polymerization catalysts. Was melted at 180 ° C. in a nitrogen atmosphere.
Polymerization was carried out in the same manner as in Example 1 and allowed to react for 10 minutes after reaching 230 ° C. Then, 3 g of low crystalline cellulose diacetate was added little by little and kneaded for 1 hour. A biodegradation test was performed on a film formed using this polymer.

Figure 2006036954
Figure 2006036954

Claims (5)

セルロースと、下記一般式(a)で表される脂肪族アルキレングリコール残基および下記構造式(1)で表されるエーテルジオール残基を含んでなるポリカーボネートとからなるポリカーボネート組成物。
Figure 2006036954
Figure 2006036954
A polycarbonate composition comprising cellulose and a polycarbonate comprising an aliphatic alkylene glycol residue represented by the following general formula (a) and an ether diol residue represented by the following structural formula (1).
Figure 2006036954
Figure 2006036954
前記セルロースが、ポリエチレングリコールの存在下に粉砕処理を施したものである、請求項1に記載のポリカーボネート組成物。   The polycarbonate composition according to claim 1, wherein the cellulose is pulverized in the presence of polyethylene glycol. 前記構造式(1)で示されるエーテルジオール残基が、全ジオール残基中、65−98重量%を占める、請求項1に記載のポリカーボネート組成物。   The polycarbonate composition according to claim 1, wherein the ether diol residue represented by the structural formula (1) accounts for 65 to 98% by weight in the total diol residues. 前記セルロースが、ポリカーボネートを基準として0.5〜60重量%を占める、請求項1に記載のポリカーボネート組成物。   The polycarbonate composition according to claim 1, wherein the cellulose occupies 0.5 to 60% by weight based on the polycarbonate. 下記一般式(b)で表される脂肪族アルキレングリコール、下記構造式(2)で表されるエーテルジオールおよび炭酸ジエステルを溶融重合法によって重合して得られる溶融状態のポリカーボネートに、更にセルロースを加えてから溶融混練する、ポリカーボネート組成物の製造方法。
Figure 2006036954
Figure 2006036954
Cellulose is further added to a molten polycarbonate obtained by polymerizing an aliphatic alkylene glycol represented by the following general formula (b), an ether diol represented by the following structural formula (2) and a carbonic acid diester by a melt polymerization method. A method for producing a polycarbonate composition, which is then melt-kneaded.
Figure 2006036954
Figure 2006036954
JP2004219931A 2004-07-28 2004-07-28 Polycarbonate composition and method for producing the same Active JP4310248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219931A JP4310248B2 (en) 2004-07-28 2004-07-28 Polycarbonate composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219931A JP4310248B2 (en) 2004-07-28 2004-07-28 Polycarbonate composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006036954A true JP2006036954A (en) 2006-02-09
JP4310248B2 JP4310248B2 (en) 2009-08-05

Family

ID=35902295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219931A Active JP4310248B2 (en) 2004-07-28 2004-07-28 Polycarbonate composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4310248B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063823A1 (en) * 2005-11-29 2007-06-07 Mitsui Chemicals, Inc. Polycarbonate copolymer, production method thereof and use thereof
WO2008020636A1 (en) * 2006-08-18 2008-02-21 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin and optical film using the same
WO2008026744A1 (en) * 2006-08-28 2008-03-06 Teijin Limited Polycarbonate resin composition comprising plant-derived component
JP2009074029A (en) * 2007-08-31 2009-04-09 Teijin Ltd Polycarbonate resin composition
JP2009074031A (en) * 2007-08-31 2009-04-09 Teijin Ltd Automotive component
WO2009057609A1 (en) * 2007-10-31 2009-05-07 Teijin Limited Sugar alcohol anhydride composition having good storage stability, and process for production of polycarbonate using the same
EP2060595A1 (en) * 2006-09-01 2009-05-20 Teijin Limited Polycarbonate having plant-derived component and method for producing the same
JP2009167296A (en) * 2008-01-16 2009-07-30 Mitsubishi Chemicals Corp Cellulose fiber composite material and method for producing it
WO2010010961A1 (en) * 2008-07-22 2010-01-28 Kao Corporation Biodegradable resin composition
JP2011237511A (en) * 2010-05-07 2011-11-24 Konica Minolta Opto Inc Polarizing plate protective film and polarizing plate using the same
US20120183779A1 (en) * 2011-01-18 2012-07-19 Sk Innovation Co., Ltd. Multilayer film
JP2014001262A (en) * 2012-06-15 2014-01-09 Sumitomo Seika Chem Co Ltd Blocking-resistant aliphatic polycarbonate and method of manufacturing the same
JP2015221906A (en) * 2012-04-18 2015-12-10 帝人株式会社 Copolycarbonate
US10035336B2 (en) 2014-02-10 2018-07-31 Teijin Limited Multilayer body
WO2019124182A1 (en) 2017-12-21 2019-06-27 帝人株式会社 Multilayer body
KR102116440B1 (en) * 2019-02-01 2020-05-28 한국화학연구원 Polycarbonate-nanocellulose composite material and method for preparing the same
WO2021096213A1 (en) * 2019-11-11 2021-05-20 주식회사 삼양사 Polycarbonate composite using solid dispersion or molten dispersion of anhydrosugar alcohol, producing method thereof, and molded article comprising same
KR20210057241A (en) * 2019-11-11 2021-05-21 주식회사 삼양사 Polycarbonate composite using melt dispersion of anhydrosugar alcohol and method for preparing the same, and molded article comprising the same
KR20210057240A (en) * 2019-11-11 2021-05-21 주식회사 삼양사 Polycarbonate composite using solid dispersion of anhydrosugar alcohol and method for preparing the same, and molded article comprising the same
KR20210082298A (en) * 2019-12-24 2021-07-05 주식회사 삼양사 Polycarbonate composite using solid dispersion of anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, and method for preparing the same, and molded article comprising the same
KR20210082304A (en) * 2019-12-24 2021-07-05 주식회사 삼양사 Polycarbonate composite using melt dispersion of anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, and method for preparing the same, and molded article comprising the same
US11339285B2 (en) 2017-02-03 2022-05-24 Teijin Limited Multilayer body
WO2022158876A1 (en) * 2021-01-22 2022-07-28 한국화학연구원 Polybutylenesuccinate-carbonate crosslinked copolymer, composite material of same crosslinked copolymer and nanocellulose, and method for preparing same
US11441030B2 (en) 2015-10-02 2022-09-13 Teijin Limited Resin composition and film formed from same
JP7450876B2 (en) 2020-02-27 2024-03-18 帝人株式会社 resin composition

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063823A1 (en) * 2005-11-29 2007-06-07 Mitsui Chemicals, Inc. Polycarbonate copolymer, production method thereof and use thereof
WO2008020636A1 (en) * 2006-08-18 2008-02-21 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin and optical film using the same
JP5526545B2 (en) * 2006-08-18 2014-06-18 三菱瓦斯化学株式会社 Polycarbonate resin and optical film using the same
US8877341B2 (en) 2006-08-18 2014-11-04 Mitsubishi Gas Chemical Company, Inc Polycarbonate resin and optical film using the same
WO2008026744A1 (en) * 2006-08-28 2008-03-06 Teijin Limited Polycarbonate resin composition comprising plant-derived component
JP5049281B2 (en) * 2006-08-28 2012-10-17 帝人株式会社 Polycarbonate resin composition having plant-derived components
KR101436654B1 (en) * 2006-09-01 2014-09-01 데이진 가부시키가이샤 Polycarbonate having plant-derived component and method for producing the same
EP2060595A1 (en) * 2006-09-01 2009-05-20 Teijin Limited Polycarbonate having plant-derived component and method for producing the same
JPWO2008029746A1 (en) * 2006-09-01 2010-01-21 帝人株式会社 Polycarbonate having plant-derived components and method for producing the same
EP2060595A4 (en) * 2006-09-01 2010-02-03 Teijin Ltd Polycarbonate having plant-derived component and method for producing the same
JP2009074029A (en) * 2007-08-31 2009-04-09 Teijin Ltd Polycarbonate resin composition
JP2009074031A (en) * 2007-08-31 2009-04-09 Teijin Ltd Automotive component
WO2009057609A1 (en) * 2007-10-31 2009-05-07 Teijin Limited Sugar alcohol anhydride composition having good storage stability, and process for production of polycarbonate using the same
JP5379016B2 (en) * 2007-10-31 2013-12-25 帝人株式会社 Anhydrous sugar alcohol composition having good storage stability and method for producing polycarbonate using the same
JP2009167296A (en) * 2008-01-16 2009-07-30 Mitsubishi Chemicals Corp Cellulose fiber composite material and method for producing it
KR101306142B1 (en) 2008-07-22 2013-09-09 가오 가부시키가이샤 Biodegradable resin composition
KR101308643B1 (en) 2008-07-22 2013-09-23 가오 가부시키가이샤 Biodegradable resin composition
WO2010010961A1 (en) * 2008-07-22 2010-01-28 Kao Corporation Biodegradable resin composition
US8722774B2 (en) 2008-07-22 2014-05-13 Kao Corporation Biodegradable resin composition
JP2011237511A (en) * 2010-05-07 2011-11-24 Konica Minolta Opto Inc Polarizing plate protective film and polarizing plate using the same
US9050743B2 (en) * 2011-01-18 2015-06-09 Sk Innovation Co., Ltd. Multilayer film
US20120183779A1 (en) * 2011-01-18 2012-07-19 Sk Innovation Co., Ltd. Multilayer film
JP2015221906A (en) * 2012-04-18 2015-12-10 帝人株式会社 Copolycarbonate
JPWO2013157661A1 (en) * 2012-04-18 2015-12-21 帝人株式会社 Copolycarbonate
JP2014001262A (en) * 2012-06-15 2014-01-09 Sumitomo Seika Chem Co Ltd Blocking-resistant aliphatic polycarbonate and method of manufacturing the same
US10035336B2 (en) 2014-02-10 2018-07-31 Teijin Limited Multilayer body
US11441030B2 (en) 2015-10-02 2022-09-13 Teijin Limited Resin composition and film formed from same
US11339285B2 (en) 2017-02-03 2022-05-24 Teijin Limited Multilayer body
US11285710B2 (en) 2017-12-21 2022-03-29 Teijin Limited Multilayer body
WO2019124182A1 (en) 2017-12-21 2019-06-27 帝人株式会社 Multilayer body
KR102116440B1 (en) * 2019-02-01 2020-05-28 한국화학연구원 Polycarbonate-nanocellulose composite material and method for preparing the same
WO2020159282A1 (en) * 2019-02-01 2020-08-06 한국화학연구원 Polycarbonate-nanocellulose composite material and method for manufacturing same
JP2020125473A (en) * 2019-02-01 2020-08-20 コリア リサーチ インスティチュート オブ ケミカル テクノロジーKorea Research Institute Of Chemical Technology Polycarbonate-nanocellulose composite material and method for manufacturing the same
KR20210057241A (en) * 2019-11-11 2021-05-21 주식회사 삼양사 Polycarbonate composite using melt dispersion of anhydrosugar alcohol and method for preparing the same, and molded article comprising the same
KR20210057240A (en) * 2019-11-11 2021-05-21 주식회사 삼양사 Polycarbonate composite using solid dispersion of anhydrosugar alcohol and method for preparing the same, and molded article comprising the same
WO2021096213A1 (en) * 2019-11-11 2021-05-20 주식회사 삼양사 Polycarbonate composite using solid dispersion or molten dispersion of anhydrosugar alcohol, producing method thereof, and molded article comprising same
KR102461539B1 (en) 2019-11-11 2022-11-02 주식회사 삼양사 Polycarbonate composite using solid dispersion of anhydrosugar alcohol and method for preparing the same, and molded article comprising the same
KR102461546B1 (en) 2019-11-11 2022-11-02 주식회사 삼양사 Polycarbonate composite using melt dispersion of anhydrosugar alcohol and method for preparing the same, and molded article comprising the same
KR20210082304A (en) * 2019-12-24 2021-07-05 주식회사 삼양사 Polycarbonate composite using melt dispersion of anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, and method for preparing the same, and molded article comprising the same
KR102358891B1 (en) 2019-12-24 2022-02-08 주식회사 삼양사 Polycarbonate composite using solid dispersion of anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, and method for preparing the same, and molded article comprising the same
KR102358892B1 (en) 2019-12-24 2022-02-08 주식회사 삼양사 Polycarbonate composite using melt dispersion of anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, and method for preparing the same, and molded article comprising the same
KR20210082298A (en) * 2019-12-24 2021-07-05 주식회사 삼양사 Polycarbonate composite using solid dispersion of anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, and method for preparing the same, and molded article comprising the same
JP7450876B2 (en) 2020-02-27 2024-03-18 帝人株式会社 resin composition
WO2022158876A1 (en) * 2021-01-22 2022-07-28 한국화학연구원 Polybutylenesuccinate-carbonate crosslinked copolymer, composite material of same crosslinked copolymer and nanocellulose, and method for preparing same

Also Published As

Publication number Publication date
JP4310248B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4310248B2 (en) Polycarbonate composition and method for producing the same
JP4351675B2 (en) Polycarbonate and process for producing the same
CN103619908B (en) The manufacture method of the aromatic polycarbonate resin that high fluidity Copolycarbonate, macromolecule quantify and aromatic copolycarbonate compound
US5461139A (en) Biodegradable optically active copolymers and processes for producing the same
JP5543147B2 (en) Method for producing polycarbonate resin
US5191037A (en) Biodegradable polymeric composition
KR101713181B1 (en) Polylactic acid copolymer having excellent elasticity and method for preparing the same
Marin et al. Carbohydrate‐based poly (ester‐urethane) s: a comparative study regarding cyclic alditols extenders and polymerization procedures
Tamiya et al. Enhancement of interfacial adhesion in immiscible polymer blend by using a graft copolymer synthesized from propargyl-terminated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)
KR20110121796A (en) Biodegradable copolyester resin with high thermal property and process of preparation thereof
CN113583229A (en) Preparation method of degradable hyperbranched aliphatic polycarbonate
KR101875597B1 (en) Olyester-carbonate copolymer and method for preparing same
KR102063626B1 (en) Biodegradable copolyester resin manufactured by esterification and condensation polymerization of aliphatic/aromatic dicarboxylic acid and glycol
KR101606480B1 (en) Polylactic acid copolymer having excellently improved elasticity and method for preparing the same
KR101679596B1 (en) Isosorbide-aromatic polycarbonate copolymer and method for preparing the same
JP3666525B2 (en) Aliphatic polyester carbonate and method for producing the same
KR101777212B1 (en) Polylactic acid copolymer having excellent elasticity and method for preparing the same
JP4010022B2 (en) Aliphatic polyester carbonate and method for producing the same
JP2011241277A (en) Copolycarbonate
JP2011149021A (en) Stereo block copolymer composition, stereo complex copolymer composition, and synthetic method of stereo block copolymer composition
Zamora et al. Polyesters analogous to PET and PBT based on O‐benzyl ethers of xylitol and l‐arabinitol
US20230365746A1 (en) Polyester including component from biomass and method for preparing the same
Zamora et al. Butylene copolyesters based on aldaric and terephthalic acids. Synthesis and characterization
KR102286854B1 (en) Thermoplastic polyether ester elastomer comprising anhydrohexitol-based polycarbonate diol and methods for preparing the same
JP2009073892A (en) Polycarbonate resin and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4310248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5