WO2020157923A1 - Component conveyance device - Google Patents

Component conveyance device Download PDF

Info

Publication number
WO2020157923A1
WO2020157923A1 PCT/JP2019/003422 JP2019003422W WO2020157923A1 WO 2020157923 A1 WO2020157923 A1 WO 2020157923A1 JP 2019003422 W JP2019003422 W JP 2019003422W WO 2020157923 A1 WO2020157923 A1 WO 2020157923A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
electronic component
magnetic force
groove
mounting
Prior art date
Application number
PCT/JP2019/003422
Other languages
French (fr)
Japanese (ja)
Inventor
実可子 大野
義史 大参
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2020569284A priority Critical patent/JP7145981B2/en
Priority to PCT/JP2019/003422 priority patent/WO2020157923A1/en
Publication of WO2020157923A1 publication Critical patent/WO2020157923A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to a component transfer device for transferring a plurality of parts in a line in a transfer path.
  • the component transfer device includes a case in which a transfer path for transferring a plurality of parts in a row is formed, and a magnet movably arranged along the transfer path. Some are transported on the transport path.
  • the following patent documents describe an example of such a component transfer device.
  • An object of the present invention is to appropriately convey a component in a component conveyance device that conveys a component on a conveyance path by magnetic force.
  • the present specification discloses a case in which a transport path for transporting a plurality of components in a continuous state is formed, and the component is disposed movably along the transport path, and magnetically drives the components.
  • a transport path for transporting a plurality of components in a continuous state is formed, and the component is disposed movably along the transport path, and magnetically drives the components.
  • a component transfer device including a magnetic force reduction mechanism.
  • the component transporting device may transport the component not only by magnetic force but also by other means, for example, the weight of the component, suction or ejection of air, vibration, etc., in a predetermined region of the transport path. ..
  • the transportation of the component by other means is secured. This makes it possible to appropriately convey the component in the component conveying device that conveys the component on the conveying path by the magnetic force.
  • FIG. 1 It is a perspective view which shows an electronic component mounting apparatus. It is a perspective view which shows a mounting head. It is a perspective view showing a mounting head and a bulk feeder attached to the mounting head. It is a bottom view which shows a mounting head from a viewpoint from a lower part. It is a figure which shows a bulk feeder from the viewpoint from a side. It is a figure showing a bulk feeder from a viewpoint from the upper part. It is sectional drawing in the AA line shown in FIG. It is sectional drawing in the BB line shown in FIG. It is sectional drawing in the CC line shown in FIG. It is a block diagram which shows a control apparatus.
  • FIG. 1 shows an electronic component mounting device 10.
  • the electronic component mounting apparatus 10 has one system base 12 and two mounting machines 16 arranged side by side on the system base 12.
  • the direction in which the mounting machines 16 are lined up is referred to as the X-axis direction
  • the horizontal direction perpendicular to the direction is referred to as the Y-axis direction.
  • the direction is called the Z-axis direction.
  • Each mounting machine 16 mainly includes a mounting machine body 20, a transport device 22, a mounting head moving device (hereinafter, may be abbreviated as “moving device”) 23, a supply device 24, and a mounting head 26.
  • the mounting machine body 20 includes a frame 30 and a beam 32 mounted on the frame 30.
  • the transfer device 22 includes two conveyor devices 40 and 42.
  • the two conveyor devices 40, 42 are arranged in the frame 30 so as to be parallel to each other and extend in the X-axis direction.
  • Each of the two conveyor devices 40 and 42 conveys the circuit board supported by each of the conveyor devices 40 and 42 by an electromagnetic motor (see FIG. 10) 46 in the X-axis direction.
  • the circuit board is fixedly held by a board holding device (see FIG. 10) 48 at a predetermined position.
  • the moving device 23 is an XY robot type moving device.
  • the moving device 23 includes an electromagnetic motor (see FIG. 10) 52 that slides the slider 50 in the X-axis direction and an electromagnetic motor (see FIG. 10) 54 that slides the slider 50 in the Y-axis direction.
  • the mounting head 26 is attached to the slider 50, and the mounting head 26 is moved to an arbitrary position on the frame 30 by the operation of the two electromagnetic motors 52 and 54.
  • the supply device 24 is a feeder type supply device and has a plurality of tape feeders 70.
  • the tape feeder 70 accommodates the taped parts in a wound state.
  • the tape component is a taped electronic component.
  • the tape feeder 70 feeds the tape-formed component by the feeding device (see FIG. 10) 76.
  • the feeder type supply device 24 supplies the electronic component at the supply position by feeding the tape-formed component.
  • the mounting head 26 mounts electronic components on the circuit board held by the transfer device 22.
  • the mounting head 26 includes twelve mounting units 82, as shown in FIGS. Then, each of the twelve mounting units 82 holds a suction nozzle 80 for sucking an electronic component at the tip thereof.
  • FIG. 2 is a perspective view showing the mounting head 26 removed from the slider 50.
  • FIG. 3 is a perspective view showing the mounting head 26 with the cover removed.
  • FIG. 4 is a bottom view of the mounting head 26 as seen from the bottom of the mounting head 26.
  • Each suction nozzle 80 communicates with a positive/negative pressure supply device (see FIG. 10) 84 via a negative pressure air and positive pressure air passage. Then, each suction nozzle 80 sucks and holds the electronic component with a negative pressure, and releases the held electronic component by supplying a slight positive pressure.
  • the mounting unit 82 which is generally in the shape of a shaft, is held on the outer peripheral portion of the unit holder 86 in a state where the axial direction is vertical at an equal angular pitch. As shown in FIG. 4, the suction nozzles 80 held at the tip of the mounting unit 82 extend downward from the lower surface of the unit holder 86 at 12 equally spaced positions. As a result, the 12 suction nozzles 80 are arranged on one circumference.
  • the unit holder 86 is rotatably supported by the head body 88 of the mounting head 28 about its own vertical axis, and is rotated at an arbitrary angle by the holder rotating device 90. Thereby, the plurality of suction nozzles 80 arranged on one circumference rotate at an arbitrary angle with the center of the one circumference as an axis.
  • a roller 92 that functions as a cam follower is provided at the upper end of each mounting unit 82.
  • Each roller 92 is engaged with a cam surface of a cam (not shown) fixed to the head main body 88, and the height of the cam surface changes in the circumferential direction.
  • each mounting unit 82 is held by a unit holder 86 so as to be vertically movable. As a result, the mounting unit 82 moves in the vertical direction as the unit holder 86 rotates.
  • the mounting unit 82 located at the mounting station moves to the lowest position. .. That is, when the mounting head 28 is moved onto the circuit board, the distance between the suction nozzle 80 of the mounting unit 82 located at that station and the circuit board becomes the shortest. Then, the electronic component is mounted on the circuit board by the suction nozzle 80 of the mounting station.
  • mounting units are provided centering on the mounting unit 82 located directly opposite to the mounting station with the axis of the unit holder 86 interposed therebetween, that is, the imaging station which is the closest stop position to the head body 88. 82 moves to the uppermost position.
  • the lower end of the head main body 88 extends downward from the lower end of the suction nozzle 80 of each mounting unit 82 located at the uppermost position, and is bent toward the suction nozzle 80.
  • a parts camera 96 is arranged in the bent portion. Then, the electronic camera held by the suction nozzle 80 of the mounting unit 82 located at the imaging station is imaged by the parts camera 96. Further, a mark camera (see FIG. 10) 98 is provided on the lower surface of the bent portion of the head body 88 in a state of facing downward. Then, as the mounting head 26 is moved by the moving device 23, the mark camera 98 images an arbitrary position on the frame 30.
  • the positional relationship between the stations will be described with reference to FIG.
  • one of the twelve mounting units 82a to 82l is located at the mounting station, that is, when the mounting unit 82a is moved to the lowest position, the five mounting units 82e to 82i are placed. Is moving to the top. Then, the mounting unit 82g is located at the imaging station, and the electronic camera held by the suction nozzle 80 of the mounting unit 82g is imaged by the parts camera 96.
  • the unit holder 86 rotates in the forward direction, the unit holder 86 rotates clockwise in FIG.
  • the station in which the mounting unit 82e on the most upstream side in the rotation direction of the unit holder 86 is located is the electronic component from the bulk feeder 100 (see FIG. 5) described in detail later. It is used as an adsorption station for adsorbing.
  • the electronic component supplied from the tape feeder 70 is sucked by the suction nozzle 80a of the mounting unit 82a located at the mounting station.
  • the mounting head 26 also includes a unit rotation device 102 that simultaneously rotates each mounting unit 82 about each axis.
  • the unit rotation device 102 includes a plurality of gears 103 provided at the upper ends of the plurality of mounting units 82 and one gear (not shown) that meshes with the plurality of gears 103. There is. The rotation of the one gear causes the plurality of gears 103 to rotate, so that the respective mounting units 82 simultaneously rotate about their respective axes. Thereby, the holding posture of the electronic component sucked and held by each mounting unit 82 can be changed.
  • the mounting head 26 includes a unit elevating device 104 for individually elevating and lowering the mounting units located at the mounting station and the suction station.
  • the bulk feeder 100 that supplies electronic components to the mounting unit 82 located at the suction station is attached to the head body 88 of the mounting head 26. Therefore, the bulk feeder 100 is moved by the moving device 23 together with the mounting head 26 to an arbitrary position on the frame 30. As shown in FIGS. 5 and 6, the bulk feeder 100 has a housing 110 and an arm member 112 fixed to the lower end of the housing 110. 5 is a perspective view from the side of the bulk feeder 100, and FIG. 6 is a perspective view from the viewpoint of the bulk feeder 100 from above.
  • the arm member 112 is divided into a first arm portion 114, a second arm portion 116, and a third arm portion 118.
  • the first arm portion 114 is orthogonal to the second arm portion 116 and the third arm portion 118 in the same plane, and the second arm portion 116 and the third arm portion 118 extend in opposite directions.
  • the arm member 112 is fixed to the lower surface of the housing 110 at the second arm portion 116.
  • the arm member 112 is bolted to the head body 88 at the third arm portion 118.
  • the housing 110 is composed of a first case member 120 and a second case member 122.
  • the first case member 120 and the second case member 122 are in the form of flat plates having a plate thickness, and are erected in a state where their surfaces are aligned with each other.
  • the first case member 120 is provided with a recess 128 that opens to a surface 126 opposite to the mating surface 124 that is fitted to the second case member 122.
  • the turntable 130 is disposed inside the recess 128.
  • the lower half of the recess 128 has a semicircular shape according to the shape of the turntable 130, and the upper half of the recess 128 has a generally rectangular shape.
  • the recess 128 opens at the upper edge of the second case member 122.
  • FIG. 7 is a sectional view taken along the line AA in FIG.
  • the turntable 130 has a disk shape, and is held in the recess 128 of the first case member 120 so as to be rotatable about its central axis.
  • a rotary drive device 132 is provided on the rotary disc 130, and the rotary disc 130 is controllably rotated by driving an electromagnetic motor (see FIG. 10) 134 of the rotary drive device 132.
  • a permanent magnet 140 is embedded in the facing surface 138 of the turntable 130 that faces the bottom surface 136 of the recess 128.
  • 8 is a sectional view taken along the line BB in FIG. 5
  • FIG. 9 is a sectional view taken along the line CC in FIG.
  • eight permanent magnets 140 are embedded at a position near the outer edge of the rotary disk 130, and the eight permanent magnets 140 are arranged in eight equal positions.
  • a groove 142 is formed in the mating surface 124 of the first case member 120. As shown in FIG. 5, the groove 142 is divided into an annular groove portion 144 and a downward groove portion 146.
  • the annular groove 144 has a partial annular shape centered on the rotation axis of the rotary disk 130.
  • the downward groove portion 146 is continuous from the end of the annular groove portion 144 and extends generally downward.
  • the annular groove 144 is formed at a position along the turning trajectory of the permanent magnet 140 accompanying the rotation of the turntable 130.
  • the annular groove portion 144 extends from the lowermost end of the turning locus of the permanent magnet 140 in the direction of rotation of the turntable 130 in the forward rotation, and passes through the uppermost end of the turning locus of the permanent magnet 140 to reach the front end (the arm member 112). End of the side).
  • the downward groove portion 146 is continuous from the foremost end extending downward of the annular groove portion 144 and extends downward. Then, it curves toward the front (direction toward the arm member 112) and opens in the front side surface of the first case member 120 in a substantially horizontal state. Therefore, as shown in FIGS. 8 and 9, the groove 142 includes a permanent magnet 140 embedded in the turntable 130 in a part of the groove 142 that is continuous with the annular groove 144 of the downward groove 146. opposite.
  • the electronic component 150 is housed inside the groove 142. As shown in FIGS. 8 and 9, the depth of the groove 142 is slightly deeper than the height of the electronic component 150, and the width of the groove 142 is slightly larger than the width of the electronic component 150. Then, the electronic component 150 is housed inside the groove 142 in a posture in which the width direction thereof is the width direction of the groove 142.
  • a magnetic field passing through the groove 142 is formed by the permanent magnet 140, and the magnetic force of the permanent magnet 140 acts on the electronic component 150 housed in the groove 142.
  • the first case member 120 is made of aluminum, and the turntable 130 is made of resin. Therefore, the magnetic force passes through the first case member 120 and the turntable 130, which are non-magnetic materials, and the influence on the electronic component 150 housed in the groove 142 is secured.
  • a shield plate 152 is disposed between the lower groove portion 146 of the groove 142 and the permanent magnet 140, and the shield plate 152 is made of iron, specifically, , SPCC (cold rolled steel sheet). Therefore, the influence of the magnetic force on the electronic component 150 housed in the groove 142 is reduced or blocked at the position where the shield plate 152 is provided.
  • a recess 154 is formed in the bottom surface 136 of the first case member 120 facing the turntable 130, and the depth of the recess 154 is the thickness of the shield plate 152. It is slightly smaller than the size.
  • the shield plate 152 is fitted into the recess 154. Therefore, the surface of the shield plate 152 opposite to the surface fitted into the recess 154 faces the permanent magnet 140 in a state of protruding from the bottom surface 136 of the first case member 120 toward the turntable 130. ..
  • the shielding plate 152 and the permanent magnet 140 are separated from each other and are not in contact with each other.
  • a magnetic field is formed along the shield plate 152, which is a magnetic body, and does not reach the groove 142. Therefore, the influence of the magnetic force on the electronic component 150 housed in the groove 142 is reduced or blocked at the position where the shield plate 152 is provided.
  • the location of the shielding plate 152 is a portion extending downward of the groove 142, that is, a position facing the downward groove portion 146 and facing the turntable 130.
  • the position. Therefore, the downward groove 146 is curved toward the arm member 112 side, and the shielding plate 152 is not arranged at a position away from the turntable 130.
  • the second case member 122 is aligned with the first case member 120 on the mating surface 155, and a recess 156 that opens to the mating surface 155 is formed. More specifically, the recess 156 is formed so as to cover the groove 142 formed in the mating surface 124 of the first case member 120.
  • the recess 156 is generally semi-circular in shape, and extends from the rotation axis of the turntable 130 and part of the annular groove 144, specifically, from the lowermost end of the annular groove 144. It is formed so as to extend rearward and cover the portion reaching the uppermost end.
  • first case member 120 and the second case member 122 are fitted to each other at the mating surfaces 124 and 155, and the opening of the recess 156 is closed by the mating surface 124 of the first case member 120.
  • the recess 156 of the second case member 122 and the mating surface 124 of the first case member 120 partition the storage portion 157.
  • the portion of the annular groove 144 covered by the recess 156 is open inside the recess 156, that is, in the storage 157.
  • the annular groove 144 is formed along the turning trajectory of the permanent magnet 140, as described above. Therefore, the electronic component 150 housed in the housing 157 is housed inside the annular groove 144 by the magnetic force of the permanent magnet 140. Then, by the rotation drive device 132 being driven, the rotary disk 130 is rotated in the positive direction, so that the electronic component 150 housed in the annular groove 144 is moved in the rotational direction of the rotary disk 130.
  • the part of the annular groove 144 that is not covered by the recess 156 is closed by the mating surface 155 of the second case member 122. That is, the portion of the annular groove 144 that is not covered by the recess 156 has a tunnel shape with a rectangular cross section. Therefore, when the electronic component 150 housed inside the annular groove portion 144 reaches the tunnel-shaped annular groove portion 144 with the rotation of the turntable 130, the electronic component 150 protruding from the annular groove portion 144. Is blocked by the side wall 158 of the recess 156 from entering the tunnel-shaped annular groove 144.
  • the side wall 158 of the semicircular recess 156 is erected at a right angle to the mating surface 124 where the groove 142 is formed, and the upper end of the side wall 158 is the uppermost end of the annular groove 144. It is located in the vicinity.
  • the annular groove portion 144 located upstream of the side wall 158 is open to the storage portion 157, and the annular groove portion 144 located downstream of the side wall 158 has a tunnel shape. Therefore, the electronic component protruding from the annular groove portion 144 contacts the side wall 158 near the uppermost end of the annular groove portion 144, and is prevented from being delivered from the storage portion 157. As a result, only the electronic components properly housed in the annular groove 144 are delivered from the housing 157.
  • the arm member 112 is formed with a groove 166 which is open to the upper surface and is continuous with the downward groove portion 146 which is opened to the front side surface of the first case member 120. ..
  • the inner size of the groove 166 is substantially the same as the inner size of the groove 142, and the electronic component 150 is also housed in the groove 166.
  • the groove 166 is curved toward the first arm portion 114 and extends to the end surface of the first arm portion 114.
  • a pin 162 is provided upright inside the opening of the groove 166 to the end face, and the pin 162 stops the electronic component sent out in the groove 166. That is, the position where the pin 162 is erected is the supply position of the electronic component of the bulk feeder 100.
  • the arm member 112 is further formed with an air groove 168 which opens to the upper surface and which is continuous with the groove 166 immediately before the pin 162 is formed.
  • the inner dimension of the air groove 168 is smaller than the inner dimension of the groove 166, so that the electronic component 150 cannot be accommodated in the air groove 168.
  • An air suction device (see FIG. 10) 170 is connected to the air groove 168, and the air suction device 170 sucks air from the air groove 168. As a result, air is sucked toward the position where the pin 162 is erected inside the groove 166, that is, toward the supply position, and the electronic component 150 is conveyed toward the supply position inside the groove 166.
  • the upper surface of the arm member 112 is covered with a cover (not shown), and the groove 166 and the air groove 168 are tunnel-shaped. Further, a cutout portion (not shown) is formed at a position where the pin 162 of the groove 166 is provided upright, that is, at a position where the supply position of the electronic component is covered, and the electronic component is cut through the cutout portion. Is supplied.
  • a storage portion 157 in which electronic components are stored that is, a recess 156 formed in the second case member 122 is opened on the upper surface and the lower surface of the second case member 122, and a shutter 186 is provided in each opening. , 188 are provided.
  • the shutters 186 and 188 can be opened and closed by sliding. Accordingly, by opening the shutter 186, the electronic components are replenished in the storage portion 157, and by opening the shutter 188, the electronic components stored in the storage portion 157 can be discharged to the outside of the bulk feeder 100. It is possible.
  • the electronic components are stored in the storage portion 157 in a disjointed state, and the plurality of electronic components in the dissociated state are aligned in a line and are connected to the supply position. Sent out. Specifically, the electronic components housed in the housing 157 are housed inside the annular groove 144 by the magnetic force of the permanent magnet 140. Then, the rotary drive device 132 is driven to rotate the turntable 130 in the positive direction, whereby the permanent magnet 140 is also rotated in the positive direction, and the electronic components housed in the annular groove portion 144 have the magnetic force of the permanent magnet 140. Are conveyed in the rotating direction of the turntable 130. At this time, inside the annular groove 144, a plurality of electronic components are aligned in a row and are in a continuous state.
  • the electronic components are transported from the inside of the annular groove 144 to the inside of the downward groove 146.
  • the shielding plate 152 is disposed between the first case member 120 in which the downward groove portion 146 is formed and the turntable 130 in which the permanent magnet 140 is embedded. The influence of magnetic force is reduced or cut off. Therefore, the electronic component 150 is not transported by the magnetic force of the permanent magnet 140 in the downward groove 146. However, since the downward groove portion 146 extends downward, the electronic component 150 falls downward due to its own weight inside the downward groove portion 146.
  • the lower end of the downward groove 146 from which the electronic component 150 falls is curved forward. Therefore, the closer the electronic component 150 is to the lower end of the downward groove 146, the lower the drop speed of the electronic component 150 due to its own weight.
  • the air groove 168 is connected to the groove 166 communicating with the lower end portion of the downward groove portion 146, and the air is sucked from the groove 166 via the air groove 168. Therefore, in the downward groove portion 146, the electronic component 150 that has dropped due to its own weight is conveyed toward the groove 166 by suction of air. That is, the conveyance of the electronic component 150 is secured by the suction of air on the downstream side of the downward groove portion 146.
  • the electronic component 150 is conveyed toward the air groove 168 by suction of air in the groove 166, so that the electronic component 150 is finally erected at the opening of the groove 166 to the end surface of the first arm portion 114. Abut on the pin 162.
  • the plurality of electronic components housed in a disjointed state are delivered to the supply position in a state where they are aligned in one row.
  • the shield plate 152 is disposed in the downward groove portion 146 between the first case member 120 in which the downward groove portion 146 is formed and the turntable 130 in which the permanent magnet 140 is embedded.
  • the shield plate 152 is not provided in the downward groove portion 146 between the first case member 120 and the turntable 130.
  • the magnetic force of the permanent magnet 140 acts on the electronic component 150 also in the downward groove portion 146.
  • a magnetic force acts on the falling electronic component 150, which prevents the electronic component 150 from falling due to its own weight.
  • the dropping speed of the electronic component 150 is reduced, and even if the air is sucked in the groove 166, the electronic component 150 may stay at the lower end of the downward groove 146.
  • the shield plate 152 is disposed between the first case member 120 and the turntable 130 in the downward groove portion 146, and the influence of the magnetic force on the downward groove portion 146 is reduced or blocked. As a result, proper transportation of the electronic component 150 is ensured.
  • the bulk feeder 100 is fixed to the mounting head 26, and the suction nozzle 80e located at the suction station of the plurality of suction nozzles 80 is located above the tip of the groove 166 that is the supply position of the bulk feeder 100. To do. As a result, the suction nozzle 80e located at the suction station is moved downward by the unit elevating device 104, and the electronic component 150 conveyed to the supply position of the bulk feeder 100 is suction-held by the suction nozzle 80e.
  • the mounting machine 16 includes a control device 190 as shown in FIG.
  • the control device 190 includes a controller 192, a plurality of drive circuits 194, and an image processing device 196.
  • the plurality of drive circuits 194 include the electromagnetic motors 46, 52, 54, 134, the substrate holding device 48, the feeding device 76, the positive/negative pressure supply device 84, the holder rotating device 90, the unit rotating device 102, the unit elevating device 104, and the air. It is connected to the suction device 170.
  • the controller 192 includes a CPU, a ROM, a RAM, etc., is mainly a computer, and is connected to a plurality of drive circuits 194. As a result, the operations of the transport device 22, the moving device 23, etc. are controlled by the controller 192.
  • the controller 192 is also connected to the image processing device 196.
  • the image processing device 196 processes the image data obtained by the parts camera 96 and the mark camera 98, and the controller 192 acquires various information
  • the mounting machine 16 performs mounting work for mounting electronic components on the circuit board. Specifically, according to a command from the controller 192, the circuit board is conveyed to the work position by the conveyor devices 40 and 42, and is held by the board holding device 48 at that position. Next, the mounting head 26 is moved above the circuit board by the operation of the moving device 23, and the mark camera 98 images the circuit board. Then, based on the imaged data obtained by the image pickup, the controller 192 calculates a holding position error of the circuit board by the conveyor devices 40 and 42.
  • the electronic component 150 is conveyed toward the supply position according to the procedure described above, and is conveyed to the supply position of the bulk feeder 100 by the suction nozzle 80 located at the suction station of the mounting head 26.
  • the electronic component 150 is held.
  • the suction nozzle 80 rotates, and the suction nozzle that does not hold the electronic component 150 moves to the suction station. Therefore, the suction nozzle that has newly moved to the suction station holds the electronic component from the supply position of the bulk feeder 100.
  • the unit holder 86 is sequentially rotated, and the suction nozzle located at the suction station removes the electronic component from the bulk feeder 100. It is held in sequence. Further, when the suction nozzle 80 holding the electronic component moves to the imaging station as the unit holder 86 rotates, the electronic camera held by the suction nozzle 80 is imaged by the parts camera 96 in the imaging station. It Then, the controller 192 calculates an error in the holding position of the electronic component by the suction nozzle 80 based on the imaged data obtained by the image pickup. Since the bulk feeder 100 is fixed to the mounting head 26, the parts can be held from the bulk feeder 100 even when the mounting head 26 is moving, so that the cycle time can be shortened. It is possible.
  • the mounting head 26 holds the required number of electronic components from the bulk feeder 100
  • the mounting head 26 moves above the circuit board, and the mounting unit 82 located at the mounting station descends due to the operation of the unit elevating device 104.
  • the electronic component 150 held by the suction nozzle 80 of the mounting unit 82 is mounted on the circuit board.
  • the mounting work of the electronic component on the circuit board is executed in consideration of the previously calculated error in the holding position of the electronic component and the error in the holding position of the circuit board.
  • the bulk feeder 100 is an example of the component transfer device and the component supply device.
  • the first case member 120 is an example of a case.
  • the permanent magnet 140 is an example of a magnet.
  • the groove 142 is an example of a transport path.
  • the downward groove portion 146 is an example of a descending region.
  • the shield plate 152 is an example of a magnetic force reduction mechanism and a shield plate.
  • the air suction device 170 is an example of an air suction device.
  • the present invention is not limited to the above-mentioned embodiments, but can be carried out in various modes with various modifications and improvements based on the knowledge of those skilled in the art.
  • various magnetic materials such as participating chromium and cobalt can be used.
  • the material is not limited to the magnetic material, and a non-magnetic material may be adopted as the material of the shield plate 152.
  • a non-magnetic material is used as the material of the shield plate 152, it is necessary to increase the thickness dimension of the shield plate 152 to some extent.
  • the magnetic force affecting the downward groove portion 146 is reduced or blocked by the shield plate 152, but even if the magnetic force affecting the downward groove portion 146 is reduced or blocked by various mechanisms.
  • a mechanism may be adopted in which the distance between the path of the permanent magnet 140 and the groove 142 is different between the annular groove portion 144 and the downward groove portion 146. That is, the distance between the path of the permanent magnet 140 and the downward groove 146 may be longer than the distance between the path of the permanent magnet 140 and the annular groove 144.
  • a magnet whose strength of magnetic force can be changed may be employed, and the magnetic force of the magnet may be increased in the path corresponding to the annular groove 144 and the magnetic force of the magnet may be decreased in the path corresponding to the downward groove 146.
  • the same effect as when the shielding plate 152 is provided can be obtained.
  • the shield plate 152 is arranged corresponding to the downward groove 146 where the electronic component falls by its own weight, but the shield plate 152 can be arranged in various areas. Specifically, for example, when there is a region in the groove 142 where electronic components are conveyed by suction or ejection of air, the shielding plate 152 may be arranged corresponding to the region. By disposing the shielding plate 152 in this manner, the transfer of electronic components by suction or ejection of air is not blocked by the magnetic force, so that proper transfer of electronic components by suction or ejection of air is ensured.
  • the electronic component is conveyed by the suction of air on the downstream side of the downward groove portion 146.
  • various methods such as jetting of air, vibration, and inclination of the conveyance route of the electronic component, Electronic components may be transported.
  • the objects conveyed using the above method are not limited to electronic parts, and the present invention can be applied to the conveyance of various objects.
  • the present invention is applied to the bulk feeder 100 that conveys electronic components to the supply position, but it may be applied to a component feeder such as a ball feeder or a stick feeder.
  • the present invention is not limited to the component supply device, and the present invention may be applied to a device that simply conveys a component, a device that conveys a component for a purpose different from the component supply, and the like.

Abstract

A component conveyance device comprising: a case in which a conveyance path for conveying a plurality of components in a line is formed; a magnet that is provided so as to be able to move along the conveyance path, and uses magnetic force to convey the components on the conveyance path; and a magnetic force reduction mechanism that is provided in a prescribed region of the conveyance path, between the case and the magnet moving along said prescribed region, and reduces the effect of the magnetic force on said prescribed region.

Description

部品搬送装置Parts transfer device
 本発明は、搬送経路において、複数の部品を連なった状態で搬送するため部品搬送装置に関するものである。 The present invention relates to a component transfer device for transferring a plurality of parts in a line in a transfer path.
 部品搬送装置には、複数の部品を連なった状態で搬送するための搬送経路が形成されたケースと、搬送経路に沿って移動可能に配設された磁石とを備え、磁石の磁力により部品を搬送経路において搬送するものがある。下記特許文献には、そのような部品搬送装置の一例が記載されている。 The component transfer device includes a case in which a transfer path for transferring a plurality of parts in a row is formed, and a magnet movably arranged along the transfer path. Some are transported on the transport path. The following patent documents describe an example of such a component transfer device.
国際公開第2018/0047276号International Publication No. 2018/0047276
 本発明の課題は、磁力により部品を搬送経路において搬送する部品搬送装置において、適切に部品を搬送することである。 An object of the present invention is to appropriately convey a component in a component conveyance device that conveys a component on a conveyance path by magnetic force.
 上記課題を解決するために、本明細書は、複数の部品を連なった状態で搬送するための搬送経路が形成されたケースと、搬送経路に沿って移動可能に配設され、磁力により部品を前記搬送経路において搬送する磁石と、前記搬送経路の所定の領域において、前記所定の領域に沿って移動する磁石と前記ケースとの間に配設され、前記所定の領域への磁力の影響を低下させる磁力低下機構とを備える部品搬送装置を開示する。 In order to solve the above problems, the present specification discloses a case in which a transport path for transporting a plurality of components in a continuous state is formed, and the component is disposed movably along the transport path, and magnetically drives the components. Arranged between the magnet that conveys along the conveyance path and the magnet that moves along the predetermined area in a predetermined area of the conveyance path, and the case to reduce the influence of the magnetic force on the predetermined area. Disclosed is a component transfer device including a magnetic force reduction mechanism.
 本開示によれば、搬送経路の所定の領域への磁力の影響が低下する。このため、例えば、部品搬送装置が、搬送経路の所定の領域において、磁力だけでなく、他の手段、例えば、部品の自重,エアの吸引若しくは噴出,振動などにより、部品を搬送する場合がある。このような場合に、その所定の領域において磁力を低下させることで、その他の手段による部品の搬送が担保される。これにより、磁力により部品を搬送経路において搬送する部品搬送装置において、適切に部品を搬送することが可能となる。 According to the present disclosure, the influence of magnetic force on a predetermined area of the transport path is reduced. Therefore, for example, the component transporting device may transport the component not only by magnetic force but also by other means, for example, the weight of the component, suction or ejection of air, vibration, etc., in a predetermined region of the transport path. .. In such a case, by lowering the magnetic force in the predetermined region, the transportation of the component by other means is secured. This makes it possible to appropriately convey the component in the component conveying device that conveys the component on the conveying path by the magnetic force.
電子部品装着装置を示す斜視図である。It is a perspective view which shows an electronic component mounting apparatus. 装着ヘッドを示す斜視図である。It is a perspective view which shows a mounting head. 装着ヘッドとその装着ヘッドに取り付けられたバルクフィーダとを示す斜視図である。It is a perspective view showing a mounting head and a bulk feeder attached to the mounting head. 装着ヘッドを下方からの視点において示す底面図である。It is a bottom view which shows a mounting head from a viewpoint from a lower part. バルクフィーダを側方からの視点において示す図である。It is a figure which shows a bulk feeder from the viewpoint from a side. バルクフィーダを上方からの視点において示す図である。It is a figure showing a bulk feeder from a viewpoint from the upper part. 図5に示すAA線における断面図である。It is sectional drawing in the AA line shown in FIG. 図5に示すBB線における断面図である。It is sectional drawing in the BB line shown in FIG. 図5に示すCC線における断面図である。It is sectional drawing in the CC line shown in FIG. 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings as a mode for carrying out the present invention.
 図1に、電子部品装着装置10を示す。電子部品装着装置10は、1つのシステムベース12と、そのシステムベース12の上に並んで配設された2つの装着機16とを有している。なお、以下の説明では、装着機16の並ぶ方向をX軸方向と称し、その方向に直角な水平の方向をY軸方向と称し、X軸方向とY軸方向と直行する方向、つまり、上下方向をZ軸方向と称する。 FIG. 1 shows an electronic component mounting device 10. The electronic component mounting apparatus 10 has one system base 12 and two mounting machines 16 arranged side by side on the system base 12. In the following description, the direction in which the mounting machines 16 are lined up is referred to as the X-axis direction, and the horizontal direction perpendicular to the direction is referred to as the Y-axis direction. The direction is called the Z-axis direction.
 各装着機16は、主に、装着機本体20、搬送装置22、装着ヘッド移動装置(以下、「移動装置」と略す場合がある)23、供給装置24、装着ヘッド26を備えている。装着機本体20は、フレーム30と、そのフレーム30に上架されたビーム32とによって構成されている。 Each mounting machine 16 mainly includes a mounting machine body 20, a transport device 22, a mounting head moving device (hereinafter, may be abbreviated as “moving device”) 23, a supply device 24, and a mounting head 26. The mounting machine body 20 includes a frame 30 and a beam 32 mounted on the frame 30.
 搬送装置22は、2つのコンベア装置40,42を備えている。それら2つのコンベア装置40,42は、互いに平行、かつ、X軸方向に延びるようにフレーム30に配設されている。2つのコンベア装置40,42の各々は、電磁モータ(図10参照)46によって各コンベア装置40,42に支持される回路基板をX軸方向に搬送する。また、回路基板は、所定の位置において、基板保持装置(図10参照)48によって固定的に保持される。 The transfer device 22 includes two conveyor devices 40 and 42. The two conveyor devices 40, 42 are arranged in the frame 30 so as to be parallel to each other and extend in the X-axis direction. Each of the two conveyor devices 40 and 42 conveys the circuit board supported by each of the conveyor devices 40 and 42 by an electromagnetic motor (see FIG. 10) 46 in the X-axis direction. The circuit board is fixedly held by a board holding device (see FIG. 10) 48 at a predetermined position.
 移動装置23は、XYロボット型の移動装置である。移動装置23は、スライダ50をX軸方向にスライドさせる電磁モータ(図10参照)52と、Y軸方向にスライドさせる電磁モータ(図10参照)54とを備えている。スライダ50には、装着ヘッド26が取り付けられており、その装着ヘッド26は、2つの電磁モータ52,54の作動によって、フレーム30上の任意の位置に移動する。 The moving device 23 is an XY robot type moving device. The moving device 23 includes an electromagnetic motor (see FIG. 10) 52 that slides the slider 50 in the X-axis direction and an electromagnetic motor (see FIG. 10) 54 that slides the slider 50 in the Y-axis direction. The mounting head 26 is attached to the slider 50, and the mounting head 26 is moved to an arbitrary position on the frame 30 by the operation of the two electromagnetic motors 52 and 54.
 供給装置24は、フィーダ型の供給装置であり、複数のテープフィーダ70を有している。テープフィーダ70は、テープ化部品を巻回させた状態で収容している。テープ化部品は、電子部品がテーピング化されたものである。そして、テープフィーダ70は、送出装置(図10参照)76によって、テープ化部品を送り出す。これにより、フィーダ型の供給装置24は、テープ化部品の送り出しによって、電子部品を供給位置において供給する。 The supply device 24 is a feeder type supply device and has a plurality of tape feeders 70. The tape feeder 70 accommodates the taped parts in a wound state. The tape component is a taped electronic component. Then, the tape feeder 70 feeds the tape-formed component by the feeding device (see FIG. 10) 76. As a result, the feeder type supply device 24 supplies the electronic component at the supply position by feeding the tape-formed component.
 装着ヘッド26は、搬送装置22によって保持された回路基板に対して電子部品を装着するものである。装着ヘッド26は、図2~図4に示すように、装着ユニット82を12個備えている。そして、それら12個の装着ユニット82の各々は、先端部において、電子部品を吸着するための吸着ノズル80を保持している。ちなみに、図2は、スライダ50から取り外された状態の装着ヘッド26を示す斜視図である。図3は、カバーが取り外された状態の装着ヘッド26を示す斜視図である。図4は、装着ヘッド26の下方からの視点において示す装着ヘッド26の底面図である。 The mounting head 26 mounts electronic components on the circuit board held by the transfer device 22. The mounting head 26 includes twelve mounting units 82, as shown in FIGS. Then, each of the twelve mounting units 82 holds a suction nozzle 80 for sucking an electronic component at the tip thereof. Incidentally, FIG. 2 is a perspective view showing the mounting head 26 removed from the slider 50. FIG. 3 is a perspective view showing the mounting head 26 with the cover removed. FIG. 4 is a bottom view of the mounting head 26 as seen from the bottom of the mounting head 26.
 各吸着ノズル80は、負圧エア,正圧エア通路を介して、正負圧供給装置(図10参照)84に通じている。そして、各吸着ノズル80は、負圧にて電子部品を吸着保持し、僅かな正圧が供給されることで保持した電子部品を離脱する。また、概して軸状をなす装着ユニット82は、ユニット保持体86の外周部に、等角度ピッチで、軸方向が垂直となる状態に保持されている。その装着ユニット82の先端部に保持される吸着ノズル80は、図4に示すように、ユニット保持体86の下面から下方に向かって12等配の位置で延び出している。これにより、12個の吸着ノズル80は、1円周上に配置されている。 Each suction nozzle 80 communicates with a positive/negative pressure supply device (see FIG. 10) 84 via a negative pressure air and positive pressure air passage. Then, each suction nozzle 80 sucks and holds the electronic component with a negative pressure, and releases the held electronic component by supplying a slight positive pressure. Further, the mounting unit 82, which is generally in the shape of a shaft, is held on the outer peripheral portion of the unit holder 86 in a state where the axial direction is vertical at an equal angular pitch. As shown in FIG. 4, the suction nozzles 80 held at the tip of the mounting unit 82 extend downward from the lower surface of the unit holder 86 at 12 equally spaced positions. As a result, the 12 suction nozzles 80 are arranged on one circumference.
 ユニット保持体86は、装着ヘッド28のヘッド本体88によって、自身の鉛直な軸線まわりに回転可能に支持されており、保持体回転装置90によって、任意の角度に回転する。これにより、1円周上に配置された複数の吸着ノズル80は、その1円周の中心を軸心として、任意の角度に回転する。 The unit holder 86 is rotatably supported by the head body 88 of the mounting head 28 about its own vertical axis, and is rotated at an arbitrary angle by the holder rotating device 90. Thereby, the plurality of suction nozzles 80 arranged on one circumference rotate at an arbitrary angle with the center of the one circumference as an axis.
 各装着ユニット82の上端部には、カムフォロアとして機能するローラ92が設けられている。各ローラ92は、ヘッド本体88に固定されたカム(図示省略)のカム面に係合しており、カム面の高さは、周方向において変化している。また、各装着ユニット82は、ユニット保持体86に上下方向に移動可能に保持されている。これにより、装着ユニット82は、ユニット保持体86の回転に伴って、上下方向に移動する。 A roller 92 that functions as a cam follower is provided at the upper end of each mounting unit 82. Each roller 92 is engaged with a cam surface of a cam (not shown) fixed to the head main body 88, and the height of the cam surface changes in the circumferential direction. Further, each mounting unit 82 is held by a unit holder 86 so as to be vertically movable. As a result, the mounting unit 82 moves in the vertical direction as the unit holder 86 rotates.
 詳しくは、装着ユニット82の複数の停止位置のうちのヘッド本体88から最も離間している停止位置である装着ステーション(最も前方に位置するステーション)に位置する装着ユニット82は、最も下方に移動する。つまり、装着ヘッド28が回路基板上に移動させられた際に、そのステーションに位置する装着ユニット82の吸着ノズル80と回路基板との距離が最も近くなる。そして、その装着ステーションの吸着ノズル80によって、電子部品が回路基板に装着される。 Specifically, of the plurality of stop positions of the mounting unit 82, the mounting unit 82 located at the mounting station (the station located at the frontmost position), which is the farthest position from the head body 88, moves to the lowest position. .. That is, when the mounting head 28 is moved onto the circuit board, the distance between the suction nozzle 80 of the mounting unit 82 located at that station and the circuit board becomes the shortest. Then, the electronic component is mounted on the circuit board by the suction nozzle 80 of the mounting station.
 また、その装着ステーションのユニット保持体86の軸心を挟んで真向かいに位置するステーション、つまり、ヘッド本体88に最も近い停止位置である撮像ステーションに位置する装着ユニット82を中心に5個の装着ユニット82が最も上方に移動する。 Further, five mounting units are provided centering on the mounting unit 82 located directly opposite to the mounting station with the axis of the unit holder 86 interposed therebetween, that is, the imaging station which is the closest stop position to the head body 88. 82 moves to the uppermost position.
 ヘッド本体88の下端部は、図2に示すように、最も上方に位置する各装着ユニット82の吸着ノズル80の下端部より下方に延び出しており、吸着ノズル80側に屈曲されている。その屈曲された部分には、パーツカメラ96が配設されている。そして、撮像ステーションに位置する装着ユニット82の吸着ノズル80に保持される電子部品が、パーツカメラ96によって撮像される。また、ヘッド本体88の屈曲された部分の下側の面には、マークカメラ(図10参照)98が下を向いた状態で配設されている。そして、移動装置23によって装着ヘッド26が移動することで、マークカメラ98が、フレーム30上の任意の位置を撮像する。 As shown in FIG. 2, the lower end of the head main body 88 extends downward from the lower end of the suction nozzle 80 of each mounting unit 82 located at the uppermost position, and is bent toward the suction nozzle 80. A parts camera 96 is arranged in the bent portion. Then, the electronic camera held by the suction nozzle 80 of the mounting unit 82 located at the imaging station is imaged by the parts camera 96. Further, a mark camera (see FIG. 10) 98 is provided on the lower surface of the bent portion of the head body 88 in a state of facing downward. Then, as the mounting head 26 is moved by the moving device 23, the mark camera 98 images an arbitrary position on the frame 30.
 ここで、各ステーションの位置関係を、図4を用いて説明する。12個の装着ユニット82a~82lのうち1個の装着ユニット82aが装着ステーションに位置している場合、つまり、装着ユニット82aが最も下方に移動している場合に、5個の装着ユニット82e~82iが最も上方に移動している。そして、装着ユニット82gが撮像ステーションに位置し、その装着ユニット82gの吸着ノズル80に保持される電子部品が、パーツカメラ96によって撮像される。なお、ユニット保持体86が正方向に回転する際には、図4での時計回りにユニット保持体86は回転する。 Here, the positional relationship between the stations will be described with reference to FIG. When one of the twelve mounting units 82a to 82l is located at the mounting station, that is, when the mounting unit 82a is moved to the lowest position, the five mounting units 82e to 82i are placed. Is moving to the top. Then, the mounting unit 82g is located at the imaging station, and the electronic camera held by the suction nozzle 80 of the mounting unit 82g is imaged by the parts camera 96. When the unit holder 86 rotates in the forward direction, the unit holder 86 rotates clockwise in FIG.
 また、5個の装着ユニット82e~82iのうちのユニット保持体86の回転方向での最上流側の装着ユニット82eが位置するステーションは、後に詳しく説明するバルクフィーダ(図5参照)100から電子部品を吸着するための吸着ステーションとされている。なお、テープフィーダ70から供給される電子部品は、装着ステーションに位置する装着ユニット82aの吸着ノズル80aによって吸着される。 Further, among the five mounting units 82e to 82i, the station in which the mounting unit 82e on the most upstream side in the rotation direction of the unit holder 86 is located is the electronic component from the bulk feeder 100 (see FIG. 5) described in detail later. It is used as an adsorption station for adsorbing. The electronic component supplied from the tape feeder 70 is sucked by the suction nozzle 80a of the mounting unit 82a located at the mounting station.
 また、装着ヘッド26は、各装着ユニット82を各々の軸心回りに同時に自転させるユニット自転装置102を有している。ユニット自転装置102は、図3に示すように、複数の装着ユニット82の上端に設けられた複数の歯車103と、それら複数の歯車103と噛合する1つの歯車(図示省略)とから構成されている。そして、その1つの歯車の回転により、複数の歯車103が回転することで、各装着ユニット82が、各々の軸心回りに同時に回転する。これにより、各装着ユニット82によって吸着保持された電子部品の保持姿勢を変更することができる。また、装着ヘッド26は、装着ステーションおよび、吸着ステーションに位置する装着ユニット82を個別に昇降させるユニット昇降装置104を備えている。 The mounting head 26 also includes a unit rotation device 102 that simultaneously rotates each mounting unit 82 about each axis. As shown in FIG. 3, the unit rotation device 102 includes a plurality of gears 103 provided at the upper ends of the plurality of mounting units 82 and one gear (not shown) that meshes with the plurality of gears 103. There is. The rotation of the one gear causes the plurality of gears 103 to rotate, so that the respective mounting units 82 simultaneously rotate about their respective axes. Thereby, the holding posture of the electronic component sucked and held by each mounting unit 82 can be changed. Further, the mounting head 26 includes a unit elevating device 104 for individually elevating and lowering the mounting units located at the mounting station and the suction station.
 また、吸着ステーションに位置する装着ユニット82に電子部品を供給するバルクフィーダ100は、装着ヘッド26のヘッド本体88に取り付けられている。このため、バルクフィーダ100は、移動装置23によって、装着ヘッド26とともに、フレーム30上の任意の位置に移動する。バルクフィーダ100は、図5および図6に示すように、ハウジング110と、ハウジング110の下端部に固定されたアーム部材112とを有している。なお、図5は、バルクフィーダ100の側方からの視点における透過図であり、図6は、バルクフィーダ100の上方からの視点における透過図である。 The bulk feeder 100 that supplies electronic components to the mounting unit 82 located at the suction station is attached to the head body 88 of the mounting head 26. Therefore, the bulk feeder 100 is moved by the moving device 23 together with the mounting head 26 to an arbitrary position on the frame 30. As shown in FIGS. 5 and 6, the bulk feeder 100 has a housing 110 and an arm member 112 fixed to the lower end of the housing 110. 5 is a perspective view from the side of the bulk feeder 100, and FIG. 6 is a perspective view from the viewpoint of the bulk feeder 100 from above.
 アーム部材112は、第1アーム部114と第2アーム部116と第3アーム部118とに区分けされる。第1アーム部114は、第2アーム部116および第3アーム部118と同一平面内で直行し、第2アーム部116と第3アーム部118とが反対方向に延び出している。そして、アーム部材112は、第2アーム部116において、ハウジング110の下面に固定されている。また、アーム部材112は、第3アーム部118において、ヘッド本体88にボルト締結されている。 The arm member 112 is divided into a first arm portion 114, a second arm portion 116, and a third arm portion 118. The first arm portion 114 is orthogonal to the second arm portion 116 and the third arm portion 118 in the same plane, and the second arm portion 116 and the third arm portion 118 extend in opposite directions. The arm member 112 is fixed to the lower surface of the housing 110 at the second arm portion 116. The arm member 112 is bolted to the head body 88 at the third arm portion 118.
 また、ハウジング110は、第1ケース部材120と第2ケース部材122とによって構成されている。それら第1ケース部材120と第2ケース部材122とは、板厚の平板状とされており、互いの面を合わせた状態で立設されている。第1ケース部材120には、図7に示すように、第2ケース部材122に合わせられる合わせ面124と反対側の面126に開口する凹部128が形成されている。そして、その凹部128の内部に、回転盤130が配設されている。なお、凹部128の下半部は、回転盤130の形状に応じて半円形状とされており、凹部128の上半分は、概して矩形とされている。そして、凹部128は、第2ケース部材122の上縁に開口している。また、図7は、図5でのAA線における断面図である。 Further, the housing 110 is composed of a first case member 120 and a second case member 122. The first case member 120 and the second case member 122 are in the form of flat plates having a plate thickness, and are erected in a state where their surfaces are aligned with each other. As shown in FIG. 7, the first case member 120 is provided with a recess 128 that opens to a surface 126 opposite to the mating surface 124 that is fitted to the second case member 122. The turntable 130 is disposed inside the recess 128. The lower half of the recess 128 has a semicircular shape according to the shape of the turntable 130, and the upper half of the recess 128 has a generally rectangular shape. The recess 128 opens at the upper edge of the second case member 122. FIG. 7 is a sectional view taken along the line AA in FIG.
 回転盤130は、円盤形状とされており、それの中心軸回りに回転可能に第1ケース部材120の凹部128において保持されている。回転盤130には、回転駆動装置132が設けられており、回転駆動装置132の有する電磁モータ(図10参照)134の駆動によって、回転盤130が制御可能に回転する。なお、回転盤130が正方向に回転する際に、図5に示す回転盤130は反時計回りに回転する。 The turntable 130 has a disk shape, and is held in the recess 128 of the first case member 120 so as to be rotatable about its central axis. A rotary drive device 132 is provided on the rotary disc 130, and the rotary disc 130 is controllably rotated by driving an electromagnetic motor (see FIG. 10) 134 of the rotary drive device 132. When the turntable 130 rotates in the forward direction, the turntable 130 shown in FIG. 5 rotates counterclockwise.
 また、凹部128の底面136と向かい合う回転盤130の対向面138には、図8及び図9に示すように、永久磁石140が埋め込まれている。なお、図8は、図5でのBB線における断面図であり、図9は、図5でのCC線における断面図である。また、永久磁石140は、図5に示すように、回転盤130の外縁部に近い箇所に8個、埋め込まれており、それら8個の永久磁石140は8等配に位置している。 Further, as shown in FIGS. 8 and 9, a permanent magnet 140 is embedded in the facing surface 138 of the turntable 130 that faces the bottom surface 136 of the recess 128. 8 is a sectional view taken along the line BB in FIG. 5, and FIG. 9 is a sectional view taken along the line CC in FIG. Further, as shown in FIG. 5, eight permanent magnets 140 are embedded at a position near the outer edge of the rotary disk 130, and the eight permanent magnets 140 are arranged in eight equal positions.
 また、図8及び図9に示すように、第1ケース部材120の合わせ面124には、溝142が形成されている。溝142は、図5に示すように、円環状溝部144と下方向溝部146とに区分けされる。円環状溝部144は、回転盤130の回転軸線を中心とする部分円環形状である。下方向溝部146は、円環状溝部144の端部から連続し、概して下方向に延びる。 Further, as shown in FIGS. 8 and 9, a groove 142 is formed in the mating surface 124 of the first case member 120. As shown in FIG. 5, the groove 142 is divided into an annular groove portion 144 and a downward groove portion 146. The annular groove 144 has a partial annular shape centered on the rotation axis of the rotary disk 130. The downward groove portion 146 is continuous from the end of the annular groove portion 144 and extends generally downward.
 円環状溝部144は、回転盤130の回転に伴う永久磁石140の旋回軌跡に沿った位置に形成されている。円環状溝部144は、永久磁石140の旋回軌跡の最下端から回転盤130の正回転での回転方向に延び出し、永久磁石140の旋回軌跡の最上端を経由して、最前端(アーム部材112側の端)に至っている。一方、下方向溝部146は、円環状溝部144の下方に延び出した最前端から連続し、下方に延び出している。そして、前方(アーム部材112に向かう方向)に向かって湾曲し、概して水平な状態で第1ケース部材120の前方の側面に開口している。このため、溝142は、円環状溝部144及び、下方向溝部146の円環状溝部144に連続する一部において、図8及び図9に示すように、回転盤130に埋め込まれた永久磁石140と対向する。 The annular groove 144 is formed at a position along the turning trajectory of the permanent magnet 140 accompanying the rotation of the turntable 130. The annular groove portion 144 extends from the lowermost end of the turning locus of the permanent magnet 140 in the direction of rotation of the turntable 130 in the forward rotation, and passes through the uppermost end of the turning locus of the permanent magnet 140 to reach the front end (the arm member 112). End of the side). On the other hand, the downward groove portion 146 is continuous from the foremost end extending downward of the annular groove portion 144 and extends downward. Then, it curves toward the front (direction toward the arm member 112) and opens in the front side surface of the first case member 120 in a substantially horizontal state. Therefore, as shown in FIGS. 8 and 9, the groove 142 includes a permanent magnet 140 embedded in the turntable 130 in a part of the groove 142 that is continuous with the annular groove 144 of the downward groove 146. opposite.
 また、溝142の内部には、電子部品150が収容される。溝142の深さは、図8及び図9に示すように、電子部品150の高さより僅かに深くされており、溝142の幅は、電子部品150の幅より僅かに大きくされている。そして、電子部品150は、それの幅方向が溝142の幅方向となる姿勢で溝142の内部に収容される。 Further, the electronic component 150 is housed inside the groove 142. As shown in FIGS. 8 and 9, the depth of the groove 142 is slightly deeper than the height of the electronic component 150, and the width of the groove 142 is slightly larger than the width of the electronic component 150. Then, the electronic component 150 is housed inside the groove 142 in a posture in which the width direction thereof is the width direction of the groove 142.
 このため、図8に示すように、溝142を通過する磁界が永久磁石140により形成され、溝142に収容された電子部品150に、永久磁石140の磁力が働く。なお、第1ケース部材120は、アルミニウムにより形成され、回転盤130は、樹脂により形成されている。このため、磁力は、非磁性体である第1ケース部材120及び回転盤130を通過し、溝142に収容された電子部品150への影響が担保される。ただし、図5及び図9に示すように、溝142の下方向溝部146と永久磁石140との間に、遮蔽板152が配設されており、その遮蔽板152は、鉄、具体的には、SPCC(冷間圧延鋼板)により形成されている。このため、遮蔽板152が配設された箇所において、溝142に収容された電子部品150への磁力の影響が低下若しくは、遮断される。 Therefore, as shown in FIG. 8, a magnetic field passing through the groove 142 is formed by the permanent magnet 140, and the magnetic force of the permanent magnet 140 acts on the electronic component 150 housed in the groove 142. The first case member 120 is made of aluminum, and the turntable 130 is made of resin. Therefore, the magnetic force passes through the first case member 120 and the turntable 130, which are non-magnetic materials, and the influence on the electronic component 150 housed in the groove 142 is secured. However, as shown in FIGS. 5 and 9, a shield plate 152 is disposed between the lower groove portion 146 of the groove 142 and the permanent magnet 140, and the shield plate 152 is made of iron, specifically, , SPCC (cold rolled steel sheet). Therefore, the influence of the magnetic force on the electronic component 150 housed in the groove 142 is reduced or blocked at the position where the shield plate 152 is provided.
 詳しくは、図9に示すように、第1ケース部材120の回転盤130と対向する底面136には、凹部154が形成されており、その凹部154の深さ寸法は、遮蔽板152の厚さ寸法より僅かに小さくされている。そして、その凹部154に遮蔽板152が嵌め込まれている。このため、遮蔽板152の凹部154に嵌め込まれる側の面と反対側の面が、第1ケース部材120の底面136から回転盤130に向って突出した状態で、永久磁石140と対向している。ただし、遮蔽板152と永久磁石140とは離間しており、接触していない。このような構造により、磁性体である遮蔽板152に沿って磁界が形成され、溝142まで及ばない。このため、遮蔽板152が配設された箇所において、溝142に収容された電子部品150への磁力の影響が低下若しくは、遮断される。 Specifically, as shown in FIG. 9, a recess 154 is formed in the bottom surface 136 of the first case member 120 facing the turntable 130, and the depth of the recess 154 is the thickness of the shield plate 152. It is slightly smaller than the size. The shield plate 152 is fitted into the recess 154. Therefore, the surface of the shield plate 152 opposite to the surface fitted into the recess 154 faces the permanent magnet 140 in a state of protruding from the bottom surface 136 of the first case member 120 toward the turntable 130. .. However, the shielding plate 152 and the permanent magnet 140 are separated from each other and are not in contact with each other. With such a structure, a magnetic field is formed along the shield plate 152, which is a magnetic body, and does not reach the groove 142. Therefore, the influence of the magnetic force on the electronic component 150 housed in the groove 142 is reduced or blocked at the position where the shield plate 152 is provided.
 なお、遮蔽板152の配設箇所は、図5に示すように、溝142の下方に向って延び出す部分、つまり、下方向溝部146と対向する位置であり、かつ、回転盤130と対向する位置である。このため、下方向溝部146がアーム部材112の側に向って湾曲し、回転盤130から離れる箇所に、遮蔽板152は配設されていない。このような構造により、電子部品150が下方向溝部146に収容され、永久磁石140が埋め込まれた回転盤130と対向している際に、その下方向溝部146に収容された電子部品150への磁力の影響が低下若しくは、遮断される。 As shown in FIG. 5, the location of the shielding plate 152 is a portion extending downward of the groove 142, that is, a position facing the downward groove portion 146 and facing the turntable 130. The position. Therefore, the downward groove 146 is curved toward the arm member 112 side, and the shielding plate 152 is not arranged at a position away from the turntable 130. With such a structure, when the electronic component 150 is accommodated in the downward groove portion 146 and faces the turntable 130 in which the permanent magnet 140 is embedded, the electronic component 150 is accommodated in the downward groove portion 146. The influence of magnetic force is reduced or cut off.
 また、第2ケース部材122は、図7に示すように、合わせ面155において、第1ケース部材120に合わせられており、その合わせ面155に開口する凹部156が形成されている。詳しくは、凹部156は、第1ケース部材120の合わせ面124に形成された溝142を覆うように形成されている。ただし、凹部156は、図5に示すように、概して半円形状とされており、回転盤130の回転軸線および円環状溝部144の一部、具体的には、円環状溝部144の最下端から後方に延び出し、最上端に至る部分を覆う状態で形成されている。そして、第1ケース部材120と第2ケース部材122とが互いの合わせ面124,155で合わせられ、その凹部156の開口が、第1ケース部材120の合わせ面124により塞がれている。これにより、第2ケース部材122の凹部156と第1ケース部材120の合わせ面124とによって、収納部157が区画されている。 Further, as shown in FIG. 7, the second case member 122 is aligned with the first case member 120 on the mating surface 155, and a recess 156 that opens to the mating surface 155 is formed. More specifically, the recess 156 is formed so as to cover the groove 142 formed in the mating surface 124 of the first case member 120. However, as shown in FIG. 5, the recess 156 is generally semi-circular in shape, and extends from the rotation axis of the turntable 130 and part of the annular groove 144, specifically, from the lowermost end of the annular groove 144. It is formed so as to extend rearward and cover the portion reaching the uppermost end. Then, the first case member 120 and the second case member 122 are fitted to each other at the mating surfaces 124 and 155, and the opening of the recess 156 is closed by the mating surface 124 of the first case member 120. As a result, the recess 156 of the second case member 122 and the mating surface 124 of the first case member 120 partition the storage portion 157.
 円環状溝部144の凹部156によって覆われている部分は、凹部156の内部、つまり、収納部157に開口している。また、円環状溝部144は、上述したように、永久磁石140の旋回軌跡に沿って形成されている。このため、収納部157内に収容されている電子部品150は、永久磁石140の磁力によって、円環状溝部144の内部に収容される。そして、回転駆動装置132の駆動により、回転盤130が正方向に回転することで、円環状溝部144内に収容された電子部品150が回転盤130の回転方向に移動する。 The portion of the annular groove 144 covered by the recess 156 is open inside the recess 156, that is, in the storage 157. The annular groove 144 is formed along the turning trajectory of the permanent magnet 140, as described above. Therefore, the electronic component 150 housed in the housing 157 is housed inside the annular groove 144 by the magnetic force of the permanent magnet 140. Then, by the rotation drive device 132 being driven, the rotary disk 130 is rotated in the positive direction, so that the electronic component 150 housed in the annular groove 144 is moved in the rotational direction of the rotary disk 130.
 ただし、円環状溝部144の凹部156によって覆われていない部分は、第2ケース部材122の合わせ面155によって塞がれている。つまり、円環状溝部144の凹部156によって覆われていない部分は、断面形状が矩形のトンネル状となっている。このため、回転盤130の回転に伴って、円環状溝部144の内部に収容されている電子部品150が、トンネル状の円環状溝部144に達すると、円環状溝部144からはみ出している電子部品150は、凹部156の側壁158によって、トンネル状の円環状溝部144内への侵入を阻止される。 However, the part of the annular groove 144 that is not covered by the recess 156 is closed by the mating surface 155 of the second case member 122. That is, the portion of the annular groove 144 that is not covered by the recess 156 has a tunnel shape with a rectangular cross section. Therefore, when the electronic component 150 housed inside the annular groove portion 144 reaches the tunnel-shaped annular groove portion 144 with the rotation of the turntable 130, the electronic component 150 protruding from the annular groove portion 144. Is blocked by the side wall 158 of the recess 156 from entering the tunnel-shaped annular groove 144.
 具体的には、半円形状の凹部156の側壁158は、溝142が形成された合わせ面124に対して直角に立設されており、側壁158の上端部が、円環状溝部144の最上端付近に位置している。そして、側壁158より上流側に位置する円環状溝部144は、収納部157に開口しており、側壁158より下流側に位置する円環状溝部144は、トンネル状とされている。このため、円環状溝部144からはみ出している電子部品は、円環状溝部144の最上端付近において側壁158に当接し、収納部157からの送り出しが阻止される。これにより、円環状溝部144内に適切に収容された電子部品のみが、収納部157から送り出される。 Specifically, the side wall 158 of the semicircular recess 156 is erected at a right angle to the mating surface 124 where the groove 142 is formed, and the upper end of the side wall 158 is the uppermost end of the annular groove 144. It is located in the vicinity. The annular groove portion 144 located upstream of the side wall 158 is open to the storage portion 157, and the annular groove portion 144 located downstream of the side wall 158 has a tunnel shape. Therefore, the electronic component protruding from the annular groove portion 144 contacts the side wall 158 near the uppermost end of the annular groove portion 144, and is prevented from being delivered from the storage portion 157. As a result, only the electronic components properly housed in the annular groove 144 are delivered from the housing 157.
 また、アーム部材112には、図6に示すように、上面に開口するとともに、第1ケース部材120の前方側の側面に開口している下方向溝部146に連続する溝166が形成されている。溝166の内寸は、溝142の内寸と略同じとされており、溝166にも電子部品150が収容される。また、溝166は、第1アーム部114に向かって湾曲されており、第1アーム部114の端面まで延び出している。その端面への溝166の開口の内側には、ピン162が立設されており、そのピン162によって溝166内を送り出されてきた電子部品が停止させられる。つまり、ピン162が立設された箇所が、バルクフィーダ100の電子部品の供給位置となる。 Further, as shown in FIG. 6, the arm member 112 is formed with a groove 166 which is open to the upper surface and is continuous with the downward groove portion 146 which is opened to the front side surface of the first case member 120. .. The inner size of the groove 166 is substantially the same as the inner size of the groove 142, and the electronic component 150 is also housed in the groove 166. In addition, the groove 166 is curved toward the first arm portion 114 and extends to the end surface of the first arm portion 114. A pin 162 is provided upright inside the opening of the groove 166 to the end face, and the pin 162 stops the electronic component sent out in the groove 166. That is, the position where the pin 162 is erected is the supply position of the electronic component of the bulk feeder 100.
 アーム部材112には、さらに、上面に開口するとともに、溝166のピン162が形成されている直前の部分に連続するエア溝168が形成されている。なお、エア溝168の内寸は、溝166の内寸より小さくされており、エア溝168への電子部品150の収容は不能とされている。また、エア溝168には、エア吸引装置(図10参照)170が接続されており、エア吸引装置170によりエア溝168からエアが吸引される。これにより、溝166の内部において、ピン162が立設された箇所、つまり、供給位置に向かってエアが吸引され、溝166の内部において、電子部品150が供給位置に向って搬送される。 The arm member 112 is further formed with an air groove 168 which opens to the upper surface and which is continuous with the groove 166 immediately before the pin 162 is formed. The inner dimension of the air groove 168 is smaller than the inner dimension of the groove 166, so that the electronic component 150 cannot be accommodated in the air groove 168. An air suction device (see FIG. 10) 170 is connected to the air groove 168, and the air suction device 170 sucks air from the air groove 168. As a result, air is sucked toward the position where the pin 162 is erected inside the groove 166, that is, toward the supply position, and the electronic component 150 is conveyed toward the supply position inside the groove 166.
 なお、アーム部材112の上面は、カバー(図示省略)によって覆われており、溝166およびエア溝168はトンネル状とされている。また、溝166のピン162が立設された位置、つまり、電子部品の供給位置を覆う位置には、切欠き部(図示省略)が形成されており、その切欠き部を介して、電子部品の供給が行われる。 The upper surface of the arm member 112 is covered with a cover (not shown), and the groove 166 and the air groove 168 are tunnel-shaped. Further, a cutout portion (not shown) is formed at a position where the pin 162 of the groove 166 is provided upright, that is, at a position where the supply position of the electronic component is covered, and the electronic component is cut through the cutout portion. Is supplied.
 また、電子部品が収納される収納部157、つまり、第2ケース部材122に形成された凹部156は、第2ケース部材122の上面および下面に開口しており、それぞれの開口には、シャッタ186,188が設けられている。各シャッタ186,188はスライドさせることで、開閉可能とされている。これにより、シャッタ186を開けることで、収納部157内に電子部品を補充し、シャッタ188を開けることで、収納部157内に収納されている電子部品をバルクフィーダ100の外部に排出することが可能となっている。 A storage portion 157 in which electronic components are stored, that is, a recess 156 formed in the second case member 122 is opened on the upper surface and the lower surface of the second case member 122, and a shutter 186 is provided in each opening. , 188 are provided. The shutters 186 and 188 can be opened and closed by sliding. Accordingly, by opening the shutter 186, the electronic components are replenished in the storage portion 157, and by opening the shutter 188, the electronic components stored in the storage portion 157 can be discharged to the outside of the bulk feeder 100. It is possible.
 上記構造とされたバルクフィーダ100では、収納部157内にバラバラの状態で電子部品が収納されており、それらバラバラの状態の複数の電子部品が1列に整列され、連なった状態で供給位置まで送り出される。具体的には、収納部157内に収納されている電子部品が、永久磁石140の磁力によって、円環状溝部144の内部に収容される。そして、回転駆動装置132の駆動により、回転盤130が正方向に回転することで、永久磁石140も正方向に回転し、円環状溝部144内に収容された電子部品が、永久磁石140の磁力により回転盤130の回転方向に搬送される。この際、円環状溝部144の内部で、複数の電子部品が1列に整列され、連なった状態となる。 In the bulk feeder 100 having the above-described structure, the electronic components are stored in the storage portion 157 in a disjointed state, and the plurality of electronic components in the dissociated state are aligned in a line and are connected to the supply position. Sent out. Specifically, the electronic components housed in the housing 157 are housed inside the annular groove 144 by the magnetic force of the permanent magnet 140. Then, the rotary drive device 132 is driven to rotate the turntable 130 in the positive direction, whereby the permanent magnet 140 is also rotated in the positive direction, and the electronic components housed in the annular groove portion 144 have the magnetic force of the permanent magnet 140. Are conveyed in the rotating direction of the turntable 130. At this time, inside the annular groove 144, a plurality of electronic components are aligned in a row and are in a continuous state.
 回転盤130の回転に伴って、円環状溝部144の内部に収容されている電子部品が、トンネル状の円環状溝部144に達すると、円環状溝部144からはみ出している電子部品は、凹部156の側壁158に当接する。これにより、側壁158に当接した電子部品は、収納部157の下方に落下する。そして、円環状溝部144内に適切に収容された電子部品のみが、回転盤130の回転に伴って、円環状溝部144内をさらに移動する。 When the electronic component housed inside the annular groove portion 144 reaches the tunnel-shaped annular groove portion 144 with the rotation of the turntable 130, the electronic component protruding from the annular groove portion 144 becomes It abuts the side wall 158. As a result, the electronic component contacting the side wall 158 falls below the storage portion 157. Then, only the electronic components properly accommodated in the annular groove portion 144 further move in the annular groove portion 144 as the turntable 130 rotates.
 更に、回転盤130の回転に伴って、電子部品は、円環状溝部144の内部から下方向溝部146の内部に搬送される。下方向溝部146では、上述したように、下方向溝部146が形成された第1ケース部材120と永久磁石140が埋め込まれた回転盤130との間に遮蔽板152が配設されているため、磁力の影響が低下若しくは、遮断される。このため、下方向溝部146において、電子部品150は永久磁石140の磁力によって搬送されない。ただし、下方向溝部146は、下方に向って延び出しているため、電子部品150は、下方向溝部146の内部において、自重によって下方に向って落下する。 Further, as the turntable 130 rotates, the electronic components are transported from the inside of the annular groove 144 to the inside of the downward groove 146. As described above, in the downward groove portion 146, the shielding plate 152 is disposed between the first case member 120 in which the downward groove portion 146 is formed and the turntable 130 in which the permanent magnet 140 is embedded. The influence of magnetic force is reduced or cut off. Therefore, the electronic component 150 is not transported by the magnetic force of the permanent magnet 140 in the downward groove 146. However, since the downward groove portion 146 extends downward, the electronic component 150 falls downward due to its own weight inside the downward groove portion 146.
 また、電子部品150が落下する下方向溝部146の下端部は、前方に向って湾曲している。このため、電子部品150が下方向溝部146の下端部に接近するほど、電子部品150の自重による落下速度は低下する。ただし、下方向溝部146の下端部に連通する溝166には、上述したように、エア溝168が接続されており、エア溝168を介して、溝166からエアが吸引される。このため、下方向溝部146において、自重により落下してきた電子部品150は、エアの吸引により、溝166に向って搬送される。つまり、下方向溝部146の下流側において、電子部品150の搬送が、エアの吸引により担保されている。そして、電子部品150は、溝166において、エアの吸引により、エア溝168に向って搬送されることで、最終的に、溝166の第1アーム部114の端面への開口に立設されたピン162に当接する。これにより、バルクフィーダ100では、バラバラの状態で収容されていた複数の電子部品が、1列に整列された状態で供給位置まで送り出される。 Also, the lower end of the downward groove 146 from which the electronic component 150 falls is curved forward. Therefore, the closer the electronic component 150 is to the lower end of the downward groove 146, the lower the drop speed of the electronic component 150 due to its own weight. However, as described above, the air groove 168 is connected to the groove 166 communicating with the lower end portion of the downward groove portion 146, and the air is sucked from the groove 166 via the air groove 168. Therefore, in the downward groove portion 146, the electronic component 150 that has dropped due to its own weight is conveyed toward the groove 166 by suction of air. That is, the conveyance of the electronic component 150 is secured by the suction of air on the downstream side of the downward groove portion 146. Then, the electronic component 150 is conveyed toward the air groove 168 by suction of air in the groove 166, so that the electronic component 150 is finally erected at the opening of the groove 166 to the end surface of the first arm portion 114. Abut on the pin 162. As a result, in the bulk feeder 100, the plurality of electronic components housed in a disjointed state are delivered to the supply position in a state where they are aligned in one row.
 なお、バルクフィーダ100では、下方向溝部146において、下方向溝部146が形成された第1ケース部材120と永久磁石140が埋め込まれた回転盤130との間に遮蔽板152が配設され、磁力の影響が低下若しくは、遮断されることで、電子部品150の適切な搬送が担保されている。詳しくは、従来のバルクフィーダでは、下方向溝部146において、第1ケース部材120と回転盤130との間に遮蔽板152は、配設されていなかった。このため、下方向溝部146においても、電子部品150に永久磁石140の磁力が作用していた。そして、下方向溝部146において、電子部品150が自重により落下する際に、落下する電子部品150に磁力が作用し、自重による電子部品150の落下が阻害される。このため、従来のバルクフィーダでは、電子部品150の落下速度が低下し、溝166においてエアが吸引されていても、下方向溝部146の下端部において電子部品150が滞る場合があった。一方、バルクフィーダ100では、下方向溝部146において、第1ケース部材120と回転盤130との間に遮蔽板152が配設されており、下方向溝部146への磁力の影響が低下若しくは、遮断されることで、電子部品150の適切な搬送が担保される。 In the bulk feeder 100, the shield plate 152 is disposed in the downward groove portion 146 between the first case member 120 in which the downward groove portion 146 is formed and the turntable 130 in which the permanent magnet 140 is embedded. By reducing or blocking the influence of (1), proper transportation of the electronic component 150 is ensured. Specifically, in the conventional bulk feeder, the shield plate 152 is not provided in the downward groove portion 146 between the first case member 120 and the turntable 130. For this reason, the magnetic force of the permanent magnet 140 acts on the electronic component 150 also in the downward groove portion 146. Then, in the downward groove portion 146, when the electronic component 150 falls due to its own weight, a magnetic force acts on the falling electronic component 150, which prevents the electronic component 150 from falling due to its own weight. Therefore, in the conventional bulk feeder, the dropping speed of the electronic component 150 is reduced, and even if the air is sucked in the groove 166, the electronic component 150 may stay at the lower end of the downward groove 146. On the other hand, in the bulk feeder 100, the shield plate 152 is disposed between the first case member 120 and the turntable 130 in the downward groove portion 146, and the influence of the magnetic force on the downward groove portion 146 is reduced or blocked. As a result, proper transportation of the electronic component 150 is ensured.
 また、バルクフィーダ100は、装着ヘッド26に固定されており、複数の吸着ノズル80のうちの吸着ステーションに位置する吸着ノズル80eが、バルクフィーダ100の供給位置となる溝166の先端の上方に位置する。これにより、吸着ステーションに位置する吸着ノズル80eが、ユニット昇降装置104によって下方に移動することで、バルクフィーダ100の供給位置まで搬送された電子部品150が、吸着ノズル80eにより吸着保持される。 Further, the bulk feeder 100 is fixed to the mounting head 26, and the suction nozzle 80e located at the suction station of the plurality of suction nozzles 80 is located above the tip of the groove 166 that is the supply position of the bulk feeder 100. To do. As a result, the suction nozzle 80e located at the suction station is moved downward by the unit elevating device 104, and the electronic component 150 conveyed to the supply position of the bulk feeder 100 is suction-held by the suction nozzle 80e.
 また、装着機16は、図10に示すように、制御装置190を備えている。制御装置190は、コントローラ192と、複数の駆動回路194と、画像処理装置196とを備えている。複数の駆動回路194は、上記電磁モータ46,52,54,134、基板保持装置48、送出装置76、正負圧供給装置84、保持体回転装置90、ユニット自転装置102、ユニット昇降装置104、エア吸引装置170に接続されている。コントローラ192は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路194に接続されている。これにより、搬送装置22、移動装置23等の作動が、コントローラ192によって制御される。また、コントローラ192は、画像処理装置196にも接続されている。画像処理装置196は、パーツカメラ96及びマークカメラ98によって得られた画像データを処理するものであり、コントローラ192は、画像データから各種情報を取得する。 Further, the mounting machine 16 includes a control device 190 as shown in FIG. The control device 190 includes a controller 192, a plurality of drive circuits 194, and an image processing device 196. The plurality of drive circuits 194 include the electromagnetic motors 46, 52, 54, 134, the substrate holding device 48, the feeding device 76, the positive/negative pressure supply device 84, the holder rotating device 90, the unit rotating device 102, the unit elevating device 104, and the air. It is connected to the suction device 170. The controller 192 includes a CPU, a ROM, a RAM, etc., is mainly a computer, and is connected to a plurality of drive circuits 194. As a result, the operations of the transport device 22, the moving device 23, etc. are controlled by the controller 192. The controller 192 is also connected to the image processing device 196. The image processing device 196 processes the image data obtained by the parts camera 96 and the mark camera 98, and the controller 192 acquires various information from the image data.
 装着機16では、上述した構成によって、回路基板に対して電子部品を装着する装着作業を行う。具体的には、コントローラ192の指令により、回路基板が、コンベア装置40,42によって作業位置まで搬送され、その位置において、基板保持装置48によって保持される。次に、装着ヘッド26が、移動装置23の作動により、回路基板の上方に移動し、マークカメラ98が回路基板を撮像する。そして、その撮像により得られた撮像データに基づいて、コントローラ192が、コンベア装置40,42による回路基板の保持位置誤差などを演算する。 With the above-described configuration, the mounting machine 16 performs mounting work for mounting electronic components on the circuit board. Specifically, according to a command from the controller 192, the circuit board is conveyed to the work position by the conveyor devices 40 and 42, and is held by the board holding device 48 at that position. Next, the mounting head 26 is moved above the circuit board by the operation of the moving device 23, and the mark camera 98 images the circuit board. Then, based on the imaged data obtained by the image pickup, the controller 192 calculates a holding position error of the circuit board by the conveyor devices 40 and 42.
 また、バルクフィーダ100では、上述した手順に従って、供給位置に向って電子部品150が搬送されており、装着ヘッド26の吸着ステーションに位置する吸着ノズル80により、バルクフィーダ100の供給位置に搬送された電子部品150が保持される。そして、電子部品150が吸着ノズル80により保持されると、ユニット保持体86が回転し、電子部品150を保持していない吸着ノズルが吸着ステーションに移動してくる。このため、新たに吸着ステーションに移動してきた吸着ノズルが、バルクフィーダ100の供給位置から電子部品を保持する。このように、装着ヘッド26では、バルクフィーダ100から電子部品が吸着ノズル80により保持される毎に、ユニット保持体86が順次回転し、吸着ステーションに位置する吸着ノズルによりバルクフィーダ100から電子部品が順次保持される。また、ユニット保持体86の回転に伴って、電子部品を保持する吸着ノズル80が撮像ステーションに移動してくると、撮像ステーションにおいて、吸着ノズル80に保持された電子部品がパーツカメラ96により撮像される。そして、その撮像により得られた撮像データに基づいて、コントローラ192が、吸着ノズル80による電子部品の保持位置誤差などを演算する。なお、バルクフィーダ100は、装着ヘッド26に固定されているため、装着ヘッド26が移動している際においても、バルクフィーダ100から部品を保持することができるため、サイクルタイムの短縮を図ることが可能である。 Further, in the bulk feeder 100, the electronic component 150 is conveyed toward the supply position according to the procedure described above, and is conveyed to the supply position of the bulk feeder 100 by the suction nozzle 80 located at the suction station of the mounting head 26. The electronic component 150 is held. When the electronic component 150 is held by the suction nozzle 80, the unit holder 86 rotates, and the suction nozzle that does not hold the electronic component 150 moves to the suction station. Therefore, the suction nozzle that has newly moved to the suction station holds the electronic component from the supply position of the bulk feeder 100. As described above, in the mounting head 26, each time the electronic component is held by the suction nozzle 80 from the bulk feeder 100, the unit holder 86 is sequentially rotated, and the suction nozzle located at the suction station removes the electronic component from the bulk feeder 100. It is held in sequence. Further, when the suction nozzle 80 holding the electronic component moves to the imaging station as the unit holder 86 rotates, the electronic camera held by the suction nozzle 80 is imaged by the parts camera 96 in the imaging station. It Then, the controller 192 calculates an error in the holding position of the electronic component by the suction nozzle 80 based on the imaged data obtained by the image pickup. Since the bulk feeder 100 is fixed to the mounting head 26, the parts can be held from the bulk feeder 100 even when the mounting head 26 is moving, so that the cycle time can be shortened. It is possible.
 また、装着ヘッド26は、必要とする数の電子部品をバルクフィーダ100から保持すると、回路基板の上方に移動し、装着ステーションに位置する装着ユニット82が、ユニット昇降装置104の作動により下降する。これにより、その装着ユニット82の吸着ノズル80に保持された電子部品150が回路基板に装着される。なお、先に演算された電子部品の保持位置誤差,回路基板の保持位置誤差を考慮して、回路基板への電子部品の装着作業が実行される。 Further, when the mounting head 26 holds the required number of electronic components from the bulk feeder 100, the mounting head 26 moves above the circuit board, and the mounting unit 82 located at the mounting station descends due to the operation of the unit elevating device 104. As a result, the electronic component 150 held by the suction nozzle 80 of the mounting unit 82 is mounted on the circuit board. It should be noted that the mounting work of the electronic component on the circuit board is executed in consideration of the previously calculated error in the holding position of the electronic component and the error in the holding position of the circuit board.
 なお、上記実施例において、バルクフィーダ100は、部品搬送装置および部品供給装置の一例である。第1ケース部材120は、ケースの一例である。永久磁石140は、磁石の一例である。溝142は、搬送経路の一例である。下方向溝部146は、下降領域の一例である。遮蔽板152は、磁力低下機構および遮蔽板の一例である。エア吸引装置170は、エア吸引装置の一例である。 In the above embodiment, the bulk feeder 100 is an example of the component transfer device and the component supply device. The first case member 120 is an example of a case. The permanent magnet 140 is an example of a magnet. The groove 142 is an example of a transport path. The downward groove portion 146 is an example of a descending region. The shield plate 152 is an example of a magnetic force reduction mechanism and a shield plate. The air suction device 170 is an example of an air suction device.
 また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、遮蔽板152の素材として、鉄が採用されているが、参加クロム,コバルトなどの種々の磁性体を採用することが可能である。また、磁性体に限定されず、非磁性体を、遮蔽板152の素材として採用してもよい。ただし、非磁性体が遮蔽板152の素材として採用される場合は、遮蔽板152の厚さ寸法をある程度大きくする必要がある。 Further, the present invention is not limited to the above-mentioned embodiments, but can be carried out in various modes with various modifications and improvements based on the knowledge of those skilled in the art. Specifically, for example, although iron is used as the material of the shielding plate 152 in the above-described embodiment, various magnetic materials such as participating chromium and cobalt can be used. Further, the material is not limited to the magnetic material, and a non-magnetic material may be adopted as the material of the shield plate 152. However, when a non-magnetic material is used as the material of the shield plate 152, it is necessary to increase the thickness dimension of the shield plate 152 to some extent.
 また、上記実施例では、遮蔽板152により下方向溝部146に影響する磁力が低下若しくは、遮断されているが、種々の機構により、下方向溝部146に影響する磁力が低下若しくは、遮断されてもよい。具体的には、例えば、永久磁石140の経路と溝142との間の距離が、円環状溝部144と下方向溝部146とで異なるような機構を採用してもよい。つまり、永久磁石140の経路と下方向溝部146との間の距離が、永久磁石140の経路と円環状溝部144との間の距離より長くなるように構成してもよい。また、磁力の強さを変更可能な磁石を採用し、円環状溝部144に対応する経路において、磁石の磁力を強め、下方向溝部146に対応する経路において、磁石の磁力を弱めてもよい。このように構成することでも、遮蔽板152が配設された場合と同様の効果を得ることができる。 Further, in the above embodiment, the magnetic force affecting the downward groove portion 146 is reduced or blocked by the shield plate 152, but even if the magnetic force affecting the downward groove portion 146 is reduced or blocked by various mechanisms. Good. Specifically, for example, a mechanism may be adopted in which the distance between the path of the permanent magnet 140 and the groove 142 is different between the annular groove portion 144 and the downward groove portion 146. That is, the distance between the path of the permanent magnet 140 and the downward groove 146 may be longer than the distance between the path of the permanent magnet 140 and the annular groove 144. Alternatively, a magnet whose strength of magnetic force can be changed may be employed, and the magnetic force of the magnet may be increased in the path corresponding to the annular groove 144 and the magnetic force of the magnet may be decreased in the path corresponding to the downward groove 146. With this configuration, the same effect as when the shielding plate 152 is provided can be obtained.
 また、上記実施例では、電子部品が自重で落下する下方向溝部146に対応して遮蔽板152が配設されているが、種々の領域に遮蔽板152を配設することができる。具体的には、例えば、溝142において、エアの吸引若しくは噴出により電子部品が搬送される領域がある場合に、その領域に対応して遮蔽板152が配設されてもよい。このように遮蔽板152を配設することで、エアの吸引若しくは噴出による電子部品の搬送が、磁力により遮られないため、エアの吸引若しくは噴出による電子部品の適切な搬送が担保される。 In addition, in the above-described embodiment, the shield plate 152 is arranged corresponding to the downward groove 146 where the electronic component falls by its own weight, but the shield plate 152 can be arranged in various areas. Specifically, for example, when there is a region in the groove 142 where electronic components are conveyed by suction or ejection of air, the shielding plate 152 may be arranged corresponding to the region. By disposing the shielding plate 152 in this manner, the transfer of electronic components by suction or ejection of air is not blocked by the magnetic force, so that proper transfer of electronic components by suction or ejection of air is ensured.
 また、上記実施例では、下方向溝部146の下流側において、エアの吸引により、電子部品が搬送されているが、エアの噴出,振動,電子部品の搬送経路の傾斜など、種々の方法により、電子部品を搬送してもよい。 Further, in the above-described embodiment, the electronic component is conveyed by the suction of air on the downstream side of the downward groove portion 146. However, by various methods such as jetting of air, vibration, and inclination of the conveyance route of the electronic component, Electronic components may be transported.
 また、上記手法を用いて搬送される物は、電子部品に限られず、種々の物の搬送に本発明を適用することができる。さらに言えば、上記実施例では、本発明が、電子部品を供給位置まで搬送するバルクフィーダ100に適用されているが、ボールフィーダ,スティックフィーダなどの部品供給装置に適用されてもよい。また、部品供給装置に限定されず、単に部品を搬送する装置,部品の供給とは異なる目的で部品を搬送する装置などに、本発明が適用されてもよい。 Also, the objects conveyed using the above method are not limited to electronic parts, and the present invention can be applied to the conveyance of various objects. Furthermore, in the above embodiment, the present invention is applied to the bulk feeder 100 that conveys electronic components to the supply position, but it may be applied to a component feeder such as a ball feeder or a stick feeder. Further, the present invention is not limited to the component supply device, and the present invention may be applied to a device that simply conveys a component, a device that conveys a component for a purpose different from the component supply, and the like.
 100:バルクフィーダ(部品搬送装置)(部品供給装置)  120:第1ケース部材(ケース)  140:永久磁石(磁石)  142:溝(搬送経路)  146:下方向溝部(下降領域)  152:遮蔽板(磁力低下機構)  170:エア吸引装置 100: Bulk feeder (parts transfer device) (parts supply device) 120: First case member (case) 140: Permanent magnet (magnet) 142: Groove (transfer route) 146: Downward groove part (falling area) 152: Shielding plate (Magnetic force reduction mechanism) 170: Air suction device

Claims (6)

  1.  複数の部品を連なった状態で搬送するための搬送経路が形成されたケースと、
     搬送経路に沿って移動可能に配設され、磁力により部品を前記搬送経路において搬送する磁石と、
     前記搬送経路の所定の領域において、前記所定の領域に沿って移動する磁石と前記ケースとの間に配設され、前記所定の領域への磁力の影響を低下させる磁力低下機構と
     を備える部品搬送装置。
    A case in which a conveyance path for conveying a plurality of parts in a row is formed,
    A magnet that is arranged so as to be movable along the transport path and that transports the component in the transport path by magnetic force;
    In a predetermined area of the transfer path, a magnetic force reduction mechanism that is disposed between a magnet that moves along the predetermined area and the case and that reduces the influence of the magnetic force on the predetermined area. apparatus.
  2.  前記所定の領域が、磁力以外の手段により部品が搬送される領域である請求項1に記載の部品搬送装置。 The parts conveying device according to claim 1, wherein the predetermined area is an area where parts are conveyed by means other than magnetic force.
  3.  前記搬送経路が、下方に向って延びる領域である下降領域を含み、
     前記所定の領域が、前記下降領域である請求項1または請求項2に記載の部品搬送装置。
    The transport path includes a descending region that is a region extending downward,
    The component transfer device according to claim 1, wherein the predetermined region is the descending region.
  4.  前記磁力低下機構が、
     前記搬送経路の所定の領域において、前記所定の領域に沿って移動する磁石と前記ケースとの間に配設される遮蔽板を有し、前記遮蔽板により前記所定の領域への磁力の影響を低下させる請求項1ないし請求項3のいずれか1つに記載の部品搬送装置。
    The magnetic force reduction mechanism,
    In a predetermined area of the transport path, a shield plate is provided between a magnet that moves along the predetermined area and the case, and the shield plate prevents an influence of a magnetic force on the predetermined area. The component transfer device according to claim 1, wherein the component transfer device is lowered.
  5.  前記磁石は、前記所定の領域まで前記搬送経路に沿って移動可能に配設されており、
     前記所定の領域の下流側に配設され、前記搬送経路からエアを吸引することで、部品を前記所定の領域から下流に向って搬送するエア吸引装置を備える請求項1ないし請求項4のいずれか1つに記載の部品搬送装置。
    The magnet is arranged so as to be movable along the transport path to the predetermined area,
    5. An air suction device, which is disposed on the downstream side of the predetermined region and which conveys the component downstream from the predetermined region by sucking air from the conveyance path. The component transfer device according to one.
  6.  前記搬送経路は、所定の位置まで部品を搬送するように構成されており、
     前記所定の位置に搬送された部品を供給する部品供給装置として機能する請求項1ないし請求項5のいずれか1つに記載の部品搬送装置。
    The transfer path is configured to transfer a component to a predetermined position,
    The component transfer device according to any one of claims 1 to 5, which functions as a component supply device that supplies a component that has been transferred to the predetermined position.
PCT/JP2019/003422 2019-01-31 2019-01-31 Component conveyance device WO2020157923A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020569284A JP7145981B2 (en) 2019-01-31 2019-01-31 parts carrier
PCT/JP2019/003422 WO2020157923A1 (en) 2019-01-31 2019-01-31 Component conveyance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003422 WO2020157923A1 (en) 2019-01-31 2019-01-31 Component conveyance device

Publications (1)

Publication Number Publication Date
WO2020157923A1 true WO2020157923A1 (en) 2020-08-06

Family

ID=71841989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003422 WO2020157923A1 (en) 2019-01-31 2019-01-31 Component conveyance device

Country Status (2)

Country Link
JP (1) JP7145981B2 (en)
WO (1) WO2020157923A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137973A (en) * 2008-12-12 2010-06-24 Taiyo Yuden Co Ltd Bulk feeder
WO2014125648A1 (en) * 2013-02-18 2014-08-21 富士機械製造株式会社 Electronic circuit component mounting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137973A (en) * 2008-12-12 2010-06-24 Taiyo Yuden Co Ltd Bulk feeder
WO2014125648A1 (en) * 2013-02-18 2014-08-21 富士機械製造株式会社 Electronic circuit component mounting device

Also Published As

Publication number Publication date
JPWO2020157923A1 (en) 2021-09-09
JP7145981B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
JP5791408B2 (en) Electronic component mounting equipment
JP5961257B2 (en) Electronic component mounting machine
JP6469126B2 (en) Component suction position correction system and component suction position correction method for rotary head type component mounting machine
JP6058657B2 (en) Bulk feeder
JP5917683B2 (en) Electronic component mounting machine
JP2022093656A (en) Article transfer facility
JP6040255B2 (en) Parts supply device
WO2014068638A1 (en) Component supply apparatus
CN109983858B (en) Component supply system and component mounting machine
WO2020157923A1 (en) Component conveyance device
JP6095668B2 (en) Electronic component mounting machine
WO2019116442A1 (en) Component feeding device and component feeding method
JP6720057B2 (en) Work machine
JP2000353898A (en) Electronic part mounter
JP5304370B2 (en) IC chip supply device
WO2014068639A1 (en) Component supply apparatus
WO2018146740A1 (en) Work machine
JP2007091314A (en) Taping device
JP6818770B2 (en) Parts mounting machine, parts suction method and nozzle placement method
JP2017157762A (en) Component suction position correction system of rotary head component mounter
JP2005051064A (en) Component mounting apparatus
JP2017188608A (en) Component suction position correction system for rotary head type component mounting machine
JP2002359496A (en) Component assembling device
WO2020065836A1 (en) Component supply apparatus
JPH09321491A (en) Part mounting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914063

Country of ref document: EP

Kind code of ref document: A1