WO2020158863A1 - アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬 - Google Patents

アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬 Download PDF

Info

Publication number
WO2020158863A1
WO2020158863A1 PCT/JP2020/003432 JP2020003432W WO2020158863A1 WO 2020158863 A1 WO2020158863 A1 WO 2020158863A1 JP 2020003432 W JP2020003432 W JP 2020003432W WO 2020158863 A1 WO2020158863 A1 WO 2020158863A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cancer
integer
epi
drug
Prior art date
Application number
PCT/JP2020/003432
Other languages
English (en)
French (fr)
Inventor
宏昭 喜納
片岡 一則
サビーナ カダール
アミット ランジャン マイティ
学螢 劉
祐希 持田
重人 福島
Original Assignee
公益財団法人川崎市産業振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人川崎市産業振興財団 filed Critical 公益財団法人川崎市産業振興財団
Priority to JP2020569721A priority Critical patent/JPWO2020158863A1/ja
Publication of WO2020158863A1 publication Critical patent/WO2020158863A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent

Definitions

  • the present invention is a combination drug of a micelle agent containing an anthracycline compound and an immunostimulant, and the use of the micelle agent for treating or preventing cancer, which is combined with an immunostimulant, comprising: Regarding use, etc.
  • Anthracycline compounds are antibiotics derived from bacteria, and inhibit cell growth through inhibition of DNA and RNA synthesis, type II topoisomerase, etc., thereby exerting antitumor activity.
  • Representative anthracycline compounds include daunorubicin, doxorubicin, epirubicin, idarubicin, pirarubicin, amrubicin, etc., which are acute leukemia, malignant lymphoma, lung cancer, digestive cancer, breast cancer, ovarian cancer, bladder. It has been applied to various cancers such as cancer, osteosarcoma, and urothelial cancer.
  • Patent Document 1 proposes to co-administer doxorubicin or a polyethylene glycol-coated liposome-encapsulated form thereof and an immunomodulator.
  • Patent Document 1 The inventors of the present invention have conducted research on the combined administration of an anthracycline compound and an immunostimulant, and as for glioblastoma, which is a type of brain tumor and has high malignancy, the method of Patent Document 1 has an antitumor effect. I have found that it may not be enough.
  • the present invention has been made to solve the above problems, and its main purpose is to treat cancers that are difficult to treat with conventional treatment methods (for example, glioma such as glioblastoma).
  • Another object of the present invention is to provide a pharmaceutical composition capable of exerting an antitumor effect.
  • a block copolymer having a hydrophilic block and a hydrophobic block, and a micelle agent containing a drug-polymer complex in which an anthracycline compound is bound are contained, and combined with an immunostimulant.
  • a pharmaceutical composition for use in treating or preventing cancer is provided.
  • a micelle agent for treating or preventing intractable cancer against an anthracycline compound comprising a block copolymer having a hydrophilic block and a hydrophobic block
  • a micellar agent which comprises using a micellar agent comprising a drug-polymer complex bound to a cyclin compound in combination with an immunostimulant.
  • a micelle agent containing a drug-polymer complex in which a block copolymer having a hydrophilic block and a hydrophobic block and an anthracycline compound is bound is used in combination with an immunostimulant. Therefore, it is possible to exert an excellent antitumor effect even on cancers that are difficult to treat by conventional treatment methods (for example, glioma such as glioblastoma).
  • FIG. 1 is a schematic view illustrating a micelle agent containing an anthracycline compound according to one embodiment of the present invention. It is a graph which shows the particle size distribution of a micelle agent. It is a graph which shows the cytotoxic activity of various test drugs. It is a graph which shows in-vivo antitumor activity of various test drugs. It is a survival curve of a mouse when various test drugs are administered. It is an MRI observation image of a mouse brain. It is a figure explaining the side effect in a DOXIL administration group and an epirubicin micelle administration group.
  • A is a diagram showing the ratio of PTEN abnormalities in clinical tumors
  • B is a diagram showing PTEN expression levels in GL261 cells and CT2A cells
  • C and D are PD-L1 expression levels in various cells.
  • FIG. 6 is a diagram showing E, F, and IC50 of various test drugs against GL261 cells and CT2A cells, respectively
  • G and H are diagrams showing expression levels of ICD markers in GL261 cells and CT2A cells, respectively.
  • Is. It is a figure which shows the effect of the combined administration of the epirubicin micelle and an immune checkpoint inhibitor with respect to GL261 cell. It is a figure which shows the effect of the combined administration of an epirubicin micelle and an immune checkpoint inhibitor with respect to CT2A cell.
  • FIG. 3 shows the expression of PD-L1 in CT2A tumors excised from mice administered with various test drugs. It is a graph which shows the cytotoxic activity of various test drugs.
  • FIG. 3 is a diagram showing the antitumor effect of various test drugs administered to mesothelioma model mice and a survival curve of the mice. It is a graph which shows the cytotoxic activity of various test drugs.
  • FIG. 3 is a diagram and a survival curve showing the antitumor effect when various test drugs were administered to fibrosarcoma model mice. It is a figure which shows the expression level of the ICD marker in a KPC cell.
  • 2 is a photograph of tumors excised from pancreatic cancer model mice to which various test drugs were administered. It is a survival curve when various test drugs are administered to pancreatic cancer model mice.
  • each of the hydrophilic block and the hydrophobic block can exhibit polydispersity to some extent.
  • a pharmaceutical composition according to an embodiment of the present invention comprises a block copolymer having a hydrophilic block and a hydrophobic block, and a micelle agent containing a drug-polymer complex in which an anthracycline compound is bound, Used in combination with an activator to treat or prevent cancer.
  • a pharmaceutical composition containing the micelle agent to an individual to be treated in combination with an immunostimulant (co-administration)
  • cancer that is difficult to treat with conventional therapeutic methods such as glioma.
  • an excellent antitumor effect can be obtained.
  • the terms "micelle agent” and "micelle” can be used substantially synonymously.
  • FIG. 1 is a schematic diagram illustrating a micelle agent containing an anthracycline compound according to one embodiment of the present invention.
  • the micelle agent 100 includes a block copolymer 10 having a hydrophilic block 12 and a hydrophobic block 14 connected to one end of the hydrophilic block 12, and an anthracycline compound 20 bonded to the block copolymer 10. Includes drug-polymer complex 30.
  • the anthracycline compound 20 is bonded to the block copolymer 10 via the hydrazide group introduced into the block copolymer 10.
  • the drug-polymer complex 30 is typically radially arranged with the hydrophilic block 12 facing outward and the hydrophobic block 14 facing inward. Forming the morphology of micelles.
  • the drug-polymer complex 30 may have a target binding site at the end on the hydrophilic block 12 side.
  • the micelle agent 100 has a hydrophilic block and a hydrophobic block connected to one end of the hydrophilic block, in addition to the drug-polymer complex 30, if necessary. It may further include a block copolymer not shown (not shown).
  • the drug-free block copolymer is also typically arranged radially with the hydrophilic block facing outward and the hydrophobic block facing inward.
  • a target binding site may be introduced at the hydrophilic block side end of the drug-free block copolymer.
  • Specific examples of the drug-free block copolymer include the block copolymer represented by the formula (III) or (IV) in WO 2008/047948.
  • the term “radially aligned” of the drug-polymer complex or block copolymer means that they are aggregated with hydrophilic blocks facing outward and hydrophobic blocks facing inward.
  • the starting point of the arrangement of each block copolymer may not be concentrated at one point, and the arrangement may be a slightly distorted radial arrangement structure.
  • the target binding site refers to a site having a biological recognition function capable of specifically binding to a substance derived from a living body or a virus and forming a biological binding pair with the substance.
  • substances derived from living organisms and viruses include molecules present in living cells, bacteria, fungi and viruses.
  • living cells include tumor cells, neovascular cells, and their peripheral cells, immunocompetent cells (for example, B cells and T cells), inflammatory cells (for example, white blood cells), vascular endothelial cells, and cells constituting various organs.
  • the compound having a target binding site examples include a protein (antibody, etc.), peptide or sugar chain that specifically binds to a substance derived from living organisms and viruses to form a biological binding pair with the substance. it can.
  • the target binding site is a group derived from an antibody and does not include cyclic-Arg-Gly-Asp(cRGD).
  • the particle size of the micelle agent may be, for example, 15 nm to 150 nm, preferably 20 nm to 100 nm, and more preferably 25 nm to 60 nm. With such a particle size, the particles can be favorably accumulated in the tumor tissue.
  • Anthracycline-based compounds As anthracycline-based compounds, any anthracyclines (glycosides of 7,8,9,10-tetrahydro-5,5,12-naphthacenequinone) having antitumor activity and derivatives thereof or pharmaceuticals thereof are used. Acceptable salts can be used.
  • anthracycline compounds include daunorubicin, epirubicin, doxorubicin, amrubicin, idarubicin, valrubicin, aclarubicin, pirarubicin, mitoxantrone and pharmaceutically acceptable salts thereof (for example, hydrochloride, methanesulfonate, Benzene sulfonate, p-toluene sulfonate, trifluoroacetate).
  • pharmaceutically acceptable salts thereof for example, hydrochloride, methanesulfonate, Benzene sulfonate, p-toluene sulfonate, trifluoroacetate.
  • epirubicin, doxorubicin and its derivatives or pharmaceutically acceptable salts thereof are preferable, and epirubicin and its derivatives or their hydrochlorides are more preferable.
  • anthracycline compounds may be used alone or in combination of two or more.
  • the block copolymer has a hydrophilic block and a hydrophobic block connected to one end of the hydrophilic block.
  • the hydrophilic block and the hydrophobic block each have a degree of hydrophilicity such that the drug-polymer complex can be radially arranged in a polar solvent with the hydrophilic block facing outward and the hydrophobic block facing inward. And those having hydrophobicity.
  • the hydrophilic block typically contains a hydrophilic polymer.
  • the hydrophilic polymer constituting the hydrophilic block include polyethylene glycol, polysaccharides, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamide, polyacrylic acid, polymethacrylamide, polymethacrylic acid, polymethacrylic acid ester, polyacrylic acid ester. , Polyamino acids, polymalic acid, or derivatives thereof.
  • Specific examples of the polysaccharide include starch, dextran, fructan, galactan and the like.
  • polyethylene glycol is preferably used since end-reactive polyethylene glycols having various functional groups at the ends are commercially available, and those having various molecular weights are also commercially available and easily available. obtain.
  • the degree of polymerization of the hydrophilic polymer forming the hydrophilic block may be, for example, 5 to 2000, 5 to 1000, 40 to 600 or 100 to 400.
  • the molecular weight of the hydrophilic polymer may be, for example, 200 Da or more, 1,000 Da or more, or 5,000 Da or more, and may be, for example, 50,000 Da or less, 30,000 Da or less, or 20,000 Da or less.
  • a preferable example of the hydrophobic block is a polyamino acid block.
  • the polyamino acid block typically contains, as a repeating unit (amino acid residue), a functional group-containing amino acid residue having a functional group in the side chain.
  • the block copolymer and the anthracycline compound are preferably bound, and as a result, the drug-polymer complex can be preferably obtained.
  • a functional group having a relatively high degree of hydrophilicity and a hydrophobic group described below in a side chain in an appropriate ratio, it is possible to adjust the hydrophobicity of the polyamino acid block as a whole to a desired range. As a result, a drug-polymer complex capable of forming a highly stable micelle agent can be obtained.
  • the functional group examples include a hydrazide group (—NH—NH 2 ), a carboxyl group, an amino group, a hydroxyl group and the like. Of these, a hydrazide group and a carboxyl group are preferable.
  • the functional groups may be used alone or in combination of two or more.
  • the polyamino acid block contains an amino acid residue having a hydrazide group in its side chain
  • a hydrazide group is introduced into the side chain of the polyamino acid block
  • the hydrazide group and anthracycline-based A drug-polymer complex in which a block copolymer and an anthracycline compound are bound to each other by reacting with a ketone group of the compound (for example, a ketone group at the 13-position of anthracyclines) to form a hydrazone bond is preferable. Can be obtained.
  • the micelle agent containing the drug-polymer complex suitably releases the drug when it is taken up into the target cell through endocytosis by the cleavage of the hydrazone bond due to the low pH environment in the endosome. can do.
  • the polyamino acid block can further include any appropriate repeating unit, if necessary.
  • a repeating unit include a hydrophobic group-containing amino acid residue having a hydrophobic group in the side chain.
  • the hydrophobic group include an alkyl group having a C 4 to C 16 linear, branched or cyclic structure, a C 6 to C 20 aryl group, and a C 7 to C 20 aralkyl group or a sterol residue.
  • the hydrophobic organic groups of The C 6 -C 20 aryl group and C 7 -C 20 aralkyl group are preferably phenyl group, naphthyl group, tolyl group, xylyl group, benzyl group and phenethyl group, more preferably phenyl group and benzyl group, More preferably, it is a benzyl group.
  • the sterol from which the above sterol residue is derived is preferably cholesterol, cholestanol and dihydroxycholesterol, more preferably cholesterol.
  • polyamino acid block examples include polyglutamic acid derivatives, polyaspartic acid derivatives, and poly(glutamic acid-co-aspartic acid) derivatives.
  • the degree of polymerization of the polyamino acid block can be, for example, 10 to 1000, preferably 15 to 200, more preferably 20 to 150, and further preferably 25 to 100.
  • the number of hydrazide group-containing amino acid residues in the polyamino acid block can be, for example, 1 to 1000, preferably 1 to 100, and more preferably 5 to 50.
  • the ratio of the number of hydrazide group-containing amino acid residues to the total number of amino acid residues constituting the polyamino acid block is, for example, 10% to 97%, preferably 25% to 90%, more preferably 40% to 80%. obtain.
  • the number of hydrophobic group-containing amino acid residues in the polyamino acid block can be, for example, 0 to 1000, 1 to 100, or 2 to 50.
  • the ratio of the number of hydrophobic group-containing amino acid residues to the total number of amino acid residues constituting the polyamino acid block is, for example, 0% or more, 3% or more, 4% or more, 5% or more, 20% or more or 25% or more. And can be less than 90%, 75% or less, or 50% or less.
  • the number of functional group-containing amino acid residues other than hydrazide groups in the polyamino acid block may be, for example, 0 to 1000, preferably 1 to 100, and more preferably 2 to 50.
  • the ratio of the number of functional group-containing amino acid residues other than hydrazide groups to the total number of amino acid residues constituting the polyamino acid block is, for example, 0% to 80%, preferably 5% to 70%, more preferably 10% to 60%.
  • the block copolymer comprises an amino acid residue represented by the following formula (i), and, if necessary, an amino acid residue represented by the following formula (ii) and/or (iii) Further included are the represented amino acid residues.
  • the amino acid residues represented by the formulas (i), (ii) and (iii) correspond to the hydrazide group-containing amino acid residue, the hydrophobic group-containing amino acid residue and the functional group-containing amino acid residue other than the hydrazide group, respectively. You can (In the formulas (i) to (iii), x represents 1 or 2, R a represents —O— or NH—, and R b represents a hydrophobic group.)
  • the ratio of the total of the amino acid residues represented by the formulas (i) to (iii) to all the amino acid residues constituting the polyamino acid block of the block copolymer is typically Is 80% to 100%, preferably 90% to 100%, more preferably 95% to 100%, and may be, for example, 100%.
  • the block copolymer may contain, as the amino acid residue represented by the formula (ii), two or more kinds of amino acid residues having different R a and/or R b .
  • the above block copolymer can be synthesized using any suitable synthesis method.
  • a block copolymer having a polyethylene glycol (PEG) block and a polyamino acid block in which a hydrazide group is introduced into a side chain is a PEG-poly( ⁇ -benzyl-L-aspartate) which may be protected at the end, or It can be synthesized by reacting PEG-poly( ⁇ -benzyl-L-glutamate) with hydrazine or hydrazine hydrate and converting the benzyl ester moiety into a hydrazide group.
  • the above reaction is usually performed in a dehydrated solvent.
  • a dehydrated solvent an aliphatic or aromatic organic solvent is used, and specific examples thereof include N,N-dimethylformamide, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, chloroform or a mixed solvent thereof. Further, it is preferable that the solvent used does not contain water as much as possible.
  • the amount of hydrazine to be added in the above reaction is usually the amount that is planned to be introduced into the benzyl ester portion of the block copolymer since the reaction proceeds almost quantitatively.
  • the amount of hydrazine to be added in the above reaction is usually the amount that is planned to be introduced into the benzyl ester portion of the block copolymer since the reaction proceeds almost quantitatively.
  • 50% of the hydrazide group to the benzyl ester moiety 0.5 times equivalent of hydrazine can be added, and when introducing 75% thereof, 0.75 equivalent of hydrazine can be added.
  • the reaction temperature in the above reaction may be, for example, 0°C to 100°C, preferably 20°C to 80°C, and more preferably 25°C to 50°C.
  • the pressure is preferably normal pressure.
  • the reaction time is not particularly limited as long as the reaction proceeds sufficiently, but is usually 1 hour to 2 days.
  • a drug-polymer conjugate is obtained by binding the block copolymer having the hydrophilic block and the hydrophobic block with the anthracycline compound.
  • the number of molecules of the anthracycline compound bound to one molecule of the block copolymer is not limited as long as it can form a micelle agent having a practical blood retention property.
  • the number of the above compounds bonded to one molecule of the block copolymer is, for example, 5% to 65%, preferably 10% to 50%, 10% to 40% or 15% with respect to the number of repeating units (degree of polymerization) of the hydrophobic block. It can be a number of ⁇ 35%.
  • the anthracycline compound is typically bonded to the block copolymer via the hydrazide group introduced into the polyamino acid block, and preferably introduced into the side chain of the polyamino acid block. It is bound to the block copolymer via the hydrazide group. Therefore, the drug-polymer complex may preferably contain a drug-containing amino acid residue represented by the following formula (iv). (In the formula, x represents 1 or 2, and An represents a residue obtained by removing carbonyl oxygen from an anthracycline compound having a carbonyl group.)
  • the drug-polymer complex may further contain at least one of the amino acid residues represented by the formulas (i) to (iii) in addition to the drug-containing amino acid residue represented by the formula (iv). ..
  • the number of drug-containing amino acid residues represented by the formula (iv) in the polyamino acid block of the drug-polymer complex is, for example, 1 to 50, preferably 2 to 40, more preferably 3 to 30, and further preferably 4 to It can be an integer of 20.
  • the number of hydrazide group-containing amino acid residues represented by the formula (i) in the polyamino acid block of the drug-polymer complex may be, for example, an integer of 0 to 30, preferably 1 to 25, more preferably 2 to 20. ..
  • the number of hydrophobic group-containing amino acid residues represented by the formula (ii) in the polyamino acid block of the drug-polymer complex may be, for example, 0 to 100, preferably an integer of 1 to 80 or an integer of 2 to 50. ..
  • the number of carboxyl group-containing amino acid residues represented by formula (iii) in the polyamino acid block of the drug-polymer complex may be, for example, an integer of 0 to 100, preferably 1 to 80, more preferably 2 to 50. ..
  • the drug-polymer conjugate may be represented by formula (I) or formula (II): (In the formula, R 1 is the same or different and is a hydrogen atom, a methoxy group, a methyl group, a substituted linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, and the substituent may be protected.
  • R 2 represents a hydrogen atom, a saturated or unsaturated aliphatic carbonyl group having 1 to 30 carbon atoms or an arylcarbonyl group
  • R 3 represents —O— or —NH—
  • R 4 represents a hydrophobic group
  • R 5 represents a hydroxyl group, a saturated or unsaturated C 1-30 aliphatic oxy group or an aryl-lower alkyloxy group
  • L 1 and L 2 each independently represent a linker
  • a represents an integer of 5 to 1000
  • b represents an integer of 1 to 1000
  • c represents an integer of 0 to 1000
  • d represents an integer of 0 to 1000
  • e represents an integer of 0 to 1000
  • y represents 1 or 2
  • An represents a residue obtained by removing carbon
  • the alkyl group having 1 to 12 carbon atoms defined by the group of R 1 includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, Examples thereof include sec-butyl group, tert-butyl group, n-hexyl group, decyl group and undecyl group.
  • the aliphatic carbonyl group having 1 to 30 carbon atoms defined by the group of R 2 includes acetyl group, propionyl group, butyryl group, valeryl group, trimethylacetyl group, hexanoyl group, t-butylacetyl group, heptanoyl group, octanoyl group. , 2-ethylhexanoyl group, nonanoyl group, decanoyl group, undecanoyl group, lauroyl group and the like.
  • arylcarbonyl group examples include benzoyl group, methylbenzoyl group, ethylbenzoyl group, dimethylbenzoyl group, trimethylbenzoyl group, isopropylbenzoyl group, n-butylbenzoyl group, n-pentylbenzoyl group, isopentylbenzoyl group, Examples include neopentylbenzoyl group and isohexylbenzoyl group.
  • hydrophobic group defined by the group of R 4 examples include the hydrophobic groups exemplified for the above-mentioned hydrophobic group-containing amino acid residue. Of these, a phenyl group and a benzyl group are preferable.
  • the aliphatic oxy group having 1 to 30 carbon atoms defined by the group of R 5 is methoxy group, ethoxy group, propoxy group, n-butyloxy group, t-butyloxy group, pentyloxy group, isoamyloxy group, hexyloxy group. Etc. can be mentioned.
  • benzyloxy group As the aryl-lower alkyloxy group, benzyloxy group, (methylphenyl)methoxy group, (dimethylphenyl)methoxy group, (trimethylphenyl)methoxy group, (tetramethylphenyl)methoxy group, (pentamethylphenyl)methoxy group Group, (ethylphenyl)methoxy group, (n-propylphenyl)methoxy group, (isopropylphenyl)methoxy group, naphthylmethoxy group and the like.
  • L 1 and L 2 are not particularly limited because it can be changed depending on the production method of the block copolymer, the raw material, and the like.
  • L 1 is, for example, —Z—NH—, —CO—Z—NH— and —CO—NH—Z—NH— (wherein Z is independently an alkyl group having 1 to 8 carbon atoms). And other divalent linkers.
  • L 2 -Z-CO-, -CO-Z-, -CO-Z-CO-, -Z-CO-Z- and -Z-CO-OZ- (where Z is And each independently an alkyl group having 1 to 8 carbon atoms).
  • L 1 is —Z 1 —NH— (wherein Z 1 is an alkylene group having 1 to 5 carbon atoms, for example, —CH 2 CH 2 — or —CH 2 CH 2 CH 2 —. Can be).
  • A represents the number of repetitions of polyethylene glycol.
  • a can be, for example, an integer from 5 to 2000, 5 to 1000, 40 to 600, 100 to 400 or 200 to 400.
  • B represents the number of amino acid residues having an anthracycline compound bonded to the side chain.
  • b may be, for example, an integer of 1 to 50, preferably 2 to 40, more preferably 3 to 30, and still more preferably 4 to 20.
  • C represents the number of hydrazide group-containing amino acid residues that did not react with the anthracycline compound in the block copolymer having a hydrazide group.
  • c can be, for example, an integer from 0 to 30, preferably 1 to 25, more preferably 2 to 20.
  • D represents the number of hydrophobic group-containing amino acid residues.
  • d can be, for example, an integer of 0 to 100, preferably 0 to 80, more preferably 0 to 50.
  • d satisfies the relationship of (b+c+d+e) ⁇ 0.2 ⁇ d ⁇ (b+c+d+e) ⁇ 0.9, preferably (b+c+d+e) ⁇ 0.25 ⁇ d ⁇ (b+c+d+e) ⁇ 0.5. Meet the relationship.
  • E represents the number of aspartic acid residues or glutamic acid residues.
  • e may be, for example, an integer of 0 to 100, preferably 1 to 100, more preferably 2 to 50.
  • B+c+d+e represents the degree of polymerization of the polyamino acid block.
  • b+c+d+e may be an integer of preferably 15 to 200, more preferably 20 to 150, and further preferably 25 to 100.
  • b+c+d+e can be an integer from 30 to 50
  • b can be an integer from 1 to 20
  • c can be an integer from 0 to 20
  • d can be an integer from 0 to 30
  • e can be an integer from 0 to 30.
  • b+c+d+e may be an integer of 30-50, b may be an integer of 4-14, c may be an integer of 1-4, and d is 6-40, 10-35 or 12. It can be an integer from ⁇ 30 and e can be an integer from 5 to 15.
  • the above drug-polymer conjugate may be synthesized using any suitable synthetic method.
  • the drug-polymer complex can be obtained by reacting the ketone group of the anthracycline compound with the hydrazide group of the block copolymer. The reaction is preferably carried out under anhydrous conditions.
  • the above block copolymer is dissolved in a dehydrated solvent such as N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, tetrahydrofuran, dichloromethane, chloroform or a mixed solvent thereof to obtain a desired amount of the drug.
  • reaction is carried out, for example, in the range of 0°C to 50°C, preferably 20°C to 40°C, more preferably 25°C to 37°C.
  • the pressure is preferably normal pressure.
  • the reaction time can usually be 2 hours to 5 days. Details of the above synthetic method are described in, for example, WO2008/047948.
  • the micelle agent containing the drug-polymer complex can be formed by any appropriate method.
  • the micelle agent can be prepared by dissolving or dispersing the drug-polymer complex in an aqueous medium and then stirring. At that time, ultrasonic waves, pressure, shearing force, or physical energy combining them may be applied.
  • it can be prepared by dissolving the drug-polymer complex in a volatile organic solvent, volatilizing the organic solvent to dryness, adding an aqueous medium thereto, stirring the mixture, and then applying the above-mentioned physical energy. ..
  • aqueous medium examples include water, physiological saline, buffer solution and the like, and may contain a small amount of organic solvent as long as it does not affect the formation of the micelle agent.
  • the pH of the buffer solution can be, for example, 6-8.
  • the volatile organic solvent include methanol, ethanol, acetone, chloroform, acetonitrile, tetrahydrofuran, dichloromethane and the like.
  • the micelle agent has a hydrophilic block and a hydrophobic block connected to one end of the hydrophilic block, if necessary, in addition to the drug-polymer complex. It may further include a block copolymer having no.
  • an immune checkpoint inhibitor is preferably used.
  • the immune checkpoint inhibitor can be any antibody or compound capable of inhibiting the transduction of immunosuppressive signals by binding to the immune checkpoint molecule or its ligand.
  • An immune checkpoint inhibitor inhibits the transmission of immunosuppressive signals, resulting in the activation of an immune response against cancer cells.
  • the immune checkpoint molecule include PD-1 and CTLA-4, which negatively regulate the immune response mediated by T cells.
  • the binding of PD-1 and PD-L1 strongly suppresses the T cell immune activity via the signal transduction pathway. Therefore, the immune checkpoint inhibitor is preferably one or more selected from anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-LAG3 antibody, anti-TIGIT antibody and anti-Tim-3 antibody. It can be an antibody.
  • Known antibodies may be used as the anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA4 antibody.
  • the anti-PD-1 antibody nivolumab, pembrolizumab, spartalizumab, semiprimab, etc. can be used, as the anti-PD-L1 antibody, avelumab, atezolizumab, durvalumab, etc. can be used, and as the anti-CTLA-4 antibody.
  • Ipilimumab, tremelimumab and the like can be used as the anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA4 antibody.
  • composition containing the above micelle agent (hereinafter, also referred to as micelle preparation) is used in combination with an immunostimulant. Specifically, the micelle formulation and the immunostimulant are co-administered to the individual to be treated.
  • the micelle formulation is administered to the individual to be treated concurrently with the immunostimulant.
  • a micelle preparation and a preparation containing an immunostimulant may be administered at the same time, and a pharmaceutical composition that is a combination preparation containing a micelle agent and an immunostimulatory agent is used. May be administered.
  • the micelle formulation is administered to the individual to be treated at the same time as the immunostimulant. In this embodiment, the micelle formulation is administered to the individual to be treated before or after the administration of the immunostimulatory formulation.
  • the dose and administration schedule of the above micelle preparation and immunostimulatory preparation can be appropriately selected according to the type and stage of cancer, the condition of the individual to be treated, and the like.
  • the administration times of the micelle preparation and the immunostimulatory preparation may be the same or different.
  • the interval between the administration of the micelle preparation and the immunostimulatory preparation is not particularly limited as long as the effects of the present invention are exhibited.
  • the dosage forms of the micelle preparation and the immunostimulatory preparation are not particularly limited, and can be appropriately selected according to the purpose of treatment and the like. These preparations are typically injections and are administered intravenously, intramuscularly, intrathecally, subcutaneously, or the like. Among them, the injection for intravenous administration is preferably exemplified.
  • the above micelle preparation and immunostimulatory preparation can be prepared by a method known in the art using any appropriate carrier depending on the administration form and the like.
  • the carrier may be any one that is pharmaceutically acceptable and includes, for example, excipients, binders, diluents, solubilizers, suspending agents, isotonic agents, pH adjusters, buffers, stabilizers. Etc. can be illustrated.
  • micellar formulation can be manufactured and sold as a product that is packaged in a container and includes instructions or a label indicating administration to an individual in combination with an immunostimulant to treat or prevent cancer.
  • the pharmaceutical composition containing the micelle agent is typically used for treating or preventing cancer.
  • the cancer to be treated or prevented is preferably a refractory cancer to an anthracycline compound, and specific examples thereof include brain tumor (glioma such as glioblastoma), pancreatic cancer, and malignant intermediate cancer. Dermatomas, fibrosarcomas, ovarian cancer, breast cancer, Hodgkin lymphoma, soft tissue sarcoma, bladder cancer, thyroid cancer, gastric cancer, endometrial cancer, osteosarcoma, Wilms tumor, neuroblastoma, acute lymphoma, etc. ..
  • the above pharmaceutical composition has an excellent antitumor effect against brain tumors (glioma such as glioblastoma), pancreatic cancer, malignant mesothelioma, fibrosarcoma, breast cancer, soft tissue sarcoma, and ovarian cancer. Can be demonstrated.
  • the cancers to be treated or prevented include not only the primary tumor but also cancers that have metastasized to other organs.
  • a pharmaceutical composition containing the above micelle agent (substantially, a micelle agent as an active ingredient) is used in combination with an immunostimulant for treating or preventing cancer. .. Therefore, according to another aspect of the present invention, it comprises administering a pharmaceutical composition containing the above micelle agent (substantially, a micelle agent as an active ingredient) to an individual to be treated in combination with an immunostimulant.
  • a method of treating or preventing cancer is provided. The cancer to be treated or prevented is as described in Section D.
  • the individual in need of the above treatment is typically a human or non-human mammal.
  • the individual in need of the above-mentioned treatment is abnormal in expression of PTEN (Phosphatase and Tensin Homolog Deleted from Chromosome 10) (for example, mutation of PTEN gene base sequence such as deletion, substitution, insertion or PTEN gene).
  • PTEN gene abnormality such as hetero-deficiency).
  • PTEN is an enzyme that catalyzes the dephosphorylation reaction of phosphatidylinositol 3,4,5-triphosphate, and suppresses the proliferation and survival of cells by suppressing the PI3 kinase-Akt pathway.
  • PTEN is known as a tumor suppressor gene because mutations are frequently found in many human malignant tumors and that PTEN heterozygous mice have a high probability of developing cancer.
  • One of the features of the above pharmaceutical composition is that it can exert an excellent antitumor effect on an individual having abnormal expression of PTEN. Cancer patients with abnormal PTEN expression tend to have higher PD-L1 expression and resistance to immune checkpoint inhibitors, but anthracycline compounds suppress the PD-L1 expression. You can
  • the pharmaceutical composition is a micelle preparation containing no immunostimulatory agent, and is administered simultaneously with the immunostimulatory agent or before or after administration of the immunostimulant agent.
  • the two formulations can be easily co-administered by mixing and administering the separately prepared micelle formulation and the immunostimulating formulation.
  • the administration interval is not particularly limited as long as the effects of the present invention can be obtained.
  • the number of times of administration of the micelle preparation and the immunostimulatory preparation is also not limited as long as the effects of the present invention are obtained, and these times may be the same as or different from each other.
  • the pharmaceutical composition is a combination drug containing a micelle agent containing an anthracycline compound and an immunostimulant.
  • the dose and administration interval of the micelle agent and the dose and administration interval of the immunostimulant can be appropriately set according to the type and stage of cancer, the condition of the individual to be treated, and the like.
  • the micelle preparation (combined preparation) and the immunostimulatory preparation are typically prepared as injections and administered intravenously, intramuscularly, intrathecally, subcutaneously, or the like. Among them, the injection for intravenous administration is preferably exemplified.
  • the block copolymer was dissolved in anhydrous DMSO (1 mL for every 50 mg polymer) with gentle heating. After cooling to room temperature, anhydrous hydrazine (20 molar equivalent based on the polymer) was added to obtain a reaction mixture. The reaction mixture was stirred at room temperature for 3 hours. The hydrazide group-containing block copolymer was recovered from the reaction mixture via precipitation with diethyl ether and vacuum drying. The number of hydrazide groups introduced into each polymer was determined by J Control Release. 2017 Jul 28;258:56-66. It was 15 as determined by acetylation described in 1.
  • Epi represents an epirubicin residue when the ketone at position 13 of epirubicin forms a hydrazone bond with a hydrazide group
  • p+q+r+s 40
  • p is an integer in the range of 0 to 3.
  • q was an integer in the range of 3-5
  • r was an integer in the range of 10-15
  • s was an integer in the range of 17-22.
  • each amino acid residue is randomly present.
  • the number of epirubicin introduced into each polymer is J Control Release. 2017 Jul 28;258:56-66. It was quantified according to the method described in.
  • the obtained epirubicin micelle had high monodispersity, its average particle diameter was 31 nm, and its polydispersity index was 0.07.
  • Epirubicin micelles were obtained in the same manner as in Experimental Example 1 except that the epirubicin-polymer complex obtained above was used.
  • the particle size and polydispersity index of the obtained epirubicin micelle (Epi/m) were measured in the same manner as in Experimental Example 1, and the particle size was 54 nm and the polydispersity index was 0.100.
  • test drugs used in the above assay are as follows.
  • K252a-H Product name "K-252a” (BOC Sciences)
  • K252a-H/m Micelle containing K252a-H-polymer complex prepared in the same manner as in Experimental Example 1 using K252a-H
  • JQ-1-H Product name "(+)-JQ-1” ( BOC Sciences)
  • JQ-1-H/m Micelle containing JQ-1-H-polymer complex prepared in the same manner as in Experimental Example 1 using JQ-1-H
  • VBL-H Product name "Vinblastin” (BOC Sciences) Company
  • VBL-H/m MBL including VBL-H-polymer complex prepared in the same manner as in Experimental Example 1 using VBL-H
  • Epi Product name "Epirubicin hydrochloride” (Nanocarrier)
  • Epi/m Epirubicin micelle prepared in the same manner as in Experimental Example 1
  • CDDP Product name "Cisplatin” (Nakarai) CD
  • epirubicin alone and epirubicin micelles showed high in vitro cytotoxicity against mouse GBM cells “GL261”.
  • Luciferase-expressing cells "GL261-luc" were washed with PBS, and then removed from the culture vessel by leaving them in 10 ml of PBS containing 0.25% trypsin and 0.05% EDTA for 5 minutes, followed by culturing with 10% FBS. Suspended by the liquid. The suspension was diluted with a PBS solution to a concentration of 1 ⁇ 10 8 cells/mL, and stored on ice until intracranial injection. Mice (C57/BL6, 5-6 weeks old) were anesthetized with isoflurane. After shaving, the skin was disinfected with iodine solution, and a small incision (2-3 mm) was made in front of the midline and both ear lines. A hole having a diameter of 1 mm was made in the skull with a twist drill, and 2 ⁇ L of the above cell suspension (cell number: 2 ⁇ 10 5 ) was slowly injected into the brain over 5 minutes.
  • Each test drug was administered according to the following grouping and administration schedule, and the tumor-derived luminescence intensity was measured over time.
  • the luminescence intensity was measured 12 minutes after injecting luciferin into the abdominal cavity, using an IVIS imager (Caliper life science). Since there is a high correlation between the luminescence intensity and the tumor volume, the tumor volume can be quantitatively evaluated based on the luminescence intensity (photons/sec).
  • the results are shown in Fig. 4.
  • the survival curve of the mice in each group is shown in FIG. Regarding the elapsed days, the tumor administration volume (or the luminescence intensity derived from the tumor) was counted as Day 0 on the first administration day of the test drug, and for other cases (surviving days, administration schedule, etc.), cancer cells were transplanted. Days were counted as Day 0 (similar for other antitumor efficacy assays unless otherwise stated).
  • FIG. 7 shows a comparison between the DOXIL administration group 4 and the Epi/m administration group 3 in terms of side effects during the above-mentioned study period.
  • Administration Day 6, 10, 14, 18 was administered to each group by tail vein administration.
  • aPD-1 Cosmetic 29F.1A12, Bio cell
  • Group 1 almost suppressed tumor growth throughout the study period.
  • the test drug administration day was set to Day 0, and the tumor size was larger than that in the group 1 up to the day 10, but after the day 10, the tumor size was reduced to a level almost the same as that of the group 1. There was no difference in effect.
  • Epi/m of Experimental Example 1 and Epi/m of Experimental Example 2 have the same structure as the DDS of epirubicin, and have a synergistic antitumor effect when co-administered with an immune checkpoint inhibitor. It was found that the same effect was obtained. In the experimental examples described later, Epi/m of Experimental example 1 was used as Epi/m.
  • GL261 cells As shown in FIG. 8B, commonly used GL261 cells exhibited high PTEN levels comparable to astrocytes.
  • the expression level of PD-L1 in other mouse cancer cells and GL261 cells in which PTEN had been knocked out was also evaluated by Western blotting analysis as described above.
  • the knockout of PTEN was performed using PTEN CRISPR/CRISPR-associated protein 9 KO plasmid and PTEN HDR plasma (Santa Cruz Biotechnology). The results are shown in FIGS. 8C and 8D.
  • GL261 cells showed expression of PD-L1 that was more than twice that of mouse Lewis lung cancer cells LL2 and mouse breast cancer cells 4T1 cells.
  • the PD-L1 level in CT2A cells was higher, expressing PD-L1 about 5-fold higher than LL2 cells and 4T1 cells and more than 2-fold higher than GL261 cells.
  • knocking out PD-L1 in GL261 cells lowers PTEN levels, indicating that PD-L1 expression is negatively correlated with PTEN expression.
  • cytotoxic activity of various drugs including Epi/m was evaluated by measuring the IC50 for GL261 cells and CT2A cells. Specifically, 3000 or 5000 cells were seeded in each well of a 96-well plate together with 100 ⁇ L of medium. After 24 hours, test drugs (Epi, Epi/m, DOX (doxorubicin hydrochloride), DOXIL, CDDP, CDDP/m, oxaliplatin, DachPt/m (dachaplatin micelle)) were added to each well and incubated for 48 hours. ..
  • test drugs Epi, Epi/m, DOX (doxorubicin hydrochloride), DOXIL, CDDP, CDDP/m, oxaliplatin, DachPt/m (dachaplatin micelle)
  • the IC50 of Epi/m was also determined by the platinum agents cisplatin and oxaliplatin, as well as polymer micelles loaded with these agents under clinical evaluation, namely, cisplatin loaded micelles (CDDP/m) and (1,2-diaminocyclohexane). ) It was lower than the IC50 of the platinum(II)-loaded micelle (DACHpT/m).
  • HSP heat shock protein
  • HSP90 markers of immunogenic cell death (ICD)
  • ICD immunogenic cell death
  • Epi/m significantly increased HSP90 and calreticulin levels in PTEN-positive GL261 cells to levels comparable to the authentic ICD inducer Epi.
  • cisplatin (CDDP) used as a negative control did not significantly increase the marker.
  • Epi/m increased the expression level of HSP70 and HSP90 in PTEN-negative CT2A cells, but the degree of the increase was smaller than that of GL261 cells. From the above results, it is understood that Epi/m may promote the antitumor immune effect in vivo.
  • the tumor growth rate was not suppressed by the administration of Epi in both wild-type mice and nude mice transplanted with the tumor.
  • Epi/m significantly suppressed the tumor-derived luminescence signal in wild-type mice, effectively prolonging the mouse survival rate.
  • nude mice the tumor growth rate was not suppressed by Epi/m, and the survival rate was not prolonged.
  • ⁇ Administration schedule> Day0: 1 ⁇ 10 5 GL261-luc are transplanted into the brain. Day6: The mice are randomly divided into groups, and the test drug is administered to the tail vein. Day 10, 14, 21, 28, 35, 42: The test drug is administered via the tail vein.
  • aPD-1 or Epi/m alone administration only partially suppresses tumor-derived luminescence.
  • tumor-derived luminescence is exceeded even when Day 60 is exceeded.
  • the luminescence of was effectively suppressed (left figure).
  • the tumor size is controlled by the combined administration of Epi/m and aPD-1 (right panel).
  • all GL261-luc tumors disappeared and all mice survived until the end of the experiment (middle panel).
  • ⁇ Administration schedule> Day0: 1 ⁇ 10 5 CT2A-luc are transplanted into the brain.
  • the effect of aPD-1 on CT2A-luc was low, and the survival rate was not significantly improved (center figure).
  • the increase of the luminescence signal was suppressed by the administration of DOXIL alone, and the luminescence intensity derived from the tumor was decreased by the combined administration of DOXIL and aPD-1 (left figure).
  • the life-prolonging effect of DOXIL administered alone or in combination with DOXIL and aPD-1 was similar to that of Epi/m administration (center figure).
  • a remarkable decrease in tumor size could not be confirmed in the mice administered with DOXIL and aPD-1 in combination and the mice administered with DOXIL alone. Therefore, in the mice administered with DOXIL, the luciferin crosses the brain barrier. It is presumed that the tumor-derived luminescence was reduced more than it should be because of interference or other reasons (right figure).
  • MRI images confirmed that tumor size was effectively controlled in mice co-administered with Epi/m and aPD-1, which is considered to have led to a significant increase in survival rate. (Center view, right view).
  • FIG. 12A As shown in FIG. 12A, free Epi administered alone was rapidly eliminated from the circulating blood, whereas Epi/m had a half-life of about 12 hours and had improved availability. Further, FIGS. 12B and C show that Epi/m can effectively deliver the drug to the tumor without accumulating the drug (Epi) in normal brain tissue. Further, when the area under the blood concentration-time curve (AUC) was calculated, the exposure amount of the orthotopic CT2A tumor to Epi/m was 180 times the exposure amount to free Epi.
  • AUC blood concentration-time curve
  • cleaved caspase 3 (Asp175) (5A1E), CD8 (D4W2Z), CD4 (D7D2Z), FoxP3 (D6O8R), F4/80 (D2S9R), CD19 (D4V4Y), CD11c (D1V9Y), Wranz (Gran), Gran (D1V9Y), Gran (D1V9Y), Gran (D1V9Y), Gran (D1V9Y), Gran (D1V9Y) and Gran (D1V9Y). Immunostaining was carried out using an antibody against Technology. For immunofluorescence, tissue sections were incubated with primary antibody and stained using SignalStain Boost IHC Detection Reagents.
  • the detection was performed using TSA plus Fluorescein System kit (Perkin Elmer). By directly observing the cell distribution in the obtained image, it is possible to distinguish between a “cold-excluded tumor” that presents T cells around the tumor and a “cold-ignored tumor” that does not show any T cells. Moreover, the number of cells expressing each protein was measured by visually observing the obtained image.
  • the observation results of the GL261 tumor and the CT2A tumor are shown in FIGS. 13 and 14, respectively. Further, a photograph of Day4 and Day8 of CT2A tumor stained with an antibody against CD8 is shown in FIG.
  • CD8+ T cells were significantly increased.
  • these treatments also changed the expression level of regulatory T cells (Treg) (CD4+/FoxP3+).
  • Treg regulatory T cells
  • tumors treated with aPD-1 show significantly higher Treg infiltration.
  • the combined administration of Epi/m and aPD-1 lowered the Treg level inside the tumor.
  • macrophages were increased in tumors treated with aPD-1.
  • the expression level of PD-L1 was decreased in the Epi/m-treated tumor cells. However, no such reduction in expression levels occurred in tumor cells treated with drug alone (free Epi).
  • Epi and Epi/m exhibited low IC50 values of 1 ⁇ g/mL or less for all cancer cells, which indicates that they have high cytotoxic activity against a wide range of cancer cells. I understand.
  • ⁇ Administration schedule> Day0: Transplant 5 ⁇ 10 6 AB12 into the chest cavity. Day6: The mice are randomly divided into groups, and the test drug is administered to the tail vein. Day 10, 14: The test drug is administered via the tail vein (three times in total).
  • Epi and Epi/m show low IC50 of 2 ⁇ g/mL or less against all cancer cells, and thus have high cytotoxic activity against a wide range of cancer cells. I understand.
  • mice into which mouse fibrosarcoma cells "MCA205" were subcutaneously transplanted were divided into groups 10 days after transplantation, each test drug was administered according to the following administration schedule, and the major axis a and the minor axis b of the cancer on the surface were measured with a caliper. Then, the tumor volume was measured over time by measuring the elliptical volume with ab 2 /2. The results are shown in FIG. 20 together with the survival curves of the mice in each group.
  • ⁇ Administration schedule> Day0: 5 ⁇ 10 6 MCA205 are transplanted subcutaneously. Day10: Randomly group mice and administer the test drug via the tail vein. Day 14, 17, 20, 27, 34, 41: The test drug is administered via the tail vein.
  • ⁇ Administration schedule of groups 1, 2 and 4> Day-6: Transplant 5 ⁇ 10 5 KPC cells into the pancreas. Day 0, 3, 6, 9: The test drug is administered via the tail vein.
  • Group 3 administration schedule> Day-6: Transplant 5 ⁇ 10 5 KPC cells into the pancreas. Day 0, 3, 6, 9: Epi/m is administered via the tail vein. Day 2, 5, 8, 11: aPD-1 is administered via the tail vein.
  • the pharmaceutical composition of the present invention can be suitably applied in the fields of medicine and pharmaceuticals.
  • Block Copolymer 10 Block Copolymer 12 Hydrophilic Block 14 Hydrophobic Block 20 Anthracycline Compound 30 Drug-Polymer Complex 100 Micelle

Abstract

本発明は、従来の治療方法では治療が困難ながん(例えば、膠芽腫等の神経膠腫)に対しても優れた抗腫瘍効果を発揮できる医薬組成物を提供する。本発明の医薬組成物は、親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を含有し、免疫賦活剤と組み合わせてがんの治療又は予防に用いられる。

Description

アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬
 本発明は、アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬、及び、がんを治療又は予防のための当該ミセル剤の使用であって、免疫賦活剤と組み合わせる、ミセル剤の使用等に関する。
 アントラサイクリン系化合物は、細菌由来の抗生物質であり、DNA及びRNA合成の阻害、II型トポイソメラーゼの阻害等を介して細胞増殖を阻害し、これにより、抗腫瘍活性を発揮する。代表的なアントラサイクリン系化合物としては、ダウノルビシン、ドキソルビシン、エピルビシン、イダルビシン、ピラルビシン、アムルビシン等が挙げられ、これらは、急性白血病、悪性リンパ腫、肺がん、消化器がん、乳がん、卵巣がん、膀胱がん、骨肉種、尿路上皮がん等の種々のがんに適用されている。
 また、がんに対する代表的な治療方法としては、抗がん剤等の薬物を用いた薬物療法に加えて、手術等の外科療法及び放射線療法が挙げられるが、近年は、新たなアプローチとして、免疫チェックポイント阻害剤(ICI)等の免疫賦活剤を用いた免疫療法にも関心が向けられている。例えば、特許文献1には、ドキソルビシン又はそのポリエチレングリコール被覆リポソーム封入形態と免疫調節薬とを併用投与することが提案されている。
特表2018-500384号公報
 本発明者らがアントラサイクリン系化合物と免疫賦活剤との併用投与に関して研究を進めたところ、脳腫瘍の一種であり、悪性度が高い膠芽腫に関しては、特許文献1の方法では抗腫瘍効果が十分ではない場合があることを見出した。
 本発明は、上記課題を解決するためになされたものであり、その主たる目的は、従来の治療方法では治療が困難ながん(例えば、膠芽腫等の神経膠腫)に対しても優れた抗腫瘍効果を発揮できる医薬組成物を提供することにある。
 本発明の1つの局面によれば、親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を含有し、免疫賦活剤と組み合わせてがんの治療又は予防に用いられる、医薬組成物が提供される。
 本発明の別の局面によれば、アントラサイクリン系化合物に対する難治性がんの治療又は予防のためのミセル剤の使用であって、親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、該アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を、免疫賦活剤と組み合わせて使用する、ミセル剤の使用が提供される。
 本発明によれば、親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を、免疫賦活剤と組み合わせて用いる(併用投与する)ことにより、従来の治療方法では治療が困難ながん(例えば、膠芽腫等の神経膠腫)に対しても優れた抗腫瘍効果を発揮することができる。
本発明の1つの実施形態によるアントラサイクリン系化合物を含むミセル剤を説明する概略図である。 ミセル剤の粒子径分布を示すグラフである。 種々の被験薬の細胞傷害活性を示すグラフである。 種々の被験薬のin vivo抗腫瘍活性を示すグラフである。 種々の被験薬を投与した際のマウスの生存曲線である。 マウスの脳のMRI観察画像である。 DOXIL投与群とエピルビシンミセル投与群における副作用を説明する図である。 Aは、臨床腫瘍におけるPTEN異常の割合を示す図であり、Bは、GL261細胞及びCT2A細胞におけるPTENの発現レベルを示す図であり、C及びDは、種々の細胞におけるPD-L1の発現レベルを示す図であり、E及びFはそれぞれ、GL261細胞及びCT2A細胞に対する種々の被験薬のIC50を示す図であり、G及びHはそれぞれ、GL261細胞及びCT2A細胞におけるICDマーカーの発現レベルを示す図である。 GL261細胞に対するエピルビシンミセルと免疫チェックポイント阻害剤との併用投与の効果を示す図である。 CT2A細胞に対するエピルビシンミセルと免疫チェックポイント阻害剤との併用投与の効果を示す図である。 CT2A細胞に対するエピルビシンミセルと免疫チェックポイント阻害剤との併用投与(高用量)の効果を示す図である。 静脈投与されたエピルビシンミセルの体内分布を示す図である。 GL261腫瘍の免疫組織学的観察結果である。 CT2A腫瘍の免疫組織学的観察結果である。 Day4及びDay8におけるCT2A腫瘍の免疫組織学的観察画像である。 種々の被験薬を投与したマウスから摘出したCT2A腫瘍におけるPD-L1の発現を示す図である。 種々の被験薬の細胞傷害活性を示すグラフである。 中皮腫モデルマウスに種々の被験薬を投与した際の抗腫瘍効果を示す図及びマウスの生存曲線である。 種々の被験薬の細胞傷害活性を示すグラフである。 線維肉腫モデルマウスに種々の被験薬を投与した際の抗腫瘍効果を示す図及び生存曲線である。 KPC細胞におけるICDマーカーの発現レベルを示す図である。 種々の被験薬を投与したすい臓がんモデルマウスから摘出した腫瘍の写真である。 すい臓がんモデルマウスに種々の被験薬を投与した際の生存曲線である。
 以下、本発明の実施形態について説明するが、本発明は該実施形態には限定されない。また、各実施形態は、適宜組み合わせることができる。なお、本発明に用いられるブロックコポリマーにおいて、親水性ブロック及び疎水性ブロックはそれぞれ、ある程度の多分散性を示し得る。
A.医薬組成物
 本発明の実施形態による医薬組成物は、親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を含有し、免疫賦活剤と組み合わせてがんの治療又は予防に用いられる。処置対象の個体に対して、当該ミセル剤を含有する医薬組成物を、免疫賦活剤と組み合わせて投与(併用投与)することにより、神経膠腫等の従来の治療方法では治療が困難ながんに対しても優れた抗腫瘍効果が得られ得る。なお、本明細書において、用語「ミセル剤」と「ミセル」とは、実質的に同義に用いられ得る。
A-1.アントラサイクリン系化合物を含むミセル剤
 図1は、本発明の1つの実施形態によるアントラサイクリン系化合物を含むミセル剤を説明する概略図である。ミセル剤100は、親水性ブロック12と親水性ブロック12の一方の端部に連結された疎水性ブロック14とを有するブロックコポリマー10と、ブロックコポリマー10に結合したアントラサイクリン系化合物20と、を有する薬物-ポリマー複合体30を含む。好ましくは、アントラサイクリン系化合物20は、ブロックコポリマー10に導入されたヒドラジド基を介してブロックコポリマー10と結合している。また、ミセル剤100において、薬物-ポリマー複合体30は、代表的には、親水性ブロック12を外側に向け、疎水性ブロック14を内側に向けた状態で放射状に配列しており、これにより、ミセルの形態を形成している。
 図示しないが、薬物-ポリマー複合体30は、親水性ブロック12側の末端に標的結合部位を有していてもよい。また、ミセル剤100は、必要に応じて、薬物-ポリマー複合体30に加えて、親水性ブロックと、親水性ブロックの一方の端部に連結された疎水性ブロックとを有する一方で、薬物を有さないブロックコポリマー(図示せず)をさらに含んでいてもよい。この場合、当該薬物非含有ブロックコポリマーもまた、代表的には、親水性ブロックを外側に向け、疎水性ブロックを内側に向けた状態で放射状に配列している。また、薬物非含有ブロックコポリマーの親水性ブロック側の末端に標的結合部位が導入されていてもよい。薬物非含有ブロックコポリマーの具体例としては、例えば、WO2008/047948において式(III)又は(IV)で表されるブロックコポリマーが例示できる。
 本明細書において、薬物-ポリマー複合体又はブロックコポリマーが「放射状に配列している」とは、これらが親水性ブロックを外側に向け、疎水性ブロックを内側に向けて凝集した状態にあればよく、各ブロックコポリマーの配列の起点が一点に集中していない、やや崩れた放射状の配列構造であっても構わない。
 本明細書において、標的結合部位とは、生体及びウイルスに由来する物質に対し特異的に結合して当該物質と生物学的な結合対を形成し得る、生物学的な認識機能を有する部位を意味する。生体及びウイルスに由来する物質としては、生体細胞、細菌、真菌及びウイルスに存在する分子が例示できる。生体細胞としては、腫瘍細胞及び新生血管細胞ならびにそれらの周辺細胞、免疫担当細胞(例えばB細胞、T細胞)、炎症細胞(例えば白血球)、血管内皮細胞、各種臓器を構成する細胞が例示できる。また、標的結合部位を有する化合物としては、生体及びウイルスに由来する物質に対し特異的に結合して当該物質と生物学的な結合対を形成するタンパク質(抗体等)、ペプチド又は糖鎖を例示できる。1つの実施形態において、標的結合部位は抗体に由来する基であり、環状-Arg-Gly-Asp(cRGD)を含まない。
 上記ミセル剤の粒子径は、例えば15nm~150nm、好ましくは20nm~100nm、より好ましくは25nm~60nmであり得る。このような粒子径であることにより、腫瘍組織内に良好に集積することができる。
A-1-1.アントラサイクリン系化合物
 アントラサイクリン系化合物としては、抗腫瘍活性を有する任意のアントラサイクリン類(7,8,9,10-tetrahydro-5,5,12-naphthacenequinoneのグリコシド)及びその誘導体又はそれらの薬学的に許容され得る塩が用いられ得る。
 アントラサイクリン系化合物の具体例としては、ダウノルビシン、エピルビシン、ドキソルビシン、アムルビシン、イダルビシン、バルルビシン、アクラルビシン、ピラルビシン、ミトキサントロン及びそれらの薬学的に許容され得る塩(例えば、塩酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、トリフルオロ酢酸塩)が挙げられる。なかでも、エピルビシン、ドキソルビシン及びその誘導体あるいはそれらの薬学的に許容され得る塩が好ましく、エピルビシン及びその誘導体又はそれらの塩酸塩がより好ましい。エピルビシン及びその誘導体又はそれらの塩酸塩を含む薬物-ブロックコポリマーを用いて構成されたミセル剤を用いることにより、副作用を抑制しつつ、非常に優れた抗腫瘍効果が得られ得る。なお、アントラサイクリン系化合物は、単独で、又は、二種以上を組み合わせて用いてもよい。
A-1-2.ブロックコポリマー
 ブロックコポリマーは、親水性ブロックと該親水性ブロックの一方の端部に連結された疎水性ブロックとを有する。親水性ブロック及び疎水性ブロックはそれぞれ、極性溶媒中で、薬物-ポリマー複合体が、親水性ブロックを外側に向け、疎水性ブロックを内側に向けた状態で放射状に配列し得る程度の親水性度及び疎水性度を有するものであればよい。
 親水性ブロックは、代表的には、親水性ポリマーを含む。親水性ブロックを構成する親水性ポリマーとしては、例えば、ポリエチレングリコール、ポリサッカライド、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリメタクリルアミド、ポリメタクリル酸、ポリメタクリル酸エステル、ポリアクリル酸エステル、ポリアミノ酸、ポリリンゴ酸、又はこれらの誘導体が挙げられる。ポリサッカライドの具体例としては、デンプン、デキストラン、フルクタン、ガラクタン等が挙げられる。これらのなかでも、ポリエチレングリコールは、末端に種々の官能基を有する末端反応性ポリエチレングリコールが市販されており、また、種々の分子量のものが市販されており、容易に入手できることから、好ましく用いられ得る。
 親水性ブロックを構成する親水性ポリマーの重合度は、例えば5~2000、5~1000、40~600又は100~400であり得る。また、当該親水性ポリマーの分子量は、例えば200Da以上、1,000Da以上又は5,000Da以上であり得、また例えば50,000Da以下、30,000Da以下又は20,000Da以下であり得る。
 疎水性ブロックとしては、ポリアミノ酸ブロックが好ましく例示される。ポリアミノ酸ブロックは、代表的には、繰り返し単位(アミノ酸残基)として、官能基を側鎖に有する官能基含有アミノ酸残基を含む。ポリアミノ酸ブロックがこのような官能基含有アミノ酸残基を含むことにより、ブロックコポリマーとアントラサイクリン系化合物との結合が好適に行われ、結果として、薬物-ポリマー複合体が好適に得られ得る。また、比較的高い親水性度を有する官能基と後述する疎水性基とを適切な割合で側鎖に導入することにより、ポリアミノ酸ブロック全体としての疎水性度を所望の範囲に調整することができ、結果として、安定性の高いミセル剤を形成可能な薬物-ポリマー複合体が得られ得る。
 上記官能基としては、ヒドラジド基(-NH-NH)、カルボキシル基、アミノ基、ヒドロキシル基等が挙げられる。なかでも、ヒドラジド基及びカルボキシル基が好ましい。官能基は、単独で、又は、二種以上を組み合わせて用いてもよい。
 ポリアミノ酸ブロックがヒドラジド基を側鎖に有するアミノ酸残基を含む実施形態(換言すれば、ポリアミノ酸ブロックの側鎖にヒドラジド基が導入されている実施形態)においては、当該ヒドラジド基とアントラサイクリン系化合物が有するケトン基(例えば、アントラサイクリン類の13位のケトン基)とを反応させてヒドラゾン結合を形成させることによって、ブロックコポリマーとアントラサイクリン系化合物とが結合した薬物-ポリマー複合体が好適に得られ得る。また、当該薬物-ポリマー複合体を含むミセル剤は、エンドサイトーシスを介して標的細胞内に取り込まれた際に、エンドソーム内の低pH環境に起因するヒドラゾン結合の開裂によって、薬物を好適に放出することができる。
 ポリアミノ酸ブロックは、必要に応じて、任意の適切な繰り返し単位をさらに含むことができる。このような繰り返し単位としては、側鎖に疎水性基を有する疎水性基含有アミノ酸残基が挙げられる。疎水性基としては、例えば、C~C16の直鎖、分岐鎖又は環状構造を有するアルキル基、C~C20のアリール基、及びC~C20のアラルキル基又はステロール残基等の疎水性有機基が挙げられる。上記C~C20のアリール基及びC~C20のアラルキル基としては、好ましくはフェニル基、ナフチル基、トリル基、キシリル基、ベンジル基及びフェネチル基、より好ましくはフェニル基及びベンジル基、さらに好ましくはベンジル基が挙げられる。また、上記ステロール残基が由来するステロールは、好ましくはコレステロール、コレスタノール及びジヒドロキシコレステロールであり、より好ましくはコレステロールである。
 ポリアミノ酸ブロックの具体例としては、ポリグルタミン酸誘導体、ポリアスパラギン酸誘導体又はポリ(グルタミン酸-コ-アスパラギン酸)誘導体を例示できる。
 ポリアミノ酸ブロックの重合度は、例えば10~1000、好ましくは15~200、より好ましくは20~150、さらに好ましくは25~100であり得る。
 ポリアミノ酸ブロックにおけるヒドラジド基含有アミノ酸残基数は、例えば1~1000、好ましくは1~100、より好ましくは5~50であり得る。また、ポリアミノ酸ブロックを構成する全アミノ酸残基数に対するヒドラジド基含有アミノ酸残基数の割合は、例えば10%~97%、好ましくは25%~90%、より好ましくは40%~80%であり得る。
 ポリアミノ酸ブロックにおける疎水性基含有アミノ酸残基数は、例えば0~1000、1~100又は2~50であり得る。また、ポリアミノ酸ブロックを構成する全アミノ酸残基数に対する疎水性基含有アミノ酸残基数の割合は、例えば0%以上、3%以上、4%以上、5%以上、20%以上又は25%以上であり得、また、90%未満、75%以下又は50%以下であり得る。
 ポリアミノ酸ブロックにおけるヒドラジド基以外の官能基含有アミノ酸残基数は、例えば0~1000、好ましくは1~100、より好ましくは2~50であり得る。ポリアミノ酸ブロックを構成する全アミノ酸残基数に対するヒドラジド基以外の官能基含有アミノ酸残基数の割合は、例えば0%~80%、好ましくは5%~70%、より好ましくは10%~60%であり得る。
 1つの実施形態において、上記ブロックコポリマーは、下記式(i)によって表されるアミノ酸残基を含み、必要に応じて、下記式(ii)によって表されるアミノ酸残基及び/又は(iii)によって表されるアミノ酸残基をさらに含む。式(i)、(ii)及び(iii)で表されるアミノ酸残基はそれぞれ、上記ヒドラジド基含有アミノ酸残基、疎水性基含有アミノ酸残基及びヒドラジド基以外の官能基含有アミノ酸残基に対応し得る。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式(i)~(iii)中、xは、1又は2を表し、Rは、-O-又はNH-を表し、Rは、疎水性基を表す。)
 1つの実施形態において、上記ブロックコポリマーのポリアミノ酸ブロックを構成する全アミノ酸残基に対して、上記式(i)~(iii)で表されるアミノ酸残基の合計が占める割合は、代表的には80%~100%、好ましくは90%~100%、より好ましくは95%~100%であり、例えば、100%であってもよい。なお、ブロックコポリマーは、式(ii)で表されるアミノ酸残基として、R及び/又はRが異なる2種以上のアミノ酸残基を含んでいてもよい。
 上記ブロックコポリマーは、任意の適切な合成方法を用いて合成され得る。例えば、ポリエチレングリコール(PEG)ブロックと側鎖にヒドラジド基が導入されたポリアミノ酸ブロックとを有するブロックコポリマーは、末端が保護されていてもよいPEG-ポリ(β-ベンジル-L-アスパルテート)又はPEG-ポリ(γ-ベンジル-L-グルタメート)にヒドラジンあるいはヒドラジン水和物を反応させて、そのべンジルエステル部分をヒドラジド基に変換することで合成することができる。
 上記反応は、通常、脱水溶媒中で行われる。溶媒としては、脂肪族又は芳香族の有機溶媒が用いられ、その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジクロロメタン、クロロホルム又はそれらの混合溶媒が挙げられる。また、使用する溶媒は極力水を含まないことが好ましい。
 上記反応におけるヒドラジンの添加量は、反応がほぼ定量的に進行することから、通常、ブロックコポリマーのべンジルエステル部分に対して導入予定の量を添加すればよい。例えば、ヒドラジド基をベンジルエステル部分に対して50%導入する場合、0.5倍当量のヒドラジンを添加し、75%導入する場合は、0.75当量のヒドラジンを添加することができる。
 上記反応における反応温度は、例えば0℃~100℃、好ましくは20℃~80℃、より好ましくは25℃~50℃であり得る。圧力は、常圧であることが好ましい。反応時間は、反応が十分に進行する時間であればとくに制限はされないが、通常は、1時間~2日間である。
 上記合成方法の詳細は、例えば、WO2008/047948に記載されており、その全体が本明細書中で参考として援用される。
A-1-3.薬物-ポリマー複合体
 薬物-ポリマー複合体は、上記親水性ブロックと疎水性ブロックとを有するブロックコポリマーと上記アントラサイクリン系化合物とを結合させることによって得られる。1分子のブロックコポリマーに結合するアントラサイクリン系化合物の分子数は、実用的な血中滞留性を有するミセル剤を形成可能である限りにおいて制限されない。ブロックコポリマー1分子に対する上記化合物の結合数は、疎水性ブロックの繰り返し単位数(重合度)に対して、例えば5%~65%、好ましくは10%~50%、10%~40%又は15%~35%の数であり得る。
 上記薬物-ポリマー複合体において、アントラサイクリン系化合物は、代表的には、前記ポリアミノ酸ブロックに導入されたヒドラジド基を介してブロックコポリマーと結合しており、好ましくはポリアミノ酸ブロックの側鎖に導入されたヒドラジド基を介してブロックコポリマーと結合している。よって、薬物-ポリマー複合体は、好ましくは下記式(iv)で表される薬物含有アミノ酸残基を含み得る。
Figure JPOXMLDOC01-appb-C000005
(式中、xは、1又は2を表し、Anは、カルボニル基を有するアントラサイクリン系化合物からカルボニル酸素を除いた残基を表す。)
 上記薬物-ポリマー複合体は、上記式(iv)で表される薬物含有アミノ酸残基に加えて、上記式(i)~(iii)で表されるアミノ酸残基の少なくとも1種をさらに含み得る。
 上記薬物-ポリマー複合体のポリアミノ酸ブロックにおける式(iv)で表される薬物含有アミノ酸残基数は、例えば1~50、好ましくは2~40、より好ましくは3~30、さらに好ましくは4~20の整数であり得る。
 上記薬物-ポリマー複合体のポリアミノ酸ブロックにおける式(i)で表されるヒドラジド基含有アミノ酸残基数は、例えば0~30、好ましくは1~25、より好ましくは2~20の整数であり得る。
 上記薬物-ポリマー複合体のポリアミノ酸ブロックにおける式(ii)で表される疎水性基含有アミノ酸残基数は、例えば0~100、好ましくは1~80の整数又は2~50の整数であり得る。
 上記薬物-ポリマー複合体のポリアミノ酸ブロックにおける式(iii)で表されるカルボキシル基含有アミノ酸残基数は、例えば0~100、好ましくは1~80、より好ましくは2~50の整数であり得る。
 1つの実施形態において、薬物-ポリマー複合体は、下記式(I)又は式(II)で表され得る。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式中、
 Rは、同一または異なって、水素原子、メトキシ基、メチル基、置換された直鎖若しくは分枝又は環状の炭素数1~12のアルキル基であり、その置換基が、保護されていてもよいマレイミド基、アミノ基、カルボキシル基、チオール基、水酸基及び活性エステル基からなる群より選択される官能基、を表し、
 Rは、水素原子、飽和もしくは不飽和の炭素数1~30の脂肪族カルボニル基またはアリールカルボニル基を表し、
 Rは、-O-又は-NH-を表し、
 Rは、疎水性基を表し、
 Rは、水酸基、飽和もしくは不飽和の炭素数1~30の脂肪族オキシ基またはアリール-低級アルキルオキシ基を表し、
 L及びLは、各々独立してリンカーを表し、
 aは、5~1000の整数を表し、
 bは、1~1000の整数を表し、
 cは、0~1000の整数を表し、
 dは、0~1000の整数を表し、
 eは、0~1000の整数を表し、
 yは、1又は2を表し、
 Anは、カルボニル基を有するアントラサイクリン系化合物からカルボニル酸素を除いた残基を表し、
 ただし、b+c+d+eは10~1000の整数である。)
 上記式(I)又は(II)において、Rの基で定義する炭素数1~12のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、デシル基及びウンデシル基等を挙げることができる。
 Rの基で定義する炭素数1~30の脂肪族カルボニル基としては、アセチル基、プロピオニル基、ブチリル基、バレリル基、トリメチルアセチル基、ヘキサノイル基、t-ブチルアセチル基、ヘプタノイル基、オクタノイル基、2-エチルヘキサノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ラウロイル基等を挙げることができる。また、アリールカルボニル基としては、例えば、ベンゾイル基、メチルベンゾイル基、エチルベンゾイル基、ジメチルベンゾイル基、トリメチルベンゾイル基、イソプロピルベンゾイル基、n-ブチルベンゾイル基、n-ペンチルベンゾイル基、イソペンチルベンゾイル基、ネオペンチルベンゾイル基、イソヘキシルベンゾイル基等を挙げることができる。
 Rの基で定義する疎水性基としては、上記疎水性基含有アミノ酸残基に関して例示した疎水性基が挙げられる。なかでも、フェニル基及びベンジル基が好ましい。
 Rの基で定義する炭素数1~30の脂肪族オキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、イソアミルオキシ基、ヘキシルオキシ基等を挙げることができる。また、アリール-低級アルキルオキシ基としては、ベンジルオキシ基、(メチルフェニル)メトキシ基、(ジメチルフェニル)メトキシ基、(トリメチルフェニル)メトキシ基、(テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、ナフチルメトキシ基等を挙げることができる。
 L及びLが表すリンカーとしては、ブロックコポリマーの製造方法、原料等により変化し得ることから、特に限定されるものではない。Lとしては、例えば、-Z-NH-、-CO-Z-NH-および-CO-NH-Z-NH-(ここで、Zは独立して炭素数1~8のアルキル基である)等の2価のリンカーを挙げることができる。また、Lとしては、-Z-CO-、-CO-Z-、-CO-Z-CO-、-Z-CO-Z-および-Z-CO-O-Z-(ここで、Zは独立して炭素数1~8のアルキル基である)を挙げることができる。1つの実施形態において、Lは、-Z-NH-(ここで、Zは、炭素数1~5のアルキレン基、例えば、-CHCH-または-CHCHCH-である)であり得る。
 aは、ポリエチレングリコールの繰り返し数を表す。aは、例えば5~2000、5~1000、40~600、100~400又は200~400の整数であり得る。
 bは、側鎖にアントラサイクリン系化合物が結合したアミノ酸残基数を表す。bは、例えば1~50、好ましくは2~40、より好ましくは3~30、さらに好ましくは4~20の整数であり得る。
 cは、ヒドラジド基を有するブロックコポリマーにおいて、アントラサイクリン系化合物と反応しなかったヒドラジド基含有アミノ酸残基数を表す。cは、例えば0~30、好ましくは1~25、より好ましくは2~20の整数であり得る。
 dは、疎水性基含有アミノ酸残基数を表す。dは、例えば0~100、好ましくは0~80、より好ましくは0~50の整数であり得る。1つの実施形態において、dは、(b+c+d+e)×0.2≦d<(b+c+d+e)×0.9の関係を満たし、好ましくは(b+c+d+e)×0.25≦d<(b+c+d+e)×0.5の関係を満たす。
 eは、アスパラギン酸残基又はグルタミン酸残基数を表す。eは、例えば0~100、好ましくは1~100、より好ましくは2~50の整数であり得る。
 b+c+d+eは、ポリアミノ酸ブロックの重合度を表す。b+c+d+eは、好ましくは15~200、より好ましくは20~150、さらに好ましくは25~100の整数であり得る。
 1つの実施形態において、b+c+d+eが30~50の整数であり得、bが1~20の整数であり得、cが0~20の整数であり得、dが0~30の整数であり得、eが0~30の整数であり得る。
 別の実施形態において、b+c+d+eが30~50の整数であり得、bが4~14の整数であり得、cが1~4の整数であり得、dが6~40、10~35又は12~30の整数であり得、eが5~15の整数であり得る。
 上記薬物-ポリマー複合体は、任意の適切な合成方法を用いて合成され得る。例えば、上記薬物-ポリマー複合体は、アントラサイクリン系化合物のケトン基とブロックコポリマーのヒドラジド基と反応させることによって得られ得る。当該反応は、好ましくは極力無水な条件下で行われる。具体的には、上記ブロックコポリマーを脱水した溶媒、例えばN,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセ卜アミド、テトラヒドロフラン、ジクロロメタン、クロロホルム又はそれらの混合溶媒に溶解し、所望量の薬物(例えばヒドラジド基に対して0.1当量~10当量、好ましくは0.1~3当量)を添加して、反応させる。反応は、例えば0℃~50℃、好ましくは20℃~40℃、より好ましくは25℃~37℃の範囲で行われる。圧力は、常圧であることが好ましい。反応時間は、通常、2時間~5日間とすることができる。上記合成方法の詳細は、例えば、WO2008/047948に記載されている。
A-2.ミセル剤の作製
 上記薬物-ポリマー複合体を含むミセル剤(ポリマーミセル)は、任意の適切な方法によって形成され得る。例えば、薬物-ポリマー複合体を水性媒体中に溶解又は分散後、撹拌することによってミセル剤を調製することができる。その際、超音波、圧力、剪断力又はそれらを組合せた物理的エネルギーを与えてもよい。あるいは、薬物-ポリマー複合体を揮発性の有機溶媒に溶解後、有機溶媒を揮発させて乾固し、そこに水性媒体を加えて撹拌後、上記物理的エネルギーを与えることによって調製することができる。
 上記水性媒体としては、水、生理食塩水、緩衝液等を挙げることができ、ミセル剤の形成に影響を及ぼさない限りにおいて、少量の有機溶媒を含有してもよい。緩衝液のpHは、例えば6~8であり得る。また、揮発性の有機溶媒としては、メタノール、エタノール、アセトン、クロロホルム、アセトニトリル、テ卜ラヒドロフラン、ジクロロメタン等を挙げることができる。
 上述のとおり、上記ミセル剤は、必要に応じて、薬物-ポリマー複合体に加えて、親水性ブロックと該親水性ブロックの一方の端部に連結された疎水性ブロックとを有する一方で、薬物を有さないブロックコポリマーをさらに含んでいてもよい。
B.免疫賦活剤
 免疫賦活剤としては、好ましくは免疫チェックポイント阻害剤が用いられる。免疫チェックポイント阻害剤は、免疫チェックポイント分子又はそのリガンドに結合することによって免疫抑制シグナルの伝達を阻害し得る任意の抗体又は化合物であり得る。免疫チェックポイント阻害剤が、免疫抑制シグナルの伝達を阻害する結果、がん細胞に対する免疫応答が活性化される。
 免疫チェックポイント分子としては、T細胞を介した免疫反応を負に制御するPD-1及びCTLA-4が好ましく例示できる。また、PD-1とPD-L1(PD-1のリガンドの1つ)とが結合することにより、シグナル伝達経路を介してT細胞の免疫活性が強く抑制される。よって、免疫チェックポイント阻害剤は、好ましくは抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗LAG3抗体、抗TIGIT抗体及び抗Tim-3抗体から選択される1種以上の抗体であり得る。
 抗PD-1抗体、抗PD-L1抗体及び抗CTLA4抗体としては、公知の抗体を用いてもよい。例えば、抗PD-1抗体として、ニボルマブ、ペムブロリズマブ、スパルタリズマブ、セミプリマブ等を用いることができ、抗PD-L1抗体として、アベルマブ、アテゾリズマブ、デュルバルマブ等を用いることができ、抗CTLA-4抗体として、イピリムマブ、トレメリムマブ等を用いることができる。
C.組み合わせ形態
 上記ミセル剤を含む医薬組成物(以下、ミセル製剤とも称する)は、免疫賦活剤と組み合わせて用いられる。具体的には、ミセル製剤と免疫賦活剤とは、処置対象の個体に併用投与される。
 1つの実施形態において、ミセル製剤は、免疫賦活剤と同時に処置対象の個体に投与される。本実施形態においては、ミセル製剤と免疫賦活剤を含む製剤(以下、免疫賦活製剤とも称する)とを同時に投与してもよく、ミセル剤と免疫賦活剤とを含む配合剤である医薬組成物を投与してもよい。
 別の実施形態において、ミセル製剤は、免疫賦活剤と異時に処置対象の個体に投与される。本実施形態においては、ミセル製剤が、免疫賦活製剤の投与前又は投与後に、処置対象の個体に投与される。
 上記ミセル製剤及び免疫賦活製剤(又は配合剤)の投与量及び投与スケジュールは、がんの種類や病期、処置対象の個体の状態等に応じて適宜選択され得る。例えば、ミセル製剤と免疫賦活製剤とを異時に投与する場合、ミセル製剤の投与回数と免疫賦活製剤の投与回数とは、同じであってもよく、異なっていてもよい。また、ミセル製剤と免疫賦活製剤とを異時に投与する場合、ミセル製剤の投与と免疫賦活製剤の投与との間隔は、本発明の効果を奏する範囲において特に制限されない。
 上記ミセル製剤及び免疫賦活製剤(又は配合剤)の投与形態はそれぞれ、特に制限されず、治療目的等に応じて適宜選択され得る。これらの製剤は、代表的には注射剤であり、静脈内、筋肉内、髄腔内、皮下組織内等に投与される。なかでも、静脈内投与用注射剤が好ましく例示される。
 上記ミセル製剤及び免疫賦活製剤(又は配合剤)はそれぞれ、投与形態等に応じて、任意の適切な担体を用いて当該技術分野において公知の方法により調製することができる。担体は、薬学的に許容され得るものであればよく、例えば賦形剤、結合剤、希釈剤、溶解補助剤、懸濁化剤、等張化剤、pH調整剤、緩衝剤、安定化剤等を例示できる。
 上記ミセル製剤及び免疫賦活製剤は、各有効成分(アントラサイクリン系化合物を含むミセル剤と免疫賦活剤)が有効投与量投与される限りにおいて、併用投与に適した1つのパッケージにまとめて製造販売されてもよく、また別個のパッケージで製造販売されてもよい。1つの実施形態において、ミセル製剤は、容器に充填され、がんを治療又は予防するために免疫賦活剤と組み合わせて個体に投与することを示す指示書又はラベルを含む製品として製造販売され得る。
D.用途
 上記ミセル剤を含む医薬組成物は、代表的には、がんを治療又は予防するために用いられる。治療又は予防の対象となるがんとしては、アントラサイクリン系化合物に対する難治性がんが好ましく挙げられ、その具体例としては、脳腫瘍(膠芽腫等の神経膠腫)、すい臓がん、悪性中皮腫、線維肉腫、卵巣がん、乳がん、Hodgkinリンパ腫、軟部肉腫、膀胱がん、甲状腺がん、胃がん、子宮体がん、骨肉腫、Wilms腫瘍、神経芽細胞腫、急性リンパ腫等が挙げられる。なかでも、上記医薬組成物は、脳腫瘍(膠芽腫等の神経膠腫)、すい臓がん、悪性中皮腫、線維肉腫、乳がん、軟部肉腫、卵巣がんに対して優れた抗腫瘍効果を発揮し得る。なお、上記治療又は予防の対象となるがんには、原発巣のみならず、他の臓器に転移したがんも含まれる。
E.がんを治療又は予防する方法
 上記ミセル剤を含む医薬組成物(実質的には、有効成分としてのミセル剤)は、がんの治療又は予防のために、免疫賦活剤と組み合わせて使用される。よって、本発明の別の局面によれば、上記ミセル剤を含む医薬組成物(実質的には、有効成分としてのミセル剤)を、処置対象の個体に免疫賦活剤と併用投与することを含む、がんを治療又は予防する方法が提供される。治療又は予防の対象となるがんについては、D項に記載したとおりである。
 上記処置が必要な個体は、代表的には、ヒト又は非ヒト哺乳類である。
 1つの実施形態において、上記処置が必要な個体は、PTEN(Phosphatase and Tensin Homolog Deleted from Chromosome 10)の発現に異常(例えば、欠失、置換、挿入等のPTEN遺伝子の塩基配列の変異又はPTEN遺伝子のヘテロ欠損等のPTEN遺伝子の異常)を有する。PTENは、ホスファチジルイノシトール3,4,5-三リン酸の脱リン酸化反応を触媒する酵素であり、PI3キナーゼ-Akt経路を抑制することで細胞の増殖や生存を抑制する。PTENは、多くのヒト悪性腫瘍において高頻度に変異が見られ、また、PTENヘテロ欠損マウスはがんを発症する確率が高いこと等から、がん抑制遺伝子として知られている。上記医薬組成物は、PTENの発現に異常を有する個体に対して、優れた抗腫瘍効果を発揮することができることを一つの特徴とする。PTENの発現に異常のあるがん患者は、PD-L1の発現が高くなり、免疫チェックポイント阻害剤に対する抵抗性を示す傾向にあるが、アントラサイクリン系化合物は、そのPD-L1の発現を抑制し得る。
 1つの実施形態において、上記医薬組成物は、免疫賦活剤を含まないミセル製剤であり、免疫賦活製剤と同時あるいは免疫賦活製剤の投与前又は投与後に投与される。例えば、別途に調製されたミセル製剤と免疫賦活製剤とを混合して投与することによって、2つの製剤を容易に同時投与することができる。また、ミセル製剤と免疫賦活製剤とを時間を空けて投与する場合、投与間隔は、本発明の効果が得られる限りにおいて特に制限されない。ミセル製剤及び免疫賦活製剤の投与回数もまた、本発明の効果が得られる限りにおいて制限されず、これらの回数は互いに同じであってもよく、異なっていてもよい。
 別の実施形態において、上記医薬組成物は、アントラサイクリン系化合物を含むミセル剤と免疫賦活剤とを含む配合剤である。
 上記いずれの実施形態においても、ミセル剤の用量及び投与間隔並びに免疫賦活剤の用量及び投与間隔は、がんの種類や病期、処置対象の個体の状態等に応じて適切に設定され得る。また、ミセル製剤(配合剤)および免疫賦活製剤はそれぞれ、代表的には注射剤として調製され、静脈内、筋肉内、髄腔内、皮下組織内等に投与される。なかでも、静脈内投与用注射剤が好ましく例示される。
 上記ミセル剤と免疫賦活剤とを併用投与する実施形態によれば、各々を単独で投与する実施形態に比べて顕著に優れた抗腫瘍効果が得られ得る。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。また、実施例において、統計分析は、GraphPad Prism 7 software(GraphPad software社)を用いて行い、全てのデータは平均+標準偏差(SD)として示し、0.05未満のP値は、統計的に有意な差であるとみなした。2群間の差はスチューデントのt検定又はマン・ホイットニーのU検定を用いて評価し、カプランマイヤー生存曲線における有意差は、ログランク検定によって確認した。
[実験例1 エピルビシン-ポリマー複合体を含むミセルの調製1]
<ヒドラジド基含有ブロックコポリマーの調製>
 常法にしたがって、PEG末端にメトキシ基が導入され、ポリアミノ酸末端にアセチル基が導入されたポリエチレングリコール-ポリ(β-ベンジル-L-アスパルテート)ブロックコポリマー(MeO-PEG-PBLA-Ac)を得た。得られたブロックコポリマーのPEGブロックの分子量は12kDaであり、1H-NMRによる解析から、PBLAブロックの重合度は40であった。
 穏やかに加熱しながら、上記ブロックコポリマーを無水DMSO(ポリマー50mg毎に1mL)に溶解した。室温まで冷却後、無水ヒドラジン(ポリマーに対して20モル当量)を添加して反応混合物を得た。該反応混合物を室温で3時間撹拌した。ジエチルエーテルを用いた沈殿及び真空乾燥を経て、反応混合物からヒドラジド基含有ブロックコポリマーを回収した。各ポリマーに導入されたヒドラジド基の数を、J Control Release. 2017 Jul 28;258:56-66.に記載されるアセチル化によって定量したところ、15であった。
<エピルビシン-ポリマー複合体の調製>
 上記ヒドラジド基含有ブロックコポリマーとエピルビシン(ポリマーに対して10モル当量)とをDMSO(ポリマーとエピルビシン混合物15mg毎に1mL)に溶解した。得られた混合物を40℃で72時間撹拌して両者を反応させ、これにより、以下に示す構造を有するエピルビシン-ポリマー複合体を得た。以下に示す構造を有するエピルビシン-ポリマー複合体を得た。なお、式中の「Epi」は、エピルビシンの13位のケトンがヒドラジド基とヒドラゾン結合を形成した際のエピルビシン残基を表し、p+q+r+s=40であり、pは0~3の範囲内の整数であり、qは3~5の範囲内の整数であり、rは10~15の範囲内の整数であり、sは17~22の範囲内の整数であった。また、ポリアミノ酸ブロックにおいて、各アミノ酸残基は、ランダムに存在している。なお、各ポリマーに導入されたエピルビシンの導入数は、J Control Release. 2017 Jul 28;258:56-66.に記載の方法に従って定量した。
Figure JPOXMLDOC01-appb-C000008
<ミセルの調製>
 上記DMSO中のエピルビシン-ポリマー複合体をメタノールに対して24時間透析した。この間、透析液を4回交換し、透析処理の終了時において、透析液は無色であった。透析バッグ内のエピルビシン-ポリマー複合体のメタノール溶液を回収し、500mL容丸底フラスコ内で蒸発させることにより、薄いフィルムを得た。次いで、PBS(10mg/mL)を添加し、混合液を10分間超音波処理に供し、これにより、エピルビシン-ポリマー複合体を含むミセル溶液を調製した。溶液中に残存する遊離の薬物及びポリマーは、遠心限外ろ過(MWCO:30kDa)で除いた。
 入射ビームとしてグリーンレーザー(532nm)を用い、173°の検出角度で、Zetasizer nano ZS(Malvern Instruments社製)を用いて行った動的光散乱法(DLS)によって、上記エピルビシン-ポリマー複合体を含むミセル(以下、エピビルシンミセル又はEpi/mと称する場合がある)の粒子径及び多分散指数を測定した。結果を図2に示す。
 図2に示されるとおり、得られたエピルビシンミセルは単分散性が高く、その平均粒子径は31nmであり、多分散性指数は0.07であった。
[実験例2 エピルビシン-ポリマー複合体を含むミセルの調製2]
 無水ヒドラジンとの反応時間を1時間30分にしたこと以外は実験例1と同様にして、以下に示す構造を有するエピルビシン-ポリマー複合体を得た。なお、式中の「Epi」は、エピルビシンの13位のケトンがヒドラジド基とヒドラゾン結合を形成した際のエピルビシン残基を表し、p+q+r+s=40であり、pは12~30の範囲内の整数であり、qは4~14の範囲内の整数であり、rは1~4の範囲内の整数であり、sは5~15の範囲内の整数であった。また、ポリアミノ酸ブロックにおいて、各アミノ酸残基は、ランダムに存在している。
Figure JPOXMLDOC01-appb-C000009
 上記で得られたエピルビシン-ポリマー複合体を用いたこと以外は実験例1と同様にしてエピルビシンミセルを得た。得られたエピルビシンミセル(Epi/m)の粒子径及び多分散指数を、実験例1と同様にして測定したところ、粒子径は54nm、多分散指数は0.100であった。
[実験例3 in vitro細胞傷害性アッセイ]
 2000cells/μL又は3000cells/μLの濃度でマウス膠芽腫(GBM)細胞「GL261」(DSMZ社)を含む培養液を、96ウェルプレートに1ウェルあたり50μLずつ添加し、24時間インキュベートした。次いで、1つの被験薬について、薬物濃度が4倍ずつ異なる10種類の試料(n=0~9の整数)を準備し、該試料を1ウェルあたり50μL添加して3時間インキュベートした(コントロールは、薬物濃度:0μg/mL)。次いで、各ウェルに関して、新鮮な培養液で細胞を洗浄し、新鮮な培養液100μLを添加して48時間インキュベートした。Cell Counting Kit-8溶液(DOJINDO)を各ウェルに10μLずつ添加し、1時間インキュベートした。次いで、マイクロプレートリーダーを用いて波長450nmの吸光度を測定して、各被験薬の各薬物濃度における細胞生存率を測定した。上記細胞生存率の測定を3回繰り返し、Graph Pad Prism7 softwareを用いてIC50を算出した。結果を図3に示す。
 なお、上記アッセイに用いた被験薬は以下のとおりである。
  K252a-H:製品名「K-252a」(BOC Sciences社)
  K252a-H/m:K252a-Hを用いて、実験例1と同様にして調製したK252a-H-ポリマー複合体を含むミセル
  JQ-1-H:製品名「(+)-JQ-1」(BOC Sciences社)
  JQ-1-H/m:JQ-1-Hを用いて、実験例1と同様にして調製したJQ-1-H-ポリマー複合体を含むミセル
  VBL-H:製品名「ビンブラスチン」(BOC Sciences社)
  VBL-H/m:VBL-Hを用いて、実験例1と同様にして調製したVBL-H-ポリマー複合体を含むミセル
  Epi:製品名「エピルビシン塩酸塩」(ナノキャリア社)
  Epi/m:実験例1と同様にして調製したエピルビシンミセル
  CDDP:製品名「シスプラチン」(ナカライ社)
  CDDP/m:Pharm Res. 2001 Jul;18(7):1035-41.に記載の方法と同様にして調製したシスプラチン内包ミセル
 図3に示されるとおり、エピルビシン単体及びエピルビシンミセルは、マウスGBM細胞「GL261」に対してin vitroで高い細胞傷害性を示した。
[実験例4 脳同所移植によるin vivo抗腫瘍効果アッセイ]
<発光細胞株の準備>
 マウスGBM細胞「GL261」(DSMZ社)を、Cignal lenti reporter control (luc)(Qiagen corp.)で形質転換し、限外希釈クローニングでLuciferase発現細胞「GL261-luc」を樹立した。
<脳同所移植>
 Luciferase発現細胞「GL261-luc」を、PBSで洗浄後、37℃°、0.25%トリプシン及び0.05%EDTAを含むPBS 10mlで5分間おくことによって培養容器から剥がし、10%FBS入り培養液によって懸濁した。該懸濁液を1×10cells/mLの濃度となるようにPBS液で希釈し、頭蓋内注射するまで氷上で保存した。
 マウス(C57/BL6、5~6週令)をイソフルランによって麻酔した。剃毛後、皮膚をヨウ素液消毒し、正中線と両耳ラインの前方の右側を小さく切開(2-3mm)した。頭蓋骨にツイストドリルで直径1ミリメートルの穴を開け、上記細胞懸濁液2μL(細胞数:2×10)を5分かけてゆっくり脳内に注入した。
 下記の群分け及び投与スケジュールで各被験薬を投与し、経時的に腫瘍由来の発光強度を測定した。発光強度は、腹腔内にルシフェリンを注入してから12分後に、IVIS imager(Caliper life science)を用いて測定した。なお、発光強度と腫瘍体積との間には高い相関関係があることから、発光強度(photons/sec)に基づいて腫瘍体積を定量評価することができる。結果を図4に示す。また、各群のマウスの生存曲線を図5に示す。なお、経過日数に関して、腫瘍体積(又は腫瘍由来の発光強度)については、被験薬の初回投与日をDay0としてカウントし、それ以外(生存日数、投与スケジュール等)については、がん細胞を移植した日をDay0としてカウントした(特段の記載がない限り、他の抗腫瘍効果アッセイについても同様である)。
<群分け>
Figure JPOXMLDOC01-appb-T000010
<投与スケジュール>
Day0:GL261-lucを脳に移植する。
Day6:被験薬を尾静脈投与する(1st injection)。
Day10:被験薬を尾静脈投与する(2nd injection)。
Day14:被験薬を尾静脈投与する(3rd(last) injection)。
 図4に示されるとおり、Epi投与群2及び抗PD-1抗体のみを投与した群5、6では、抗腫瘍効果が確認されなかった。DOXIL投与群4ではDay10において発光強度が低下する(腫瘍体積が減少する)傾向がみられたものの、Day10において2匹のマウスが死亡したため、それ以降の発光強度の測定は行わなかった。一方、Epi/m投与群3及びEpi/mと抗PD-1抗体との併用投与群7の両方において、抗腫瘍効果が確認されたが、群3では、腫瘍の再増殖が見られた。これに対し、群7では、全てのマウスにおいて腫瘍の再増殖は見られなかった。
 また、図5に示されるとおり、PBS投与群1、Epi投与群2及び抗PD-1抗体(1mg/kg)投与群5では、Day30~Day40の間に全てのマウスが死亡した。これに対し、抗PD-1抗体(5mg/kg)投与群6、DOXIL投与群4、Epi/m投与群3及びEpi/mと抗PD-1抗体との併用投与群7においてはそれぞれ、Day90において、40%、62.5%、75%及び100%の生存率が確認された。さらに、併用投与群7においては、8匹全てのマウスが7カ月(Day210)を超えて生存した。このとき、図6に示す脳のMRI画像からわかるとおり、全てのマウスに関して、Day48からDay210にかけて、腫瘍の再増殖は生じなかった。
 上記試験期間中の副作用に関して、DOXIL投与群4とEpi/m投与群3との比較を図7に示す。
 図7に示されるとおり、DOXIL投与群4では、Day30までに2匹のマウスが死亡したことに加えて、Day42において、1匹のマウスが皮膚障害を呈していた。また、1匹のマウスにおいて、腫瘍内脳出血が確認された。これに対し、Epi/m投与群3は、Day40を超えても100%の生存率を維持するとともに、皮膚障害及び腫瘍内脳出血のいずれも確認されなかった。以上より、エピルビシンミセルは、DOXILよりも抗腫瘍効果が高く、また、副作用が少ないことがわかる。
[実験例5 脳同所移植によるin vivo抗腫瘍効果アッセイ2]
 以下の実験条件を用いたこと以外は実験例4と同様にして、がん細胞を脳同所移植したマウスに対する抗腫瘍効果を調べた。
<実験条件>
マウス:C57/BL6(6週令、雌)
腫瘍株:CT2A-Luc Mouse Glioma細胞株(Millipore社、SCC195)
移植:CT2A-Lucを5×10 cells/mLの濃度で2μL(最終:1×10cells/匹)同所に移植した。
群分け:がん細胞を移植した日をDay0とし、Day6にIVISで測定した発光強度に基づいて、実験例1のEpi/mとaPD-1との併用投与群1(N=5)、実験例2のEpi/mとaPD-1との併用投与群2(N=8)及びコントロール群3(N=6)にマウスを群分けした。
投与:それぞれの群に対し、Day6、10、14、18に尾静脈内投与した。
投与量:aPD-1(Clone 29F.1A12, Bio cell社)の投与量は、5mg/kgとし、Epi/mの投与量は、Epi換算で、初回15mg/kg、2回目以降は10mg/kgとした。
 その結果、群1は試験期間の全体に渡って腫瘍増殖をほぼ抑制した。一方、群2は、被験薬の投与日をDay0として、Day10までは群1よりも腫瘍サイズが大きかったが、Day10以降は群1とほぼ相違ないレベルにまで縮小しており、実験全体を通しての効果に差は無かった。また、がん細胞を移植した日をDay0として、群3(PBS投与)はDay28で全数が死亡したのに対し、群1及び群2ではいずれも、Day40を経過時点で8匹中7匹が生存し、有意に長期延命効果を示した(群1:P=0.0004、群2:P=0.0005)。
 以上より、実験例1のEpi/mと実験例2のEpi/mは、エピルビシンのDDSとして同等の構造を有し、かつ、免疫チェックポイント阻害剤と併用投与した場合の相乗的な抗腫瘍効果に関して、ほぼ同程度の優れた効果を示すことがわかった。なお、後述の実験例では、Epi/mとして、実験例1のEpi/mを用いた。
[実験例6 エピルビシンミセルによるPTEN陽性及び陰性GBM細胞における免疫原性細胞死の誘導]
 文献(Cancer Disc.7(2017)818)に記載されるデータベースから臨床腫瘍におけるPTEN異常の割合(%)を調べた。図8Aに示す調査結果から、PTENの異常は、臨床GBMの指標であることがわかる。
 次いで、今回の実験例で使用するGL261細胞及びCT2A細胞におけるPTENの発現レベルをウエスタンブロッティング解析によって評価した。具体的には、一晩培養した細胞(5×10個)からタンパク質を抽出及び精製し、SDS-ポリアクリルアミドゲル電気泳動に供した後、フッ化ポリビニリデンメンブレンに転写した。当該メンブレンを一次抗体との反応に供し、次いで、HRP-コンジュゲート二次抗体(Thermo Fisher Scientific)と反応させ、ELC Prime Western blotting Detection Reagentを用いて発色させて、600UV Amersham imager(GE Healthcare UK)を用いてバンドを検出した。結果を図8Bに示す。
 図8Bに示されるとおり、一般的に用いられるGL261細胞は、アストロサイトに匹敵する高いPTENレベルを示した。一方、C57/BL6バックグラウンドにおける20-メチルコラントレンを用いた薬剤誘発性の腫瘍に由来するCT2A細胞は、GL261細胞よりもPTENの発現が顕著に低かった。よって、GL261細胞は、PTEN-陽性GBM細胞であり、CT2A細胞は、PTEN-陰性GBM細胞とみなすことができる。
 GL261細胞及びCT2A細胞に加えて、他のマウスがん細胞及びPTENをノックアウトしたGL261細胞におけるPD-L1の発現レベルについても、上記と同様にウエスタンブロッティング解析によって評価した。なお、PTENのノックアウトは、PTEN CRISPR/CRISPR-associated protein 9 KO plasmid及びPTEN HDR plasmid(Santa Cruz Biotechnology社)を用いて行った。結果を図8C及び図8Dに示す。
 図8Cに示されるとおり、GL261細胞は、マウスルイス肺がん細胞LL2及びマウス乳がん細胞4T1細胞の2倍を超えるPD-L1の発現を示した。また、図8Dに示されるとおり、CT2A細胞におけるPD-L1レベルはより高く、LL2細胞及び4T1細胞の約5倍、GL261細胞の2倍超のPD-L1を発現していた。さらに、GL261細胞においてPD-L1をノックアウトすることによって、PTENレベルが低下することから、PD-L1の発現が、PTEN発現と負の相関があることもわかる。
 次に、Epi/mを含む種々の薬物に関して、GL261細胞及びCT2A細胞に対するIC50を測定することにより、細胞傷害活性を評価した。具体的には、3000又は5000個の細胞を、100μLの培地と共に96ウェルプレートの各ウェルに播種した。24時間後に被験薬(Epi、Epi/m、DOX(ドキソルビシン塩酸塩)、DOXIL、CDDP、CDDP/m、オキサリプラチン、DachPt/m(ダハプラチンミセル))を各ウェルに添加し、48時間インキュベートした。次いで、Cell Counting Kit-8(富士フィルム社)の試薬10μLを添加し、波長450nmにおける吸光をプレートリーダー(製品名「インフィニットM1000 PRO」、Tecan社)を用いて測定した。Prism 7(GraphPad)を用いて、得られたデータを非処置の細胞のデータに正規化し、シグモイド型用量反応曲線にフィットさせてIC50を求めた。GL261細胞及びCT2A細胞に対する結果をそれぞれ、図8E及び図8Fに示す。
 図8E及びFに示されるとおり、PTEN-陽性であるGL261細胞において、Epi/m、Epi及びDOXILは、IC50が1μg/mLより低く、高い細胞傷害活性を示した。これらの薬物は、PTEN-陰性であるCT2A細胞に対しても、GL261細胞に対する活性に匹敵する高い活性を示した。このことから、PTEN-陽性及びPTEN-陰性のいずれのGBM細胞に対しても高い効力を有することが示唆された。
 Epi/mのIC50はまた、プラチナ剤であるシスプラチン及びオキサリプラチン、並びに、臨床評価段階にあるこれらの薬剤を搭載したポリマーミセル、すなわちシスプラチン搭載ミセル(CDDP/m)及び(1,2-ジアミノシクロヘキサン)白金(II)搭載ミセル(DACHpT/m)のIC50よりも低かった。
 次に、種々の被験薬を含む培養液中で24時間インキュベートした際の、免疫原性細胞死(ICD)のマーカーである、熱ショックプロテイン(HSP)70、HSP90及びカルレチクリンのGBM細胞表面における発現量を、蛍光抗体染色後のフローサイトメトリー解析(フローサイトメーター:LSRFortessa X-20)によって測定し、これにより、エピルビシンミセルがICDを誘導する能力を評価した。GL261細胞での結果を図8Gに、CT2A細胞における結果を図8Hに示す。
 図8Gに示されるとおり、PTEN-陽性であるGL261細胞において、Epi/mは、HSP90及びカルレチクリンのレベルを、真正のICD誘導因子であるEpiに匹敵するレベルまで有意に増大させた。一方、ネガティブコントロールとして用いたシスプラチン(CDDP)は、マーカーを有意に増大させなかった。また、図8Hに示されるとおり、PTEN-陰性であるCT2A細胞において、Epi/mは、HSP70及びHSP90の発現レベルを増大させたが、増大の程度はGL261細胞よりも小さかった。以上の結果から、Epi/mには、in vivoにおいて抗腫瘍免疫効果を促進する可能性があることがわかる。
[実験例7 膠芽腫に対する免疫チェックポイント阻害剤の効果のエピルビシンミセルによる増強]
[実験例7-1]
 ルシフェラーゼを発現するGL261細胞及びCT2A細胞、すなわち、GL261-luc及びCT2A-lucを脳内に移植することにより、同所性のPTEN-陽性GBMモデル及びPTEN-陰性GBMモデルを調製して、Epi/mが免疫チェックポイント阻害剤(ICI)と相乗作用を発揮できるかを評価した。まず、Epi/mの効果に宿主免疫システムが関与しているか否かを確認するために、野生型のマウス(C57/BL6)とヌードマウス(BALB/c Nude)に移植された同所性のGL261-luc腫瘍に対してEpi換算で5mg/kgの用量でEpi又はEpi/mを投与し、その活性を評価した。
 その結果、腫瘍を移植された野生型マウス及びヌードマウスのいずれにおいても、Epi投与によっては、腫瘍増殖率が抑制されなかった。一方、Epi/mは、野生型マウスにおいて腫瘍由来の発光シグナルを有意に抑制し、マウス生存率を有効に延長した。しかしながら、ヌードマウスにおいては、Epi/mによっても腫瘍増殖率が抑制されず、また、生存率の延長も認められなかった。これらの結果から、宿主免疫システムが存在することによってミセルの効力が得られることが示唆される。
[実験例7-2]
 次いで、ICIとの組み合わせにおけるEpi/mの治療効果を調べた。具体的には、脳同所移植によってGL261-luc腫瘍を移植したマウスに、下記の群分け及び投与スケジュールで各被験薬を投与し、実験例4と同様にして経時的に発光強度を測定した。結果を、各群のマウスの生存曲線及びマウスの脳のMRI画像と併せて図9に示す。
<群分け>
Figure JPOXMLDOC01-appb-T000011
<投与スケジュール>
Day0:脳にGL261-lucを1×10個移植する。
Day6:マウスをランダムに群分けし、被験薬を尾静脈投与する。
Day10、14、21、28、35、42:被験薬を尾静脈投与する。
 図9に示されるとおり、aPD-1又はEpi/m単独投与では、腫瘍由来の発光が部分的に抑制されるのみであるが、これらを組み合わせて投与することにより、Day60を超えても腫瘍由来の発光が効果的に抑制され続けた(左図)。また、Day18における脳腫瘍のMRI画像から、Epi/mとaPD-1との併用投与によって腫瘍サイズが制御されていることがわかる(右図)。このような抗腫瘍効果の増強の結果、全てのGL261-luc腫瘍が消滅し、全てのマウスが実験終了まで生存した(中央図)。
 また、上記実験で生存したマウスにGL261-luc細胞を再移植したところ、aPD-1又はEpi/mを単独投与あるいはこれらを併用投与されたマウスの全匹において、再移植された腫瘍が消滅した。このことから、効果的な免疫記憶が生じることがわかる。
 以上の結果から、PTEN-陽性腫瘍に対して、Epi/mとaPD-1とを組み合わせて用いる(併用投与する)ことにより、強力な相乗効果が得られることがわかる。
[実験例7-3]
 次いで、PTEN-陰性であるCT2A-luc腫瘍におけるICI効果をEpi/mが促進し得るかを評価した。なお、CT2A-luc腫瘍は、aPD-1を用いた治療に抵抗性である。具体的には、脳同所移植によってCT2A-luc腫瘍を移植したマウスに下記の群分け及び投与スケジュールで各被験薬を投与し、実験例4と同様にして経時的に発光強度を測定した。結果を、各群のマウスの生存曲線及びマウスの脳のMRI画像と併せて図10に示す。
<群分け>
Figure JPOXMLDOC01-appb-T000012
<投与スケジュール>
Day0:脳にCT2A-lucを1×10個移植する。
Day6:マウスをランダムに群分けし、被験薬を尾静脈投与する。
Day10、14、21、28、35、42:被験薬を尾静脈投与する。
 図10に示されるとおり、CT2A-lucに対するaPD-1の効果は低く、生存率の向上はあまり見られなかった(中央図)。一方、腫瘍由来の発光シグナルをみると、DOXILの単独投与によって発光シグナルの増大が抑制され、DOXILとaPD-1との併用投与によって腫瘍由来の発光強度が低下していた(左図)。しかしながら、DOXILの単独投与及びDOXILとaPD-1との併用投与による延命効果は、Epi/m投与と同程度であった(中央図)。Epi/mとaPD-1との併用投与による延命効果は、EpiとaPD-1との併用(P=0.0004)やDOXILとaPD-1との併用(P=0.0062)よりも有意に高かった(中央図)。また、MRI画像では、DOXILとaPD-1との併用投与マウス及びDOXIL単独投与マウスにおいて、腫瘍サイズの目立った減少が確認できないことから、DOXILが投与されたマウスでは、ルシフェリンの脳関門の通過が妨害された等の理由により、腫瘍由来の発光が本来よりも低減したと推測される(右図)。また、MRI画像によれば、Epi/mとaPD-1との併用投与マウスにおいて腫瘍サイズが効果的に制御されていることが確認でき、このことが、生存率の有意な増大につながったと考えられる(中央図、右図)。
[実験例7-4]
 用量を3倍にして(すなわち、薬物換算で15mg/kgの用量で)Epi/m又はaPD-1を単独投与あるいはEpi/mとaPD-1とを併用投与したこと以外は実験例7-3と同様にしてCT2A-luc腫瘍に対する抗腫瘍効果を調べた(Epi又はDOXILの15mg/kgの用量での投与は毒性であることから実施していない)。発光強度、各群のマウスの生存曲線及びマウスの脳のMRI画像を図11に示す。
 図11に示されるとおり、Epi/mとaPD-1とを併用投与することによって、CT2A-luc腫瘍の発光レベルが抑制されるとともに(左図)、Day50まで全てのマウスが生存し、生存率が有意に向上した(中央図)。Day22における脳腫瘍のMRI画像によれば、これらの併用投与によって強力な抗腫瘍効果が奏されることがわかる。
 また、上記実験で生存したマウスにCT2A-luc細胞を再移植したところ、Epi/mとaPD-1とが併用投与されたマウスにおいては、再移植された腫瘍が消滅した。このことから、効果的な免疫記憶が生じることがわかる。
 以上の結果から、PTEN-陰性腫瘍に対しても、Epi/mとaPD-1とを組み合わせて用いる(併用投与する)ことにより、強力な相乗効果が得られることがわかる。
[実験例8 エピルビシンミセルのCT2A腫瘍内への蓄積]
 Epi/mがEpiを同所性CT2A腫瘍に送達し得るかを調べた。具体的には、CT2A-luc細胞を脳に移植してから3週間後のマウスに、6mg/kgの用量(Epi換算)でEpi又はEpi/mを静脈投与した。試料の採取前にマウスをPBSでかん流した。被験薬の投与から1、4、8及び24時間後に、採血を行うとともに、正常な脳組織及び腫瘍組織を採取し、重量を測定した。採取した血漿及び組織中に含まれるEpiの濃度をJ Control Release. 2017 Jul 28;258:56-66.に記載の方法に従って評価した。結果を図12に示す。
 図12Aに示されるとおり、単独で投与された遊離のEpiは循環血液から速やかに除去されたのに対し、Epi/mは約12時間の半減期を有し、アベイラビリティが向上していた。さらに、図12B及びCによれば、Epi/mは、正常な脳組織に薬物(Epi)を蓄積することなく、腫瘍へ効果的に薬物を送達できることがわかる。また、血中濃度-時間曲線下面積(AUC)を算出したところ、同所性CT2A腫瘍のEpi/mに対する曝露量は、遊離のEpiに対する曝露量の180倍であった。
[実験例9 エピルビシンミセルによるコールドなGBMのホットな腫瘍への変換]
 PTEN-陽性GL261腫瘍及びPTEN-陰性CT2A腫瘍の免疫組織学的観察を行った。具体的には、実験例7-2と同様にして、マウスにGL261又はCT2Aを移植した。投与から2週間後に、がんが生着したマウスに各被験薬を投与した。このとき、GL261移植マウスには、Epi(5mg/kg)、Epi/m(Epi換算で5mg/kg)、PD-1(5mg/kg)、Epi/m+PD-1(薬物換算で各々5mg/kg)を投与し、CT2A移植マウスには、Epi(5mg/kg)、Epi/m(Epi換算で10mg/kg)、PD-1(5mg/kg)を投与した。投与後Day4のGL261移植マウス及び投与後Day4又はDay8のCT2A移植マウスの脳を、4%パラホルムアルデヒド及び0.1%グルタルアルデヒド溶液の静脈注射の逆流によって固定した。全脳を回収し、4%パラホルムアルデヒド及び0.1%グルタルアルデヒド溶液で24時間固定した。次いで、10%スクロースを含むPBS及び15%スクロースを含むPBS中にそれぞれ6時間置き、その後、20%スクロースを含むPBS中に一晩置いた。最後に、脳組織をOCTコンパウンド中に包埋した。cleaved caspase 3(Asp175)(5A1E)、CD8(D4W2Z)、CD4(D7D2Z)、FoxP3(D6O8R)、F4/80(D2S9R)、CD19(D4V4B)、CD11c(D1V9Y)、Granzyme B(D6E9W)(Cell Signaling Technology社)に対する抗体を用いて免疫染色を行った。免疫蛍光に関しては、組織切片を一次抗体と共にインキュベートし、SignalStain Boost IHC Detection Reagentsを用いて染色した。検出は、TSA plus Fluorescein System kit (Perkin Elmer社)を用いて行った。得られた画像において、細胞分布を直接観察することによって、腫瘍周辺にT細胞を提示する「cold-excluded腫瘍」とT細胞を一切示さない「cold-ignored腫瘍」とを区別することができる。また、得られた画像を目視で観察することによって、各タンパクを発現する細胞数を計測した。GL261腫瘍の観察結果及びCT2A腫瘍の観察結果をそれぞれ、図13及び図14に示す。また、CD8に対する抗体で染色したCT2A腫瘍のDay4及びDay8の写真を図15に示す。
 図13及び図14における未処置のGL261腫瘍及びCT2A腫瘍の観察画像から、これらの腫瘍はいずれも、T細胞を欠いていること、すなわち、cold-ignoredであることがわかる。また、Epi/mとaPD-1との併用投与によって、単独投与の場合に比べてCleaved Caspase-3(CC3)の発現レベルがより高くなっており、このことは、実験例7等で示された強力な抗腫瘍効果を裏付けるものといえる。
 また、図13に示されるとおり、PTEN-陽性GL261腫瘍において、Epi/m又はaPD-1の単独投与によって浸潤性のCD8+T細胞が増加したが、これらの併用投与によれば、腫瘍内部に存在するCD8+T細胞が顕著に増大した。また、これらの処置によって、制御性T細胞(Treg)(CD4+/FoxP3+)の発現レベルも変化している。したがって、aPD-1で処置された腫瘍は、有意に高いTregの浸潤を示す。一方、Epi/mとaPD-1とを併用投与は、腫瘍内部のTregレベルを低下させた。また、aPD-1で処置された腫瘍においては、マクロファージが増大していた。これに関しては、マクロファージの集簇及び当該マクロファージによるaPD-1の取り込みが、aPD-1治療法に対する抵抗性メカニズムを媒介することが報告されている(Sci Transl Med. 9 (2017) eaal3604)。注目すべきことには、Epi/m処置によって、腫瘍内におけるマクロファージレベルが低下しており、aPD-1と併用した際には、aPD-1を単独で用いる場合に比べてマクロファージが減少している。これらの結果は、Epi/mとaPD-1との併用投与によって、マクロファージによるaPD-1除去に起因する抵抗性が緩和され得ることを示す。
 図14及び図15に示されるとおり、PTEN-陰性CT2A腫瘍において、Epi/m又はaPD-1の単独投与によって、浸潤性のCD8+T細胞が増加したが、Epi/mで処置された腫瘍の方がCD8+T細胞レベルが高かった。また、これらを併用投与した場合、Epi/mの単独投与の場合と同程度まで腫瘍内部に存在するCD8+T細胞が増大した。Tregは、いずれの腫瘍においても検出されなかった。また、aPD-1で処置された腫瘍においては、マクロファージが増大しており、Epi/mと併用した際には、マクロファージの集簇がさらに促進された。
 以上の結果から、Epi/mとaPD-1との併用投与によって、コールドな(免疫的に不活性な)GBMを、ホットな(免疫的に活性な)腫瘍に変換できることがわかる。Epi/mとaPD-1との併用は、ICD誘導に加えて、GBM微少環境内における広範なリンパ球浸潤をもたらし、抗腫瘍免疫効果を押し上げることができ、結果として、相乗的な抗腫瘍効果を発揮し得ると考えられる。
[実験例10 エピルビシンミセルによるGBMにおけるPD-L1発現の抑制]
 GBMを含む多くのがんにおいて、PD-L1発現は予後の不良さと相関しており、PD-L1がリンパ球及び免疫細胞の浸潤に影響を及ぼすこと(Sci Rep. 7 (2017) 4231; Front Pharmacol. 9 (2018) 1503)、及び、乳がんにおいて、アントラサイクリン類がPD-L1の発現を低減すること(Breast Cancer Res. 12 (2010) R48; Int J Mol Sci. 19 (2018) 563)が報告されている。よって、Epi/mを投与したPTEN-陰性CT2A腫瘍におけるPD-L1の発現をフローサイトメトリー解析によって調べた。
 具体的には、マウスにCT2Aを1×10細胞移植してから2週間後に、PBS、Epi(6mg/kg)、Epi/m(Epi換算で6mg/kg)を1回尾静脈注射した。投与後8日目にPBSによって還流した。その後、がんのみを摘出し、BD Horizon Dri Tumor & Tissue dissociation Reagent キット(BD bioscience社)のプロトコールに従って、細胞を乖離させた。それぞれの細胞数をカウントし、投与したマウスの細胞で処置した5×10cells/チューブの細胞を正常IgGと共に15分インキュベートし、アロフィコシアニン(APC)結合-抗マウスPD-L1抗体(564715、BD bioscience社)を用いて染色した。細胞を、4℃で1時間インキュベートし、2回洗浄してから、2%FBS含有PBSに再度懸濁した。各試料に関して、製造者マニュアルに基づいてアイソタイプコントロールを用いた。アイソタイプコントロールの蛍光に対するサンプルの蛍光として、相対蛍光を算出した。データ分析は、FlowJo software(Tree Star社)を用いて行った。結果を図16に示す。
 図16に示されるとおり、Epi/mで処置した腫瘍細胞においては、PD-L1の発現レベルが低下していた。しかしながら、薬物単独(遊離のEpi)で処置した腫瘍細胞においては、このような発現レベルの低下は生じなかった。
[実験例11 マウス中皮腫モデルに対するエピルビシンミセルと抗PD-1抗体との併用投与]
[実験例11-1]
 実験例6と同様の方法で、種々のがん細胞(MCA205、AB12、GL261、CT2A、LL2、C26)に対する各被験薬(Epi、Epi/m、CDDP、CDDP/m)のIC50を調べた。結果を図17に示す。
 図17に示されるとおり、Epi及びEpi/mは、全てのがん細胞に対して1μg/mL以下の低いIC50を示し、このことから、広範ながん細胞に対して高い傷害活性を有することがわかる。
[実験例11-2]
 マウス中皮腫細胞「AB12」を移植したマウスに、下記の群分け及び投与スケジュールで各被験薬を投与し、実験例4と同様にして経時的に発光強度(腫瘍体積)を測定した。結果を、各群のマウスの生存曲線と併せて図18に示す。
<群分け>
Figure JPOXMLDOC01-appb-T000013
<投与スケジュール>
Day0:胸腔内にAB12を5×10個移植する。
Day6:マウスをランダムに群分けし、被験薬を尾静脈投与する。
Day10、14:被験薬を尾静脈投与する(計3回)。
 図18に示されるとおり、Epi/mとaPD-1とを併用投与した群では、初回投与後速やかに発光強度が低下(腫瘍体積が減少)し、再増殖することなく継続的に腫瘍の増殖が制御された。また、全てのマウスがDay90を超えて生存した。一方、他の被験薬を投与した群では、発光強度の低下(腫瘍体積の減少)が認められたものの、その程度は併用投与群に比べて小さく、また、経時的に再増殖する傾向にあった。また、コントロール群に比べて延命効果が認められるが、Day90における生存率はいずれも50%未満であった。
[実験例12 マウス線維肉腫モデルに対するエピルビシンミセルと抗PD-1抗体との併用投与]
[実験例12-1]
 実験例6と同様の方法で、種々の線維肉腫細胞がん株(MCA205、Sarcoma180、NIH3T3、HT1080)に対する各被験薬(Epi、Epi/m、DOX(ドキソルビシン塩酸塩)、DOXIL、CDDP、PTX(パクリタキセル))のIC50を調べた。結果を図19に示す。
 図19に示されるとおり、Epi及びEpi/mは、全てのがん細胞に対して2μg/mL以下の低いIC50を示し、このことから、広範ながん細胞に対して高い傷害活性を有することがわかる。
[実験例12-2]
 マウス線維肉腫細胞「MCA205」を皮下移植したマウスを移植から10日後に群分け後、下記の投与スケジュールで各被験薬を投与し、表面にあるがんの長径a及び短径bをノギスで測定し、楕円形の体積をab/2で計測することによって経時的に腫瘍体積を測定した。結果を、各群のマウスの生存曲線と併せて図20に示す。
<群分け>
Figure JPOXMLDOC01-appb-T000014
<投与スケジュール>
Day0:皮下にMCA205を5×10個移植する。
Day10:マウスをランダムに群分けし、被験薬を尾静脈投与する。
Day14、17、20、27、34、41:被験薬を尾静脈投与する。
 図20に示されるとおり、Epi/mとaPD-1とを併用投与した群では、腫瘍の増殖が顕著に抑制され、全てのマウスがDay40を超えて生存した。一方、他の被験薬を投与した群では、コントロール群に比べて腫瘍の増殖が抑制される傾向にあるものの、その程度は併用投与群に比べて小さく、また、Day40における生存率はいずれも50%未満であった。
[実験例13 マウスすい臓がんモデルに対するエピルビシンミセルと抗PD-1抗体との併用投与]
[実験例13-1]
 実験例6と同様の方法で、マウスすい臓がん細胞「KPC」に対するEpi、Epi/m及びDOXのIC50を調べたところ、いずれも2μg/mL以下の低い値、特に、DOXは約1μg/mL、Epiは0.5μg/mL以下の値を示した。このことから、Epi、Epi/m及びDOXはいずれも、KPC細胞に対して高い傷害活性を有することがわかる。
[実験例13-2]
 種々の濃度の被験薬を含む培養液中で24時間インキュベートしたKPC細胞に関して、免疫原性細胞死(ICD)のマーカーである、HSP70、HSP90及びカルレチクリンの細胞表面における発現量を、蛍光抗体染色後のフローサイトメトリー解析(フローサイトメーター:LSRFortessa X-20)によって測定した。結果を図21に示す。
 図21に示されるとおり、KPC細胞において、1μg/mL又は5μg/mLのEpi及びDOXは、HSP70、HSP90及びカルレチクリンのレベルを有意に増大させた。一方、イリノテカンはいずれの濃度においても、マーカーを有意に増大させなかった。以上の結果から、Epi及びDoxは、aPD1抗体との併用投与の際にイリノテカンより高いICD効果を発揮し、免疫による相乗効果が得られ得ると推測される。
[実験例13-3]
 マウスすい臓がん細胞「KPC」を移植したB6マウスを群分け後、下記の投与スケジュールで各被験薬を投与し、初回投与日をDay0として、Day24に安楽死処分し、腫瘍を摘出した。摘出した腫瘍の写真を図22に示す。
<群分け>
Figure JPOXMLDOC01-appb-T000015
<群1、2及び4の投与スケジュール>
Day-6:膵臓内にKPC細胞を5×10個に移植する。
Day0、3、6、9:被験薬を尾静脈投与する。
<群3の投与スケジュール>
Day-6:膵臓内にKPC細胞を5×10個に移植する。
Day0、3、6、9:Epi/mを尾静脈投与する。
Day2、5、8、11:aPD-1を尾静脈投与する。
 図22に示されるとおり、Epi/mとaPD-1とを併用投与した群3及び群4では、Day24において100%の生存率を達成した。また、群3では、3匹中2匹のマウスにおいて、群4では全てのマウスにおいて、腫瘍が完全に消滅しており、摘出することができなかった。これに対し、コントロール群1及びEpi/m単独投与群2では、Day24において1匹のマウスが死亡しており、他の2匹においても増大した腫瘍が摘出された。このことから、Epi/mとaPD-1との併用投与は、Epi/mの単独投与に比べて、KPC細胞に対しても顕著に優れた抗腫瘍効果を発揮することがわかる。また、Epi/mとaPD-1との投与間隔を短くすること(例えば、同時に投与すること)により、より高い抗腫瘍効果が得られ得ることがわかる。
[実験例13-4 イリノテカンとの比較]
 マウスすい臓がん細胞「KPC」を移植したB6マウスを群分け後、下記の投与スケジュールで各被験薬を投与し、がん細胞の移植日をDay0として、マウスの生存を確認した。結果を図23に示す。
<群分け>
Figure JPOXMLDOC01-appb-T000016
<投与スケジュール>
Day0:マウス膵臓内にKPCを5x10個移植する。
Day7:マウスをランダムに群分けし、被験薬を尾静脈投与する。
Day10、13、16:被験薬を尾静脈投与する。(計4回)
 図23に示されるとおり、Epi/mとaPD-1とを併用投与した群のみで、有意に生存率が延長した(Epi/m vs Epi/m+aPD1:P=0.0042)。また、エピルビシン又はイリノテカンとaPD1抗体との併用は、効果がないことが示された。このことから、Epi/mとaPD-1との併用投与は、イリノテカン又はエピルビシンの単独投与及びこれらとaPD1抗体との併用投与に比べて、KPC細胞に対しても顕著に優れた抗腫瘍効果を発揮することがわかる。
 本発明の医薬組成物は、医療及び製薬の分野において好適に適用され得る。
 10  ブロックコポリマー
 12  親水性ブロック
 14  疎水性ブロック
 20  アントラサイクリン系化合物
 30  薬物-ポリマー複合体
100  ミセル

Claims (13)

  1.  親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を含有し、免疫賦活剤と組み合わせてがんの治療又は予防に用いられる、医薬組成物。
  2.  アントラサイクリン系化合物に対する難治性がんの治療又は予防に用いられる、請求項1に記載の医薬組成物。
  3.  前記難治性がんが、脳腫瘍、すい臓がん、悪性中皮腫、線維肉腫、卵巣がん、乳がん、Hodgkinリンパ腫、軟部肉腫、膀胱がん、甲状腺がん、胃がん、子宮体がん、骨肉腫、Wilms腫瘍、神経芽細胞腫及び急性リンパ腫からなる群より選択される少なくとも1種のがんを含む、請求項2に記載の医薬組成物。
  4.  前記脳腫瘍が、神経膠腫を含む、請求項3に記載の医薬組成物。
  5.  PTENの発現に異常を有する個体に投与される、請求項1から4のいずれかに記載の医薬組成物。
  6.  個体への同時又は異時の投与によって、前記免疫賦活剤と組み合わせられる、請求項1から5のいずれかに記載の医薬組成物。
  7.  前記アントラサイクリン系化合物が、エピルビシン若しくはその誘導体又はそれらの薬学的に許容され得る塩を含む、請求項1から6のいずれかに記載の医薬組成物。
  8.  前記免疫賦活剤が、抗PD-1抗体、抗PD-L1抗体及び抗CTLA-4抗体からなる群より選択される少なくとも1種の免疫チェックポイント阻害剤を含む、請求項1から7のいずれかに記載の医薬組成物。
  9.  前記親水性ブロックが、ポリエチレングリコールを含み、
     前記疎水性ブロックが、ポリアミノ酸を含み、
     前記ブロックコポリマーと前記アントラサイクリン系化合物とが、該ポリアミノ酸の側鎖に導入されたヒドラジド基を介して結合している、請求項1から8のいずれかに記載の医薬組成物。
  10.  前記薬物-ポリマー複合体が、下記式(Ia)で表される複合体を含む、請求項1から9のいずれかに記載の医薬組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中
     Rは、メトキシ基であり、
     Rは、水素原子であり、
     Rは、-O-又は-NH-であり、
     Rは、疎水性基であり、
     Lは、二価のリンカーであり、
     aは、200から400の範囲にある整数であり、
     bは、1から20の範囲にある整数であり、
     cは、0から20の範囲にある整数であり、
     dは、0から30の範囲にある整数であり、
     eは、0から30の範囲にある整数であり、
     b+c+d+eは30から50の範囲にある整数であり、
     yは、1であり、
     Anは、13位のカルボニル基のカルボニル酸素を除いたエピルビシン残基である。)
  11.  前記薬物-ポリマー複合体が、下記式(Ib)で表される複合体を含む、請求項1から9のいずれかに記載の医薬組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中
     Rは、メトキシ基であり、
     Rは、水素原子であり、
     Rは、-O-であり、
     Rは、ベンジル基であり、
     Lは、-CHCHCH-NH-であり、
     aは、200から400の範囲にある整数であり、
     bは、4から14の範囲にある整数であり、
     cは、1から4の範囲にある整数であり、
     dは、12から30の範囲にある整数であり、
     eは、5から15の範囲にある整数であり、
     b+c+d+eは30から50の範囲にある整数であり、
     yは、1であり、
     Anは、13位のカルボニル基のカルボニル酸素を除いたエピルビシン残基である。)
  12.  アントラサイクリン系化合物に対する難治性がんの治療又は予防のためのミセル剤の使用であって、親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、該アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤を、免疫賦活剤と組み合わせて使用する、ミセル剤の使用。
  13.  親水性ブロックと疎水性ブロックとを有するブロックコポリマーと、アントラサイクリン系化合物とが結合した薬物-ポリマー複合体を含むミセル剤、容器、及び、がんを治療又は予防するために該ミセル剤と免疫賦活剤とを組み合わせて個体に投与することを示す指示書又はラベル、を含む製品。
PCT/JP2020/003432 2019-01-31 2020-01-30 アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬 WO2020158863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569721A JPWO2020158863A1 (ja) 2019-01-31 2020-01-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962799051P 2019-01-31 2019-01-31
US62/799,051 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158863A1 true WO2020158863A1 (ja) 2020-08-06

Family

ID=71840346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003432 WO2020158863A1 (ja) 2019-01-31 2020-01-30 アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬

Country Status (2)

Country Link
JP (1) JPWO2020158863A1 (ja)
WO (1) WO2020158863A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CABRAL H. ET AL.: "Progress of drug-loaded polymeric micelles into clinical studies.", JOURNAL OF CONTROLLED RELEASE, vol. 190, 2014, pages 465 - 476, XP055730059 *
CHIDA T. ET AL.: "Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and pH-triggered drug release.", JOURNAL OF CONTROLLED RELEASE, vol. 292, 2018, pages 130 - 140, XP055730056 *
GAO F. ET AL.: "PD-1 Blockade for Improving the Antitumor Efficiency of Polymer-Doxorubicin Nanoprodrug.", SMALL, vol. 14, no. 1802403, 2018, pages 1 - 12, XP055730050 *
YOON HK . ET AL.: "Effect of anthracycline and taxane on the expression of programmed cell death ligand-1 and galectin-9 in triple-negative breast cancer.", PATHOLOGY - RESEARCH AND PRACTICE, vol. 214, 2018, pages 1626 - 1631, XP085482778, DOI: 10.1016/j.prp.2018.08.009 *

Also Published As

Publication number Publication date
JPWO2020158863A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
Liang et al. The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat
US7871765B2 (en) Composition having antitumor effect
US11478493B2 (en) Fabrication and application of a hetero-targeted nano-cocktail with traceless linkers
US20090186076A1 (en) Combined Use of TGF-Beta Signaling Inhibitor and Antitumor Agent
WO2018213631A1 (en) Nano-enabled immunotherapy in cancer
US8088412B2 (en) Intralymphatic chemotherapy drug carriers
JP2010519305A (ja) 併用薬物送達のためのポリマー性ミセル
Zhu et al. Tumor microenvironment-activated therapeutic peptide-conjugated prodrug nanoparticles for enhanced tumor penetration and local T cell activation in the tumor microenvironment
CN113365613A (zh) 透明质酸和表没食子儿茶素-3-o-没食子酸酯的缀合物和纳米颗粒及其用途
JP2011105792A (ja) ブロックコポリマー、ブロックコポリマー−金属錯体複合体、及びそれを用いた中空構造体キャリア
US20240033364A1 (en) Castration resistant prostate cancer
WO2022052413A1 (zh) 具有不对称膜结构的载药聚合物囊泡及其制备方法与在制备治疗急性髓系白血病药物中的应用
Niu et al. Intervention with the bone-associated tumor vicious cycle through dual-protein therapeutics for treatment of skeletal-related events and bone metastases
Wang et al. “Layer peeling” co-delivery system for enhanced RNA interference-based tumor associated macrophages-specific chemoimmunotherapy
US20210054047A1 (en) Novel anticancer fusion protein and use thereof
JP5881782B2 (ja) 医薬組成物又は組合せ剤
WO2020158863A1 (ja) アントラサイクリン系化合物を含むミセル剤と免疫賦活剤との組み合わせ医薬
JP2022514463A (ja) 抗がん剤の送達のための立体錯体
KR20160053789A (ko) 폴리올계 삼투압적 폴리디자일리톨 폴리머 유전자 전달체 및 이의 용도
US20220211646A1 (en) Conjugate and cancer therapeutic agent
EP2825198A1 (en) Cancer therapeutics
US20180055949A1 (en) Cancer therapeutics
KR102407261B1 (ko) 나노 항암제형 및 그 제조 방법
US20240009321A1 (en) Immunogenic nanovesicles for cancer immunotherapy
Park et al. Functionalizing Liposomes with Dual Aptamers for Targeting of Breast Cancer Cells and Cancer Stem Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748787

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020569721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748787

Country of ref document: EP

Kind code of ref document: A1