WO2020158510A1 - 硬化性フイルム - Google Patents

硬化性フイルム Download PDF

Info

Publication number
WO2020158510A1
WO2020158510A1 PCT/JP2020/001945 JP2020001945W WO2020158510A1 WO 2020158510 A1 WO2020158510 A1 WO 2020158510A1 JP 2020001945 W JP2020001945 W JP 2020001945W WO 2020158510 A1 WO2020158510 A1 WO 2020158510A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable
prevention layer
semiconductor package
curable film
warp prevention
Prior art date
Application number
PCT/JP2020/001945
Other languages
English (en)
French (fr)
Inventor
三宅弘人
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN202080010229.7A priority Critical patent/CN113330560A/zh
Priority to KR1020217023963A priority patent/KR20210121055A/ko
Publication of WO2020158510A1 publication Critical patent/WO2020158510A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present disclosure relates to a curable film for forming a warp prevention layer for preventing warpage of a semiconductor package on the back surface of the semiconductor package.
  • the via forming speed may decrease or the inorganic filler may become a scum after forming the via.
  • Another problem is that it remains and causes a decrease in yield. From such a background, a technique for forming a flexible and low linear expansion warp prevention layer in which the content of the inorganic filler is reduced is desired.
  • an object of the present disclosure is a curable film for forming a warp prevention layer on the back surface of a semiconductor package, which can form a cured product having a low linear expansion coefficient even when the content of the inorganic filler is low.
  • Another object of the present disclosure is a semiconductor package in which a warp prevention layer is formed on the back surface, which has a low linear expansion warp prevention layer in which vias can be efficiently formed and scum is less likely to occur after the via formation. It is to provide a manufacturing method of.
  • Another object of the present disclosure is a semiconductor package in which a warp prevention layer is formed on the back surface, which has a low linear expansion warp prevention layer in which vias can be efficiently formed and scum is less likely to occur after the via formation.
  • Another object of the present disclosure is to provide an electronic device including a semiconductor package having the warp prevention layer on the back surface.
  • the inventor of the present disclosure has made extensive studies in order to solve the above problems, and has a sheet-like porous support made of a material having a low coefficient of linear thermal expansion, and has a configuration in which a curable composition is filled, and has a specific glass transition temperature.
  • the curable film forming the cured product can form a cured product having a low linear expansion coefficient even if the content of the inorganic filler is small, and is useful as a material for forming the warpage prevention layer on the back surface of the semiconductor package. I found that.
  • the vias can be formed efficiently, and the scum is less likely to occur after the via formation, so that the defect rate is reduced and the yield is improved. I also found that I can do it.
  • the invention of the present disclosure has been completed based on these findings.
  • the present disclosure has a configuration in which the pores of a sheet-shaped porous support made of a material having a thermal linear expansion coefficient of 20 ppm/K or less are filled with a curable composition, and the glass transition temperature of the cured product is 100.
  • a curable film for forming a warp prevention layer for preventing warpage of a semiconductor package at a temperature of not higher than 0° C. on the back surface of the semiconductor package.
  • the glass transition temperature of the cured product of the curable composition may be 100° C. or lower.
  • the curable composition contains a curable compound (A) and a curing agent (B) and/or a curing catalyst (C), and 50% by weight or more of the total amount of (A) is an epoxy equivalent. May be an epoxy compound of 140 to 3000 g/eq.
  • the curable composition contains the curable compound (A) and the curing agent (B) in the (A) in (B) with respect to 1 mol of the curable group in the (A). You may contain in the ratio which becomes 0.8-1.2 mol of the reactive group with a curable group.
  • the curable composition contains the curable compound (A) and the curing catalyst (C) in a proportion of 0.1 to 10 parts by weight of (C) with respect to 100 parts by weight of (A). May be included.
  • curable film if all curable compounds (A) (curing agent (B) contained in the curable composition are also contained, all curable compounds (A) and all curing agents (B ))
  • the weighted average molecular weight per functional group may be 180 to 1000 g/eq.
  • the thermal linear expansion coefficient of the cured product of the curable composition is 100 ppm/K or more, and the thermal linear expansion coefficient ( ⁇ 2) in the temperature range of the glass transition temperature or higher of the cured product of the curable film. ) May be 20 ppm/K or less.
  • the thickness of the sheet-like porous support may be 5 to 500 ⁇ m.
  • the sheet-shaped porous support may be a nonwoven fabric of cellulose fibers.
  • the curable composition may contain an inorganic filler (E) in an amount of 0 to 10% by weight based on the curable composition (100% by weight).
  • the curable film may be a curable film for forming a warp prevention layer on the back surface of the fan-out package.
  • the present disclosure also provides a method for manufacturing a semiconductor package with a warp prevention layer, which includes the following steps.
  • Step 1 Stick the curable film on the back surface of the semiconductor wafer
  • Step 2 cure the curable film to form a warp prevention layer
  • the semiconductor wafer may be a reconstructed wafer in which a plurality of arranged semiconductor chips are sealed with a sealing material.
  • the method for manufacturing the semiconductor package with the warp prevention layer may further include the following step 3.
  • Step 3 Form a wiring layer on the reconstructed wafer
  • the method for manufacturing the semiconductor package with the warp prevention layer may further include the following step 4.
  • Process 4 A semiconductor package having a warp prevention layer formed on the back surface is singulated to obtain a semiconductor package.
  • the present disclosure also provides a semiconductor package with a warp prevention layer, which has a warp prevention layer made of a cured product of the curable film on the back surface of the semiconductor package.
  • the present disclosure also provides a method for manufacturing an electronic device, which has a step of mounting the semiconductor package with the warp prevention layer on a substrate by reflow soldering.
  • the present disclosure also provides an electronic device including the semiconductor package with the warp prevention layer.
  • the present disclosure has a configuration in which the pores of a sheet-shaped porous support made of a material having a thermal linear expansion coefficient of 20 ppm/K or less are filled with a curable composition, and the glass transition temperature of the cured product is 100.
  • the curable film of the present disclosure can form a cured product having a low linear expansion coefficient even when the content of an inorganic filler such as a metal oxide is small, and is a material for forming a warp prevention layer on the back surface of a semiconductor package. Is useful as In addition, since it is not necessary to mix a large amount of inorganic filler, the semiconductor package having the warp prevention layer formed on the back surface using the curable film of the present disclosure can efficiently form vias and scum after forming the vias. Is less likely to occur, the defect rate can be reduced and the yield can be improved.
  • the curable film of the present disclosure is laminated (laminated) on the back surface of a semiconductor package and cured, a warp prevention layer can be easily formed, and a complicated step such as coating is not required, so that the manufacturing process Excellent in efficiency. Therefore, an electronic device having a semiconductor package having a warp prevention layer made of a cured product of the curable film of the present disclosure on the back surface is excellent in durability and reliability, and can be efficiently manufactured with high yield.
  • FIG. 1 is a schematic view (cross-sectional view) showing an example of an embodiment of a semiconductor package (fan-out package).
  • (A) is a fan-out package having no warp prevention layer
  • (b) is a fan-out package having a warp prevention layer formed on the back surface.
  • FIG. 2 is a schematic diagram showing an example of an embodiment of a semiconductor wafer (reconstruction wafer).
  • (A) is a bottom view and (b) is a sectional view taken along line AA′.
  • FIG. 3 is a schematic view (cross-sectional view) of an example of an embodiment of a method for manufacturing a package with a warp prevention layer.
  • the curable film of the present disclosure is a curable film for forming a warp prevention layer for preventing warpage of a semiconductor package on the back surface of the semiconductor package, and is a sheet-like material made of a material having a coefficient of linear thermal expansion of 20 ppm/K or less.
  • semiconductor package of the present disclosure The semiconductor package in which the curl prevention layer of the present disclosure has a warp prevention layer formed on the back surface (hereinafter, may be referred to as “semiconductor package of the present disclosure”) is not particularly limited.
  • An example is a semiconductor package in which the formed semiconductor chip is sealed with a sealing material.
  • a fan-out package in which a plurality of semiconductor chips are mounted in the same package is preferable.
  • FIG. 1A shows a schematic view (cross-sectional view) of an example of an embodiment of a semiconductor package (fan-out package) having no warp prevention layer.
  • FIG. 1A shows a schematic view (cross-sectional view) of an example of an embodiment of a semiconductor package (fan-out package) having no warp prevention layer.
  • 10a is a semiconductor package (fan-out package) having no warp prevention layer, 11 is a sealing material, 12 is a semiconductor chip, and 13 is a wiring layer (rewiring layer).
  • 11 is a sealing material
  • 12 is a semiconductor chip
  • 13 is a wiring layer (rewiring layer).
  • the semiconductor package of the present disclosure may have a configuration other than a semiconductor chip, a sealing material, and a wiring layer, for example, a solder ball, a through electrode (via), a sensor, a memory, a PMIC, a communication device, an antenna and the like.
  • the fan-out package may be a fan-out wafer level package (FOWLP) or a fan-out panel level package (FOLPP).
  • the FOWLP is manufactured by arranging a plurality of semiconductor chips on a wafer having a diameter of about 300 mm, and the FOPLP is manufactured by arranging the semiconductor chips on a rectangular panel larger than the wafer and having a side of 300 mm or more. It is a thing.
  • the back surface of the semiconductor package means the surface on which the wiring layer (electrode) is formed on the semiconductor chip in the semiconductor package or the surface opposite to the surface on which the wiring layer (electrode) is formed.
  • the “surface on which the wiring layer is formed” refers to the surface on which the wiring layer is already formed.
  • the “surface on which the wiring layer is formed” means a surface on which the wiring layer is to be formed, although the wiring layer has not been formed yet.
  • FIG. 1B shows a schematic view (cross-sectional view) of an example of an embodiment of a semiconductor package (fan-out package) in which a warp prevention layer is formed on the back surface.
  • 10b is a semiconductor package (fan-out package) having a warp prevention layer on the back surface, 11 is a sealing material, 12 is a semiconductor chip, 13 is a wiring layer (resale wiring layer), and 14 is a warp prevention layer.
  • 11 is a sealing material
  • 12 is a semiconductor chip
  • 13 is a wiring layer (resale wiring layer)
  • 14 is a warp prevention layer.
  • a plurality of arranged semiconductor chips 12 are sealed with a sealing material 11, and a wiring layer 13 is formed on an unsealed surface of the semiconductor chip 12, and wiring on the semiconductor chip 12 is formed.
  • the warp prevention layer 14 is formed on the surface (back surface) opposite to the surface on which the layer 13 is formed.
  • the back surface of the semiconductor package is not particularly limited as long as it is the surface on the side opposite to the surface on which the wiring layer on the semiconductor chip is formed or the wiring layer is formed, and the entire back surface may be formed of a sealing material.
  • the semiconductor chip may be partially exposed. Further, solder balls, through electrodes (vias), sensors, memories, PMICs, communication devices, antennas, etc. may be formed on the back surface of the semiconductor package.
  • the sheet-like porous support (hereinafter, may be abbreviated as “porous support”) has a coefficient of linear thermal expansion [eg, -20°C to 300°C (preferably -10 to 300°C, more preferably 0 to 0).
  • the coefficient of linear thermal expansion at 300° C., more preferably 0 to 250° C.] is 20 ppm/K or less (preferably 10 ppm/K or less, more preferably 7 ppm/K or less).
  • the curable film of the present disclosure uses a porous support made of a material having a thermal linear expansion coefficient of 20 ppm/K or less, the curing shrinkage ratio and the thermal linear expansion coefficient can be suppressed to be small, and the warpage due to application of thermal shock can be suppressed. It is possible to suppress the occurrence of cracks.
  • Examples of the material having a coefficient of linear thermal expansion of 20 ppm/K or less include paper, cellulose, glass fiber, liquid crystal material and the like.
  • paper, cellulose, and glass fiber are preferable, and cellulose is particularly preferable because it is lightweight and easily available.
  • the porosity of the porous support is, for example, 90 to 10 vol%, preferably 80 to 30 vol%, more preferably 70 to 30 vol%, and further preferably 70 to 50 vol%.
  • the porosity is below the above range, it becomes difficult to impregnate a sufficient amount of the curable composition, and it tends to be difficult to obtain surface smoothness.
  • the porosity exceeds the above range, the reinforcing effect by the porous support cannot be sufficiently obtained, and it tends to be difficult to suppress the curing shrinkage rate and the coefficient of linear thermal expansion to be small.
  • porosity refers to the volume ratio of voids in the porous support.
  • the porosity of the porous support can be calculated from the following formula by measuring the surface area, thickness, and mass of a 10 cm ⁇ 10 cm sample.
  • Ar is the area (cm 2 ) of the porous support
  • t is the thickness (cm)
  • W is the mass (g) of the porous support
  • M is the density of the material of the porous support.
  • the thickness (t) of the porous support is measured at 10 points at various positions on the porous support using a film thickness meter (PDN-20 manufactured by PEACOK), and the average value thereof is adopted.
  • Porosity (vol%) ⁇ 1-W/(M ⁇ Ar ⁇ t) ⁇ 100
  • the thickness of the porous support is, for example, 5 to 500 ⁇ m.
  • the lower limit is preferably 10 ⁇ m, more preferably 15 ⁇ m, further preferably 20 ⁇ m.
  • the upper limit is preferably 300 ⁇ m, more preferably 200 ⁇ m, further preferably 100 ⁇ m, and further preferably 75 ⁇ m.
  • the thickness of the porous support can be appropriately adjusted within the above range. For example, when the cured product of the curable composition alone has a low Tg, the porous support is thinned to suppress the curing shrinkage rate. be able to. When the cured product of the curable composition alone has a high Tg, the coefficient of linear thermal expansion can be suppressed small by increasing the thickness of the porous support. If the thickness of the porous support exceeds the above range, it tends to be difficult to meet the demands for downsizing and weight reduction of electronic devices. On the other hand, if the thickness is less than the above range, it tends to be difficult to obtain sufficient toughness.
  • curable composition of the present disclosure is not particularly limited, and includes, for example, a curable compound (A) and a curing agent.
  • a composition containing (B) and/or a curing catalyst (C) may be mentioned.
  • the curable compound (A) is not particularly limited, but a compound containing at least a compound having an epoxy group (epoxy compound) is preferable.
  • the curable compound (A) contains an epoxy compound it is not particularly limited.
  • the epoxy equivalent (g/eq) is 140 to 3000 (preferably 170 to 1000, more preferably 180 to 1000, further preferably 180 to 1000).
  • the epoxy compound of 500) is 50% by weight or more (preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, based on the total amount of the curable compound (A).
  • the upper limit is 100% by weight. %). Excessive inclusion of a compound having an epoxy equivalent outside the above range is not preferable because the flexibility of the cured product of the curable composition alone decreases and the crack resistance decreases.
  • the aforesaid epoxy compounds include alicyclic epoxy compounds, aromatic epoxy compounds, and aliphatic epoxy compounds.
  • the alicyclic epoxy compound includes known or commonly used compounds having at least one alicyclic ring and at least one epoxy group in the molecule, and the following compounds are preferable.
  • Examples of the compound (1) in which the epoxy group is directly bonded to the alicyclic ring by a single bond include compounds represented by the following formula (i).
  • R′′ is a group (p-valent organic group) obtained by removing p hydroxyl groups (—OH) from the structural formula of p-valent alcohol, and p and n each represent a natural number.
  • the valent alcohol [R′′(OH) p ] include polyhydric alcohols such as 2,2-bis(hydroxymethyl)-1-butanol (alcohols having 1 to 15 carbon atoms) and the like.
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each group in [] (inside the outer square brackets) may be the same or different.
  • the compound represented by the above formula (ii) include a 1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct of 2,2-bis(hydroxymethyl)-1-butanol [eg, , Trade name “EHPE3150” (manufactured by Daicel Corporation, etc.), and the like.
  • Examples of the compound (2) having an alicyclic ring and a glycidyl ether group in the molecule include a glycidyl ether of an alicyclic alcohol (particularly an alicyclic polyhydric alcohol). More specifically, for example, 2,2-bis[4-(2,3-epoxypropoxy)cyclohexyl]propane, 2,2-bis[3,5-dimethyl-4-(2,3-epoxypropoxy) A compound obtained by hydrogenating a bisphenol A type epoxy compound such as cyclohexyl]propane (hydrogenated bisphenol A type epoxy compound); bis[o,o-(2,3-epoxypropoxy)cyclohexyl]methane, bis[o , P-(2,3-epoxypropoxy)cyclohexyl]methane, bis[p,p-(2,3-epoxypropoxy)cyclohexyl]methane, bis[3,5-dimethyl-4-(2,2 3-epoxypropoxy)
  • aromatic epoxy compound examples include epibis type glycidyl ether type epoxy resins obtained by condensation reaction of bisphenols [eg, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, etc.] and epihalohydrin; High molecular weight epibis type glycidyl ether type epoxy resin obtained by further addition reaction of bis type glycidyl ether type epoxy resin with the above bisphenols; modified epibis type glycidyl ether type epoxy resin described later; phenols [eg phenol, Cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and an aldehyde [eg formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicylaldehyde, etc.] to obtain a polyhydric alcohol, Furthermore, a novolak alkyl type glycin
  • Examples of the modified epibis type glycidyl ether type epoxy resin include compounds represented by the following formula (ii).
  • R 1 to R 4 are the same or different and each represents a hydrogen atom or a hydrocarbon group.
  • k represents an integer of 1 or more.
  • L 1 represents a low polar bonding group, and L 2 represents a flexible skeleton.
  • the above-mentioned hydrocarbon includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which these are bonded.
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group.
  • alkenyl group having 2 to 20 (preferably 2 to 10, more preferably 2 to 3) carbon atoms; an ethynyl group, a propynyl group and the like having 2 to 20 carbon atoms (preferably 2 to 10, more preferably 2 to 3) ) Alkynyl group and the like.
  • the alicyclic hydrocarbon group is preferably a 3- to 10-membered alicyclic hydrocarbon group, for example, a 3- to 8-membered (preferably, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, etc. Examples thereof include a cycloalkyl group having about 5 to 8 members).
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 14 carbon atoms (preferably 6 to 10), and examples thereof include a phenyl group.
  • an aliphatic hydrocarbon group (particularly an alkyl group) is preferable.
  • L 1 represents a low-polarity bonding group, and examples thereof include a linear or branched alkylene group having 1 to 3 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, and an ethylene group.
  • L 2 represents a flexible skeleton, and examples thereof include an oxyalkylene group having 2 to 4 carbon atoms. Specific examples thereof include an oxyethylene group, an oxypropylene group, an oxybutylene group and an oxytetramethylene group.
  • the modified epibis type glycidyl ether type epoxy resin has the above-mentioned constitution, when added to the curable composition, an effect of improving crack resistance can be obtained.
  • a compound represented by the following formula (ii-1) can be preferably used as the modified epibis type glycidyl ether type epoxy resin.
  • a compound represented by the following formula (ii-1) can be preferably used.
  • trade name “EPICLON EXA-4850-1000” epoxy equivalent: 350, manufactured by DIC
  • trade name “EPICLON EXA-4850-150” epoxy equivalent: 433, manufactured by DIC)
  • Commercially available products can be used.
  • aliphatic epoxy compound examples include a glycidyl ether of an alcohol (q is a natural number) having no q-valent cyclic structure; a monovalent or polyvalent carboxylic acid [eg, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.] glycidyl ester; epoxidized linseed oil, epoxidized soybean oil, epoxidized castor oil, and other epoxidized fats and oils having a double bond; (Including alkadienes) and the like.
  • Examples of the alcohol having no q-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol and 1-butanol; ethylene glycol, 1,2-propanediol, 1 Dihydric alcohols such as 3,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol and polypropylene glycol; Examples thereof include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitol.
  • the q-valent alcohol may be a polyether polyol, a polyester polyol,
  • the curing agent (B) that constitutes the curable composition of the present disclosure is a compound that plays a role of curing the epoxy compound.
  • curing agent (B) known or commonly used curing agents for epoxy resins can be used.
  • examples thereof include acid anhydrides, dicarboxylic acids, amines, polyamide resins, imidazoles, polymercaptans, phenols, polycarboxylic acids, dicyandiamides and organic acid hydrazides.
  • it is selected from the group consisting of an acid anhydride (b-1), a dicarboxylic acid (b-2), an amine (b-3), and a phenol (b-4) in terms of excellent reliability. At least one compound is preferred.
  • the molecular weight per functional group of the curing agent (B) is, for example, 10 to 10000 g/eq (preferably 20 to 8000 g/eq, more preferably 20 to 7000 g/eq, further preferably 20 to 5000 g/eq, more preferably 20). To 2000 g/eq, more preferably 20 to 1000 g/eq).
  • Examples of the acid anhydride (b-1) include methyltetrahydrophthalic anhydride (4-methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.), methylhexahydrophthalic anhydride (4-methylhexahydroanhydride).
  • Examples thereof include acids, succinic anhydride, adipic anhydride, sebacic anhydride, dodecanedioic anhydride, methylcyclohexene tetracarboxylic acid anhydr
  • an acid anhydride that is liquid at 25° C. eg, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenylsuccinic anhydride, methylendomethylenetetrahydrophthalic anhydride, etc.
  • an acid anhydride-based curing agent an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (including a ring to which a substituent such as an alkyl group is bonded) is preferable because it is particularly excellent in crack resistance.
  • acid anhydride (b-1) for example, commercially available products such as the product name “Rikacid MH700F” (manufactured by Shin Nippon Rika Co., Ltd.) and the product name “HN-5500” (manufactured by Hitachi Chemical Co., Ltd.) It can be used preferably.
  • dicarboxylic acid (b-2) examples include aromatic dicarboxylic acids such as 4,4′-biphenyldicarboxylic acid, 2,2′-biphenyldicarboxylic acid, phthalic acid, isophthalic acid and terephthalic acid; oxalic acid and malon.
  • Aliphatic dicarboxylic acids such as acids, succinic acid, adipic acid, 1,6-hexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid; acid anhydrides And an ester type dicarboxylic acid obtained by reacting with a polyol compound; and the like.
  • ester-type dicarboxylic acids obtained by reacting an acid anhydride with a polyol compound are preferable.
  • the acid anhydride used for the synthesis of the ester-type dicarboxylic acid is preferably an alicyclic acid anhydride, of which 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride are preferable.
  • the polyol compound is preferably a dihydric or trihydric aliphatic alcohol, and examples thereof include ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,10-decanediol and neo.
  • Divalent aliphatic alcohols such as pentyl glycol, dimethylolpropane, poly C 1-5 alkylene glycol (eg, polyethylene glycol, polypropylene glycol, etc.); trivalent aliphatic alcohols such as glycerin, trimethylolpropane, etc.
  • poly C 1-5 alkylene glycol is particularly preferable.
  • the weight average molecular weight of the poly C 1-5 alkylene glycol is, for example, 500 to 2000, preferably 600 to 1600.
  • ester-type dicarboxylic acid obtained by reacting an acid anhydride with a polyol compound a compound represented by the following formula (b-2-1) is preferable.
  • R 5 and R 6 are the same or different and each represents an alkyl group having 1 to 5 carbon atoms, and among them, a methyl group or an ethyl group is preferable.
  • m 1 and m 2 are the same or different and each represents an integer of 0 to 4.
  • L is a group obtained by removing two hydroxyl groups from a polyol compound (divalent group), and among them, a group obtained by removing two hydroxyl groups from polyethylene glycol or polypropylene glycol is preferable.
  • dicarboxylic acid (b-2) for example, a commercially available product such as a trade name “Rikacid HF-08” (manufactured by Shin Nippon Rika Co., Ltd.) can be preferably used.
  • Examples of the amine (b-3) include aliphatic diamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine and polypropylenetriamine; mensendiamine, isophoronediamine, bis(4 -Amino-3-methyldicyclohexyl)methane, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)-3,4,8,10-tetraoxaspiro Alicyclic polyamines such as [5,5]undecane; m-phenylenediamine, p-phenylenediamine, tolylene-2,4-diamine, tolylene-2,6-diamine, mesitylene-2,4-diamine, 3,5 -Mon
  • Examples of the phenol (b-4) include novolac type phenol resin, novolac type cresol resin, p-xylylene modified phenol resin, aralkyl resin such as p-xylylene/m-xylylene modified phenol resin, terpene modified phenol resin and dicyclohexyl.
  • Examples include pentadiene-modified phenol resin, triphenol propane, and the like.
  • the curable composition of the present disclosure may include a curing catalyst (C) instead of or together with the above-mentioned curing agent (B).
  • a curing catalyst (C) By using the curing catalyst (C), the curing reaction of the epoxy compound can proceed and a cured product can be obtained.
  • the curing catalyst (C) is not particularly limited, but for example, one kind of cationic catalyst (cationic polymerization initiator) capable of generating a cationic species by subjecting to ultraviolet irradiation or heat treatment to initiate polymerization can be used. Alternatively, two or more kinds can be used.
  • cation catalysts photocationic polymerization initiators
  • examples of cation catalysts that generate cationic species upon irradiation with ultraviolet rays include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroalzenate salts, and the like.
  • examples of the above-mentioned cation catalyst include, for example, trade name “UVACURE1590” (manufactured by Daicel Cytec Co., Ltd.), trade names “CD-1010”, “CD-1011”, and “CD-1012” (manufactured by Sartomer USA).
  • cation catalysts thermal cation polymerization initiators
  • cation catalysts thermal cation polymerization initiators
  • heat treatment examples include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes.
  • Examples of the above-mentioned cation catalyst include trade names “PP-33”, “CP-66”, “CP-77” (above, manufactured by ADEKA Corporation), trade name “FC-509” (manufactured by 3M), and products Name “UVE1014" (manufactured by GE), product name "Sun-Aid SI-60L”, “Sun-Aid SI-80L”, “Sun-Aid SI-100L”, “Sun-Aid SI-110L”, “Sun-Aid SI-150L” (above)
  • Commercially available products such as Sanshin Chemical Industry Co., Ltd., trade name “CG-24-61” (manufactured by Ciba Japan Co., Ltd.) and the like can be used.
  • a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or a diketone and a silanol such as triphenylsilanol, or a metal such as aluminum or titanium and an acetoacetic acid or a diketone is also possible to use a compound of the chelate compound of 1) with a phenol such as bisphenol S.
  • the curable composition of the present disclosure may further contain one kind or two or more kinds of organic filler (D) within a range that does not impair the effects of the present invention.
  • organic filler (D) By containing the organic filler (D), the curing shrinkage rate and the coefficient of linear thermal expansion can be further suppressed to be small, and the effect of suppressing warpage can be improved.
  • the curable composition contains the organic filler (D)
  • the curable composition filled in the pores of the porous support can be prevented from flowing out of the pores.
  • the organic filler (D) can also be used as a colorant for the curable composition.
  • Examples of the organic filler (D) include cellulose nanofibers, cellulose-based particles such as cellulose (nano)crystals, PEEK fibers, liquid crystal materials, single-wall or multi-wall carbon nanotubes containing no metal oxide, graphene, and oxide. Examples thereof include carbon materials such as graphene, carbon black, fullerene, and nanodiamond, and these can be used alone or in combination of two or more.
  • the organic filler may have any structure such as a solid structure, a hollow structure and a porous structure. Among these, a carbon material that can be used as a black colorant is preferable.
  • the shape of the organic filler (D) is not particularly limited, but is, for example, spherical (true spherical, substantially true spherical, elliptic spherical, etc.), polyhedral, rod-shaped (cylindrical, prismatic, etc.), flat plate-shaped, scale-shaped, An indefinite shape and the like can be mentioned.
  • the average particle diameter of the organic filler (D) is, for example, 5 nm to 100 ⁇ m, preferably 50 nm to 50 ⁇ m, more preferably 100 nm to 30 ⁇ m.
  • the average particle diameter of the organic filler (D) is the median diameter (d50) measured by the laser diffraction/scattering method.
  • the curable composition of the present disclosure may further contain one type or two or more types of inorganic filler (E) within a range that does not impair the effects of the present disclosure.
  • the content (blending amount) of the inorganic filler (E) is preferably 10% by weight or less (0 to 10% by weight), and 5% by weight or less (0 to 0% by weight) based on the curable composition (100% by weight). 5% by weight) is more preferable.
  • the content of the inorganic filler (E) By setting the content of the inorganic filler (E) to 10% by weight or less, scum generation during via formation is suppressed, and the time required for via formation can be shortened easily. Moreover, it is also preferable that the inorganic filler (E) is not substantially contained by not blending the inorganic filler (E).
  • Examples of the inorganic filler (E) include silica (eg, natural silica and synthetic silica), aluminum oxide (eg, ⁇ -alumina), titanium oxide, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, and oxide.
  • silica eg, natural silica and synthetic silica
  • aluminum oxide eg, ⁇ -alumina
  • titanium oxide e.g, zirconium oxide
  • magnesium oxide e.g., cerium oxide, yttrium oxide, and oxide.
  • Metal oxides such as calcium, zinc oxide and iron oxide; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate, aluminum sulfate and calcium sulfate; nitriding such as aluminum nitride, silicon nitride, titanium nitride and boron nitride Hydroxides such as calcium hydroxide, aluminum hydroxide, magnesium hydroxide; mica, talc, kaolin, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, amesite, bentonite, asbestos, wo Rastonite, sepiolite, zonolite, zeolite, hydrotalcite, fly ash, dehydrated sludge, glass beads, glass fiber, diatomaceous earth, silica sand, sendust, alnico magnet, magnetic powder of various ferrites, hydrated gypsum, alum, Antimony trioxide, magnesium
  • the inorganic filler may have any structure such as a solid structure, a hollow structure and a porous structure.
  • the inorganic filler may be surface-treated with a well-known surface treatment agent such as an organosilicon compound such as organohalosilane, organoalkoxysilane, or organosilazane.
  • the shape of the inorganic filler (E) is not particularly limited, and examples thereof include spherical shapes (true spheres, substantially true spheres, elliptical spheres, etc.), polyhedron shapes, rod shapes (cylindrical shapes, prismatic shapes, etc.), flat plate shapes, scaly shapes, An indefinite shape and the like can be mentioned.
  • the average particle diameter of the inorganic filler (E) is, for example, 5 nm to 100 ⁇ m, preferably 50 nm to 50 ⁇ m, and more preferably 100 nm to 30 ⁇ m.
  • the average particle diameter of the inorganic filler is the median diameter (d50) measured by the laser diffraction/scattering method.
  • the curable composition of the present disclosure may contain a curing accelerator together with the curing agent (B). By containing the curing accelerator together with the curing agent (B), the effect of accelerating the curing speed can be obtained.
  • the curing accelerator known or commonly used curing accelerators can be used and are not particularly limited.
  • DBU 1,8-diazabicyclo[5.4.0]undecene-7
  • salts thereof for example, phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts); 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), and salts thereof (eg, Phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt); benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, N,N-dimethylcyclohexylamine, etc.
  • Tertiary amines 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole and other imidazoles; Phosphates, triphenylphosphine (TPP) and other phosphines; Tetraphenylphosphonium tetra Examples thereof include phosphonium compounds such as phenylborate and tetraphenylphosphonium tetra(p-tolyl)borate; organic metal salts such as tin octylate and zinc octylate; metal chelates. These can be used individually by 1 type or in combination of 2 or more types.
  • curing accelerator for example, product names "U-CAT SA 506", “U-CAT SA 102", “U-CAT 5003", “U-CAT 18X”, “U-CAT 12XD” (above, San-Apro Co., Ltd., trade name "TPP-K”, “TPP-MK” (above, manufactured by Kitako Chemical Co., Ltd.), trade name "PX-4ET” (manufactured by Nippon Kagaku Kogyo Co., Ltd.), etc.
  • Commercially available products can be preferably used.
  • the content of the curable compound (A) in the total amount of the curable composition of the present disclosure is, for example, 30 to 98% by weight.
  • an aromatic epoxy compound for example, selected from epibis type glycidyl ether type epoxy resin, high molecular weight epibis type glycidyl ether type epoxy resin, and modified epibis type glycidyl ether type epoxy resin.
  • the compound) content is, for example, 30 to 98% by weight.
  • the proportion of the epoxy compound other than the aromatic epoxy compound in the total amount of the curable composition is, for example, 20% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, further preferably 1% by weight. It is as follows.
  • An aromatic epoxy compound for example, epibis type glycidyl ether type epoxy resin, high molecular weight epibis type glycidyl ether type epoxy resin, and modified epibis type glycidyl ether type epoxy resin in the total amount of epoxy compounds contained in the curable composition of the present disclosure.
  • the proportion of the compound selected from the epoxy resin is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more.
  • the upper limit is 100% by weight.
  • the proportion of the epoxy compound other than the aromatic epoxy compound in the total amount of the epoxy compounds contained in the curable composition is, for example, 40% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less, It is preferably 10% by weight or less.
  • the content of the curing agent (B) is, for example, 1 mol of the curable group (for example, epoxy group) contained in the curable composition, and the reactive group with the curable group of the above (A) in (B) is, for example.
  • the ratio is 0.8 to 1.2 mol.
  • the content of the curing agent (B) is less than the above range, curing tends to be insufficient and the toughness of the cured product tends to decrease.
  • the content of the curing agent (B) exceeds the above range, the polarity of the cured product of the curable composition alone increases, and it becomes more susceptible to moisture, which may lead to lower reliability.
  • the proportion of the total content of the curable compound (A) and the curing agent (B) in the total amount of the curable composition (excluding the organic filler (D) and the inorganic filler (E)) of the present disclosure is, for example, 80% by weight. Or more, preferably 90% by weight or more, more preferably 95% by weight or more.
  • the weighted average value of the molecular weight per group (weighted content ratio) (g/eq) is, for example, 180 to 1000, preferably 200 to 700, more preferably 200 to 500, further preferably 250 to 450, and particularly preferably 300. ⁇ 450.
  • the curable compound (A) (curing agent (B) is also contained, the curable compound (A) and the curing agent (B)) have a weighted average value within the above range.
  • a cured product having flexibility and excellent crack resistance can be obtained by having an appropriate distance between crosslinking points.
  • the weighted average value is less than the above range, the flexibility tends to decrease and the crack resistance tends to decrease.
  • the weighted average value exceeds the above range, the density of the cured resin is low, and it tends to be difficult to obtain sufficient toughness and weather resistance.
  • the molecular weight per functional group of the epoxy compound is the epoxy equivalent.
  • the molecular weight per functional group of the acid anhydride (b-1) as a curing agent is the acid anhydride group equivalent
  • the molecular weight per functional group of the dicarboxylic acid (b-2) is the carboxyl group equivalent
  • the amine (b) is the molecular weight per functional group of -3)
  • the molecular weight per functional group of phenol (b-4) is hydroxyl equivalent.
  • the content of the curing catalyst (C) is not particularly limited, but should be, for example, 0.1 to 10 parts by weight with respect to 100 parts by weight of the curable compound (A) contained in the curable composition. Is preferable, and for example, 0.01 to 15 parts by weight, preferably 0.01 to 12 parts by weight, and more preferably 0.05 to 10 parts by weight based on the total amount (100 parts by weight) of the epoxy compound contained in the curable composition. It is 10 parts by weight, more preferably 0.1 to 10 parts by weight.
  • the content of the organic filler (D) is, for example, 50 parts by weight or less (for example, 1 to 50 parts by weight) with respect to 100 parts by weight of the curable compound (the total amount when two or more kinds are contained) contained in the curable composition. Parts), preferably 45 parts by weight or less, more preferably 40 parts by weight or less. If the content of the organic filler (D) is excessive, the Tg of the cured product of the curable composition alone tends to increase, the flexibility tends to decrease, and the crack resistance tends to decrease.
  • the content of the curing accelerator is not particularly limited, but is, for example, 3 parts by weight or less (for example, 0.1 to 3 parts by weight), and preferably 0.1% by weight with respect to 100 parts by weight of the epoxy compound contained in the curable composition. It is 2 to 3 parts by weight, more preferably 0.25 to 2.5 parts by weight.
  • the curable composition of the present disclosure may contain one or more other components as necessary.
  • the curable composition of the present disclosure may contain a curable compound other than an epoxy compound, for example, a cation-curable compound such as an oxetane compound or a radical-curable compound such as (meth)acrylate or urethane (meth)acrylate. Can be included.
  • a curable compound other than an epoxy compound for example, a cation-curable compound such as an oxetane compound or a radical-curable compound such as (meth)acrylate or urethane (meth)acrylate.
  • the curable composition of the present disclosure further includes, for example, a diluent, an antifoaming agent, a leveling agent, a silane coupling agent, a surfactant, a flame retardant, a colorant, a plasticizer, an antistatic agent, a release agent, and an oxidizing agent. It may contain an inhibitor, an ultraviolet absorber, a light stabilizer, an ion adsorbent, a phosphor and the like.
  • the use of a hydroxyl group-containing compound such as ethylene glycol, diethylene glycol, propylene glycol or glycerin together with the acid anhydride has the effect of promoting the curing reaction. It is preferable in that it can be obtained.
  • the content of the hydroxyl group-containing compound is, for example, 0.1 to 15 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the acid anhydride.
  • the curable composition of the present disclosure can be prepared by mixing the above components.
  • a generally known mixing device such as a self-revolving stirring and defoaming device, a homogenizer, a planetary mixer, a three-roll mill, and a beads mill can be used.
  • each component may be mixed simultaneously or sequentially.
  • the glass transition temperature (Tg) of the cured product of the curable composition of the present disclosure alone is not particularly limited, but is preferably 100° C. or lower (eg, ⁇ 60 to 100° C.).
  • the upper limit of Tg is preferably 50° C., more preferably 40° C., further preferably 25° C.
  • the lower limit of Tg is preferably ⁇ 40° C., more preferably ⁇ 30° C., further preferably ⁇ 20° C., and further It is preferably ⁇ 10° C., more preferably 0° C., further preferably 5° C., particularly preferably 10° C.).
  • the Tg of the cured product of the curable film of the present disclosure tends to correlate with the Tg of the cured product of the curable composition alone.
  • the glass transition temperature or higher eg, -10 to 220°C, preferably 0 to 220°C, more preferably 10 to 200°C, further preferably 20 to 220°C, particularly preferably 50 to 220°C).
  • the cured product of the curable composition of the present disclosure alone (without a porous support) has a linear thermal expansion coefficient of 100 ppm/K or more (for example, 100 to 700 ppm/K, preferably 200 to 500 ppm/K) at one point. And more preferably 300 to 500 ppm/K).
  • the curable film of the present disclosure has a structure in which the pores of the porous support are filled with the curable composition as a core material, and the glass transition temperature of the cured product is 100° C. or lower. Since the cured product of the curable film used in the present disclosure has a low glass transition temperature and is soft as described above, it has excellent crack resistance. Further, the curable film that forms the soft (particularly soft in a high temperature region of 100° C. or higher) cured product has a structure in which the curable composition is filled in the pores of the porous support. Perhaps because the composition cannot push away the porous support and expand, the coefficient of linear thermal expansion can be suppressed to a small value and warpage can be prevented.
  • the curable film of the present disclosure may be prepared by, for example, dipping the curable composition with a solvent (eg, 2-butanone) to impregnate the porous support, followed by drying to remove the solvent. It can be produced by semi-curing (curing a part of the curable compound) if necessary.
  • a solvent eg, 2-butanone
  • the method of impregnating the curable composition is not particularly limited, and examples thereof include a method of immersing the porous support in the curable composition.
  • the temperature during immersion is, for example, about 25 to 60°C.
  • the immersion time is, for example, about 30 seconds to 30 minutes. It is preferable that the dipping is performed under a reduced pressure or a pressurized environment because the effect of suppressing the remaining foaming and promoting the filling of the curable composition can be obtained.
  • the conditions of drying after impregnation and semi-curing depending on the type of curing agent used.
  • an acid anhydride or phenol used as the curing agent, it can be performed by heating at a temperature of less than 100° C. (for example, 25° C. or more and less than 100° C.) for about 1 minute to 1 hour.
  • an amine used as the curing agent, it is preferable to carry out at a lower temperature. If the heating temperature or the heating time exceeds the above range, the curable composition filled in the porous support may be too hard to be used as a warp prevention layer due to excessive progress of the curing reaction.
  • the ratio of the porous support to the total volume of the curable film of the present disclosure is, for example, 10 to 90 vol%, preferably 20 to 70 vol%, more preferably 30 to 70 vol%, and further preferably 30 to 50 vol%. That is, the proportion of the curable composition in the total volume of the curable film of the present disclosure is, for example, 10 to 90 vol%, preferably 30 to 80 vol%, more preferably 30 to 70 vol%, and further preferably 50 to 70 vol%. is there. If the proportion of the porous support exceeds the above range, it becomes difficult to impregnate a sufficient amount of the curable composition, and it becomes difficult to obtain surface smoothness. On the other hand, when the curable composition exceeds the above range, the reinforcing effect of the porous support cannot be sufficiently obtained, and it tends to be difficult to suppress the curing shrinkage rate and the coefficient of linear thermal expansion to be small.
  • the curable film of the present disclosure forms a cured product by subjecting it to heat treatment.
  • the heat treatment conditions are not particularly limited, but the heating temperature is preferably 40 to 300°C, more preferably 60 to 250°C.
  • the heating time can be appropriately adjusted according to the heating temperature and is not particularly limited, but is preferably 1 to 10 hours, more preferably 1 to 5 hours. In the above heat treatment, the heating temperature may be constant or may be changed continuously or stepwise.
  • the glass transition temperature (Tg) of the cured product of the curable film of the present disclosure is 100° C. or lower (eg, ⁇ 60 to 100° C.), preferably 0 to 90° C., more preferably 5 to 80, as described above. C., more preferably 10 to 75.degree. C., further preferably 10 to 60.degree. C., further preferably 10 to 50.degree. C., further preferably 10 to 40.degree. C., particularly preferably 15 to 40.degree.
  • Tg glass transition temperature of the cured product is determined by the method described in the examples.
  • the thermal linear expansion coefficient ⁇ 2 of the cured product of the curable film of the present disclosure is not particularly limited, but is, for example, 20 ppm/K or less (eg, -1 to 20 ppm/K), preferably 15 ppm/K or less, more preferably 12 ppm/K or less, still more preferably 10 ppm/K or less. Therefore, expansion and contraction of the cured product of the curable composition at a temperature higher than Tg are suppressed, and, for example, it is possible to suppress the occurrence of warpage when a semiconductor package is mounted on a substrate by reflow soldering, and to improve the manufacturing yield. Can be improved.
  • Thermal linear expansion coefficient ⁇ 1 of a cured product of the curable film of the present disclosure [a heat ray in a temperature region of Tg or less of the cured product, for example, ⁇ 20° C. to 100° C., preferably ⁇ 10 to 100° C., more preferably 0 to 100° C. Expansion coefficient] is, for example, 55 ppm/K or lower (eg, -1 to 55 ppm/K), preferably 50 ppm/K or lower, more preferably 45 ppm/K or lower, further preferably 25 ppm/K or lower, further preferably 20 ppm/K It is as follows. Therefore, expansion and contraction of the cured product of the curable composition at a temperature lower than Tg are suppressed, and, for example, generation of warpage due to heat generation of electronic devices can be suppressed, and durability and reliability can be improved. ..
  • the film thickness of the curable film of the present disclosure is not particularly limited, but is, for example, 5 to 500 ⁇ m.
  • the lower limit is preferably 10 ⁇ m, more preferably 15 ⁇ m, further preferably 20 ⁇ m.
  • the upper limit is preferably 400 ⁇ m, more preferably 300 ⁇ m, further preferably 250 ⁇ m, further preferably 200 ⁇ m.
  • the thickness of the curable film of the present disclosure exceeds the above range, it tends to be difficult to meet the demands for downsizing and weight saving of electronic devices. On the other hand, if the thickness is less than the above range, it tends to be difficult to obtain sufficient toughness.
  • the curable film of the present disclosure may further have a metal foil, an insulating layer, a heat dissipation sheet, an electromagnetic wave shielding film, etc. laminated on at least one surface.
  • the semiconductor package with a warp prevention layer of the present disclosure (hereinafter, may be referred to as “package with a warp prevention layer”) has a warp prevention layer (hereinafter, referred to as “package with a warp prevention layer” made of a cured product of the curable film of the present disclosure). At least one layer).
  • the warp prevention layer of the present disclosure has a low coefficient of linear thermal expansion, and thus warps and cracks caused by stress resulting from the difference in the coefficient of thermal expansion of semiconductor chips, wiring layers (electrodes), encapsulants, etc. that constitute a semiconductor package. Can be suppressed.
  • the magnitude of warpage of the semiconductor package depends on the combination of the semiconductor chip, the encapsulating material, the wiring layer, and the like that form the semiconductor package, the thickness, and the structure thereof. Therefore, it is preferable that the composition and thickness of the warp prevention layer of the present disclosure be appropriately adjusted according to the configuration of the semiconductor package.
  • the thickness of the warp prevention layer of the present disclosure is, for example, 5 to 500 ⁇ m.
  • the lower limit is preferably 10 ⁇ m, more preferably 15 ⁇ m, further preferably 20 ⁇ m.
  • the upper limit is preferably 400 ⁇ m, more preferably 300 ⁇ m, more preferably 250 ⁇ m, and further preferably 200 ⁇ m. If the thickness of the warp prevention layer exceeds the above range, it tends to be difficult to meet the demands for downsizing and weight reduction of electronic devices. On the other hand, if the thickness is less than the above range, it tends to be difficult to obtain sufficient toughness.
  • the warp prevention layer of the present disclosure may function as a printed wiring board, a reinforcing material for a glass film, or the like.
  • the package with a warp prevention layer of the present disclosure is preferably manufactured through the following steps.
  • Step 1 Adhere the curable film of the present disclosure to the back surface of the semiconductor wafer
  • Step 2 cure the curable film to form a warp prevention layer.
  • FIG. 2 shows a schematic view (cross-sectional view) of an example of an embodiment of a semiconductor wafer (reconstructed wafer), (a) is a bottom view, and (b) is a cross-sectional view taken along line AA′.
  • 20 is a reconstructed wafer
  • 11 is a sealing material
  • 12 is a semiconductor chip.
  • a plurality of arranged semiconductor chips 12 are sealed with a sealing material 11.
  • the reconstructed wafer can be manufactured by a known method and a conventional method, for example, a method including the following steps I to III.
  • Step I Glue a temporary fixing tape to a substrate (wafer or panel), and attach a semiconductor chip to the substrate via the temporary attaching tape
  • Step II Seal the semiconductor chip attached to the substrate and temporarily put it on the substrate
  • Step III Peeling off the substrate to obtain the restructured wafer
  • the substrate may be a wafer having a diameter of about 300 mm or a rectangular panel having a side of 300 mm or more.
  • a method of sealing the semiconductor chip for example, a semiconductor chip attached on the substrate is coated with a sealant (resin) or a sheet-like prepreg is attached and heat treatment is applied. Can be done by. The heat treatment can be performed, for example, in the same manner as the heating conditions for obtaining the cured product of the curable film of the present disclosure described above.
  • the semiconductor wafer used in step 1 may be a semiconductor wafer in which the surface opposite to the back surface (front surface) is temporarily fixed to the substrate.
  • a semiconductor wafer whose front surface is temporarily fixed to the substrate for example, a reconstructed wafer which is temporarily fixed to the substrate obtained in the above step II can be used.
  • step III can be performed to peel off the substrate.
  • the method of attaching the curable film of the present disclosure to the back surface of the semiconductor wafer includes, for example, attaching the curable film of the present disclosure to the back surface of the semiconductor wafer and compressing using a substrate for surface flattening (for example, It can be performed by pressing at 0.1 to 5 MPa).
  • the method for curing the curable film in step 2 for example, when the curable composition constituting the curable film contains a photocationic polymerization initiator, it is preferable to perform light irradiation. In addition, when the curable composition constituting the curable film contains a curing agent or a thermal cationic polymerization initiator, it is preferable to perform heat treatment.
  • the curable film can be cured while being compressed (for example, pressed at 0.1 to 5 MPa) using a surface flattening substrate or the like.
  • the light irradiation uses, for example, a mercury lamp, a xenon lamp, a carbon arc lamp, a metal halide lamp, sunlight, an electron beam source, a laser light source, an LED light source, etc., and the integrated irradiation amount is, for example, 500 to 5000 mJ/cm 2. Irradiation in a range is preferable. Among them, UV-LED (wavelength: 350 to 450 nm) is preferable as the light source.
  • the heat treatment can be performed, for example, in the same manner as the heating conditions for obtaining the cured product of the curable film of the present disclosure described above.
  • the method for manufacturing a semiconductor package with a warp prevention layer of the present disclosure further includes the following steps. Step 3: Form a wiring layer on the reconstructed wafer
  • the wiring layer (electrode) can be formed by a well-known and commonly used method.
  • Step 3 may be performed before Step 1, may be performed between Steps 1 and 2, and may be performed after Step 2 and is not particularly limited. It is preferably done after step 2 to avoid damage.
  • the method for manufacturing a semiconductor package with a warp prevention layer according to the present disclosure preferably further includes the following steps.
  • Process 4 A semiconductor package having a warp prevention layer formed on the back surface is singulated to obtain a semiconductor package.
  • the semiconductor wafer can be diced into individual pieces in the step 4 by using a known and commonly used cutting device such as a dicing saw. Further, when the semiconductor wafer is temporarily fixed to the substrate, it is preferable to peel it from the substrate before separating it into individual pieces. If there is adhesive residue after the separation, it is possible to remove the adhesive residue by washing or the like. preferable.
  • step 4 is not particularly limited, it is efficient to perform step 4 after step 2 (step 3 when step 3 is performed).
  • FIG. 3 shows a schematic diagram (cross-sectional view) of an example of an embodiment of a method for manufacturing a package with a warp prevention layer according to the present disclosure.
  • a temporary fixing tape 32 is attached to a substrate 31 (wafer or panel), and the semiconductor chip 12 is attached to the substrate 31 via the temporary fixing tape 32 (step I).
  • the semiconductor chip 12 attached to the substrate 31 is sealed with the sealing material 11 to obtain a reconstructed wafer temporarily fixed on the substrate (step II).
  • the curable film 33 is attached to the encapsulant 11 (rear surface) of the reconstructed wafer (step 1), and the curable film 33 is cured to prevent the warp prevention layer 14.
  • step 2 The sticking and hardening of the curable film 33 may be performed while compressing using the surface-flattening substrate 34.
  • the substrate 31 is peeled off to obtain the reconstructed wafer 30 having the warp prevention layer 14 on the back surface (step III).
  • the semiconductor layer 10b (fan-out package) in which the wiring layer 13 is provided on the surface (front surface) opposite to the warp prevention layer 14 and the warp prevention layer 14 is provided on the back surface. Is obtained (step 3).
  • the semiconductor package 10b may be further diced into individual pieces (step 4).
  • the electronic device of the present disclosure includes the package with the warp prevention layer of the present disclosure. Since the electronic device of the present disclosure includes the package with the warp prevention layer of the present disclosure, it is possible to suppress warpage and crack generation due to heat generation of the semiconductor package, and thus is excellent in durability and reliability.
  • the electronic device of the present disclosure includes, for example, mobile electronic devices such as a mobile phone, a digital camera, a smartphone, a tablet terminal, and an electronic dictionary.
  • the electronic device of the present disclosure can be manufactured through the process of mounting the package with the warp prevention layer obtained by the above method on the substrate by reflow soldering (in particular, reflow soldering using lead-free solder).
  • the warp prevention layer of the package with the warp prevention layer according to the present disclosure has an excellent warp prevention effect even in a high temperature environment (for example, 150 to 250° C.) in which reflow soldering (in particular, reflow soldering using lead-free solder) is performed. Can be demonstrated. Therefore, according to the manufacturing method, a high-performance electronic device can be manufactured with excellent workability and high yield.
  • Preparation Example 1 Preparation of Support (Preparation of Cellulose Nonwoven Fabric)
  • the slurry of the microfiber Serish KY110N manufactured by Daicel Co., Ltd.
  • a No. 1 papermaking machine standard square machine manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the 5C filter paper was used as a filter cloth for papermaking to obtain a cellulose nonwoven fabric in a wet state.
  • Blotting paper was placed on both surfaces of the obtained cellulose nonwoven fabric in a wet state, and pressed at a pressure of 0.2 MPa for 1 minute.
  • a cellulose nonwoven fabric (void Ratio: 60 vol%, basis weight 9.9 g/m 2 , thermal linear expansion coefficient: 5 ppm/K, thickness 25 ⁇ m) were obtained.
  • Examples 1 to 7 (Preparation of curable film) A curable composition was prepared according to the formulation shown in Table 1. After dipping the cellulose nonwoven fabric obtained in Preparation Example 1 in the curable composition obtained above under reduced pressure, the solvent was removed under reduced pressure and the curable composition was impregnated again to obtain a curable film ( The proportion of the curable composition: 65 vol%) was prepared. The glass transition temperature and the coefficient of linear thermal expansion of the cured product obtained by curing the obtained curable film under the curing conditions shown in Table 1 were measured by the following methods. The results are shown in Table 1.
  • a PET double-sided adhesive film of the same diameter was stuck on a circular silicon wafer having a diameter of 6 inches, 37 glass substrates cut into 10 mm squares were arranged on the entire surface at 10 mm intervals, and the sealing material obtained above was placed on it. After coating, it was cured under pressure at 150° C. for 10 minutes to prepare a reconstructed wafer (A) temporarily fixed on the silicon wafer (substrate) shown in FIG. 3B.
  • Comparative Example 1 (Preparation of curable composition) A curable composition was prepared according to the formulation shown in Table 2. The glass transition temperature and the coefficient of linear thermal expansion of the cured product obtained by curing the obtained curable composition alone under the curing conditions shown in Table 2 were measured by the following methods. The results are shown in Table 2.
  • the curable composition obtained above is applied to the back surface (the surface opposite to the temporarily fixed silicon wafer) of the reconstructed wafer (A) obtained above, and cured at 150° C. for 2 hours, A warp prevention layer (cured product) was formed.
  • the silicon wafer that had been temporarily fixed through the PET film was removed to obtain a warp prevention layer-equipped reconstructed wafer (B) having a warp prevention layer formed on the back surface as shown in FIG. 3(e).
  • Comparative example 2 (Preparation of curable film) A curable composition was prepared according to the formulation shown in Table 2. In the curable composition obtained above, under reduced pressure, after dipping the glass cloth, through solvent removal under reduced pressure and impregnation of the curable composition again, the curable film (the proportion of the curable composition : 65 vol%) was prepared. The glass transition temperature and the coefficient of linear thermal expansion of the cured product obtained by curing the obtained curable film under the curing conditions shown in Table 2 were measured by the following methods. The results are shown in Table 2.
  • Comparative Examples 3 and 4 A restructured wafer with a warp prevention layer (B) having a warp prevention layer formed on the back surface was obtained in the same manner as in Comparative Example 1 except that the curable composition having the formulation shown in Table 2 was used.
  • Glass transition temperature (Tg), coefficient of linear thermal expansion in temperature range lower than Tg ( ⁇ 1 ), coefficient of linear thermal expansion in temperature range higher than Tg ( ⁇ 2 )) The glass transition temperature and the coefficient of linear thermal expansion of the cured product of the curable film obtained in the above Examples and Comparative Examples (cured composition of the curable composition in Comparative Examples 1, 3 and 4) were measured under the following conditions. did. In all cases, the measured value at 2nd-heating was adopted. The results are shown in Tables 1 and 2.
  • Test piece size Initial length 10 mm ⁇ width 3.5 mm ⁇ thickness 0.035 mm
  • Measuring device Thermomechanical analyzer (Exstar TMA/SS7100, manufactured by Hitachi High-Technologies Corporation) Measurement mode: Tensile, constant load measurement (40mN) Measurement atmosphere: Nitrogen temperature conditions: 1st-heating-60°C to 120°C, 5°C/min cooling 120°C to -60°C, 20°C/min 2nd-heating-60°C to 220°C, 5°C/min
  • Warp prevention property When the reconstructed wafers (B) with a warp prevention layer obtained in the above Examples and Comparative Examples were placed on a flat plate, the difference in height between the central portion and the edge portion from the flat plate was defined as “warp”.
  • the temperature of the flat plate was controlled to room temperature (20° C.), 100° C., 200° C., or 250° C., and the “warpage” at each temperature was measured.
  • the evaluation of the warp prevention effect is “ ⁇ ”
  • the evaluation of the warp prevention effect when the temperature is 200 to 1000 ⁇ m
  • the evaluation of the warp prevention effect is “ ⁇ ” when the evaluation exceeds 1000 ⁇ m
  • the evaluation of the warp prevention effect was rated as "x”. The results are shown in Tables 1 and 2.
  • YD-128 bisphenol A type diglycidyl ether (epoxy equivalent 190, viscosity 13600 mPa ⁇ s/25° C.), epoxy equivalent 188.6, Nippon Steel & Sumikin Chemical Co., Ltd. ⁇ Celoxide 2021P: 3,4-epoxycyclohexylmethyl ( 3,4-epoxy) cyclohexanecarboxylate, epoxy equivalent 130, manufactured by Daicel Corporation, EXA-4850-150: modified epibis type glycidyl ether type epoxy resin, epoxy equivalent: 433, trade name "EPICLON EXA-4850-150.
  • EXA-4850-1000 manufactured by DIC modified epibis type glycidyl ether type epoxy resin represented by the following formula (ii-1), epoxy equivalent: 350, trade name "EPICLON EXA-4850-1000", DIC Company ⁇ Curing agent> * RIKACID MH-700F: methylhexahydrophthalic anhydride, acid anhydride group equivalent 164.5, manufactured by Shin Nippon Rika Co., Ltd.
  • RIKACID HF-08 ester of alicyclic acid anhydride and polyalkylene glycol (Dicarboxylic acid), carboxyl group equivalent 672.7, manufactured by Shin Nippon Rika Co., Ltd., TD2091: phenol novolac, hydroxyl group equivalent 104.0, manufactured by DIC, TETA: triethylenetetramine, amine equivalent 23.4, Mitsui Chemical Fine.
  • a sheet-like porous support made of a material having a coefficient of linear thermal expansion of 20 ppm/K or less (preferably 10 ppm/K or less, more preferably 7 ppm/K or less) is filled with a curable composition.
  • the glass transition temperature of the cured product of the curable film is ⁇ 60 to 100° C.
  • the glass transition temperature (Tg) of the cured product of the curable composition is 100° C. or lower (eg, -60 to 100° C.
  • the upper limit is preferably 50° C., more preferably 40° C., further preferably 25° C.
  • the lower limit is preferably ⁇ 40° C., more preferably ⁇ 30° C., further preferably ⁇ 20° C., further preferably ⁇ 10° C., further preferably 0° C., further preferably 5° C., particularly preferably 10° C.).
  • the ratio of the porous support to the total volume of the curable film is 10 to 90 vol% (preferably 20 to 70 vol%, more preferably 30 to 70 vol%, further preferably 30 to 50 vol%).
  • the ratio of the curable composition in the total volume of the curable film is 10 to 90 vol% (preferably 30 to 80 vol%, more preferably 30 to 70 vol%, further preferably 50 to 70 vol%), The curable film according to any one of the above [1] to [4].
  • the film thickness of the curable film is 5 to 500 ⁇ m (lower limit is preferably 10 ⁇ m, more preferably 15 ⁇ m, further preferably 20 ⁇ m, upper limit is preferably 400 ⁇ m, more preferably 300 ⁇ m, further preferably 250 ⁇ m, The curable film according to any one of the above [1] to [5], which is preferably 200 ⁇ m).
  • the curable composition contains a curable compound (A) and a curing agent (B) and/or a curing catalyst (C), and is 50% by weight or more (preferably 70% by weight) based on the total amount of (A).
  • the epoxy equivalent of 140 to 3000 g/eq preferably 170 to 1000 g/eq, more preferably 180 to 1000 g/eq, and still more preferably 180 to 80% by weight, more preferably 80% by weight or more, still more preferably 90% by weight or more
  • the curable film according to any one of the above [1] to [6], which is a composition which is an epoxy compound of 500 g/eq).
  • the proportion of epoxy compounds other than the aromatic epoxy compound in the total amount of the curable composition is 20% by weight or less (preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight).
  • the curable film according to any one of the above [7] to [9].
  • An aromatic epoxy compound for example, epibis type glycidyl ether type epoxy resin, high molecular weight epibis type glycidyl ether type epoxy resin, and modified epibis type glycidyl ether) in the total amount of epoxy compounds contained in the curable composition.
  • [Compound selected from type epoxy resins) is 60% by weight or more (preferably 70% by weight or more, more preferably 80% by weight or more, further preferably 90% by weight or more), [7] to The curable film according to any one of [10].
  • the proportion of epoxy compounds other than the aromatic epoxy compound in the total amount of epoxy compounds contained in the curable composition is 40% by weight or less (preferably 30% by weight or less, more preferably 20% by weight or less, further The curable film according to any one of the above [7] to [11], which is preferably 10% by weight or less).
  • the curable compound (A) and the curing agent (B) are contained in the curable group (A) in (B) based on 1 mol of the curable group in (A).
  • the curable composition contains the curable compound (A) and the curing catalyst (C) in an amount of 0.1 to 10 parts by weight (0.01 to 100 parts by weight of the (A)). 15 parts by weight, preferably 0.01 to 12 parts by weight, more preferably 0.05 to 10 parts by weight, and further preferably 0.1 to 10 parts by weight).
  • the weighted average molecular weight per functional group is 180 to 1000 g/eq (preferably 200 to 700 g/eq, more preferably 200 to 500 g/eq, further preferably 250 to 450 g/eq, particularly preferably 300 to 450 g/eq.
  • the curable film according to any one of the above [7] to [14].
  • the thermal linear expansion coefficient of the cured product of the curable composition is 100 ppm/K or more (for example, 100 to 700 ppm/K, preferably 200 to 500 ppm/K, more preferably 300 to 500 ppm/K), and
  • the coefficient of linear thermal expansion ( ⁇ 2 ) in the temperature range above the glass transition temperature of the cured product of the curable film is 20 ppm/K or less (eg, -1 to 20 ppm/K, preferably 15 ppm/K or less, more preferably 12 ppm/K). K or less, more preferably 10 ppm/K or less), the curable film according to any one of the above [1] to [15].
  • the coefficient of linear thermal expansion ( ⁇ 1 ) in the temperature range of the glass transition temperature of the cured product of the curable film is 55 ppm/K or less (eg, -1 to 55 ppm/K, preferably 50 ppm/K or less,
  • the thickness of the sheet-like porous support is 5 to 500 ⁇ m (the lower limit is preferably 10 ⁇ m, more preferably 15 ⁇ m, further preferably 20 ⁇ m, the upper limit is preferably 300 ⁇ m, more preferably 200 ⁇ m, further preferably 100 ⁇ m). , And more preferably 75 ⁇ m), the curable film according to any one of the above [1] to [17].
  • the porosity of the sheet-like porous support is 90 to 10 vol% (preferably 80 to 30 vol%, more preferably 70 to 30 vol%, further preferably 70 to 50 vol%). A curable film according to any one of [18] to [18].
  • the curable composition contains the inorganic filler (E) in an amount of 0 to 10% by weight (preferably 0 to 5% by weight) based on the curable composition (100% by weight).
  • the curable composition contains the organic filler (D) in an amount of 50 parts by weight or less (eg, 1 to 50 parts by weight, preferably 45 parts by weight) based on 100 parts by weight of the curable compound contained in the curable composition.
  • the ratio of the total content of the curable compound (A) and the curing agent (B) in the total amount of the curable composition (excluding the organic filler (D) and the inorganic filler (E)) is 80% by weight.
  • the curable composition contains a curing accelerator in an amount of 3 parts by weight or less (for example, 0.1 to 3 parts by weight, preferably 0.1 part by weight) based on 100 parts by weight of the epoxy compound contained in the curable composition. 2 to 3 parts by weight, more preferably 0.25 to 2.5 parts by weight)
  • a method for manufacturing a semiconductor package with a warp prevention layer which comprises the following steps.
  • Step 1 Stick the curable film according to any one of [1] to [25] on the back surface of a semiconductor wafer
  • Step 2 cure the curable film to form a warp prevention layer
  • step 1 Stick the curable film according to any one of [1] to [25] on the back surface of a semiconductor wafer
  • Step 2 cure the curable film to form a warp prevention layer
  • the method for manufacturing a semiconductor package with a warp prevention layer according to the above [26] wherein the semiconductor wafer is a reconstructed wafer in which a plurality of arranged semiconductor chips are sealed with a sealing material.
  • the method for manufacturing a semiconductor package with a warpage prevention layer according to the above [27] further including the following step 3.
  • Step 3 Forming a wiring layer on the reconstructed wafer [29]
  • Process 4 A semiconductor package having a warp prevention layer formed on the back surface is singulated to obtain a semiconductor package.
  • a semiconductor package with a warp prevention layer which has, on the back surface of the semiconductor package, a warp prevention layer made of the cured product of the curable film described in any one of [1] to [25].
  • the thickness of the warp prevention layer is 5 to 500 ⁇ m (the lower limit is preferably 10 ⁇ m, more preferably 15 ⁇ m, further preferably 20 ⁇ m, the upper limit is preferably 400 ⁇ m, more preferably 300 ⁇ m, further preferably 250 ⁇ m, further The semiconductor package with the warp prevention layer according to the above [30], which is preferably 200 ⁇ m).
  • a method of manufacturing an electronic device comprising a step of mounting the semiconductor package with the warp prevention layer according to the above [30] or [31] on a substrate by reflow soldering.
  • An electronic device including the semiconductor package with the warp prevention layer according to [30] or [31].
  • a sheet-like porous support made of a material having a thermal linear expansion coefficient of 20 ppm/K or less (preferably 10 ppm/K or less, more preferably 7 ppm/K or less) was filled with the curable composition. Use of a curable film having a constitution and having a glass transition temperature of 100° C.
  • An electronic device having a semiconductor package having a warp prevention layer made of a cured product of the curable film of the present disclosure on its back surface is excellent in durability and reliability, and can be efficiently manufactured with high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

本開示は、半導体パッケージの裏面に反り防止層を形成するための硬化性フイルムであって、無機フィラーの含有量が少なくても線膨張係数が低い硬化物を形成することができ、ビアを効率的に形成できると共に、ビア形成後にスカムが生じにくい反り防止層を形成することができる硬化性フイルム、反り防止層付記半導体パッケージ及びその製造方法を提供することを目的とする。 本開示の硬化性フイルムは、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための硬化性フイルムであって、熱線膨張係数が20ppm/K以下である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下を示す。本開示の反り防止層付き半導体パッケージは、半導体パッケージの裏面に、前記硬化性フイルムの硬化物からなる反り防止層を有する。

Description

硬化性フイルム
 本開示は、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための硬化性フイルムに関する。本願は、2019年1月28日に日本に出願した特願2019-012596の優先権を主張し、その内容をここに援用する。
 近年、半導体パッケージ(以後、単に「パッケージ」と称する場合がある)の実装技術は高機能化が進んでおり、同一パッケージ中に多種の半導体チップ(以後、単に「チップ」と称する場合がある)を混載したファンアウトパッケージ(Fan-Out Package)や、パッケージ上に別のパッケージを乗せた3次元的な構造も提案されている。このため、端子数は飛躍的に増えてきており、微細化と同時に、パッケージの裏面側にも3次元的に配線を作製することが必要になってきている。このようなパッケージの高機能化が進むに従って、多種のチップとそれらを3次元的に接続するために複雑に形成される配線との熱膨張率差等によって発生する応力によってパッケージに反りが発生しやすくなり、歩留りが低下するという問題があった。また、電子機器の高性能化に伴い発生する熱量は増大しており、発熱によりパッケージに反りが生じると接続不良などが発生して、電子機器の耐久性や信頼性が低下することも問題になってきている。
 このようなパッケージの反りの防止を目的として、パッケージに反り防止層を設けることが種々提案されているが、十分な反り低減を実現するため、反り防止層の線膨張係数を小さくする必要があり、線膨張係数が小さな金属酸化物等の無機フィラーが大量に添加されている(例えば、特許文献1参照)。しかしながら、反り防止層に大量の無機フィラーが配合されると柔軟性が低下して硬く脆くなるため、ヒートショックに弱くなり、クラックが発生し易くなることが問題であった。さらに、パッケージの裏面側への貫通電極(ビア)を形成する際に、反り防止層に無機フィラーが大量に配合されていると、ビア形成速度が低下したり、ビア形成後に無機フィラーがスカムとして残存して歩留まり低下の原因となることも課題となっている。このような背景から、無機フィラーの含有量を低減した柔軟で低線膨張の反り防止層を形成する技術が望まれている。
特開2016-53181号公報
 従って、本開示の目的は、半導体パッケージの裏面に反り防止層を形成するための硬化性フイルムであって、無機フィラーの含有量が少なくても線膨張係数が低い硬化物を形成することができ、ビアを効率的に形成できると共に、ビア形成後にスカムが生じにくい反り防止層を形成することができる硬化性フイルムを提供することにある。
 本開示の他の目的は、裏面に反り防止層が形成された半導体パッケージであって、ビアを効率的に形成できると共に、ビア形成後にスカムが生じにくい低線膨張の反り防止層を有する半導体パッケージの製造方法を提供することにある。
 本開示の他の目的は、裏面に反り防止層が形成された半導体パッケージであって、ビアを効率的に形成できると共に、ビア形成後にスカムが生じにくい低線膨張の反り防止層を有する半導体パッケージを提供することにある。
 本開示の他の目的は、前記反り防止層を裏面に有する半導体パッケージを備えた電子機器を提供することにある。
 本開示の発明者は上記課題を解決するため鋭意検討した結果、熱線膨張係数が低い素材からなるシート状多孔性支持体に、硬化性組成物を充填した構成を有し、特定のガラス転移温度の硬化物を形成する硬化性フイルムが、無機フィラーの含有量が少なくても線膨張係数が低い硬化物を形成することができ、半導体パッケージの裏面に反り防止層を成形するための材料として有用であることを見出した。また、当該硬化性フイルムを使用して反り防止層を裏面に形成させた半導体パッケージは、ビアを効率的に形成できると共に、ビア形成後にスカムが生じにくいため不良率が低減し、歩留りを向上させることできることも見出した。本開示の発明はこれらの知見に基づいて完成させたものである。
 すなわち、本開示は、熱線膨張係数が20ppm/K以下である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための硬化性フイルムを提供する。
 前記硬化性フイルムにおいて、前記硬化性組成物の硬化物のガラス転移温度は100℃以下であってもよい。
 前記硬化性フイルムにおいて、前記硬化性組成物は、硬化性化合物(A)と、硬化剤(B)及び/又は硬化触媒(C)とを含み、(A)全量の50重量%以上がエポキシ当量が140~3000g/eqのエポキシ化合物である組成物であってもよい。
 前記硬化性フイルムにおいて、前記硬化性組成物は、硬化性化合物(A)と硬化剤(B)とを、前記(A)における硬化性基1モルに対して(B)における前記(A)の硬化性基との反応性基が0.8~1.2モルとなる割合で含有していてもよい。
 前記硬化性フイルムにおいて、前記硬化性組成物は、硬化性化合物(A)と硬化触媒(C)とを、前記(A)100重量部に対して(C)0.1~10重量部の割合で含有していてもよい。
 前記硬化性フイルムにおいて、前記硬化性組成物に含まれる、全ての硬化性化合物(A)(硬化剤(B)も含有する場合は、全ての硬化性化合物(A)と全ての硬化剤(B))の官能基当たりの分子量の加重平均値は180~1000g/eqであってもよい。
 前記硬化性フイルムにおいて、前記硬化性組成物の硬化物の熱線膨張係数は100ppm/K以上であり、且つ、硬化性フイルムの硬化物のガラス転移温度以上の温度領域での熱線膨張係数(α2)は20ppm/K以下であってもよい。
 前記硬化性フイルムにおいて、前記シート状多孔性支持体の厚みは5~500μmであってもよい。
 前記硬化性フイルムにおいて、前記シート状多孔性支持体はセルロース繊維の不織布であってもよい。
 前記硬化性フイルムにおいて、前記硬化性組成物は、無機フィラー(E)を硬化性組成物(100重量%)に対して0~10重量%含有していてもよい。
 前記硬化性フイルムは、反り防止層をファンアウトパッケージの裏面に形成するための硬化性フイルムであってもよい。
 また、本開示は、下記工程を有する反り防止層付き半導体パッケージの製造方法を提供する。
工程1:半導体ウェハの裏面に前記硬化性フイルムを貼付する
工程2:硬化性フイルムを硬化させて反り防止層を形成する
 前記反り防止層付き半導体パッケージの製造方法において、前記半導体ウェハは、配列した複数の半導体チップが封止材により封止されている再構築ウェハであってもよい。
 前記反り防止層付き半導体パッケージの製造方法は、さらに、以下の工程3を有していてもよい。
工程3:再構築ウェハに配線層を形成する
 前記反り防止層付き半導体パッケージの製造方法は、さらに、以下の工程4を有していてもよい。
工程4:裏面に反り防止層が形成された半導体ウェハを個片化して半導体パッケージを得る
 また、本開示は、半導体パッケージの裏面に、前記硬化性フイルムの硬化物からなる反り防止層を有する反り防止層付き半導体パッケージを提供する。
 また、本開示は、前記反り防止層付き半導体パッケージをリフロー半田付けにより基板に実装する工程を有する電子機器の製造方法を提供する。
 また、本開示は、前記反り防止層付き半導体パッケージを備えた電子機器を提供する。
 また、本開示は、熱線膨張係数が20ppm/K以下である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である硬化性フイルムの、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための使用を提供する。 
 本開示の硬化性フイルムは、金属酸化物等の無機フィラーの含有量が少なくても線膨張係数が低い硬化物を形成することができ、半導体パッケージの裏面に反り防止層を形成するための材料として有用である。また、大量の無機フィラーを配合する必要がないため、本開示の硬化性フイルムを用いて、反り防止層を裏面に形成させた半導体パッケージは、ビアを効率的に形成できると共に、ビア形成後にスカムが生じにくいため、不良率が低減し、歩留りを向上させることができる。さらに、本開示の硬化性フイルムを半導体パッケージの裏面に積層(ラミネート)して、硬化させることにより簡便に反り防止層を形成することができ、塗布などの煩雑な工程が不要であるため、製造効率に優れる。
 そのため、本開示の硬化性フイルムの硬化物からなる反り防止層を裏面に有する半導体パッケージを有する電子機器は、耐久性、信頼性に優れ、歩留まり良く効率的に製造することができる。
図1は、半導体パッケージ(ファンアウトパッケージ)の実施形態の一例を示す模式図(断面図)である。(a)は、反り防止層を有しないファンアウトパッケージ、(b)は、裏面に反り防止層が形成されたファンアウトパッケージである。 図2は、半導体ウェハ(再構築ウェハ)の実施形態の一例を示す模式図である。(a)は下面図、(b)は、A-A'における断面図を示す。 図3は、反り防止層付きパッケージの製造方法の実施形態の一例の模式図(断面図)である。
 本開示の硬化性フイルムは、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための硬化性フイルムであって、熱線膨張係数が20ppm/K以下である素材からなるシート状多孔性支持体の孔内が下記硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である硬化性フイルムである。
 [半導体パッケージ]
 本開示の硬化性フイルムにより反り防止層を裏面に形成する半導体パッケージ(以下、「本開示の半導体パッケージ」と称する場合がある)としては、特に限定されないが、例えば、基本構成として、配線層が形成された半導体チップが封止材により封止された半導体パッケージが挙げられる。特に、複数の半導体チップが同一パッケージ内に搭載されたファンアウトパッケージが好ましい。図1(a)に、反り防止層を有しない半導体パッケージ(ファンアウトパッケージ)の実施形態の一例の模式図(断面図)を示す。図1(a)において、10aは反り防止層を有しない半導体パッケージ(ファンアウトパッケージ)、11は封止材、12は半導体チップ、13は配線層(再配線層)を示す。ファンアウトパッケージ10aにおいて、配列された複数の半導体チップ12が封止材11により封止されており、半導体チップ12の封止されていない面に配線層13が形成されている。本開示の半導体パッケージは、半導体チップ、封止材、配線層以外の構成、例えば、はんだボール、貫通電極(ビア)、センサー、メモリ、PMIC、通信デバイス、アンテナなどを有していてもよい。
 上記ファンアウトパッケージは、ファンアウトウェハレベルパッケージ(FOWLP)又はファンアウトパネルレベルパッケージ(FOPLP)であってもよい。FOWLPは、直径300mm程度のウェハ上に複数の半導体チップが配列して製造されるものであり、FOPLPは、ウェハより大きい、一辺が300mm以上の四角いパネル上に半導体チップを配列して製造されるものである。
 半導体パッケージの裏面とは、半導体パッケージ内の半導体チップ上に配線層(電極)が形成された面又は形成される面とは反対側の面を意味する。「配線層が形成された面」とは、既に配線層が形成された面を言う。「配線層が形成される面」とは、未だ配線層が形成されていないが、配線層が形成される予定の面を言う。図1(b)に、裏面に反り防止層が形成された半導体パッケージ(ファンアウトパッケージ)の実施形態の一例の模式図(断面図)を示す。図1(b)において、10bは裏面に反り防止層を有する半導体パッケージ(ファンアウトパッケージ)、11は封止材、12は半導体チップ、13は配線層(再販配線層)、14は反り防止層を示す。ファンアウトパッケージ10bにおいて、配列された複数の半導体チップ12が封止材11により封止されており、半導体チップ12の封止されていない面に配線層13が形成され、半導体チップ12上の配線層13が形成された面とは反対側の面(裏面)に反り防止層14が形成されている。
 半導体パッケージの裏面は、半導体チップ上の配線層が形成された又は配線層が形成される面の反対側の面である限り特に限定されず、裏面全面が封止材で形成されていても良く、一部に半導体チップが露出していてもよい。また、半導体パッケージの裏面には、はんだボール、貫通電極(ビア)、センサー、メモリ、PMIC、通信デバイス、アンテナなどが形成されていてもよい。
 [シート状多孔性支持体]
 上記シート状多孔性支持体(以後、「多孔性支持体」と略称する場合がある)は、熱線膨張係数[例えば-20℃~300℃(好ましくは-10~300℃、より好ましくは0~300℃、更に好ましくは0~250℃)における熱線膨張係数]が20ppm/K以下(好ましくは10ppm/K以下、より好ましくは7ppm/K以下)である素材からなる。本開示の硬化性フイルムに熱線膨張係数が20ppm/K以下である素材からなる多孔性支持体を使用するため硬化収縮率及び熱線膨張係数を小さく抑制することができ、熱衝撃付与による反りを抑制することができると共にクラックの発生を抑制することができる。
 熱線膨張係数が20ppm/K以下である素材としては、例えば、紙、セルロース、ガラス繊維、液晶材料等が挙げられる。本開示においては、なかでも、紙、セルロース、ガラス繊維が好ましく、特に軽量であり入手が容易な点でセルロースが好ましい。
 多孔性支持体の空隙率は、例えば90~10vol%、好ましくは80~30vol%、より好ましくは70~30vol%、更に好ましくは70~50vol%である。空隙率が上記範囲を下回ると、硬化性組成物の十分量を含浸することが困難となり、表面平滑性が得られにくくなる傾向がある。一方、空隙率が上記範囲を上回ると、多孔性支持体による補強効果が十分に得られず、硬化収縮率及び熱線膨張係数を小さく抑制することが困難となる傾向がある。
 尚、本明細書における「空隙率」とは、多孔性支持体中における空隙の体積率を示す。多孔性支持体の空隙率は、10cm×10cmのサンプルについて、その表面の面積、厚み、及び質量を測定し、下記式から算出することができる。ここで、Arは多孔性支持体の面積(cm2)、tは厚み(cm)、Wは多孔性支持体の質量(g)、Mは多孔性支持体の素材の密度である。多孔性支持体の厚み(t)は、膜厚計(PEACOK社製PDN-20)を用いて、多孔性支持体の種々な位置について10点の測定を行い、その平均値を採用する。
   空隙率(vol%)={1-W/(M×Ar×t)}×100
 多孔性支持体の厚みは、例えば5~500μmである。下限は、好ましくは10μm、より好ましくは15μm、更に好ましくは20μmである。また、上限は、好ましくは300μm、より好ましくは200μm、更に好ましくは100μm、更に好ましくは75μmである。多孔性支持体の厚みは上記範囲において適宜調整することができ、例えば硬化性組成物単独の硬化物のTgが低めの場合は多孔性支持体を薄くすることで、硬化収縮率を小さく抑制することができる。硬化性組成物単独の硬化物のTgが高めの場合は多孔性支持体を厚くすることで、熱線膨張係数を小さく抑制することができる。多孔性支持体の厚みが上記範囲を上回ると、電子機器の小型化、軽量化の要求に対応することが困難となる傾向がある。一方、厚みが上記範囲を下回ると、十分な強靱性を得ることが困難になる傾向がある。
 [硬化性組成物]
 本開示の硬化性フイルムを構成する硬化性組成物(以下、「本開示の硬化性組成物」称する場合がある)としては、特に限定されないが、例えば、硬化性化合物(A)と、硬化剤(B)及び/又は硬化触媒(C)とを含む組成物が挙げられる。
 (硬化性化合物(A))
 硬化性化合物(A)は、特に限定されないが、少なくともエポキシ基を有する化合物(エポキシ化合物)を含有するものが好ましい。硬化性化合物(A)がエポキシ化合物を含む場合、特に限定されが、例えば、エポキシ当量(g/eq)が140~3000(好ましくは170~1000、より好ましくは180~1000、更に好ましくは180~500)のエポキシ化合物を硬化性化合物(A)全量の50重量%以上(好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上である。尚、上限は100重量%である)含むことが好ましい。エポキシ当量が上記範囲を外れる化合物を過剰に含有すると、硬化性組成物単独の硬化物の柔軟性が低下し、耐クラック性が低下するため好ましくない。
 上記エポキシ化合物には、脂環式エポキシ化合物、芳香族エポキシ化合物、及び脂肪族エポキシ化合物等が含まれる。
 <脂環式エポキシ化合物>
 上記脂環式エポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知乃至慣用の化合物が含まれるが、以下の化合物等が好ましい。
(1)脂環にエポキシ基が直接単結合で結合している化合物
(2)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)
 上述の(1)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(i)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(i)中、R”は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R”(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの[ ]内(外側の角括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。
 上述の(2)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(特に、脂環式多価アルコール)のグリシジルエーテルが挙げられる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン等のビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタン等のビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物を水素化した化合物等が挙げられる。
 <芳香族エポキシ化合物>
 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;後述の変性エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]とを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。
 前記変性エピビスタイプグリシジルエーテル型エポキシ樹脂としては、例えば、下記式(ii)で表される化合物が挙げられる。下記式中、R1~R4は同一又は異なって、水素原子又は炭化水素基を示す。kは1以上の整数を示す。L1は低極性結合基を示し、L2は柔軟性骨格を示す。
Figure JPOXMLDOC01-appb-C000002
 前記炭化水素には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらの結合した基が含まれる。
 脂肪族炭化水素基としては、炭素数1~20の脂肪族炭化水素基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基等の炭素数1~20(好ましくは1~10、より好ましくは1~3)程度のアルキル基;ビニル基、アリル基、1-ブテニル基等の炭素数2~20(好ましくは2~10、より好ましくは2~3)程度のアルケニル基;エチニル基、プロピニル基等の炭素数2~20(好ましくは2~10、より好ましくは2~3)程度のアルキニル基等を挙げることができる。
 脂環式炭化水素基としては、3~10員の脂環式炭化水素基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の3~8員(好ましくは5~8員)程度のシクロアルキル基等を挙げることができる。
 芳香族炭化水素基としては、炭素数6~14(好ましくは6~10)の芳香族炭化水素基が好ましく、例えば、フェニル基等を挙げることができる。
 前記R1~R4としては、なかでも、脂肪族炭化水素基(特に、アルキル基)が好ましい。
 前記L1は低極性結合基を示し、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基等の、炭素数1~3の直鎖状又は分岐鎖状アルキレン基を挙げることができる。
 前記L2は柔軟性骨格を示し、例えば、炭素数2~4のオキシアルキレン基を挙げることができる。具体的には、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシテトラメチレン基等が挙げられる。
 変性エピビスタイプグリシジルエーテル型エポキシ樹脂は上記構成を有するため、硬化性組成物に添加すると耐クラック性を向上する効果が得られる。
 前記変性エピビスタイプグリシジルエーテル型エポキシ樹脂としては、下記式(ii-1)で表される化合物を好適に使用することができる。本開示においては、例えば、商品名「EPICLON EXA-4850-1000」(エポキシ当量:350、DIC社製)や、商品名「EPICLON EXA-4850-150」(エポキシ当量:433、DIC社製)等の市販品を使用することができる。
Figure JPOXMLDOC01-appb-C000003
 <脂肪族エポキシ化合物>
 上記脂肪族エポキシ化合物としては、例えば、q価の環状構造を有しないアルコール(qは自然数である)のグリシジルエーテル;一価又は多価カルボン酸[例えば、酢酸、プロピオン酸、酪酸、ステアリン酸、アジピン酸、セバシン酸、マレイン酸、イタコン酸等]のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等が挙げられる。尚、上記q価の環状構造を有しないアルコールとしては、例えば、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール等の一価のアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の二価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の三価以上の多価アルコール等が挙げられる。また、q価のアルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。
 (硬化剤(B))
 本開示の硬化性組成物を構成する硬化剤(B)は、エポキシ化合物を硬化させる役割を担う化合物である。
 硬化剤(B)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができる。例えば、酸無水物、ジカルボン酸、アミン、ポリアミド樹脂、イミダゾール、ポリメルカプタン、フェノール、ポリカルボン酸、ジシアンジアミド、有機酸ヒドラジド等が挙げられる。本開示においては、なかでも信頼性に優れる点で、酸無水物(b-1)、ジカルボン酸(b-2)、アミン(b-3)、及びフェノール(b-4)からなる群より選択される少なくとも1種の化合物が好ましい。
 硬化剤(B)の官能基当たりの分子量は、例えば10~10000g/eq(好ましくは20~8000g/eq、より好ましくは20~7000g/eq、更に好ましくは20~5000g/eq、より好ましくは20~2000g/eq、更に好ましくは20~1000g/eq)である。
 酸無水物(b-1)としては、例えば、メチルテトラヒドロ無水フタル酸(4-メチルテトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4-(4-メチル-3-ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル-無水マレイン酸共重合体、アルキルスチレン-無水マレイン酸共重合体等が挙げられる。中でも、取り扱い性の観点で、25℃で液状の酸無水物[例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸等]が好ましい。酸無水物系硬化剤としては、耐クラック性に特に優れる点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。
 酸無水物(b-1)としては、例えば、商品名「リカシッドMH700F」(新日本理化(株)製)、商品名「HN-5500」(日立化成工業(株)製)等の市販品を好適に使用することができる。
 ジカルボン酸(b-2)としては、例えば、4,4'-ビフェニルジカルボン酸、2,2'-ビフェニルジカルボン酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族系ジカルボン酸;シュウ酸、マロン酸、コハク酸、アジピン酸、1,6-ヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂肪族系ジカルボン酸;酸無水物とポリオール化合物とを反応させて得られるエステル型ジカルボン酸;等が挙げられる。これらの中でも、酸無水物とポリオール化合物とを反応させて得られるエステル型ジカルボン酸が好ましい。
 前記エステル型ジカルボン酸の合成に用いる酸無水物としては、脂環族酸無水物が好ましく、なかでも4-メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸が好ましい。
 ポリオール化合物としては、2価又は3価の脂肪族アルコールが好ましく、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、ネオペンチルグリコール、ジメチロールプロパン、ポリC1-5アルキレングリコール(例えば、ポリエチレングリコール、ポリプロピレングリコール等)の等の2価の脂肪族アルコール;グリセリン、トリメチロールプロパン等の3価の脂肪族アルコール等が挙げられる。
 これらの中でも、2価の脂肪族アルコールが好ましく、特にポリC1-5アルキレングリコールがより好ましい。前記ポリC1-5アルキレングリコールの重量平均分子量は、例えば500~2000、好ましくは600~1600である。
 酸無水物とポリオール化合物とを反応させて得られるエステル型ジカルボン酸としては、下記式(b-2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(b-2-1)中、R5、R6は同一又は異なって炭素数1~5のアルキル基を示し、なかでもメチル基又はエチル基が好ましい。m1、m2は同一又は異なって0~4の整数を示す。Lはポリオール化合物から2つの水酸基を除いた基(2価の基)であり、なかでも、ポリエチレングリコール又はポリプロピレングリコールから2つの水酸基を除いた基が好ましい。
 ジカルボン酸(b-2)としては、例えば、商品名「リカシッドHF-08」(新日本理化(株)製)等の市販品を好適に使用することができる。
 アミン(b-3)としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミン等の脂肪族ポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-3,4,8,10-テトラオキサスピロ[5,5]ウンデカン等の脂環式ポリアミン;m-フェニレンジアミン、p-フェニレンジアミン、トリレン-2,4-ジアミン、トリレン-2,6-ジアミン、メシチレン-2,4-ジアミン、3,5-ジエチルトリレン-2,4-ジアミン、3,5-ジエチルトリレン-2,6-ジアミン等の単核ポリアミン、ビフェニレンジアミン、4,4-ジアミノジフェニルメタン、2,5-ナフチレンジアミン、2,6-ナフチレンジアミン等の芳香族ポリアミン、ポリオキシアルキレンジアミン等が挙げられる。
 フェノール(b-4)としては、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、p-キシリレン変性フェノール樹脂、p-キシリレン・m-キシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパン等が挙げられる。
 (硬化触媒(C))
 本開示の硬化性組成物は、上述の硬化剤(B)の代わりに若しくは上述の硬化剤(B)と共に、硬化触媒(C)を含んでいてもよい。硬化触媒(C)を用いることにより、エポキシ化合物の硬化反応を進行させ、硬化物を得ることができる。上記硬化触媒(C)としては、特に限定されないが、例えば、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、重合を開始させることができるカチオン触媒(カチオン重合開始剤)を1種又は2種以上使用することができる。
 紫外線照射によりカチオン種を発生するカチオン触媒(光カチオン重合開始剤)としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩等が挙げられる。上記カチオン触媒としては、例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製)、商品名「CD-1010」、「CD-1011」、「CD-1012」(以上、米国サートマー製)、商品名「イルガキュア264」(チバ・ジャパン(株)製)、商品名「CIT-1682」(日本曹達(株)製)等の市販品を使用することができる。
 加熱処理を施すことによりカチオン種を発生するカチオン触媒(熱カチオン重合開始剤)としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体等が挙げられる。上記カチオン触媒としては、例えば、商品名「PP-33」、「CP-66」、「CP-77」(以上、(株)ADEKA製)、商品名「FC-509」(スリーエム製)、商品名「UVE1014」(G.E.製)、商品名「サンエイド SI-60L」、「サンエイド SI-80L」、「サンエイド SI-100L」、「サンエイド SI-110L」、「サンエイド SI-150L」(以上、三新化学工業(株)製)、商品名「CG-24-61」(チバ・ジャパン(株)製)等の市販品を使用することができる。上記カチオン触媒としては、さらに、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物等を用いることもできる。
 (有機フィラー(D))
 本開示の硬化性組成物は、本開示の発明の効果を損なわない範囲で、更に有機フィラー(D)を1種又は2種以上含有していてもよい。有機フィラー(D)を含有することにより、硬化収縮率及び熱線膨張係数を一層小さく抑制することができ、反りの抑制効果を向上することができる。また、硬化性組成物が有機フィラー(D)を含有すると、多孔性支持体の孔内に充填された硬化性組成物が孔外へ流出するのを抑制する効果も得られる。さらに、有機フィラー(D)は、硬化性組成物の着色剤としても使用することもできる。
 前記有機フィラー(D)としては、例えば、セルロースナノファイバー、セルロース(ナノ)クリスタル等のセルロース系粒子、PEEKファイバー、液晶材料、及び金属酸化物等を含まない単層或いは多層カーボンナノチューブ、グラフェン、酸化グラフェン、カーボンブラック、フラーレン、ナノダイアモンド等の炭素材料等が挙げられ、これらを単独、又は、2以上を組み合わせて使用することができる。上記有機フィラーは、中実構造、中空構造、多孔質構造等のいずれの構造を有していてもよい。このうち、黒色着色料としても使用し得る炭素材料が好ましい。
 有機フィラー(D)の形状は、特に限定されないが、例えば、球状(真球状、略真球状、楕円球状等)、多面体状、棒状(円柱状、角柱状等)、平板状、りん片状、不定形状等を挙げることができる。
 有機フィラー(D)の平均粒子径は、例えば5nm~100μm、好ましくは50nm~50μm、より好ましくは100nm~30μmである。平均粒子径が上記範囲を下回ると、粘度の上昇が著しく、取り扱いが困難となる傾向がある。一方、平均粒子径が上記範囲を上回ると、耐クラック性が低下する傾向がある。また、上記範囲内のサイズのフィラーを2種以上混合して使用しても良く、それにより粘度と物性をコントロールすることが可能となる。尚、有機フィラー(D)の平均粒子径は、レーザー回折・散乱法によるメディアン径(d50)である。
 (無機フィラー(E))
 本開示の硬化性組成物は、本開示の発明の効果を損なわない範囲で、更に無機フィラー(E)を1種又は2種以上含有していてもよい。しかしながら、多量の無機フィラーが配合されると、ビア作製時に無機フィラーに起因してスカムの発生やビア作製に時間を要するなどの問題が生じやすくなる。従って、無機フィラー(E)の含有量(配合量)は、硬化性組成物(100重量%)に対して、10重量%以下(0~10重量%)が好ましく、5重量%以下(0~5重量%)がより好ましい。無機フィラー(E)の含有量を10重量%以下とすることにより、ビア作製時のスカム発生が抑制され、ビア作製に時間を短縮しやすくなる。また、無機フィラー(E)を配合しないことにより、実質的に無機フィラー(E)を含まないことも好ましい。
 前記無機フィラー(E)としては、例えば、シリカ(例えば、天然シリカ、合成シリカ等)、酸化アルミニウム(例えば、α-アルミナ等)、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化カルシウム、酸化亜鉛、酸化鉄等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸アルミニウム、硫酸カルシウム等の硫酸塩;窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物;水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム等の水酸化物;マイカ、タルク、カオリン、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ウォラストナイト、セピオライト、ゾノライト、ゼオライト、ハイドロタルサイト、フライアッシュ、脱水汚泥、ガラスビーズ、ガラスファイバー、ケイ藻土、ケイ砂、センダスト、アルニコ磁石、各種フェライト等の磁性粉、水和石膏、ミョウバン、三酸化アンチモン、マグネシウムオキシサルフェイト、シリコンカーバイド、チタン酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、燐酸マグネシウム、銅、鉄等が挙げられ、これらを単独、又は、2以上を組み合わせて使用することができる。上記無機フィラーは、中実構造、中空構造、多孔質構造等のいずれの構造を有していてもよい。また、上記無機フィラーは、例えば、オルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物等の周知の表面処理剤により表面処理されたものであってもよい。
 無機フィラー(E)の形状は、特に限定されないが、例えば、球状(真球状、略真球状、楕円球状等)、多面体状、棒状(円柱状、角柱状等)、平板状、りん片状、不定形状等を挙げることができる。
 無機フィラー(E)の平均粒子径は、例えば5nm~100μm、好ましくは50nm~50μm、より好ましくは100nm~30μmである。平均粒子径が上記範囲を下回ると、粘度の上昇が著しく、取り扱いが困難となる傾向がある。一方、平均粒子径が上記範囲を上回ると、耐クラック性が低下する傾向がある。また、上記範囲内のサイズのフィラーを2種以上混合して使用しても良く、それにより粘度と物性をコントロールすることが可能となる。尚、無機フィラーの平均粒子径は、レーザー回折・散乱法によるメディアン径(d50)である。
 (硬化促進剤)
 本開示の硬化性組成物は、硬化剤(B)と共に硬化促進剤を含有していても良い。硬化剤(B)と共に硬化促進剤を含有することにより、硬化速度を促進する効果が得られる。硬化促進剤としては、公知乃至慣用の硬化促進剤を使用することができ、特に限定されないが、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミン等の第3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール類;リン酸エステル、トリフェニルホスフィン(TPP)等のホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(p-トリル)ボレート等のホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛等の有機金属塩;金属キレート等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 硬化促進剤としては、例えば、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「U-CAT 12XD)」(以上、サンアプロ(株)製)、商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製)、商品名「PX-4ET」(日本化学工業(株)製)等の市販品を好適に使用することができる。
 本開示の硬化性組成物全量における、硬化性化合物(A)の含有量は例えば30~98重量%である。また、上記硬化性組成物全量における、芳香族エポキシ化合物(例えば、エピビスタイプグリシジルエーテル型エポキシ樹脂、高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂、及び変性エピビスタイプグリシジルエーテル型エポキシ樹脂から選択される化合物)の含有量は、例えば30~98重量%である。更に、上記硬化性組成物全量における、芳香族エポキシ化合物以外のエポキシ化合物の占める割合は、例えば20重量%以下、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下である。
 本開示の硬化性組成物に含まれるエポキシ化合物全量における、芳香族エポキシ化合物(例えば、エピビスタイプグリシジルエーテル型エポキシ樹脂、高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂、及び変性エピビスタイプグリシジルエーテル型エポキシ樹脂から選択される化合物)の占める割合は、例えば60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上である。尚、上限は100重量%である。従って、上記硬化性組成物に含まれるエポキシ化合物全量における、芳香族エポキシ化合物以外のエポキシ化合物の占める割合は、例えば40重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。
 硬化剤(B)の含有量は、硬化性組成物に含まれる硬化性基(例えば、エポキシ基)1モルに対して(B)における前記(A)の硬化性基との反応性基が例えば0.8~1.2モルとなる割合である。
 硬化剤(B)の含有量が上記範囲を下回ると、硬化が不十分となり、硬化物の強靱性が低下する傾向がある。一方、硬化剤(B)の含有量が上記範囲を上回ると、硬化性組成物単独の硬化物の極性が増大し、水分の影響を受けやすくなり、信頼性の低下に繋がる場合がある。
 本開示の硬化性組成物(有機フィラー(D)、無機フィラー(E)を除く)全量における、硬化性化合物(A)及び硬化剤(B)の合計含有量の占める割合は、例えば80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上である。
 本開示の硬化性組成物に含まれる、全ての硬化性化合物(A)(硬化剤(B)も含有する場合は、全ての硬化性化合物(A)と全ての硬化剤(B))の官能基当たりの分子量の加重平均値(含有割合を加重)(g/eq)は、例えば180~1000、好ましくは200~700、より好ましくは200~500、更に好ましくは250~450、とりわけ好ましくは300~450である。本開示の硬化性組成物は、硬化性化合物(A)(硬化剤(B)も含有する場合は、硬化性化合物(A)と硬化剤(B))を、加重平均値が上記範囲となるように選択して含有することが、架橋点間距離を適度に有することにより、柔軟性を有し、耐クラック性に優れる硬化物が得られる点で好ましい。加重平均値が上記範囲を下回ると、柔軟性が低下し、耐クラック性が低下する傾向がある。一方、加重平均値が上記範囲を上回ると、硬化樹脂の密度が低く、十分な強靭さや耐候性を得ることが困難となる傾向がある。尚、エポキシ化合物の官能基当たりの分子量とはエポキシ当量である。また、硬化剤としての酸無水物(b-1)の官能基当たりの分子量とは酸無水物基当量、ジカルボン酸(b-2)の官能基当たりの分子量とはカルボキシル基当量、アミン(b-3)の官能基当たりの分子量とはアミン当量、フェノール(b-4)の官能基当たりの分子量とは水酸基当量のことである。
 硬化触媒(C)の含有量は、特に限定されないが、硬化性組成物中に含まれる硬化性化合物(A)100重量部に対して、例えば0.1~10重量部の割合で含有することが好ましく、硬化性組成物中に含まれるエポキシ化合物の全量(100重量部)に対して、例えば0.01~15重量部、好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、さらに好ましくは0.1~10重量部である。硬化触媒(C)を上記範囲内で使用することにより、耐熱性、耐候性に優れた硬化物を得ることができる。
 有機フィラー(D)の含有量は、硬化性組成物に含まれる硬化性化合物(2種以上含有する場合はその総量)100重量部に対して、例えば50重量部以下(例えば、1~50重量部)、好ましくは45重量部以下、より好ましくは40重量部以下である。有機フィラー(D)の含有量が過剰となると、硬化性組成物単独の硬化物のTgが高くなり、柔軟性が低下して、耐クラック性が低下する傾向がある。
 硬化促進剤の含有量は、特に限定されないが、硬化性組成物中に含まれるエポキシ化合物100重量部に対して、例えば3重量部以下(例えば0.1~3重量部)、好ましくは0.2~3重量部、より好ましくは0.25~2.5重量部である。
 (その他の成分)
 本開示の硬化性組成物は上記成分以外にも、必要に応じて他の成分を1種又は2種以上含有していても良い。
 本開示の硬化性組成物はエポキシ化合物以外の硬化性化合物を含有していても良く、例えば、オキセタン化合物等のカチオン硬化性化合物、(メタ)アクリレートやウレタン(メタ)アクリレート等のラジカル硬化性化合物を含有することができる。
 本開示の硬化性組成物は、更に、例えば、希釈剤、消泡剤、レベリング剤、シランカップリング剤、界面活性剤、難燃剤、着色剤、可塑剤、帯電防止剤、離型剤、酸化防止剤、紫外線吸収剤、光安定剤、イオン吸着体、蛍光体等を含有することができる。
 また、硬化剤(B)として酸無水物を使用する場合は、酸無水物と共に、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等の水酸基含有化合物を使用することが、硬化反応を促進する効果が得られる点で好ましい。水酸基含有化合物の含有量は、酸無水物100重量部に対して、例えば、0.1~15重量部、好ましくは0.5~10重量部である。
 本開示の硬化性組成物は上記成分を混合することにより調製できる。混合には、自公転式撹拌脱泡装置、ホモジナイザー、プラネタリーミキサー、3本ロールミル、ビーズミル等の一般的に知られる混合用機器を使用することができる。また、各成分は、同時に混合してもよいし、逐次混合してもよい。
 本開示の硬化性組成物単独の硬化物(多孔性支持体を含まない)の、ガラス転移温度(Tg)は、特に限定されないが、例えば100℃以下(例えば、-60~100℃が好ましい。Tgの上限は、好ましくは50℃、より好ましくは40℃、更に好ましくは25℃である。Tgの下限は、好ましくは-40℃、より好ましくは-30℃、更に好ましくは-20℃、更に好ましくは-10℃、更に好ましくは0℃、更に好ましくは5℃、とりわけ好ましくは10℃である)である。硬化物のTgが100℃以下の硬化性組成物を使用することにより、本開示の硬化性フイルムの硬化物のTgも100℃以下に制御しやすくなる。すなわち、本開示の硬化性フイルムの硬化物のTgは、硬化性組成物単独の硬化物のTgと相関する傾向がある。前記ガラス転移温度以上の温度(例えば-10~220℃、好ましくは0~220℃、より好ましくは10~200℃、更に好ましくは20~220℃、とりわけ好ましくは50~220℃)の範囲の少なくとも1点における、本開示の硬化性組成物単独の硬化物(多孔性支持体を含まない)の熱線膨張係数は、例えば100ppm/K以上(例えば100~700ppm/K、好ましくは200~500ppm/K、より好ましくは300~500ppm/K)であることが好ましい。
 [硬化性フイルム]
 本開示の硬化性フイルムは、コア材として上記多孔性支持体の孔内が上記硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下を示すものである。本開示において使用する硬化性フイルムの硬化物は上述の通りガラス転移温度が低く柔らかいため、耐クラック性に優れる。また、前記の柔らかい(特に100℃以上の高温領域において柔らかい)硬化物を形成する硬化性フイルムは、多孔性支持体の孔内に硬化性組成物が充填された構成を有するが、前記硬化性組成物が多孔性支持体を押しのけて膨張することができない為か、結果的に熱線膨張係数を小さく抑制することができ、反りの発生を防止することができる。
 本開示の硬化性フイルムは、例えば、上記硬化性組成物を溶剤(例えば、2-ブタノン等)で希釈したものを上記多孔性支持体に含浸させ、その後、乾燥させて溶剤を除去し、さらに必要に応じて半硬化(硬化性化合物の一部を硬化)させることにより製造することができる。
 硬化性組成物を含浸させる方法としては特に制限がなく、例えば、硬化性組成物中に多孔性支持体を浸漬する方法等を挙げることができる。浸漬時温度は、例えば25~60℃程度である。浸漬時間は、例えば30秒~30分程度である。浸漬は減圧又は加圧環境下で行うことが、起泡の残存を抑制し、硬化性組成物の充填を促進する効果が得られる点で好ましい。
 含浸後の乾燥、及び半硬化の条件は使用する硬化剤の種類によって適宜変更して行うことが好ましい。例えば、硬化剤として酸無水物、又はフェノールを使用する場合、100℃未満(例えば25℃以上、100℃未満)の温度で、1分~1時間程度加熱することにより行うことができる。硬化剤としてアミンを使用する場合は、より低温で行うことが好ましい。加熱温度や加熱時間が上記範囲を上回ると、多孔性支持体に充填された硬化性組成物の硬化反応が進行し過ぎることにより、反り防止層としての使用が困難となる場合がある。
 本開示の硬化性フイルム全体積における、多孔性支持体の占める割合は、例えば10~90vol%、好ましくは20~70vol%、より好ましくは30~70vol%、更に好ましくは30~50vol%である。すなわち、本開示の硬化性フイルム全体積における、硬化性組成物の占める割合は、例えば10~90vol%、好ましくは30~80vol%、より好ましくは30~70vol%、更に好ましくは50~70vol%である。多孔性支持体の占める割合が上記範囲を上回ると、上記硬化性組成物の十分量を含浸することが困難となり、表面平滑性が得られにくく成る傾向がある。一方、硬化性組成物が上記範囲を上回ると、多孔性支持体による補強効果が十分に得られず、硬化収縮率及び熱線膨張係数を小さく抑制することが困難となる傾向がある。
 本開示の硬化性フイルムは、加熱処理を施すことにより硬化物を形成する。加熱処理条件は、特に限定されないが、加熱温度は40~300℃が好ましく、より好ましくは60~250℃である。また、加熱時間は、加熱温度に応じて適宜調節可能であり、特に限定されないが、1~10時間が好ましく、より好ましくは1~5時間である。上記加熱処理において、加熱温度は一定とすることもできるし、連続的又は段階的に変更することもできる。
 本開示の硬化性フイルムの硬化物のガラス転移温度(Tg)は、上記の通り、100℃以下(例えば、-60~100℃)であり、好ましくは0~90℃、より好ましくは5~80℃、更に好ましくは10~75℃、更に好ましくは10~60℃、更に好ましくは10~50℃、更に好ましくは10~40℃、とりわけ好ましくは15~40℃である。本開示の硬化性フイルムの硬化物は上記Tgを有する場合、適度な柔軟性を有し、耐クラック性に優れる反り防止層を形成することができる。尚、硬化物のガラス転移温度は実施例に記載の方法で求められる。
 本開示の硬化性フイルムの硬化物の熱線膨張係数α2[硬化物のTg以上の温度領域、例えば100~300℃における熱線膨張係数]は、特に限定されないが、例えば20ppm/K以下(例えば、-1~20ppm/K)、好ましくは15ppm/K以下、より好ましくは12ppm/K以下、更に好ましくは10ppm/K以下である。そのため、硬化性組成物の硬化物のTgより高い温度における膨張及び収縮が抑制され、例えば、半導体パッケージをリフロー半田付けにより基板に実装する際の反りの発生を抑制することができ、製造歩留りを向上させることができる。
 本開示の硬化性フイルムの硬化物の熱線膨張係数α1[硬化物のTg以下の温度領域、例えば-20℃~100℃、好ましくは-10~100℃、より好ましくは0~100℃における熱線膨張係数]は、例えば55ppm/K以下(例えば、-1~55ppm/K)、好ましくは50ppm/K以下、より好ましくは45ppm/K以下、更に好ましくは25ppm/K以下、更に好ましくは20ppm/K以下である。そのため、硬化性組成物の硬化物のTgより低い温度における膨張及び収縮が抑制され、例えば、電子機器の発熱による反りの発生を抑制することができ、耐久性、信頼性を向上させることができる。
 本開示の硬化性フイルムの膜厚は特に限定されないが、例えば、5~500μmである。下限は、好ましくは10μm、より好ましくは15μm、更に好ましくは20μmである。また、上限は、好ましくは400μm、より好ましくは300μm、更に好ましくは250μm、更に好ましくは200μmである。本開示の硬化性フイルムの厚みが上記範囲を上回ると、電子機器の小型化、軽量化の要求に対応することが困難となる傾向がある。一方、厚みが上記範囲を下回ると、十分な強靱性を得ることが困難になる傾向がある。
 本開示の硬化性フイルムは、少なくとも一方の面に、さらに、金属箔、絶縁層、放熱シート、電磁波シールド膜などが積層されていてもよい。
 [反り防止層付き半導体パッケージ]
 本開示の反り防止層付き半導体パッケージ(以後、「反り防止層付きパッケージ」と称する場合がある)は、半導体パッケージの裏面に本開示の硬化性フイルムの硬化物からなる反り防止層(以後、「本開示の反り防止層」と称する場合がある)を少なくとも1層有する。本開示の反り防止層は、熱線膨張係数低いため、半導体パッケージを構成する、半導体チップ、配線層(電極)、封止材などの熱膨張率の差に由来する応力によって引き起こされる反りやクラックを抑制することができる。半導体パッケージの反りの大きさは、半導体パッケージを構成する半導体チップ、封止材、配線層等の組み合わせやその厚み、構造に依存する。そのため、本開示の反り防止層の組成や厚みは、半導体パッケージの構成に応じて適宜調整することが好ましい。
 本開示の反り防止層の厚みは、例えば、5~500μmである。下限は、好ましくは10μm、より好ましくは15μm、更に好ましくは20μmである。また、上限は、好ましくは400μm、より好ましくは300μm、より好ましくは250μm、更に好ましくは200μmである。反り防止層の厚みが上記範囲を上回ると、電子機器の小型化、軽量化の要求に対応することが困難となる傾向がある。一方、厚みが上記範囲を下回ると、十分な強靱性を得ることが困難になる傾向がある。
 本開示の反り防止層は、プリント配線基板、ガラスフイルムの補強材などとして機能するものであってもよい。
 [反り防止層付き半導体パッケージの製造方法]
 本開示の反り防止層付きパッケージは、下記工程を経て製造することが好ましい。
工程1:半導体ウェハの裏面に本開示の硬化性フイルムを貼付する
工程2:硬化性フイルムを硬化させて反り防止層を形成する
 工程1における、半導体ウェハとしては、複数の半導体チップを含む公知、常用の半導体ウェハを特に限定するすることなく使用することができ、例えば、ファンアウトパッケージを製造する場合には、配列した複数の半導体チップが封止材により封止されている再構築ウェハが好ましい。図2に、半導体ウェハ(再構築ウェハ)の実施態様の一例の模式図(断面図)を示し、(a)は下面図、(b)は、A-A'における断面図を示す。図2において、20は再構築ウェハ、11は封止材、12は半導体チップを示す。再構築ウェハ20において、配列された複数の半導体チップ12が封止材11により封止されている。
 再構築ウェハは公知、常用の方法により製造することができ、例えば、以下の工程I~IIIを含む方法により製造することができる。
工程I:基板(ウェハ又はパネル)に仮止めテープをはりつけ、前記仮止めテープを介して基板に半導体チップを貼付する
工程II:基板に貼付された半導体チップを封止して、基板上に仮止めされた再構築ウェハを得る
工程III:基板を剥離して、再構築ウェハを得る
 前記工程Iにおいて、基板としては、直径300mm程度のウェハ又は一辺300mm以上の四角形のパネルであってもよい。
 前記工程IIにおいて、半導体チップを封止する方法としては、例えば、基板上に貼付された半導体チップに、封止剤(樹脂)を塗布するか、シート状プリプレグを貼り合わせ、加熱処理を施すことにより行うことができる。加熱処理としては、例えば、上述の本開示の硬化性フイルムの硬化物を得るための加熱条件と同様に行うことができる。
 工程1において使用する半導体ウェハは、裏面と反対側の面(おもて面)が基板に仮止めされた半導体ウェハであってもよい。おもて面が基板に仮止めされた半導体ウェハとしては、例えば、上記工程IIで得られる基板上に仮止めされた再構築ウェハを使用することができる。おもて面が基板に仮止めされた半導体ウェハを使用した場合は、工程2で裏面に反り防止層した後に、工程IIIを行い、基板を剥離することができる。
 工程1において、半導体ウェハの裏面に本開示の硬化性フイルムを貼付する方法は、例えば、半導体ウェハの裏面に本開示の硬化性フイルムを貼り合わせ、表面平坦化用基板等を用いて圧縮(例えば0.1~5MPaで押圧)することにより行うことができる。
 工程2における硬化性フイルムの硬化方法としては、例えば、硬化性フイルムを構成する硬化性組成物が光カチオン重合開始剤を含有する場合は光照射を施すことが好ましい。また、硬化性フイルムを構成する硬化性組成物が硬化剤又は熱カチオン重合開始剤を含有する場合は加熱処理を施すことが好ましい。また、硬化性フイルムの硬化は、表面平坦化用基板等を用いて圧縮(例えば0.1~5MPaで押圧)しながら行うことができる。
 前記光照射は、例えば、水銀ランプ、キセノンランプ、カーボンアークランプ、メタルハライドランプ、太陽光、電子線源、レーザー光源、LED光源等を使用し、積算照射量が例えば500~5000mJ/cm2となる範囲で照射することが好ましい。光源としては、なかでも、UV-LED(波長:350~450nm)が好ましい。
 前記加熱処理としては、例えば、上述の本開示の硬化性フイルムの硬化物を得るための加熱条件と同様に行うことができる。
 半導体ウェハが再構築ウェハである場合は、本開示の反り防止層付き半導体パッケージの製造方法は、さらに、以下の工程を有することが好ましい。
工程3:再構築ウェハに配線層を形成する
 配線層(電極)の形成は、周知慣用の方法で行うことができる。工程3は、工程1の前に行ってもよく、工程1と2の間に行ってもよく、工程2の後に行ってもよく、特に限定されないが、工程2の硬化条件などによる配線層が損傷を避けるために、工程2の後に行うことが好ましい。
 本開示の反り防止層付き半導体パッケージの製造方法は、さらに、以下の工程を有することが好ましい。
工程4:裏面に反り防止層が形成された半導体ウェハを個片化して半導体パッケージを得る
 工程4における半導体ウェハの個片化は、ダイシングソー等の周知慣用の切断装置を使用して行うことができる。また、半導体ウェハが基板に仮止めされている場合は、個片化する前に基板から剥離することが好ましく、剥離後に糊残りがある場合は、洗浄等を施して糊残りを除去することが好ましい。
 工程4は、特に限定されないが、工程2(工程3行う場合は、工程3)の後に行うことが効率的である。
 図3に、本開示の反り防止層付きパッケージの製造方法の実施態様の一例の模式図(断面図)を示す。図3(a)において、基板31(ウェハ又はパネル)に仮止めテープ32をはりつけ、前記仮止めテープ32を介して基板31に半導体チップ12を貼付する(工程I)。次に、図3(b)において、基板31に貼付された半導体チップ12を封止材11で封止して、基板上に仮止めされた再構築ウェハを得る(工程II)。次に、図3(c)、(d)において、再構築ウェハの封止材11(裏面)に硬化性フイルム33を貼付し(工程1)、硬化性フイルム33を硬化させて反り防止層14を形成する(工程2)。硬化性フイルム33を貼付及び硬化は、表面平坦化用基板34を用いて圧縮しながら行ってもよい。次に、図3(e)において、基板31を剥離して、裏面に反り防止層14を有する再構築ウェハ30を得る(工程III)。最後に、図3(f)において、反り防止層14とは反対側の面(おもて面)に配線層13を設けて、裏面に反り防止層14を有する半導体パッケージ10b(ファンアウトパッケージ)を得る(工程3)。半導体パッケージ10bは、さらに、ダイシングにより個片化してもよい(工程4)。
 [電子機器]
 本開示の電子機器は、本開示の反り防止層付きパッケージを備える。本開示の電子機器は、本開示の反り防止層付きパッケージを備えるため、半導体パッケージの発熱による反りやクラック発生を抑制することができるので、耐久性、信頼性に優れる。本開示の電子機器には、例えば、携帯電話、デジタルカメラ、スマートフォン、タブレット端末、電子辞書等の携帯型電子機器が含まれる。
 本開示の電子機器は、上記方法により得られた反り防止層付きパッケージをリフロー半田付け(特に、鉛フリー半田を用いたリフロー半田付け)により基板に実装する工程を経て製造することができる。本開示の反り防止層付きパッケージの反り防止層は、リフロー半田付け(特に、鉛フリー半田を用いたリフロー半田付け)を行う高温環境下(例えば150~250℃)においても、優れた反り防止効果を発揮することができる。そのため、前記製造方法によれば、高性能の電子機器を、優れた作業性で、歩留まり良く製造することができる。
 以下、実施例により本開示の発明をより具体的に説明するが、本開示の発明はこれらの実施例により限定されるものではない。
 調製例1:支持体の調製(セルロース不織布の調製)
 微小繊維セリッシュKY110N((株)ダイセル製)のスラリーを0.2重量%に希釈し、減圧装置付き抄紙マシーン(東洋精機製作所(株)製、標準角型マシン)を用いて、No.5C濾紙を濾布として抄紙して、湿潤状態のセルロース不織布を得た。
 得られた湿潤状態のセルロース不織布の両面に吸い取り紙を重ね、0.2MPaの圧力で1分間プレスした。次いで、0.2MPaの圧力で1分間プレスし、更に、表面温度が100℃に設定されたドラムドライヤ(熊谷理機工業(株)製)に貼り付けて120秒間乾燥して、セルロース不織布(空隙率:60vol%、坪量9.9g/m2、熱線膨張係数:5ppm/K、厚み25μm)を得た。
 実施例1~7
 (硬化性フイルムの調製)
 表1に記載の処方にて硬化性組成物を調製した。
 上記で得られた硬化性組成物中に、減圧下、調製例1で得られたセルロース不織布を浸漬した後に、減圧での溶剤除去と再度の硬化性組成物の含浸を経て、硬化性フイルム(硬化性組成物の占める割合:65vol%)を作製した。
 得られた硬化性フイルムを表1に示される硬化条件で硬化させて得られた硬化物について、下記方法によりガラス転移温度、及び熱線膨張係数を測定した。結果を表1に示す。
 (封止材の作製)
 ビスフェノールAグリシジルエーテル(YD128)100g、リカシッドMH-700Fを87g、エチレングリコール2g及び硬化促進剤(U-CAT 12XD)0.5gを加えて、自転・公転真空ミキサー(商品名「あわとり練太郎」、シンキー社製)を使用し、真空状態で2分間混練して封止材を得た。
 (再構築ウェハの作製)
 直径6インチの円形のシリコンウェハ上に、同直径のPET両面粘着フイルムを貼り、10mm角に切ったガラス基板37枚を10mm間隔で全面に並べ、その上に上記で得られた封止材を塗布した後、加圧しながら150℃で10分間硬化させ、図3(b)に示されるシリコンウェハ(基板)上に仮止めされた再構築ウェハ(A)を作製した。
 (反り防止層付き再構築ウェハの作製)
 上記で得られた再構築ウェハ(A)の裏面(仮止めされたシリコンウェハと反対側の面)に、上記で得られた硬化性フイルムを貼り合わせ、再度加圧しながら150℃で2時間硬化させて、反り防止層(硬化物)を形成させた。PETフイルムを介して仮止めさせていたシリコンウェハを取り除き、図3(e)に示される裏面に反り防止層を形成させた反り防止層付き再構築ウェハ(B)を得た。
 比較例1
 (硬化性組成物の調製)
 表2に記載の処方にて硬化性組成物を調製した。
 得られた硬化性組成物を単独で表2に示される硬化条件で硬化させて得られた硬化物について、下記方法によりガラス転移温度、及び熱線膨張係数を測定した。結果を表2に示す。
 (反り防止層付き再構築ウェハの作製)
 上記で得られた再構築ウェハ(A)の裏面(仮止めされたシリコンウェハと反対側の面)に、上記で得られた硬化性組成物を塗布し、150℃で2時間硬化させて、反り防止層(硬化物)を形成させた。PETフイルムを介して仮止めさせていたシリコンウェハを取り除き、図3(e)に示される裏面に反り防止層を形成させた反り防止層付き再構築ウェハ(B)を得た。
 比較例2
 (硬化性フイルムの調製)
 表2に記載の処方にて硬化性組成物を調製した。
 上記で得られた硬化性組成物中に、減圧下、ガラスクロスを浸漬した後に、減圧での溶剤除去と再度の硬化性組成物の含浸を経て、硬化性フイルム(硬化性組成物の占める割合:65vol%)を作製した。
 得られた硬化性フイルムを表2に示される硬化条件で硬化させて得られた硬化物について、下記方法によりガラス転移温度、及び熱線膨張係数を測定した。結果を表2に示す。
 (反り防止層付き再構築ウェハの作製)
 上記で得られた再構築ウェハ(A)の裏面(仮止めされたシリコンウェハと反対側の面)に、上記で得られた硬化性フイルムを貼り合わせ、再度加圧しながら150℃で2時間硬化させて、反り防止層(硬化物)を形成させた。PETフイルムを介して仮止めさせていたシリコンウェハを取り除き、図3(e)に示される裏面に反り防止層を形成させた反り防止層付き再構築ウェハ(B)を得た。
 比較例3、4
 表2に記載の処方の硬化性組成物を用いたこと以外は、比較例1と同様にして、裏面に反り防止層を形成させた反り防止層付き再構築ウェハ(B)を得た。
 [評価]
 上記実施例、比較例で得られた硬化物、反り防止層付き再構築ウェハ(B)について、以下の評価を行った。
 (ガラス転移温度(Tg)、Tgより低い温度領域での熱線膨張係数(α1)、Tgより高い温度領域での熱線膨張係数(α2))
 上記実施例、比較例で得られた硬化性フイルムの硬化物(比較例1、3、4の場合は硬化性組成物の硬化物)のガラス転移温度、及び熱線膨張係数は、下記条件で測定した。尚、いずれも2nd-heatingでの測定値を採用した。結果を表1、2に示す。
試験片サイズ:初期長さ10mm×幅3.5mm×厚み0.035mm
測定装置:熱機械的分析装置(Exstar TMA/SS7100、(株)日立ハイテクノロジーズ製)
測定モード:引張、定荷重測定(40mN)
測定雰囲気:窒素
温度条件:1st-heating -60℃から120℃、5℃/min
     cooling     120℃から-60℃、20℃/min
     2nd-heating -60℃から220℃、5℃/min
 (反り防止性)
 上記実施例、比較例で得られた反り防止層付き再構築ウェハ(B)を平板上に置いたときの、中心部とエッジ部の平板からの高さの差を「反り」とした。平板の温度を室温(20℃)、100℃、200℃、又は250℃に制御し、それぞれの温度における「反り」を測定した。「反り」の数値が全ての温度において200μm以下のとき、反り防止効果の評価を「○」、いずれかの温度において200~1000μmのとき、反り防止効果の評価を「△」、1000μを超えるとき、反り防止効果の評価を「×」とした。結果を表1、2に示す。
 (ビア形成)
 上記実施例、比較例で得られた反り防止層付き再構築ウェハ(B)を、UV-YAGレーザーを用いたレーザー加工機にて60μmφの開口部を形成した。形成後、ビア底の状態を顕微鏡観察し、スカム等の有無を確認した。スカム等の異物が観察されなかった場合を評価「○」、わずかに異物が観察された場合を「△」、多くの異物が観察された場合を「×」とした。結果を表1、2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<エポキシ化合物>
・YD-128:ビスフェノールA型ジグリシジルエーテル(エポキシ当量190、粘度13600mPa・s/25℃)、エポキシ当量188.6、新日鉄住金化学(株)製
・セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、エポキシ当量130、(株)ダイセル製
・EXA-4850-150:変性エピビスタイプグリシジルエーテル型エポキシ樹脂、エポキシ当量:433、商品名「EPICLON EXA-4850-150」、DIC社製
・EXA-4850-1000:下記式(ii-1)で表される変性エピビスタイプグリシジルエーテル型エポキシ樹脂、エポキシ当量:350、商品名「EPICLON EXA-4850-1000」、DIC社製
Figure JPOXMLDOC01-appb-C000007
<硬化剤>
・リカシッドMH-700F:メチルヘキサヒドロ無水フタル酸、酸無水物基当量164.5、新日本理化(株)製
・リカシッドHF-08:脂環族酸無水物とポリアルキレングリコ-ルとのエステル(ジカルボン酸)、カルボキシル基当量672.7、新日本理化(株)製
・TD2091:フェノールノボラック、水酸基当量104.0、DIC社製
・TETA:トリエチレンテトラミン、アミン当量23.4、三井化学ファイン(株)製
・D-400:ポリオキシアルキレンジアミン、アミン当量107.0、三井化学ファイン(株)製
<水酸基含有化合物>
・EG:エチレングリコール、和光純薬工業(株)製
<溶剤>
・2-ブタノン、和光純薬工業(株)製
<硬化促進剤>
・U-CAT 12XD:特殊アミン型触媒、サンアプロ(株)製
・TPP:トリフェニルホスフィン、和光純薬工業(株)製
<フィラー>
・シリカフィラー:粒子径3μm以下、日本電気硝子(株)製
<多孔性支持体>
・ガラスクロス:空隙率:62vol%、坪量24g/m2、熱線膨張係数:3ppm/k、厚み25μm、商品名「1037」、東洋紡(株)製
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 上記で説明した本開示のバリエーションを以下に付記する。
[1]熱線膨張係数が20ppm/K以下(好ましくは10ppm/K以下、より好ましくは7ppm/K以下)である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための硬化性フイルム。
[2]前記硬化性フイルムの硬化物のガラス転移温度が、-60~100℃(好ましくは0~90℃、より好ましくは5~80℃、更に好ましくは10~75℃、更に好ましくは10~60℃、更に好ましくは10~50℃、更に好ましくは10~40℃、とりわけ好ましくは15~40℃)である、前記[1]に記載の硬化性フイルム。
[3]前記硬化性組成物の硬化物のガラス転移温度(Tg)が100℃以下(例えば、-60~100℃。上限は、好ましくは50℃、より好ましくは40℃、更に好ましくは25℃。下限は、好ましくは-40℃、より好ましくは-30℃、更に好ましくは-20℃、更に好ましくは-10℃、更に好ましくは0℃、更に好ましくは5℃、とりわけ好ましくは10℃)である、前記[1]又は[2]に記載の硬化性フイルム。
[4]前記硬化性フイルム全体積における、多孔性支持体の占める割合が、10~90vol%(好ましくは20~70vol%、より好ましくは30~70vol%、更に好ましくは30~50vol%)である、前記[1]~[3]のいずれか1つに記載の硬化性フイルム。
[5]硬化性フイルム全体積における、硬化性組成物の占める割合が、10~90vol%(好ましくは30~80vol%、より好ましくは30~70vol%、更に好ましくは50~70vol%)である、前記[1]~[4]のいずれか1つに記載の硬化性フイルム。
[6]硬化性フイルムの膜厚が、5~500μm(下限は、好ましくは10μm、より好ましくは15μm、更に好ましくは20μm。上限は、好ましくは400μm、より好ましくは300μm、更に好ましくは250μm、更に好ましくは200μm)である、前記[1]~[5]のいずれか1つに記載の硬化性フイルム。
[7]前記硬化性組成物が、硬化性化合物(A)と、硬化剤(B)及び/又は硬化触媒(C)とを含み、(A)全量の50重量%以上(好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上)がエポキシ当量が140~3000g/eq(好ましくは170~1000g/eq、より好ましくは180~1000g/eq、更に好ましくは180~500g/eq)のエポキシ化合物である組成物である、前記[1]~[6]のいずれか1つに記載の硬化性フイルム。
[8]前記硬化性組成物全量における、硬化性化合物(A)の含有量が30~98重量%である、前記[7]に記載の硬化性フイルム。[9]前記硬化性組成物全量における、芳香族エポキシ化合物(例えば、エピビスタイプグリシジルエーテル型エポキシ樹脂、高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂、及び変性エピビスタイプグリシジルエーテル型エポキシ樹脂から選択される化合物)の含有量が、30~98重量%である、前記[7]又は[8]に記載の硬化性フイルム。
[10]前記硬化性組成物全量における、芳香族エポキシ化合物以外のエポキシ化合物の占める割合が、20重量%以下(好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下)である、前記[7]~[9]のいずれか1つに記載の硬化性フイルム。
[11]前記硬化性組成物に含まれるエポキシ化合物全量における、芳香族エポキシ化合物(例えば、エピビスタイプグリシジルエーテル型エポキシ樹脂、高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂、及び変性エピビスタイプグリシジルエーテル型エポキシ樹脂から選択される化合物)の占める割合が、60重量%以上(好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上)である、前記[7]~[10]のいずれか1つに記載の硬化性フイルム。
[12]前記硬化性組成物に含まれるエポキシ化合物全量における、芳香族エポキシ化合物以外のエポキシ化合物の占める割合が、40重量%以下(好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下)である、前記[7]~[11]のいずれか1つに記載の硬化性フイルム。
[13]前記硬化性組成物が、硬化性化合物(A)と硬化剤(B)とを、前記(A)における硬化性基1モルに対して(B)における前記(A)の硬化性基との反応性基が0.8~1.2モルとなる割合で含有する、前記[7]~[12]のいずれか1つに記載の硬化性フイルム。
[14]前記硬化性組成物が、硬化性化合物(A)と硬化触媒(C)とを、前記(A)100重量部に対して(C)0.1~10重量部(0.01~15重量部、好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、さらに好ましくは0.1~10重量部)の割合で含有する、前記[7]~[13]のいずれか1つに記載の硬化性フイルム。
[15]前記硬化性組成物に含まれる、全ての硬化性化合物(A)(硬化剤(B)も含有する場合は、全ての硬化性化合物(A)と全ての硬化剤(B))の官能基当たりの分子量の加重平均値が180~1000g/eq(好ましくは200~700g/eq、より好ましくは200~500g/eq、更に好ましくは250~450g/eq、とりわけ好ましくは300~450g/eq)である、前記[7]~[14]のいずれか1つに記載の硬化性フイルム。
[16]前記硬化性組成物の硬化物の熱線膨張係数が100ppm/K以上(例えば100~700ppm/K、好ましくは200~500ppm/K、より好ましくは300~500ppm/K)であり、且つ、硬化性フイルムの硬化物のガラス転移温度以上の温度領域での熱線膨張係数(α2)が20ppm/K以下(例えば、-1~20ppm/K、好ましくは15ppm/K以下、より好ましくは12ppm/K以下、更に好ましくは10ppm/K以下)である、前記[1]~[15]のいずれか1つに記載の硬化性フイルム。
[17]前記硬化性フイルムの硬化物のガラス転移温度以下の温度領域での熱線膨張係数(α1)が、55ppm/K以下(例えば、-1~55ppm/K、好ましくは50ppm/K以下、より好ましくは45ppm/K以下、更に好ましくは25ppm/K以下、更に好ましくは20ppm/K以下)である、前記[1]~[16]のいずれか1つに記載の硬化性フイルム。
[18]前記シート状多孔性支持体の厚みが5~500μm(下限は、好ましくは10μm、より好ましくは15μm、更に好ましくは20μm、上限は、好ましくは300μm、より好ましくは200μm、更に好ましくは100μm、更に好ましくは75μm)である、前記[1]~[17]のいずれか1つに記載の硬化性フイルム。
[19]前記シート状多孔性支持体の空隙率が、90~10vol%(好ましくは80~30vol%、より好ましくは70~30vol%、更に好ましくは70~50vol%)である、前記[1]~[18]のいずれか1つに記載の硬化性フイルム。
[20]前記シート状多孔性支持体がセルロース繊維の不織布である、前記[1]~[19]のいずれか1つに記載の硬化性フイルム。
[21]前記硬化性組成物が、無機フィラー(E)を硬化性組成物(100重量%)に対して0~10重量%(好ましくは0~5重量%)含有する、前記[1]~[20]のいずれか1つに記載の硬化性フイルム。
[22]前記硬化性組成物が、有機フィラー(D)を、硬化性組成物に含まれる硬化性化合物100重量部に対して、50重量部以下(例えば、1~50重量部、好ましくは45重量部以下、より好ましくは40重量部以下)含有する、前記[1]~[21]のいずれか1つに記載の硬化性フイルム。
[23]前記硬化性組成物(有機フィラー(D)、無機フィラー(E)を除く)全量における、硬化性化合物(A)及び硬化剤(B)の合計含有量の占める割合が、80重量%以上(好ましくは90重量%以上、より好ましくは95重量%以上)である、前記[7]~[22]のいずれか1つに記載の硬化性フイルム。
[24]前記硬化性組成物が、硬化促進剤を、硬化性組成物中に含まれるエポキシ化合物100重量部に対して、3重量部以下(例えば0.1~3重量部、好ましくは0.2~3重量部、より好ましくは0.25~2.5重量部)含有する、前記[7]~[23]のいずれか1つに記載の硬化性フイルム。
[25]反り防止層をファンアウトパッケージの裏面に形成するための硬化性フイルムである、前記[1]~[24]のいずれか1つに記載の硬化性フイルム。
[26]下記工程を有する反り防止層付き半導体パッケージの製造方法。
工程1:半導体ウェハの裏面に前記[1]~[25]のいずれか1つに記載の硬化性フイルムを貼付する
工程2:硬化性フイルムを硬化させて反り防止層を形成する
[27]前記半導体ウェハが、配列した複数の半導体チップが封止材により封止されている再構築ウェハである、前記[26]に記載の反り防止層付き半導体パッケージの製造方法。
[28]さらに、以下の工程3を有する、前記[27]に記載の反り防止層付き半導体パッケージの製造方法。
工程3:再構築ウェハに配線層を形成する
[29]さらに、以下の工程4を有する、前記[26]~[28]のいずれか1つに記載の反り防止層付き半導体パッケージの製造方法。
工程4:裏面に反り防止層が形成された半導体ウェハを個片化して半導体パッケージを得る
[30]半導体パッケージの裏面に、前記[1]~[25]のいずれか1つに記載の硬化性フイルムの硬化物からなる反り防止層を有する反り防止層付き半導体パッケージ。
[31]前記反り防止層の厚みが、5~500μm(下限は、好ましくは10μm、より好ましくは15μm、更に好ましくは20μm。上限は、好ましくは400μm、より好ましくは300μm、より好ましくは250μm、更に好ましくは200μm)である、前記[30]に記載の反り防止層付き半導体パッケージ。
[32]前記[30]又は[31]に記載の反り防止層付き半導体パッケージをリフロー半田付けにより基板に実装する工程を有する電子機器の製造方法。
[33]前記[30]又は[31]に記載の反り防止層付き半導体パッケージを備えた電子機器。
[34]熱線膨張係数が20ppm/K以下(好ましくは10ppm/K以下、より好ましくは7ppm/K以下)である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である硬化性フイルムの、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための使用。
[35]前記硬化性フイルムが、前記[2]~[25]のいずれか1つに記載の硬化性フイルムである、前記[34]に記載の使用。
 本開示の硬化性フイルムの硬化物からなる反り防止層を裏面に有する半導体パッケージを有する電子機器は、耐久性、信頼性に優れ、歩留まり良く効率的に製造することができる。
10a  反り防止層を有しない半導体パッケージ(ファンアウトパッケージ)
10b  反り防止層を有する半導体パッケージ(ファンアウトパッケージ)
11  封止材
12  半導体チップ
13  配線層(再配線層)
14  反り防止層
20  半導体ウェハ(再構築ウェハ)
30  反り防止層を有する再構築ウェハ
31  基板(ウェハ又はパネル)
32  仮止めテープ
33  硬化性フイルム
34  表面平坦化用基板

Claims (19)

  1.  熱線膨張係数が20ppm/K以下である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための硬化性フイルム。
  2.  前記硬化性組成物の硬化物のガラス転移温度が100℃以下である、請求項1に記載の硬化性フイルム。
  3.  前記硬化性組成物が、硬化性化合物(A)と、硬化剤(B)及び/又は硬化触媒(C)とを含み、(A)全量の50重量%以上がエポキシ当量が140~3000g/eqのエポキシ化合物である組成物である、請求項1又は2に記載の硬化性フイルム。
  4.  前記硬化性組成物が、硬化性化合物(A)と硬化剤(B)とを、前記(A)における硬化性基1モルに対して(B)における前記(A)の硬化性基との反応性基が0.8~1.2モルとなる割合で含有する、請求項3に記載の硬化性フイルム。
  5.  前記硬化性組成物が、硬化性化合物(A)と硬化触媒(C)とを、前記(A)100重量部に対して(C)0.1~10重量部の割合で含有する、請求項3又は4に記載の硬化性フイルム。
  6.  前記硬化性組成物に含まれる、全ての硬化性化合物(A)(硬化剤(B)も含有する場合は、全ての硬化性化合物(A)と全ての硬化剤(B))の官能基当たりの分子量の加重平均値が180~1000g/eqである、請求項3~5のいずれか1項に記載の硬化性フイルム。
  7.  前記硬化性組成物の硬化物の熱線膨張係数が100ppm/K以上であり、且つ、硬化性フイルムの硬化物のガラス転移温度以上の温度領域での熱線膨張係数(α2)が20ppm/K以下である、請求項1~6のいずれか1項に記載の硬化性フイルム。
  8.  前記シート状多孔性支持体の厚みが5~500μmである、請求項1~7のいずれか1項に記載の硬化性フイルム。
  9.  前記シート状多孔性支持体がセルロース繊維の不織布である、請求項1~8のいずれか1項に記載の硬化性フイルム。
  10.  前記硬化性組成物が、無機フィラー(E)を硬化性組成物(100重量%)に対して0~10重量%含有する、請求項1~9のいずれか1項に記載の硬化性フイルム。
  11.  反り防止層をファンアウトパッケージの裏面に形成するための硬化性フイルムである、請求項1~10のいずれか1項に記載の硬化性フイルム。
  12.  下記工程を有する反り防止層付き半導体パッケージの製造方法。
    工程1:半導体ウェハの裏面に請求項1~11のいずれか1項に記載の硬化性フイルムを貼付する
    工程2:硬化性フイルムを硬化させて反り防止層を形成する
  13.  前記半導体ウェハが、配列した複数の半導体チップが封止材により封止されている再構築ウェハである、請求項12記載の反り防止層付き半導体パッケージの製造方法。
  14.  さらに、以下の工程3を有する、請求項13に記載の反り防止層付き半導体パッケージの製造方法。
    工程3:再構築ウェハに配線層を形成する
  15.  さらに、以下の工程4を有する、請求項12~14のいずれか1項に記載の反り防止層付き半導体パッケージの製造方法。
    工程4:裏面に反り防止層が形成された半導体ウェハを個片化して半導体パッケージを得る
  16.  半導体パッケージの裏面に、請求項1~11のいずれか1項に記載の硬化性フイルムの硬化物からなる反り防止層を有する反り防止層付き半導体パッケージ。
  17.  請求項16に記載の反り防止層付き半導体パッケージをリフロー半田付けにより基板に実装する工程を有する電子機器の製造方法。
  18.  請求項16に記載の反り防止層付き半導体パッケージを備えた電子機器。
  19.  熱線膨張係数が20ppm/K以下である素材からなるシート状多孔性支持体の孔内が硬化性組成物で充填された構成を有し、硬化物のガラス転移温度が100℃以下である硬化性フイルムの、半導体パッケージの反りを防止する反り防止層を半導体パッケージの裏面に形成するための使用。 
PCT/JP2020/001945 2019-01-28 2020-01-21 硬化性フイルム WO2020158510A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080010229.7A CN113330560A (zh) 2019-01-28 2020-01-21 固化性膜
KR1020217023963A KR20210121055A (ko) 2019-01-28 2020-01-21 경화성 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012596A JP7174637B2 (ja) 2019-01-28 2019-01-28 硬化性フイルム
JP2019-012596 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020158510A1 true WO2020158510A1 (ja) 2020-08-06

Family

ID=71840632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001945 WO2020158510A1 (ja) 2019-01-28 2020-01-21 硬化性フイルム

Country Status (5)

Country Link
JP (1) JP7174637B2 (ja)
KR (1) KR20210121055A (ja)
CN (1) CN113330560A (ja)
TW (1) TW202035532A (ja)
WO (1) WO2020158510A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621332B (zh) * 2021-10-09 2022-01-18 武汉市三选科技有限公司 芯片封装用模封胶及封装结构
TWI769109B (zh) * 2021-11-05 2022-06-21 友達光電股份有限公司 封裝結構及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204558A (ja) * 2016-05-11 2017-11-16 信越化学工業株式会社 半導体封止用基材付封止材、半導体装置、及び半導体装置の製造方法
JP2018065892A (ja) * 2016-10-17 2018-04-26 株式会社ダイセル シート状プリプレグ
JP2018142611A (ja) * 2017-02-27 2018-09-13 信越化学工業株式会社 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050447A (ja) * 2013-09-05 2015-03-16 信越化学工業株式会社 封止材積層複合体、封止後半導体素子搭載基板、封止後半導体素子形成ウエハ、半導体装置、及び半導体装置の製造方法
JP6136058B2 (ja) 2015-11-25 2017-05-31 パナソニックIpマネジメント株式会社 電子回路基板材料用樹脂組成物、プリプレグ、積層板及び金属張積層板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204558A (ja) * 2016-05-11 2017-11-16 信越化学工業株式会社 半導体封止用基材付封止材、半導体装置、及び半導体装置の製造方法
JP2018065892A (ja) * 2016-10-17 2018-04-26 株式会社ダイセル シート状プリプレグ
JP2018142611A (ja) * 2017-02-27 2018-09-13 信越化学工業株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2020117671A (ja) 2020-08-06
KR20210121055A (ko) 2021-10-07
TW202035532A (zh) 2020-10-01
CN113330560A (zh) 2021-08-31
JP7174637B2 (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
KR102402277B1 (ko) 시트상 프리프레그
CN110291151B (zh) 树脂组合物、成形体、层叠体、涂布材料及粘接剂
WO2020158510A1 (ja) 硬化性フイルム
JP6763391B2 (ja) 樹脂組成物、硬化物、封止用フィルム及び封止構造体
WO2020184490A1 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP2023017948A (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
WO2020158511A1 (ja) ファンアウトパッケージ封止用シート状プリプレグ
JP7099453B2 (ja) 封止用フィルム、封止構造体及び封止構造体の製造方法
KR20230052965A (ko) 에폭시 수지 조성물, 접착 필름, 프린트 배선판, 반도체 칩 패키지, 반도체 장치, 및 접착 필름의 사용 방법
CN110462818B (zh) 密封膜、电子部件装置的制造方法及电子部件装置
TWI763782B (zh) 密封板片及半導體裝置的製造方法
KR102403586B1 (ko) 유동성이 우수한 에폭시 접착제 조성물 및 이를 포함하는 다이 어태치 필름
KR102441766B1 (ko) 봉지용 필름 및 봉지 구조체, 및 이들의 제조 방법
JPWO2018159619A1 (ja) 封止シート、および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748422

Country of ref document: EP

Kind code of ref document: A1