WO2020158242A1 - Fiber structure and fiber-reinforced composite - Google Patents

Fiber structure and fiber-reinforced composite Download PDF

Info

Publication number
WO2020158242A1
WO2020158242A1 PCT/JP2019/049949 JP2019049949W WO2020158242A1 WO 2020158242 A1 WO2020158242 A1 WO 2020158242A1 JP 2019049949 W JP2019049949 W JP 2019049949W WO 2020158242 A1 WO2020158242 A1 WO 2020158242A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
weft
layer
fiber
branch
Prior art date
Application number
PCT/JP2019/049949
Other languages
French (fr)
Japanese (ja)
Inventor
神谷隆太
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020158242A1 publication Critical patent/WO2020158242A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for

Definitions

  • the present invention relates to a fiber structure having a branch portion and a fiber-reinforced composite material.
  • Fiber-reinforced composite material is used as a lightweight and high-strength material.
  • the fiber-reinforced composite material is a structural component because the reinforcing fiber (reinforcing base material) is compounded in a matrix of resin, ceramics, etc. to improve mechanical properties (mechanical properties) compared to the matrix itself. preferable.
  • a fiber-reinforced composite material there is a fiber-reinforced composite material having a curved portion such as an arc shape in a plan view, and the curved portion is branched into two in the thickness direction of the fiber-reinforced composite material (for example, refer to Patent Document 1).
  • the three-dimensional fiber structure disclosed in Patent Document 1 has an I-shaped cross-sectional shape orthogonal to the longitudinal direction, and is curved along the longitudinal direction.
  • the three-dimensional fiber structure has a fan-shaped plate-shaped portion and plate-shaped portions formed on both sides so as to form a right angle to the fan-shaped plate-shaped portion at the upper and lower ends of the fan-shaped plate-shaped portion. Each plate-shaped portion is curved and formed along the longitudinal direction of the fan-shaped plate-shaped portion.
  • a yarn layer made of 0-degree arranged yarns arranged in an arc shape, a yarn layer made of 90-degree arranged yarns, and a yarn layer made of ⁇ 45-degree arranged yarns are joined by a thickness direction yarn.
  • the plate-shaped portion is formed by branching the laminated yarn group into two in the thickness direction so that the circular arc-shaped peripheral portion which is not joined by the thickness direction thread in the fan-shaped plate-shaped portion is perpendicular to the fan-shaped plate-shaped portion. And is formed by bending both sides in the thickness direction.
  • the plate-shaped portions provided at the upper end and the lower end of the fan-shaped plate-shaped portion are formed by bifurcating arc-shaped peripheral portions that are not joined by the thickness direction thread into two in the thickness direction. ing. For this reason, the roots of the two branched yarn groups are curved, and the binding force (restraint force) of the thickness direction yarns is weak, and delamination of the laminated yarn group is likely to occur.
  • the present invention is to provide a fiber structure and a fiber reinforced composite material that can suppress delamination at a curved branch portion.
  • a fibrous structure for solving the above problems includes a first yarn layer made of a first yarn and a second yarn layer made of a second yarn intersecting with the first yarn, and the first yarn A multilayer woven fabric in which a layer and the second yarn layer are stacked, and the first yarn layer and the second yarn layer are bound by a binding yarn in a stacking direction in which the first yarn layer and the second yarn layer are stacked.
  • all the yarn layers of the multilayer woven fabric are continuous with the main body along the main-axis direction of the first yarn and the main-axis part of the second yarn,
  • a fibrous structure which is provided over the whole and has a branch portion obtained by branching a yarn layer of the multilayer fabric into a first forming portion on one end side in the laminating direction and a second forming portion on the other end side in the laminating direction.
  • the gist of the present invention is that the yarn main axis of the second yarn closest to the branch boundary line of the second yarn of the main body portion is a parallel curve with respect to the line.
  • the main body closest to the branch boundary line from the position where the first forming portion and the second forming portion branch that is, the position of the curved branch boundary line.
  • the part up to the second yarn is a part of the main body part where the restraint in the stacking direction is weak.
  • the distance between the second yarn and the branch boundary line can be made constant along the yarn main axis direction of the first yarn, and the stacking direction The magnitude of the restraint force on the inner wall is eliminated, and delamination of the branched portion can be suppressed.
  • a fiber-reinforced composite material for solving the above problems is a fiber-reinforced composite material in which a fiber structure is used as a reinforcing base material, and the reinforcing base material is composited in a matrix, wherein the fiber structure is The gist is that it is the fiber structure described in 1.
  • the position of the main body portion closest to the branch boundary line from the position where the first forming portion and the second forming portion branch that is, the position of the branch boundary line.
  • the second yarn Up to the second yarn, it is a portion of the main body portion where the restraint in the stacking direction is weak.
  • the distance between the second yarn and the branch boundary line can be made constant along the yarn main axis direction of the first yarn, and restrained in the stacking direction. The magnitude of the force is eliminated, and delamination at the branch can be suppressed. Therefore, also in the fiber-reinforced composite material, it is possible to eliminate the magnitude of the strength in the vicinity of the boundary between the main body portion and the branch portion.
  • Explanatory drawing of the manufacturing process of a branch part. The top view which shows the fiber structure of another example.
  • the plate member 10 is configured by connecting the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 by engagement of concavities and convexities.
  • the first fiber-reinforced composite material 11 is formed by compounding the fiber structure 20 as a reinforcing base material in a matrix resin (shown by dot hatching).
  • the second fiber reinforced composite material 110 is formed by compounding the fiber structure 120 as a reinforcing base material in a matrix resin (shown by dot hatching).
  • the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 may be formed by compounding the fiber structures 20 and 120 with matrix metal or ceramics instead of the matrix resin.
  • Each of the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 has a substantially rectangular shape in plan view and has a thickness.
  • the first fiber-reinforced composite material 11 has a curved shape such that one edge in a plan view is recessed, and the first fiber-reinforced composite material 11 has a connection recess 12 along the curved one edge.
  • the second fiber-reinforced composite material 110 has a curved shape such that one edge in a plan view bulges, and the second fiber-reinforced composite material 110 has a connecting convex portion 112 along the one curved edge.
  • the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 are connected by fitting the connection convex portion 112 of the second fiber-reinforced composite material 110 into the connection concave portion 12 of the first fiber-reinforced composite material 11.
  • the plate member 10 having a rectangular shape in plan view is configured.
  • the plan view means that the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 are viewed from the outside along the thickness direction.
  • the fiber structure 20 has a plate-shaped main body portion 21 and a branch portion 22 continuous with the main body portion 21.
  • the direction in which the main body portion 21 and the branch portion 22 are continuous is referred to as the first direction X.
  • the first direction X coincides with the extending direction of the pair of short edge portions of the fiber structure 20.
  • the direction orthogonal to the first direction X is the second direction Y.
  • the second direction Y coincides with the extending direction of the long edge portion of the fiber structure 20.
  • the branch portion 22 has a bifurcated shape in the thickness direction.
  • the branch part 22 has a first forming part 23 located on one end side in the thickness direction of the fiber structure 20 and a second forming part 24 located on the other end side in the thickness direction.
  • the fibrous structure 20 has a branch boundary line F1 at a position where the facing surfaces of the first forming portion 23 and the second forming portion 24 intersect with each other, and the first forming portion 23 and the first forming portion 23 are separated from each other with the branch boundary line F1 as a boundary.
  • the 2 forming part 24 is bifurcated.
  • the fibrous structure 20 has a ridge line F2 along a portion where the first forming portion 23 and the second forming portion 24 are bent with respect to the outer surface of the main body portion 21.
  • the first forming portion 23 and the second forming portion 24 are bent from the ridge line F2 with respect to the main body portion 21.
  • the branch boundary line F1 and the ridge line F2 are each curved in an arc shape in a plan view.
  • the extending direction of the branch boundary line F1 and the ridge line F2 is the second direction Y (longitudinal direction) of the fiber structure 20.
  • the distance between the branch boundary line F1 and the ridge line F2 along the first direction X is constant in the second direction Y.
  • the first forming portion 23 has a first tip edge 23a which is curved in a plan view by extending in an arc shape, and the second forming portion 24 is extended in an arc shape.
  • the second tip edge 24a is curved in a plan view.
  • the first tip edge 23a and the second tip edge 24a are located at one end of the fibrous structure 20 in the first direction X.
  • the fiber structure 20 has a base end edge 20a at the other end in the first direction X.
  • the first tip edge 23a and the second tip edge 24a are parallel curves to the branch boundary line F1 and the ridge line F2 in a plan view. That is, in plan view, the first tip edge 23a and the second tip edge 24a share a normal line of the same length at all points on the branch boundary line F1 or the ridge line F2, and the branch boundary line F1 or The distance between the ridgeline F2 and the first tip edge 23a is constant, and the distance between the branch boundary line F1 or the ridgeline F2 and the second tip edge 24a is constant in the second direction Y.
  • the distance between the branch boundary line F1 or the ridgeline F2 and the first tip edge 23a and the distance between the branch boundary line F1 or the ridgeline F2 and the second tip edge 24a are constant in the second direction Y.
  • the term “included” includes the manufacturing tolerance and the manufacturing error of the fiber structure 20 and is not limited to the same distance.
  • Each of the first forming portion 23 and the first forming portion 23 has a fan-shaped plate shape in plan view.
  • the fiber structure 20 is a multi-layer woven fabric.
  • the warp yarns 31 as a plurality of first yarns arranged in parallel to each other in a linearly extending direction of the yarn main axis L1 and a state in which the yarn main axis direction L2 extends in a direction intersecting the warp yarns 31.
  • It is a woven fabric having a plurality of weft yarns 32 as the second yarns.
  • the yarn main axis direction L1 of the warp yarn 31 extends linearly in the first direction X of the fiber structure 20, and the yarn main axis direction L2 of the weft yarn 32 extends linearly or curvedly in the second direction Y of the fiber structure 20. ..
  • the warp yarn 31 and the weft yarn 32 are fiber bundles formed by bundling reinforcing fibers.
  • the reinforcing fibers organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fiber obtained by mixing organic fibers and inorganic fibers may be used.
  • Examples of the type of organic fiber include aramid fiber, poly-p-phenylenebenzobisoxazole fiber, and ultrahigh molecular weight polyethylene fiber
  • examples of the type of inorganic fiber include carbon fiber, glass fiber, ceramic fiber and the like.
  • the fiber structure 20 is configured by laminating a plurality of yarn layers.
  • the stacking direction of the yarn layers is the stacking direction Z of the fiber structure 20.
  • the stacking direction Z coincides with the thickness direction of the first fiber-reinforced composite material 11. Note that, in FIG. 5, in order to make it easier to understand the positional relationship between the warp yarns 31 and the weft yarns 32, the adjacent warp yarns 31 and the weft yarns 32 are illustrated as separated from each other, but in reality, the end portions of the adjacent warp yarns 31 are adjacent to each other. The ends of the weft yarns 32 are arranged so as to overlap each other.
  • the main body 21 of the fiber structure 20 has a plurality of warp layers in which a plurality of warp yarns 31 are formed side by side in the second direction Y.
  • the warp layers include a first warp layer 41 and a second warp layer 42 arranged below the first warp layer 41 in the laminating direction Z.
  • the first warp layer 41 and the second warp layer 42 form a first yarn layer.
  • the main body 21 of the fiber structure 20 has a plurality of weft layers in which a plurality of wefts 32 are formed side by side in the first direction X.
  • the third weft layer 53 and the fourth weft layer 54 arranged below the third weft layer 53 in the stacking direction Z are included.
  • the first weft layer 51, the second weft layer 52, the third weft layer 53, and the fourth weft layer 54 form a second yarn layer.
  • the main body portion 21 of the fiber structure 20 includes a first weft layer 51, a first warp layer 41, a second weft layer 52, a third weft layer 53, a second weft layer 53, a second weft layer 53, and a second weft layer 53 from one end to the other end (from top to bottom) in the stacking direction Z.
  • the warp layer 42 and the fourth weft layer 54 are laminated in this order.
  • the first weft layer 51, the first warp layer 41, the second weft layer 52, the third weft layer 53, the second warp layer 42, and the fourth weft layer 54, that is, all the yarn layers of the main body portion 21, are composed of a plurality of layers. It is restrained in the stacking direction Z by the restraint yarn 25.
  • the plurality of binding threads 25 are arranged in the second direction Y.
  • Each restraint yarn 25 is for holding the shape of the fibrous structure 20, and is a fiber bundle of reinforcing fibers.
  • the reinforcing fibers organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fiber obtained by mixing organic fibers and inorganic fibers may be used.
  • the plurality of constraining yarns 25 are arranged substantially parallel to the warp yarns 31 and folded back through the outer surface of the weft yarns 32 of the uppermost first weft yarn layer 51 constituting the main body portion 21 of the fibrous structure 20. It is arranged.
  • each of the restraint yarns 25 penetrates the main body portion 21 in the stacking direction Z and is arranged so as to be folded back through the outer surface of the weft yarn 32 of the fourth weft layer 54 which is the lowermost layer. Therefore, the restraint yarn 25 is engaged with the weft yarns 32 of the first weft layer 51 and the fourth weft layer 54 at both ends in the stacking direction Z.
  • the positions of the weft yarns 32 folded back at the first weft layer 51 or the fourth weft layer 54 are displaced in the first direction X. Then, the restraint yarn 25 is engaged with each weft yarn 32, whereby the first to fourth weft layers 51 to 54 are restrained in the laminating direction Z, and the first weft layer 51 and the second weft layer adjacent to each other in the laminating direction Z.
  • the first warp layer 41 is constrained between 52 and the second warp layer 42 is constrained between the third weft layer 53 and the fourth weft layer 54.
  • the first weft layer 51, the first warp layer 41, and the second weft layer 52 are constrained in the laminating direction Z by the constraining yarn 25.
  • the restraint yarn 25 is engaged with the weft yarns 32 of the first weft layer 51 and the second weft layer 52 at both ends of the first forming portion 23 in the stacking direction Z.
  • the third weft layer 53, the second warp layer 42, and the fourth weft layer 54 are constrained in the laminating direction Z by the constraining yarn 25.
  • the restraint yarn 25 is engaged with the weft yarns 32 of the third weft layer 53 and the fourth weft layer 54 at both ends of the second forming portion 24 in the stacking direction Z.
  • the first forming portion 23 and the second forming portion 24 are not restrained in the stacking direction Z by the restraining yarn 25. Therefore, in the branching portion 22, the first forming portion 23 is located on one end side in the laminating direction Z in the multilayer fabric, and the second forming portion 24 is located on the other end side in the laminating direction Z in the multilayer fabric.
  • the yarn main axis direction L2 of the weft yarn 32 extends linearly at the base end edge 20a of the fiber structure 20. Then, among the weft threads 32, from the weft thread 32 located at the base end edge 20a to the weft thread 32 reaching just before the branch boundary line F1, the yarn main axis direction L2 extends linearly in the second direction Y. Then, of the wefts 32, from the weft 32 closer to the base end edge 20a than the branch boundary line F1 to the wefts 32 extending from the first tip edge 23a and the second tip edge 24a, the yarn main axis direction L2 is all curved with the same curvature. doing.
  • the closest weft yarn 32 along the first direction X to the branch boundary line F1 of the branch portion 22 is set as the shortest weft yarn 32a.
  • the shortest wefts 32a are all the wefts 32 in the stacking direction Z that are adjacent to the branch boundary line F1 along the first direction X. Therefore, the shortest weft 32a exists in the first weft layer 51, the second weft layer 52, the third weft layer 53, and the fourth weft layer 54.
  • All the shortest wefts 32a are parallel curves to the branch boundary line F1. That is, the shortest weft 32a shares a normal line of the same length at all points of the branch boundary line F1, and the distance between the branch boundary line F1 and the shortest weft thread 32a is constant in the second direction Y.
  • the fact that the distance between the branch boundary line F1 and the shortest weft 32a is constant in the second direction Y includes the manufacturing tolerance and the manufacturing error of the fiber structure 20 and is the same. Not limited.
  • the restraining yarns 25 intersect at the positions where the first forming portion 23 and the second forming portion 24 branch, and the restraining yarns 25 are the shortest wefts 32a adjacent to the intersecting positions in the first direction X.
  • the main body portion 21 is restrained in the stacking direction Z by engaging with the shortest wefts 32a of the first weft layer 51 and the fourth weft layer 54.
  • the restraint yarns 25 restraining the first forming portion 23 the restraint yarns 25 engaged with the weft yarns 32 of the second weft layer 52 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarns 32a of the first weft layer 51. ing. Further, among the restraint yarns 25 for restraining the first forming portion 23, the restraint yarns 25 engaged with the weft yarns 32 of the first weft layer 51 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarn 32a of the fourth weft layer 54. It fits.
  • the restraint yarns 25 engaged with the weft yarns 32 of the fourth weft layer 54 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarns 32a of the first weft layer 51. It fits.
  • the restraint yarns 25 engaged with the weft yarns 32 of the third weft layer 53 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarns 32a of the fourth weft layer 54. ing.
  • the wefts 32 other than the shortest weft 32a of the main body portion 21 are the constraining yarns 25.
  • the restraint force of the restraint thread 25 is smaller than that of the restrained portion.
  • the larger the distance from the branch boundary line F1 along the first direction X to the shortest weft 32a the weaker the binding force of the binding yarn 25 on the main body portion 21 becomes.
  • the binding force of the binding yarn 25 is large or small.
  • the shortest weft 32a is curved to form a parallel curve with respect to the branch boundary line F1, so that the distance from the branch boundary line F1 along the first direction X to each shortest weft thread 32a is set to the second direction. Since all are the same along Y, the difference in the restraint force by the restraint yarn 25 is eliminated in the vicinity of the boundary between the branch portion 22 and the main body portion 21.
  • the weaving machine for weaving the fiber structure 20 includes a plurality of pairs (only one pair is shown in FIGS. 6 and 7) of heald frames 61, a reed 62a or a modified reed 62b, and a take-up mechanism 63.
  • the weaving machine is provided with a weft inserting mechanism 64 and a warp supplying mechanism 65.
  • the pair of heddle frames 61 each include a heald corresponding to each warp yarn 31, and are alternately moved up and down via a heddle frame drive mechanism (not shown) to open the warp yarns 31.
  • the warp yarns 31 are respectively pulled out from a creel or a beam (not shown) while applying a predetermined tension.
  • the reed 62a or the modified reed 62b is arranged between the heald frame 61 and the take-up mechanism 63.
  • the reeds 62a or the modified reeds 62b have a retreat position in which each warp thread 31 passes through the reed wing and is retracted rearward from the weft insertion mechanism 64 along the warp threads 31 and a weft thread 32 that is wefted by the weft insertion mechanism 64. It moves back and forth between the forward position where it is driven into the front F.
  • the linear reed 62a is used when beating the main body 21 so that the weft thread 32 extends linearly in the yarn main axis direction L2.
  • the deformed reed 62b that is curved in an arc shape is used when beating the part of the main body 21 and the branching portion 22 so that the weft yarn 32 is curved in the yarn main axis direction L2.
  • the weft inserting mechanism 64 inserts the weft yarn 32 supplied from the weft yarn supplying bobbin 66 into the opened warp yarn 31 between the reed 62a or the deformed reed 62b retracted to the retracted position and the cloth fell F.
  • a rapier mechanism is used as the weft inserting mechanism 64, and a cutter 64a is disposed on the front surface thereof.
  • the cutter 64a cuts the rear end portion of the weft yarn 32 that has been weft-inserted, every time weft-inserting.
  • the take-up mechanism 63 is disposed immediately in front of the cloth fell F and takes up the woven fiber structure 20.
  • the main body portion 21 is formed. As shown in FIG. 6, the end portion of the warp yarn 31 is fixed to the take-up mechanism 63, and the weft insertion mechanism 64 inserts the weft yarn 32 while the warp yarn 63 is taken up (winded) from the warp yarn supply mechanism 65. .. At this time, the warp yarns 31 are taken up by the take-up mechanism 63 so that the yarn main axis direction L1 extends linearly, and the weft yarns 32 are inserted so that the yarn main axis direction L2 is orthogonal to the yarn main axis direction L1. To be done. Then, the weft yarn 32 that has been weft-inserted from the weft-inserting mechanism 64 is beaten by the reed 62a so that the yarn main axis direction L2 extends linearly.
  • the weft insertion mechanism 64 inserts the weft yarn 32 while the warp yarn feeding mechanism 65 takes up (winds) the warp yarn 31 by the take-up mechanism 63, and the weft-inserted weft yarn 32 is deformed. It is beaten by 62b so that the yarn main axis direction L2 is curved.
  • first weft layer 51, the first warp layer 41, the second weft layer 52, the third weft layer 53, the second warp layer 42, and the fourth weft layer 54 are formed, and these are bound by the binding yarn 25.
  • the body portion 21 is constrained to be formed.
  • the branch part 22 is manufactured.
  • a jig not shown is used.
  • the first forming portion 23 and the second forming portion 24 are woven with the jig interposed therebetween.
  • the warp yarns 31 are arranged on both sides in the thickness direction of the jig, and the weft yarn 32 inserted from the weft supply bobbin 66 is beaten by the deformed reed 62b, It is curved to a predetermined curvature.
  • the binding yarn 25 is also woven by the loom.
  • the first forming portion 23 and the second forming portion 24 are woven with the jig interposed therebetween.
  • the jig is removed.
  • the third weft layer 53, the second warp layer 42, and the fourth weft layer 54 are formed while forming the first weft layer 51, the first warp layer 41, and the second weft layer 52, and the constraining yarn is formed. These are constrained by 25 to form the first forming portion 23 and the second forming portion 24.
  • the first forming portion 23 having a constant distance between the branch boundary line F1 and the first tip edge 23a along the first direction X is formed, and the distance between the branch boundary line F1 and the second tip edge 24a is constant.
  • the second forming portion 24 is formed. Further, the branch portion 22 and the main body portion 21 are formed, and the fiber structure 20 is formed.
  • the fibrous structure 20 configured as described above has the fibrous structure 20 in the connection recess 12 formed between the first forming portion 23 and the second forming portion 24 of the fibrous structure 20.
  • the connecting convex portion 112 formed on 120 is fitted to form a rectangular plate. Then, when the fiber structure 20 and the fiber structure 120 are impregnated with a matrix resin, the first fiber-reinforced composite material 11 and the second fiber using the fiber structure 20 and the fiber structure 120 as a reinforcing base material and a resin as a matrix.
  • the reinforced composite material 110 is manufactured and the rectangular flat plate member 10 is formed.
  • each shortest weft thread 32a of the main body portion 21 is a parallel curve with respect to the branch boundary line F1 located at the root of the branch portion 22. Therefore, the distance from the branch boundary line F1 to each shortest weft thread 32a can be made constant over the entire second direction Y, and the binding force of the binding thread 25 near the branch boundary line F1 can be eliminated. Therefore, delamination can be suppressed near the boundary between the main body portion 21 and the branch portion 22. Even in the first fiber-reinforced composite material 11 using the fiber structure 20 as a reinforcing base material, it is possible to eliminate the magnitude of strength near the boundary between the main body portion 21 and the branch portion 22.
  • the weft yarns 32 are arranged to extend linearly in the yarn main axis direction L2 except for a part near the branch portion 22, but as shown in FIG.
  • the main axis direction L2 may be curved to form a parallel curve with respect to the branch boundary line F1.
  • the first yarn may be the weft yarn 32 and the second yarn may be the warp yarn 31.
  • the fibrous structure 20 may have a configuration in which branch portions 22 are provided on both sides of the main body portion 21 along the first direction X.
  • the number of yarn layers forming the branching portion 22 and the main body portion 21 may be changed.
  • the fibrous structure 20 of the first fiber-reinforced composite material 11 may include the branch portions 22 at a plurality of edges of the fibrous structure 20.
  • the wefts 32 other than the shortest weft 32a may have a curvature that is not a parallel curve to the branch boundary line F1.
  • the shortest weft 32a forming a parallel curve to the branch boundary line F1 is provided in the first to fourth weft layers 51 to 54, and the shortest weft 32a is provided in the entire laminating direction Z of the fibrous structure 20. It is not limited to this.
  • the shortest weft 32a that is a curved line parallel to the branch boundary line F1 may be provided only in the first weft layer 51 and the fourth weft layer 54, or only in the second weft layer 52 and the third weft layer 53. It may be.

Abstract

A fiber structure (20) of a first fiber-reinforced composite comprises a body (21) and a branch (22). The branch (22) comprises a branch boundary line (F1) that extends along a portion at which there is branching into a first formed part (23) and a second formed part (24), and comprises a first distal edge (23a), which extends along the distal end of the first formed part (23), and a second distal edge (24a) that extends along the distal end of the second formed part (24). The branch (22) has a shape such that the branch boundary line (F1), the first distal edge (23a), and the second distal edge (24a) are curved. In the fiber structure (20), the thread major axis of that weft thread (32), from among the weft threads (32) in the body (21), that is closest to the branch boundary line (F1) is a curved line parallel to the branch boundary line (F1).

Description

繊維構造体及び繊維強化複合材Fiber structure and fiber reinforced composite material
 本発明は、分岐部を有する繊維構造体、及び繊維強化複合材に関する。 The present invention relates to a fiber structure having a branch portion and a fiber-reinforced composite material.
 軽量、高強度の材料として繊維強化複合材が使用されている。繊維強化複合材は、強化繊維(強化基材)が樹脂、セラミックス等のマトリックス中に複合化されることにより、マトリックス自体に比べて力学的特性(機械的特性)が向上するため、構造部品として好ましい。 Fiber-reinforced composite material is used as a lightweight and high-strength material. The fiber-reinforced composite material is a structural component because the reinforcing fiber (reinforcing base material) is compounded in a matrix of resin, ceramics, etc. to improve mechanical properties (mechanical properties) compared to the matrix itself. preferable.
 また、繊維強化複合材として、平面視円弧状といった湾曲部を有し、その湾曲部を繊維強化複合材の厚さ方向に二つに分岐させたものがある(例えば、特許文献1参照)。特許文献1に開示の三次元繊維構造体は、長手方向と直交する断面形状がI形の断面形状であり、長手方向に沿って湾曲形成されている。三次元繊維構造体は、扇面板状部と、扇面板状部の上端及び下端において扇面板状部と直角を成すように両側に形成された板状部とを有する。各板状部は、扇面板状部の長手方向に沿って湾曲形成されている。 Further, as a fiber-reinforced composite material, there is a fiber-reinforced composite material having a curved portion such as an arc shape in a plan view, and the curved portion is branched into two in the thickness direction of the fiber-reinforced composite material (for example, refer to Patent Document 1). The three-dimensional fiber structure disclosed in Patent Document 1 has an I-shaped cross-sectional shape orthogonal to the longitudinal direction, and is curved along the longitudinal direction. The three-dimensional fiber structure has a fan-shaped plate-shaped portion and plate-shaped portions formed on both sides so as to form a right angle to the fan-shaped plate-shaped portion at the upper and lower ends of the fan-shaped plate-shaped portion. Each plate-shaped portion is curved and formed along the longitudinal direction of the fan-shaped plate-shaped portion.
 扇面板状部は、円弧状に配列された0度配列糸からなる糸層と、90度配列糸からなる糸層と、±45度配列糸からなる糸層と、が厚さ方向糸で結合されて形成されている。板状部は、扇面板状部において、厚さ方向糸により結合されなかった円弧状周縁部を、扇面板状部に対し直角となるように、積層糸群を厚さ方向に二つに分岐させて、厚さ方向の両側に折り曲げることにより形成されている。 In the fan-shaped plate portion, a yarn layer made of 0-degree arranged yarns arranged in an arc shape, a yarn layer made of 90-degree arranged yarns, and a yarn layer made of ±45-degree arranged yarns are joined by a thickness direction yarn. Is formed. The plate-shaped portion is formed by branching the laminated yarn group into two in the thickness direction so that the circular arc-shaped peripheral portion which is not joined by the thickness direction thread in the fan-shaped plate-shaped portion is perpendicular to the fan-shaped plate-shaped portion. And is formed by bending both sides in the thickness direction.
特開2005-97759号公報JP, 2005-97759, A
 ところが、特許文献1において、扇面板状部の上端及び下端に設けられた板状部は、厚さ方向糸により結合されなかった円弧状周縁部を厚さ方向に二つに分岐させて形成されている。このため、分岐された二つの糸群の根本は湾曲しており、しかも厚さ方向糸による結合力(拘束力)が弱く、積層糸群の層間剥離が発生しやい。 However, in Patent Document 1, the plate-shaped portions provided at the upper end and the lower end of the fan-shaped plate-shaped portion are formed by bifurcating arc-shaped peripheral portions that are not joined by the thickness direction thread into two in the thickness direction. ing. For this reason, the roots of the two branched yarn groups are curved, and the binding force (restraint force) of the thickness direction yarns is weak, and delamination of the laminated yarn group is likely to occur.
 本発明は、湾曲した分岐部における層間剥離を抑制できる繊維構造体及び繊維強化複合材を提供することにある。 The present invention is to provide a fiber structure and a fiber reinforced composite material that can suppress delamination at a curved branch portion.
 上記問題点を解決するための繊維構造体は、第1糸からなる第1糸層と、前記第1糸と交差する第2糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1糸の糸主軸方向に沿って前記本体部に連続し、かつ前記第2糸の糸主軸方向の全体に亘って設けられ、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体であって、前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線を有し、前記分岐部は、前記分岐境界線が湾曲した形状であり、前記分岐境界線に対し、前記本体部の前記第2糸のうち前記分岐境界線に最も近い前記第2糸の糸主軸が平行曲線であることを要旨とする。 A fibrous structure for solving the above problems includes a first yarn layer made of a first yarn and a second yarn layer made of a second yarn intersecting with the first yarn, and the first yarn A multilayer woven fabric in which a layer and the second yarn layer are stacked, and the first yarn layer and the second yarn layer are bound by a binding yarn in a stacking direction in which the first yarn layer and the second yarn layer are stacked. Yes, all the yarn layers of the multilayer woven fabric are continuous with the main body along the main-axis direction of the first yarn and the main-axis part of the second yarn, A fibrous structure which is provided over the whole and has a branch portion obtained by branching a yarn layer of the multilayer fabric into a first forming portion on one end side in the laminating direction and a second forming portion on the other end side in the laminating direction. A branch boundary line extending along a portion of the branch portion that branches into the first forming portion and the second forming portion, wherein the branch portion has a curved shape of the branch boundary line, The gist of the present invention is that the yarn main axis of the second yarn closest to the branch boundary line of the second yarn of the main body portion is a parallel curve with respect to the line.
 これによれば、本体部及び分岐部を有する繊維構造体においては、第1形成部と第2形成部が分岐する位置、すなわち湾曲した分岐境界線の位置から、その分岐境界線に最も近い本体部の第2糸までは、本体部において積層方向への拘束が弱い部分である。しかし、その第2糸を湾曲させ、分岐境界線に対し平行曲線とすることで、第2糸と分岐境界線との距離を、第1糸の糸主軸方向に沿って一定にでき、積層方向への拘束力の大小が無くなり、分岐部の層間剥離を抑制できる。 According to this, in the fibrous structure having the main body portion and the branch portion, the main body closest to the branch boundary line from the position where the first forming portion and the second forming portion branch, that is, the position of the curved branch boundary line. The part up to the second yarn is a part of the main body part where the restraint in the stacking direction is weak. However, by curving the second yarn and making it a parallel curve to the branch boundary line, the distance between the second yarn and the branch boundary line can be made constant along the yarn main axis direction of the first yarn, and the stacking direction The magnitude of the restraint force on the inner wall is eliminated, and delamination of the branched portion can be suppressed.
 上記問題点を解決するための繊維強化複合材は、繊維構造体を強化基材とし、該強化基材がマトリックス中に複合化された繊維強化複合材であって、前記繊維構造体が請求項1に記載の繊維構造体であることを要旨とする。 A fiber-reinforced composite material for solving the above problems is a fiber-reinforced composite material in which a fiber structure is used as a reinforcing base material, and the reinforcing base material is composited in a matrix, wherein the fiber structure is The gist is that it is the fiber structure described in 1.
 これによれば、本体部及び分岐部を有する繊維構造体においては、第1形成部と第2形成部が分岐する位置、すなわち分岐境界線の位置から、その分岐境界線に最も近い本体部の第2糸までは、本体部において積層方向への拘束が弱い部分である。しかし、その第2糸を分岐境界線に対し平行曲線とすることで、第2糸と分岐境界線との距離を、第1糸の糸主軸方向に沿って一定にでき、積層方向への拘束力の大小が無くなり、分岐部の層間剥離を抑制できる。よって、繊維強化複合材においても、本体部における分岐部との境界付近の強度の大小を無くすことができる。 According to this, in the fiber structure having the main body portion and the branch portion, the position of the main body portion closest to the branch boundary line from the position where the first forming portion and the second forming portion branch, that is, the position of the branch boundary line. Up to the second yarn, it is a portion of the main body portion where the restraint in the stacking direction is weak. However, by making the second yarn parallel to the branch boundary line, the distance between the second yarn and the branch boundary line can be made constant along the yarn main axis direction of the first yarn, and restrained in the stacking direction. The magnitude of the force is eliminated, and delamination at the branch can be suppressed. Therefore, also in the fiber-reinforced composite material, it is possible to eliminate the magnitude of the strength in the vicinity of the boundary between the main body portion and the branch portion.
 本発明によれば、湾曲した分岐部における層間剥離を抑制できる。 According to the present invention, it is possible to suppress delamination at a curved branch portion.
第1繊維強化複合材及び第2繊維強化複合材を示す斜視図。The perspective view which shows a 1st fiber reinforced composite material and a 2nd fiber reinforced composite material. 板部材を示す平面図。The top view which shows a board member. 分岐部及び本体部を示す部分斜視図。The partial perspective view which shows a branch part and a main-body part. 繊維構造体を示す平面図。The top view which shows a fiber structure. 分岐部及び本体部の繊維構造を模式的に示す図。The figure which shows typically the fiber structure of a branch part and a main-body part. 本体部の製造工程の説明図。Explanatory drawing of the manufacturing process of a main-body part. 分岐部の製造工程の説明図。Explanatory drawing of the manufacturing process of a branch part. 別例の繊維構造体を示す平面図。The top view which shows the fiber structure of another example.
 以下、繊維構造体及び繊維強化複合材を具体化した一実施形態を図1~図7にしたがって説明する。
 図1又は図2に示すように、板部材10は、第1繊維強化複合材11と第2繊維強化複合材110とを凹凸の係合によって連結して構成されている。第1繊維強化複合材11は、マトリックス樹脂(ドットハッチングで示す)中に、繊維構造体20を強化基材として複合化して形成されている。また、第2繊維強化複合材110は、マトリックス樹脂(ドットハッチングで示す)中に、繊維構造体120を強化基材として複合化して形成されている。なお、第1繊維強化複合材11及び第2繊維強化複合材110は、マトリックス樹脂の代わりにマトリックス金属やセラミックスに繊維構造体20,120を複合化して形成してもよい。
An embodiment in which a fiber structure and a fiber-reinforced composite material are embodied will be described below with reference to FIGS. 1 to 7.
As shown in FIG. 1 or FIG. 2, the plate member 10 is configured by connecting the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 by engagement of concavities and convexities. The first fiber-reinforced composite material 11 is formed by compounding the fiber structure 20 as a reinforcing base material in a matrix resin (shown by dot hatching). The second fiber reinforced composite material 110 is formed by compounding the fiber structure 120 as a reinforcing base material in a matrix resin (shown by dot hatching). The first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 may be formed by compounding the fiber structures 20 and 120 with matrix metal or ceramics instead of the matrix resin.
 第1繊維強化複合材11及び第2繊維強化複合材110は、それぞれ平面視が略矩形状であり、厚さを有する。第1繊維強化複合材11は、平面視における一つの縁が凹むように湾曲した形状であり、第1繊維強化複合材11は、湾曲した一つ縁に沿って連結凹部12を有する。第2繊維強化複合材110は、平面視における一つの縁が膨らむように湾曲した形状であり、第2繊維強化複合材110は、湾曲した一つの縁に沿って連結凸部112を有する。第1繊維強化複合材11の連結凹部12に、第2繊維強化複合材110の連結凸部112を嵌合することにより、第1繊維強化複合材11と第2繊維強化複合材110が連結され、平面視矩形状の板部材10が構成されている。なお、平面視とは、第1繊維強化複合材11及び第2繊維強化複合材110を厚さ方向に沿って外側から見ることである。 Each of the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 has a substantially rectangular shape in plan view and has a thickness. The first fiber-reinforced composite material 11 has a curved shape such that one edge in a plan view is recessed, and the first fiber-reinforced composite material 11 has a connection recess 12 along the curved one edge. The second fiber-reinforced composite material 110 has a curved shape such that one edge in a plan view bulges, and the second fiber-reinforced composite material 110 has a connecting convex portion 112 along the one curved edge. The first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 are connected by fitting the connection convex portion 112 of the second fiber-reinforced composite material 110 into the connection concave portion 12 of the first fiber-reinforced composite material 11. The plate member 10 having a rectangular shape in plan view is configured. The plan view means that the first fiber-reinforced composite material 11 and the second fiber-reinforced composite material 110 are viewed from the outside along the thickness direction.
 次に、第1繊維強化複合材11の繊維構造体20について詳細に説明する。
 繊維構造体20は、板状の本体部21と、本体部21に連続する分岐部22とを有する。本実施形態において、本体部21と分岐部22とが連続する方向を第1方向Xとする。第1方向Xは、繊維構造体20の一対の短縁部の延びる方向と一致する。また、本実施形態において、第1方向Xに直交する方向を第2方向Yとする。第2方向Yは、繊維構造体20の長縁部の延びる方向と一致する。
Next, the fiber structure 20 of the first fiber-reinforced composite material 11 will be described in detail.
The fiber structure 20 has a plate-shaped main body portion 21 and a branch portion 22 continuous with the main body portion 21. In the present embodiment, the direction in which the main body portion 21 and the branch portion 22 are continuous is referred to as the first direction X. The first direction X coincides with the extending direction of the pair of short edge portions of the fiber structure 20. Further, in the present embodiment, the direction orthogonal to the first direction X is the second direction Y. The second direction Y coincides with the extending direction of the long edge portion of the fiber structure 20.
 図3に示すように、分岐部22は、厚さ方向に二股に分岐した形状である。分岐部22は、繊維構造体20の厚さ方向の一端側に位置する第1形成部23と、厚さ方向の他端側に位置する第2形成部24とを有する。 As shown in FIG. 3, the branch portion 22 has a bifurcated shape in the thickness direction. The branch part 22 has a first forming part 23 located on one end side in the thickness direction of the fiber structure 20 and a second forming part 24 located on the other end side in the thickness direction.
 繊維構造体20は、第1形成部23と第2形成部24の対向面同士が交差する位置に分岐境界線F1を有し、この分岐境界線F1を境にして第1形成部23と第2形成部24が二股に分岐している。また、繊維構造体20は、第1形成部23及び第2形成部24が本体部21の外面に対し折れ曲がる部分に沿って稜線F2を有する。第1形成部23及び第2形成部24は、稜線F2から本体部21に対し折り曲がっている。分岐境界線F1及び稜線F2はそれぞれ平面視が弧状に湾曲している。分岐境界線F1及び稜線F2の延びる方向は、繊維構造体20の第2方向Y(長手方向)である。第1方向Xに沿った分岐境界線F1と稜線F2との距離は、第2方向Yに一定である。 The fibrous structure 20 has a branch boundary line F1 at a position where the facing surfaces of the first forming portion 23 and the second forming portion 24 intersect with each other, and the first forming portion 23 and the first forming portion 23 are separated from each other with the branch boundary line F1 as a boundary. The 2 forming part 24 is bifurcated. Further, the fibrous structure 20 has a ridge line F2 along a portion where the first forming portion 23 and the second forming portion 24 are bent with respect to the outer surface of the main body portion 21. The first forming portion 23 and the second forming portion 24 are bent from the ridge line F2 with respect to the main body portion 21. The branch boundary line F1 and the ridge line F2 are each curved in an arc shape in a plan view. The extending direction of the branch boundary line F1 and the ridge line F2 is the second direction Y (longitudinal direction) of the fiber structure 20. The distance between the branch boundary line F1 and the ridge line F2 along the first direction X is constant in the second direction Y.
 図1又は図2に示すように、第1形成部23は、弧状に延びることで平面視で湾曲した形状となる第1先端縁23aを有し、第2形成部24は、弧状に延びることで平面視で湾曲した第2先端縁24aを有する。第1先端縁23a及び第2先端縁24aは、繊維構造体20における第1方向Xの一端に位置する。繊維構造体20は、第1方向Xの他端に基端縁20aを有する。 As shown in FIG. 1 or FIG. 2, the first forming portion 23 has a first tip edge 23a which is curved in a plan view by extending in an arc shape, and the second forming portion 24 is extended in an arc shape. The second tip edge 24a is curved in a plan view. The first tip edge 23a and the second tip edge 24a are located at one end of the fibrous structure 20 in the first direction X. The fiber structure 20 has a base end edge 20a at the other end in the first direction X.
 図4に示すように、第1先端縁23a及び第2先端縁24aは、平面視で分岐境界線F1及び稜線F2に対し、平行曲線となっている。つまり、平面視において、第1先端縁23a及び第2先端縁24aは、分岐境界線F1又は稜線F2上のすべての点で、同じ長さの法線を共有しており、分岐境界線F1又は稜線F2と第1先端縁23aとの距離は一定であり、分岐境界線F1又は稜線F2と第2先端縁24aとの距離は第2方向Yに一定である。なお、本実施形態において、分岐境界線F1又は稜線F2と第1先端縁23aとの距離、及び分岐境界線F1又は稜線F2と第2先端縁24aとの距離は、第2方向Yに一定である、とは繊維構造体20の製造公差及び製造誤差を含み、距離が同一であることに限られない。第1形成部23及び第1形成部23は、それぞれ平面視扇形状の板状である。 As shown in FIG. 4, the first tip edge 23a and the second tip edge 24a are parallel curves to the branch boundary line F1 and the ridge line F2 in a plan view. That is, in plan view, the first tip edge 23a and the second tip edge 24a share a normal line of the same length at all points on the branch boundary line F1 or the ridge line F2, and the branch boundary line F1 or The distance between the ridgeline F2 and the first tip edge 23a is constant, and the distance between the branch boundary line F1 or the ridgeline F2 and the second tip edge 24a is constant in the second direction Y. In the present embodiment, the distance between the branch boundary line F1 or the ridgeline F2 and the first tip edge 23a and the distance between the branch boundary line F1 or the ridgeline F2 and the second tip edge 24a are constant in the second direction Y. The term “included” includes the manufacturing tolerance and the manufacturing error of the fiber structure 20 and is not limited to the same distance. Each of the first forming portion 23 and the first forming portion 23 has a fan-shaped plate shape in plan view.
 繊維構造体20は多層織物である。繊維構造体20は、糸主軸方向L1が、直線状に延びる状態で互いに平行に配列された複数の第1糸としての経糸31と、糸主軸方向L2が、経糸31と交差する方向に延びる状態で配列された複数の第2糸としての緯糸32とを有する織物である。経糸31の糸主軸方向L1は、繊維構造体20の第1方向Xに直線状に延び、緯糸32の糸主軸方向L2は、繊維構造体20の第2方向Yに直線状又は湾曲して延びる。 The fiber structure 20 is a multi-layer woven fabric. In the fiber structure 20, the warp yarns 31 as a plurality of first yarns arranged in parallel to each other in a linearly extending direction of the yarn main axis L1 and a state in which the yarn main axis direction L2 extends in a direction intersecting the warp yarns 31. It is a woven fabric having a plurality of weft yarns 32 as the second yarns. The yarn main axis direction L1 of the warp yarn 31 extends linearly in the first direction X of the fiber structure 20, and the yarn main axis direction L2 of the weft yarn 32 extends linearly or curvedly in the second direction Y of the fiber structure 20. ..
 経糸31及び緯糸32は、強化繊維を束ねて形成された繊維束である。強化繊維としては有機繊維や無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維の種類としては、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維の種類としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。 The warp yarn 31 and the weft yarn 32 are fiber bundles formed by bundling reinforcing fibers. As the reinforcing fibers, organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fiber obtained by mixing organic fibers and inorganic fibers may be used. Examples of the type of organic fiber include aramid fiber, poly-p-phenylenebenzobisoxazole fiber, and ultrahigh molecular weight polyethylene fiber, and examples of the type of inorganic fiber include carbon fiber, glass fiber, ceramic fiber and the like.
 図5に示すように、繊維構造体20は、複数の糸層が積層されて構成されている。なお、糸層が積み重なった方向を繊維構造体20の積層方向Zとする。積層方向Zは、第1繊維強化複合材11の厚み方向と一致する。なお、図5では、経糸31と緯糸32との位置関係を分かり易くするため、隣り合う経糸31同士や緯糸32同士が離れた状態に図示しているが、実際は隣り合う経糸31の端部同士や緯糸32の端部同士が重なった状態に配列されている。 As shown in FIG. 5, the fiber structure 20 is configured by laminating a plurality of yarn layers. The stacking direction of the yarn layers is the stacking direction Z of the fiber structure 20. The stacking direction Z coincides with the thickness direction of the first fiber-reinforced composite material 11. Note that, in FIG. 5, in order to make it easier to understand the positional relationship between the warp yarns 31 and the weft yarns 32, the adjacent warp yarns 31 and the weft yarns 32 are illustrated as separated from each other, but in reality, the end portions of the adjacent warp yarns 31 are adjacent to each other. The ends of the weft yarns 32 are arranged so as to overlap each other.
 繊維構造体20の本体部21は、複数本の経糸31が第2方向Yに並んで形成された経糸層を複数有する。経糸層としては、第1経糸層41と、積層方向Zにおいて、第1経糸層41より下方に配置された第2経糸層42とを有する。第1経糸層41及び第2経糸層42は、第1糸層を構成する。 The main body 21 of the fiber structure 20 has a plurality of warp layers in which a plurality of warp yarns 31 are formed side by side in the second direction Y. The warp layers include a first warp layer 41 and a second warp layer 42 arranged below the first warp layer 41 in the laminating direction Z. The first warp layer 41 and the second warp layer 42 form a first yarn layer.
 また、繊維構造体20の本体部21は、複数本の緯糸32が第1方向Xに並んで形成された緯糸層を複数有する。緯糸層としては、第1緯糸層51と、積層方向Zにおける第1緯糸層51より下方に配置された第2緯糸層52と、積層方向Zにおける第2緯糸層52より下方に配置された第3緯糸層53と、積層方向Zにおける第3緯糸層53より下方に配置された第4緯糸層54とを有する。第1緯糸層51、第2緯糸層52、第3緯糸層53及び第4緯糸層54は第2糸層を構成する。 Further, the main body 21 of the fiber structure 20 has a plurality of weft layers in which a plurality of wefts 32 are formed side by side in the first direction X. As the weft layers, a first weft layer 51, a second weft layer 52 arranged below the first weft layer 51 in the laminating direction Z, and a second weft layer 52 arranged below the second weft layer 52 in the laminating direction Z. The third weft layer 53 and the fourth weft layer 54 arranged below the third weft layer 53 in the stacking direction Z are included. The first weft layer 51, the second weft layer 52, the third weft layer 53, and the fourth weft layer 54 form a second yarn layer.
 繊維構造体20の本体部21は、積層方向Zの一端から他端(上から下)へ第1緯糸層51、第1経糸層41、第2緯糸層52、第3緯糸層53、第2経糸層42及び第4緯糸層54の順番で積層されている。これら第1緯糸層51、第1経糸層41、第2緯糸層52、第3緯糸層53、第2経糸層42及び第4緯糸層54、すなわち本体部21の全ての糸層は、複数の拘束糸25により積層方向Zに拘束されている。 The main body portion 21 of the fiber structure 20 includes a first weft layer 51, a first warp layer 41, a second weft layer 52, a third weft layer 53, a second weft layer 53, a second weft layer 53, and a second weft layer 53 from one end to the other end (from top to bottom) in the stacking direction Z. The warp layer 42 and the fourth weft layer 54 are laminated in this order. The first weft layer 51, the first warp layer 41, the second weft layer 52, the third weft layer 53, the second warp layer 42, and the fourth weft layer 54, that is, all the yarn layers of the main body portion 21, are composed of a plurality of layers. It is restrained in the stacking direction Z by the restraint yarn 25.
 複数の拘束糸25は、第2方向Yに並んでいる。各拘束糸25は、繊維構造体20の形状保持用であり、強化繊維の繊維束である。強化繊維としては有機繊維や無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。複数本の拘束糸25は、各経糸31と略平行に配列されるとともに、繊維構造体20の本体部21を構成する最上層の第1緯糸層51の緯糸32の外面を通って折り返すように配置されている。また、各拘束糸25は、本体部21を積層方向Zに貫通し、最下層の第4緯糸層54の緯糸32の外面を通って折り返すように配置されている。よって、拘束糸25は、積層方向Z両端の第1緯糸層51及び第4緯糸層54の緯糸32に係合している。 The plurality of binding threads 25 are arranged in the second direction Y. Each restraint yarn 25 is for holding the shape of the fibrous structure 20, and is a fiber bundle of reinforcing fibers. As the reinforcing fibers, organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fiber obtained by mixing organic fibers and inorganic fibers may be used. The plurality of constraining yarns 25 are arranged substantially parallel to the warp yarns 31 and folded back through the outer surface of the weft yarns 32 of the uppermost first weft yarn layer 51 constituting the main body portion 21 of the fibrous structure 20. It is arranged. Further, each of the restraint yarns 25 penetrates the main body portion 21 in the stacking direction Z and is arranged so as to be folded back through the outer surface of the weft yarn 32 of the fourth weft layer 54 which is the lowermost layer. Therefore, the restraint yarn 25 is engaged with the weft yarns 32 of the first weft layer 51 and the fourth weft layer 54 at both ends in the stacking direction Z.
 第2方向Yに隣り合う拘束糸25同士は、第1緯糸層51又は第4緯糸層54で折り返される緯糸32の位置が第1方向Xにずれている。そして、拘束糸25が各緯糸32に係合することで、第1~第4緯糸層51~54が積層方向Zに拘束され、積層方向Zに隣り合う第1緯糸層51と第2緯糸層52の間に第1経糸層41が拘束され、第3緯糸層53と第4緯糸層54の間に第2経糸層42が拘束されている。 Regarding the binding yarns 25 adjacent to each other in the second direction Y, the positions of the weft yarns 32 folded back at the first weft layer 51 or the fourth weft layer 54 are displaced in the first direction X. Then, the restraint yarn 25 is engaged with each weft yarn 32, whereby the first to fourth weft layers 51 to 54 are restrained in the laminating direction Z, and the first weft layer 51 and the second weft layer adjacent to each other in the laminating direction Z. The first warp layer 41 is constrained between 52 and the second warp layer 42 is constrained between the third weft layer 53 and the fourth weft layer 54.
 分岐部22では、第1形成部23は、第1緯糸層51、第1経糸層41及び第2緯糸層52が拘束糸25によって積層方向Zに拘束されている。拘束糸25は、第1形成部23の積層方向Z両端の第1緯糸層51及び第2緯糸層52の緯糸32に係合している。第2形成部24は、第3緯糸層53、第2経糸層42及び第4緯糸層54が拘束糸25によって積層方向Zに拘束されている。拘束糸25は、第2形成部24の積層方向Z両端の第3緯糸層53及び第4緯糸層54の緯糸32に係合している。第1形成部23と第2形成部24とは拘束糸25によって積層方向Zに拘束されていない。したがって、分岐部22において、第1形成部23は、多層織物における積層方向Zの一端側に位置し、第2形成部24は、多層織物における積層方向Zの他端側に位置する。 In the branch portion 22, in the first forming portion 23, the first weft layer 51, the first warp layer 41, and the second weft layer 52 are constrained in the laminating direction Z by the constraining yarn 25. The restraint yarn 25 is engaged with the weft yarns 32 of the first weft layer 51 and the second weft layer 52 at both ends of the first forming portion 23 in the stacking direction Z. In the second forming portion 24, the third weft layer 53, the second warp layer 42, and the fourth weft layer 54 are constrained in the laminating direction Z by the constraining yarn 25. The restraint yarn 25 is engaged with the weft yarns 32 of the third weft layer 53 and the fourth weft layer 54 at both ends of the second forming portion 24 in the stacking direction Z. The first forming portion 23 and the second forming portion 24 are not restrained in the stacking direction Z by the restraining yarn 25. Therefore, in the branching portion 22, the first forming portion 23 is located on one end side in the laminating direction Z in the multilayer fabric, and the second forming portion 24 is located on the other end side in the laminating direction Z in the multilayer fabric.
 図4に示すように、上記繊維構造体20において、緯糸32の糸主軸方向L2は、繊維構造体20の基端縁20aでは直線状に延びる。そして、緯糸32のうち、基端縁20aに位置する緯糸32から分岐境界線F1の手前に至る緯糸32までは、その糸主軸方向L2が第2方向Yに直線状に延びる。そして、緯糸32のうち、分岐境界線F1よりも基端縁20a寄りの緯糸32から第1先端縁23a及び第2先端縁24aに至る緯糸32まで、その糸主軸方向L2が全て同じ曲率で湾曲している。 As shown in FIG. 4, in the fiber structure 20, the yarn main axis direction L2 of the weft yarn 32 extends linearly at the base end edge 20a of the fiber structure 20. Then, among the weft threads 32, from the weft thread 32 located at the base end edge 20a to the weft thread 32 reaching just before the branch boundary line F1, the yarn main axis direction L2 extends linearly in the second direction Y. Then, of the wefts 32, from the weft 32 closer to the base end edge 20a than the branch boundary line F1 to the wefts 32 extending from the first tip edge 23a and the second tip edge 24a, the yarn main axis direction L2 is all curved with the same curvature. doing.
 図5に示すように、上記構成の繊維構造体20において、分岐部22の分岐境界線F1に対し、第1方向Xに沿って最も近い緯糸32を最短緯糸32aとする。本実施形態では、最短緯糸32aは、第1方向Xに沿って分岐境界線F1に隣り合う積層方向Z全ての緯糸32である。よって、最短緯糸32aは、第1緯糸層51と、第2緯糸層52と、第3緯糸層53と、第4緯糸層54に存在している。 As shown in FIG. 5, in the fiber structure 20 having the above configuration, the closest weft yarn 32 along the first direction X to the branch boundary line F1 of the branch portion 22 is set as the shortest weft yarn 32a. In the present embodiment, the shortest wefts 32a are all the wefts 32 in the stacking direction Z that are adjacent to the branch boundary line F1 along the first direction X. Therefore, the shortest weft 32a exists in the first weft layer 51, the second weft layer 52, the third weft layer 53, and the fourth weft layer 54.
 全ての最短緯糸32aは分岐境界線F1に対して平行曲線となっている。つまり、最短緯糸32aは、分岐境界線F1のすべての点で、同じ長さの法線を共有しており、分岐境界線F1と最短緯糸32aとの距離は第2方向Yに一定である。なお、本実施形態において、分岐境界線F1と最短緯糸32aとの距離が第2方向Yに一定である、とは繊維構造体20の製造公差及び製造誤差を含み、距離が同一であることに限られない。 All the shortest wefts 32a are parallel curves to the branch boundary line F1. That is, the shortest weft 32a shares a normal line of the same length at all points of the branch boundary line F1, and the distance between the branch boundary line F1 and the shortest weft thread 32a is constant in the second direction Y. In the present embodiment, the fact that the distance between the branch boundary line F1 and the shortest weft 32a is constant in the second direction Y includes the manufacturing tolerance and the manufacturing error of the fiber structure 20 and is the same. Not limited.
 第1形成部23と第2形成部24が分岐する位置で、拘束糸25が交差しているが、それら拘束糸25は、その交差する位置に対し第1方向Xに隣り合う最短緯糸32aのうち、第1緯糸層51及び第4緯糸層54の最短緯糸32aに係合して積層方向Zに本体部21を拘束している。 The restraining yarns 25 intersect at the positions where the first forming portion 23 and the second forming portion 24 branch, and the restraining yarns 25 are the shortest wefts 32a adjacent to the intersecting positions in the first direction X. Of these, the main body portion 21 is restrained in the stacking direction Z by engaging with the shortest wefts 32a of the first weft layer 51 and the fourth weft layer 54.
 第1形成部23を拘束する拘束糸25のうち、最短緯糸32aに隣り合う第2緯糸層52の緯糸32に係合した拘束糸25は、第1緯糸層51の最短緯糸32aに係合している。また、第1形成部23を拘束する拘束糸25のうち、最短緯糸32aに隣り合う第1緯糸層51の緯糸32に係合した拘束糸25は、第4緯糸層54の最短緯糸32aに係合している。 Of the restraint yarns 25 restraining the first forming portion 23, the restraint yarns 25 engaged with the weft yarns 32 of the second weft layer 52 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarns 32a of the first weft layer 51. ing. Further, among the restraint yarns 25 for restraining the first forming portion 23, the restraint yarns 25 engaged with the weft yarns 32 of the first weft layer 51 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarn 32a of the fourth weft layer 54. It fits.
 また、第2形成部24を拘束する拘束糸25のうち、最短緯糸32aに隣り合う第4緯糸層54の緯糸32に係合した拘束糸25は、第1緯糸層51の最短緯糸32aに係合している。第2形成部24を拘束する拘束糸25のうち、最短緯糸32aに隣り合う第3緯糸層53の緯糸32に係合した拘束糸25は、第4緯糸層54の最短緯糸32aに係合している。 Of the restraint yarns 25 for restraining the second forming portion 24, the restraint yarns 25 engaged with the weft yarns 32 of the fourth weft layer 54 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarns 32a of the first weft layer 51. It fits. Of the restraint yarns 25 for restraining the second forming portion 24, the restraint yarns 25 engaged with the weft yarns 32 of the third weft layer 53 adjacent to the shortest weft yarns 32a are engaged with the shortest weft yarns 32a of the fourth weft layer 54. ing.
 したがって、第1形成部23と第2形成部24の交差する位置から最短緯糸32aが積層方向Zに拘束された部分までは、本体部21の、最短緯糸32a以外の緯糸32が拘束糸25で拘束された部分よりも、拘束糸25による拘束力が小さくなっている。第1方向Xに沿った分岐境界線F1から最短緯糸32aまでの距離が大きいほど、拘束糸25による本体部21の拘束力が弱くなる。そして、第1方向Xに沿った分岐境界線F1から最短緯糸32aまでの距離に大小が生じると、拘束糸25による拘束力に大小が生じてしまう。しかし、本実施形態では、最短緯糸32aを湾曲させ、分岐境界線F1に対する平行曲線とすることで、第1方向Xに沿った分岐境界線F1から各最短緯糸32aまでの距離を、第2方向Yに沿って全て同じとしたため、分岐部22と本体部21の境界付近において、拘束糸25による拘束力の差を無くしている。 Therefore, from the position where the first forming portion 23 and the second forming portion 24 intersect to the portion where the shortest weft 32a is constrained in the stacking direction Z, the wefts 32 other than the shortest weft 32a of the main body portion 21 are the constraining yarns 25. The restraint force of the restraint thread 25 is smaller than that of the restrained portion. The larger the distance from the branch boundary line F1 along the first direction X to the shortest weft 32a, the weaker the binding force of the binding yarn 25 on the main body portion 21 becomes. When the distance from the branch boundary line F1 along the first direction X to the shortest weft 32a is large or small, the binding force of the binding yarn 25 is large or small. However, in the present embodiment, the shortest weft 32a is curved to form a parallel curve with respect to the branch boundary line F1, so that the distance from the branch boundary line F1 along the first direction X to each shortest weft thread 32a is set to the second direction. Since all are the same along Y, the difference in the restraint force by the restraint yarn 25 is eliminated in the vicinity of the boundary between the branch portion 22 and the main body portion 21.
 次に繊維構造体20の製造方法を説明する。
 図6又は図7に示すように、繊維構造体20を製織する織機は、複数対(図6及び図7では一対のみ図示)の綜絖枠61と、筬62a又は変形筬62bと、引取機構63と、緯入れ機構64と、経糸供給機構65とを備える織機により製織される。対をなす綜絖枠61は、それぞれ、各経糸31に対応するヘルドを備え、図示しない綜絖枠駆動機構を介して交互に上下動されることにより、経糸31を開口させる。経糸31は、それぞれ、所定の張力を加えながら、図示しないクリールまたはビームから引き出される。
Next, a method for manufacturing the fiber structure 20 will be described.
As shown in FIG. 6 or 7, the weaving machine for weaving the fiber structure 20 includes a plurality of pairs (only one pair is shown in FIGS. 6 and 7) of heald frames 61, a reed 62a or a modified reed 62b, and a take-up mechanism 63. The weaving machine is provided with a weft inserting mechanism 64 and a warp supplying mechanism 65. The pair of heddle frames 61 each include a heald corresponding to each warp yarn 31, and are alternately moved up and down via a heddle frame drive mechanism (not shown) to open the warp yarns 31. The warp yarns 31 are respectively pulled out from a creel or a beam (not shown) while applying a predetermined tension.
 筬62a又は変形筬62bは、綜絖枠61と引取機構63との間に配設されている。筬62a又は変形筬62bは、筬羽を各経糸31が通過し、経糸31に沿って、緯入れ機構64より後方に後退する後退位置と、緯入れ機構64によって緯入れされる緯糸32を織前Fに打ち込む前進位置との間を前後動する。直線状の筬62aは、本体部21において、緯糸32の糸主軸方向L2が直線状に延びるように筬打ちするときに用いられる。弧状に湾曲する変形筬62bは、本体部21の一部及び分岐部22において、緯糸32の糸主軸方向L2が湾曲するように筬打ちするときに用いられる。 The reed 62a or the modified reed 62b is arranged between the heald frame 61 and the take-up mechanism 63. The reeds 62a or the modified reeds 62b have a retreat position in which each warp thread 31 passes through the reed wing and is retracted rearward from the weft insertion mechanism 64 along the warp threads 31 and a weft thread 32 that is wefted by the weft insertion mechanism 64. It moves back and forth between the forward position where it is driven into the front F. The linear reed 62a is used when beating the main body 21 so that the weft thread 32 extends linearly in the yarn main axis direction L2. The deformed reed 62b that is curved in an arc shape is used when beating the part of the main body 21 and the branching portion 22 so that the weft yarn 32 is curved in the yarn main axis direction L2.
 緯入れ機構64は、緯糸供給ボビン66から供給される緯糸32を、後退位置に後退した筬62a又は変形筬62bと織前Fとの間において、開口された経糸31間に緯入れする。緯入れ機構64としては、レピア機構が使用され、その前面には、カッタ64aが配設されている。カッタ64aは、緯入れごとに、緯入れされた緯糸32の後端部を切断する。引取機構63は、織前Fの直近前方に配設されており、織製された繊維構造体20を引き取る。 The weft inserting mechanism 64 inserts the weft yarn 32 supplied from the weft yarn supplying bobbin 66 into the opened warp yarn 31 between the reed 62a or the deformed reed 62b retracted to the retracted position and the cloth fell F. A rapier mechanism is used as the weft inserting mechanism 64, and a cutter 64a is disposed on the front surface thereof. The cutter 64a cuts the rear end portion of the weft yarn 32 that has been weft-inserted, every time weft-inserting. The take-up mechanism 63 is disposed immediately in front of the cloth fell F and takes up the woven fiber structure 20.
 繊維構造体20を製造する場合、まず、本体部21を形成する。
 図6に示すように、引取機構63に経糸31の端部を固定し、経糸供給機構65から引取機構63によって経糸31を引取り(巻取り)ながら、緯入れ機構64によって緯糸32を挿入する。このとき、経糸31は、その糸主軸方向L1が直線状に延びるように引取機構63に引き取られるとともに、経糸31の糸主軸方向L1に対し、緯糸32の糸主軸方向L2は直交する状態に挿入される。そして、緯入れ機構64から緯入れされた緯糸32は、筬62aによって糸主軸方向L2が直線状に延びるように筬打ちされる。
When manufacturing the fibrous structure 20, first, the main body portion 21 is formed.
As shown in FIG. 6, the end portion of the warp yarn 31 is fixed to the take-up mechanism 63, and the weft insertion mechanism 64 inserts the weft yarn 32 while the warp yarn 63 is taken up (winded) from the warp yarn supply mechanism 65. .. At this time, the warp yarns 31 are taken up by the take-up mechanism 63 so that the yarn main axis direction L1 extends linearly, and the weft yarns 32 are inserted so that the yarn main axis direction L2 is orthogonal to the yarn main axis direction L1. To be done. Then, the weft yarn 32 that has been weft-inserted from the weft-inserting mechanism 64 is beaten by the reed 62a so that the yarn main axis direction L2 extends linearly.
 そして、本体部21における分岐部22寄りまで筬打ちされると、筬62aから変形筬62bに取り換える。その後、図7に示すように、経糸供給機構65から引取機構63によって経糸31を引取り(巻取り)ながら、緯入れ機構64によって緯糸32を挿入し、緯入れされた緯糸32は、変形筬62bによって糸主軸方向L2が湾曲するように筬打ちされる。 Then, when the reed is pushed to the branch portion 22 side of the main body portion 21, the reed 62a is replaced with the deformed reed 62b. Thereafter, as shown in FIG. 7, the weft insertion mechanism 64 inserts the weft yarn 32 while the warp yarn feeding mechanism 65 takes up (winds) the warp yarn 31 by the take-up mechanism 63, and the weft-inserted weft yarn 32 is deformed. It is beaten by 62b so that the yarn main axis direction L2 is curved.
 すると、第1緯糸層51、第1経糸層41、第2緯糸層52、第3緯糸層53、第2経糸層42、及び第4緯糸層54が形成されるとともに、拘束糸25によってそれらが拘束されて本体部21が形成される。 Then, the first weft layer 51, the first warp layer 41, the second weft layer 52, the third weft layer 53, the second warp layer 42, and the fourth weft layer 54 are formed, and these are bound by the binding yarn 25. The body portion 21 is constrained to be formed.
 次に、分岐部22が製造される。このとき、図示しない治具を使用する。治具を挟んで第1形成部23及び第2形成部24が製織される。治具を配置した状態で、その治具の厚さ方向の両側に経糸31が配置されており、緯糸供給ボビン66から緯入れされた緯糸32は、変形筬62bによって筬打ちされることにより、所定の曲率に湾曲される。なお、図示しないが拘束糸25も織機によって織り込まれる。すると、第1形成部23及び第2形成部24が治具を挟んで製織される。そして、分岐部22が形成された後、治具を除去する。 Next, the branch part 22 is manufactured. At this time, a jig not shown is used. The first forming portion 23 and the second forming portion 24 are woven with the jig interposed therebetween. With the jig arranged, the warp yarns 31 are arranged on both sides in the thickness direction of the jig, and the weft yarn 32 inserted from the weft supply bobbin 66 is beaten by the deformed reed 62b, It is curved to a predetermined curvature. Although not shown, the binding yarn 25 is also woven by the loom. Then, the first forming portion 23 and the second forming portion 24 are woven with the jig interposed therebetween. Then, after the branch portion 22 is formed, the jig is removed.
 その結果、第1緯糸層51、第1経糸層41、及び第2緯糸層52を形成しつつ、第3緯糸層53、第2経糸層42、及び第4緯糸層54が形成され、拘束糸25によってそれらが拘束されて第1形成部23及び第2形成部24が形成される。 As a result, the third weft layer 53, the second warp layer 42, and the fourth weft layer 54 are formed while forming the first weft layer 51, the first warp layer 41, and the second weft layer 52, and the constraining yarn is formed. These are constrained by 25 to form the first forming portion 23 and the second forming portion 24.
 第1方向Xに沿った分岐境界線F1と第1先端縁23aとの距離が一定の第1形成部23が形成されるとともに、分岐境界線F1と第2先端縁24aとの距離が一定の第2形成部24が形成される。また、分岐部22と本体部21が形成され、繊維構造体20が形成される。 The first forming portion 23 having a constant distance between the branch boundary line F1 and the first tip edge 23a along the first direction X is formed, and the distance between the branch boundary line F1 and the second tip edge 24a is constant. The second forming portion 24 is formed. Further, the branch portion 22 and the main body portion 21 are formed, and the fiber structure 20 is formed.
 前記のように構成された繊維構造体20は、図1に示すように、繊維構造体20の第1形成部23と第2形成部24の間に形成された連結凹部12に、繊維構造体120に形成された連結凸部112を嵌合し、矩形板状にする。そして、繊維構造体20及び繊維構造体120にマトリックス樹脂を含浸させると、繊維構造体20及び繊維構造体120を強化基材とし、樹脂をマトリックスとした第1繊維強化複合材11及び第2繊維強化複合材110が製造されるとともに、矩形平板状の板部材10が形成される。 As shown in FIG. 1, the fibrous structure 20 configured as described above has the fibrous structure 20 in the connection recess 12 formed between the first forming portion 23 and the second forming portion 24 of the fibrous structure 20. The connecting convex portion 112 formed on 120 is fitted to form a rectangular plate. Then, when the fiber structure 20 and the fiber structure 120 are impregnated with a matrix resin, the first fiber-reinforced composite material 11 and the second fiber using the fiber structure 20 and the fiber structure 120 as a reinforcing base material and a resin as a matrix. The reinforced composite material 110 is manufactured and the rectangular flat plate member 10 is formed.
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)繊維構造体20において、分岐部22の根本に位置する分岐境界線F1に対し、本体部21の各最短緯糸32aを平行曲線とした。このため、分岐境界線F1から各最短緯糸32aまでの距離を、第2方向Y全体に亘って一定にでき、分岐境界線F1付近において拘束糸25による拘束力の大小を無くすことができる。よって、本体部21と分岐部22の境界付近において層間剥離を抑制できる。繊維構造体20を強化基材とした第1繊維強化複合材11においても、本体部21と分岐部22との境界付近の強度の大小を無くすことができる。
According to the above embodiment, the following effects can be obtained.
(1) In the fiber structure 20, each shortest weft thread 32a of the main body portion 21 is a parallel curve with respect to the branch boundary line F1 located at the root of the branch portion 22. Therefore, the distance from the branch boundary line F1 to each shortest weft thread 32a can be made constant over the entire second direction Y, and the binding force of the binding thread 25 near the branch boundary line F1 can be eliminated. Therefore, delamination can be suppressed near the boundary between the main body portion 21 and the branch portion 22. Even in the first fiber-reinforced composite material 11 using the fiber structure 20 as a reinforcing base material, it is possible to eliminate the magnitude of strength near the boundary between the main body portion 21 and the branch portion 22.
 なお、上記実施形態は以下のように変更してもよい。
 〇 本体部21において、分岐部22寄りの一部を除いて緯糸32の糸主軸方向L2を直線状に延びるようにしたが、図8に示すように、本体部21の全ての緯糸32の糸主軸方向L2を、分岐境界線F1に対し平行曲線となるように湾曲させてもよい。
The above embodiment may be modified as follows.
○ In the main body portion 21, the weft yarns 32 are arranged to extend linearly in the yarn main axis direction L2 except for a part near the branch portion 22, but as shown in FIG. The main axis direction L2 may be curved to form a parallel curve with respect to the branch boundary line F1.
 〇 第1糸を緯糸32とし、第2糸を経糸31としてもよい。
 〇 繊維構造体20は、第1方向Xに沿った本体部21の両側に分岐部22を備える構成であってもよい。
The first yarn may be the weft yarn 32 and the second yarn may be the warp yarn 31.
The fibrous structure 20 may have a configuration in which branch portions 22 are provided on both sides of the main body portion 21 along the first direction X.
 〇 分岐部22及び本体部21を構成する糸層の数は変更してもよい。
 〇 第1繊維強化複合材11の繊維構造体20は、分岐部22を、繊維構造体20の複数の縁に備えていてもよい。
The number of yarn layers forming the branching portion 22 and the main body portion 21 may be changed.
The fibrous structure 20 of the first fiber-reinforced composite material 11 may include the branch portions 22 at a plurality of edges of the fibrous structure 20.
 〇 繊維構造体20において、最短緯糸32aと分岐境界線F1が平行曲線であれば、最短緯糸32a以外の緯糸32は、分岐境界線F1に対し平行曲線とならない曲率であってもよい。 〇 In the fibrous structure 20, if the shortest weft 32a and the branch boundary line F1 are parallel curves, the wefts 32 other than the shortest weft 32a may have a curvature that is not a parallel curve to the branch boundary line F1.
 〇 実施形態では、分岐境界線F1に対し平行曲線となる最短緯糸32aを第1~第4緯糸層51~54に設け、繊維構造体20の積層方向Z全体に最短緯糸32aを設けたが、これに限らない。分岐境界線F1に対し平行曲線となる最短緯糸32aは、第1緯糸層51及び第4緯糸層54のみに設けられていてもよいし、第2緯糸層52及び第3緯糸層53のみに設けられていてもよい。 〇 In the embodiment, the shortest weft 32a forming a parallel curve to the branch boundary line F1 is provided in the first to fourth weft layers 51 to 54, and the shortest weft 32a is provided in the entire laminating direction Z of the fibrous structure 20. It is not limited to this. The shortest weft 32a that is a curved line parallel to the branch boundary line F1 may be provided only in the first weft layer 51 and the fourth weft layer 54, or only in the second weft layer 52 and the third weft layer 53. It may be.
 F1  分岐境界線
 L1  第1糸の糸主軸方向
 L2  第2糸の糸主軸方向
 11  第1繊維強化複合材
 13  第1糸としての経糸
 14  第2糸としての緯糸
 20  繊維構造体
 21  本体部
 22  分岐部
 23  第1形成部
 24  第2形成部
 25  拘束糸
 41  第1糸層としての第1経糸層
 42  第1糸層としての第2経糸層
 51  第2糸層としての第1緯糸層
 52  第2糸層としての第2緯糸層
 53  第2糸層としての第3緯糸層
 54  第2糸層としての第4緯糸層
F1 Branching boundary line L1 Yarn principal axis direction of first yarn L2 Yarn principal axis direction of second yarn 11 First fiber-reinforced composite material 13 Warp yarn as first yarn 14 Weft yarn as second yarn 20 Fiber structure 21 Main body portion 22 Branching Part 23 First forming part 24 Second forming part 25 Restraining yarn 41 First warp layer as first yarn layer 42 Second warp layer as first yarn layer 51 First weft layer as second yarn layer 52 Second Second weft layer as yarn layer 53 Third weft layer as second yarn layer 54 Fourth weft layer as second yarn layer

Claims (2)

  1.  第1糸からなる第1糸層と、前記第1糸と交差する第2糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、
     前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、
     前記第1糸の糸主軸方向に沿って前記本体部に連続し、かつ前記第2糸の糸主軸方向の全体に亘って設けられ、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体であって、
     前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線を有し、
     前記分岐部は、前記分岐境界線が湾曲した形状であり、
     前記分岐境界線に対し、前記本体部の前記第2糸のうち前記分岐境界線に最も近い前記第2糸の糸主軸が平行曲線であることを特徴とする繊維構造体。
    A first yarn layer made of a first yarn and a second yarn layer made of a second yarn that intersects the first yarn, and the first yarn layer and the second yarn layer are stacked, and A multi-layer woven fabric in which the first yarn layer and the second yarn layer are restrained by restraining yarns in a laminating direction in which one yarn layer and the second yarn layer are stacked,
    A body portion in which all the yarn layers of the multi-layered fabric are restrained by the restraining yarns;
    The first yarn is continuous with the main body along the main axis of the first yarn and is provided over the entire main axis of the second yarn. A fibrous structure having a forming part and a branching part branched to a second forming part on the other end side in the stacking direction,
    In the branch portion, a branch boundary line extending along a portion that branches into the first forming portion and the second forming portion,
    The branch portion has a shape in which the branch boundary line is curved,
    A fiber structure in which a yarn main axis of the second yarn closest to the branch boundary line of the second yarns of the main body portion is a parallel curve with respect to the branch boundary line.
  2.  繊維構造体を強化基材とし、該強化基材がマトリックス中に複合化された繊維強化複合材であって、前記繊維構造体が請求項1に記載の繊維構造体であることを特徴とする繊維強化複合材。 The fiber structure is a reinforcing base material, and the reinforcing base material is a fiber-reinforced composite material compounded in a matrix, wherein the fiber structure is the fiber structure according to claim 1. Fiber reinforced composite material.
PCT/JP2019/049949 2019-01-30 2019-12-19 Fiber structure and fiber-reinforced composite WO2020158242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-014413 2019-01-30
JP2019014413A JP7052751B2 (en) 2019-01-30 2019-01-30 Fiber structure and fiber reinforced composite

Publications (1)

Publication Number Publication Date
WO2020158242A1 true WO2020158242A1 (en) 2020-08-06

Family

ID=71840893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049949 WO2020158242A1 (en) 2019-01-30 2019-12-19 Fiber structure and fiber-reinforced composite

Country Status (2)

Country Link
JP (1) JP7052751B2 (en)
WO (1) WO2020158242A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431120B2 (en) 2020-07-16 2024-02-14 東洋電装株式会社 accelerator position sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176232A (en) * 1981-01-12 1982-10-29 Jii Burochi Ando Fuiru Sa Three-dimensional fabric for reinforcing structure and molded product thereof
JPS62117843A (en) * 1985-11-18 1987-05-29 三菱重工業株式会社 Reinforcing member of composite material having three-pronged part
JPH01111038A (en) * 1987-09-26 1989-04-27 Vorwerk & Co Interholding Gmbh Preparatory molded article composed of multilayer structure
JPH01314750A (en) * 1988-06-13 1989-12-19 Ashimori Ind Co Ltd Bias woven fabric having branched portions and production thereof
JP2003073176A (en) * 2001-08-30 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing ceramic composite
JP2015501890A (en) * 2011-12-14 2015-01-19 スネクマ 3D woven fiber structures, fiber preforms obtained from such fiber structures, and composite parts comprising such preforms
WO2019208176A1 (en) * 2018-04-27 2019-10-31 株式会社豊田自動織機 Fiber structure, fiber-reinforced composite material, and method of manufacturing fiber structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176232A (en) * 1981-01-12 1982-10-29 Jii Burochi Ando Fuiru Sa Three-dimensional fabric for reinforcing structure and molded product thereof
JPS62117843A (en) * 1985-11-18 1987-05-29 三菱重工業株式会社 Reinforcing member of composite material having three-pronged part
JPH01111038A (en) * 1987-09-26 1989-04-27 Vorwerk & Co Interholding Gmbh Preparatory molded article composed of multilayer structure
JPH01314750A (en) * 1988-06-13 1989-12-19 Ashimori Ind Co Ltd Bias woven fabric having branched portions and production thereof
JP2003073176A (en) * 2001-08-30 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing ceramic composite
JP2015501890A (en) * 2011-12-14 2015-01-19 スネクマ 3D woven fiber structures, fiber preforms obtained from such fiber structures, and composite parts comprising such preforms
WO2019208176A1 (en) * 2018-04-27 2019-10-31 株式会社豊田自動織機 Fiber structure, fiber-reinforced composite material, and method of manufacturing fiber structure

Also Published As

Publication number Publication date
JP2020122235A (en) 2020-08-13
JP7052751B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
CA2720143C (en) Improved fiber architecture for pi-preforms
JP5547210B2 (en) Quasi-isotropic three-dimensional preform and manufacturing method thereof
RU2587554C2 (en) Fabric for use in composite materials and method of producing fabric and element from composite material
CN101529003B (en) Three-dimensional surface weave
WO2018179878A1 (en) Fibrous structure and fiber-reinforced composite material
JP2022182789A (en) Fiber structure, and fiber-reinforced composite material
EP3832189A1 (en) Pressure vessel and pressure-vessel manufacturing method
WO2020158242A1 (en) Fiber structure and fiber-reinforced composite
WO2019208176A1 (en) Fiber structure, fiber-reinforced composite material, and method of manufacturing fiber structure
WO2014030631A1 (en) Three-dimensional fiber-reinforced composite material
JP5049215B2 (en) Reinforcing fiber fabric and its weaving method
US9150985B2 (en) Method of manufacturing weaved preform with oriented weft yarns
WO2019021738A1 (en) Fiber structure and fiber reinforced composite material
JP7322588B2 (en) Fiber structures and fiber reinforced composites
JP4677951B2 (en) Manufacturing method of three-dimensional fiber structure
JP6607026B2 (en) Fiber reinforced composite
EP3342907A1 (en) Fiber structure and fiber reinforced composite material
JP2021025164A (en) Fiber structure and fiber-reinforce composite material
WO2014030633A1 (en) Three-dimensional fiber-reinforced composite
WO2017018235A1 (en) Textile laminate, textile laminate production method, and textile laminate production device
JP7287162B2 (en) Fiber structures and fiber reinforced composites
WO2021006081A1 (en) Fiber structure and method for manufacturing fiber structure
DK2465982T3 (en) Woven Fabric for Use in Composite Materials and Processes for Manufacturing the Fabric and a Composite Material Body
WO2013035518A1 (en) Woven fabric base material and fiber-reinforced composite material
WO2018179877A1 (en) Fibrous structure and fiber-reinforced composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913776

Country of ref document: EP

Kind code of ref document: A1