WO2020158306A1 - Electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
WO2020158306A1
WO2020158306A1 PCT/JP2020/000218 JP2020000218W WO2020158306A1 WO 2020158306 A1 WO2020158306 A1 WO 2020158306A1 JP 2020000218 W JP2020000218 W JP 2020000218W WO 2020158306 A1 WO2020158306 A1 WO 2020158306A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
ion secondary
electrode
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2020/000218
Other languages
French (fr)
Japanese (ja)
Inventor
章弘 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202080005700.3A priority Critical patent/CN112840479A/en
Priority to JP2020565497A priority patent/JPWO2020158306A1/en
Publication of WO2020158306A1 publication Critical patent/WO2020158306A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery electrode having an insulating layer, and a lithium ion secondary battery having the lithium ion secondary battery electrode.
  • Lithium ion secondary batteries are used as large stationary power sources for power storage, power sources for electric vehicles, etc., and research into miniaturization and thinning of batteries has been progressing in recent years.
  • a lithium ion secondary battery is generally provided with both electrodes in which an electrode active material layer is formed on the surface of a metal foil, and a separator arranged between both electrodes. The separator plays a role of preventing a short circuit between both electrodes and holding an electrolytic solution.
  • lithium ion secondary batteries for example, in order to have a good short-circuit suppressing function, even when the separator is contracted, it has been considered that a porous insulating layer is provided on the surface of the electrode active material layer.
  • the insulating layer is formed by, for example, as disclosed in Patent Document 1, applying an insulating layer slurry containing insulating fine particles, a binder and a solvent onto the electrode active material layer and drying the slurry. Has been.
  • the present invention provides a lithium ion secondary battery electrode that includes an insulating layer that can improve the electronic insulating property even when the layer is thinned and can improve the volume energy density of the lithium ion secondary battery, and It is an object to provide a lithium ion secondary battery including the electrode for the lithium ion secondary battery.
  • the gist of the present invention is the following [1] to [7].
  • Lithium including an electrode active material layer and an insulating layer provided on the surface of the electrode active material layer, the insulating layer containing a polymer solid electrolyte, and the porosity of the insulating layer being 10% or less.
  • Electrode for ion secondary battery As a result of intensive studies, the inventors of the present invention used a polymer solid electrolyte as a binder for the insulating layer, and set the porosity of the insulating layer to 10% or less, so that even if the insulating layer was thinned, the electrons in the insulating layer were reduced. It was found that the insulating property can be improved, and the following invention was completed.
  • the gist of the present invention is the following [1] to [7].
  • Lithium including an electrode active material layer and an insulating layer provided on the surface of the electrode active material layer, the insulating layer containing a polymer solid electrolyt
  • the insulating layer optionally contains insulating fine particles, and the content of the insulating fine particles in the insulating layer is 20% by volume or less based on 100% by volume of the total of the polymer solid electrolyte and the insulating fine particles.
  • the electrode for a lithium ion secondary battery according to the above [1], which is [3] The electrode for a lithium ion secondary battery according to the above [1] or [2], wherein the polymer solid electrolyte is a polyether electrolyte.
  • the polymer serving as the matrix of the polyether-based electrolyte is a polymer having at least an ethylene oxide structure.
  • an electrode for a lithium ion secondary battery which is provided with an insulating layer that can improve the electronic insulating property even when the layer is thinned and can improve the volume energy density of the lithium ion secondary battery, and A lithium ion secondary battery including the electrode for the lithium ion secondary battery can be provided.
  • FIG. 1 is a schematic sectional view showing a preferred embodiment of an electrode for a lithium ion secondary battery of the present invention.
  • FIG. 2 is a diagram for explaining a battery for characteristic evaluation.
  • the lithium-ion secondary battery electrode 1 includes an electrode active material layer 10 and an insulating layer 20 provided on the surface of the electrode active material layer 10.
  • the electrode active material layer 10 is usually laminated on the electrode current collector 30.
  • the electrode active material layer 10 may be laminated on both surfaces of the electrode current collector 30, and in that case, the insulating layer 20 may be provided on the surface of each electrode active material layer 10.
  • the lithium ion secondary battery electrode may be either a positive electrode or a negative electrode, but is preferably a positive electrode.
  • the insulating layer contains a solid polymer electrolyte, and the porosity of the insulating layer is 10% or less.
  • a polymer solid electrolyte is a material mainly composed of a polymer and exhibiting ion conductivity.
  • the polymer solid electrolyte include dry type polymer electrolytes and gel type polymer electrolytes.
  • dry type polyelectrolyte it is considered that ion conduction is essentially caused by the movement of the polymer skeleton.
  • gel type polymer electrolyte the conduction of ions occurs through the electrolytic solution containing a large amount.
  • a preferable polymer solid electrolyte is a dry type polymer electrolyte.
  • a preferred dry-type solid polymer electrolyte is a polyether-based electrolyte, from the viewpoints of high ionic conductivity and high mechanical strength, and from the viewpoint of enormous studies on molecular design.
  • the polymer serving as the matrix of the polyether-based electrolyte preferably has an ethylene oxide structure, a propylene oxide structure, or both structures.
  • Examples of the polymer serving as the matrix of the polyether electrolyte include polyethylene oxide, polypropylene oxide, ethylene oxide-propylene copolymer, dimethylsiloxane-ethylene oxide copolymer and the like.
  • a comb polymer having a polyether side chain containing an ethylene oxide structure a copolymer of a monomer other than ethylene oxide and ethylene oxide, a product obtained by crosslinking polyethylene oxide or a polyether oligomer with a crosslinking agent, and having a branch.
  • Other examples include branched polyether-based polymers, and those obtained by thermally or photopolymerizing macromonomers having a molecular weight of several hundreds to several thousands. These polymers may be used alone or in combination of two or more.
  • the polymer serving as the matrix of the polyether electrolyte is more preferably a polymer having at least an ethylene oxide structure, and further preferably polyethylene oxide.
  • the ethylene oxide structure is composed of a basic unit composed of ethylene and oxygen.
  • the content of the polymer solid electrolyte in the insulating layer is preferably 80% by volume or more, more preferably 90% by volume or more, and further preferably 95% by volume. It is above, and particularly preferably 98% by volume or more.
  • the upper limit of the content of the polymer solid electrolyte is 100% by volume.
  • the polymer solid electrolyte preferably contains a lithium salt.
  • a lithium salt when the solid polymer electrolyte is a polyether-based electrolyte, cations (lithium ions) of the lithium salt and ion-dipole interaction between the lone electron pair of ether oxygen in the polymer serving as the matrix of the polyether-based electrolyte cause It is believed that the lithium salt is complexed and the lithium salt is dissolved in the matrix polymer. Then, it is considered that a part of the dissolved lithium salt is in a dissociated state, and the ionic conductivity of the polyether electrolyte is higher.
  • lithium salt used for the polymer solid electrolyte examples include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiAsF 6 , LiB 10 Cl 10 , and lower.
  • lithium aliphatic carboxylate lithium chloroborane, LiBPh 4 (lithium tetraphenylborate), LiTFSA (lithium bistrifluoromethylsulfonylamide), and LiTFSI (lithium bistrifluoromethylsulfonylimide).
  • These lithium salts may be used alone or in combination of two or more. Among these, LiTFSA and LiTFSI are preferable, and LiTFSI is more preferable, from the viewpoint that the dissociation property of the lithium salt in the polymer solid electrolyte can be increased.
  • the amount of the lithium salt blended is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the polymer serving as the matrix of the solid polymer electrolyte. , More preferably 5 to 80 parts by mass, further preferably 10 to 50 parts by mass.
  • the porosity of the insulating layer is 10% or less.
  • the porosity of the insulating layer is larger than 10%, a minute short circuit may occur in the void portion of the insulating layer, and the electronic insulating property of the insulating layer may deteriorate.
  • the thickness of the insulating layer is less than 30 ⁇ m, the electronic insulating property of the insulating layer is likely to deteriorate when the porosity of the insulating layer is larger than 10%.
  • the porosity of the insulating layer is preferably 7% or less, more preferably 5% or less, further preferably 3% or less, and particularly preferably It is 1% or less.
  • the lower limit of the range of the porosity of the insulating layer is 0%.
  • the thinner the insulating layer the higher the volume energy density of the lithium-ion secondary battery can be.
  • the insulating layer used in the electrode for a lithium ion secondary battery of the present invention can secure electronic insulation even if it is thin, so that the volume energy density of the lithium ion secondary battery can be improved.
  • the porosity of the insulating layer can be measured by the method described in the item of Examples below.
  • the thickness of the insulating layer is preferably less than 30 ⁇ m, more preferably 25 ⁇ m or less, further preferably 20 ⁇ m or less, and even more preferably It is 15 ⁇ m or less, and particularly preferably 13 ⁇ m or less.
  • the thickness of the insulating layer is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more, from the viewpoint of more reliably ensuring the electronic insulating property of the insulating layer.
  • the thickness of the insulating layer is more preferably 7 ⁇ m or more, and particularly preferably 9 ⁇ m or more.
  • the upper limit and the lower limit of the thickness range of the insulating layer can be arbitrarily combined.
  • the insulating layer may optionally contain insulating fine particles. Thereby, the mechanical strength of the insulating layer can be increased.
  • the content of the insulating fine particles in the insulating layer is preferably 20% by volume or less based on 100% by volume of the total of the solid polymer electrolyte and the insulating fine particles. It is preferably 10% by volume or less, more preferably 7% by volume or less, particularly preferably 5% by volume or less, and even more preferably 1% by volume or less. From the viewpoint of surely reducing the porosity of the insulating layer, it is particularly preferable that the insulating layer does not contain insulating fine particles.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be organic particles or inorganic particles.
  • Specific organic particles include, for example, crosslinked polymethylmethacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly(lithium 2-acrylamido-2-methylpropanesulfonate), Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin.
  • the inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, fluorine.
  • examples thereof include particles composed of an inorganic compound such as lithium chloride, clay, zeolite and calcium carbonate.
  • the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
  • the insulating fine particles may be particles in which each of the above-mentioned materials is used alone, or particles in which two or more kinds are used in combination.
  • the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound.
  • it may be inorganic-organic composite particles in which the surface of particles made of an organic compound is coated with an inorganic oxide.
  • inorganic particles are preferable, and alumina particles and boehmite particles are particularly preferable.
  • the average particle diameter of the insulating fine particles is usually smaller than the average particle diameter of the electrode active material, and is, for example, 0.001 to 2 ⁇ m, preferably 0.05 to 1.5 ⁇ m, and more preferably 0.1 to 1. It is 0 ⁇ m, and particularly preferably 0.1 to 0.5 ⁇ m.
  • the average particle size means the particle size (D50) at a volume cumulative of 50% in the particle size distribution of insulating fine particles determined by the laser diffraction/scattering method.
  • the insulating fine particles one kind having an average particle diameter within the above range may be used alone, or two kinds of insulating fine particles having different average particle diameters may be mixed and used.
  • the insulating layer can be formed, for example, by disposing a polymer solid electrolyte film on the surface of the electrode active material layer.
  • the polymer solid electrolyte film may or may not be adhered to the electrode active material layer by heating, pressure bonding, or the like.
  • the polymer solid electrolyte film can be prepared, for example, by dissolving a polymer serving as a matrix of the polymer solid electrolyte in a suitable solvent together with a lithium salt, and then evaporating the solvent.
  • a solid electrolyte film may be prepared.
  • You may form an insulating layer by apply
  • the insulating layer contains insulating fine particles
  • a polymer serving as a matrix of the polymer solid electrolyte is dispersed or dissolved in a suitable solvent together with the insulating fine particles and the lithium salt, and then the solvent is evaporated. , A film of an insulating layer can be produced.
  • a coating material obtained by mixing a polymer serving as a matrix of a polymer solid electrolyte, insulating fine particles, a lithium salt and a solvent is applied to the surface of an electrode active material layer, and the applied coating material is cured to form an insulating layer. May be formed.
  • the electrode active material layer typically includes an electrode active material and an electrode binder.
  • the electrode active material becomes the positive electrode active material and the electrode active material layer becomes the positive electrode active material layer.
  • the electrode active material becomes the negative electrode active material and the electrode active material layer becomes the negative electrode active material layer.
  • Examples of the positive electrode active material used for the positive electrode active material layer include lithium metal oxide compounds.
  • Examples of the lithium metal oxide compound include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ).
  • olivine-type lithium iron phosphate (LiFePO 4 ) or the like may be used as the positive electrode active material.
  • As the positive electrode active material a material using a plurality of metals other than lithium may be used, and NCM (nickel cobalt manganese)-based oxide, NCA (nickel cobalt aluminum-based) oxide, etc. called ternary system may be used. May be used.
  • these materials may be used alone or in combination of two or more.
  • Negative electrode active material examples of the negative electrode active material used in the negative electrode active material layer include graphite, carbon materials such as hard carbon, composites of tin compounds and silicon and carbon, lithium, and the like. Among these, carbon materials are preferable, and graphite is preferable. More preferable. As the negative electrode active material, the above substances may be used alone or in combination of two or more.
  • the average particle size of the electrode active material is not particularly limited, but is preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 5 to 25 ⁇ m.
  • the average particle size means the particle size (D50) at a volume cumulative of 50% in the particle size distribution of the electrode active material obtained by the laser diffraction/scattering method.
  • the content of the electrode active material in the electrode active material layer is, based on the total amount of the electrode active material layer, preferably 50 to 99% by mass, more preferably 60 to 99% by mass, further preferably 80 to 99% by mass, and 90 to 98% by mass. Mass% is particularly preferred.
  • binder examples include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), fluorine-containing resin such as polytetrafluoroethylene (PTFE), polymethyl acrylate (PMA), Acrylic resin such as polymethylmethacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), poly Examples thereof include acrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene-butadiene rubber (SBR), poly(meth)acrylic acid, carboxymethyl cellulose (CMC), hydroxyethyl cellulose, and polyvinyl alcohol.
  • PVdF polyvinylidene fluoride
  • PVdF-HFP polyvinylidene fluoride-hexa
  • binders may be used alone or in combination of two or more.
  • carboxymethyl cellulose and the like may be used in the form of salts such as sodium salt.
  • the content of the binder in the electrode active material layer is, based on the total amount of the electrode active material layer, preferably 0.5% by mass or more, more preferably 0.5 to 20% by mass, and 1.0 to 10% by mass. Mass% is more preferable.
  • the electrode active material layer may further contain a conductive auxiliary agent, and the positive electrode active material layer preferably contains a conductive auxiliary agent.
  • a material having higher conductivity than the electrode active material is used as the conduction aid, and specific examples thereof include carbon materials such as Ketjen black, acetylene black (AB), carbon nanotubes and rod-shaped carbon.
  • the conductive additive may be used alone or in combination of two or more. When a conductive additive is contained in the electrode active material layer, the content of the conductive additive is preferably 0.5 to 15% by mass, and preferably 1 to 10% by mass, based on the total amount of the electrode active material layer. More preferably.
  • the electrode active material layer may contain other optional components other than the electrode active material, the conductive auxiliary agent, and the binder within a range that does not impair the effects of the present invention.
  • the total mass of the electrode active material layer the total content of the electrode active material, the conductive additive, and the binder is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • Electrode current collector Examples of the material forming the electrode current collector include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, when the electrode current collector is the positive electrode current collector, aluminum, titanium, nickel and stainless steel are preferable, and aluminum is more preferable. When the electrode current collector is the negative electrode current collector, copper, titanium, nickel and stainless steel are preferable, and copper is more preferable.
  • the electrode current collector is generally composed of a metal foil, and the thickness thereof is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m. When the thickness of the electrode current collector is 1 to 50 ⁇ m, handling of the electrode current collector is facilitated and reduction in energy density can be suppressed.
  • the lithium-ion secondary battery of the present invention includes an electrode for a lithium-ion secondary battery having the above-mentioned insulating layer and an electrolytic solution.
  • the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode that are arranged so as to face each other, and at least one of the negative electrode and the positive electrode has a lithium ion secondary battery having the above-mentioned insulating layer. It becomes an electrode for batteries.
  • an insulating layer may be provided on the surface facing the other electrode (positive electrode or negative electrode).
  • the lithium-ion secondary battery of the present invention preferably includes, as a positive electrode, the lithium-ion secondary battery electrode having the above-described insulating layer. Then, the electrolytic solution exists in the voids of the electrode active material layer, the voids of the insulating layer, and the like.
  • the lithium ion secondary battery of the present invention may further include a separator arranged between the positive electrode and the negative electrode.
  • a separator By providing the separator, a short circuit between the positive electrode and the negative electrode can be prevented more effectively.
  • the separator may hold an electrolyte.
  • the insulating layer provided on the positive electrode or the negative electrode may or may not be in contact with the separator, but is preferably in contact with the separator.
  • the separator include porous polymer films, non-woven fabrics, glass fibers and the like, and among these, porous polymer films are preferable.
  • An example of the porous polymer film is an olefin-based porous film.
  • the separator may be heated by heat generated when the lithium-ion secondary battery is driven to cause thermal contraction. However, even when such a thermal contraction occurs, the insulating layer is provided so that a short circuit is easily suppressed.
  • the lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated.
  • the negative electrodes and the positive electrodes may be provided alternately along the stacking direction.
  • the separator may be arranged between each negative electrode and each positive electrode.
  • the above-described negative electrode and positive electrode, or the negative electrode, positive electrode, and separator are housed in a battery cell.
  • the battery cell may be a square type, a cylindrical type, a laminated type or the like.
  • the electrolyte of the lithium ion secondary battery is not particularly limited, and a known electrolyte used in the lithium ion secondary battery may be used.
  • an electrolytic solution is used as the electrolyte.
  • the electrolytic solution include an electrolytic solution containing an organic solvent and an electrolyte salt.
  • the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2.
  • Examples include polar solvents such as diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane and methyl acetate, or a mixture of two or more kinds of these solvents.
  • lithium-containing salts such as LiN(COCF 3 ) 2 and LiN(COCF 2 CF 3 ) 2 and lithium bisoxalate borate (LiB(C 2 O 4 ) 2 )
  • Organic acid lithium salt-trifluoride examples thereof include boron hydride complexes and complexes such as complex hydrides such as LiBH 4.
  • the electrolyte may be arranged between the negative electrode and the positive electrode.
  • the electrolyte is filled in the battery cell in which the negative electrode and the positive electrode described above, or the negative electrode, the positive electrode, and the separator are housed inside. Further, the electrolyte may be applied, for example, on the negative electrode or the positive electrode and arranged between the negative electrode and the positive electrode.
  • the obtained lithium ion secondary battery electrode was evaluated by the following evaluation methods. (Volume energy density) Under the environment of a temperature of 45° C., 1 C of constant current charging was performed on the cells prepared in Examples and Comparative Examples. Then, the constant current discharge of 1C was performed, and the discharge was completed at the time of discharging to 2.5V, and the discharge capacity of the constant current discharge of 1C was calculated. Then, the volume energy density was calculated from the following formula. The nominal voltage was 1V.
  • the cross section of the lithium ion secondary battery electrode on which the insulating layer was formed was exposed by the ion milling method.
  • the exposed cross section of the lithium-ion secondary battery electrode is observed with a FE-SEM (field emission scanning electron microscope) at a magnification that allows observation of the entire insulating layer to obtain an image of the insulating layer. It was The magnification was 5000 to 25000 times.
  • the obtained image was binarized using image analysis software "Image J" so that the real part of the insulating layer was displayed in black and the void part of the insulating layer was displayed in white. Then, the area ratio of the white portion was measured. The ratio of the area of this white part becomes the porosity (%) of the insulating layer.
  • the thickness of the insulating layer was measured from the above SEM image.
  • Example 1 (Preparation of positive electrode) 100 parts by mass of NCA-based oxide (average particle size 10 ⁇ m) as a positive electrode active material, 4 parts by mass of acetylene black as a conductive additive, 4 parts by mass of polyvinylidene fluoride as a binder for electrodes, and N as a solvent. -Methylpyrrolidone (NMP) was mixed to obtain a slurry for a positive electrode active material layer adjusted to a solid content concentration of 60% by mass. This positive electrode active material layer slurry was applied to an aluminum foil having a thickness of 15 ⁇ m as a positive electrode current collector, preliminarily dried, and then vacuum dried at 120° C.
  • NMP -Methylpyrrolidone
  • the positive electrode current collector coated with the positive electrode active material layer slurry is pressed by a roller at a linear pressure of 400 kN/m and further punched into a circular shape having an electrode size of 14 mm to obtain a positive electrode having a positive electrode active material layer.
  • the thickness of the positive electrode active material layer was 45.5 ⁇ m.
  • the negative electrode current collector coated with the slurry for the negative electrode active material layer was pressed by a roller at a linear pressure of 500 kN/m and punched into a circular shape having an electrode size of 14 mm to obtain a negative electrode having a negative electrode active material layer.
  • the thickness of the negative electrode active material layer was 52.5 ⁇ m.
  • LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3:7 (EC:DEC) to a concentration of 1 mol/liter to prepare an electrolyte solution.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Teflon (registered trademark) sheet was placed on the dried polymer electrolyte, and the polymer electrolyte was sandwiched between two Teflon (registered trademark) sheets. Then, both sides of the polymer electrolyte sandwiched between two Teflon (registered trademark) sheets are irradiated with ultraviolet rays through the Teflon (registered trademark) sheet to cure the polymer electrolyte and produce a polymer solid electrolyte film. did.
  • the polymer used as the matrix of this polymer solid electrolyte film is polyethylene oxide, and the lithium salt is LiTFSI.
  • the polymer solid electrolyte film was punched out into a circular shape having an electrode size of 14 mm in diameter to prepare an insulating layer.
  • the insulating layer had a thickness of 10 ⁇ m.
  • the porosity of the insulating layer was 0%.
  • a battery for characteristic evaluation was prepared by placing the positive electrode, the insulating layer, and the negative electrode in the battery characteristic evaluation jig 100 shown in FIG. 2 and injecting the electrolytic solution. Specifically, between the negative electrode body 106 and the positive electrode body 107, in order from the negative electrode body 106 side, a negative electrode 108, an insulating layer 109, an electrode guide 110, a positive electrode 111, an electrode retainer 112, and a spring 113 are attached to a battery characteristic evaluation jig. Placed at 100. Then, the above electrolyte solution was injected into the battery characteristic evaluation jig 100 to manufacture a battery.
  • Example 2 and 3 Into a solution obtained by dissolving 2.5 parts by mass of LiTFSI (lithium bistrifluoromethylsulfonylimide) in 20 parts by mass of acetonitrile, alumina particles as insulating fine particles (manufactured by Nippon Light Metal Co., Ltd., product name: low soda) Alumina and an average particle diameter of 500 nm) were mixed and dispersed while applying a medium shearing force to obtain a slurry. To this slurry, 0.1 part by mass of a UV curing agent (trade name: Esacure KTO 46, manufactured by Sartomer) was added to prepare a lithium salt-containing solution.
  • LiTFSI lithium bistrifluoromethylsulfonylimide
  • Example 2 ethylene oxide was added to the lithium salt-containing solution and stirred to prepare a polymer electrolyte slurry.
  • the proportions of alumina particles and ethylene oxide are shown in the table.
  • insulating layers used in the batteries for characteristic evaluation of Examples 2 and 3 were produced.
  • the insulating layers both had a thickness of 10 ⁇ m.
  • the porosity of the insulating layer was 3% and 8%, respectively.
  • batteries for characteristic evaluation of Examples 2 and 3 were produced in the same manner as in Example 1.
  • Comparative Example 1 After adding NMP to a polyvinylidene fluoride solution (manufactured by Kureha Co., Ltd., product name: L#1710, 10 mass% solution, solvent: NMP), it was applied to a Teflon (registered trademark) sheet and dried at 90°C. And dried for 1 minute to prepare a polyvinylidene fluoride film. The obtained polyvinylidene fluoride film was punched into a circular shape having an electrode size of 14 mm in diameter to form an insulating layer. The thickness of the insulating layer was 30 ⁇ m. The porosity of the insulating layer was 0%. A battery for characteristic evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except for the above.
  • Comparative example 2 The thickness of the insulating layer was changed from 30 ⁇ m to 10 ⁇ m by adjusting the amount of NMP added to the polyvinylidene fluoride solution. A battery for characteristic evaluation of Comparative Example 2 was manufactured in the same manner as Comparative Example 1 except for the above. The porosity of the insulating layer was 0%.
  • the compounding amount of the alumina particles and the polyvinylidene fluoride solution is such that the solid content ratio of the polyvinylidene fluoride is 20% by volume with respect to the total solid content of the polyvinylidene fluoride and the alumina particles of 100% by volume.
  • the blending amount was such that the ratio was 80% by volume.
  • a predetermined amount of NMP was further added to this slurry and gently stirred with a stirrer for 30 minutes to obtain a slurry for an insulating layer.
  • the surface of the positive electrode active material layer is formed by applying the insulating layer slurry to the surface of the positive electrode active material layer of the positive electrode after pressure pressing and before punching with a gravure coater and drying the coating film at 90° C.
  • a positive electrode plate having an insulating layer was prepared.
  • a positive electrode plate having an insulating layer was punched into a circular shape having a diameter of 14 mm, which is the electrode size, to produce a positive electrode having an insulating layer.
  • the insulating layer had a thickness of 30 ⁇ m.
  • the porosity of the insulating layer was 70%.
  • a battery for characteristic evaluation of Comparative Example 3 was produced in the same manner as in Example 1 except for the above.
  • Comparative Example 4 The thickness of the insulating layer was changed from 30 ⁇ m to 10 ⁇ m by adjusting the amount of NMP added to the slurry. A battery for characteristic evaluation of Comparative Example 4 was produced in the same manner as Comparative Example 3 except for the above. The porosity of the insulating layer was 70%.
  • Comparative Example 5 A battery for characteristic evaluation of Comparative Example 5 was produced in the same manner as in Example 2 except that the ratio of alumina particles to ethylene oxide was changed to the ratio shown in the table.
  • the insulating layer had a thickness of 10 ⁇ m.
  • the porosity of the insulating layer was 14%.
  • Comparative Example 3 show that even if the porosity of the insulating layer is large, by increasing the thickness of the insulating layer, the electronic insulating property of the insulating layer can be improved, but the volume energy density of the battery becomes low. It was Furthermore, from the results of Comparative Examples 4 and 5, it was found that when the porosity of the insulating layer is high, the electronic insulating property of the insulating layer cannot be secured when the insulating layer is thinned in order to increase the volume energy density of the battery. It was In Comparative Examples 4 and 5, the electronic insulating property could not be ensured, so the 1C discharge capacity could not be measured, and therefore the volume energy density could not be calculated.
  • Electrode for lithium-ion secondary battery 10 Electrode active material layer 20,109 Insulating layer 30
  • Electrode current collector 106 Negative electrode body 107
  • Negative electrode 110 Electrode guide 111
  • Positive electrode 112 Electrode pressing 113 Spring

Abstract

This electrode 1 for lithium ion secondary batteries includes an electrode active material layer 10 and an insulating layer 20 that is provided on a surface of the electrode active material layer 10, and the insulating layer 20 includes a polymer solid electrolyte and has a porosity of 10% or less. This lithium ion secondary battery includes the electrode for lithium ion secondary batteries and an electrolyte. The present invention makes it possible to provide: an electrode for lithium ion secondary batteries which has an insulating layer that is capable of having good electronically insulating properties and improving the volumetric energy density of the lithium ion secondary batteries even when the insulating layer is thinned; and a lithium ion secondary battery that includes the electrode for lithium ion secondary batteries.

Description

リチウムイオン二次電池用電極及びリチウムイオン二次電池Electrode for lithium-ion secondary battery and lithium-ion secondary battery
 本発明は、絶縁層を備えるリチウムイオン二次電池用電極、及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery electrode having an insulating layer, and a lithium ion secondary battery having the lithium ion secondary battery electrode.
 リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。リチウムイオン二次電池は、金属箔の表面に電極活物質層を形成した両電極と、両電極の間に配置されるセパレータとを備えるものが一般的である。セパレータは、両電極間の短絡防止や電解液を保持する役割を果たす。
 従来、リチウムイオン二次電池は、例えば、セパレータが収縮したとき等でも、良好な短絡抑制機能を持たせるために、電極活物質層の表面に多孔質の絶縁層が設けられることが検討されている。絶縁層は、例えば、特許文献1に開示されるように、絶縁性微粒子、バインダー及び溶媒を含む絶縁層用スラリーを、電極活物質層の上に塗布し、乾燥することで形成することが知られている。
BACKGROUND OF THE INVENTION Lithium ion secondary batteries are used as large stationary power sources for power storage, power sources for electric vehicles, etc., and research into miniaturization and thinning of batteries has been progressing in recent years. A lithium ion secondary battery is generally provided with both electrodes in which an electrode active material layer is formed on the surface of a metal foil, and a separator arranged between both electrodes. The separator plays a role of preventing a short circuit between both electrodes and holding an electrolytic solution.
Conventionally, lithium ion secondary batteries, for example, in order to have a good short-circuit suppressing function, even when the separator is contracted, it has been considered that a porous insulating layer is provided on the surface of the electrode active material layer. There is. It is known that the insulating layer is formed by, for example, as disclosed in Patent Document 1, applying an insulating layer slurry containing insulating fine particles, a binder and a solvent onto the electrode active material layer and drying the slurry. Has been.
国際公開2016/104782号International publication 2016/104782
 しかしながら、従来の絶縁層は、リチウムイオン二次電池の体積エネルギー密度を向上させるために薄層化すると、絶縁層の電子絶縁性が不十分になる場合があった。
 そこで、本発明は、薄層化しても電子絶縁性を良好にすることができ、リチウムイオン二次電池の体積エネルギー密度を向上させることができる絶縁層を備えるリチウムイオン二次電池用電極、及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供することを課題とする。
However, if the conventional insulating layer is thinned to improve the volume energy density of the lithium ion secondary battery, the electronic insulating property of the insulating layer may be insufficient.
Therefore, the present invention provides a lithium ion secondary battery electrode that includes an insulating layer that can improve the electronic insulating property even when the layer is thinned and can improve the volume energy density of the lithium ion secondary battery, and It is an object to provide a lithium ion secondary battery including the electrode for the lithium ion secondary battery.
 本発明者らは、鋭意検討の結果、絶縁層のバインダーとして高分子固体電解質を用いるとともに、絶縁層の空隙率を10%以下にすることにより、絶縁層を薄層化しても絶縁層の電子絶縁性を良好にできることを見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]~[7]である。
[1]電極活物質層と、前記電極活物質層の表面上に設けられる絶縁層とを備え、前記絶縁層が高分子固体電解質を含み、前記絶縁層の空隙率が10%以下であるリチウムイオン二次電池用電極。
[2]前記絶縁層は所望により絶縁性微粒子を含み、前記絶縁層における前記絶縁性微粒子の含有量が、前記高分子固体電解質及び前記絶縁性微粒子の合計100体積%に対して20体積%以下である上記[1]に記載のリチウムイオン二次電池用電極。
[3]前記高分子固体電解質がポリエーテル系電解質である上記[1]又は[2]に記載のリチウムイオン二次電池用電極。
[4]前記ポリエーテル系電解質のマトリックスとなるポリマーは、少なくともエチレンオキシド構造を有するポリマーである上記[3]に記載のリチウムイオン二次電池用電極。
[5]前記高分子固体電解質がリチウム塩を含む上記[1]~[4]のいずれか1つに記載のリチウムイオン二次電池用電極。
[6]前記絶縁層の厚さが30μm未満である上記[1]~[5]のいずれか1つに記載のリチウムイオン二次電池用電極。
[7]上記[1]~[6]のいずれか1つに記載のリチウムイオン二次電池用電極と、電解液とを備えたリチウムイオン二次電池。
As a result of intensive studies, the inventors of the present invention used a polymer solid electrolyte as a binder for the insulating layer, and set the porosity of the insulating layer to 10% or less, so that even if the insulating layer was thinned, the electrons in the insulating layer were reduced. It was found that the insulating property can be improved, and the following invention was completed. The gist of the present invention is the following [1] to [7].
[1] Lithium including an electrode active material layer and an insulating layer provided on the surface of the electrode active material layer, the insulating layer containing a polymer solid electrolyte, and the porosity of the insulating layer being 10% or less. Electrode for ion secondary battery.
[2] The insulating layer optionally contains insulating fine particles, and the content of the insulating fine particles in the insulating layer is 20% by volume or less based on 100% by volume of the total of the polymer solid electrolyte and the insulating fine particles. The electrode for a lithium ion secondary battery according to the above [1], which is
[3] The electrode for a lithium ion secondary battery according to the above [1] or [2], wherein the polymer solid electrolyte is a polyether electrolyte.
[4] The electrode for a lithium ion secondary battery according to the above [3], wherein the polymer serving as the matrix of the polyether-based electrolyte is a polymer having at least an ethylene oxide structure.
[5] The electrode for a lithium ion secondary battery according to any one of the above [1] to [4], wherein the polymer solid electrolyte contains a lithium salt.
[6] The electrode for a lithium ion secondary battery according to any one of the above [1] to [5], wherein the insulating layer has a thickness of less than 30 μm.
[7] A lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of the above [1] to [6] and an electrolytic solution.
 本発明によれば、薄層化しても電子絶縁性を良好にすることができ、リチウムイオン二次電池の体積エネルギー密度を向上させることができる絶縁層を備えるリチウムイオン二次電池用電極、及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供することができる。 According to the present invention, an electrode for a lithium ion secondary battery, which is provided with an insulating layer that can improve the electronic insulating property even when the layer is thinned and can improve the volume energy density of the lithium ion secondary battery, and A lithium ion secondary battery including the electrode for the lithium ion secondary battery can be provided.
図1は、本発明のリチウムイオン二次電池用電極の好ましい一実施形態を示す概略断面図である。FIG. 1 is a schematic sectional view showing a preferred embodiment of an electrode for a lithium ion secondary battery of the present invention. 図2は、特性評価用の電池を説明するための図である。FIG. 2 is a diagram for explaining a battery for characteristic evaluation.
<リチウムイオン二次電池用電極>
 以下、本発明のリチウムイオン二次電池用電極について詳細に説明する。
 図1に示すように、リチウムイオン二次電池用電極1は、電極活物質層10と、電極活物質層10の表面上に設けられる絶縁層20とを備える。また、リチウムイオン二次電池用電極1において、電極活物質層10は、通常、電極集電体30の上に積層される。
 電極活物質層10は、電極集電体30の両表面に積層されてもよく、その場合、絶縁層20は各電極活物質層10の表面上に設けられるとよい。このように、絶縁層20をリチウムイオン二次電池用電極1の両面に設けると、負極及び正極を複数積層して多層構造とした場合でも、各正極と各負極の間の短絡を有効に防止できる。
<Lithium-ion secondary battery electrode>
Hereinafter, the lithium-ion secondary battery electrode of the present invention will be described in detail.
As shown in FIG. 1, the lithium-ion secondary battery electrode 1 includes an electrode active material layer 10 and an insulating layer 20 provided on the surface of the electrode active material layer 10. In the lithium ion secondary battery electrode 1, the electrode active material layer 10 is usually laminated on the electrode current collector 30.
The electrode active material layer 10 may be laminated on both surfaces of the electrode current collector 30, and in that case, the insulating layer 20 may be provided on the surface of each electrode active material layer 10. By providing the insulating layers 20 on both surfaces of the lithium-ion secondary battery electrode 1 in this manner, even when a plurality of negative electrodes and positive electrodes are laminated to form a multilayer structure, a short circuit between each positive electrode and each negative electrode is effectively prevented. it can.
 本発明において、リチウムイオン二次電池用電極は、正極及び負極のいずれでもよいが、正極であることが好ましい。 In the present invention, the lithium ion secondary battery electrode may be either a positive electrode or a negative electrode, but is preferably a positive electrode.
[絶縁層]
 絶縁層は高分子固体電解質を含み、絶縁層の空隙率は10%以下である。
[Insulation layer]
The insulating layer contains a solid polymer electrolyte, and the porosity of the insulating layer is 10% or less.
(高分子固体電解質)
 高分子固体電解質は、主に高分子から構成されるイオン伝導性を示す材料である。高分子固体電解質には、例えば、ドライタイプの高分子電解質、ゲルタイプの高分子電解質等が挙げられる。ドライタイプの高分子電解質は、本質的には、高分子の骨格の運動によりイオンの伝導が起こると考えられている。一方、ゲルタイプの高分子電解質は、多量に含む電解液を介してイオンの伝導が起こる。機械的強度が高いという観点から、好ましい高分子固体電解質はドライタイプの高分子電解質である。
(Polymer solid electrolyte)
A polymer solid electrolyte is a material mainly composed of a polymer and exhibiting ion conductivity. Examples of the polymer solid electrolyte include dry type polymer electrolytes and gel type polymer electrolytes. In the dry type polyelectrolyte, it is considered that ion conduction is essentially caused by the movement of the polymer skeleton. On the other hand, in the gel type polymer electrolyte, the conduction of ions occurs through the electrolytic solution containing a large amount. From the viewpoint of high mechanical strength, a preferable polymer solid electrolyte is a dry type polymer electrolyte.
 イオン伝導性が高く、機械的強度の高いという観点、及びこれまで分子設計について膨大な検討がなされているという観点から、好ましいドライタイプの高分子固体電解質は、ポリエーテル系電解質である。ポリエーテル系電解質のマトリックスとなるポリマーは、エチレンオキシド構造、プロピレンオキシド構造、又はその両方の構造を有することが好ましい。ポリエーテル系電解質のマトリックスとなるポリマーには、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド-プロピレン共重合体、ジメチルシロキサン-エチレンオキシド共重合体等が挙げられる。また、エチレンオキシド構造が含まれるポリエーテル側鎖を有するくし型ポリマー、エチレンオキシド以外のモノマーとエチレンオキシドとの共重合体、架橋剤を用いてポリエチレンオキシドもしくはポリエーテルオリゴマーを架橋させたもの、分岐を持たせた分岐型ポリエーテル系ポリマー、分子量が数百~数千程度のマクロモノマーを熱重合や光重合したものなども挙げられる。これらのポリマーは、1種単独で使用してもよいし、2種以上を併用してもよい。イオン伝導性が高く、機械的強度が高いという観点から、ポリエーテル系電解質のマトリックスとなるポリマーは、少なくともエチレンオキシド構造を有するポリマーであることがより好ましく、ポリエチレンオキシドであることがさらに好ましい。なお、エチレンオキシド構造は、エチレンと酸素とによる基本ユニットによって構成される。 A preferred dry-type solid polymer electrolyte is a polyether-based electrolyte, from the viewpoints of high ionic conductivity and high mechanical strength, and from the viewpoint of enormous studies on molecular design. The polymer serving as the matrix of the polyether-based electrolyte preferably has an ethylene oxide structure, a propylene oxide structure, or both structures. Examples of the polymer serving as the matrix of the polyether electrolyte include polyethylene oxide, polypropylene oxide, ethylene oxide-propylene copolymer, dimethylsiloxane-ethylene oxide copolymer and the like. Further, a comb polymer having a polyether side chain containing an ethylene oxide structure, a copolymer of a monomer other than ethylene oxide and ethylene oxide, a product obtained by crosslinking polyethylene oxide or a polyether oligomer with a crosslinking agent, and having a branch. Other examples include branched polyether-based polymers, and those obtained by thermally or photopolymerizing macromonomers having a molecular weight of several hundreds to several thousands. These polymers may be used alone or in combination of two or more. From the viewpoint of high ionic conductivity and high mechanical strength, the polymer serving as the matrix of the polyether electrolyte is more preferably a polymer having at least an ethylene oxide structure, and further preferably polyethylene oxide. The ethylene oxide structure is composed of a basic unit composed of ethylene and oxygen.
 絶縁層のイオン伝導性を高くするという観点から、絶縁層における高分子固体電解質の含有量は、好ましくは80体積%以上であり、より好ましくは90体積%以上であり、さらに好ましくは95体積%以上であり、特に好ましくは98体積%以上である。なお、高分子固体電解質の含有量の上限値は100体積%である。 From the viewpoint of increasing the ionic conductivity of the insulating layer, the content of the polymer solid electrolyte in the insulating layer is preferably 80% by volume or more, more preferably 90% by volume or more, and further preferably 95% by volume. It is above, and particularly preferably 98% by volume or more. The upper limit of the content of the polymer solid electrolyte is 100% by volume.
(リチウム塩)
 高分子固体電解質のイオン伝導性をより高くするという観点から、高分子固体電解質はリチウム塩を含むことが好ましい。例えば、高分子固体電解質がポリエーテル系電解質である場合、リチウム塩のカチオン(リチウムイオン)と、ポリエーテル系電解質のマトリックスとなるポリマーにおけるエーテル酸素の孤立電子対とによるイオン-双極子相互作用によって錯形成し、リチウム塩はマトリックスとなるポリマーに溶解すると考えられる。そして、溶解したリチウム塩の一部が解離した状態となり、ポリエーテル系電解質のイオン伝導性はより高くなると考えられる。
(Lithium salt)
From the viewpoint of increasing the ionic conductivity of the polymer solid electrolyte, the polymer solid electrolyte preferably contains a lithium salt. For example, when the solid polymer electrolyte is a polyether-based electrolyte, cations (lithium ions) of the lithium salt and ion-dipole interaction between the lone electron pair of ether oxygen in the polymer serving as the matrix of the polyether-based electrolyte cause It is believed that the lithium salt is complexed and the lithium salt is dissolved in the matrix polymer. Then, it is considered that a part of the dissolved lithium salt is in a dissociated state, and the ionic conductivity of the polyether electrolyte is higher.
 高分子固体電解質に用いるリチウム塩には、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、LiBPh(リチウムテトラフェニルボレート)、LiTFSA(リチウムビストリフルオロメチルスルホニルアミド)、LiTFSI(リチウムビストリフルオロメチルスルホニルイミド)等が挙げられる。これらのリチウム塩は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中で、高分子固体電解質中のリチウム塩の解離性を高くできるという観点から、LiTFSA及びLiTFSIが好ましく、LiTFSIがより好ましい。 Examples of the lithium salt used for the polymer solid electrolyte include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiAsF 6 , LiB 10 Cl 10 , and lower. Examples thereof include lithium aliphatic carboxylate, lithium chloroborane, LiBPh 4 (lithium tetraphenylborate), LiTFSA (lithium bistrifluoromethylsulfonylamide), and LiTFSI (lithium bistrifluoromethylsulfonylimide). These lithium salts may be used alone or in combination of two or more. Among these, LiTFSA and LiTFSI are preferable, and LiTFSI is more preferable, from the viewpoint that the dissociation property of the lithium salt in the polymer solid electrolyte can be increased.
 高分子固体電解質のイオン伝導性及び高分子固体電解質の機械的強度の観点から、高分子固体電解質のマトリックスとなるポリマー100質量部に対するリチウム塩の配合量は、好ましくは1~100質量部であり、より好ましくは5~80質量部であり、さらに好ましくは10~50質量部である。 From the viewpoint of the ionic conductivity of the solid polymer electrolyte and the mechanical strength of the solid polymer electrolyte, the amount of the lithium salt blended is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the polymer serving as the matrix of the solid polymer electrolyte. , More preferably 5 to 80 parts by mass, further preferably 10 to 50 parts by mass.
(絶縁層の空隙率)
 絶縁層の空隙率は10%以下である。絶縁層の空隙率が10%よりも大きいと、絶縁層の空隙部分で微小な短絡が起こり、絶縁層の電子絶縁性が悪くなる場合がある。特に、絶縁層の厚さが30μm未満であると、絶縁層の空隙率が10%よりも大きい場合、絶縁層の電子絶縁性が悪くなる可能性が高くなる。絶縁層の電子絶縁性をより高くするという観点から、絶縁層の空隙率は、好ましくは7%以下であり、より好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。なお、絶縁層の空隙率の範囲の下限値は0%である。また、絶縁層が薄ければ薄いほど、リチウムイオン二次電池の体積エネルギー密度を向上させることができる。このような観点から、本発明のリチウムイオン二次電池用電極に用いる絶縁層は、薄くても電子絶縁性を確保できるので、リチウムイオン二次電池の体積エネルギー密度を向上させることができる。なお、絶縁層の空隙率は、後述の実施例の項目に記載の方法により測定することができる。
(Porosity of insulating layer)
The porosity of the insulating layer is 10% or less. When the porosity of the insulating layer is larger than 10%, a minute short circuit may occur in the void portion of the insulating layer, and the electronic insulating property of the insulating layer may deteriorate. In particular, when the thickness of the insulating layer is less than 30 μm, the electronic insulating property of the insulating layer is likely to deteriorate when the porosity of the insulating layer is larger than 10%. From the viewpoint of further enhancing the electronic insulating property of the insulating layer, the porosity of the insulating layer is preferably 7% or less, more preferably 5% or less, further preferably 3% or less, and particularly preferably It is 1% or less. The lower limit of the range of the porosity of the insulating layer is 0%. Also, the thinner the insulating layer, the higher the volume energy density of the lithium-ion secondary battery can be. From this point of view, the insulating layer used in the electrode for a lithium ion secondary battery of the present invention can secure electronic insulation even if it is thin, so that the volume energy density of the lithium ion secondary battery can be improved. The porosity of the insulating layer can be measured by the method described in the item of Examples below.
(絶縁層の厚さ)
 リチウムイオン二次電池の体積エネルギー密度を向上させるという観点から、絶縁層の厚さは、好ましくは30μm未満であり、より好ましくは25μm以下であり、さらに好ましくは20μm以下であり、よりさらに好ましくは15μm以下であり、特に好ましくは13μm以下である。また、絶縁層の電子絶縁性をより確実に確保するという観点から、絶縁層の厚さは、好ましくは1μm以上であり、より好ましくは3μm以上であり、さらに好ましくは5μm以上である。さらに、絶縁層を形成するときの作業性の観点から、絶縁層の厚さは、よりさらに好ましくは7μm以上であり、特に好ましくは9μm以上である。なお、絶縁層の厚さの範囲の上記上限値及び下限値は任意に組み合わせることができる。
(Thickness of insulating layer)
From the viewpoint of improving the volume energy density of the lithium ion secondary battery, the thickness of the insulating layer is preferably less than 30 μm, more preferably 25 μm or less, further preferably 20 μm or less, and even more preferably It is 15 μm or less, and particularly preferably 13 μm or less. In addition, the thickness of the insulating layer is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more, from the viewpoint of more reliably ensuring the electronic insulating property of the insulating layer. Further, from the viewpoint of workability when forming the insulating layer, the thickness of the insulating layer is more preferably 7 μm or more, and particularly preferably 9 μm or more. The upper limit and the lower limit of the thickness range of the insulating layer can be arbitrarily combined.
(絶縁性微粒子)
 絶縁層は所望により絶縁性微粒子を含んでもよい。これにより、絶縁層の機械的強度を高くすることができる。絶縁層の空隙率を小さくするという観点から、絶縁層における絶縁性微粒子の含有量は、高分子固体電解質及び絶縁性微粒子の合計100体積%に対して、好ましくは20体積%以下であり、より好ましくは10体積%以下であり、さらに好ましくは7体積%以下であり、特に好ましくは5体積%以下であり、よりさらに好ましくは1体積%以下である。絶縁層の空隙率をより確実に小さくするという観点から、絶縁層は絶縁性微粒子を含まないことが特に好ましい。
(Insulating fine particles)
The insulating layer may optionally contain insulating fine particles. Thereby, the mechanical strength of the insulating layer can be increased. From the viewpoint of reducing the porosity of the insulating layer, the content of the insulating fine particles in the insulating layer is preferably 20% by volume or less based on 100% by volume of the total of the solid polymer electrolyte and the insulating fine particles. It is preferably 10% by volume or less, more preferably 7% by volume or less, particularly preferably 5% by volume or less, and even more preferably 1% by volume or less. From the viewpoint of surely reducing the porosity of the insulating layer, it is particularly preferable that the insulating layer does not contain insulating fine particles.
 絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン-アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ-タンタル複合酸化物、マグネシウム-タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。
 絶縁性微粒子は、上記した各材料が1種単独で使用される粒子であってもよいし、2種以上が併用される粒子であってもよい。また、絶縁性微粒子は、無機化合物と有機化合物の両方を含む微粒子であってもよい。例えば、有機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合粒子であってもよい。
 これらの中では、無機粒子が好ましく、中でもアルミナ粒子、ベーマイト粒子が好ましい。
The insulating fine particles are not particularly limited as long as they are insulating, and may be organic particles or inorganic particles. Specific organic particles include, for example, crosslinked polymethylmethacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly(lithium 2-acrylamido-2-methylpropanesulfonate), Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin. The inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, fluorine. Examples thereof include particles composed of an inorganic compound such as lithium chloride, clay, zeolite and calcium carbonate. Further, the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
The insulating fine particles may be particles in which each of the above-mentioned materials is used alone, or particles in which two or more kinds are used in combination. The insulating fine particles may be fine particles containing both an inorganic compound and an organic compound. For example, it may be inorganic-organic composite particles in which the surface of particles made of an organic compound is coated with an inorganic oxide.
Among these, inorganic particles are preferable, and alumina particles and boehmite particles are particularly preferable.
 絶縁性微粒子の平均粒子径は、通常、電極活物質の平均粒径より小さいものであり、例えば0.001~2μm、好ましくは0.05~1.5μm、より好ましくは0.1~1.0μmであり、特に好ましくは0.1~0.5μmである。絶縁層の平均粒子径をこれら範囲内することで、絶縁層の機械的強度をより高くすることができる。
 なお、平均粒子径は、レーザー回折・散乱法によって求めた絶縁性微粒子の粒度分布において、体積積算が50%での粒径(D50)を意味する。
 また、絶縁性微粒子は、平均粒子径が上記範囲内の1種が単独で使用されてもよいし、平均粒子径の異なる2種の絶縁性微粒子が混合されて使用されてもよい。
The average particle diameter of the insulating fine particles is usually smaller than the average particle diameter of the electrode active material, and is, for example, 0.001 to 2 μm, preferably 0.05 to 1.5 μm, and more preferably 0.1 to 1. It is 0 μm, and particularly preferably 0.1 to 0.5 μm. By setting the average particle diameter of the insulating layer within these ranges, the mechanical strength of the insulating layer can be further increased.
The average particle size means the particle size (D50) at a volume cumulative of 50% in the particle size distribution of insulating fine particles determined by the laser diffraction/scattering method.
As the insulating fine particles, one kind having an average particle diameter within the above range may be used alone, or two kinds of insulating fine particles having different average particle diameters may be mixed and used.
(絶縁層の形成方法)
 絶縁層は、例えば、電極活物質層の表面に高分子固体電解質のフィルムを配置することによって形成することができる。高分子固体電解質のフィルムは、加熱、圧着等により電極活物質層上に接着させてもよいし、接着させなくてもよい。なお、高分子固体電解質のフィルムは、例えば、高分子固体電解質のマトリックスとなるポリマーを、リチウム塩とともに適当な溶媒に溶解させ、その後、溶媒を蒸発させることにより作製することができる。また、リチウム塩を添加した、高分子固体電解質のマトリックスとなるポリマーの原料モノマー(例えば、分子量が数百~数千程度のマクロモノマー)を、熱重合や光重合等によって重合することにより高分子固体電解質のフィルムを作製してもよい。
 高分子固体電解質の塗料を電極活物質層の表面に塗布し、塗布した塗料を硬化させることにより絶縁層を形成してもよい。
 なお、絶縁層が絶縁性微粒子を含む場合は、例えば、高分子固体電解質のマトリックスとなるポリマーを、絶縁性微粒子及びリチウム塩とともに適当な溶媒に分散ないし溶解させ、その後、溶媒を蒸発させることにより、絶縁層のフィルムを作製することができる。また、高分子固体電解質のマトリックスとなるポリマー、絶縁性微粒子、リチウム塩及び溶媒を混合することによって得られた塗料を電極活物質層の表面に塗布し、塗布した塗料を硬化させることにより絶縁層を形成してもよい。
(Method of forming insulating layer)
The insulating layer can be formed, for example, by disposing a polymer solid electrolyte film on the surface of the electrode active material layer. The polymer solid electrolyte film may or may not be adhered to the electrode active material layer by heating, pressure bonding, or the like. The polymer solid electrolyte film can be prepared, for example, by dissolving a polymer serving as a matrix of the polymer solid electrolyte in a suitable solvent together with a lithium salt, and then evaporating the solvent. Further, by polymerizing a raw material monomer (for example, a macromonomer having a molecular weight of several hundreds to several thousands) to which a lithium salt is added and which serves as a matrix of the polymer solid electrolyte, by polymerizing by thermal polymerization or photopolymerization, A solid electrolyte film may be prepared.
You may form an insulating layer by apply|coating the coating material of a polymer solid electrolyte on the surface of an electrode active material layer, and hardening the applied coating material.
When the insulating layer contains insulating fine particles, for example, a polymer serving as a matrix of the polymer solid electrolyte is dispersed or dissolved in a suitable solvent together with the insulating fine particles and the lithium salt, and then the solvent is evaporated. , A film of an insulating layer can be produced. In addition, a coating material obtained by mixing a polymer serving as a matrix of a polymer solid electrolyte, insulating fine particles, a lithium salt and a solvent is applied to the surface of an electrode active material layer, and the applied coating material is cured to form an insulating layer. May be formed.
[電極活物質層]
 電極活物質層は、典型的には、電極活物質と、電極用バインダーとを含む。電極が正極である場合、電極活物質は正極活物質となり、電極活物質層は正極活物質層となる。一方、電極が負極である場合、電極活物質は負極活物質となり、電極活物質層は負極活物質層となる。
[Electrode active material layer]
The electrode active material layer typically includes an electrode active material and an electrode binder. When the electrode is a positive electrode, the electrode active material becomes the positive electrode active material and the electrode active material layer becomes the positive electrode active material layer. On the other hand, when the electrode is the negative electrode, the electrode active material becomes the negative electrode active material and the electrode active material layer becomes the negative electrode active material layer.
(正極活物質)
 正極活物質層に使用される正極活物質としては、例えば、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、正極活物質として、オリビン型リン酸鉄リチウム(LiFePO)等を使用してもよい。さらに、正極活物質として、リチウム以外の金属を複数使用したものを使用してもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物等を使用してもよい。正極活物質として、これらの物質を1種単独で使用してもよいし、2種以上を併用してもよい。
(Cathode active material)
Examples of the positive electrode active material used for the positive electrode active material layer include lithium metal oxide compounds. Examples of the lithium metal oxide compound include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ). Further, olivine-type lithium iron phosphate (LiFePO 4 ) or the like may be used as the positive electrode active material. Further, as the positive electrode active material, a material using a plurality of metals other than lithium may be used, and NCM (nickel cobalt manganese)-based oxide, NCA (nickel cobalt aluminum-based) oxide, etc. called ternary system may be used. May be used. As the positive electrode active material, these materials may be used alone or in combination of two or more.
(負極活物質)
 負極活物質層に使用される負極活物質としては、グラファイト、ハードカーボン等の炭素材料、スズ化合物とシリコンと炭素の複合体、リチウム等が挙げられるが、これら中では炭素材料が好ましく、グラファイトがより好ましい。負極活物質として、上記物質を1種単独で使用してもよいし、2種以上を併用してもよい。
(Negative electrode active material)
Examples of the negative electrode active material used in the negative electrode active material layer include graphite, carbon materials such as hard carbon, composites of tin compounds and silicon and carbon, lithium, and the like. Among these, carbon materials are preferable, and graphite is preferable. More preferable. As the negative electrode active material, the above substances may be used alone or in combination of two or more.
(電極活物質の平均粒子径)
 電極活物質の平均粒子径は、特に限定されないが、0.5~50μmであることが好ましく、1~30μmであることがより好ましく、5~25μmであることがさらに好ましい。なお、平均粒子径は、レーザー回折・散乱法によって求めた電極活物質の粒度分布において、体積積算が50%での粒径(D50)を意味する。
(Average particle size of electrode active material)
The average particle size of the electrode active material is not particularly limited, but is preferably 0.5 to 50 μm, more preferably 1 to 30 μm, and further preferably 5 to 25 μm. The average particle size means the particle size (D50) at a volume cumulative of 50% in the particle size distribution of the electrode active material obtained by the laser diffraction/scattering method.
(電極活物質の含有量)
 電極活物質層における電極活物質の含有量は、電極活物質層全量基準で、50~99質量%が好ましく、60~99質量%がより好ましく、80~99質量%がさらに好ましく、90~98質量%が特に好ましい。
(Content of electrode active material)
The content of the electrode active material in the electrode active material layer is, based on the total amount of the electrode active material layer, preferably 50 to 99% by mass, more preferably 60 to 99% by mass, further preferably 80 to 99% by mass, and 90 to 98% by mass. Mass% is particularly preferred.
(バインダー)
 バインダーの具体例としては、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム(SBR)、ポリ(メタ)アクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
 電極活物質層におけるバインダーの含有量は、電極活物質層全量基準で、0.5質量%以上であることが好ましく、0.5~20質量%であることがより好ましく、1.0~10質量%がさらに好ましい。
(binder)
Specific examples of the binder include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), fluorine-containing resin such as polytetrafluoroethylene (PTFE), polymethyl acrylate (PMA), Acrylic resin such as polymethylmethacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), poly Examples thereof include acrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene-butadiene rubber (SBR), poly(meth)acrylic acid, carboxymethyl cellulose (CMC), hydroxyethyl cellulose, and polyvinyl alcohol. These binders may be used alone or in combination of two or more. In addition, carboxymethyl cellulose and the like may be used in the form of salts such as sodium salt.
The content of the binder in the electrode active material layer is, based on the total amount of the electrode active material layer, preferably 0.5% by mass or more, more preferably 0.5 to 20% by mass, and 1.0 to 10% by mass. Mass% is more preferable.
(導電助剤)
 電極活物質層は、導電助剤をさらに含んでもよく、正極活物質層は、導電助剤を含むことが好ましい。導電助剤は、上記電極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック(AB)、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。電極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、電極活物質層全量基準で、0.5~15質量%であることが好ましく、1~10質量%であることがより好ましい。
(Conductive agent)
The electrode active material layer may further contain a conductive auxiliary agent, and the positive electrode active material layer preferably contains a conductive auxiliary agent. A material having higher conductivity than the electrode active material is used as the conduction aid, and specific examples thereof include carbon materials such as Ketjen black, acetylene black (AB), carbon nanotubes and rod-shaped carbon. The conductive additive may be used alone or in combination of two or more. When a conductive additive is contained in the electrode active material layer, the content of the conductive additive is preferably 0.5 to 15% by mass, and preferably 1 to 10% by mass, based on the total amount of the electrode active material layer. More preferably.
 電極活物質層は、本発明の効果を損なわない範囲内において、電極活物質、導電助剤、及びバインダー以外の他の任意成分を含んでもよい。ただし、電極活物質層の総質量のうち、電極活物質、導電助剤、及びバインダーの総含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。 The electrode active material layer may contain other optional components other than the electrode active material, the conductive auxiliary agent, and the binder within a range that does not impair the effects of the present invention. However, in the total mass of the electrode active material layer, the total content of the electrode active material, the conductive additive, and the binder is preferably 90% by mass or more, and more preferably 95% by mass or more.
[電極集電体]
 電極集電体を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられる。これらの中では、電極集電体が正極集電体の場合、アルミニウム、チタン、ニッケル及びステンレス鋼が好ましく、アルミニウムがより好ましい。また、電極集電体が負極集電体の場合、銅、チタン、ニッケル及びステンレス鋼が好ましく、銅がより好ましい。電極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましく、5~20μmがより好ましい。電極集電体の厚さが1~50μmであると、電極集電体のハンドリングが容易になるとともに、エネルギー密度の低下を抑制できる。
[Electrode current collector]
Examples of the material forming the electrode current collector include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, when the electrode current collector is the positive electrode current collector, aluminum, titanium, nickel and stainless steel are preferable, and aluminum is more preferable. When the electrode current collector is the negative electrode current collector, copper, titanium, nickel and stainless steel are preferable, and copper is more preferable. The electrode current collector is generally composed of a metal foil, and the thickness thereof is not particularly limited, but is preferably 1 to 50 μm, more preferably 5 to 20 μm. When the thickness of the electrode current collector is 1 to 50 μm, handling of the electrode current collector is facilitated and reduction in energy density can be suppressed.
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、上記した絶縁層を有するリチウムイオン二次電池用電極と、電解液とを備える。具体的には、本発明のリチウムイオン二次電池は、互いに対向するように配置された正極、及び負極を備え、負極及び正極の少なくとも一方の電極が、上記した絶縁層を有するリチウムイオン二次電池用電極となる。このリチウムイオン二次電池用電極(負極又は正極)においては、他方の電極(正極又は負極)に対向する面に絶縁層が設けられるとよい。本発明のリチウムイオン二次電池は、上記した絶縁層を有するリチウムイオン二次電池用電極を正極として備えることが好ましい。そして、電解液は、電極活物質層の空隙内、絶縁層の空隙内等に存在する。
<Lithium-ion secondary battery>
The lithium-ion secondary battery of the present invention includes an electrode for a lithium-ion secondary battery having the above-mentioned insulating layer and an electrolytic solution. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode that are arranged so as to face each other, and at least one of the negative electrode and the positive electrode has a lithium ion secondary battery having the above-mentioned insulating layer. It becomes an electrode for batteries. In this lithium ion secondary battery electrode (negative electrode or positive electrode), an insulating layer may be provided on the surface facing the other electrode (positive electrode or negative electrode). The lithium-ion secondary battery of the present invention preferably includes, as a positive electrode, the lithium-ion secondary battery electrode having the above-described insulating layer. Then, the electrolytic solution exists in the voids of the electrode active material layer, the voids of the insulating layer, and the like.
[セパレータ]
 本発明のリチウムイオン二次電池は、正極及び負極の間に配置されるセパレータをさらに備えてもよい。セパレータが設けられることで、正極及び負極の間の短絡がより一層効果的に防止される。また、セパレータは、電解質を保持してもよい。正極又は負極に設けられる絶縁層は、セパレータに接触していてもよいし、接触していなくてもよいが、接触することが好ましい。
 セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、オレフィン系多孔質フィルムが例示される。セパレータは、リチウムイオン二次電池駆動時の発熱により加熱されて熱収縮等することがあるが、そのような熱収縮時でも、上記絶縁層が設けられることで短絡が抑制しやすくなる。
[Separator]
The lithium ion secondary battery of the present invention may further include a separator arranged between the positive electrode and the negative electrode. By providing the separator, a short circuit between the positive electrode and the negative electrode can be prevented more effectively. Moreover, the separator may hold an electrolyte. The insulating layer provided on the positive electrode or the negative electrode may or may not be in contact with the separator, but is preferably in contact with the separator.
Examples of the separator include porous polymer films, non-woven fabrics, glass fibers and the like, and among these, porous polymer films are preferable. An example of the porous polymer film is an olefin-based porous film. The separator may be heated by heat generated when the lithium-ion secondary battery is driven to cause thermal contraction. However, even when such a thermal contraction occurs, the insulating layer is provided so that a short circuit is easily suppressed.
 リチウムイオン二次電池は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータが使用される場合、セパレータは各負極と各正極の間に配置されればよい。
 リチウムイオン二次電池において、上記した負極及び正極、又は負極、正極、及びセパレータは、バッテリーセル内に収納される。バッテリーセルは、角型、円筒型、ラミネート型等のいずれでもよい。
The lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated. In this case, the negative electrodes and the positive electrodes may be provided alternately along the stacking direction. When a separator is used, the separator may be arranged between each negative electrode and each positive electrode.
In the lithium ion secondary battery, the above-described negative electrode and positive electrode, or the negative electrode, positive electrode, and separator are housed in a battery cell. The battery cell may be a square type, a cylindrical type, a laminated type or the like.
[電解液]
 リチウムイオン二次電池の電解質は特に限定されず、リチウムイオン二次電池で使用される公知の電解質を使用すればよい。電解質としては例えば電解液を使用する。
 電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテート等の極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiPFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩-三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
 電解質は、負極及び正極間に配置されればよく、例えば、電解質は、上記した負極及び正極、又は負極、正極、及びセパレータが内部に収納されたバッテリーセル内に充填される。また、電解質は、例えば、負極又は正極上に塗布されて負極及び正極間に配置されてもよい。
[Electrolyte]
The electrolyte of the lithium ion secondary battery is not particularly limited, and a known electrolyte used in the lithium ion secondary battery may be used. For example, an electrolytic solution is used as the electrolyte.
Examples of the electrolytic solution include an electrolytic solution containing an organic solvent and an electrolyte salt. Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2. Examples include polar solvents such as diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane and methyl acetate, or a mixture of two or more kinds of these solvents. As the electrolyte salt, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 CF 2 CF 3 ) 2 , Examples thereof include lithium-containing salts such as LiN(COCF 3 ) 2 and LiN(COCF 2 CF 3 ) 2 and lithium bisoxalate borate (LiB(C 2 O 4 ) 2 ) Organic acid lithium salt-trifluoride Examples thereof include boron hydride complexes and complexes such as complex hydrides such as LiBH 4. These salts or complexes may be used alone or in a mixture of two or more.
The electrolyte may be arranged between the negative electrode and the positive electrode. For example, the electrolyte is filled in the battery cell in which the negative electrode and the positive electrode described above, or the negative electrode, the positive electrode, and the separator are housed inside. Further, the electrolyte may be applied, for example, on the negative electrode or the positive electrode and arranged between the negative electrode and the positive electrode.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 得られたリチウムイオン二次電池用電極は、以下の評価方法により評価した。
(体積エネルギー密度)
 45℃の温度の環境下、実施例、比較例で作製したセルに対して、1Cの定電流充電を行った。そして、1Cの定電流放電を行い、2.5Vまで放電させた時点で放電を完了し、1Cの定電流放電の放電容量を計算した。
 そして、下記式より体積エネルギー密度を算出した。なお、公称電圧は1Vであった。
(体積エネルギー密度)=(公称電圧)[V]×(1Cの定電流放電の放電容量)[mAh]÷(電池の体積)[mm
 なお、後述するように電極は直径14mmの円形であるので、電池体積は以下の式で算出することができる。
(電池体積)[mm]=7[mm]×7[mm]×π×(絶縁層、正極活物質層、正極集電体、負極活物質層及び負極集電体の厚さの合計)[mm]
The obtained lithium ion secondary battery electrode was evaluated by the following evaluation methods.
(Volume energy density)
Under the environment of a temperature of 45° C., 1 C of constant current charging was performed on the cells prepared in Examples and Comparative Examples. Then, the constant current discharge of 1C was performed, and the discharge was completed at the time of discharging to 2.5V, and the discharge capacity of the constant current discharge of 1C was calculated.
Then, the volume energy density was calculated from the following formula. The nominal voltage was 1V.
(Volume energy density)=(nominal voltage) [V]×(discharge capacity of constant current discharge of 1 C) [mAh]÷(volume of battery) [mm 3 ]
Since the electrodes are circular with a diameter of 14 mm as described later, the battery volume can be calculated by the following formula.
(Battery volume) [mm 3 ]=7 [mm]×7 [mm]×π× (total thickness of insulating layer, positive electrode active material layer, positive electrode current collector, negative electrode active material layer, and negative electrode current collector) [Mm]
(電子絶縁性)
 45℃の温度の環境下、最初の充電時の満充電時の電圧に対する満充電60分後の電圧低下の有無を調べた。さらに、45℃の温度の環境下、2回目の充放電の充放電効率を調べた。なお、充放電効率は放電容量を充電容量で割り算して算出した。そして、以下の基準で評価した。
  ○:電圧低下が0.1V以下であり、かつ充放電効率が95%以上
  ×:電圧低下が0.1Vよりも大きいか、又は充放電効率が95%未満
(Electronic insulation)
In an environment of a temperature of 45° C., the presence or absence of a voltage drop 60 minutes after full charge with respect to the voltage at full charge at the first charge was examined. Further, the charging/discharging efficiency of the second charging/discharging was examined under the environment of the temperature of 45°C. The charge/discharge efficiency was calculated by dividing the discharge capacity by the charge capacity. And the following criteria evaluated.
◯: Voltage drop is 0.1 V or less and charge/discharge efficiency is 95% or more X: Voltage drop is greater than 0.1 V or charge/discharge efficiency is less than 95%
(空隙率)
 イオンミリング方式で、絶縁層が形成されたリチウムイオン二次電池用電極の断面を露出させた。次に、露出させたリチウムイオン二次電池用電極の断面を、FE-SEM(電界放出型走査型電子顕微鏡)を用いて、絶縁層全体が観察できる倍率で観察し、絶縁層の画像を得た。なお、倍率は5000~25000倍であった。次に、画像解析ソフト「Image J」を使用して、絶縁層の実部分が黒く表示され、絶縁層の空隙部分が白く表示されるように、得られた画像を2値化処理した。そして、白部分の面積の割合を測定した。この白部分の面積の割合が絶縁層の空隙率(%)となる。
(Porosity)
The cross section of the lithium ion secondary battery electrode on which the insulating layer was formed was exposed by the ion milling method. Next, the exposed cross section of the lithium-ion secondary battery electrode is observed with a FE-SEM (field emission scanning electron microscope) at a magnification that allows observation of the entire insulating layer to obtain an image of the insulating layer. It was The magnification was 5000 to 25000 times. Next, the obtained image was binarized using image analysis software "Image J" so that the real part of the insulating layer was displayed in black and the void part of the insulating layer was displayed in white. Then, the area ratio of the white portion was measured. The ratio of the area of this white part becomes the porosity (%) of the insulating layer.
(絶縁層の厚み)
 絶縁層の厚みは、上述のSEMの画像から測定した。
(Thickness of insulating layer)
The thickness of the insulating layer was measured from the above SEM image.
[実施例1]
(正極の作製)
 正極活物質としてNCA系酸化物(平均粒子径10μm)を100質量部と、導電助剤としてのアセチレンブラックを4質量部と、電極用バインダーとしてのポリフッ化ビニリデン4質量部と、溶媒としてのN-メチルピロリドン(NMP)とを混合し、固形分濃度60質量%に調整した正極活物質層用スラリーを得た。この正極活物質層用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔に塗布し、予備乾燥後、120℃で真空乾燥した。その後、正極活物質層用スラリーを塗布した正極集電体を、400kN/mの線圧でローラにより加圧プレスし、さらに電極寸法の直径14mmの円形に打ち抜いて、正極活物質層を有する正極とした。なお、正極活物質層の厚さは45.5μmであった。
[Example 1]
(Preparation of positive electrode)
100 parts by mass of NCA-based oxide (average particle size 10 μm) as a positive electrode active material, 4 parts by mass of acetylene black as a conductive additive, 4 parts by mass of polyvinylidene fluoride as a binder for electrodes, and N as a solvent. -Methylpyrrolidone (NMP) was mixed to obtain a slurry for a positive electrode active material layer adjusted to a solid content concentration of 60% by mass. This positive electrode active material layer slurry was applied to an aluminum foil having a thickness of 15 μm as a positive electrode current collector, preliminarily dried, and then vacuum dried at 120° C. Then, the positive electrode current collector coated with the positive electrode active material layer slurry is pressed by a roller at a linear pressure of 400 kN/m and further punched into a circular shape having an electrode size of 14 mm to obtain a positive electrode having a positive electrode active material layer. And The thickness of the positive electrode active material layer was 45.5 μm.
(負極の作製)
 負極活物質としてグラファイト(平均粒子径10μm)100質量部と、電極用バインダーとしてのカルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部及びスチレンブタジエンゴム(SBR)1.5質量部と、溶媒としての水とを混合し、固形分50質量%に調整した負極活物質層用スラリーを得た。この負極活物質層用スラリーを、負極集電体としての厚さ12μmの銅箔に塗布して100℃で真空乾燥した。その後、負極活物質層用スラリーを塗布した負極集電体を、500kN/mの線圧でローラにより加圧プレスし、さらに電極寸法の直径14mmの円形に打ち抜いて、負極活物質層を有する負極とした。なお、負極活物質層の厚さは52.5μmであった。
(Preparation of negative electrode)
100 parts by mass of graphite (average particle diameter 10 μm) as a negative electrode active material, 1.5 parts by mass of sodium salt of carboxymethyl cellulose (CMC) as a binder for electrodes, 1.5 parts by mass of styrene-butadiene rubber (SBR), and solvent Was mixed with water to obtain a slurry for negative electrode active material layer adjusted to a solid content of 50% by mass. This negative electrode active material layer slurry was applied to a copper foil having a thickness of 12 μm as a negative electrode current collector and vacuum dried at 100° C. After that, the negative electrode current collector coated with the slurry for the negative electrode active material layer was pressed by a roller at a linear pressure of 500 kN/m and punched into a circular shape having an electrode size of 14 mm to obtain a negative electrode having a negative electrode active material layer. And The thickness of the negative electrode active material layer was 52.5 μm.
(電解液の調製)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(Preparation of electrolyte)
LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3:7 (EC:DEC) to a concentration of 1 mol/liter to prepare an electrolyte solution. Was prepared.
(絶縁層の形成)
 2.5質量部のLiTFSI(リチウムビストリフルオロメチルスルホニルイミド)を16質量部のアセトニトリルに溶解させることによって得られた溶液に0.1質量部のUV硬化剤(商品名:Esacure KTO 46、Sartomer社製)を加えて、リチウム塩含有溶液を調製した。次に、10質量部のエチレンオキシドを上記リチウム塩含有溶液に加えて、攪拌し、高分子電解質溶液を調製した。得られた高分子電解質溶液をテフロン(登録商標)製シートに塗布し、減圧下、60℃の乾燥温度で30分間乾燥させた。乾燥した高分子電解質の上に別のテフロン(登録商標)製シートを載せ、2枚のテフロン(登録商標)製シートで高分子電解質をサンドイッチした。そして、2枚のテフロン(登録商標)製シートでサンドイッチした高分子電解質の両面に、テフロン(登録商標)製シートを通して紫外線を照射し、高分子電解質を硬化させて、高分子固体電解質フィルムを作製した。なお、この高分子固体電解質フィルムのマトリックスとなるポリマーはポリエチレンオキシドであり、リチウム塩はLiTFSIである。そして、高分子固体電解質フィルムを電極寸法の直径14mmの円形に打ち抜いて、絶縁層を作製した。なお、絶縁層の厚さは10μmであった。また、絶縁層の空隙率は0%であった。
(Formation of insulating layer)
To a solution obtained by dissolving 2.5 parts by mass of LiTFSI (lithium bistrifluoromethylsulfonylimide) in 16 parts by mass of acetonitrile, 0.1 part by mass of a UV curing agent (trade name: Esacure KTO 46, manufactured by Sartomer Co., Ltd. Manufactured) was added to prepare a lithium salt-containing solution. Next, 10 parts by mass of ethylene oxide was added to the lithium salt-containing solution and stirred to prepare a polymer electrolyte solution. The obtained polymer electrolyte solution was applied to a Teflon (registered trademark) sheet and dried under reduced pressure at a drying temperature of 60° C. for 30 minutes. Another Teflon (registered trademark) sheet was placed on the dried polymer electrolyte, and the polymer electrolyte was sandwiched between two Teflon (registered trademark) sheets. Then, both sides of the polymer electrolyte sandwiched between two Teflon (registered trademark) sheets are irradiated with ultraviolet rays through the Teflon (registered trademark) sheet to cure the polymer electrolyte and produce a polymer solid electrolyte film. did. The polymer used as the matrix of this polymer solid electrolyte film is polyethylene oxide, and the lithium salt is LiTFSI. Then, the polymer solid electrolyte film was punched out into a circular shape having an electrode size of 14 mm in diameter to prepare an insulating layer. The insulating layer had a thickness of 10 μm. The porosity of the insulating layer was 0%.
(電池の製造)
  図2に示す電池特性評価用ジグ100に、上記の正極、絶縁層及び負極を配置するとともに上記電解液を注入することにより特性評価用の電池を作製した。具体的には、負極ボディ106と正極ボディ107との間に、負極ボディ106側から順に、負極108、絶縁層109、電極ガイド110、正極111、電極押さえ112及びスプリング113を電池特性評価用ジグ100に配置した。そして、電池特性評価用ジグ100に上記電解液を注入して電池を作製した。
(Manufacture of batteries)
A battery for characteristic evaluation was prepared by placing the positive electrode, the insulating layer, and the negative electrode in the battery characteristic evaluation jig 100 shown in FIG. 2 and injecting the electrolytic solution. Specifically, between the negative electrode body 106 and the positive electrode body 107, in order from the negative electrode body 106 side, a negative electrode 108, an insulating layer 109, an electrode guide 110, a positive electrode 111, an electrode retainer 112, and a spring 113 are attached to a battery characteristic evaluation jig. Placed at 100. Then, the above electrolyte solution was injected into the battery characteristic evaluation jig 100 to manufacture a battery.
[実施例2及び3]
 2.5質量部のLiTFSI(リチウムビストリフルオロメチルスルホニルイミド)を20質量部のアセトニトリルに溶解させることによって得られた溶液に、絶縁性微粒子としてアルミナ粒子(日本軽金属株式会社製、製品名:ローソーダアルミナ、平均粒子径500nm)を、中程度の剪断力を加えながら混合して分散させてスラリーを得た。このスラリーに0.1質量部のUV硬化剤(商品名:Esacure KTO 46、Sartomer社製)を加えて、リチウム塩含有溶液を調製した。次に、エチレンオキシドを上記リチウム塩含有溶液に加えて、攪拌し、高分子電解質スラリーを調製した。なお、アルミナ粒子とエチレンオキシドとの割合は表中の割合であった。以降は実施例1と同様にして、実施例2及び3の特性評価用の電池に用いる絶縁層をそれぞれ作製した。なお、絶縁層の厚さは両方とも10μmであった。また、絶縁層の空隙率はそれぞれ3%及び8%であった。それ以外は、実施例1と同様な方法で実施例2及び3の特性評価用の電池をそれぞれ作製した。
[Examples 2 and 3]
Into a solution obtained by dissolving 2.5 parts by mass of LiTFSI (lithium bistrifluoromethylsulfonylimide) in 20 parts by mass of acetonitrile, alumina particles as insulating fine particles (manufactured by Nippon Light Metal Co., Ltd., product name: low soda) Alumina and an average particle diameter of 500 nm) were mixed and dispersed while applying a medium shearing force to obtain a slurry. To this slurry, 0.1 part by mass of a UV curing agent (trade name: Esacure KTO 46, manufactured by Sartomer) was added to prepare a lithium salt-containing solution. Next, ethylene oxide was added to the lithium salt-containing solution and stirred to prepare a polymer electrolyte slurry. The proportions of alumina particles and ethylene oxide are shown in the table. Thereafter, in the same manner as in Example 1, insulating layers used in the batteries for characteristic evaluation of Examples 2 and 3 were produced. The insulating layers both had a thickness of 10 μm. The porosity of the insulating layer was 3% and 8%, respectively. Except for this, batteries for characteristic evaluation of Examples 2 and 3 were produced in the same manner as in Example 1.
[比較例1]
 ポリフッ化ビニリデン溶液((株)クレハ製、製品名:L#1710、10質量%溶液、溶媒:NMP)にNMPを添加した後、テフロン(登録商標)製シートに塗布し、90℃の乾燥温度で1分間乾燥させ、ポリフッ化ビニリデンフィルムを作製した。得られたポリフッ化ビニリデンフィルムを電極寸法の直径14mmの円形に打ち抜いて、絶縁層を作製した。絶縁層の厚さは30μmであった。また、絶縁層の空隙率は0%であった。それ以外は、実施例1と同様な方法で比較例1の特性評価用の電池を作製した。
[Comparative Example 1]
After adding NMP to a polyvinylidene fluoride solution (manufactured by Kureha Co., Ltd., product name: L#1710, 10 mass% solution, solvent: NMP), it was applied to a Teflon (registered trademark) sheet and dried at 90°C. And dried for 1 minute to prepare a polyvinylidene fluoride film. The obtained polyvinylidene fluoride film was punched into a circular shape having an electrode size of 14 mm in diameter to form an insulating layer. The thickness of the insulating layer was 30 μm. The porosity of the insulating layer was 0%. A battery for characteristic evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except for the above.
[比較例2]
 ポリフッ化ビニリデン溶液に添加するNMPの量を調整することにより、絶縁層の厚さを30μmから10μmに変更した。それ以外は、比較例1と同様な方法で比較例2の特性評価用の電池を作製した。なお、絶縁層の空隙率は0%であった。
[Comparative example 2]
The thickness of the insulating layer was changed from 30 μm to 10 μm by adjusting the amount of NMP added to the polyvinylidene fluoride solution. A battery for characteristic evaluation of Comparative Example 2 was manufactured in the same manner as Comparative Example 1 except for the above. The porosity of the insulating layer was 0%.
[比較例3]
 ポリフッ化ビニリデン溶液((株)クレハ製、製品名:L#1710、10質量%溶液、溶媒:NMP)に、絶縁性微粒子としてアルミナ粒子(日本軽金属株式会社製、製品名:ローソーダアルミナ、平均粒子径500nm)を、中程度の剪断力を加えながら混合して分散させてスラリーを得た。なお、アルミナ粒子及びポリフッ化ビニリデン溶液の配合量は、ポリフッ化ビニリデンの固形分及びアルミナ粒子の合計100体積%に対して、ポリフッ化ビニリデンの固形分の割合が20体積%であり、アルミナ粒子の割合が80体積%となるような配合量であった。
 このスラリーに所定量のNMPをさらに加え、撹拌機で30分間穏やかに撹拌し、絶縁層用スラリーを得た。
 加圧プレス後及び打ち抜き前の正極の正極活物質層の表面に、この絶縁層用スラリーをグラビアコーターで塗布し、その塗膜を90℃で1分間乾燥することによって、正極活物質層の表面に絶縁層を有する正極板を作製した。絶縁層を有する正極板を電極寸法の直径14mmの円形に打ち抜いて、絶縁層を有する正極を作製した。なお、絶縁層の厚さは30μmであった。また、絶縁層の空隙率は70%であった。それ以外は、実施例1と同様な方法で比較例3の特性評価用の電池を作製した。
[Comparative Example 3]
Polyvinylidene fluoride solution (manufactured by Kureha Co., Ltd., product name: L#1710, 10 mass% solution, solvent: NMP), and alumina particles (manufactured by Nippon Light Metal Co., Ltd., product name: low soda alumina, average) as insulating fine particles. (Particle size: 500 nm) was mixed and dispersed while applying a medium shearing force to obtain a slurry. In addition, the compounding amount of the alumina particles and the polyvinylidene fluoride solution is such that the solid content ratio of the polyvinylidene fluoride is 20% by volume with respect to the total solid content of the polyvinylidene fluoride and the alumina particles of 100% by volume. The blending amount was such that the ratio was 80% by volume.
A predetermined amount of NMP was further added to this slurry and gently stirred with a stirrer for 30 minutes to obtain a slurry for an insulating layer.
The surface of the positive electrode active material layer is formed by applying the insulating layer slurry to the surface of the positive electrode active material layer of the positive electrode after pressure pressing and before punching with a gravure coater and drying the coating film at 90° C. for 1 minute. A positive electrode plate having an insulating layer was prepared. A positive electrode plate having an insulating layer was punched into a circular shape having a diameter of 14 mm, which is the electrode size, to produce a positive electrode having an insulating layer. The insulating layer had a thickness of 30 μm. The porosity of the insulating layer was 70%. A battery for characteristic evaluation of Comparative Example 3 was produced in the same manner as in Example 1 except for the above.
[比較例4]
 スラリーに添加するNMPの量を調整することにより、絶縁層の厚さを30μmから10μmに変更した。それ以外は、比較例3と同様な方法で比較例4の特性評価用の電池を作製した。なお、絶縁層の空隙率は70%であった。
[Comparative Example 4]
The thickness of the insulating layer was changed from 30 μm to 10 μm by adjusting the amount of NMP added to the slurry. A battery for characteristic evaluation of Comparative Example 4 was produced in the same manner as Comparative Example 3 except for the above. The porosity of the insulating layer was 70%.
[比較例5]
 アルミナ粒子とエチレンオキシドとの割合を表中に示す割合に変えた以外は実施例2と同様な方法で比較例5の特性評価用の電池を作製した。なお、絶縁層の厚さは10μmであった。また、絶縁層の空隙率は14%であった。
[Comparative Example 5]
A battery for characteristic evaluation of Comparative Example 5 was produced in the same manner as in Example 2 except that the ratio of alumina particles to ethylene oxide was changed to the ratio shown in the table. The insulating layer had a thickness of 10 μm. The porosity of the insulating layer was 14%.
 実施例1~3及び比較例1~5の電池の評価結果を次の表1に示す。 The evaluation results of the batteries of Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の結果から、絶縁層が高分子固体電解質を含み、絶縁層の空隙率が10%以下であると、絶縁層の電子絶縁性を良好にしながらリチウムイオン二次電池の体積エネルギー密度を高くできることがわかった。一方、比較例1及び2の結果から、絶縁層の空隙率を10%以下とすることによって、絶縁層を薄くしても電子絶縁性を良好にできるが、絶縁層が高分子固体電解質を含まないと、電池を充電できないことがわかった。また、比較例3の結果から、絶縁層の空隙率が大きくても、絶縁層を厚くすることにより、絶縁層の電子絶縁性を良好にできるものの、電池の体積エネルギー密度が低くなることがわかった。さらに、比較例4及び5の結果から、絶縁層の空隙率が高いと、電池の体積エネルギー密度を高くするために、絶縁層を薄くした場合、絶縁層の電子絶縁性を確保できないことがわかった。なお、比較例4及び5では、電子絶縁性を確保できなかったため、1C放電容量を測定することができず、このため、体積エネルギー密度を算出することができなかった。 From the results of Examples 1 to 3, when the insulating layer contains the solid polymer electrolyte and the porosity of the insulating layer is 10% or less, the volume energy of the lithium ion secondary battery is improved while improving the electronic insulating property of the insulating layer. It was found that the density can be increased. On the other hand, from the results of Comparative Examples 1 and 2, by setting the porosity of the insulating layer to 10% or less, the electronic insulating property can be improved even if the insulating layer is made thin, but the insulating layer contains the polymer solid electrolyte. It turns out that the battery cannot be charged without it. Further, the results of Comparative Example 3 show that even if the porosity of the insulating layer is large, by increasing the thickness of the insulating layer, the electronic insulating property of the insulating layer can be improved, but the volume energy density of the battery becomes low. It was Furthermore, from the results of Comparative Examples 4 and 5, it was found that when the porosity of the insulating layer is high, the electronic insulating property of the insulating layer cannot be secured when the insulating layer is thinned in order to increase the volume energy density of the battery. It was In Comparative Examples 4 and 5, the electronic insulating property could not be ensured, so the 1C discharge capacity could not be measured, and therefore the volume energy density could not be calculated.
 1 リチウムイオン二次電池用電極
 10 電極活物質層
 20,109 絶縁層
 30 電極集電体
 106 負極ボディ
 107 正極ボディ
 108 負極
 110 電極ガイド
 111 正極
 112 電極押さえ
 113 スプリング

 
DESCRIPTION OF SYMBOLS 1 Electrode for lithium-ion secondary battery 10 Electrode active material layer 20,109 Insulating layer 30 Electrode current collector 106 Negative electrode body 107 Positive electrode body 108 Negative electrode 110 Electrode guide 111 Positive electrode 112 Electrode pressing 113 Spring

Claims (7)

  1.  電極活物質層と、前記電極活物質層の表面上に設けられる絶縁層とを備え、
     前記絶縁層が高分子固体電解質を含み、
     前記絶縁層の空隙率が10%以下であるリチウムイオン二次電池用電極。
    An electrode active material layer, and an insulating layer provided on the surface of the electrode active material layer,
    The insulating layer includes a solid polymer electrolyte,
    An electrode for a lithium ion secondary battery, wherein the porosity of the insulating layer is 10% or less.
  2.  前記絶縁層は所望により絶縁性微粒子を含み、
     前記絶縁層における前記絶縁性微粒子の含有量が、前記高分子固体電解質及び前記絶縁性微粒子の合計100体積%に対して20体積%以下である請求項1に記載のリチウムイオン二次電池用電極。
    The insulating layer optionally contains insulating fine particles,
    The lithium ion secondary battery electrode according to claim 1, wherein the content of the insulating fine particles in the insulating layer is 20% by volume or less based on 100% by volume of the total amount of the polymer solid electrolyte and the insulating fine particles. ..
  3.  前記高分子固体電解質がポリエーテル系電解質である請求項1又は2に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the polymer solid electrolyte is a polyether electrolyte.
  4.  前記ポリエーテル系電解質のマトリックスとなるポリマーは、少なくともエチレンオキシド構造を有するポリマーである請求項3に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 3, wherein the polymer serving as the matrix of the polyether-based electrolyte is a polymer having at least an ethylene oxide structure.
  5.  前記高分子固体電解質がリチウム塩を含む請求項1~4のいずれか1項に記載のリチウムイオン二次電池用電極。 The lithium ion secondary battery electrode according to any one of claims 1 to 4, wherein the polymer solid electrolyte contains a lithium salt.
  6.  前記絶縁層の厚さが30μm未満である請求項1~5のいずれか1項に記載のリチウムイオン二次電池用電極。 The lithium-ion secondary battery electrode according to any one of claims 1 to 5, wherein the insulating layer has a thickness of less than 30 μm.
  7.  請求項1~6のいずれか1項に記載のリチウムイオン二次電池用電極と、電解液とを備えたリチウムイオン二次電池。

     
    A lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of claims 1 to 6 and an electrolytic solution.

PCT/JP2020/000218 2019-01-28 2020-01-08 Electrode for lithium ion secondary battery and lithium ion secondary battery WO2020158306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005700.3A CN112840479A (en) 2019-01-28 2020-01-08 Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020565497A JPWO2020158306A1 (en) 2019-01-28 2020-01-08 Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012045 2019-01-28
JP2019-012045 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020158306A1 true WO2020158306A1 (en) 2020-08-06

Family

ID=71840892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000218 WO2020158306A1 (en) 2019-01-28 2020-01-08 Electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JPWO2020158306A1 (en)
CN (1) CN112840479A (en)
WO (1) WO2020158306A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066084A (en) * 2004-08-24 2006-03-09 Konpon Kenkyusho:Kk Anode for lithium secondary battery and its utilization
JP2007280806A (en) * 2006-04-07 2007-10-25 Nissan Motor Co Ltd Electrode for battery
JP2013097993A (en) * 2011-10-31 2013-05-20 Hitachi Maxell Ltd Lithium ion secondary battery
JP2015005553A (en) * 2013-06-19 2015-01-08 Jmエナジー株式会社 Electric power storage device
JP2015176815A (en) * 2014-03-17 2015-10-05 株式会社豊田自動織機 Method for manufacturing electrode for power storage device, slurry for forming insulation layer of electrode for power storage device, electrode for power storage device, and power storage device
JP2017191766A (en) * 2016-04-11 2017-10-19 三星電子株式会社Samsung Electronics Co., Ltd. Composite solid electrolyte, protection negative electrode including the same, lithium battery, and method for manufacturing composite solid electrolyte
JP2018073530A (en) * 2016-10-26 2018-05-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066084A (en) * 2004-08-24 2006-03-09 Konpon Kenkyusho:Kk Anode for lithium secondary battery and its utilization
JP2007280806A (en) * 2006-04-07 2007-10-25 Nissan Motor Co Ltd Electrode for battery
JP2013097993A (en) * 2011-10-31 2013-05-20 Hitachi Maxell Ltd Lithium ion secondary battery
JP2015005553A (en) * 2013-06-19 2015-01-08 Jmエナジー株式会社 Electric power storage device
JP2015176815A (en) * 2014-03-17 2015-10-05 株式会社豊田自動織機 Method for manufacturing electrode for power storage device, slurry for forming insulation layer of electrode for power storage device, electrode for power storage device, and power storage device
JP2017191766A (en) * 2016-04-11 2017-10-19 三星電子株式会社Samsung Electronics Co., Ltd. Composite solid electrolyte, protection negative electrode including the same, lithium battery, and method for manufacturing composite solid electrolyte
JP2018073530A (en) * 2016-10-26 2018-05-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method of the same

Also Published As

Publication number Publication date
JPWO2020158306A1 (en) 2021-02-25
CN112840479A (en) 2021-05-25

Similar Documents

Publication Publication Date Title
US11557753B2 (en) Ion-conductive composite for electrochemical cells
TWI706588B (en) Anode structure with binders for silicon and stabilized lithium metal powder
JP6710692B2 (en) Composite electrolyte for secondary battery, secondary battery and battery pack
US9444090B2 (en) Lithium metal doped electrodes for lithium-ion rechargeable chemistry
US8048339B2 (en) Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
JP6841971B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP6849863B2 (en) Lithium-ion secondary battery, its manufacturing method, and positive electrode for lithium-ion secondary battery
WO2015005067A1 (en) Collector for lithium ion secondary batteries and positive electrode for lithium ion secondary batteries
WO2020184713A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2020050285A1 (en) Lithium ion secondary battery, method for producing same, and electrode for lithium ion secondary batteries
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP2020126733A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020158306A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020204074A1 (en) Lithium ion secondary battery
JP2017071804A (en) Metal film, anode for lithium ion battery, lithium ion battery, and manufacturing method of metal film
JP6876879B2 (en) Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2020140895A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP6876882B1 (en) Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
CN112385058B (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
WO2023153394A1 (en) Negative electrode for solid electrolyte battery, and solid electrolyte battery
JP2022146804A (en) Electrode for lithium ion secondary battery, manufacturing method therefor, slurry composition and lithium ion secondary battery
JP2020149912A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748049

Country of ref document: EP

Kind code of ref document: A1