WO2020157967A1 - Substrate processing device and method for manufacturing semiconductor device - Google Patents

Substrate processing device and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2020157967A1
WO2020157967A1 PCT/JP2019/003676 JP2019003676W WO2020157967A1 WO 2020157967 A1 WO2020157967 A1 WO 2020157967A1 JP 2019003676 W JP2019003676 W JP 2019003676W WO 2020157967 A1 WO2020157967 A1 WO 2020157967A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
end effector
transfer machine
vibration sensor
time domain
Prior art date
Application number
PCT/JP2019/003676
Other languages
French (fr)
Japanese (ja)
Inventor
護 大石
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN201990001313.5U priority Critical patent/CN215933545U/en
Priority to JP2020569319A priority patent/JP7055226B2/en
Priority to PCT/JP2019/003676 priority patent/WO2020157967A1/en
Publication of WO2020157967A1 publication Critical patent/WO2020157967A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present disclosure relates to a method for manufacturing a substrate processing apparatus and a semiconductor device.
  • a substrate processing apparatus transfers a wafer from a storage container (hereinafter also referred to as a pod) in which a substrate (hereinafter also referred to as a wafer) is stored by a substrate transfer machine to a boat that is a substrate holder, and the boat holding the wafer reacts. It is configured to be loaded into a furnace and to perform a predetermined process on the wafer in the reaction furnace.
  • a storage container hereinafter also referred to as a pod
  • a substrate hereinafter also referred to as a wafer
  • It is configured to be loaded into a furnace and to perform a predetermined process on the wafer in the reaction furnace.
  • the substrate transfer machine transfers a wafer between a pod and a boat, and has a function of advancing/retracting, moving up/down, and rotating with a wafer placed on a tweezer of the substrate transfer machine. .. Teaching work is performed so that the wafer can be placed at a proper position when the wafer is placed from the pod to the tweezers or when the wafer placed on the tweezers is loaded on the boat by the substrate transfer machine. ..
  • the wafer may be loaded at a position different from the teaching work due to the deformation of the wafer, the vibration of the pump provided in the substrate processing apparatus, the secular change of the tweezers, etc., and the wafer may be displaced.
  • the displacement of the wafer becomes large, the tweezers or the wafers on the tweezers may come into contact with the boat, the wafers on the boat, or the like, and the wafers may be damaged or the boat may tip over.
  • the vibration at the time of collision is detected by a collision sensor provided in the substrate transfer machine (for example, refer to Patent Document 1). Further, the vibration generated in the lifting pins on the support table that supports the wafer is detected, and the mounting state is determined based on the total value of the periods when the detected vibration intensity is larger than the threshold value. (See, for example, Patent Document 2).
  • An object of the present disclosure is to detect with high accuracy that a substrate transfer device or a substrate on the substrate transfer device and a substrate holder or a substrate on the substrate holder are in contact with each other, and to detect a slight error before a failure state. It is to provide a configuration capable of detecting an abnormality.
  • a substrate holder for holding the substrate A substrate transfer machine that includes an end effector that directly operates the substrate and a drive mechanism that moves the end effector, transfers the substrate to the substrate holder, or transfers the substrate from the substrate holder.
  • a vibration sensor for detecting the vibration of the end effector A control unit for controlling the substrate transfer machine, A normal space created by analyzing the time domain data of the vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed by the MT method is used.
  • the Mahalanobis distance in the normal space of the time domain data detected by the vibration sensor while the substrate transfer machine places the substrate and performs a predetermined transfer operation and the calculated Mahalanobis distance A substrate on the end effector or the end effector, and an analysis device for determining that the substrate holder or the substrate on the substrate holder are in contact with each other when the threshold value exceeds a predetermined threshold value,
  • a technique is provided in which the control unit outputs a signal indicating the start and end of the predetermined transfer operation to the analysis device.
  • the present disclosure it is possible to detect with high accuracy that the substrate transfer device or the substrate on the substrate transfer device and the substrate holder or the substrate on the substrate holder are in contact with each other, and to detect a slight error before the failure state. Anomalies can be detected.
  • FIG. 3 is a perspective view of a storage chamber preferably used in the first embodiment of the present disclosure. It is a cross-sectional view of a substrate processing apparatus preferably used in the first embodiment of the present disclosure. It is a perspective view of a substrate transfer machine suitably used in one embodiment of the present disclosure.
  • FIG. 3 is a schematic configuration diagram of a controller of a substrate processing apparatus that is preferably used in an embodiment of the present disclosure, and is a block diagram of a control system of the controller.
  • A) is a figure which shows the time domain data for explaining MT method
  • (B) is a figure which shows the variation
  • FIG. 7 is a diagram for explaining the operation of the substrate transfer machine that is preferably used in the embodiment of the present disclosure.
  • (A) is a flow chart for explaining the operation of an analysis apparatus preferably used in an embodiment of the present disclosure
  • (B) is a real-time calculation result of the Mahalanobis distance (MD value) by the analysis apparatus.
  • FIG. (A) is a figure which shows an example of time domain data of the output value by the vibration sensor in the transfer operation at the time of normal
  • (B) is the feature-value extracted using the time domain data of (A).
  • FIG. (A) is a figure which shows an example of the time domain data of the output value by the vibration sensor in the transfer operation at the time of abnormality
  • (B) is a feature-value extracted using the time domain data of (A).
  • the substrate processing apparatus 4 is configured as a vertical heat treatment apparatus (batch type vertical heat treatment apparatus) for performing a heat treatment step in an IC manufacturing method. Has been done.
  • a FOUP Front Opening Unified Pod
  • the substrate processing apparatus 4 includes a processing furnace 8, a housing chamber 12, and a transfer chamber 16 described later.
  • An accommodation chamber 12 for carrying the pod 20 into the apparatus and accommodating the pod 20 is disposed on the front side of the housing of the substrate processing apparatus 4.
  • a loading/unloading port 22A that is an opening for loading/unloading the pod 20 into/from the housing chamber 12 is provided so as to communicate the inside and outside of the housing of the housing chamber 12.
  • the loading/unloading port 22A may be configured to be opened and closed by a front shutter.
  • An AGV port (I/O stage) 22 as a load port (pod mounting device) is provided inside the housing of the carry-in/out port 22A.
  • a transfer port 42 is installed on the wall surface between the storage chamber 12 and the transfer chamber 16.
  • the pod 20 is loaded into the substrate processing apparatus 4 on the AGV port 22 by an in-process transfer apparatus (inter-step transfer apparatus) outside the substrate processing apparatus 4, and is also unloaded from the AGV port 22.
  • a storage shelf (pod shelf) 30A for storing the pod 20 is installed in two steps above and below the AGV port 22 in the front of the housing of the storage chamber 12.
  • storage shelves (pod shelves) 30B that store the pods 20 are installed in a matrix at the rear of the housing of the storage chamber 12.
  • the OHT ports 32 as load ports are installed side by side on the same straight line in the horizontal direction as the upper storage rack 30A in front of the housing.
  • the pod 20 is carried into the OHT port 32 from above the substrate processing apparatus 4 by the intra-process carrying apparatus (inter-process carrying apparatus) outside the substrate processing apparatus 4, and is carried out from the OHT port 32.
  • the AGV port 22, the storage shelf 30A, and the OHT port 32 are configured so that the pod 20 can be slid in the front-rear direction between the mounting position and the delivery position by the horizontal drive mechanism 26.
  • the AGV port 22 may be referred to as a first load port and the OHT port 32 may be referred to as a second load port.
  • the space between the front storage rack 30 ⁇ /b>A and the rear storage rack 30 ⁇ /b>B in the housing of the storage chamber 12 forms a pod transfer area 14.
  • the pod 20 is connected.
  • a rail mechanism 40A is formed on the ceiling of the pod transport area 14 (the ceiling of the accommodation chamber 12) as a traveling path of the pod transport mechanism 40 as a pod transport device.
  • the delivery position is located in the pod transport area 14, and is, for example, a position directly below the pod transport mechanism 40.
  • the pod transport mechanism 40 that transports the pod 20 includes a traveling unit 40B that travels along a traveling path, a holding unit 40C that holds the pod 24, and an elevating unit 40D that is coupled to the traveling unit 40B and that vertically elevates the holding unit 40C.
  • a traveling unit 40B that travels along a traveling path
  • a holding unit 40C that holds the pod 24
  • an elevating unit 40D that is coupled to the traveling unit 40B and that vertically elevates the holding unit 40C.
  • a transfer chamber 16 is formed adjacent to the rear of the storage chamber 12.
  • a plurality of wafer loading/unloading ports for loading/unloading the wafer W into/from the transporting chamber 16 are arranged in a line in the horizontal direction, and are transferred to each wafer loading/unloading port.
  • Each port 42 is installed.
  • the mounting table 42B on which the pod 20 is mounted is horizontally moved and pressed against the wafer loading/unloading port, and the pod is opened by a FIMS (Front-Opening Interface Standard) opener (not shown) as a lid opening/closing mechanism (lid opening/closing device). Twenty lids are unfolded.
  • FIMS Front-Opening Interface Standard
  • the wafer W is transferred into and out of the pod 20 by the substrate transfer device 86 as a substrate transfer device.
  • the substrate transfer machine 86 is fixedly installed in the transfer chamber 16 and transfers the wafer W between the boat 58 and the pod 20 described later.
  • the processing furnace 8 is provided above the transfer chamber 16.
  • the processing furnace 8 is provided with a reaction tube 50 that constitutes a reaction container (processing container).
  • the reaction tube 50 is formed in a cylindrical shape having an upper end closed and a lower end opened.
  • a processing chamber 54 is formed in the hollow portion of the reaction tube 50.
  • the processing chamber 54 is configured to be accommodated by a boat 58 as a substrate holder that holds a wafer W as a substrate in a horizontal posture and in a vertically aligned state in multiple stages.
  • a plurality of nozzles are provided in the processing chamber 54 so as to penetrate the lower portion of the reaction tube 50, and a plurality of types of processing gases are supplied to the processing chamber 54.
  • a seal cap 78 is installed below the reaction tube 50 as a furnace port lid that can hermetically close the lower end opening of the reaction tube 50.
  • An O-ring is provided on the upper surface of the seal cap 78 as a seal member that comes into contact with the lower end of the reaction tube 50.
  • the seal cap 78 is configured to come into contact with the lower end of the reaction tube 50 from the vertically lower side.
  • the boat 58 arranges a plurality of wafers W, for example, 25 to 200 wafers W in a horizontal posture and vertically aligned with the centers thereof aligned with each other in a multi-stage manner, that is, at an interval. Is configured to let.
  • a rotation mechanism 80 as a boat rotation device that rotates the boat 58 is installed on the opposite side of the seal cap 78 from the processing chamber 54.
  • the rotating shaft 80A of the rotating mechanism 80 penetrates the seal cap 78 and is connected to the boat 58.
  • the rotation mechanism 80 is configured to rotate the wafer W by rotating the boat 58.
  • An auxiliary sensor 301 as an auxiliary vibration sensor that detects the vibration of the boat 58 is attached to the rotating shaft 80A.
  • the substrate transfer machine 86 is mainly acoustically coupled to the tweezers 86a as an end effector for directly operating the wafer W, a drive mechanism 308 for moving the tweezers 86a, and the tweezers 86a, thereby vibrating the tweezers 86a.
  • the vibration sensor 300 for detecting and the rotation mechanism 310 for rotating the drive mechanism 308 around the vertical axis are provided.
  • the tweezers 86a have, for example, a U-shaped thin plate shape, a plurality of (five in the present embodiment), and are horizontally provided at equal intervals in the vertical direction.
  • the tweezers 86a are of a scooping type and have a guide or a step provided on the upper surface at a position slightly outside the end of the wafer W to restrict the position of the wafer W, and the wafer W is simply placed in the guide.
  • the tweezers 86a can be selected from an edge grip type, a drop edge grip type, a suction type, and the like.
  • the attraction type is a vacuum attraction, Bernoulli chuck, or Johnsen-Rahbek type electrostatic chuck, and the wafer W can be handled in a non-contact manner.
  • the drive mechanism 308 is configured as a linear (linear) type, and mainly has a fixed part 304 and a guide part 302.
  • the fixing portion 304 holds the roots of the tweezers 86a and fixes them at equal intervals.
  • a drive mechanism for the edge grip, a variable distance mechanism, a horizontal/vertical fine movement mechanism, and the like may be provided in the fixed portion 304.
  • the guiding section 302 holds the fixing section 304 from below and moves it back and forth on one horizontal axis.
  • the guide portion 302 for example, two guide rails 302a (not shown) that guide the tweezers 86a in the uniaxial direction are formed substantially parallel to each other.
  • the fixed portion 304 slides along the guide rail 302a, whereby the tweezers 86a move forward and backward with respect to the guide portion 302 and are moved in the front-rear direction.
  • the rotating mechanism 310 rotates the guide part 302 in the left-right direction while holding the guide part 302 near the center of the lower surface.
  • the substrate transfer machine 86 is mounted on the substrate transfer machine elevator 306 described later.
  • the substrate transfer machine elevator 306 holds the rotation mechanism 310 of the substrate transfer machine 86 and moves the substrate transfer machine 86 up and down.
  • the tweezers 86 a of the substrate transfer machine 86 are moved forward and backward along the guide rails 302 a by the drive mechanism 308, and are rotated in the left and right directions by the rotation of the drive mechanism 308 by the rotation mechanism 310, and the substrate transfer machine elevator 306. It is moved up and down by moving up and down.
  • the vibration sensor 300 is a triaxial acceleration sensor.
  • the vibration sensor 300 is provided on the fixed portion 304 at the base of the stacked tweezers 86a.
  • Vibration sensor 300 may require an amplifier (not shown).
  • the amplifier is preferably provided near the vibration sensor 300 and may be provided in the drive mechanism 308, for example.
  • a controller 210 which is a control unit (control means), includes a CPU (Central Processing Unit) 212, a RAM (Random Access Memory) 214, a storage device 216, and an I/O port 218. Is configured as a computer equipped with.
  • the RAM 214, the storage device 216, and the I/O port 218 are configured to exchange data with the CPU 212 via the internal bus 220.
  • An input/output device 222 configured as, for example, a touch panel or the like is connected to the controller 210.
  • the controller 210 is connected to an analysis device 400 that detects an abnormality during the transfer operation of the wafer W.
  • the storage device 216 is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which a procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination that causes the controller 210 to execute each procedure in the substrate processing process described below and obtains a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the term program is used in the present specification, it may include only the process recipe, only the control program, or both.
  • the RAM 214 is configured as a memory area (work area) in which programs and data read by the CPU 212 are temporarily stored.
  • the I/O port 218 is connected to the pod transport mechanism 40, the horizontal drive mechanism 26, the sensors 25B and 28A, the drive mechanism 308, the substrate transfer machine elevator 306, the rotation mechanism 310, the rotation mechanism 80, the boat elevator 82, etc. described above. ing.
  • the CPU 212 is configured to read the control program from the storage device 216 and execute the control program, and read the process recipe from the storage device 216 in response to input of an operation command from the input/output device 222.
  • the CPU 212 charges the wafer W of the substrate transfer machine 86 by the transfer operation of the pod 20 by the pod transfer mechanism 40, the drive mechanism 308, the rotation mechanism 310, and the substrate transfer machine elevator 306 so as to follow the contents of the read process recipe. And a discharging operation, and an up-and-down operation of the boat 58 by the boat elevator 82 are controlled.
  • the controller 210 can be configured by installing the above program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a semiconductor memory such as a USB memory) 224 into a computer. it can.
  • the storage device 216 and the external storage device 224 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 216 alone, may include only the external storage device 224 alone, or may include both of them.
  • the program may be provided to the computer by using communication means such as the Internet or a dedicated line without using the external storage device 224.
  • Carrier loading process S10
  • the pod 20 above the AGV port 22 or the OHT port 32 is carried into the substrate processing apparatus 4.
  • the loaded pod 20 is automatically transported by the pod transport mechanism 40 to the designated stage 25 of the storage shelf 30 and transferred to and temporarily stored, and then is transferred from the storage shelf 30 to one transfer port 42. It is transported and delivered, or directly transported to the transfer port 42.
  • the processing chamber 54 is purged, and the gas and reaction byproducts remaining in the processing chamber 54 are removed from the processing chamber 54. After that, the atmosphere in the processing chamber 54 is replaced with an inert gas, and the pressure in the processing chamber 54 is returned to normal pressure.
  • Carrier unload process S17
  • the processed wafer W is stored in the pod 20 by the substrate transfer machine 86, and the pod 20 in which the processed wafer W is stored is subjected to the operation opposite to the carrier load, and the load port (AGV port 22, OHT port It is returned to 32) and collected by an external transfer device.
  • the analysis apparatus 400 detects an abnormality during the transfer operation of the wafer W in the wafer charging step (S12) and the wafer discharging step (S16) using the MT (Mahalanobis Taguchi) method. is there.
  • the MT method is a method of multivariate analysis in quality engineering, and is based on the idea that a normal state is judged by calculating a distance (Mahalanobis distance, MD value) from the normal state as a reference. is there.
  • the analysis apparatus 400 generates multivariate data by extracting the characteristic amount from the time domain data of the output value detected by the vibration sensor 300, and the multi-variate data is generated during the transfer operation of the wafer W using the MT method. It is configured to detect anomalies. Further, as shown in FIG. 4, the analysis device 400 is connected to the vibration sensor 300 and the auxiliary sensor 301, and is configured to be able to acquire the output values thereof.
  • FIG. 5A is data obtained by acquiring the acceleration of a certain axis at a sample rate of 100 sps during 19.5 seconds during the transfer operation.
  • FIG. 5B is a diagram showing the amount of change and the amount of existence for each sample line extracted from the time domain data shown in FIG. 5A.
  • the amount of change is the differential characteristic of the time domain data, and is the number of times the sample lines set in the time domain data straddle each sample line.
  • the abundance is the integral characteristic of the time domain data, and is the number of data having a value larger than the sample line for each sample line set in the time domain data.
  • Each sample line is set as a plurality of thresholds, and a value to be monitored or a value characteristically showing a change in environment is set.
  • the number of times the waveform crosses the sample line is counted as the amount of change. Further, for each sample line, the number of values larger than the sample line is calculated as the existing amount. That is, the feature amount of two items of the variation amount and the existing amount is extracted for one sample line. In addition to the amount of change and the amount of existence, the maximum value, the minimum value, the average value, and the like of the waveform may be used as the feature amount.
  • sample data that is 14-dimensional multivariate data extracted by using the amount of change and the amount of existence in the transfer operation under normal conditions as the feature amount is calculated.
  • N pieces of sample data calculated using a common sample line are calculated from the time domain data in a plurality of times (N pieces in FIG. 6) of transfer operation in a normal state
  • a normal space is created using the N sample data.
  • the average vector and the covariance matrix are calculated using N sample data in the normal state.
  • the normal space is a space spanned by the eigenvectors of the covariance matrix.
  • the Mahalanobis distance MD in the normal space is calculated as a data vector (column vector) which is multivariate data created based on the time domain data of the output value detected by the vibration sensor 300 during the transfer operation.
  • a data vector column vector
  • the mean vector of multivariate data in the normal space and the inverse matrix of the covariance matrix, it is shown as follows.
  • the time domain data on which the multivariate data is based preferably has the same number of samples (1950 samples), but the multivariate data can also be divided by the number of samples for normalization. Further, the Mahalanobis distance may be threshold-determined with the squared value thereof being kept.
  • FIG. 7 is a view showing how the wafer W is transferred by the substrate transfer machine 86 between the pod 20 of the transfer port 42 and the boat 58 in the transfer chamber 16.
  • a camera 226 is installed in the transfer chamber 16, and images of how the wafer W is transferred and how the boat 58 is moved up and down are photographed and recorded in response to a command from the controller 210.
  • the analysis apparatus 400 is configured to transfer the wafer W to the boat 58 during the wafer charging process (S12) and the wafer discharging process (S16), which are transfer processes, and the tweezers 86a, the wafer W on the tweezers 86a, and the boat 58. It is detected that the wafer W and the wafer 58 on the boat 58 are in contact with each other.
  • the controller 210 controls the substrate transfer machine 86, the rotation mechanism 310, and the substrate transfer machine elevator 306 to transfer the wafer W to be transferred. Abnormality is detected in all or part of the transfer operation. Specifically, with the tweezers 86a facing the wafer W to be transferred in the pod 20, the transfer machine 86 advances the tweezers 86a to the lower side of the wafer W and raises the tweezers 86a to lift the wafer W. After mounting, the tweezers 86a are retracted. Then, the substrate transfer machine elevator 306 moves up and down to the mounting position of the wafer W on the boat 58.
  • the rotation mechanism 310 rotates the transfer device 86 in the left-right direction so that the transfer device 86 faces the boat 58. Then, the tweezers 86a are moved forward to the wafer mounting position of the boat 58 by the transfer machine 86 and then moved in the vertical direction to transfer the wafer W to the boat 58 and retract in the backward direction. After that, the transfer machine 86 is moved up and down to the height of the next transfer target wafer W, and is rotated so as to directly face the transfer target wafer W. The controller 210 repeats this series of operations until all the wafers W have been transferred.
  • an abnormality can be detected in the operation from the forward movement of the tweezers 86a toward the boat 58 to the backward movement thereof, which is a section in which there is a high possibility of contact in the series of operations.
  • the operation of this abnormality detection section is the same every time, and the required time is constant.
  • the processed wafer W is delivered to the pod 20 by the operation opposite to the wafer charging process.
  • the analyzer 400 previously creates a normal space for the transfer operation of the wafer W to the boat 58 at the time of adjustment after installation of the device, and records it inside. Specifically, the time domain data of the output value of the vibration sensor 300 when the transfer operation of the wafer W to the boat 58 by the substrate transfer machine 86 is normally performed in the presence of the worker is performed a plurality of times.
  • a normal space is created by setting acquired sample lines and analyzing a plurality of acquired time domain data by the MT method.
  • FIG. 8A is a flowchart for explaining the operation of the analysis device 400.
  • the controller 210 transmits signals indicating the start and end of the abnormality detection section in transfer to the analysis device 400.
  • the analysis device 400 receives the start signal, starts the operation of FIG. 8, and continues until it receives the end signal.
  • time domain data is acquired at 100 sps to 100 ksps (samples/second), and feature quantity extraction (multivariate data conversion) and Mahalanobis distance calculation are performed with time domain data of less than 2048 samples as a unit. Calculate.
  • the analysis apparatus 400 acquires M samples of the time domain data of the output value of the vibration sensor 300 while the substrate transfer machine 86 performs the transfer operation (step S100).
  • M is the same number as the number of samples of the time domain data used when creating the normal space, which is 1950 in this example.
  • M may be set such that the time of M samples is an integer multiple of the period of the particular noise (eg, power hum).
  • the acquired M samples may partially overlap the already acquired data.
  • time domain data can be acquired using a sliding window that is set while shifting by M/d samples. Where d is the number of divisions and is selected so that 2 ⁇ d ⁇ M and M/d is an integer.
  • multivariate data is generated by extracting the amount of change and the amount of existence for each sample line as a feature amount based on the time domain data acquired in step S100 (step S101).
  • this processing may be performed and held in units of M/d samples, and the latest d pieces may be added together.
  • the Mahalanobis distance in the normal space is calculated for each transfer operation from the multivariate data created in step S101, the average value of the multivariate data in the normal space, and the covariance matrix (step S102).
  • the squared value of the Mahalanobis distance may be calculated and held in units of M/d samples in the time domain data, and the latest d pieces may be summed.
  • step S103 it is determined whether the calculated Mahalanobis distance exceeds a preset threshold value (step S103).
  • the analysis operation is continued during the transfer of the wafer W to the boat 58 (No in step S104), and the wafer W is transferred to the boat 58.
  • the conveyance (abnormality detection section) of is completed (Yes in step S104)
  • the analysis operation is stopped.
  • the threshold value determination is not limited to one time determination, and may be performed according to the number of times the threshold value is continuously exceeded, for example.
  • step S105 When the Mahalanobis distance exceeds the preset threshold value (Yes in step S103), it is determined that an abnormal situation has occurred (step S105), and the substrate transfer machine 86 is stopped urgently. That is, it is determined that an abnormal situation has occurred in which the tweezers 86a and the wafer W on the tweezers 86a and the boat 58 and the wafer W on the boat 58 are in contact with each other, and the emergency stop signal is transmitted from the analysis device 400 to the controller 210. The substrate transfer machine 86 is stopped urgently.
  • FIG. 8B is a diagram showing a time transition of the Mahalanobis distance (MD value) calculated by the analysis device 400.
  • the abnormalities that can be detected from the MD value include collisional contact that means that the wafer cannot be used as a product, scratching of the wafer by the tweezers 86a, and the end surface of the wafer W held by the tweezers 86a.
  • Friction with the groove of the boat 58 may also be included. Such friction can be regarded as a sign of a more serious contact, but in a situation where frequent occurrence of emergency stop due to slight friction is not desired, a normal space is created by using data including friction or the MD value An emergency stop can be suppressed by adjusting the threshold value.
  • FIG. 9A is a diagram showing an example of the time domain data of the output value by the vibration sensor 300 in the transfer operation at the normal time
  • FIG. 9B shows the time domain data of FIG. 9A. It is a figure which shows the feature-value extracted using.
  • 10A is a diagram showing an example of the time domain data of the output value by the vibration sensor in the transfer operation at the time of abnormality
  • FIG. 10B is the time domain data of FIG. 10A. It is a figure which shows the feature-value extracted using.
  • the Mahalanobis distance (MD value) in the normal space based on the feature amount extracted from the time domain data shown in FIG. 9(B) was 0.9. In this transfer operation, the MD value is below the threshold value 3.8, so it is determined to be in a normal state, and the transport operation is continued.
  • the Mahalanobis distance (MD value) in the normal space based on the feature amount extracted from the time domain data shown in FIG. 10(B) was 33.1.
  • the MD value greatly exceeds the threshold value, so that it is determined to be in an abnormal state.
  • the transfer chamber 16 is provided with a camera 226 that captures the transfer operation of the substrate transfer machine 86, and the image captured by the camera 226 is associated with time and stored in the storage device 216 as a recording device or external storage. Recorded in device 224.
  • the transfer operation by the substrate transfer machine 86 is recorded as an operation log in the storage device 216 or the external storage device 224 in association with the time, and when an abnormal situation is detected by the analysis device 400, a remote connection is made.
  • the input/output device 222 displaying the operation screen is configured so that the user can grasp the time of the transportation error, the location of the transportation error, the content of the transportation error, and the like. Further, when a transport error occurs, the replay video and live video before and after the transport error by the camera 226 can be displayed on the input/output device 222.
  • the analysis device 400 is generated by extracting the amount of change and the amount of existence based on the time domain data of each of the front, rear, left, right, and top and bottom axes of the vibration sensor 300 and the time domain data of the auxiliary sensor 301 as the feature quantity.
  • a normal space using multiple multivariate data, selecting the corresponding normal space from the multiple normal spaces, and calculating the Mahalanobis distance in the selected normal space. The accuracy is improved. For example, from the three-axis data of the vibration sensor 300, one normal space is created by combining those feature amounts, and from the data of the auxiliary sensor 301, a separate normal space is created. Then, the abnormality due to contact can be determined in consideration of the co-occurrence of the Mahalanobis distance in each normal space. That is, when the two Mahalanobis distances simultaneously exceed the threshold value, the contact is more strongly estimated, otherwise another anomaly is estimated.
  • the analysis device 400 uses the number of wafers W being transferred, the moving speed and acceleration of the tweezers 86a, the insertion amount of the tweezers 86a into the boat 58, the amount of wind flowing around the boat 58, the temperature of the boat 58, or the boat.
  • a plurality of normal spaces are created for each temperature of the processing chamber accommodating the 58, and a normal state that matches the state when the transfer operation by the substrate transfer machine 86 is performed from the plurality of normal spaces. Anomalies can be detected by selecting a space and calculating the Mahalanobis distance in the selected normal space. This improves the detection accuracy of the abnormality.
  • the time domain data during transfer operation if there is a section in which the value tends to be always large (for example, the start or end point of acceleration or deceleration, the vicinity of the switching point of operation, etc.)
  • the second normal space is created from the data not including the large value section, and the abnormality is detected in the second normal space in the section. Good.
  • the time domain data becomes temporally discontinuous before and after the exclusion of the large value section, but the analysis device 400 can treat them as continuous without any problem.
  • an abnormality can be detected and an emergency stop can be performed within 3 seconds after the occurrence of contact. Since the time for the tweezers 86a to advance and retreat once is about 3 seconds, it is expected that an emergency stop will be performed in the middle of the advance and retreat to prevent the spread of wafer damage. Furthermore, since the analysis device 400 acquires the time domain data by the sliding window, the abnormality detection cycle can be shortened with a relatively small calculation load. Therefore, even if the analyzer 400 is configured with a commercially available industrial sequencer, the emergency stop can be performed at a sufficient speed.
  • the transfer operation by the substrate transfer machine 86 is recorded in the storage device 216 or the external storage device 224 as an operation log in association with the time, and the analysis device 400 detects an abnormal situation. Then, the input/output device 222 that is remotely connected to display the operation screen is configured so that the user can grasp the time of the transport error, the location of the transport error, the content of the transport error, and the like. ing. Further, when a transport error occurs, a recorded image or live image screen immediately before the transport error by the camera 226 installed can be displayed on the input/output device 222.
  • a normal space is created in the operation of the substrate transfer machine 86 between the boats 58 from the time the tweezers 86a are faced to the boat 58 until the wafer W is transferred to the boat 58 and retracted.
  • the Mahalanobis distance in the normal space is calculated, the present invention is not limited to this, and a normal space may be created for the operation of the substrate transfer machine 86 between the pods 20 and the Mahalanobis distance in the normal space may be calculated.
  • the auxiliary sensor 301 is attached to the rotating shaft 80A as the auxiliary vibration sensor to detect the vibration of the boat 58
  • the present invention is not limited to this, and the auxiliary sensor 301 is not limited to the rotating mechanism 80 or the boat. It may be attached to a heat insulation unit provided between 58 and the rotating shaft 80A, or may be attached to a table on which the boat 58 is placed.
  • a sound collecting microphone that has directivity toward the tip of the tweezers 86a and collects vibrations in the air may be used. At this time, the sound collecting microphone is mounted on the substrate transfer machine 86 or in the transfer chamber 16.
  • a laser Doppler vibrometer that irradiates the boat 58 with laser light to detect the vibration may be used as the auxiliary vibration sensor. At this time, the laser Doppler vibrometer is installed in the transfer chamber 16. Note that a plurality of auxiliary vibration sensors may be used. The accuracy of the abnormality detection of the analysis device 400 is improved by using the plurality of auxiliary vibration sensors.
  • the vibration sensor 300 is provided in the fixing portion 304 that stacks and fixes the roots of the plurality of tweezers 86a
  • a sensor may be provided.
  • a plurality of normal spaces are created for each time domain data of the output value of the vibration sensor for each tweezer 86a, and the Mahalanobis distance in the corresponding normal space is calculated from the plurality of normal spaces.
  • the tweezers 86a in which the abnormality is detected can be specified.
  • the present invention is not limited to this, and preprocessing such as a filter may be performed. ..
  • the pre-processing can be configured as a filter that suppresses noise of a specific frequency or passes a frequency that is peculiar to contact, or an equalizer that compensates the frequency characteristic of a detection system including a tweezer having a natural frequency.
  • the center frequency and cutoff frequency of the filter are changed so as to tune to the frequency. Can be controlled.
  • the present disclosure can be applied to all substrate processing apparatuses that process substrates such as glass substrates of liquid crystal panels and magnetic disks and optical disks. Further, in the above-described embodiment, an example in which a batch-type substrate processing apparatus that processes a plurality of substrates at one time is used has been described. The present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, the case of using a single wafer processing apparatus that processes one or several substrates at a time.
  • a substrate holder for holding the substrate A substrate transfer machine that includes an end effector that directly operates the substrate and a drive mechanism that moves the end effector, transfers the substrate to the substrate holder, or transfers the substrate from the substrate holder.
  • a vibration sensor for detecting the vibration of the end effector A control unit for controlling the substrate transfer machine, A normal space created by analyzing the time domain data of the vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed by the MT method is used.
  • the substrate processing apparatus is provided in which the control unit outputs a signal indicating the start and end of the predetermined transfer operation to the analysis apparatus.
  • Appendix 2 The substrate processing apparatus according to Appendix 1, preferably: The analysis device extracts the amount of change in the time domain data, which is the number of times the sample line is crossed for each of a plurality of predetermined sample lines, and the existing amount, which is the number of data having a value larger than the sample line, as feature amounts.
  • the substrate processing apparatus includes the number of substrates being transferred, the moving speed of the end effector, the insertion amount of the end effector into the substrate holder, the air volume of air flowing around the substrate holder, and the substrate holder.
  • a plurality of normal spaces are stored for each temperature or each temperature of the processing chamber that accommodates the substrate holder, A normal space that matches the state when the transfer operation by the substrate transfer machine is performed is selected from the plurality of normal spaces, and the Mahalanobis distance in the selected normal space is calculated.
  • the substrate processing apparatus according to Supplementary Note 2 or Supplementary Note 3, preferably:
  • the substrate transfer machine is fixedly installed in the substrate processing apparatus, and transfers the substrate to and from the substrate holder carried out from the processing chamber,
  • the vibration sensor is a triaxial acceleration sensor, An auxiliary sensor attached to a member holding the substrate holder, a sound collecting microphone that collects vibrations in the air having directivity toward the tip of the end effector, or laser light on the substrate holder.
  • an auxiliary vibration sensor including at least one of a laser Doppler vibrometer for irradiating the The analysis device, a plurality of multivariate data generated by extracting the amount of change and the amount of presence based on each of the time domain data of each axis of the vibration sensor and the time domain data of the auxiliary vibration sensor as a feature amount. Is used to create the normal space.
  • the substrate processing apparatus according to Supplementary Note 2 or Supplementary Note 3, preferably:
  • the number of time domain data when creating the normal space is 24576 samples or less, and the multivariate data is multivariate at intervals of less than 1024 samples.
  • the substrate processing apparatus preferably: A camera for capturing the transfer operation, and a recording device for recording the captured image in association with time,
  • the control unit controls the transfer operation to be recorded in the recording device as an operation log in association with time.
  • a substrate transfer machine provided with an end effector that directly operates the substrate and a drive mechanism that moves the end effector transfers the substrate to a substrate holder that holds the substrate, or transfers the substrate from the substrate holder.
  • a transfer process for transferring Time domain of vibration of the end effector detected by a vibration sensor that detects vibration of the end effector when the substrate transfer operation by the substrate transfer machine in the transfer step is normally performed by the analysis device Using the normal space created by analyzing the data by the MT method, the substrate transfer device detects the vibration while the substrate is placed and a predetermined transfer operation is performed in the transfer step.
  • the Mahalanobis distance in the normal space of the time domain data is calculated, and when the calculated Mahalanobis distance exceeds a predetermined threshold value, the end effector or the substrate on the end effector, the substrate holder or the substrate holding An analysis step of determining that an abnormal situation has occurred in which the board on the tool is in contact with each other; An output step of outputting a signal indicating the start and end of a predetermined transfer operation by the substrate transfer machine to the analysis device; A method for manufacturing a semiconductor device is provided.
  • Substrate processing equipment 20 pods (container) 58 Boat (substrate holder) 86 Substrate transfer machine 210 Controller 300 Vibration sensor 301 Auxiliary sensor 400 Analysis device

Abstract

The present invention makes it possible to: detect, with high accuracy, contact between a substrate transfer machine or a substrate on a substrate transfer machine and a boat or a substrate on a boat; and detect very small abnormalities that are present before a state of malfunction is reached. The present invention comprises: a substrate transfer machine equipped with a substrate holder for holding a substrate, an end effector for directly operating the substrate, and a drive mechanism for causing the end effector to move, the substrate transfer machine transferring the substrate to the substrate holder or transferring the substrate from the substrate holder; a vibration sensor for detecting vibration in the end effector; a control unit for controlling the substrate transfer machine; and an analysis device for using a normal space created by analyzing, through the MT method, time region data for the vibration in the end effector as detected by the vibration sensor when a substrate transfer operation by the substrate transfer machine is carried out normally, calculating the Mahalanobis distance, in the normal space, of time region data detected by the vibration sensor while the substrate transfer machine places a substrate and performs a prescribed transfer operation, and assessing that contact has been made between the end effector or the substrate on the end effector and the substrate holder or the substrate on the substrate holder when the calculated Mahalanobis distance exceeds a prescribed threshold value. The control unit outputs, to the analysis device, signals indicating the start and the end of the prescribed transfer operation.

Description

基板処理装置及び半導体装置の製造方法Substrate processing apparatus and semiconductor device manufacturing method
 本開示は、基板処理装置及び半導体装置の製造方法に関する。 The present disclosure relates to a method for manufacturing a substrate processing apparatus and a semiconductor device.
 基板処理装置は、例えば基板移載機により基板(以下ウエハともいう)が格納される格納容器(以下ポッドともいう)から基板保持具であるボートへウエハを搬送し、ウエハを保持したボートが反応炉に装入されて、反応炉内にてウエハに対して所定の処理を行うよう構成されている。 A substrate processing apparatus transfers a wafer from a storage container (hereinafter also referred to as a pod) in which a substrate (hereinafter also referred to as a wafer) is stored by a substrate transfer machine to a boat that is a substrate holder, and the boat holding the wafer reacts. It is configured to be loaded into a furnace and to perform a predetermined process on the wafer in the reaction furnace.
 基板移載機は、ポッドとボートとの間でウエハの移載を行うものであり、ウエハを基板移載機のツイーザ上に載置した状態で進退、昇降、回転する機能を有している。この基板移載機によりポッドからツイーザにウエハを載置する際やツイーザに載置されたウエハをボートに積載する場合等においてウエハが正規の位置に載置できるように、ティーチング作業を行っている。 The substrate transfer machine transfers a wafer between a pod and a boat, and has a function of advancing/retracting, moving up/down, and rotating with a wafer placed on a tweezer of the substrate transfer machine. .. Teaching work is performed so that the wafer can be placed at a proper position when the wafer is placed from the pod to the tweezers or when the wafer placed on the tweezers is loaded on the boat by the substrate transfer machine. ..
 しかしながら、ウエハの変形や、基板処理装置に設けられたポンプ等による振動、ツイーザの経年変化等によりティーチング作業とは異なる位置にウエハが積載されてウエハの位置ずれが生じてしまうことがある。ウエハの位置ずれが大きくなると、ツイーザやツイーザ上のウエハが、ボートやボート上のウエハ等に接触し、ウエハが破損したり、ボートが転倒したりすることがある。 However, the wafer may be loaded at a position different from the teaching work due to the deformation of the wafer, the vibration of the pump provided in the substrate processing apparatus, the secular change of the tweezers, etc., and the wafer may be displaced. When the displacement of the wafer becomes large, the tweezers or the wafers on the tweezers may come into contact with the boat, the wafers on the boat, or the like, and the wafers may be damaged or the boat may tip over.
 従来から、この転倒事故を未然に防ぐために基板移載機に設けられた衝突センサより衝突時の振動を検知することが行われている(例えば、特許文献1参照)。また、ウエハを支持する支持台において昇降ピンに生じた振動を検出し、検出される振動の強度が閾値よりも大きくなった期間の合計値に基づいて載置状態を判定することが行われている(例えば、特許文献2参照)。 Conventionally, in order to prevent this fall accident, the vibration at the time of collision is detected by a collision sensor provided in the substrate transfer machine (for example, refer to Patent Document 1). Further, the vibration generated in the lifting pins on the support table that supports the wafer is detected, and the mounting state is determined based on the total value of the periods when the detected vibration intensity is larger than the threshold value. (See, for example, Patent Document 2).
特開2003-109999号公報Japanese Patent Laid-Open No. 2003-109999 特許第6244317号公報Japanese Patent No. 6244317
 しかしながら、従来技術によると、誤判定が多く、移載動作の中断の原因となってしまっていた。また、アナログ量の変化を閾値で検出していたために、軽微な接触等の異常を検出することが困難であった。 However, according to the conventional technology, there were many erroneous determinations, which caused interruption of the transfer operation. Moreover, since the change in the analog amount is detected by the threshold value, it is difficult to detect a slight abnormality such as contact.
 本開示の目的は、基板移載機や基板移載機上の基板と、基板保持具や基板保持具上の基板とが互いに接触したことを高精度に検出し、故障状態の前の軽微な異常を検出することができる構成を提供することにある。 An object of the present disclosure is to detect with high accuracy that a substrate transfer device or a substrate on the substrate transfer device and a substrate holder or a substrate on the substrate holder are in contact with each other, and to detect a slight error before a failure state. It is to provide a configuration capable of detecting an abnormality.
 本開示の一態様によれば、
 基板を保持する基板保持具と、
 基板を直接的に操作するエンドエフェクタと、前記エンドエフェクタを移動させる駆動機構とを備え、前記基板保持具へ基板を移載し、又は前記基板保持具から基板を移載する基板移載機と、
 前記エンドエフェクタの振動を検出する振動センサと、
 前記基板移載機を制御する制御部と、
 前記基板移載機による基板の移載動作が正常に行われた際に前記振動センサにより検出された前記エンドエフェクタの振動の時間領域データをMT法によって分析することにより作成された正常空間を用い、前記基板移載機が基板を載置して所定の移載動作をする間に前記振動センサにより検出された時間領域データの前記正常空間上におけるマハラノビス距離を算出し、算出された前記マハラノビス距離が所定の閾値を超えた時に、前記エンドエフェクタもしくは前記エンドエフェクタ上の基板と、前記基板保持具もしくは前記基板保持具上の基板とが互いに接触したと判定する解析装置と、を備え、
 前記制御部は、前記所定の移載動作の開始と終了を示す信号を前記解析装置に出力する技術が提供される。
According to one aspect of the present disclosure,
A substrate holder for holding the substrate,
A substrate transfer machine that includes an end effector that directly operates the substrate and a drive mechanism that moves the end effector, transfers the substrate to the substrate holder, or transfers the substrate from the substrate holder. ,
A vibration sensor for detecting the vibration of the end effector,
A control unit for controlling the substrate transfer machine,
A normal space created by analyzing the time domain data of the vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed by the MT method is used. , The Mahalanobis distance in the normal space of the time domain data detected by the vibration sensor while the substrate transfer machine places the substrate and performs a predetermined transfer operation, and the calculated Mahalanobis distance A substrate on the end effector or the end effector, and an analysis device for determining that the substrate holder or the substrate on the substrate holder are in contact with each other when the threshold value exceeds a predetermined threshold value,
A technique is provided in which the control unit outputs a signal indicating the start and end of the predetermined transfer operation to the analysis device.
 本開示によれば、基板移載機や基板移載機上の基板と、基板保持具や基板保持具上の基板とが互いに接触したことを高精度に検出し、故障状態の前の軽微な異常を検出することができる。 According to the present disclosure, it is possible to detect with high accuracy that the substrate transfer device or the substrate on the substrate transfer device and the substrate holder or the substrate on the substrate holder are in contact with each other, and to detect a slight error before the failure state. Anomalies can be detected.
本開示の第一実施形態で好適に用いられる収容室の斜透視図である。FIG. 3 is a perspective view of a storage chamber preferably used in the first embodiment of the present disclosure. 本開示の第一実施形態で好適に用いられる基板処理装置の横断面図である。It is a cross-sectional view of a substrate processing apparatus preferably used in the first embodiment of the present disclosure. 本開示の一実施形態で好適に用いられる基板移載機の斜視図である。It is a perspective view of a substrate transfer machine suitably used in one embodiment of the present disclosure. 本開示の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。FIG. 3 is a schematic configuration diagram of a controller of a substrate processing apparatus that is preferably used in an embodiment of the present disclosure, and is a block diagram of a control system of the controller. (A)は、MT法を説明するための時間領域データを示す図であって、(B)は、(A)の時間領域データから抽出された標本線毎の変化量と存在量を示す図である。(A) is a figure which shows the time domain data for explaining MT method, (B) is a figure which shows the variation|change_quantity and existence amount for every sample line extracted from the time domain data of (A). Is. 正常空間を作成する際に用いられる多変量データを説明するための図である。It is a figure for demonstrating the multivariate data used when creating a normal space. 本開示の一実施形態で好適に用いられる基板移載機の動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of the substrate transfer machine that is preferably used in the embodiment of the present disclosure. (A)は、本開示の一実施形態で好適に用いられる解析装置の動作を説明するためのフロー図であって、(B)は、解析装置によるマハラノビス距離(MD値)の算出結果をリアルタイムに示す図である。(A) is a flow chart for explaining the operation of an analysis apparatus preferably used in an embodiment of the present disclosure, and (B) is a real-time calculation result of the Mahalanobis distance (MD value) by the analysis apparatus. FIG. (A)は、正常時の移載動作における振動センサによる出力値の時間領域データの一例を示す図であって、(B)は、(A)の時間領域データを用いて抽出された特徴量を示す図である。(A) is a figure which shows an example of time domain data of the output value by the vibration sensor in the transfer operation at the time of normal, (B) is the feature-value extracted using the time domain data of (A). FIG. (A)は、異常時の移載動作における振動センサによる出力値の時間領域データの一例を示す図であって、(B)は、(A)の時間領域データを用いて抽出された特徴量を示す図である。(A) is a figure which shows an example of the time domain data of the output value by the vibration sensor in the transfer operation at the time of abnormality, (B) is a feature-value extracted using the time domain data of (A). FIG.
 以下、本開示の一実施形態について説明する。 Hereinafter, an embodiment of the present disclosure will be described.
 (1)基板処理装置の構成
 図1に示すように、本実施形態において、基板処理装置4は、ICの製造方法における熱処理工程を実施する縦型熱処理装置(バッチ式縦型熱処理装置)として構成されている。この縦型熱処理装置では、基板としてのウエハWを搬送するキャリアとしてFOUP(Front Opening Unified Pod:以下、ポッドという。)20が使用されている。基板処理装置4は後述する処理炉8、収容室12、搬送室16を備える。
(1) Configuration of Substrate Processing Apparatus As shown in FIG. 1, in the present embodiment, the substrate processing apparatus 4 is configured as a vertical heat treatment apparatus (batch type vertical heat treatment apparatus) for performing a heat treatment step in an IC manufacturing method. Has been done. In this vertical heat treatment apparatus, a FOUP (Front Opening Unified Pod) 20 is used as a carrier for transporting a wafer W as a substrate. The substrate processing apparatus 4 includes a processing furnace 8, a housing chamber 12, and a transfer chamber 16 described later.
 (収容室)
基板処理装置4の筐体内前側には、ポッド20を装置内に搬入し、収納する収容室12が配置されている。収容室12の筐体前側には、ポッド20を収容室12に対して搬入搬出するための開口である搬入出口22Aが収容室12の筐体内外を連通するように開設されている。搬入出口22Aはフロントシャッタによって開閉されるように構成されていても良い。搬入出口22Aの筐体内側にはロードポート(ポッド載置装置)としてのAGVポート(I/Oステージ)22が設けられている。収容室12と搬送室16との間の壁面には、移載ポート42が設置されている。ポッド20はAGVポート22上に基板処理装置4外にある工程内搬送装置(工程間搬送装置)によって基板処理装置4内に搬入され、かつまた、AGVポート22上から搬出される。
(Accommodation room)
An accommodation chamber 12 for carrying the pod 20 into the apparatus and accommodating the pod 20 is disposed on the front side of the housing of the substrate processing apparatus 4. On the front side of the housing of the housing chamber 12, a loading/unloading port 22A that is an opening for loading/unloading the pod 20 into/from the housing chamber 12 is provided so as to communicate the inside and outside of the housing of the housing chamber 12. The loading/unloading port 22A may be configured to be opened and closed by a front shutter. An AGV port (I/O stage) 22 as a load port (pod mounting device) is provided inside the housing of the carry-in/out port 22A. A transfer port 42 is installed on the wall surface between the storage chamber 12 and the transfer chamber 16. The pod 20 is loaded into the substrate processing apparatus 4 on the AGV port 22 by an in-process transfer apparatus (inter-step transfer apparatus) outside the substrate processing apparatus 4, and is also unloaded from the AGV port 22.
 収容室12の筐体内前方のAGVポート22上方には、ポッド20を収納する収納棚(ポッド棚)30Aが上下2段に設置されている。また、収容室12の筐体内後方には、ポッド20を収納する収納棚(ポッド棚)30Bがマトリクス状に設置されている。 A storage shelf (pod shelf) 30A for storing the pod 20 is installed in two steps above and below the AGV port 22 in the front of the housing of the storage chamber 12. In addition, storage shelves (pod shelves) 30B that store the pods 20 are installed in a matrix at the rear of the housing of the storage chamber 12.
 筐体前方の上段の収納棚30Aと水平方向の同一直線状には、ロードポートとしてのOHTポート32が左右に並んで設置されている。ポッド20は、基板処理装置4外にある工程内搬送装置(工程間搬送装置)によって基板処理装置4の上方からOHTポート32上に搬入され、また、OHTポート32上から搬出される。AGVポート22、収納棚30AおよびOHTポート32は、水平駆動機構26によってポッド20を載置位置と受渡し位置とに前後方向にスライド可能なように構成されている。以後、AGVポート22を第1ロードポート、OHTポート32を第2ロードポートという場合がある。 ∙ The OHT ports 32 as load ports are installed side by side on the same straight line in the horizontal direction as the upper storage rack 30A in front of the housing. The pod 20 is carried into the OHT port 32 from above the substrate processing apparatus 4 by the intra-process carrying apparatus (inter-process carrying apparatus) outside the substrate processing apparatus 4, and is carried out from the OHT port 32. The AGV port 22, the storage shelf 30A, and the OHT port 32 are configured so that the pod 20 can be slid in the front-rear direction between the mounting position and the delivery position by the horizontal drive mechanism 26. Hereinafter, the AGV port 22 may be referred to as a first load port and the OHT port 32 may be referred to as a second load port.
 図2に示すように、収容室12の筐体内の前側の収納棚30Aと後側の収納棚30Bとの間の空間はポッド搬送領域14を形成しており、このポッド搬送領域14でポッド20の受渡しおよび搬送が行われる。ポッド搬送領域14の天井部(収容室12の天井部)にはポッド搬送装置としてのポッド搬送機構40の走行路としてのレール機構40Aが形成されている。ここで、受渡し位置はポッド搬送領域14内に位置し、例えば、ポッド搬送機構40の真下の位置のことである。 As shown in FIG. 2, the space between the front storage rack 30</b>A and the rear storage rack 30</b>B in the housing of the storage chamber 12 forms a pod transfer area 14. In the pod transfer area 14, the pod 20 is connected. Are delivered and transported. A rail mechanism 40A is formed on the ceiling of the pod transport area 14 (the ceiling of the accommodation chamber 12) as a traveling path of the pod transport mechanism 40 as a pod transport device. Here, the delivery position is located in the pod transport area 14, and is, for example, a position directly below the pod transport mechanism 40.
 ポッド20を搬送するポッド搬送機構40は走行路を走行する走行部40Bと、ポッド24を掴持する保持部40Cと、走行部40Bと結合し保持部40Cを垂直方向に昇降させる昇降部40Dを備える。走行部40Bを駆動させるモータのエンコーダを検出することにより、走行路40B中の位置を検知することができ、任意の位置に走行部40Bを移動させることができる。 The pod transport mechanism 40 that transports the pod 20 includes a traveling unit 40B that travels along a traveling path, a holding unit 40C that holds the pod 24, and an elevating unit 40D that is coupled to the traveling unit 40B and that vertically elevates the holding unit 40C. Prepare By detecting the encoder of the motor that drives the traveling unit 40B, the position in the traveling path 40B can be detected, and the traveling unit 40B can be moved to an arbitrary position.
 (搬送室)
 収容室12の後方に隣接して搬送室16が構成されている。収容室12の搬送室16側には、ウエハWを搬送室16に対して搬入出するためのウエハ搬入出口が水平方向に複数並べられて開設されており、各ウエハ搬入出口に対して移載ポート42がそれぞれ設置されている。移載ポート42では、ポッド20を載置する載置台42Bを水平移動させてウエハ搬入出口に押し当て、図示しない蓋開閉機構(蓋開閉装置)としてのFIMS(Front-Opening Interface Standard)オープナによりポッド20の蓋が展開される。ポッド20の蓋が展開されると、基板移載装置としての基板移載機86によって、ポッド20内外へのウエハWの搬送が行われる。基板移載機86は、搬送室16内に固定して設置され、後述するボート58とポッド20との間でウエハWを移載する。
(Transfer room)
A transfer chamber 16 is formed adjacent to the rear of the storage chamber 12. On the transfer chamber 16 side of the accommodation chamber 12, a plurality of wafer loading/unloading ports for loading/unloading the wafer W into/from the transporting chamber 16 are arranged in a line in the horizontal direction, and are transferred to each wafer loading/unloading port. Each port 42 is installed. At the transfer port 42, the mounting table 42B on which the pod 20 is mounted is horizontally moved and pressed against the wafer loading/unloading port, and the pod is opened by a FIMS (Front-Opening Interface Standard) opener (not shown) as a lid opening/closing mechanism (lid opening/closing device). Twenty lids are unfolded. When the lid of the pod 20 is unfolded, the wafer W is transferred into and out of the pod 20 by the substrate transfer device 86 as a substrate transfer device. The substrate transfer machine 86 is fixedly installed in the transfer chamber 16 and transfers the wafer W between the boat 58 and the pod 20 described later.
 (処理炉)
 搬送室16の上方には処理炉8が設けられている。処理炉8には、反応容器(処理容器)を構成する反応管50が配設されている。反応管50は、上端が閉塞し下端が開口した円筒形状に形成されている。反応管50の筒中空部には、処理室54が形成されている。処理室54は、基板としてのウエハWを保持する基板保持具としてのボート58によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
(Processing furnace)
The processing furnace 8 is provided above the transfer chamber 16. The processing furnace 8 is provided with a reaction tube 50 that constitutes a reaction container (processing container). The reaction tube 50 is formed in a cylindrical shape having an upper end closed and a lower end opened. A processing chamber 54 is formed in the hollow portion of the reaction tube 50. The processing chamber 54 is configured to be accommodated by a boat 58 as a substrate holder that holds a wafer W as a substrate in a horizontal posture and in a vertically aligned state in multiple stages.
 処理室54には、複数本のノズルが、反応管50の下部を貫通するように設けられ、複数種類の処理ガスが処理室54に供給されるよう構成されている。 A plurality of nozzles are provided in the processing chamber 54 so as to penetrate the lower portion of the reaction tube 50, and a plurality of types of processing gases are supplied to the processing chamber 54.
 反応管50の下方には、反応管50の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ78が設けられている。シールキャップ78の上面には、反応管50の下端と当接するシール部材としてのOリングが設けられている。シールキャップ78は、反応管50の下端に垂直方向下側から当接されるように構成されている。 A seal cap 78 is installed below the reaction tube 50 as a furnace port lid that can hermetically close the lower end opening of the reaction tube 50. An O-ring is provided on the upper surface of the seal cap 78 as a seal member that comes into contact with the lower end of the reaction tube 50. The seal cap 78 is configured to come into contact with the lower end of the reaction tube 50 from the vertically lower side.
 ボート58は、複数枚、例えば25~200枚のウエハWを、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。 The boat 58 arranges a plurality of wafers W, for example, 25 to 200 wafers W in a horizontal posture and vertically aligned with the centers thereof aligned with each other in a multi-stage manner, that is, at an interval. Is configured to let.
 シールキャップ78の処理室54と反対側には、ボート58を回転させるボート回転装置としての回転機構80が設置されている。回転機構80の回転軸80Aは、シールキャップ78を貫通してボート58に接続されている。回転機構80は、ボート58を回転させることでウエハWを回転させるように構成されている。また、回転軸80Aには、ボート58の振動を検出する補助振動センサとしての補助センサ301が取り付けられている。 A rotation mechanism 80 as a boat rotation device that rotates the boat 58 is installed on the opposite side of the seal cap 78 from the processing chamber 54. The rotating shaft 80A of the rotating mechanism 80 penetrates the seal cap 78 and is connected to the boat 58. The rotation mechanism 80 is configured to rotate the wafer W by rotating the boat 58. An auxiliary sensor 301 as an auxiliary vibration sensor that detects the vibration of the boat 58 is attached to the rotating shaft 80A.
(2)基板移載機の構成
 次に、基板移載機86の構成を、図3を用いて詳しく説明する。
(2) Configuration of Substrate Transfer Machine Next, the configuration of the substrate transfer machine 86 will be described in detail with reference to FIG.
 基板移載機86は、主に、ウエハWを直接的に操作するエンドエフェクタとしてのツイーザ86aと、ツイーザ86aを移動させる駆動機構308と、ツイーザ86aと音響的に結合し、ツイーザ86aの振動を検出する振動センサ300と、駆動機構308を垂直軸の周りで回転させる回転機構310を備えている。 The substrate transfer machine 86 is mainly acoustically coupled to the tweezers 86a as an end effector for directly operating the wafer W, a drive mechanism 308 for moving the tweezers 86a, and the tweezers 86a, thereby vibrating the tweezers 86a. The vibration sensor 300 for detecting and the rotation mechanism 310 for rotating the drive mechanism 308 around the vertical axis are provided.
 ツイーザ86aは、例えばU字型の薄い板状を有し、複数枚(本実施形態においては5枚)、垂直方向等間隔に水平に設けられている。ツイーザ86aは、すくい上げ型であり、上面にウエハWの端部よりわずかに外側の位置に設けられてウエハWの位置を規制するガイド又は段差を有し、ウエハWはガイド内に単に置かれる。或いはツイーザ86aは、エッジグリップ型、落とし込み(フリクション)エッジグリップ型、吸着型等から選ぶことができる。吸着型は、真空吸着、ベルヌーイチャック、Johnsen-Rahbek型静電チャックであり、非接触でウエハWを扱うこともできる。 The tweezers 86a have, for example, a U-shaped thin plate shape, a plurality of (five in the present embodiment), and are horizontally provided at equal intervals in the vertical direction. The tweezers 86a are of a scooping type and have a guide or a step provided on the upper surface at a position slightly outside the end of the wafer W to restrict the position of the wafer W, and the wafer W is simply placed in the guide. Alternatively, the tweezers 86a can be selected from an edge grip type, a drop edge grip type, a suction type, and the like. The attraction type is a vacuum attraction, Bernoulli chuck, or Johnsen-Rahbek type electrostatic chuck, and the wafer W can be handled in a non-contact manner.
 駆動機構308は、直動(リニア)型として構成され、主に、固定部304と誘導部302を有する。固定部304は、ツイーザ86aの根元を保持し、それらを等間隔に固定する。固定部304内には、エッジグリップの駆動機構、間隔可変機構、水平・垂直微動機構等が設けられうる。 The drive mechanism 308 is configured as a linear (linear) type, and mainly has a fixed part 304 and a guide part 302. The fixing portion 304 holds the roots of the tweezers 86a and fixes them at equal intervals. A drive mechanism for the edge grip, a variable distance mechanism, a horizontal/vertical fine movement mechanism, and the like may be provided in the fixed portion 304.
 誘導部302は、固定部304を下方から保持しつつ、水平方向の1軸上で進退運動させる。誘導部302には、ツイーザ86aを一軸方向に導く、例えば2本のガイドレール302a(不図示)が略平行に形成されている。そして、固定部304がガイドレール302aに沿って摺動することにより、ツイーザ86aが誘導部302に対して進退して前後方向に移動される。
 回転機構310は、誘導部302を下面の中心付近を保持しつつ、誘導部302を左右方向に回転する。
The guiding section 302 holds the fixing section 304 from below and moves it back and forth on one horizontal axis. In the guide portion 302, for example, two guide rails 302a (not shown) that guide the tweezers 86a in the uniaxial direction are formed substantially parallel to each other. Then, the fixed portion 304 slides along the guide rail 302a, whereby the tweezers 86a move forward and backward with respect to the guide portion 302 and are moved in the front-rear direction.
The rotating mechanism 310 rotates the guide part 302 in the left-right direction while holding the guide part 302 near the center of the lower surface.
 また、基板移載機86は、後述する基板移載機エレベータ306に装着される。基板移載機エレベータ306は、基板移載機86の回転機構310を保持し、基板移載機86を上下方向に昇降する。 Further, the substrate transfer machine 86 is mounted on the substrate transfer machine elevator 306 described later. The substrate transfer machine elevator 306 holds the rotation mechanism 310 of the substrate transfer machine 86 and moves the substrate transfer machine 86 up and down.
 すなわち、基板移載機86のツイーザ86aは、駆動機構308によりガイドレール302aに沿って前後方向に進退され、回転機構310による駆動機構308の回転により左右方向に回転され、基板移載機エレベータ306による昇降により上下方向に移動される。 That is, the tweezers 86 a of the substrate transfer machine 86 are moved forward and backward along the guide rails 302 a by the drive mechanism 308, and are rotated in the left and right directions by the rotation of the drive mechanism 308 by the rotation mechanism 310, and the substrate transfer machine elevator 306. It is moved up and down by moving up and down.
 振動センサ300は、3軸加速度センサである。振動センサ300は、積層するツイーザ86aの根元の固定部304に設けられている。振動センサ300は増幅器(不図示)を必要とする場合がある。増幅器は、振動センサ300の近くに設けられることが望ましく、例えば駆動機構308内に設けられうる。 The vibration sensor 300 is a triaxial acceleration sensor. The vibration sensor 300 is provided on the fixed portion 304 at the base of the stacked tweezers 86a. Vibration sensor 300 may require an amplifier (not shown). The amplifier is preferably provided near the vibration sensor 300 and may be provided in the drive mechanism 308, for example.
(3)コントローラの構成
 図4に示すように、制御部(制御手段)であるコントローラ210は、CPU(Central Processing Unit)212、RAM(Random Access Memory)214、記憶装置216、I/Oポート218を備えたコンピュータとして構成されている。RAM214、記憶装置216、I/Oポート218は、内部バス220を介して、CPU212とデータ交換可能なように構成されている。コントローラ210には、例えばタッチパネル等として構成された入出力装置222が接続されている。また、コントローラ210には、ウエハWの移載動作中の異常を検出する解析装置400が接続されている。
(3) Configuration of Controller As shown in FIG. 4, a controller 210, which is a control unit (control means), includes a CPU (Central Processing Unit) 212, a RAM (Random Access Memory) 214, a storage device 216, and an I/O port 218. Is configured as a computer equipped with. The RAM 214, the storage device 216, and the I/O port 218 are configured to exchange data with the CPU 212 via the internal bus 220. An input/output device 222 configured as, for example, a touch panel or the like is connected to the controller 210. In addition, the controller 210 is connected to an analysis device 400 that detects an abnormality during the transfer operation of the wafer W.
 記憶装置216は、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置216内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ210に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM214は、CPU212によって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 216 is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 216, a control program for controlling the operation of the substrate processing apparatus, a process recipe in which a procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. The process recipe is a combination that causes the controller 210 to execute each procedure in the substrate processing process described below and obtains a predetermined result, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to simply as a program. When the term program is used in the present specification, it may include only the process recipe, only the control program, or both. The RAM 214 is configured as a memory area (work area) in which programs and data read by the CPU 212 are temporarily stored.
 I/Oポート218は、上述のポッド搬送機構40、水平駆動機構26、センサ25B,28A、駆動機構308、基板移載機エレベータ306、回転機構310、回転機構80、ボートエレベータ82等に接続されている。 The I/O port 218 is connected to the pod transport mechanism 40, the horizontal drive mechanism 26, the sensors 25B and 28A, the drive mechanism 308, the substrate transfer machine elevator 306, the rotation mechanism 310, the rotation mechanism 80, the boat elevator 82, etc. described above. ing.
 CPU212は、記憶装置216から制御プログラムを読み出して実行すると共に、入出力装置222からの操作コマンドの入力等に応じて記憶装置216からプロセスレシピを読み出すように構成されている。CPU212は、読み出したプロセスレシピの内容に沿うように、ポッド搬送機構40によるポッド20の搬送動作、駆動機構308、回転機構310及び基板移載機エレベータ306による基板移載機86のウエハWのチャージング及びディスチャージング動作、ボートエレベータ82によるボート58の昇降動作等を制御するように構成されている。 The CPU 212 is configured to read the control program from the storage device 216 and execute the control program, and read the process recipe from the storage device 216 in response to input of an operation command from the input/output device 222. The CPU 212 charges the wafer W of the substrate transfer machine 86 by the transfer operation of the pod 20 by the pod transfer mechanism 40, the drive mechanism 308, the rotation mechanism 310, and the substrate transfer machine elevator 306 so as to follow the contents of the read process recipe. And a discharging operation, and an up-and-down operation of the boat 58 by the boat elevator 82 are controlled.
 コントローラ210は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、USBメモリ等の半導体メモリ)224に格納された上述のプログラムをコンピュータにプログラムをインストールすることにより、構成することができる。記憶装置216や外部記憶装置224は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置216単体のみを含む場合、外部記憶装置224単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置224を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 210 can be configured by installing the above program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a semiconductor memory such as a USB memory) 224 into a computer. it can. The storage device 216 and the external storage device 224 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 216 alone, may include only the external storage device 224 alone, or may include both of them. Note that the program may be provided to the computer by using communication means such as the Internet or a dedicated line without using the external storage device 224.
(4)基板処理装置の動作
 次に、上述の基板処理装置4を用いた一連の動作について説明する。
(4) Operation of Substrate Processing Apparatus Next, a series of operations using the above-described substrate processing apparatus 4 will be described.
(キャリアロード工程:S10)
 ポッド20がAGVポート22またはOHTポート32に供給されると、AGVポート22またはOHTポート32の上のポッド20は基板処理装置4内部へ搬入される。搬入されたポッド20は収納棚30の指定されたステージ25へポッド搬送機構40によって自動的に搬送されて受け渡され、一時的に保管された後、収納棚30から一方の移載ポート42に搬送されて受け渡されるか、もしくは直接移載ポート42に搬送される。
(Carrier loading process: S10)
When the pod 20 is supplied to the AGV port 22 or the OHT port 32, the pod 20 above the AGV port 22 or the OHT port 32 is carried into the substrate processing apparatus 4. The loaded pod 20 is automatically transported by the pod transport mechanism 40 to the designated stage 25 of the storage shelf 30 and transferred to and temporarily stored, and then is transferred from the storage shelf 30 to one transfer port 42. It is transported and delivered, or directly transported to the transfer port 42.
(蓋展開工程:S11)
 ポッド20が、移載ポート42の載置部に載置されるとFIMSオープナによりポッド20の蓋が開けられる。
(Lid development step: S11)
When the pod 20 is mounted on the mounting portion of the transfer port 42, the lid of the pod 20 is opened by the FIMS opener.
(ウエハチャージ工程:S12)
 ポッド20の蓋が開けられると、ポッド20内の複数枚のウエハWが基板移載機86によって、ボート58に装填(ウエハチャージ)される。なお、これに先立って、ポッド20内のウエハWの収納状態を確認するマッピングが行われうる。
(Wafer charging process: S12)
When the lid of the pod 20 is opened, the plurality of wafers W in the pod 20 are loaded into the boat 58 (wafer charge) by the substrate transfer machine 86. Prior to this, mapping for confirming the storage state of the wafer W in the pod 20 may be performed.
(ボートロード工程:S13)
 複数枚のウエハWがボート58に装填されると、ボート58は、ボートエレベータ82によって処理室54に搬入(ボートロード)される。このとき、シールキャップ78は、Oリングを介して反応管50の下端を気密に閉塞した状態となる。
(Boat loading process: S13)
When the plurality of wafers W are loaded into the boat 58, the boat 58 is loaded into the processing chamber 54 by the boat elevator 82 (boat loading). At this time, the seal cap 78 is in a state of hermetically closing the lower end of the reaction tube 50 via the O-ring.
(成膜工程:S14)
 そして、処理室54のウエハWに対して、処理ガスを供給することで、ウエハW上に膜を形成する。
(Film forming process: S14)
Then, by supplying a processing gas to the wafer W in the processing chamber 54, a film is formed on the wafer W.
 成膜処理が完了した後、処理室54がパージされ、処理室54に残留するガスや反応副生成物が処理室54から除去される。その後、処理室54の雰囲気が不活性ガスに置換され、処理室54の圧力が常圧に復帰される。 After the film forming process is completed, the processing chamber 54 is purged, and the gas and reaction byproducts remaining in the processing chamber 54 are removed from the processing chamber 54. After that, the atmosphere in the processing chamber 54 is replaced with an inert gas, and the pressure in the processing chamber 54 is returned to normal pressure.
(ボートアンロード工程:S15)
 大気圧復帰した後、ボートエレベータ82によりシールキャップ78が下降され、反応管50の下端が開口される。そして、処理済のウエハWが、ボート58に支持された状態で、反応管50の下端から反応管50の外部に搬出される(ボートアンロード)。
(Boat unloading process: S15)
After the atmospheric pressure is restored, the boat elevator 82 lowers the seal cap 78 to open the lower end of the reaction tube 50. Then, the processed wafer W is unloaded from the lower end of the reaction tube 50 to the outside of the reaction tube 50 while being supported by the boat 58 (boat unloading).
(ウエハディスチャージ工程:S16)
 処理済のウエハWは、基板移載機86によって、ボート58より取出される(ウエハディスチャージ)。
(Wafer discharging process: S16)
The processed wafer W is taken out from the boat 58 by the substrate transfer machine 86 (wafer discharge).
(キャリアアンロード工程:S17)
 処理済のウエハWは、基板移載機86によって、ポッド20に収納され、処理済のウエハWが収納されたポッド20は、キャリアロードと反対の動作により、ロードポート(AGVポート22、OHTポート32)に戻され、外部搬送装置により回収される。
(Carrier unload process: S17)
The processed wafer W is stored in the pod 20 by the substrate transfer machine 86, and the pod 20 in which the processed wafer W is stored is subjected to the operation opposite to the carrier load, and the load port (AGV port 22, OHT port It is returned to 32) and collected by an external transfer device.
(5)解析装置
 次に、本実施形態における解析装置400について説明する。
(5) Analysis Device Next, the analysis device 400 in this embodiment will be described.
 本実施形態における解析装置400は、MT(マハラノビス・タグチ)法を用いて、上述のウエハチャージ工程(S12)とウエハディスチャージ工程(S16)におけるウエハWの移載動作中の異常を検出するものである。 The analysis apparatus 400 according to the present embodiment detects an abnormality during the transfer operation of the wafer W in the wafer charging step (S12) and the wafer discharging step (S16) using the MT (Mahalanobis Taguchi) method. is there.
 MT法は、品質工学における多変量解析の手法であって、正常状態を基準とし、そこからの距離(マハラノビス距離、MD値ともいう)を計算することで、正常異常の判断を行うという考え方である。 The MT method is a method of multivariate analysis in quality engineering, and is based on the idea that a normal state is judged by calculating a distance (Mahalanobis distance, MD value) from the normal state as a reference. is there.
 本実施形態における解析装置400は、振動センサ300により検出された出力値の時間領域データにおいて特徴量を抽出することにより多変量データを生成し、MT法を用いてウエハWの移載動作中の異常を検出するよう構成されている。また解析装置400は、図4に示すように、振動センサ300、補助センサ301に接続されており、それらの出力値を取得可能に構成される。 The analysis apparatus 400 according to the present embodiment generates multivariate data by extracting the characteristic amount from the time domain data of the output value detected by the vibration sensor 300, and the multi-variate data is generated during the transfer operation of the wafer W using the MT method. It is configured to detect anomalies. Further, as shown in FIG. 4, the analysis device 400 is connected to the vibration sensor 300 and the auxiliary sensor 301, and is configured to be able to acquire the output values thereof.
 まず、図5(A)及び図5(B)を用いて振動センサ300の出力値の時間領域データから変化量と存在量を特徴量として抽出する具体的な方法を説明する。なお、図5(A)は、移載動作中の19.5秒間に、ある軸の加速度を100spsのサンプルレートで取得したデータである。図5(B)は、図5(A)に示される時間領域データから抽出された標本線毎の変化量と存在量を示す図である。 First, a specific method of extracting the amount of change and the amount of existence as feature amounts from the time domain data of the output value of the vibration sensor 300 will be described with reference to FIGS. 5(A) and 5(B). Note that FIG. 5A is data obtained by acquiring the acceleration of a certain axis at a sample rate of 100 sps during 19.5 seconds during the transfer operation. FIG. 5B is a diagram showing the amount of change and the amount of existence for each sample line extracted from the time domain data shown in FIG. 5A.
 ここで、変化量とは、時間領域データの微分特性であって、時間領域データにおいて設定された標本線毎の標本線を跨いだ回数である。また、存在量とは、時間領域データの積分特性であって、時間領域データにおいて設定された標本線毎の標本線より大きい値のデータ数である。 Here, the amount of change is the differential characteristic of the time domain data, and is the number of times the sample lines set in the time domain data straddle each sample line. The abundance is the integral characteristic of the time domain data, and is the number of data having a value larger than the sample line for each sample line set in the time domain data.
 また、図5(A)に示すように、振動センサ300の出力値(アナログ値)の時間領域データに対して、予め時間軸方向に複数本(図5(A)では7本)の標本線(y=-40、-20、10、20、25、50、75)を設定する。各標本線は、複数の閾値として設定され、監視しようとする値、または環境の変化を特徴的に示す値を設定する。 Further, as shown in FIG. 5A, a plurality of (7 in FIG. 5A) sample lines are preliminarily arranged in the time axis direction with respect to the time domain data of the output value (analog value) of the vibration sensor 300. (Y=-40, -20, 10, 20, 25, 50, 75) is set. Each sample line is set as a plurality of thresholds, and a value to be monitored or a value characteristically showing a change in environment is set.
 そして、標本線毎に、波形が標本線を跨いだ回数を変化量としてカウントする。また、標本線毎に、標本線より大きい値の数を存在量として算出する。つまり、1本の標本線につき、変化量と存在量の2項目の特徴量が抽出される。なお、特徴量として、変化量、存在量の他、波形の最大値、最小値、平均値等を用いてもよい。 Then, for each sample line, the number of times the waveform crosses the sample line is counted as the amount of change. Further, for each sample line, the number of values larger than the sample line is calculated as the existing amount. That is, the feature amount of two items of the variation amount and the existing amount is extracted for one sample line. In addition to the amount of change and the amount of existence, the maximum value, the minimum value, the average value, and the like of the waveform may be used as the feature amount.
 そして、図5(B)に示すように、正常時の移載動作における変化量と存在量を特徴量として抽出された14次元の多変量データであるサンプルデータを算出する。 Then, as shown in FIG. 5(B), sample data that is 14-dimensional multivariate data extracted by using the amount of change and the amount of existence in the transfer operation under normal conditions as the feature amount is calculated.
 そして、図6に示すように、正常時の複数回(図6ではN個)の移載動作における時間領域データから、共通の標本線を用いて算出されたN個のサンプルデータを算出し、このN個のサンプルデータを用いて正常空間を作成する。具体的には、正常時のN個のサンプルデータを用いて平均ベクトルと共分散行列を算出する。正常空間は、共分散行列の固有ベクトルによって張られる空間である。 Then, as shown in FIG. 6, N pieces of sample data calculated using a common sample line are calculated from the time domain data in a plurality of times (N pieces in FIG. 6) of transfer operation in a normal state, A normal space is created using the N sample data. Specifically, the average vector and the covariance matrix are calculated using N sample data in the normal state. The normal space is a space spanned by the eigenvectors of the covariance matrix.
 そして、正常空間におけるマハラノビス距離MDは、移載動作中の振動センサ300により検出された出力値の時間領域データに基づいて作成された多変量データであるデータベクトル(列ベクトル)と、算出された正常空間における多変量データの平均ベクトルと共分散行列の逆行列を用いて以下のように示される。 Then, the Mahalanobis distance MD in the normal space is calculated as a data vector (column vector) which is multivariate data created based on the time domain data of the output value detected by the vibration sensor 300 during the transfer operation. Using the mean vector of multivariate data in the normal space and the inverse matrix of the covariance matrix, it is shown as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 そして、マハラノビス距離(MD値)が、予め設定された閾値を越えている場合には、移載動作中に異常事態が発生したと判定する。なお、多変量データの基になる時間領域データは同じサンプル数(1950サンプル)であることが望ましいが、多変量データをサンプル数で除算して正規化することもできる。また、マハラノビス距離は、その2乗の値のままで閾値判定されてもよい。 If the Mahalanobis distance (MD value) exceeds a preset threshold value, it is determined that an abnormal situation has occurred during the transfer operation. The time domain data on which the multivariate data is based preferably has the same number of samples (1950 samples), but the multivariate data can also be divided by the number of samples for normalization. Further, the Mahalanobis distance may be threshold-determined with the squared value thereof being kept.
 次に、本実施形態における解析装置400の動作について、図7、図8(A)及び図8(B)を用いて説明する。 Next, the operation of the analysis device 400 according to the present embodiment will be described with reference to FIGS. 7, 8A and 8B.
 図7は、搬送室16において、移載ポート42のポッド20とボート58との間で、基板移載機86によってウエハWが搬送される様子を示す図である。搬送室16には、カメラ226が設置され、コントローラ210の指令に応じて、ウエハWが搬送される様子やボート58が昇降される様子が撮影され録画される。 FIG. 7 is a view showing how the wafer W is transferred by the substrate transfer machine 86 between the pod 20 of the transfer port 42 and the boat 58 in the transfer chamber 16. A camera 226 is installed in the transfer chamber 16, and images of how the wafer W is transferred and how the boat 58 is moved up and down are photographed and recorded in response to a command from the controller 210.
 解析装置400は、移載工程であるウエハチャージ工程(S12)とウエハディスチャージ工程(S16)におけるウエハWのボート58への移載動作中に、ツイーザ86aやツイーザ86a上のウエハWと、ボート58やボート58上のウエハW等とが互いに接触したことなどを検出する。 The analysis apparatus 400 is configured to transfer the wafer W to the boat 58 during the wafer charging process (S12) and the wafer discharging process (S16), which are transfer processes, and the tweezers 86a, the wafer W on the tweezers 86a, and the boat 58. It is detected that the wafer W and the wafer 58 on the boat 58 are in contact with each other.
 例えば、上述したウエハチャージ工程(S12)において、コントローラ210は、基板移載機86、回転機構310、基板移載機エレベータ306を制御して、移載対象のウエハWの移載を行うが、移載動作の全てまたは一部において、異常の検出を行う。具体的には、ツイーザ86aがポッド20内の移載対象のウエハWに正対している状態で、移載機86がツイーザ86aをウエハW下方まで前進させ、ツイーザ86aを上昇させてウエハWを載せた後、ツイーザ86aを後退させる。そして、基板移載機エレベータ306によりボート58のウエハWの載置位置まで上下方向に昇降する。また、回転機構310が移載機86を左右方向に回転させてボート58に正対させる。そして、移載機86によりツイーザ86aをボート58のウエハ載置位置まで前進させてから鉛直方向に移動して、ボート58にウエハWを移載させ、後方向に退避する。その後、移載機86は、次の移載対象のウエハWの高さまで上下方向に移動されるとともに、移載対象のウエハWに正対するように回転される。コントローラ210は、この一連の動作を、全てのウエハWを移載するまで繰り返す。このとき、一連の動作の中で接触の可能性の高い区間である、ツイーザ86aのボート58への前進から後退までの動作において、異常の検出を行うことができる。本例ではこの異常検知区間の動作は毎回同じであり、その所要時間は一定である。 For example, in the wafer charging step (S12) described above, the controller 210 controls the substrate transfer machine 86, the rotation mechanism 310, and the substrate transfer machine elevator 306 to transfer the wafer W to be transferred. Abnormality is detected in all or part of the transfer operation. Specifically, with the tweezers 86a facing the wafer W to be transferred in the pod 20, the transfer machine 86 advances the tweezers 86a to the lower side of the wafer W and raises the tweezers 86a to lift the wafer W. After mounting, the tweezers 86a are retracted. Then, the substrate transfer machine elevator 306 moves up and down to the mounting position of the wafer W on the boat 58. Further, the rotation mechanism 310 rotates the transfer device 86 in the left-right direction so that the transfer device 86 faces the boat 58. Then, the tweezers 86a are moved forward to the wafer mounting position of the boat 58 by the transfer machine 86 and then moved in the vertical direction to transfer the wafer W to the boat 58 and retract in the backward direction. After that, the transfer machine 86 is moved up and down to the height of the next transfer target wafer W, and is rotated so as to directly face the transfer target wafer W. The controller 210 repeats this series of operations until all the wafers W have been transferred. At this time, an abnormality can be detected in the operation from the forward movement of the tweezers 86a toward the boat 58 to the backward movement thereof, which is a section in which there is a high possibility of contact in the series of operations. In this example, the operation of this abnormality detection section is the same every time, and the required time is constant.
 同様に、上述したウエハディスチャージ工程において、処理済みのウエハWがウエハチャージ工程と反対の動作によりポッド20に払出される。 Similarly, in the wafer discharging process described above, the processed wafer W is delivered to the pod 20 by the operation opposite to the wafer charging process.
 解析装置400は予め、装置の据付後の調整時などにウエハWのボート58への移載動作における正常空間を作成し、内部に記録する。具体的には、作業員の立会いのもと、基板移載機86によるウエハWのボート58への移載動作が正常に行われた際の振動センサ300の出力値の時間領域データを複数回取得し標本線を設定して、取得された複数の時間領域データをMT法によって分析することにより正常空間を作成する。 The analyzer 400 previously creates a normal space for the transfer operation of the wafer W to the boat 58 at the time of adjustment after installation of the device, and records it inside. Specifically, the time domain data of the output value of the vibration sensor 300 when the transfer operation of the wafer W to the boat 58 by the substrate transfer machine 86 is normally performed in the presence of the worker is performed a plurality of times. A normal space is created by setting acquired sample lines and analyzing a plurality of acquired time domain data by the MT method.
 図8(A)は、解析装置400の動作を説明するためのフロー図である。運用時には、コントローラ210は、移載における異常検知区間の開始と終了を示す信号を、解析装置400に伝達する。解析装置400はこの開始信号を受けて、図8の動作を開始し、終了信号を受けるまで継続する。本例では、異常検知区間において、100sps~100ksps(サンプル/秒)で時間領域データを取得し、2048サンプル未満の時間領域データを単位として、特徴量の抽出(多変量データ化)やマハラノビス距離の算出を行う。このとき、接触事象の発生から3秒以内にマハラノビス距離が算出されることが望ましい。より好ましくは、マハラノビス距離の算出周期が0.5秒以下もしくは時間領域データの取得開始からマハラノビス距離が算出されるまでの時間が1秒以下である。 FIG. 8A is a flowchart for explaining the operation of the analysis device 400. During operation, the controller 210 transmits signals indicating the start and end of the abnormality detection section in transfer to the analysis device 400. The analysis device 400 receives the start signal, starts the operation of FIG. 8, and continues until it receives the end signal. In this example, in the abnormality detection section, time domain data is acquired at 100 sps to 100 ksps (samples/second), and feature quantity extraction (multivariate data conversion) and Mahalanobis distance calculation are performed with time domain data of less than 2048 samples as a unit. Calculate. At this time, it is desirable to calculate the Mahalanobis distance within 3 seconds after the occurrence of the contact event. More preferably, the Mahalanobis distance calculation cycle is 0.5 seconds or less, or the time from the start of acquisition of the time domain data to the Mahalanobis distance calculation is 1 second or less.
 最初に、解析装置400は、基板移載機86による移載動作をする間に振動センサ300による出力値の時間領域データを、Mサンプル取得する(ステップS100)。ここでMは、正常空間の作成時に用いた時間領域データのサンプル数と同じ数であり、本例では1950である。Mは、Mサンプルの時間が、特定のノイズ(例えば電源ハム)の周期の整数倍になるように設定されてもよい。取得するMサンプルは、既に取得したデータと一部重複してもよい。例えば、時間領域データを、M/dサンプルずつずらしながら設定されるスライディングウインドウを用いて、取得することができる。ここでdは分割数であり、2≦d≦MかつM/dが整数となるように選ばれる。 First, the analysis apparatus 400 acquires M samples of the time domain data of the output value of the vibration sensor 300 while the substrate transfer machine 86 performs the transfer operation (step S100). Here, M is the same number as the number of samples of the time domain data used when creating the normal space, which is 1950 in this example. M may be set such that the time of M samples is an integer multiple of the period of the particular noise (eg, power hum). The acquired M samples may partially overlap the already acquired data. For example, time domain data can be acquired using a sliding window that is set while shifting by M/d samples. Where d is the number of divisions and is selected so that 2≦d≦M and M/d is an integer.
 次に、ステップS100で取得された時間領域データに基づいて、標本線毎の変化量、存在量を特徴量として抽出する(ステップS101)ことにより多変量データを生成する。スライディングウインドウを用いた場合、この処理をM/dサンプル単位で行って保持しておき、直近のd個分を合算すればよい。 Next, multivariate data is generated by extracting the amount of change and the amount of existence for each sample line as a feature amount based on the time domain data acquired in step S100 (step S101). When a sliding window is used, this processing may be performed and held in units of M/d samples, and the latest d pieces may be added together.
 次に、ステップS101で作成された多変量データと、正常空間における多変量データの平均値と共分散行列とから、正常空間上でのマハラノビス距離を移載動作毎に算出する(ステップS102)。スライディングウインドウを用いた場合、マハラノビス距離の2乗値を、時間領域データにおけるM/dサンプル単位で算出して保持しておき、直近のd個分を合算すればよい。 Next, the Mahalanobis distance in the normal space is calculated for each transfer operation from the multivariate data created in step S101, the average value of the multivariate data in the normal space, and the covariance matrix (step S102). When the sliding window is used, the squared value of the Mahalanobis distance may be calculated and held in units of M/d samples in the time domain data, and the latest d pieces may be summed.
 次に、算出されたマハラノビス距離が予め設定された閾値を越えているか否かを判定する(ステップS103)。マハラノビス距離が予め設定された閾値を越えていない場合(ステップS103においてNo)には、ウエハWのボート58への搬送中は解析動作を継続し(ステップS104においてNo)、ウエハWのボート58への搬送(異常検知区間)が終了したら(ステップS104においてYes)、解析動作を停止する。なお閾値判定は、1回で行うものに限らず、例えば連続して閾値を越えた回数に応じて判定するようにしてもよい。 Next, it is determined whether the calculated Mahalanobis distance exceeds a preset threshold value (step S103). When the Mahalanobis distance does not exceed the preset threshold value (No in step S103), the analysis operation is continued during the transfer of the wafer W to the boat 58 (No in step S104), and the wafer W is transferred to the boat 58. When the conveyance (abnormality detection section) of is completed (Yes in step S104), the analysis operation is stopped. Note that the threshold value determination is not limited to one time determination, and may be performed according to the number of times the threshold value is continuously exceeded, for example.
 また、マハラノビス距離が予め設定された閾値を越えている場合(ステップS103においてYes)には、異常事態が発生したと判定され(ステップS105)、基板移載機86は緊急停止される。つまり、ツイーザ86aやツイーザ86a上のウエハWと、ボート58やボート58上のウエハWとが互いに接触する異常事態が発生したと判定され、解析装置400からコントローラ210に緊急停止信号が伝達され、基板移載機86は緊急停止される。 When the Mahalanobis distance exceeds the preset threshold value (Yes in step S103), it is determined that an abnormal situation has occurred (step S105), and the substrate transfer machine 86 is stopped urgently. That is, it is determined that an abnormal situation has occurred in which the tweezers 86a and the wafer W on the tweezers 86a and the boat 58 and the wafer W on the boat 58 are in contact with each other, and the emergency stop signal is transmitted from the analysis device 400 to the controller 210. The substrate transfer machine 86 is stopped urgently.
 図8(B)は、解析装置400によって算出されたマハラノビス距離(MD値)の時間推移を示す図である。閾値が約3.8に設定されており、MD値は最終的に閾値を超え、緊急停止する様子が示されている。時間領域データのサンプルレートが100spsであっても、d=50とすることで、約0.4秒間隔でマハラノビス距離が算出され、実質的にリアルタイムに異常を検知することができる。なおMD値から検出されうる異常には、ウエハが製品として使用できないことを意味する衝突的な接触や、ツイーザ86aによるウエハの引っ掻き(スクラッチ)のほか、ツイーザ86aに保持されたウエハWの端面とボート58の溝との摩擦も含まれうる。このような摩擦は、より深刻な接触の予兆と捉えることができるが、軽微な摩擦による緊急停止の多発が望まれないような状況では、摩擦を含むデータで正常空間を作成したりMD値の閾値を調整したりして、緊急停止を抑制することができる。 FIG. 8B is a diagram showing a time transition of the Mahalanobis distance (MD value) calculated by the analysis device 400. The threshold value is set to about 3.8, and the MD value finally exceeds the threshold value, indicating that an emergency stop is performed. Even if the sample rate of the time domain data is 100 sps, by setting d=50, the Mahalanobis distance is calculated at intervals of about 0.4 seconds, and the abnormality can be detected substantially in real time. The abnormalities that can be detected from the MD value include collisional contact that means that the wafer cannot be used as a product, scratching of the wafer by the tweezers 86a, and the end surface of the wafer W held by the tweezers 86a. Friction with the groove of the boat 58 may also be included. Such friction can be regarded as a sign of a more serious contact, but in a situation where frequent occurrence of emergency stop due to slight friction is not desired, a normal space is created by using data including friction or the MD value An emergency stop can be suppressed by adjusting the threshold value.
 図9(A)は、正常時の移載動作における振動センサ300による出力値の時間領域データの一例を示す図であって、図9(B)は、図9(A)の時間領域データを用いて抽出された特徴量を示す図である。また、図10(A)は、異常時の移載動作における振動センサによる出力値の時間領域データの一例を示す図であって、図10(B)は、図10(A)の時間領域データを用いて抽出された特徴量を示す図である。 FIG. 9A is a diagram showing an example of the time domain data of the output value by the vibration sensor 300 in the transfer operation at the normal time, and FIG. 9B shows the time domain data of FIG. 9A. It is a figure which shows the feature-value extracted using. 10A is a diagram showing an example of the time domain data of the output value by the vibration sensor in the transfer operation at the time of abnormality, and FIG. 10B is the time domain data of FIG. 10A. It is a figure which shows the feature-value extracted using.
 図9(B)に示されている時間領域データから抽出された特徴量に基づく、正常空間上でのマハラノビス距離(MD値)は0.9であった。本移載動作においてMD値は、閾値3.8を下回っているため正常状態であると判定されて、搬送動作は継続される。 The Mahalanobis distance (MD value) in the normal space based on the feature amount extracted from the time domain data shown in FIG. 9(B) was 0.9. In this transfer operation, the MD value is below the threshold value 3.8, so it is determined to be in a normal state, and the transport operation is continued.
 一方、図10(B)に示されている時間領域データから抽出された特徴量に基づく、正常空間上でのマハラノビス距離(MD値)は33.1であった。本移載動作においてMD値は、閾値を大きく上回っているため、異常状態であると判定される。 On the other hand, the Mahalanobis distance (MD value) in the normal space based on the feature amount extracted from the time domain data shown in FIG. 10(B) was 33.1. In this transfer operation, the MD value greatly exceeds the threshold value, so that it is determined to be in an abnormal state.
 なお、搬送室16には、基板移載機86による移載動作を撮像するカメラ226が設けられ、カメラ226により撮像された画像は時刻と対応付けられて記録装置としての記憶装置216又は外部記憶装置224に記録される。つまり、基板移載機86による移載動作が時刻と対応付けられて動作ログとして記憶装置216又は外部記憶装置224に記録され、解析装置400により異常事態が検出されると、リモートで接続して操作画面を表示している入出力装置222において、ユーザは搬送エラーの時刻や、搬送エラーの箇所や、搬送エラーの内容等を把握することができるように構成されている。また、搬送エラーが発生した場合に、カメラ226による搬送エラー前後のリプレイ映像やライブ映像を入出力装置222に表示することができる。 The transfer chamber 16 is provided with a camera 226 that captures the transfer operation of the substrate transfer machine 86, and the image captured by the camera 226 is associated with time and stored in the storage device 216 as a recording device or external storage. Recorded in device 224. In other words, the transfer operation by the substrate transfer machine 86 is recorded as an operation log in the storage device 216 or the external storage device 224 in association with the time, and when an abnormal situation is detected by the analysis device 400, a remote connection is made. The input/output device 222 displaying the operation screen is configured so that the user can grasp the time of the transportation error, the location of the transportation error, the content of the transportation error, and the like. Further, when a transport error occurs, the replay video and live video before and after the transport error by the camera 226 can be displayed on the input/output device 222.
 また、解析装置400は、振動センサ300の前後、左右、上下の各軸の時間領域データ及び補助センサ301の時間領域データのそれぞれに基づく変化量及び存在量を特徴量として抽出することにより生成された複数の多変量データを用いて正常空間を作成し、複数の正常空間の中から、対応する正常空間を選択して、選択した正常空間上でのマハラノビス距離を算出することにより、異常検出の精度が向上される。例えば、振動センサ300の3軸のデータからは、それらの特徴量を結合することで1つの正常空間が作成され、補助センサ301のデータからは別個の正常空間が作成される。そして、それぞれの正常空間におけるマハラノビス距離の共起性を考慮して、接触による異常が判定されうる。つまり、2つのマハラノビス距離が同時に閾値を超えた時に、接触がより強く推定され、そうでなければ、別の異常が推定される。 Further, the analysis device 400 is generated by extracting the amount of change and the amount of existence based on the time domain data of each of the front, rear, left, right, and top and bottom axes of the vibration sensor 300 and the time domain data of the auxiliary sensor 301 as the feature quantity. By creating a normal space using multiple multivariate data, selecting the corresponding normal space from the multiple normal spaces, and calculating the Mahalanobis distance in the selected normal space, The accuracy is improved. For example, from the three-axis data of the vibration sensor 300, one normal space is created by combining those feature amounts, and from the data of the auxiliary sensor 301, a separate normal space is created. Then, the abnormality due to contact can be determined in consideration of the co-occurrence of the Mahalanobis distance in each normal space. That is, when the two Mahalanobis distances simultaneously exceed the threshold value, the contact is more strongly estimated, otherwise another anomaly is estimated.
 また、解析装置400は、移載中のウエハWの枚数、ツイーザ86aの移動速度や加速度、ツイーザ86aのボート58への差し込み量、ボート58の周囲を流れる風の風量、ボート58の温度又はボート58を収容していた処理室の温度の毎に複数の正常空間をそれぞれ作成し、複数の正常空間の中から、基板移載機86による移載動作が行われた際の状態に合致した正常空間を選択して、選択した正常空間上におけるマハラノビス距離を算出することにより異常を検出するように構成することができる。これにより異常の検出精度が向上される。あるいは、移載動作中の時間領域データの中で、常に値が大きくなる傾向のある区間(例えば加速や減速の開始点や終了点、動作の切り替え点などの近傍)がある場合、その大値区間を含むデータから作成した第1の正常空間の他に、大値区間を含まないデータから第2の正常空間を作成し、当該区間では第2の正常空間で異常を検出するようにしてもよい。このとき、大値区間を除外したことで時間領域データはその前後で時間的に不連続になるが、解析装置400は問題なくそれらを連続するものとして扱うことができる。 Further, the analysis device 400 uses the number of wafers W being transferred, the moving speed and acceleration of the tweezers 86a, the insertion amount of the tweezers 86a into the boat 58, the amount of wind flowing around the boat 58, the temperature of the boat 58, or the boat. A plurality of normal spaces are created for each temperature of the processing chamber accommodating the 58, and a normal state that matches the state when the transfer operation by the substrate transfer machine 86 is performed from the plurality of normal spaces. Anomalies can be detected by selecting a space and calculating the Mahalanobis distance in the selected normal space. This improves the detection accuracy of the abnormality. Alternatively, in the time domain data during transfer operation, if there is a section in which the value tends to be always large (for example, the start or end point of acceleration or deceleration, the vicinity of the switching point of operation, etc.) In addition to the first normal space created from the data including the section, the second normal space is created from the data not including the large value section, and the abnormality is detected in the second normal space in the section. Good. At this time, the time domain data becomes temporally discontinuous before and after the exclusion of the large value section, but the analysis device 400 can treat them as continuous without any problem.
(6)本実施形態による効果
 本実施形態によれば、以下の(a)~(d)のうち、少なくとも一つ以上の効果を奏する。
(6) Effects of this Embodiment According to this embodiment, at least one or more of the following effects (a) to (d) are achieved.
 (a)本実施形態によれば、基板移載機86や基板移載機86上のウエハWと、ボート58やボート58上のウエハWとが互いに接触したことを高精度に検出し、更には、接触に至る前の軽微な異常をも検出することができる。つまり経年変化等によって基板移載機86など自体から発生する振動から、故障する前の異常な振動を検出できる可能性がある。 (a) According to this embodiment, it is possible to detect with high accuracy that the substrate transfer device 86, the wafer W on the substrate transfer device 86, and the boat 58 and the wafer W on the boat 58 contact each other. Can detect even a slight abnormality before the contact. In other words, there is a possibility that abnormal vibrations before a failure can be detected from the vibrations generated by the substrate transfer machine 86 or the like itself due to aging or the like.
 (b)本実施形態によれば、ボート58の振動を検出する補助センサ301を設けたことにより、接触の検出精度が向上される。 (B) According to this embodiment, since the auxiliary sensor 301 for detecting the vibration of the boat 58 is provided, the contact detection accuracy is improved.
 (c)本実施形態によれば、接触の発生から3秒以内に異常の検出及び緊急停止を行うことができる。ツイーザ86aの1回の進退の時間が3秒程度であるので、進退の途中で緊急停止を行い、ウエハ破損の拡大を防ぐことが期待できる。更に、解析装置400が時間領域データをスライディングウインドウによって取得するようにしたので、比較的少ない計算負荷で、異常の検出周期を短くできる。このため市販の産業用シーケンサで解析装置400を構成しても、十分な速さで緊急停止を行うことができる。一方でFFTを用いたスペクトル解析では、所定(例えば512ポイント)以上の分解能が必要であるが、スライディングウインドウを用いても、過去の計算結果を利用できず、計算負荷が大きい。つまり計算量によって算出周期が律速され、サンプルレートを高くしても算出周期を短くすることができない。 (C) According to this embodiment, an abnormality can be detected and an emergency stop can be performed within 3 seconds after the occurrence of contact. Since the time for the tweezers 86a to advance and retreat once is about 3 seconds, it is expected that an emergency stop will be performed in the middle of the advance and retreat to prevent the spread of wafer damage. Furthermore, since the analysis device 400 acquires the time domain data by the sliding window, the abnormality detection cycle can be shortened with a relatively small calculation load. Therefore, even if the analyzer 400 is configured with a commercially available industrial sequencer, the emergency stop can be performed at a sufficient speed. On the other hand, in spectrum analysis using FFT, a resolution of a predetermined value (for example, 512 points) or more is required, but even if a sliding window is used, past calculation results cannot be used and the calculation load is large. In other words, the calculation cycle is limited by the amount of calculation, and even if the sample rate is increased, the calculation cycle cannot be shortened.
 (d)本実施形態によれば、基板移載機86による移載動作が時刻と対応付けられて動作ログとして記憶装置216又は外部記憶装置224に記録され、解析装置400により異常事態が検出されると、リモートで接続して操作画面を表示している入出力装置222において、ユーザは搬送エラーの時刻や、搬送エラーの箇所や、搬送エラーの内容等を把握することができるように構成されている。また、搬送エラーが発生した場合に設置されたカメラ226による搬送エラー直前の録画映像やライブ映像画面を入出力装置222に表示することができる。 (d) According to the present embodiment, the transfer operation by the substrate transfer machine 86 is recorded in the storage device 216 or the external storage device 224 as an operation log in association with the time, and the analysis device 400 detects an abnormal situation. Then, the input/output device 222 that is remotely connected to display the operation screen is configured so that the user can grasp the time of the transport error, the location of the transport error, the content of the transport error, and the like. ing. Further, when a transport error occurs, a recorded image or live image screen immediately before the transport error by the camera 226 installed can be displayed on the input/output device 222.
(7)他の実施形態
 なお、本開示は以上の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。
(7) Other Embodiments It is needless to say that the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.
 上述の実施形態では、ツイーザ86aをボート58に正対させてからボート58にウエハWを移載して退避するまでのボート58間の基板移載機86の動作において正常空間を作成し、この正常空間上におけるマハラノビス距離を算出したが、これに限らず、ポッド20間の基板移載機86の動作について正常空間を作成し、この正常空間におけるマハラノビス距離を算出するようにしてもよい。これにより、基板移載機86や基板移載機86上のウエハWと、ポッド20やポッド20内のウエハWとが互いに接触したことを高精度に検出し、故障状態の前の軽微な異常を検出することができる。 In the above-described embodiment, a normal space is created in the operation of the substrate transfer machine 86 between the boats 58 from the time the tweezers 86a are faced to the boat 58 until the wafer W is transferred to the boat 58 and retracted. Although the Mahalanobis distance in the normal space is calculated, the present invention is not limited to this, and a normal space may be created for the operation of the substrate transfer machine 86 between the pods 20 and the Mahalanobis distance in the normal space may be calculated. As a result, the contact between the substrate transfer device 86, the wafer W on the substrate transfer device 86, and the pod 20 or the wafer W in the pod 20 is detected with high accuracy, and a slight abnormality before the failure state is detected. Can be detected.
 また、上述の実施形態では、補助振動センサとして補助センサ301を回転軸80Aに取り付けて、ボート58の振動を検出する例について説明したが、これに限らず、補助センサ301を回転機構80又はボート58と回転軸80Aの間に設けられる断熱ユニットに取り付けるようにしてもよく、ボート58を載置する台に取り付けるようにしてもよい。また、補助振動センサとして、ツイーザ86aの先端に向けて指向性を有し気中の振動を集音する集音マイクを用いても良い。このとき集音マイクは、基板移載機86に搭載するか、搬送室16内に設置する。また、補助振動センサとして、ボート58にレーザ光を照射してその振動を検出するレーザドップラー振動計を用いても良い。このときレーザドップラー振動計は、搬送室16内に設置する。なお、複数の補助振動センサを用いても良い。複数の補助振動センサを用いることにより解析装置400の異常検出の精度が向上される。 Further, in the above-described embodiment, the example in which the auxiliary sensor 301 is attached to the rotating shaft 80A as the auxiliary vibration sensor to detect the vibration of the boat 58 has been described, but the present invention is not limited to this, and the auxiliary sensor 301 is not limited to the rotating mechanism 80 or the boat. It may be attached to a heat insulation unit provided between 58 and the rotating shaft 80A, or may be attached to a table on which the boat 58 is placed. As the auxiliary vibration sensor, a sound collecting microphone that has directivity toward the tip of the tweezers 86a and collects vibrations in the air may be used. At this time, the sound collecting microphone is mounted on the substrate transfer machine 86 or in the transfer chamber 16. A laser Doppler vibrometer that irradiates the boat 58 with laser light to detect the vibration may be used as the auxiliary vibration sensor. At this time, the laser Doppler vibrometer is installed in the transfer chamber 16. Note that a plurality of auxiliary vibration sensors may be used. The accuracy of the abnormality detection of the analysis device 400 is improved by using the plurality of auxiliary vibration sensors.
 また、上述の実施形態では、振動センサ300が、複数のツイーザ86aの根元を積層して固定する固定部304に設けられる例について説明したが、これに限らず、複数のツイーザ86aのそれぞれに振動センサを設けても良い。この場合には、ツイーザ86a毎の振動センサの出力値の時間領域データ毎に複数の正常空間をそれぞれ作成し、複数の正常空間の中から、対応する正常空間におけるマハラノビス距離を算出する。これにより、異常が検出されたツイーザ86aを特定することができる。 Further, in the above-described embodiment, the example in which the vibration sensor 300 is provided in the fixing portion 304 that stacks and fixes the roots of the plurality of tweezers 86a has been described. A sensor may be provided. In this case, a plurality of normal spaces are created for each time domain data of the output value of the vibration sensor for each tweezer 86a, and the Mahalanobis distance in the corresponding normal space is calculated from the plurality of normal spaces. Thereby, the tweezers 86a in which the abnormality is detected can be specified.
 上述の実施形態では、振動センサ300等の信号は、特段の前処理をされることなくMT法が適用されるものとして説明したが、これに限らず、フィルタ等の前処理を行ってもよい。前処理は、特定の周波数のノイズを抑圧したり、接触に特有の周波数を通過させるようなフィルタや、固有周波数を有するツイーザを含む検出系の周波数特性を補償するイコライザとして構成されうる。スクラッチから発生する周波数が基板移載機86の移動速度に依存する場合や、可変速真空ポンプが用いられノイズ周波数が変動する場合、その周波数に同調するようにフィルタの中心周波数や遮断周波数が可変制御されうる。 Although the MT method is applied to the signal of the vibration sensor 300 or the like without any special preprocessing in the above-described embodiment, the present invention is not limited to this, and preprocessing such as a filter may be performed. .. The pre-processing can be configured as a filter that suppresses noise of a specific frequency or passes a frequency that is peculiar to contact, or an equalizer that compensates the frequency characteristic of a detection system including a tweezer having a natural frequency. When the frequency generated from scratch depends on the moving speed of the substrate transfer machine 86, or when the variable frequency vacuum pump is used and the noise frequency fluctuates, the center frequency and cutoff frequency of the filter are changed so as to tune to the frequency. Can be controlled.
 上述の実施形態では、ウエハを処理する場合について説明したが、本開示は液晶パネルのガラス基板や磁気ディスクや光ディスク等の基板を処理する基板処理装置全般に適用することができる。また上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いる例について説明した。本開示は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いる場合にも、好適に適用できる。 In the above embodiments, the case of processing a wafer has been described, but the present disclosure can be applied to all substrate processing apparatuses that process substrates such as glass substrates of liquid crystal panels and magnetic disks and optical disks. Further, in the above-described embodiment, an example in which a batch-type substrate processing apparatus that processes a plurality of substrates at one time is used has been described. The present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, the case of using a single wafer processing apparatus that processes one or several substrates at a time.
(8)本開示の好ましい態様
 以下、本開示の好ましい態様について付記する。
(8) Preferred Embodiments of the Present Disclosure Hereinafter, preferred embodiments of the present disclosure will be additionally described.
(付記1)
 本開示の一態様によれば、
 基板を保持する基板保持具と、
 基板を直接的に操作するエンドエフェクタと、前記エンドエフェクタを移動させる駆動機構とを備え、前記基板保持具へ基板を移載し、又は前記基板保持具から基板を移載する基板移載機と、
 前記エンドエフェクタの振動を検出する振動センサと、
 前記基板移載機を制御する制御部と、
 前記基板移載機による基板の移載動作が正常に行われた際に前記振動センサにより検出された前記エンドエフェクタの振動の時間領域データをMT法によって分析することにより作成された正常空間を用い、前記基板移載機が基板を載置して所定の移載動作をする間に前記振動センサにより検出された時間領域データの前記正常空間上におけるマハラノビス距離を算出し、算出された前記マハラノビス距離が所定の閾値を超えた時に、前記エンドエフェクタもしくは前記エンドエフェクタ上の基板と、前記基板保持具もしくは前記基板保持具上の基板とが互いに接触したと判定する解析装置と、を備え、
 前記制御部は、前記所定の移載動作の開始と終了を示す信号を前記解析装置に出力する
 基板処理装置が提供される。
(Appendix 1)
According to one aspect of the present disclosure,
A substrate holder for holding the substrate,
A substrate transfer machine that includes an end effector that directly operates the substrate and a drive mechanism that moves the end effector, transfers the substrate to the substrate holder, or transfers the substrate from the substrate holder. ,
A vibration sensor for detecting the vibration of the end effector,
A control unit for controlling the substrate transfer machine,
A normal space created by analyzing the time domain data of the vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed by the MT method is used. , The Mahalanobis distance in the normal space of the time domain data detected by the vibration sensor while the substrate transfer machine places the substrate and performs a predetermined transfer operation, and the calculated Mahalanobis distance A substrate on the end effector or the end effector, and an analysis device for determining that the substrate holder or the substrate on the substrate holder are in contact with each other when the threshold value exceeds a predetermined threshold value,
The substrate processing apparatus is provided in which the control unit outputs a signal indicating the start and end of the predetermined transfer operation to the analysis apparatus.
(付記2)
 付記1に記載の基板処理装置であって、好ましくは、
 前記解析装置は、前記時間領域データの、所定の複数の標本線毎に標本線を跨いだ回数である変化量、及び、標本線より大きい値のデータ数である存在量を特徴量として抽出することにより多変量データを生成し、
 前記基板移載機による基板の移載動作が正常に行われた際に前記振動センサにより検出された前記エンドエフェクタの振動の複数の時間領域データに基づいて生成された多変量データの平均値と共分散行列とを算出し、前記共分散行列を用いて前記正常空間を定義し、
 前記基板移載機による移載動作をする間に前記振動センサにより検出された時間領域データに基づいて作成された多変量データから、前記正常空間上でのマハラノビス距離を移載動作中に算出する。
(Appendix 2)
The substrate processing apparatus according to Appendix 1, preferably:
The analysis device extracts the amount of change in the time domain data, which is the number of times the sample line is crossed for each of a plurality of predetermined sample lines, and the existing amount, which is the number of data having a value larger than the sample line, as feature amounts. To generate multivariate data,
An average value of multivariate data generated based on a plurality of time domain data of vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed, and Calculating a covariance matrix and defining the normal space using the covariance matrix,
The Mahalanobis distance in the normal space is calculated during the transfer operation from the multivariate data created based on the time domain data detected by the vibration sensor during the transfer operation by the substrate transfer machine. ..
(付記3)
 付記2に記載の基板処理装置であって、好ましくは、
 前記解析装置は、移載中の基板の枚数、前記エンドエフェクタの移動速度、前記エンドエフェクタの前記基板保持具への差し込み量、前記基板保持具の周囲を流れる風の風量、前記基板保持具の温度又は前記基板保持具を収容していた前記処理室の温度の毎に複数の正常空間をそれぞれ記憶し、
 前記複数の正常空間の中から、前記基板移載機による移載動作が行われた際の状態に合致した正常空間を選択して、選択した正常空間上におけるマハラノビス距離を算出する。
(Appendix 3)
The substrate processing apparatus according to attachment 2, preferably:
The analysis device includes the number of substrates being transferred, the moving speed of the end effector, the insertion amount of the end effector into the substrate holder, the air volume of air flowing around the substrate holder, and the substrate holder. A plurality of normal spaces are stored for each temperature or each temperature of the processing chamber that accommodates the substrate holder,
A normal space that matches the state when the transfer operation by the substrate transfer machine is performed is selected from the plurality of normal spaces, and the Mahalanobis distance in the selected normal space is calculated.
(付記4)
 付記2又は付記3に記載の基板処理装置であって、好ましくは、
 前記基板移載機は、基板処理装置内に固定して設置され、前記処理室から搬出された基板保持具との間で基板を移載するものであり、
 前記振動センサは3軸加速度センサであり、
 前記基板保持具を保持している部材に取り付けられた補助センサ、前記エンドエフェクタの先端に向けて指向性を有し気中の振動を集音する集音マイク、もしくは前記基板保持具にレーザ光を照射してその振動を検出するレーザドップラー振動計の少なくとも1つを含む補助振動センサを更に備え、
 前記解析装置は、前記振動センサの各軸の時間領域データ及び前記補助振動センサの時間領域データのそれぞれに基づく変化量及び存在量を特徴量として抽出することにより生成された複数の多変量データを用いて前記正常空間を作成する。
(Appendix 4)
The substrate processing apparatus according to Supplementary Note 2 or Supplementary Note 3, preferably:
The substrate transfer machine is fixedly installed in the substrate processing apparatus, and transfers the substrate to and from the substrate holder carried out from the processing chamber,
The vibration sensor is a triaxial acceleration sensor,
An auxiliary sensor attached to a member holding the substrate holder, a sound collecting microphone that collects vibrations in the air having directivity toward the tip of the end effector, or laser light on the substrate holder. Further comprising an auxiliary vibration sensor including at least one of a laser Doppler vibrometer for irradiating the
The analysis device, a plurality of multivariate data generated by extracting the amount of change and the amount of presence based on each of the time domain data of each axis of the vibration sensor and the time domain data of the auxiliary vibration sensor as a feature amount. Is used to create the normal space.
(付記5)
 付記2又は付記3に記載の基板処理装置であって、好ましくは、
 前記正常空間を作成する際の時間領域データのデータ数は、24576サンプル以下であり、前記多変量データは、1024サンプル未満の間隔毎に多変量化する。
(Appendix 5)
The substrate processing apparatus according to Supplementary Note 2 or Supplementary Note 3, preferably:
The number of time domain data when creating the normal space is 24576 samples or less, and the multivariate data is multivariate at intervals of less than 1024 samples.
(付記6)
 付記1に記載の基板処理装置であって、好ましくは、
 前記移載動作を撮像するカメラと、撮像された画像を時刻と対応付けて記録する記録装置と、を更に備え、
 前記制御部は、前記移載動作を時刻と対応付けて動作ログとして前記記録装置に記録するように制御する。
(Appendix 6)
The substrate processing apparatus according to Appendix 1, preferably:
A camera for capturing the transfer operation, and a recording device for recording the captured image in association with time,
The control unit controls the transfer operation to be recorded in the recording device as an operation log in association with time.
(付記7)
 本開示の他の態様によれば、
 基板を直接的に操作するエンドエフェクタと、前記エンドエフェクタを移動させる駆動機構と、を備える基板移載機により、基板を保持する基板保持具へ基板を移載し、又は前記基板保持具から基板を移載する移載工程と、
 解析装置により、前記移載工程における前記基板移載機による基板の移載動作が正常に行われた際に前記エンドエフェクタの振動を検出する振動センサにより検出された前記エンドエフェクタの振動の時間領域データをMT法によって分析することにより作成された正常空間を用い、前記移載工程において前記基板移載機が基板を載置して所定の移載動作をする間に前記振動センサにより検出された時間領域データの前記正常空間上におけるマハラノビス距離を算出し、算出された前記マハラノビス距離が所定の閾値を超えた時に、前記エンドエフェクタもしくは前記エンドエフェクタ上の基板と、前記基板保持具もしくは前記基板保持具上の基板とが互いに接触する異常事態が発生したと判定する解析工程と、
 前記基板移載機による所定の移載動作の開始と終了を示す信号を前記解析装置に出力する出力工程と、
 を備える半導体装置の製造方法が提供される。
(Appendix 7)
According to another aspect of the disclosure,
A substrate transfer machine provided with an end effector that directly operates the substrate and a drive mechanism that moves the end effector transfers the substrate to a substrate holder that holds the substrate, or transfers the substrate from the substrate holder. And a transfer process for transferring
Time domain of vibration of the end effector detected by a vibration sensor that detects vibration of the end effector when the substrate transfer operation by the substrate transfer machine in the transfer step is normally performed by the analysis device Using the normal space created by analyzing the data by the MT method, the substrate transfer device detects the vibration while the substrate is placed and a predetermined transfer operation is performed in the transfer step. The Mahalanobis distance in the normal space of the time domain data is calculated, and when the calculated Mahalanobis distance exceeds a predetermined threshold value, the end effector or the substrate on the end effector, the substrate holder or the substrate holding An analysis step of determining that an abnormal situation has occurred in which the board on the tool is in contact with each other;
An output step of outputting a signal indicating the start and end of a predetermined transfer operation by the substrate transfer machine to the analysis device;
A method for manufacturing a semiconductor device is provided.
 4    処理装置(基板処理装置)
 20   ポッド(格納容器)
 58   ボート(基板保持具)
 86   基板移載機
 210  コントローラ
 300  振動センサ
 301  補助センサ
 400  解析装置
4 Processing equipment (substrate processing equipment)
20 pods (container)
58 Boat (substrate holder)
86 Substrate transfer machine 210 Controller 300 Vibration sensor 301 Auxiliary sensor 400 Analysis device

Claims (5)

  1.  基板を保持する基板保持具と、
     基板を直接的に操作するエンドエフェクタと、前記エンドエフェクタを移動させる駆動機構とを備え、前記基板保持具へ基板を移載し、又は前記基板保持具から基板を移載する基板移載機と、
     前記エンドエフェクタの振動を検出する振動センサと、
     前記基板移載機を制御する制御部と、
     前記基板移載機による基板の移載動作が正常に行われた際に前記振動センサにより検出された前記エンドエフェクタの振動の時間領域データをMT法によって分析することにより作成された正常空間を用い、前記基板移載機が基板を載置して所定の移載動作をする間に前記振動センサにより検出された時間領域データの前記正常空間上におけるマハラノビス距離を算出し、算出された前記マハラノビス距離が所定の閾値を超えた時に、前記エンドエフェクタもしくは前記エンドエフェクタ上の基板と、前記基板保持具もしくは前記基板保持具上の基板とが互いに接触したと判定する解析装置と、を備え、
     前記制御部は、前記所定の移載動作の開始と終了を示す信号を前記解析装置に出力する
     基板処理装置。
    A substrate holder for holding the substrate,
    A substrate transfer machine that includes an end effector that directly operates the substrate and a drive mechanism that moves the end effector, transfers the substrate to the substrate holder, or transfers the substrate from the substrate holder. ,
    A vibration sensor for detecting the vibration of the end effector,
    A control unit for controlling the substrate transfer machine,
    A normal space created by analyzing the time domain data of the vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed by the MT method is used. , The Mahalanobis distance in the normal space of the time domain data detected by the vibration sensor while the substrate transfer machine places the substrate and performs a predetermined transfer operation, and the calculated Mahalanobis distance A substrate on the end effector or the end effector, and an analysis device for determining that the substrate holder or the substrate on the substrate holder are in contact with each other when the threshold value exceeds a predetermined threshold value,
    The substrate processing apparatus wherein the control unit outputs a signal indicating the start and end of the predetermined transfer operation to the analysis apparatus.
  2.  前記解析装置は、前記時間領域データの、所定の複数の標本線毎に標本線を跨いだ回数である変化量、及び、標本線より大きい値のデータ数である存在量を特徴量として抽出することにより多変量データを生成し、
     前記基板移載機による基板の移載動作が正常に行われた際に前記振動センサにより検出された前記エンドエフェクタの振動の複数の時間領域データに基づいて生成された多変量データの平均値と共分散行列とを算出し、前記共分散行列を用いて前記正常空間を定義し、
     前記基板移載機による移載動作をする間に前記振動センサにより検出された時間領域データに基づいて作成された多変量データから、前記正常空間上でのマハラノビス距離を移載動作中に算出する請求項1に記載の基板処理装置。
    The analysis device extracts the amount of change in the time domain data, which is the number of times the sample line is crossed for each of a plurality of predetermined sample lines, and the existing amount, which is the number of data having a value larger than the sample line, as feature amounts. To generate multivariate data,
    An average value of multivariate data generated based on a plurality of time domain data of vibration of the end effector detected by the vibration sensor when the substrate transfer operation by the substrate transfer machine is normally performed, and Calculating a covariance matrix and defining the normal space using the covariance matrix,
    The Mahalanobis distance in the normal space is calculated during the transfer operation from the multivariate data created based on the time domain data detected by the vibration sensor during the transfer operation by the substrate transfer machine. The substrate processing apparatus according to claim 1.
  3.  前記解析装置は、移載中の基板の枚数、前記エンドエフェクタの移動速度、前記エンドエフェクタの前記基板保持具への差し込み量、前記基板保持具の周囲を流れる風の風量、前記基板保持具の温度又は前記基板保持具を収容していた前記処理室の温度の毎に複数の正常空間をそれぞれ記憶し、
     前記複数の正常空間の中から、前記基板移載機による移載動作が行われた際の状態に合致した正常空間を選択して、選択した正常空間上におけるマハラノビス距離を算出する請求項2記載の基板処理装置。
    The analysis device includes the number of substrates being transferred, the moving speed of the end effector, the insertion amount of the end effector into the substrate holder, the air volume of air flowing around the substrate holder, and the substrate holder. A plurality of normal spaces are stored for each temperature or each temperature of the processing chamber that accommodates the substrate holder,
    The Mahalanobis distance in the selected normal space is calculated by selecting a normal space that matches the state when the transfer operation is performed by the substrate transfer machine from the plurality of normal spaces. Substrate processing equipment.
  4.  前記基板移載機は、基板処理装置内に固定して設置され、前記処理室から搬出された基板保持具との間で基板を移載するものであり、
     前記振動センサは3軸加速度センサであり、
     前記基板保持具を保持している部材に取り付けられた補助センサ、前記エンドエフェクタの先端に向けて指向性を有し気中の振動を集音する集音マイク、もしくは前記基板保持具にレーザ光を照射してその振動を検出するレーザドップラー振動計の少なくとも1つを含む補助振動センサを更に備え、
     前記解析装置は、前記振動センサの各軸の時間領域データ及び前記補助振動センサの時間領域データのそれぞれに基づく変化量及び存在量を特徴量として抽出することにより生成された複数の多変量データを用いて前記正常空間を作成する、請求項2又は3の基板処理装置。
    The substrate transfer machine is fixedly installed in the substrate processing apparatus, and transfers the substrate to and from the substrate holder carried out from the processing chamber,
    The vibration sensor is a triaxial acceleration sensor,
    An auxiliary sensor attached to a member holding the substrate holder, a sound collecting microphone that collects vibrations in the air having directivity toward the tip of the end effector, or laser light on the substrate holder. Further comprising an auxiliary vibration sensor including at least one of a laser Doppler vibrometer for irradiating the
    The analysis device, a plurality of multivariate data generated by extracting the amount of change and the amount of presence based on each of the time domain data of each axis of the vibration sensor and the time domain data of the auxiliary vibration sensor as a feature amount. The substrate processing apparatus according to claim 2, wherein the normal space is created by using the normal space.
  5.  基板を直接的に操作するエンドエフェクタと、前記エンドエフェクタを移動させる駆動機構と、を備える基板移載機により、基板を保持する基板保持具へ基板を移載し、又は前記基板保持具から基板を移載する移載工程と、
     解析装置により、前記移載工程における前記基板移載機による基板の移載動作が正常に行われた際に前記エンドエフェクタの振動を検出する振動センサにより検出された前記エンドエフェクタの振動の時間領域データをMT法によって分析することにより作成された正常空間を用い、前記移載工程において前記基板移載機が基板を載置して所定の移載動作をする間に前記振動センサにより検出された時間領域データの前記正常空間上におけるマハラノビス距離を算出し、算出された前記マハラノビス距離が所定の閾値を超えた時に、前記エンドエフェクタもしくは前記エンドエフェクタ上の基板と、前記基板保持具もしくは前記基板保持具上の基板とが互いに接触する異常事態が発生したと判定する解析工程と、
     前記基板移載機による所定の移載動作の開始と終了を示す信号を前記解析装置に出力する出力工程と、
     を備える半導体装置の製造方法。
    A substrate transfer machine provided with an end effector that directly operates the substrate and a drive mechanism that moves the end effector transfers the substrate to a substrate holder that holds the substrate, or transfers the substrate from the substrate holder. And a transfer process for transferring
    A time region of vibration of the end effector detected by a vibration sensor that detects vibration of the end effector when the substrate transfer operation by the substrate transfer machine is normally performed in the transfer step by the analysis device. The normal space created by analyzing the data by the MT method is used, and in the transfer step, the substrate transfer device detects the vibration while the substrate is mounted and a predetermined transfer operation is performed. The Mahalanobis distance in the normal space of the time domain data is calculated, and when the calculated Mahalanobis distance exceeds a predetermined threshold, the end effector or the substrate on the end effector, the substrate holder or the substrate holding An analysis step of determining that an abnormal situation has occurred in which the board on the tool is in contact with each other;
    An output step of outputting a signal indicating the start and end of a predetermined transfer operation by the substrate transfer machine to the analysis device;
    A method for manufacturing a semiconductor device, comprising:
PCT/JP2019/003676 2019-02-01 2019-02-01 Substrate processing device and method for manufacturing semiconductor device WO2020157967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201990001313.5U CN215933545U (en) 2019-02-01 2019-02-01 Substrate processing apparatus
JP2020569319A JP7055226B2 (en) 2019-02-01 2019-02-01 Manufacturing method of substrate processing equipment and semiconductor equipment
PCT/JP2019/003676 WO2020157967A1 (en) 2019-02-01 2019-02-01 Substrate processing device and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003676 WO2020157967A1 (en) 2019-02-01 2019-02-01 Substrate processing device and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2020157967A1 true WO2020157967A1 (en) 2020-08-06

Family

ID=71842002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003676 WO2020157967A1 (en) 2019-02-01 2019-02-01 Substrate processing device and method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP7055226B2 (en)
CN (1) CN215933545U (en)
WO (1) WO2020157967A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044214A (en) * 2021-09-17 2023-03-30 株式会社Kokusai Electric Substrate processing method, substrate processing device, method of manufacturing semiconductor device, and program
TWI837575B (en) 2021-09-17 2024-04-01 日商國際電氣股份有限公司 Substrate processing method, substrate processing device, semiconductor device manufacturing method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203909B (en) * 2023-03-31 2024-01-30 江苏杰太光电技术有限公司 Control method and system for automatic work of intelligent carrier plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349930A (en) * 1993-06-11 1994-12-22 Shinko Electric Co Ltd Finger collision detector of wafer transfer robot
JP2001223254A (en) * 2000-02-10 2001-08-17 Hitachi Ltd Wafer transportation device and semiconductor production device
JP2004340706A (en) * 2003-05-15 2004-12-02 Toshiba Mitsubishi-Electric Industrial System Corp Apparatus for diagnosing instrument
JP2016014961A (en) * 2014-07-01 2016-01-28 株式会社Ihi Abnormality diagnosis device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458278B2 (en) 2009-12-22 2014-04-02 シンフォニアテクノロジー株式会社 Vibration characteristic identification device for transfer device, vibration characteristic identification method for transfer device, and transfer system using them
JP6349930B2 (en) 2014-05-01 2018-07-04 住友ベークライト株式会社 Manufacturing method of semiconductor device and adhesive composition
WO2018061145A1 (en) 2016-09-29 2018-04-05 株式会社日立国際電気 Substrate processing device, vibration detection system, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349930A (en) * 1993-06-11 1994-12-22 Shinko Electric Co Ltd Finger collision detector of wafer transfer robot
JP2001223254A (en) * 2000-02-10 2001-08-17 Hitachi Ltd Wafer transportation device and semiconductor production device
JP2004340706A (en) * 2003-05-15 2004-12-02 Toshiba Mitsubishi-Electric Industrial System Corp Apparatus for diagnosing instrument
JP2016014961A (en) * 2014-07-01 2016-01-28 株式会社Ihi Abnormality diagnosis device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044214A (en) * 2021-09-17 2023-03-30 株式会社Kokusai Electric Substrate processing method, substrate processing device, method of manufacturing semiconductor device, and program
JP7288486B2 (en) 2021-09-17 2023-06-07 株式会社Kokusai Electric Substrate processing method, substrate processing apparatus, semiconductor device manufacturing method, and program
US11841343B2 (en) 2021-09-17 2023-12-12 Kokusai Electric Corporation Method of processing substrate, substrate processing apparatus, method of manufacturing semiconductor processing apparatus, and recording medium
TWI837575B (en) 2021-09-17 2024-04-01 日商國際電氣股份有限公司 Substrate processing method, substrate processing device, semiconductor device manufacturing method and program

Also Published As

Publication number Publication date
CN215933545U (en) 2022-03-01
JPWO2020157967A1 (en) 2021-10-14
JP7055226B2 (en) 2022-04-15

Similar Documents

Publication Publication Date Title
JP6968131B2 (en) Substrate processing systems, equipment, and methods with environmental control of the factory interface
KR102587203B1 (en) On-the-fly automatic wafer centering method and device
JP5131094B2 (en) Heat treatment apparatus, heat treatment method, and storage medium
KR102386557B1 (en) Substrate processing method and substrate processing system
TWI496228B (en) Semiconductor wafer monitoring apparatus and method
JP6227334B2 (en) Load port for detecting multiple types of semiconductor wafers
US10672633B2 (en) Removable compartments for workpiece stocker
JP2006277298A (en) Substrate processing device, history information recording method, history information recording program, and history information recording system
EP1290452B1 (en) Self teaching robotic carrier handling system
WO2020157967A1 (en) Substrate processing device and method for manufacturing semiconductor device
JP2008235841A (en) Substrate transfer apparatus, substrate transfer method, and storage medium
EP2092556B1 (en) Compartments for workpiece stocker
JP2007088110A (en) Method of teaching reference position of substrate transfer robot
CN107680928B (en) Teaching jig, substrate processing apparatus, and teaching method
CN111107324A (en) Monitoring device and monitoring method of wafer transmission system
US11637004B2 (en) Alignment module with a cleaning chamber
JP2009295906A (en) Substrate processing apparatus
JP2003188232A (en) System and method for restricting movement of semiconductor in variable pressure chamber
JP2011171648A (en) Substrate processing system
US20210327736A1 (en) Mini-environment system for controlling oxygen and humidity levels within a sample transport device
JP6801574B2 (en) Semiconductor manufacturing equipment
US20240109200A1 (en) Transfer system and transfer method
JP2003152052A (en) Transportation apparatus, semiconductor manufacturing equipment, and method for transportation
JP2006196676A (en) Processing device and processing method
JP2009252785A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913759

Country of ref document: EP

Kind code of ref document: A1