WO2020157818A1 - Diagnostic device, equipment comprising same, and diagnostic method - Google Patents

Diagnostic device, equipment comprising same, and diagnostic method Download PDF

Info

Publication number
WO2020157818A1
WO2020157818A1 PCT/JP2019/002883 JP2019002883W WO2020157818A1 WO 2020157818 A1 WO2020157818 A1 WO 2020157818A1 JP 2019002883 W JP2019002883 W JP 2019002883W WO 2020157818 A1 WO2020157818 A1 WO 2020157818A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sound
sound data
diagnostic
rotation speed
Prior art date
Application number
PCT/JP2019/002883
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 松井
優太 小田原
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to JP2020568907A priority Critical patent/JP7077426B2/en
Priority to PCT/JP2019/002883 priority patent/WO2020157818A1/en
Publication of WO2020157818A1 publication Critical patent/WO2020157818A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present disclosure relates to a diagnostic device for diagnosing a mechanical device that includes a drive unit and a driven unit that is rotationally driven by the drive unit, a facility including the diagnostic device, and a diagnostic method.
  • An acoustic sensor may be used to diagnose a mechanical device having a driven part that is rotationally driven by a driving part such as a motor.
  • Patent Document 1 describes a device for detecting a phenomenon (so-called chattering) in which a striped pattern occurs on a steel plate due to vibration of a roll in a rolling mill including a rolling roll driven by a motor.
  • This apparatus includes a microphone (acoustic sensor) installed in the vicinity of the rolling roll, and the microphone detects the acoustic waveform of the sound from the rolling mill. Then, the chattering described above is detected by monitoring the sound of the natural frequency of the rolling roll acquired in advance based on the acoustic waveform thus detected.
  • the natural frequency of the mechanical device can be specified.
  • an event that may cause a problem in a mechanical device but occurs infrequently for example, damage to a driving part or a driven part
  • it is usually difficult to specify the natural frequency by analysis based on an actual machine because the frequency of occurrence of an event is low. Therefore, it is desired to specify the natural frequency of the mechanical device with a simple configuration.
  • At least one embodiment of the present invention has an object to provide a diagnostic device capable of identifying the natural frequency of a mechanical device with a simple configuration, a facility including the diagnostic device, and a diagnostic method.
  • the diagnostic device is A diagnostic device for diagnosing a mechanical device including a drive part and a driven part rotationally driven by the drive part, A plurality of acoustic sensors provided at different positions, respectively for detecting sounds generated from the mechanical device, A sound data acquisition unit configured to acquire a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different, A frequency analysis unit configured to perform frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions, A peak frequency specifying unit that specifies the peak frequency and at least one rotation speed condition in which a peak frequency common to the plurality of sound data exists, based on a frequency analysis result by the frequency analyzing unit; For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of a
  • FIG. 1 is a schematic configuration diagram showing rolling equipment (equipment) according to an embodiment.
  • rolling equipment includes a rolling mill 1 and a diagnostic device 30 for diagnosing the rolling mill 1.
  • the rolling apparatus 1 includes a motor 2 (driving unit), a rolling roll 8 (driven unit) that is rotationally driven by the motor 2, and a power transmission unit 3 that transmits the power of the motor 2 to the rolling roll 8. Including.
  • the rolling roll 8 is configured to roll the metal strip plate 9, and includes a pair of work rolls 12A and 12B for sandwiching the metal strip plate 9 from above and below to apply a load to the metal strip plate 9 and a pair of works.
  • the metal strip 9 includes the pair of intermediate rolls 14A and 14B and the pair of backup rolls 16A and 16B provided on opposite sides of the rolls 12A and 12B, respectively.
  • the intermediate rolls 14A and 14B are provided between the work rolls 12A and 12B and the backup rolls 16A and 16B, respectively.
  • the power transmission unit 3 includes a gear 4 (driven unit) and a spindle 6 (driven unit) that are rotationally driven by the motor 2. That is, the gear 4 is connected to the motor 2, and the spindle 6 is connected to the motor 2 via the gear 4.
  • the rolling roll 8 is connected to the motor 2 via the gear 4 and the spindle 6. Therefore, when the gear 4 and the spindle 6 are rotationally driven by the motor 2, the rolling roll 8 is driven by the gear 4 and the spindle 6. That is, the rotational movement of the motor 2 is transmitted to the gear 4, the spindle 6 and the rolling roll 8, and the gear 4, the spindle 6 and the rolling roll 8 rotate at the number of rotations corresponding to the output (rotation number) of the motor 2, respectively. It is supposed to do.
  • FIG. 2 is a schematic configuration diagram of the diagnostic device 30 according to the embodiment.
  • a diagnostic device 30 includes a plurality of acoustic sensors 32, 34A, 34B for detecting sounds generated from the rolling mill 1, and a plurality of acoustic sensors 32, 34A, 34B.
  • a processing unit 36 for processing the sound data detected by, a storage unit 37 for storing the processing result of the processing unit 36, and a display unit 38 for displaying the processing result of the processing unit 36. , Is included.
  • the plurality of acoustic sensors 32, 34A, 34B are provided at different positions.
  • the plurality of acoustic sensors are provided corresponding to the first acoustic sensor 32 provided corresponding to the motor 2, the second acoustic sensor 34A provided corresponding to the gear 4, and the spindle 6.
  • the second acoustic sensor 34B is included. That is, the first acoustic sensor 32 is provided near the motor 2, the second acoustic sensor 34A is provided near the gear 4, and the second acoustic sensor 34B is provided near the spindle 6.
  • the first acoustic sensor 32 and the second acoustic sensors 34A, 34B may be collectively referred to as acoustic sensors 32, 34A, 34B.
  • the acoustic sensors 32, 34A, 34B may include sound collection microphones.
  • the processing unit 36 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like.
  • the processing unit 36 may receive sound data indicating sounds detected by the acoustic sensors 32, 34A, 34B via the interface.
  • the CPU is configured to process the sound data thus received.
  • the CPU is configured to process the program loaded in the memory.
  • the processing content of the processing unit 36 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in the memory. The CPU reads the program from the memory and executes the instructions included in the program.
  • the storage unit 37 may include an external storage unit provided outside the device (computer or the like) configuring the processing unit 36.
  • the storage unit 37 may be a storage unit provided inside the device configuring the processing unit 36, and may be, for example, the above-described memory or auxiliary storage unit.
  • the processing unit 36 includes a sound data acquisition unit 40 for acquiring sound data including sounds from the acoustic sensors 32, 34A, 34B, and a frequency analysis unit for performing frequency analysis of the sound data. 42, and a frequency analysis result, a peak frequency specifying unit 48 for specifying a peak frequency common to a plurality of sound data, and information about a sound source having a natural frequency corresponding to the specified peak frequency. Sound source information acquisition unit 50 for Further, the processing unit 36 removes, from the frequency analysis result of the sound data, a frequency component that is not related to the natural frequency of the rolling mill 1 (mechanical device) to be identified, and the second removing unit 44 and the second removing unit. Including 46.
  • the processing unit 36 diagnoses the rolling mill 1 based on the natural frequency (peak frequency) specified by the peak frequency specifying unit 48 and the sound source information acquiring unit 50 and the information about the source of the sound of the natural frequency.
  • the diagnostic unit 54 for performing the operation is included.
  • the sound data acquisition unit 40 outputs a plurality of sound data including sound detected by each of the plurality of acoustic sensors 32, 34A, 34B under each of a plurality of rotation speed conditions in which the rotation speed of the motor 2 (driving unit) is different. Configured to get.
  • the frequency analysis unit 42 is configured to frequency analyze each of the plurality of sound data acquired by the sound data acquisition unit 40 for each of the plurality of rotation speed conditions. In one embodiment, the frequency analysis unit 42 is configured to obtain the frequency spectrum showing the correlation between the frequency and the amplitude for each of the plurality of sound data by performing the frequency analysis described above.
  • the peak frequency identification unit 48 is configured to identify one or more rotation speed conditions in which a peak frequency common to a plurality of sound data exists, based on the frequency analysis result by the frequency analysis unit 42.
  • the information relating to the sound source is information indicating the position or part where the sound is generated in the rolling mill 1, that is, which of the plurality of acoustic sensors is the position or part close to which. It is information to show.
  • the common peak frequency is the rolling device 1 Among these, it can be estimated that it is the natural frequency of a portion located closer to the acoustic sensor 32 than the acoustic sensors 34A and 34B.
  • the processing unit 36 may be configured to obtain information about which mechanical device or position in the rolling mill 1 is closest to which acoustic sensor in a process before and after acquiring sound data. The information may be stored in advance.
  • the first removal unit 44 is configured to remove a component having a common frequency from the frequency analysis results of the plurality of sound data by the frequency analysis unit 42 regardless of the rotation speed condition of the motor 2 (driving unit).
  • the sound source information acquisition unit 50 regards the frequency component thus removed as not the natural frequency of the rolling apparatus 1 and sets the frequency component as described above. It is arranged to obtain information about the source of the sound, excluding it from the peak frequencies.
  • the frequency analysis of the plurality of sound data is performed when the component having the common frequency is removed regardless of the rotation speed condition to obtain the information about the sound source.
  • the second removing unit 46 is configured to remove a component whose frequency is proportional to the rotation speed of the motor 2 (driving unit) in the frequency analysis result of the plurality of sound data by the frequency analyzing unit 42.
  • the sound source information acquisition unit 50 regards the frequency component thus removed as not the natural frequency of the rolling apparatus 1 and sets the frequency component as described above. It is arranged to obtain information about the source of the sound, excluding it from the peak frequencies.
  • the frequency analysis of the plurality of sound data is performed when the component whose frequency is proportional to the rotation speed of the motor 2 is removed to obtain the information about the sound source.
  • the natural frequency of the rolling mill 1 can be accurately determined based on the frequency analysis results of a plurality of sound data. Can be specified.
  • the diagnostic unit 54 determines the amplitude of the above-described peak frequency component (that is, the frequency component corresponding to the natural frequency of the identified sound source) in the frequency analysis result of the diagnostic sound data by the frequency analysis unit 42. On the basis of the above, the sound source is determined to be abnormal.
  • the diagnostic sound data is acquired by the diagnostic acoustic sensor 35 near the rolling mill 1.
  • the diagnostic acoustic sensor 35 detects the natural frequency and the sound for identifying the source of the sound of the natural frequency (that is, the peak frequency specifying unit 48 and the sound source information acquiring unit 50 process the sound.
  • Any of the acoustic sensors 32, 34A, 34B used for acquiring the sound data to be reproduced may be used, or an acoustic sensor different from these acoustic sensors 32, 34A, 34B may be used.
  • the sound detected by the diagnostic acoustic sensor 35 is acquired as diagnostic sound data by the above-described sound data acquisition unit 40, and the frequency analysis unit 42 performs a frequency analysis on this diagnostic sound data. Is done. Then, the above-mentioned diagnosis unit 54 uses the frequency analysis result to make an abnormality determination of the sound generation source as described above.
  • FIG. 3 is a flowchart showing an outline of the diagnostic method according to the embodiment.
  • 4 to 6 are acoustic sensors 32, 34A, 34B under specific motor rotation speed conditions (n [rpm] in FIG. 4, 2n [rpm] in FIG. 5, 4n [rpm] in FIG. 6). It is a figure which shows an example of the frequency analysis result (frequency spectrum) of the sound data acquired using.
  • the acoustic sensors 32, 34A, 34B are shown as a microphone A, a microphone B, and a microphone C, respectively. Further, on the vertical axis of the graphs of FIGS.
  • FIG. 7 is a diagram showing an example of information in which a sound generation source stored in the storage unit 37 and a peak frequency (natural frequency) corresponding thereto are associated with each other.
  • the plurality of rotation speed conditions are three conditions in which the rotation speed of the motor 2 is n, 2n, and 4n, and the three sound sensors 32, 34A, and 34B (microphones A to C) are used as the plurality of sound sensors.
  • the number of rotation speed conditions and the number of acoustic sensors are not limited to this, and any number of rotation speed conditions (two or more) and plural (two or more) acoustic sensors can be used to The diagnostic method according to the embodiment of the invention can be implemented.
  • a plurality of acoustic sensors 32, 34A, 34B that is, microphones A to C installed at different positions are used.
  • the sound generated from the rolling mill 1 is detected (sound detection step; step S102).
  • the frequency analysis unit 42 performs a frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions (three conditions of the motor rotation speed n, 2n, and 4n) (frequency analysis step; Step 106).
  • the frequency spectrum obtained as a result of this frequency analysis is shown in FIG. 4 (when the rotation speed condition is n [rpm]), FIG. 5 (when the rotation speed condition is 2n [rpm]), and FIG. 6 (rotation speed condition: 4n [ rpm])).
  • the peak frequency specifying unit 48 specifies one or more rotation speed conditions in which a peak frequency common to a plurality of sound data exists and the peak frequency based on the result of the above-described frequency analysis (peak frequency specifying step). ; Step S108). Specifically, as described below, the above-described rotation speed condition and the common peak frequency are specified.
  • the acoustic sensors 32, 34A, and 34B respectively have three frequencies fa, f1, and fb.
  • a peak appears in the sound data. Therefore, under the rotational speed condition that the rotational speed of the motor 2 is n [rpm], the peak frequencies common to these sound data are specified as fa, f1 and fb.
  • the acoustic sensors 32, 34A, 34B are three frequencies fa, f2, and 2fb (twice fb).
  • a peak appears in the sound data for each of C). Therefore, under the rotational speed condition that the rotational speed of the motor 2 is 2n [rpm], the peak frequencies common to these sound data are specified as fa, f2, and 2fb.
  • the peak of the frequency fa exists in all of these frequency spectra. Therefore, the component of the frequency fa is a component that exists in common regardless of the rotation speed condition of the motor 2 (driving unit). That is, the first removing unit 44 removes the peak having the component of the frequency fa from each frequency spectrum. 4 to 6, the peak having the component of the frequency fa to be removed is indicated by a broken line.
  • the plurality of sounds acquired by the plurality of acoustic sensors (microphones A to C) by the second removing unit 46 under a plurality of rotation speed conditions three conditions of motor rotation speeds of n, 2n, and 4n.
  • a component whose frequency is proportional to the rotation speed of the motor 2 (driving unit) is removed (second removing step; Step S112).
  • the frequency spectrum shown in FIG. 4 that is, the three frequency spectra acquired under the condition that the rotation speed of the motor 2 is n [rpm], has a peak of the frequency fb in common.
  • the frequency spectrum shown in FIG. 5, that is, the three frequency spectra acquired under the condition that the rotation speed of the motor 2 is 2n [rpm] has a peak of frequency 2fb in common.
  • the frequency spectrum shown in FIG. 6, that is, the three frequency spectra acquired under the condition that the rotation speed of the motor 2 is 4 n [rpm], has a peak of frequency 4fb in common. Therefore, the components of these frequencies fb, 2fb, 4fb are components whose frequency is proportional to the rotation speed of the motor 2.
  • the second removing unit 46 removes peaks having components of frequencies fb, 2fb, and 4fb from each frequency spectrum. 4 to 6, the peaks having the components of the frequencies fb, 2fb, 4fb to be removed are shown by broken lines.
  • the sound source information acquisition unit 50 corresponds to the common peak frequency specified in the peak frequency specifying step (S112) among the plurality of acoustic sensors (microphones A to C) for each of the one or more rotation speed conditions. Based on the installation position of the one acoustic sensor having the largest amplitude of the sound data with respect to the rolling mill 1, information on the sound source of the rolling mill 1 having the natural frequency corresponding to the common peak frequency is obtained ( Sound source information acquisition step; step S114).
  • the frequency component removed in the above-described first removal step (S110) may be excluded from the above-mentioned common peak frequency to obtain information regarding the sound source. Further, in the sound source information acquisition step (S114), the frequency component removed in the second removal step (S112) is excluded from the common peak frequency described above to obtain information about the sound source. Good.
  • the peak frequencies fa, f1 and fb common to these sound data are specified. Further, in the first removing step S110, the peak having the component of the frequency fa is removed, and in the second removing step S112, the peak having the component of the frequency fb is removed.
  • the sound source information acquisition unit 50 excludes the components of the frequency fa and the component of the frequency fb from the peak frequencies fa, f1, and fb identified in the peak frequency identification step for these three frequency spectra, that is, For the component of the peak frequency f1, one acoustic sensor (microphones A to C) having the largest amplitude of the sound data corresponding to this peak frequency is specified.
  • the amplitude at the peak frequency f1 in the frequency spectrum corresponding to each acoustic sensor is I(f1,A), I(f1,B), I(f1, C), and these magnitude relationships are I(f1,C) ⁇ I(f1,A) ⁇ I(f1,B). Therefore, the acoustic sensor that has acquired the sound data having the largest amplitude at the peak frequency f1 can be identified as the acoustic sensor 34A (microphone B).
  • the acoustic sensor 34A (microphone B) specified in this way is provided corresponding to the gear 4, and is closer to the gear 4 in the rolling mill 1 than other acoustic sensors (acoustic sensors 32 and 34B). Since it is provided at the position, it is possible to obtain information that the source of the sound having the natural frequency (f1) corresponding to the peak frequency f1 is the gear 4 of the rolling mill 1.
  • the peak frequencies fa, f2, and 2fb common to these sound data are specified. Further, in the first removing step S110, the peak having the component of the frequency fa is removed, and in the second removing step S112, the peak having the component of the frequency 2fb is removed.
  • the sound source information acquisition unit 50 excludes the components of the frequency fa and the component of the frequency 2fb from the peak frequencies fa, f2, and 2fb identified in the peak frequency identification step for these three frequency spectra, that is, For the component of the peak frequency f2, the one acoustic sensor (microphones A to C) having the largest amplitude of the sound data corresponding to this peak frequency is specified.
  • the amplitude at the peak frequency f2 in the frequency spectrum corresponding to each acoustic sensor is I(f2,A), I(f2,B), I(f2,). C), and these magnitude relationships are I(f2,A) ⁇ I(f2,B) ⁇ I(f2,C). Therefore, the acoustic sensor that has acquired the sound data having the largest amplitude at the peak frequency f2 can be identified as the acoustic sensor 34B (microphone C).
  • the acoustic sensor 34B (microphone C) thus identified is provided corresponding to the spindle 6, and is closer to the spindle 6 in the rolling mill 1 than the other acoustic sensors (acoustic sensors 32 and 34A). Since it is provided at the position, it is possible to obtain information that the sound source of the natural frequency (f2) corresponding to the peak frequency f2 is the spindle 6 of the rolling mill 1.
  • the peak frequencies fa, f3, and 4fb common to these sound data are specified. Further, in the first removing step S110, the peak having the component of the frequency fa is removed, and in the second removing step S112, the peak having the component of the frequency 4fb is removed.
  • the sound source information acquisition unit 50 excludes the components of the frequency fa and the component of the frequency 4fb from the peak frequencies fa, f3, and 4fb identified in the peak frequency identification step for these three frequency spectra, that is, For the component of the peak frequency f3, one acoustic sensor (microphones A to C) having the largest amplitude of the sound data corresponding to this peak frequency is specified.
  • the amplitude at the peak frequency f3 in the frequency spectrum corresponding to each acoustic sensor is I(f3,A), I(f3,B), I(f3, respectively).
  • C the amplitude at the peak frequency f3 in the frequency spectrum corresponding to each acoustic sensor (microphones A to C) is I(f3,A), I(f3,B), I(f3, respectively).
  • C the magnitude relationships are I(f3,C) ⁇ I(f3,B) ⁇ I(f3,A). Therefore, the acoustic sensor that has acquired the sound data having the largest amplitude at the peak frequency f3 can be identified as the acoustic sensor 32 (microphone A).
  • the acoustic sensor 32 (microphone A) specified in this way is provided corresponding to the motor 2, and is closer to the motor 2 in the rolling mill 1 than the other acoustic sensors (acoustic sensors 34A and 34B). Since it is provided at the position, it is possible to obtain information that the source of the sound having the natural frequency (f3) corresponding to the peak frequency f3 is the motor 2 of the rolling mill 1.
  • common peak frequencies (f1, f2, f3) corresponding to the rotation speed condition (motor rotation speed: n, 2n, 4n) of the motor 2 specified in the peak frequency specifying step (step S108), and sound source information Information relating to the sound source information acquired in the acquisition step (step S114) and the information associated with each other is stored in the storage unit 37 (step S116).
  • FIG. 7 is a diagram illustrating an example of information stored in the storage unit 37.
  • the common peak frequency (f1) corresponding to the rotation speed condition of the motor 2 (motor rotation speed: n, 2n, 4n) is determined by the peak frequency specifying step (step S108) and the sound source information acquiring step (step S114).
  • F2, f3) and a sound source (gear 4, spindle 6, motor 2) having a natural frequency (f1, f2, f3) corresponding to the common peak frequency (f1, f2, f3). Relationships are identified. Therefore, as shown in FIG. 7, the storage unit 37 stores the above-mentioned peak frequency (that is, the natural frequency) and information (a part in the rolling mill 1) regarding the source of the sound of the natural frequency.
  • the information in which the peak frequency (natural frequency) and the sound generation source stored in the storage unit 37 are associated with each other can be used when diagnosing the rolling mill 1, as described later.
  • a plurality of acoustic sensors 32, 34A, 34B provided at different positions are used to obtain a plurality of rotational speed conditions (motor rotational speeds: n, 2n, 4n).
  • rotational speed conditions motor rotational speeds: n, 2n, 4n.
  • the common peak frequency existing in the plurality of sound data acquired by the plurality of acoustic sensors 32, 34A, 34B may match the natural frequency of the rolling mill 1 (machine). Therefore, the natural frequency of the rolling mill 1 can be specified. Further, under the rotation speed condition specified as described above, among the sound data acquired by the respective acoustic sensors 32, 34A, 34B, the peak frequency specified as described above (that is, the natural frequency of the rolling mill 1 One acoustic sensor having the largest sound amplitude at a frequency (which may match) is closest to the sound source of the above-mentioned peak frequency in the rolling mill 1 among the plurality of acoustic sensors 32, 34A, 34B.
  • the information regarding the sound generation source corresponding to the natural frequency of the rolling mill 1 (for example, the position or part of the sound generation source in the rolling mill 1) is acquired. can do. Therefore, according to the diagnostic device and the diagnostic method described above, the natural frequency of the rolling mill 1 can be specified with a simple configuration including the plurality of acoustic sensors 32, 34A, 34B, and the natural frequency of the rolling mill can be specified. It is possible to acquire information indicating a position or a part having a frequency.
  • FIG. 8 is a flowchart showing an outline of the diagnostic method according to the embodiment.
  • the sound from the rolling mill 1 is output by the diagnostic acoustic sensor 35 while the motor 2 (drive unit) is operating at the specified value N.
  • the sound data acquisition unit 40 detects and acquires diagnostic sound data including the sound (step S202).
  • the frequency analysis unit 42 performs frequency analysis on the acquired diagnostic sound data to acquire a frequency spectrum (step S204).
  • step S206 the amplitude at the above-mentioned peak frequency (natural frequency) f1 of the gear 4 to be diagnosed in the frequency analysis result of the diagnostic sound data is acquired.
  • the information on the peak frequency (natural frequency) corresponding to the diagnosis target part (gear 4) may be acquired from the storage unit 37.
  • the amplitude I thus obtained is compared with the threshold value Ith.
  • This threshold value is set to an appropriate value corresponding to the specified value N of the rotation speed of the motor 2.
  • the amplitude I is less than the threshold value Ith (NO in step S206), it is not determined that the gear 4 is abnormal, and the flow of the diagnostic method is ended.
  • the amplitude I is equal to or larger than the threshold value Ith (YES in step S206)
  • it is determined that the gear 4 has an abnormality or a sign of abnormality In this case, the fact that the abnormality of the gear 4 or the sign of the abnormality is detected may be displayed on the display unit 38, or an alarm may be sounded by a speaker or the like.
  • the threshold value Ith of the amplitude I may be set to a different value depending on the rotation speed of the motor 2 (driving unit). Since the amplitude of the sound at the peak frequency component varies depending on the rotation speed of the motor 2, by setting an appropriate threshold value according to the rotation speed of the motor 2 (driving unit) in this way, the abnormality of the diagnosis target site is detected. The determination can be made more appropriately.
  • the diagnostic device is A diagnostic device for diagnosing a mechanical device including a drive part and a driven part rotationally driven by the drive part, A plurality of acoustic sensors provided at different positions, respectively for detecting sounds generated from the mechanical device, A sound data acquisition unit configured to acquire a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different, A frequency analysis unit configured to perform frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions, A peak frequency specifying unit that specifies the peak frequency and at least one rotation speed condition in which a peak frequency common to the plurality of sound data exists, based on a frequency analysis result by the frequency analyzing unit; For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of a
  • the amplitude of each sound data is increased. It is possible to grasp the peak frequency at which is the maximum. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency.
  • a common peak frequency existing in a plurality of sound data acquired by a plurality of acoustic sensors may match the natural frequency of the mechanical device. The number can be specified.
  • the peak frequency specified as described above (that is, the natural frequency of the mechanical device may match. It is assumed that the one acoustic sensor with the largest sound amplitude at the frequency) is the one that is installed closest to the sound source of the above-mentioned peak frequency in the mechanical device among the plurality of acoustic sensors. You can Therefore, based on the installation position of the above-mentioned one acoustic sensor, to obtain information about the sound source corresponding to the natural frequency of the mechanical device (for example, the position or part of the sound source in the mechanical device).
  • the natural frequency of the mechanical device can be specified with a simple configuration including a plurality of acoustic sensors, and the position or site having the natural frequency in the mechanical device can be specified. It is possible to obtain information indicating.
  • the diagnostic device is The frequency analysis result of the plurality of sound data further comprises a first removing unit configured to remove a component having a common frequency regardless of the rotation speed condition,
  • the sound source information acquisition unit is configured to exclude the frequency component removed by the first removal unit from the peak frequency and obtain information about the sound source.
  • the diagnostic device is A second removing unit configured to remove a component whose frequency is proportional to the rotation speed of the driving unit, from the frequency analysis result of the plurality of sound data;
  • the sound source information acquisition unit is configured to exclude the frequency component removed by the second removal unit from the peak frequency and obtain information about the sound source.
  • the frequency is a sound due to the magnitude of motion of the drive unit, It can be estimated that it is not related to the natural frequency of the mechanical device.
  • the component whose frequency is proportional to the rotation speed of the drive unit is removed from the frequency analysis result of the plurality of sound data acquired by the plurality of acoustic sensors under the plurality of rotation speed conditions.
  • the above-mentioned frequency components not related to the natural frequency of the mechanical device are excluded from the common peak frequency in the frequency analysis result of the plurality of sound data. Therefore, the natural frequency of the mechanical device can be accurately specified based on the frequency analysis results of the plurality of sound data.
  • the diagnostic device is A memory for storing information in which the peak frequency corresponding to the rotation speed condition specified by the peak frequency specifying unit and the information regarding the sound source specified by the sound source information acquiring unit are associated with each other. Further comprises a section.
  • the peak frequency corresponding to the rotation speed condition specified as described above that is, the frequency that may be the natural frequency of the mechanical device
  • the peak frequency specified as described above Since the information relating to the source of the generated sound can be stored, the mechanical device can be diagnosed based on the stored information, and the mechanical device can be easily diagnosed.
  • the diagnostic device is During operation of the rotation speed of the drive unit at a specified value, a frequency analysis unit configured to perform frequency analysis of diagnostic sound data acquired based on the sound detected by the diagnostic acoustic sensor, And a diagnostic unit configured to make an abnormality determination of the sound source based on the amplitude of the component of the peak frequency in the frequency analysis result of the diagnostic sound data by the frequency analysis unit.
  • the amplitude of the sound of the natural frequency of the mechanical device changes according to the rotation speed of the drive unit.
  • the frequency of the diagnostic sound data is increased. Based on the amplitude of the component of the above-mentioned peak frequency (the peak frequency specified by the configuration of (1) above) in the analysis result, it is possible to appropriately determine the abnormality of the sound source of the peak frequency.
  • the diagnosis unit is configured to determine that an abnormality has occurred in the sound generation source when the amplitude of the peak frequency component is equal to or larger than a threshold in the frequency analysis result of the diagnosis sound data.
  • the amplitude of the component of the peak frequency in the frequency analysis result of the diagnostic sound data is compared with the threshold value, it is possible to appropriately determine the abnormality of the sound source of the peak frequency. Can be done.
  • the above-mentioned threshold value is based on, for example, the amplitude obtained in advance by setting the rotation speed of the drive unit to a specified value for the peak frequency (natural frequency of the mechanical device) specified by the configuration of (1) above. Can be decided.
  • the mechanical device is A motor as the drive unit, A gear or a spindle as the driven portion that is rotationally driven by the motor, A rolling roll driven by the gear or the spindle, It is a rolling mill including.
  • the natural frequency of the rolling mill including the motor as the driving unit, the gear or the spindle as the driven unit, and the rolling roll driven by the gear or the spindle is specified.
  • the plurality of acoustic sensors include a first acoustic sensor provided corresponding to the motor and a second acoustic sensor provided corresponding to the gear or the spindle.
  • the sound data is acquired using the first acoustic sensor provided corresponding to the motor and the second acoustic sensor provided corresponding to the gear or the spindle.
  • the natural frequency can be specified for the motor and the gear or spindle in the rolling mill.
  • a mechanical device including a drive unit and a driven unit that is rotationally driven by the drive unit;
  • the diagnostic device according to any one of (1) to (8), which is configured to diagnose the mechanical device, Equipped with.
  • the amplitude of each sound data is increased. It is possible to grasp the peak frequency at which is the maximum. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency.
  • a common peak frequency existing in a plurality of sound data acquired by a plurality of acoustic sensors may match the natural frequency of the mechanical device. The number can be specified.
  • the peak frequency specified as described above (that is, the natural frequency of the mechanical device may match. It is assumed that the one acoustic sensor with the largest sound amplitude at the frequency) is the one that is installed closest to the sound source of the above-mentioned peak frequency in the mechanical device among the plurality of acoustic sensors. You can Therefore, based on the installation position of the above-mentioned one acoustic sensor, to obtain information about the sound source corresponding to the natural frequency of the mechanical device (for example, the position or part of the sound source in the mechanical device).
  • the natural frequency of the mechanical device can be specified with a simple structure including a plurality of acoustic sensors, and the position or site having the natural frequency in the mechanical device can be specified. It is possible to obtain information indicating.
  • the diagnostic method comprises: A diagnostic method for diagnosing a mechanical device including a drive unit and a driven unit that is rotationally driven by the drive unit, A sound detection step of detecting a sound generated from the mechanical device by a plurality of acoustic sensors respectively installed at different positions, A sound data acquisition step of acquiring a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different, A step of frequency-analyzing each of the plurality of sound data acquired for each of the plurality of rotation speed conditions; A peak frequency specifying step of specifying one or more rotation speed conditions in which a peak frequency common to the plurality of sound data exists and the peak frequency based on a result of the frequency analysis; For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of
  • the amplitude of each sound data is increased. It is possible to grasp the peak frequency at which is the maximum. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency.
  • a common peak frequency existing in a plurality of sound data acquired by a plurality of acoustic sensors may match the natural frequency of the mechanical device. The number can be specified.
  • the peak frequency specified as described above (that is, the natural frequency of the mechanical device may match. It is assumed that the one acoustic sensor with the largest sound amplitude at the frequency) is the one that is installed closest to the sound source of the above-mentioned peak frequency in the mechanical device among the plurality of acoustic sensors. You can Therefore, based on the installation position of the above-mentioned one acoustic sensor, to obtain information about the sound source corresponding to the natural frequency of the mechanical device (for example, the position or part of the sound source in the mechanical device).
  • the natural frequency of the mechanical device can be specified with a simple configuration including a plurality of acoustic sensors, and the position or site having the natural frequency in the mechanical device can be specified. It is possible to obtain information indicating.
  • the method of (10) above comprises The result of the frequency analysis of the plurality of sound data further comprises a first removing step of removing a component having a common frequency regardless of the rotation speed condition, In the sound source information acquisition step, the frequency component removed in the first removal step is excluded from the peak frequency to obtain information about the sound source.
  • the frequency analysis result of the plurality of sound data acquired by the plurality of acoustic sensors under the plurality of rotation speed conditions removes the component having the common frequency regardless of the rotation speed condition,
  • the above-mentioned frequency component related to the background sound is excluded from the common peak frequency in the frequency analysis result of the plurality of sound data. Therefore, the natural frequency of the mechanical device can be accurately specified based on the frequency analysis results of the plurality of sound data.
  • the method of (10) or (11) above comprises Further comprising a second removal step of removing a component whose frequency is proportional to the rotation speed of the drive unit, from the result of the frequency analysis of the plurality of sound data, In the sound source information acquisition step, the frequency component removed in the second removal step is excluded from the peak frequency to obtain information about the sound source.
  • the frequency analysis result of the plurality of sound data acquired by the plurality of acoustic sensors under the plurality of rotation speed conditions is removed by removing the component whose frequency is proportional to the rotation speed of the drive unit.
  • any one of the above methods (10) to (12) The storage section stores information in which the peak frequency corresponding to the rotation speed condition specified in the peak frequency specifying step and the information regarding the sound source acquired in the sound source information acquiring step are associated with each other.
  • the method further includes steps.
  • the peak frequency (that is, the frequency that may be the natural frequency of the mechanical device) corresponding to the rotation speed condition specified as described above and the peak frequency specified as described above are specified. Since the information relating to the source of the generated sound can be stored, the mechanical device can be diagnosed based on the stored information, and the mechanical device can be easily diagnosed.
  • the method according to any one of (10) to (13) above, A step of detecting a sound from the mechanical device with a diagnostic acoustic sensor during operation of the rotation speed of the drive unit at a specified value, and obtaining diagnostic sound data including the sound; Frequency-analyzing the diagnostic sound data, The method further includes a diagnostic step of performing abnormality determination of the sound generation source based on the amplitude of the peak frequency component in the frequency analysis result of the diagnostic sound data.
  • the diagnostic sound data is acquired when the drive unit is driven at a specific rotation speed (specified value). Therefore, in the frequency analysis result of the diagnostic sound data, Based on the amplitude of the component of the above-mentioned peak frequency (the peak frequency specified by the method (10) above), it is possible to appropriately determine the abnormality of the sound source of the peak frequency. Since the rotation speed of the drive unit may be set to a different value depending on the rolling condition, the amplitude of the specified peak frequency component also changes according to each rotation speed.
  • the diagnosis step when the amplitude of the peak frequency component is equal to or larger than a threshold in the frequency analysis result of the diagnostic sound data, it is determined that an abnormality has occurred in the sound generation source.
  • the abnormality determination of the sound source of the peak frequency sound is appropriately performed by comparing the amplitude of the peak frequency component in the frequency analysis result of the diagnostic sound data with the threshold value.
  • the above-mentioned threshold value is based on, for example, the amplitude obtained in advance by setting the rotation speed of the drive unit to a specified value for the peak frequency (natural frequency of the mechanical device) specified by the method (9) described above. Can be decided.
  • the mechanical device is A motor as the drive unit, A gear or a spindle as the driven portion that is rotationally driven by the motor, A rolling roll driven by the gear or the spindle, It is a rolling mill including.
  • the natural frequency of the rolling mill including the motor as the driving unit, the gear or the spindle as the driven unit, and the rolling roll driven by the gear or the spindle is specified.
  • expressions representing shapes such as a quadrangle and a cylinder are not limited to shapes such as a quadrangle and a cylinder in a geometrically strict sense, and are within a range in which the same effect can be obtained. A shape including an uneven portion and a chamfered portion is also shown. Further, in this specification, the expressions “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

This diagnostic device for diagnosing a piece of machinery that includes a driving part and a driven part rotationally driven by the driving part comprises: a plurality of acoustic sensors that are provided to different locations and that are for detecting sounds generated by the machinery; a sound data acquisition unit that is configured so as to acquire a plurality of sound data sets including the sounds detected by each of the plurality of acoustic sensors during each of a plurality of rotational speed conditions differing in the rotational speed of the driving part; a frequency analysis unit that is configured so as to analyze the frequencies of the plurality of sound data sets respectively acquired for the plurality of rotational speed conditions; a peak frequency identification unit that identifies, on the basis of the frequency analysis results from the frequency analysis unit, one or more rotational speed conditions in which the plurality of sound data sets share a peak frequency, and said peak frequency; and a sound source information acquisition unit that, for each of the one or more rotational speed conditions, obtains information related to a sound generation source, within the machinery, having a natural frequency corresponding to the peak frequency, the information being obtained on the basis of the installed location, relative to the machinery, of the one acoustic sensor having the largest amplitude in the sound data corresponding to the peak frequency, among the plurality of acoustic sensors.

Description

診断装置及びこれを備えた設備並びに診断方法Diagnostic device, equipment including the same, and diagnostic method
 本開示は、駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置を診断するための診断装置及びこれを備えた設備並びに診断方法に関する。 The present disclosure relates to a diagnostic device for diagnosing a mechanical device that includes a drive unit and a driven unit that is rotationally driven by the drive unit, a facility including the diagnostic device, and a diagnostic method.
 モータ等の駆動部によって回転駆動される被駆動部を有する機械装置を診断するために、音響センサを用いることがある。 An acoustic sensor may be used to diagnose a mechanical device having a driven part that is rotationally driven by a driving part such as a motor.
 例えば、特許文献1には、モータによって駆動される圧延ロールを含む圧延機において、ロールの振動により鋼板に縞模様が生じる現象(所謂チャタリング)を検出するための装置が記載されている。この装置は、圧延ロールの近傍に設置されたマイクロホン(音響センサ)を含み、該マイクロホンにより圧延機からの音の音響波形を検出するようになっている。そして、このように検出した音響波形に基づいて、予め取得した圧延ロールの固有振動数の音を監視することで、上述のチャタリングを検出するようになっている。 For example, Patent Document 1 describes a device for detecting a phenomenon (so-called chattering) in which a striped pattern occurs on a steel plate due to vibration of a roll in a rolling mill including a rolling roll driven by a motor. This apparatus includes a microphone (acoustic sensor) installed in the vicinity of the rolling roll, and the microphone detects the acoustic waveform of the sound from the rolling mill. Then, the chattering described above is detected by monitoring the sound of the natural frequency of the rolling roll acquired in advance based on the acoustic waveform thus detected.
特開2000-158044号公報Japanese Patent Laid-Open No. 2000-158044
 ところで、上述のチャタリングのように、発生頻度が比較的高い現象については、その現象が生じる機械装置(圧延機等)のために作製した試験装置を用いることにより、あるいは、実機において実際に生じた現象を解析することにより、当該機械装置の固有振動数を特定することが可能である。
 しかしながら、機械装置において問題となり得るが発生頻度が低い事象(例えば、駆動部や被駆動部の損傷)に関しては、対象部位等の固有振動数を調査するために試験装置を作製するのは、コスト等の面で難しい場合があり、また、事象の発生頻度が少ないため、実機に基づく解析により固有振動数を特定することは通常は難しい。そこで、簡素な構成で機械装置の固有振動数を特定することが望まれる。
By the way, as for the phenomenon that the occurrence frequency is relatively high, such as the chattering described above, it occurred by using a test device prepared for a mechanical device (rolling machine, etc.) in which the phenomenon occurs, or actually occurred in an actual machine. By analyzing the phenomenon, the natural frequency of the mechanical device can be specified.
However, for an event that may cause a problem in a mechanical device but occurs infrequently (for example, damage to a driving part or a driven part), it is costly to fabricate a test device to investigate the natural frequency of a target part or the like. However, it is usually difficult to specify the natural frequency by analysis based on an actual machine because the frequency of occurrence of an event is low. Therefore, it is desired to specify the natural frequency of the mechanical device with a simple configuration.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、簡素な構成で機械装置の固有振動数を特定可能な診断装置及びこれを備えた設備並びに診断方法を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention has an object to provide a diagnostic device capable of identifying the natural frequency of a mechanical device with a simple configuration, a facility including the diagnostic device, and a diagnostic method.
(1)本発明の少なくとも一実施形態に係る診断装置は、
 駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置を診断するための診断装置であって、
 それぞれ異なる位置に設けられ、前記機械装置から発生する音をそれぞれ検知するための複数の音響センサと、
 前記駆動部の回転数が異なる複数の回転数条件の各々において前記複数の音響センサの各々で検知された音をそれぞれ含む複数の音データを取得するように構成された音データ取得部と、
 前記複数の回転数条件ごとに取得した前記複数の音データをそれぞれ周波数解析するように構成された周波数解析部と、
 前記周波数解析部による周波数解析結果に基づいて、前記複数の音データに共通するピーク周波数が存在する1以上の回転数条件及び前記ピーク周波数を特定するピーク周波数特定部と、
 前記1以上の回転数条件の各々について、前記複数の音響センサのうち、前記ピーク周波数に対応する前記音データの振幅が最も大きい一の音響センサの前記機械装置に対する設置位置に基づいて、前記機械装置のうち、前記ピーク周波数に対応する固有振動数の音の発生源に関する情報を得る音源情報取得部と、
を備える。
(1) The diagnostic device according to at least one embodiment of the present invention is
A diagnostic device for diagnosing a mechanical device including a drive part and a driven part rotationally driven by the drive part,
A plurality of acoustic sensors provided at different positions, respectively for detecting sounds generated from the mechanical device,
A sound data acquisition unit configured to acquire a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different,
A frequency analysis unit configured to perform frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions,
A peak frequency specifying unit that specifies the peak frequency and at least one rotation speed condition in which a peak frequency common to the plurality of sound data exists, based on a frequency analysis result by the frequency analyzing unit;
For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of acoustic sensors with respect to the mechanical device. Of the device, a sound source information acquisition unit that obtains information about a source of sound having a natural frequency corresponding to the peak frequency,
Equipped with.
 本発明の少なくとも一実施形態によれば、簡素な構成で、機械装置の固有振動数を特定可能な診断装置及びこれを備えた設備並びに診断方法が提供される。 According to at least one embodiment of the present invention, there is provided a diagnostic device capable of specifying the natural frequency of a mechanical device with a simple configuration, a facility including the diagnostic device, and a diagnostic method.
一実施形態に係る圧延設備(設備)を示す概略構成図である。It is a schematic structure figure showing rolling equipment (installation) concerning one embodiment. 一実施形態に係る診断装置の概略構成図である。It is a schematic structure figure of a diagnostic device concerning one embodiment. 一実施形態に係る診断方法の概要を示すフローチャートである。It is a flow chart which shows the outline of the diagnostic method concerning one embodiment. 特定のモータ回転数条件下で複数の音響センサを用いて取得した音データの周波数解析結果の一例を示す図である。It is a figure showing an example of a frequency analysis result of sound data acquired using a plurality of acoustic sensors under a specific motor rotation number condition. 特定のモータ回転数条件下で複数の音響センサを用いて取得した音データの周波数解析結果の一例を示す図である。It is a figure showing an example of a frequency analysis result of sound data acquired using a plurality of acoustic sensors under a specific motor rotation number condition. 特定のモータ回転数条件下で複数の音響センサを用いて取得した音データの周波数解析結果の一例を示す図である。It is a figure showing an example of a frequency analysis result of sound data acquired using a plurality of acoustic sensors under a specific motor rotation number condition. 一実施形態に係る記憶部に記憶される情報の一例を示す図である。It is a figure which shows an example of the information memorize|stored in the memory|storage part which concerns on one Embodiment. 一実施形態に係る診断方法の概要を示すフローチャートである。It is a flow chart which shows the outline of the diagnostic method concerning one embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative positions, and the like of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Absent.
 まず、図1を参照して、幾つかの実施形態に係る診断装置を含む設備の一例である圧延設備について説明する。図1は、一実施形態に係る圧延設備(設備)を示す概略構成図である。 First, with reference to FIG. 1, rolling equipment, which is an example of equipment including a diagnostic device according to some embodiments, will be described. FIG. 1 is a schematic configuration diagram showing rolling equipment (equipment) according to an embodiment.
 図1に示すように、圧延設備(設備)は、圧延装置1と、該圧延装置1を診断するための診断装置30と、を備えている。 As shown in FIG. 1, rolling equipment (equipment) includes a rolling mill 1 and a diagnostic device 30 for diagnosing the rolling mill 1.
 圧延装置1は、モータ2(駆動部)と、モータ2によって回転駆動される圧延ロール8(被駆動部)と、モータ2の動力を圧延ロール8に伝達するための動力伝達部3と、を含む。 The rolling apparatus 1 includes a motor 2 (driving unit), a rolling roll 8 (driven unit) that is rotationally driven by the motor 2, and a power transmission unit 3 that transmits the power of the motor 2 to the rolling roll 8. Including.
 圧延ロール8は、金属帯板9を圧延するように構成されており、金属帯板9を上下から挟み込んで金属帯板9に荷重を加えるための一対のワークロール12A,12Bと、一対のワークロール12A,12Bをそれぞれ挟んで金属帯板9とは、それぞれ反対側に設けられる一対の中間ロール14A,14B及び一対のバックアップロール16A,16Bと、を含む。中間ロール14A,14Bは、それぞれ、ワークロール12A,12Bと、バックアップロール16A,16Bとの間に設けられる。 The rolling roll 8 is configured to roll the metal strip plate 9, and includes a pair of work rolls 12A and 12B for sandwiching the metal strip plate 9 from above and below to apply a load to the metal strip plate 9 and a pair of works. The metal strip 9 includes the pair of intermediate rolls 14A and 14B and the pair of backup rolls 16A and 16B provided on opposite sides of the rolls 12A and 12B, respectively. The intermediate rolls 14A and 14B are provided between the work rolls 12A and 12B and the backup rolls 16A and 16B, respectively.
 動力伝達部3は、モータ2によって回転駆動されるギア4(被駆動部)及びスピンドル6(被駆動部)を含む。すなわち、ギア4はモータ2に接続されており、スピンドル6は、ギア4を介してモータ2に接続されている。また、圧延ロール8は、ギア4及びスピンドル6を介して、モータ2に接続されている。したがって、モータ2によってギア4及びスピンドル6が回転駆動されると、該ギア4及びスピンドル6によって圧延ロール8が駆動されるようになっている。すなわち、モータ2の回転運動がギア4、スピンドル6及び圧延ロール8に伝達され、ギア4、スピンドル6及び圧延ロール8は、それぞれ、モータ2の出力(回転数)に応じた回転数にて回転するようになっている。 The power transmission unit 3 includes a gear 4 (driven unit) and a spindle 6 (driven unit) that are rotationally driven by the motor 2. That is, the gear 4 is connected to the motor 2, and the spindle 6 is connected to the motor 2 via the gear 4. The rolling roll 8 is connected to the motor 2 via the gear 4 and the spindle 6. Therefore, when the gear 4 and the spindle 6 are rotationally driven by the motor 2, the rolling roll 8 is driven by the gear 4 and the spindle 6. That is, the rotational movement of the motor 2 is transmitted to the gear 4, the spindle 6 and the rolling roll 8, and the gear 4, the spindle 6 and the rolling roll 8 rotate at the number of rotations corresponding to the output (rotation number) of the motor 2, respectively. It is supposed to do.
 次に、図1及び図2を参照して、一実施形態に係る診断装置30の構成について説明する。図2は、一実施形態に係る診断装置30の概略構成図である。 Next, the configuration of the diagnostic device 30 according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 2 is a schematic configuration diagram of the diagnostic device 30 according to the embodiment.
 図1に示すように、一実施形態に係る診断装置30は、圧延装置1から発生する音をそれぞれ検知するための複数の音響センサ32,34A,34Bと、複数の音響センサ32,34A,34Bにより検知された音データを処理するための処理部36と、処理部36での処理結果等を記憶するための記憶部37と、処理部36での処理結果を表示するための表示部38と、を含んでいる。 As shown in FIG. 1, a diagnostic device 30 according to an embodiment includes a plurality of acoustic sensors 32, 34A, 34B for detecting sounds generated from the rolling mill 1, and a plurality of acoustic sensors 32, 34A, 34B. A processing unit 36 for processing the sound data detected by, a storage unit 37 for storing the processing result of the processing unit 36, and a display unit 38 for displaying the processing result of the processing unit 36. , Is included.
 複数の音響センサ32,34A,34Bは、それぞれ異なる位置に設けられている。
 図示する実施形態では、複数の音響センサは、モータ2に対応して設けられる第1音響センサ32と、ギア4に対応して設けられる第2音響センサ34Aと、スピンドル6に対応して設けられる第2音響センサ34Bと、を含む。すなわち、第1音響センサ32は、モータ2の近傍に設けられ、第2音響センサ34Aはギア4の近傍に設けられ、第2音響センサ34Bはスピンドル6の近傍に設けられている。なお、以下の説明において、第1音響センサ32及び第2音響センサ34A,34Bを、音響センサ32,34A,34B等と総称することがある。
 幾つかの実施形態では、音響センサ32,34A,34Bは、集音マイクロホンを含んでいてもよい。
The plurality of acoustic sensors 32, 34A, 34B are provided at different positions.
In the illustrated embodiment, the plurality of acoustic sensors are provided corresponding to the first acoustic sensor 32 provided corresponding to the motor 2, the second acoustic sensor 34A provided corresponding to the gear 4, and the spindle 6. The second acoustic sensor 34B is included. That is, the first acoustic sensor 32 is provided near the motor 2, the second acoustic sensor 34A is provided near the gear 4, and the second acoustic sensor 34B is provided near the spindle 6. In the following description, the first acoustic sensor 32 and the second acoustic sensors 34A, 34B may be collectively referred to as acoustic sensors 32, 34A, 34B.
In some embodiments, the acoustic sensors 32, 34A, 34B may include sound collection microphones.
 処理部36は、CPU、メモリ(RAM)、補助記憶部及びインターフェース等を含んでいてもよい。処理部36は、インターフェースを介して、音響センサ32,34A,34Bで検出した音を示す音データを受け取るようになっていてもよい。CPUは、このようにして受け取った音データを処理するように構成される。また、CPUは、メモリに展開されるプログラムを処理するように構成される。 The processing unit 36 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like. The processing unit 36 may receive sound data indicating sounds detected by the acoustic sensors 32, 34A, 34B via the interface. The CPU is configured to process the sound data thus received. In addition, the CPU is configured to process the program loaded in the memory.
 処理部36での処理内容は、CPUにより実行されるプログラムとして実装され、補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムはメモリに展開される。CPUは、メモリからプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。 The processing content of the processing unit 36 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in the memory. The CPU reads the program from the memory and executes the instructions included in the program.
 記憶部37は、処理部36を構成する装置(計算機等)の外部に設けられた外部記憶部を含んでいてもよい。あるいは、記憶部37は、処理部36を構成する装置の内部に設けられた記憶部であってもよく、例えば、上述のメモリや補助記憶部であってもよい。 The storage unit 37 may include an external storage unit provided outside the device (computer or the like) configuring the processing unit 36. Alternatively, the storage unit 37 may be a storage unit provided inside the device configuring the processing unit 36, and may be, for example, the above-described memory or auxiliary storage unit.
 図2に示すように、処理部36は、音響センサ32,34A,34Bからの音を含む音データを取得するための音データ取得部40と、音データの周波数解析をするための周波数解析部42と、周波数解析結果から、複数の音データに共通するピーク周波数を特定するためのピーク周波数特定部48と、特定されたピーク周波数に対応する固有振動数の音の発生源に関する情報を取得するための音源情報取得部50と、を含む。また、処理部36は、音データの周波数解析結果から、特定しようとする圧延装置1(機械装置)の固有振動数に関連しない周波数成分を除去するための第1除去部44及び第2除去部46を含む。また、処理部36は、ピーク周波数特定部48及び音源情報取得部50により特定された固有振動数(ピーク周波数)及び当該固有振動数の音の発生源に関する情報に基づいて、圧延装置1の診断をするための診断部54を含む。 As shown in FIG. 2, the processing unit 36 includes a sound data acquisition unit 40 for acquiring sound data including sounds from the acoustic sensors 32, 34A, 34B, and a frequency analysis unit for performing frequency analysis of the sound data. 42, and a frequency analysis result, a peak frequency specifying unit 48 for specifying a peak frequency common to a plurality of sound data, and information about a sound source having a natural frequency corresponding to the specified peak frequency. Sound source information acquisition unit 50 for Further, the processing unit 36 removes, from the frequency analysis result of the sound data, a frequency component that is not related to the natural frequency of the rolling mill 1 (mechanical device) to be identified, and the second removing unit 44 and the second removing unit. Including 46. Further, the processing unit 36 diagnoses the rolling mill 1 based on the natural frequency (peak frequency) specified by the peak frequency specifying unit 48 and the sound source information acquiring unit 50 and the information about the source of the sound of the natural frequency. The diagnostic unit 54 for performing the operation is included.
 音データ取得部40は、モータ2(駆動部)の回転数が異なる複数の回転数条件の各々において複数の音響センサ32,34A,34Bの各々で検知された音をそれぞれ含む複数の音データを取得するように構成される。 The sound data acquisition unit 40 outputs a plurality of sound data including sound detected by each of the plurality of acoustic sensors 32, 34A, 34B under each of a plurality of rotation speed conditions in which the rotation speed of the motor 2 (driving unit) is different. Configured to get.
 周波数解析部42は、音データ取得部40により複数の回転数条件ごとに取得した複数の音データをそれぞれ周波数解析するように構成される。一実施形態では、周波数解析部42は、上述の周波数解析を行うことにより、複数の音データの各々について、周波数と振幅との相関関係を示す周波数スペクトルを得るように構成されている。 The frequency analysis unit 42 is configured to frequency analyze each of the plurality of sound data acquired by the sound data acquisition unit 40 for each of the plurality of rotation speed conditions. In one embodiment, the frequency analysis unit 42 is configured to obtain the frequency spectrum showing the correlation between the frequency and the amplitude for each of the plurality of sound data by performing the frequency analysis described above.
 ピーク周波数特定部48は、周波数解析部42による周波数解析結果に基づいて、複数の音データに共通するピーク周波数が存在する1以上の回転数条件を特定するように構成される。 The peak frequency identification unit 48 is configured to identify one or more rotation speed conditions in which a peak frequency common to a plurality of sound data exists, based on the frequency analysis result by the frequency analysis unit 42.
 音源情報取得部50は、ピーク周波数特定部48によって特定された上述の1以上の回転数条件の各々について、複数の音響センサ32,34A,34Bのうち、上述の共通するピーク周波数に対応する音データの振幅が最も大きい一の音響センサ(音響センサ32,34A,34Bの何れか)を特定する。そして、特定された音響センサの圧延装置1に対する設置位置に基づいて、圧延装置1のうち、上述の共通するピーク周波数に対応する固有振動数の音の発生源に関する情報を得るように構成されている。 The sound source information acquisition unit 50, for each of the above-described one or more rotation speed conditions identified by the peak frequency identification unit 48, a sound corresponding to the above-described common peak frequency among the plurality of acoustic sensors 32, 34A, 34B. One acoustic sensor (any of the acoustic sensors 32, 34A, 34B) having the largest data amplitude is specified. Then, based on the installation position of the specified acoustic sensor with respect to the rolling mill 1, the rolling mill 1 is configured to obtain information regarding the sound source of the sound of the natural frequency corresponding to the above-mentioned common peak frequency. There is.
 ここで、音の発生源に関する情報とは、圧延装置1において、その音が発生する位置又は部位を示す情報であり、すなわち、複数の音響センサのうちの何れに近い位置又は部位であるかを示す情報である。例えば、上述の共通するピーク周波数における振幅が、音響センサ32,34A,34Bで取得した音データのうち、音響センサ32で取得した音データにおいて最も大きい場合、当該共通するピーク周波数は、圧延装置1のうち、音響センサ34A,34Bよりも音響センサ32の近くに位置する部位の固有振動数であると推定することができる。モータ2、ギア4、スピンドル6のうち音響センサ32に最も近い機械装置がモータ2であることを音源情報取得部50に入力しておけば、ギア4やスピンドル6ではなく、モータ2の固有振動数であると推定することができる。あるいは、その固有振動数を有する具体的な部位を特定できなくとも、その固有振動数を有する部位の凡その位置)を把握することができる。処理部36(音源情報取得部50)は、どの機械装置又は圧延装置1における位置がどの音響センサに最も近いかという情報を、音データを取得する前後の過程で得るように構成されていてもよいし、予め情報が格納されていてもよい。 Here, the information relating to the sound source is information indicating the position or part where the sound is generated in the rolling mill 1, that is, which of the plurality of acoustic sensors is the position or part close to which. It is information to show. For example, when the amplitude at the above-mentioned common peak frequency is the largest in the sound data acquired by the acoustic sensor 32 among the sound data acquired by the acoustic sensors 32, 34A, 34B, the common peak frequency is the rolling device 1 Among these, it can be estimated that it is the natural frequency of a portion located closer to the acoustic sensor 32 than the acoustic sensors 34A and 34B. By inputting to the sound source information acquisition unit 50 that the mechanical device closest to the acoustic sensor 32 among the motor 2, the gear 4, and the spindle 6 is input to the sound source information acquisition unit 50, not the gear 4 or the spindle 6, but the natural vibration of the motor 2. It can be estimated to be a number. Alternatively, even if the specific portion having the natural frequency cannot be specified, the approximate position of the portion having the natural frequency can be grasped. The processing unit 36 (sound source information acquisition unit 50) may be configured to obtain information about which mechanical device or position in the rolling mill 1 is closest to which acoustic sensor in a process before and after acquiring sound data. The information may be stored in advance.
 ピーク周波数特定部48によって特定された回転数条件に対応する上述の共通するピーク周波数、及び、音源情報取得部50によって特定された上述の音の発生源に関する情報は、記憶部37に記憶されるようになっている。記憶部37は、上述の共通するピーク周波数と、上述の音の発生源に関する情報と、が関連付けられた情報を記憶するように構成されている。 The above-mentioned common peak frequency corresponding to the rotation speed condition specified by the peak frequency specifying unit 48 and the information regarding the sound source specified by the sound source information acquiring unit 50 are stored in the storage unit 37. It is like this. The storage unit 37 is configured to store information in which the above-described common peak frequency and the above-described information regarding the sound source are associated with each other.
 第1除去部44は、周波数解析部42による複数の音データの周波数解析結果について、モータ2(駆動部)の回転数条件に依らず周波数が共通の成分を除去するように構成される。音源情報取得部50は、第1除去部44により上述の周波数成分が除去された場合、このように除去される周波数成分を圧延装置1の固有振動数ではないとみなし、当該周波数成分を上述のピーク周波数から除外して、前記音の発生源に関する情報を得るように構成される。 The first removal unit 44 is configured to remove a component having a common frequency from the frequency analysis results of the plurality of sound data by the frequency analysis unit 42 regardless of the rotation speed condition of the motor 2 (driving unit). When the above-mentioned frequency component is removed by the first removal unit 44, the sound source information acquisition unit 50 regards the frequency component thus removed as not the natural frequency of the rolling apparatus 1 and sets the frequency component as described above. It is arranged to obtain information about the source of the sound, excluding it from the peak frequencies.
 異なる回転数条件の下で取得された複数の音データにおいて、同一の周波数に振幅のピークが現れる場合、その周波数は、モータ2(駆動部)の回転数に依らずに生じる背景音に由来するものであると推定される。そこで、上述のように、複数の音データの周波数解析結果について、回転数条件に依らず周波数が共通の成分を除去し、音の発生源に関する情報を得る際に、複数の音データの周波数解析結果における共通のピーク周波数から背景音に関連する上述の周波数成分を除外することにより、複数の音データの周波数解析結果に基づいて、圧延装置1の固有振動数を精度良好に特定することができる。 When amplitude peaks appear at the same frequency in a plurality of sound data acquired under different rotation speed conditions, the frequency is derived from the background sound that occurs regardless of the rotation speed of the motor 2 (driving unit). Presumed to be a thing. Therefore, as described above, regarding the frequency analysis result of a plurality of sound data, the frequency analysis of the plurality of sound data is performed when the component having the common frequency is removed regardless of the rotation speed condition to obtain the information about the sound source. By excluding the above-mentioned frequency component related to the background sound from the common peak frequency in the result, the natural frequency of the rolling mill 1 can be accurately specified based on the frequency analysis result of the plurality of sound data. ..
 例えば、ある回転数条件で、上述の共通するピーク周波数が複数存在し、そのうち1つの共通のピーク周波数が第1除去部44により除去される周波数成分であれば、別の共通するピーク周波数に基づいて、当該「別の」ピーク周波数に対応する固有振動数の音の発生源に関する情報を得るようになっている。 For example, if there is a plurality of common peak frequencies described above under a certain rotation speed condition, and one of the common peak frequencies is a frequency component removed by the first removing unit 44, another common peak frequency is used. Then, the information regarding the source of the sound of the natural frequency corresponding to the "other" peak frequency is obtained.
 第2除去部46は、周波数解析部42による複数の音データの周波数解析結果について、モータ2(駆動部)の回転数に周波数が比例する成分を除去するように構成される。音源情報取得部50は、第2除去部46により上述の周波数成分が除去された場合、このように除去される周波数成分を圧延装置1の固有振動数ではないとみなし、当該周波数成分を上述のピーク周波数から除外して、前記音の発生源に関する情報を得るように構成される。 The second removing unit 46 is configured to remove a component whose frequency is proportional to the rotation speed of the motor 2 (driving unit) in the frequency analysis result of the plurality of sound data by the frequency analyzing unit 42. When the above-mentioned frequency component is removed by the second removal unit 46, the sound source information acquisition unit 50 regards the frequency component thus removed as not the natural frequency of the rolling apparatus 1 and sets the frequency component as described above. It is arranged to obtain information about the source of the sound, excluding it from the peak frequencies.
 異なる回転数条件の下で取得された複数の音データにおいて、モータ2(駆動部)の回転数に比例する周波数成分のピークが現れる場合、その周波数は、モータ2の回転運動の大きさに起因する音であり、圧延装置1の固有振動数とは関連しないものであると推定される。そこで、上述のように、複数の音データの周波数解析結果について、モータ2の回転数に周波数が比例する成分を除去し、音の発生源に関する情報を得る際に、複数の音データの周波数解析結果における共通のピーク周波数から、圧延装置1の固有振動数に関連しない上述の周波数成分を除外することにより、複数の音データの周波数解析結果に基づいて、圧延装置1の固有振動数を精度良好に特定することができる。 When a peak of a frequency component proportional to the rotation speed of the motor 2 (driving unit) appears in a plurality of sound data acquired under different rotation speed conditions, the frequency is caused by the magnitude of the rotational movement of the motor 2. It is presumed to be a noise that is generated and does not relate to the natural frequency of the rolling mill 1. Therefore, as described above, in the frequency analysis result of the plurality of sound data, the frequency analysis of the plurality of sound data is performed when the component whose frequency is proportional to the rotation speed of the motor 2 is removed to obtain the information about the sound source. By excluding the above-mentioned frequency components that are not related to the natural frequency of the rolling mill 1 from the common peak frequency in the results, the natural frequency of the rolling mill 1 can be accurately determined based on the frequency analysis results of a plurality of sound data. Can be specified.
 診断部54は、周波数解析部42による診断用音データについての周波数解析結果における、上述のピーク周波数の成分(すなわち、特定された音の発生源の固有振動数に相当する周波数成分)の振幅に基づいて、前記音の発生源の異常判定を行うように構成される。 The diagnostic unit 54 determines the amplitude of the above-described peak frequency component (that is, the frequency component corresponding to the natural frequency of the identified sound source) in the frequency analysis result of the diagnostic sound data by the frequency analysis unit 42. On the basis of the above, the sound source is determined to be abnormal.
 診断用音データは、圧延装置1の近傍に診断用音響センサ35により取得される。なお、診断用音響センサ35としては、固有振動数や該固有振動数の音の発生源を特定するための音を検知するために(すなわち、ピーク周波数特定部48や音源情報取得部50で処理される音データを取得するために)用いた音響センサ32,34A,34Bの何れかを用いてもよいし、これらの音響センサ32,34A,34Bとは別の音響センサを用いてもよい。 The diagnostic sound data is acquired by the diagnostic acoustic sensor 35 near the rolling mill 1. The diagnostic acoustic sensor 35 detects the natural frequency and the sound for identifying the source of the sound of the natural frequency (that is, the peak frequency specifying unit 48 and the sound source information acquiring unit 50 process the sound. Any of the acoustic sensors 32, 34A, 34B used for acquiring the sound data to be reproduced may be used, or an acoustic sensor different from these acoustic sensors 32, 34A, 34B may be used.
 幾つかの実施形態では、診断用音響センサ35で検知された音は、上述の音データ取得部40により、診断用音データとして取得され、周波数解析部42により、この診断用音データについて周波数解析が行われる。そして、上述の診断部54は、この周波数解析結果を用いて、上述のように音の発生源の異常判定を行うようになっている。 In some embodiments, the sound detected by the diagnostic acoustic sensor 35 is acquired as diagnostic sound data by the above-described sound data acquisition unit 40, and the frequency analysis unit 42 performs a frequency analysis on this diagnostic sound data. Is done. Then, the above-mentioned diagnosis unit 54 uses the frequency analysis result to make an abnormality determination of the sound generation source as described above.
 幾つかの実施形態では、診断部54は、上述の診断用音データについての周波数解析結果において、ピーク周波数特定部48及び音源情報取得部50で特定された音の発生源に対応するピーク周波数の成分(すなわち、当該ピーク周波数に対応する固有振動数の周波数成分)の振幅が閾値以上であるとき、前記音の発生源に異常が生じたと判定するように構成される。 In some embodiments, the diagnosis unit 54 determines the peak frequency corresponding to the sound source identified by the peak frequency identification unit 48 and the sound source information acquisition unit 50 in the frequency analysis result of the diagnostic sound data described above. When the amplitude of the component (that is, the frequency component of the natural frequency corresponding to the peak frequency) is equal to or larger than the threshold value, it is configured to determine that the sound source has an abnormality.
 以下、幾つかの実施形態に係る診断方法について説明する。
 まず、一実施形態に係る診断方法において、上述の診断装置30(図2参照)により圧延装置1の固有振動数を特定する方法について説明する。
Hereinafter, diagnostic methods according to some embodiments will be described.
First, a method of identifying the natural frequency of the rolling mill 1 by the above-described diagnostic device 30 (see FIG. 2) in the diagnostic method according to the embodiment will be described.
 図3は、一実施形態に係る診断方法の概要を示すフローチャートである。
 図4~図6は、それぞれ、特定のモータ回転数条件下(図4ではn[rpm]、図5では2n[rpm]、図6では4n[rpm])で、音響センサ32,34A,34Bを用いて取得した音データの周波数解析結果(周波数スペクトル)の一例を示す図である。図4~図6では、音響センサ32,34A,34BをそれぞれマイクA,マイクB、マイクCとして表示している。また、図4~図6のグラフの縦軸において、各音響センサ(マイク)で取得された音データに関する周波数f[Hz]における成分の振幅(強度)を、I(f,マイクを示す記号)と表示している。例えば、音響センサ32(マイクA)で取得した音データの、周波数f1における振幅は、I(f1、A)である。なお、実際の音データを周波数解析すると、図4~図6に示す周波成分以外にも、広い周波数帯に亘って多数のピークが現れるのが通常であるが、図4~図6では、図をわかりやすくするため、特にピーク値の大きい周波数成分のみを示している。
 図7は、記憶部37に記憶される音の発生源とこれに対応するピーク周波数(固有振動数)とが関連付けられた情報の一例を示す図である。
FIG. 3 is a flowchart showing an outline of the diagnostic method according to the embodiment.
4 to 6 are acoustic sensors 32, 34A, 34B under specific motor rotation speed conditions (n [rpm] in FIG. 4, 2n [rpm] in FIG. 5, 4n [rpm] in FIG. 6). It is a figure which shows an example of the frequency analysis result (frequency spectrum) of the sound data acquired using. In FIGS. 4 to 6, the acoustic sensors 32, 34A, 34B are shown as a microphone A, a microphone B, and a microphone C, respectively. Further, on the vertical axis of the graphs of FIGS. 4 to 6, the amplitude (intensity) of the component at the frequency f [Hz] regarding the sound data acquired by each acoustic sensor (microphone) is represented by I (symbol indicating f, microphone). Is displayed. For example, the amplitude of the sound data acquired by the acoustic sensor 32 (microphone A) at the frequency f1 is I(f1, A). It should be noted that, when frequency analysis is performed on actual sound data, many peaks generally appear over a wide frequency band in addition to the frequency components shown in FIGS. 4 to 6, but in FIGS. In order to make it easy to understand, only the frequency component with a large peak value is shown.
FIG. 7 is a diagram showing an example of information in which a sound generation source stored in the storage unit 37 and a peak frequency (natural frequency) corresponding thereto are associated with each other.
 なお、以下の説明では、複数の回転数条件を、モータ2の回転数がn,2n,4nの3条件とし、複数の音響センサとして3つの音響センサ32,34A,34B(マイクA~C)を用いているが、複数の回転数条件や、音響センサの個数は、これに限定されず、任意の複数(2以上)の回転数条件及び複数(2以上)の音響センサを用いて、本発明の実施形態に係る診断方法を実施することができる。 In the following description, the plurality of rotation speed conditions are three conditions in which the rotation speed of the motor 2 is n, 2n, and 4n, and the three sound sensors 32, 34A, and 34B (microphones A to C) are used as the plurality of sound sensors. However, the number of rotation speed conditions and the number of acoustic sensors are not limited to this, and any number of rotation speed conditions (two or more) and plural (two or more) acoustic sensors can be used to The diagnostic method according to the embodiment of the invention can be implemented.
 図3に示すように、一実施形態に係る圧延装置1の診断方法では、まず、それぞれ異なる位置に設置された複数の音響センサ32,34A,34B(すなわち、マイクA~C)を用いて、圧延装置1から発生する音をそれぞれ検知する(音検知ステップ;ステップS102)。 As shown in FIG. 3, in the method for diagnosing the rolling mill 1 according to the embodiment, first, a plurality of acoustic sensors 32, 34A, 34B (that is, microphones A to C) installed at different positions are used. The sound generated from the rolling mill 1 is detected (sound detection step; step S102).
 そして、音データ取得部40(図2参照)により、モータ2(駆動部)の回転数が異なる複数の回転数条件の各々において音響センサ32,34A,34Bの各々で検知された音をそれぞれ含む複数の音データを、処理部36の音データ取得部40にて取得する(音データ取得ステップ;ステップS104)。ここでは、モータ2の回転数が、それぞれn、2n(nの2倍)、及び4n(nの4倍)である3種類の回転数条件の各々において、各音響センサを用いて音データを取得する。つまり、3種類の回転数条件の各々につき、3つの音響センサ32,34A,34Bで音データを取得するため、9種の音データが取得される。 Then, the sound data acquisition unit 40 (see FIG. 2) includes sounds detected by the acoustic sensors 32, 34A, and 34B under each of a plurality of rotation speed conditions in which the rotation speed of the motor 2 (driving unit) is different. The sound data acquisition unit 40 of the processing unit 36 acquires a plurality of sound data (sound data acquisition step; step S104). Here, under each of three types of rotation speed conditions in which the rotation speed of the motor 2 is n, 2n (twice n), and 4n (four times n), the sound data is obtained using each acoustic sensor. get. That is, since sound data is acquired by the three acoustic sensors 32, 34A, 34B for each of the three types of rotation speed conditions, nine kinds of sound data are acquired.
 次に、周波数解析部42により、上述の複数の回転数条件(モータ回転数がn、2n、4nの3条件)ごとに取得した複数の音データについて、それぞれ周波数解析を行う(周波数解析ステップ;ステップ106)。この周波数解析の結果得られる周波数スペクトルが図4(回転数条件:n[rpm]の場合)、図5(回転数条件:2n[rpm]の場合)、及び図6(回転数条件:4n[rpm]の場合)に示されている。 Next, the frequency analysis unit 42 performs a frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions (three conditions of the motor rotation speed n, 2n, and 4n) (frequency analysis step; Step 106). The frequency spectrum obtained as a result of this frequency analysis is shown in FIG. 4 (when the rotation speed condition is n [rpm]), FIG. 5 (when the rotation speed condition is 2n [rpm]), and FIG. 6 (rotation speed condition: 4n [ rpm])).
 次に、ピーク周波数特定部48により、上述の周波数解析の結果に基づいて、複数の音データに共通するピーク周波数が存在する1以上の回転数条件及び当該ピーク周波数を特定する(ピーク周波数特定ステップ;ステップS108)。具体的には、以下に述べるように、上述の回転数条件及び共通するピーク周波数を特定する。 Next, the peak frequency specifying unit 48 specifies one or more rotation speed conditions in which a peak frequency common to a plurality of sound data exists and the peak frequency based on the result of the above-described frequency analysis (peak frequency specifying step). ; Step S108). Specifically, as described below, the above-described rotation speed condition and the common peak frequency are specified.
 図4に示す各音響センサ(マイクA~C)に係る音データの周波数スペクトルでは、fa,f1及びfbの3つの周波数において、音響センサ32,34A,34B(マイクA~C)の各々に係る音データにピークが現れている。よって、モータ2の回転数がn[rpm]であるとの回転数条件のもとでは、これらの音データに共通するピーク周波数は、fa,f1及びfbである、と特定される。 In the frequency spectrum of the sound data relating to the acoustic sensors (microphones A to C) shown in FIG. 4, the acoustic sensors 32, 34A, and 34B (microphones A to C) respectively have three frequencies fa, f1, and fb. A peak appears in the sound data. Therefore, under the rotational speed condition that the rotational speed of the motor 2 is n [rpm], the peak frequencies common to these sound data are specified as fa, f1 and fb.
 図5に示す各音響センサ(マイクA~C)に係る音データの周波数スペクトルでは、fa,f2及び2fb(fbの2倍)の3つの周波数において、音響センサ32,34A,34B(マイクA~C)の各々に係る音データにピークが現れている。よって、モータ2の回転数が2n[rpm]であるとの回転数条件のもとでは、これらの音データに共通するピーク周波数は、fa,f2及び2fbである、と特定される。 In the frequency spectrum of the sound data relating to the acoustic sensors (microphones A to C) shown in FIG. 5, the acoustic sensors 32, 34A, 34B (microphones A to C) are three frequencies fa, f2, and 2fb (twice fb). A peak appears in the sound data for each of C). Therefore, under the rotational speed condition that the rotational speed of the motor 2 is 2n [rpm], the peak frequencies common to these sound data are specified as fa, f2, and 2fb.
 図6に示す各音響センサ(マイクA~C)に係る音データの周波数スペクトルでは、fa,f3及び4fb(fbの4倍)の3つの周波数において、音響センサ32,34A,34B(マイクA~C)の各々に係る音データにピークが現れている。よって、モータ2の回転数が4n[rpm]であるとの回転数条件のもとでは、これらの音データに共通するピーク周波数は、fa,f3及び4fbである、と特定される。 In the frequency spectrum of the sound data related to the acoustic sensors (microphones A to C) shown in FIG. 6, the acoustic sensors 32, 34A, and 34B (microphones A to C) at three frequencies fa, f3, and 4fb (four times fb). A peak appears in the sound data for each of C). Therefore, under the rotation speed condition that the rotation speed of the motor 2 is 4 n [rpm], the peak frequencies common to these sound data are specified as fa, f3, and 4fb.
 次に、第1除去部44により、複数の回転数条件(モータ回転数がn、2n、4nの3条件)の下で、複数の音響センサ(マイクA~C)で取得された複数の音データ(9種の音データ)の周波数解析の結果(図4~図6に示す周波数スペクトル)について、回転数条件に依らず周波数が共通の成分を除去する(第1除去ステップ;ステップS110)。 Next, the plurality of sounds acquired by the plurality of acoustic sensors (microphones A to C) by the first removing unit 44 under a plurality of rotation speed conditions (three motor rotation speed conditions of n, 2n, and 4n). From the results of frequency analysis of the data (9 kinds of sound data) (frequency spectra shown in FIGS. 4 to 6), components having a common frequency are removed regardless of the rotation speed condition (first removal step; step S110).
 図4~図6に示す9つの周波数スペクトルでは、これらの周波数スペクトルの全てにおいて、周波数faのピークが存在する。したがって、周波数faの成分は、モータ2(駆動部)の回転数条件によらず共通して存在する成分である。すなわち、第1除去部44は、各周波数スペクトルについて、周波数faの成分を有するピークを除去する。なお、図4~図6において、除去される周波数faの成分を有するピークは、破線で示されている。 In the nine frequency spectra shown in FIGS. 4 to 6, the peak of the frequency fa exists in all of these frequency spectra. Therefore, the component of the frequency fa is a component that exists in common regardless of the rotation speed condition of the motor 2 (driving unit). That is, the first removing unit 44 removes the peak having the component of the frequency fa from each frequency spectrum. 4 to 6, the peak having the component of the frequency fa to be removed is indicated by a broken line.
 次に、第2除去部46により、複数の回転数条件(モータ回転数がn、2n、4nの3条件)の下で、複数の音響センサ(マイクA~C)で取得された複数の音データ(9種の音データ)の周波数解析の結果(図4~図6に示す周波数スペクトル)について、モータ2(駆動部)の回転数に周波数が比例する成分を除去する(第2除去ステップ;ステップS112)。 Next, the plurality of sounds acquired by the plurality of acoustic sensors (microphones A to C) by the second removing unit 46 under a plurality of rotation speed conditions (three conditions of motor rotation speeds of n, 2n, and 4n). From the frequency analysis result of the data (9 kinds of sound data) (frequency spectrum shown in FIGS. 4 to 6), a component whose frequency is proportional to the rotation speed of the motor 2 (driving unit) is removed (second removing step; Step S112).
 ここで、図4に示す周波数スペクトル、すなわち、モータ2の回転数がn[rpm]の条件で取得された3つの周波数スペクトルには、周波数fbのピークが共通して存在する。また、図5に示す周波数スペクトル、すなわち、モータ2の回転数が2n[rpm]の条件で取得された3つの周波数スペクトルには、周波数2fbのピークが共通して存在する。また、図6に示す周波数スペクトル、すなわち、モータ2の回転数が4n[rpm]の条件で取得された3つの周波数スペクトルには、周波数4fbのピークが共通して存在する。
 したがって、これらの周波数fb、2fb、4fbの成分は、モータ2の回転数に周波数が比例する成分である。すなわち、第2除去部46は、各周波数スペクトルについて、周波数fb、2fb、4fbの成分を有するピークを除去する。なお、図4~図6において、除去される周波数fb、2fb、4fbの成分を有するピークは、破線で示されている。
Here, the frequency spectrum shown in FIG. 4, that is, the three frequency spectra acquired under the condition that the rotation speed of the motor 2 is n [rpm], has a peak of the frequency fb in common. Further, the frequency spectrum shown in FIG. 5, that is, the three frequency spectra acquired under the condition that the rotation speed of the motor 2 is 2n [rpm], has a peak of frequency 2fb in common. Further, the frequency spectrum shown in FIG. 6, that is, the three frequency spectra acquired under the condition that the rotation speed of the motor 2 is 4 n [rpm], has a peak of frequency 4fb in common.
Therefore, the components of these frequencies fb, 2fb, 4fb are components whose frequency is proportional to the rotation speed of the motor 2. That is, the second removing unit 46 removes peaks having components of frequencies fb, 2fb, and 4fb from each frequency spectrum. 4 to 6, the peaks having the components of the frequencies fb, 2fb, 4fb to be removed are shown by broken lines.
 次に、音源情報取得部50により、1以上の回転数条件の各々について、複数の音響センサ(マイクA~C)のうち、ピーク周波数特定ステップ(S112)で特定された共通のピーク周波数に対応する音データの振幅が最も大きい一の音響センサの圧延装置1に対する設置位置に基づいて、圧延装置1のうち、当該共通のピーク周波数に対応する固有振動数の音の発生源に関する情報を得る(音源情報取得ステップ;ステップS114)。 Next, the sound source information acquisition unit 50 corresponds to the common peak frequency specified in the peak frequency specifying step (S112) among the plurality of acoustic sensors (microphones A to C) for each of the one or more rotation speed conditions. Based on the installation position of the one acoustic sensor having the largest amplitude of the sound data with respect to the rolling mill 1, information on the sound source of the rolling mill 1 having the natural frequency corresponding to the common peak frequency is obtained ( Sound source information acquisition step; step S114).
 音源情報取得ステップ(S114)では、上述の第1除去ステップ(S110)で除去される周波数成分を前述の共通のピーク周波数から除外して、音の発生源に関する情報を得るようにしてもよい。
 また、音源情報取得ステップ(S114)では、上述の第2除去ステップ(S112)により除去される周波数成分を前述の共通のピーク周波数から除外して、音の発生源に関する情報を得るようにしてもよい。
In the sound source information acquisition step (S114), the frequency component removed in the above-described first removal step (S110) may be excluded from the above-mentioned common peak frequency to obtain information regarding the sound source.
Further, in the sound source information acquisition step (S114), the frequency component removed in the second removal step (S112) is excluded from the common peak frequency described above to obtain information about the sound source. Good.
 より具体的には、図4に示される3つの周波数スペクトル(モータ2の回転数がnである回転数条件で、3つの音響センサ(マイクA~C)取得された音データの周波数スペクトル)では、既に述べたように、これらの音データに共通するピーク周波数fa,f1及びfbが特定されている。また、第1除去ステップS110では、周波数faの成分を有するピークが除去されるとともに、第2除去ステップS112では、周波数fbの成分を有するピークが除去されている。 More specifically, in the three frequency spectra shown in FIG. 4 (the frequency spectrum of the sound data acquired by the three acoustic sensors (microphones A to C under the rotational speed condition in which the rotational speed of the motor 2 is n)) As described above, the peak frequencies fa, f1 and fb common to these sound data are specified. Further, in the first removing step S110, the peak having the component of the frequency fa is removed, and in the second removing step S112, the peak having the component of the frequency fb is removed.
 そこで、音源情報取得部50は、これらの3つの周波数スペクトルについて、ピーク周波数特定ステップで特定されたピーク周波数fa,f1及びfbから、周波数faの成分及び周波数fbの成分を除外したもの、すなわち、ピーク周波数f1の成分について、このピーク周波数に対応する音データの振幅が最も大きい一の音響センサ(マイクA~C)を特定する。 Therefore, the sound source information acquisition unit 50 excludes the components of the frequency fa and the component of the frequency fb from the peak frequencies fa, f1, and fb identified in the peak frequency identification step for these three frequency spectra, that is, For the component of the peak frequency f1, one acoustic sensor (microphones A to C) having the largest amplitude of the sound data corresponding to this peak frequency is specified.
 図4に示すように、各音響センサ(マイクA~C)に対応する周波数スペクトルにおけるピーク周波数f1での振幅は、それぞれ、I(f1,A)、I(f1,B)、I(f1,C)であり、これらの大小関係は、I(f1,C)≒I(f1,A)<I(f1,B)である。よって、ピーク周波数f1での振幅が最も大きい音データを取得した音響センサは、音響センサ34A(マイクB)であると特定できる。 As shown in FIG. 4, the amplitude at the peak frequency f1 in the frequency spectrum corresponding to each acoustic sensor (microphones A to C) is I(f1,A), I(f1,B), I(f1, C), and these magnitude relationships are I(f1,C)≈I(f1,A)<I(f1,B). Therefore, the acoustic sensor that has acquired the sound data having the largest amplitude at the peak frequency f1 can be identified as the acoustic sensor 34A (microphone B).
 そして、このように特定された音響センサ34A(マイクB)はギア4に対応して設けられており、圧延装置1において、他の音響センサ(音響センサ32、34B)に比べてギア4に近い位置に設けられているから、ピーク周波数f1に対応する固有振動数(f1)の音の発生源は、圧延装置1のうちギア4である、との情報が得られる。 The acoustic sensor 34A (microphone B) specified in this way is provided corresponding to the gear 4, and is closer to the gear 4 in the rolling mill 1 than other acoustic sensors ( acoustic sensors 32 and 34B). Since it is provided at the position, it is possible to obtain information that the source of the sound having the natural frequency (f1) corresponding to the peak frequency f1 is the gear 4 of the rolling mill 1.
 また、図5に示される3つの周波数スペクトル(モータ2の回転数が2nである回転数条件で、3つの音響センサ(マイクA~C)取得された音データの周波数スペクトル)では、既に述べたように、これらの音データに共通するピーク周波数fa,f2及び2fbが特定されている。また、第1除去ステップS110では、周波数faの成分を有するピークが除去されるとともに、第2除去ステップS112では、周波数2fbの成分を有するピークが除去されている。 Further, in the three frequency spectra shown in FIG. 5 (frequency spectra of sound data acquired by the three acoustic sensors (microphones A to C under the rotational speed condition in which the rotational speed of the motor 2 is 2n)), it has already been described. Thus, the peak frequencies fa, f2, and 2fb common to these sound data are specified. Further, in the first removing step S110, the peak having the component of the frequency fa is removed, and in the second removing step S112, the peak having the component of the frequency 2fb is removed.
 そして、音源情報取得部50では、これらの3つの周波数スペクトルについて、ピーク周波数特定ステップで特定されたピーク周波数fa,f2及び2fbから、周波数faの成分及び周波数2fbの成分を除外したもの、すなわち、ピーク周波数f2の成分について、このピーク周波数に対応する音データの振幅が最も大きい一の音響センサ(マイクA~C)を特定する。 Then, the sound source information acquisition unit 50 excludes the components of the frequency fa and the component of the frequency 2fb from the peak frequencies fa, f2, and 2fb identified in the peak frequency identification step for these three frequency spectra, that is, For the component of the peak frequency f2, the one acoustic sensor (microphones A to C) having the largest amplitude of the sound data corresponding to this peak frequency is specified.
 図5に示すように、各音響センサ(マイクA~C)に対応する周波数スペクトルにおけるピーク周波数f2での振幅は、それぞれ、I(f2,A)、I(f2,B)、I(f2,C)であり、これらの大小関係は、I(f2,A)<I(f2,B)<I(f2,C)である。よって、ピーク周波数f2での振幅が最も大きい音データを取得した音響センサは、音響センサ34B(マイクC)であると特定できる。 As shown in FIG. 5, the amplitude at the peak frequency f2 in the frequency spectrum corresponding to each acoustic sensor (microphones A to C) is I(f2,A), I(f2,B), I(f2,). C), and these magnitude relationships are I(f2,A)<I(f2,B)<I(f2,C). Therefore, the acoustic sensor that has acquired the sound data having the largest amplitude at the peak frequency f2 can be identified as the acoustic sensor 34B (microphone C).
 そして、このように特定された音響センサ34B(マイクC)はスピンドル6に対応して設けられており、圧延装置1において、他の音響センサ(音響センサ32、34A)に比べてスピンドル6に近い位置に設けられているから、ピーク周波数f2に対応する固有振動数(f2)の音の発生源は、圧延装置1のうちスピンドル6である、との情報が得られる。 The acoustic sensor 34B (microphone C) thus identified is provided corresponding to the spindle 6, and is closer to the spindle 6 in the rolling mill 1 than the other acoustic sensors ( acoustic sensors 32 and 34A). Since it is provided at the position, it is possible to obtain information that the sound source of the natural frequency (f2) corresponding to the peak frequency f2 is the spindle 6 of the rolling mill 1.
 また、図6に示される3つの周波数スペクトル(モータ2の回転数が4nである回転数条件で、3つの音響センサ(マイクA~C)取得された音データの周波数スペクトル)では、既に述べたように、これらの音データに共通するピーク周波数fa,f3及び4fbが特定されている。また、第1除去ステップS110では、周波数faの成分を有するピークが除去されるとともに、第2除去ステップS112では、周波数4fbの成分を有するピークが除去されている。 In addition, in the three frequency spectra shown in FIG. 6 (the frequency spectrum of the sound data acquired by the three acoustic sensors (microphones A to C under the rotational speed condition in which the rotational speed of the motor 2 is 4n)), it has already been described. Thus, the peak frequencies fa, f3, and 4fb common to these sound data are specified. Further, in the first removing step S110, the peak having the component of the frequency fa is removed, and in the second removing step S112, the peak having the component of the frequency 4fb is removed.
 そして、音源情報取得部50では、これらの3つの周波数スペクトルについて、ピーク周波数特定ステップで特定されたピーク周波数fa,f3及び4fbから、周波数faの成分及び周波数4fbの成分を除外したもの、すなわち、ピーク周波数f3の成分について、このピーク周波数に対応する音データの振幅が最も大きい一の音響センサ(マイクA~C)を特定する。 Then, the sound source information acquisition unit 50 excludes the components of the frequency fa and the component of the frequency 4fb from the peak frequencies fa, f3, and 4fb identified in the peak frequency identification step for these three frequency spectra, that is, For the component of the peak frequency f3, one acoustic sensor (microphones A to C) having the largest amplitude of the sound data corresponding to this peak frequency is specified.
 図6に示すように、各音響センサ(マイクA~C)に対応する周波数スペクトルにおけるピーク周波数f3での振幅は、それぞれ、I(f3,A)、I(f3,B)、I(f3,C)であり、これらの大小関係は、I(f3,C)<I(f3,B)<I(f3,A)である。よって、ピーク周波数f3での振幅が最も大きい音データを取得した音響センサは、音響センサ32(マイクA)であると特定できる。 As shown in FIG. 6, the amplitude at the peak frequency f3 in the frequency spectrum corresponding to each acoustic sensor (microphones A to C) is I(f3,A), I(f3,B), I(f3, respectively). C), and these magnitude relationships are I(f3,C)<I(f3,B)<I(f3,A). Therefore, the acoustic sensor that has acquired the sound data having the largest amplitude at the peak frequency f3 can be identified as the acoustic sensor 32 (microphone A).
 そして、このように特定された音響センサ32(マイクA)はモータ2に対応して設けられており、圧延装置1において、他の音響センサ(音響センサ34A、34B)に比べてモータ2に近い位置に設けられているから、ピーク周波数f3に対応する固有振動数(f3)の音の発生源は、圧延装置1のうちモータ2である、との情報が得られる。 The acoustic sensor 32 (microphone A) specified in this way is provided corresponding to the motor 2, and is closer to the motor 2 in the rolling mill 1 than the other acoustic sensors ( acoustic sensors 34A and 34B). Since it is provided at the position, it is possible to obtain information that the source of the sound having the natural frequency (f3) corresponding to the peak frequency f3 is the motor 2 of the rolling mill 1.
 次に、ピーク周波数特定ステップ(ステップS108)で特定されたモータ2の回転数条件(モータ回転数:n,2n,4n)に対応する共通のピーク周波数(f1,f2,f3)と、音源情報取得ステップ(ステップS114)で取得された音の発生源に関する情報と、が関連付けられた情報を、記憶部37に記憶させる(ステップS116)。 Next, common peak frequencies (f1, f2, f3) corresponding to the rotation speed condition (motor rotation speed: n, 2n, 4n) of the motor 2 specified in the peak frequency specifying step (step S108), and sound source information Information relating to the sound source information acquired in the acquisition step (step S114) and the information associated with each other is stored in the storage unit 37 (step S116).
 ここで、図7は、記憶部37に記憶される情報の一例を示す図である。
 上述したように、ピーク周波数特定ステップ(ステップS108)及び音源情報取得ステップ(ステップS114)により、モータ2の回転数条件(モータ回転数:n,2n,4n)に対応する共通のピーク周波数(f1,f2,f3)と、該共通のピーク周波数(f1,f2,f3)に対応する固有振動数(f1,f2,f3)の音の発生源(ギア4、スピンドル6、モータ2)との対応関係が特定される。よって、図7に示すように、記憶部37には、上述のピーク周波数(即ち固有振動数)と、該固有振動数の音の発生源に関する情報(圧延装置1における部位)が記憶される。
Here, FIG. 7 is a diagram illustrating an example of information stored in the storage unit 37.
As described above, the common peak frequency (f1) corresponding to the rotation speed condition of the motor 2 (motor rotation speed: n, 2n, 4n) is determined by the peak frequency specifying step (step S108) and the sound source information acquiring step (step S114). , F2, f3) and a sound source (gear 4, spindle 6, motor 2) having a natural frequency (f1, f2, f3) corresponding to the common peak frequency (f1, f2, f3). Relationships are identified. Therefore, as shown in FIG. 7, the storage unit 37 stores the above-mentioned peak frequency (that is, the natural frequency) and information (a part in the rolling mill 1) regarding the source of the sound of the natural frequency.
 このように、記憶部37に記憶されたピーク周波数(固有振動数)と音の発生源とが関連付けられた情報は、後述するように、圧延装置1の診断時に用いることができる。 The information in which the peak frequency (natural frequency) and the sound generation source stored in the storage unit 37 are associated with each other can be used when diagnosing the rolling mill 1, as described later.
 以上説明した診断装置及び診断方法によれば、異なる位置に設けられた複数の音響センサ32,34A,34Bにより、複数の回転数条件(モータ回転数:n,2n,4n)の各々で取得された複数音データの各々について周波数解析を行うことで、各音データについて、振幅が極大となるピーク周波数を把握することができる。そして、各音データの周波数解析結果に基づいて、複数の音データに共通するピーク周波数が存在する回転数条件を特定するとともに、当該ピーク周波数を特定することができる。ここで、ある回転数条件において、複数の音響センサ32,34A,34Bで取得された複数の音データに存在する共通のピーク周波数は、圧延装置1(機械装置)の固有振動数と一致する可能性があるため、圧延装置1の固有振動数を特定することができる。
 また、上述のように特定された回転数条件において、各音響センサ32,34A,34Bで取得した音データのうち、上述のように特定されたピーク周波数(すなわち、圧延装置1の固有振動数に一致する可能性がある周波数)での音の振幅が最も大きい一の音響センサは、複数の音響センサ32,34A,34Bのうち、圧延装置1における上述のピーク周波数の音の発生源に最も近い位置に設置されたものであると推定することができる。よって、上述の一の音響センサの設置位置に基づいて、圧延装置1の固有振動数に対応する音の発生源に関する情報(例えば、音の発生源の圧延装置1における位置や部位等)を取得することができる。
 よって、上述の診断装置及び診断方法によれば、複数の音響センサ32,34A,34Bを含む簡素な構成で、圧延装置1の固有振動数を特定することができるとともに、該圧延装置において該固有振動数を有する位置又は部位を示す情報を取得することができる。
According to the diagnostic device and the diagnostic method described above, a plurality of acoustic sensors 32, 34A, 34B provided at different positions are used to obtain a plurality of rotational speed conditions (motor rotational speeds: n, 2n, 4n). By performing frequency analysis on each of the plural sound data, the peak frequency at which the amplitude becomes maximum can be grasped for each sound data. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency. Here, under a certain rotation speed condition, the common peak frequency existing in the plurality of sound data acquired by the plurality of acoustic sensors 32, 34A, 34B may match the natural frequency of the rolling mill 1 (machine). Therefore, the natural frequency of the rolling mill 1 can be specified.
Further, under the rotation speed condition specified as described above, among the sound data acquired by the respective acoustic sensors 32, 34A, 34B, the peak frequency specified as described above (that is, the natural frequency of the rolling mill 1 One acoustic sensor having the largest sound amplitude at a frequency (which may match) is closest to the sound source of the above-mentioned peak frequency in the rolling mill 1 among the plurality of acoustic sensors 32, 34A, 34B. It can be presumed to have been installed at the location. Therefore, based on the installation position of the above-mentioned one acoustic sensor, the information regarding the sound generation source corresponding to the natural frequency of the rolling mill 1 (for example, the position or part of the sound generation source in the rolling mill 1) is acquired. can do.
Therefore, according to the diagnostic device and the diagnostic method described above, the natural frequency of the rolling mill 1 can be specified with a simple configuration including the plurality of acoustic sensors 32, 34A, 34B, and the natural frequency of the rolling mill can be specified. It is possible to acquire information indicating a position or a part having a frequency.
 次に、上述のようにして特定した固有振動数に基づき圧延装置1を診断する方法について説明する。ここでは、診断対象がギア4である場合について説明する。 Next, a method of diagnosing the rolling mill 1 based on the natural frequency identified as described above will be described. Here, a case where the diagnosis target is the gear 4 will be described.
 図8は、一実施形態に係る診断方法の概要を示すフローチャートである。
 図8に示すように、一実施形態に係る診断方法では、まず、モータ2(駆動部)の回転数が規定値Nでの運転中に、診断用音響センサ35で圧延装置1からの音を検知し、音データ取得部40により該音を含む診断用音データを取得する(ステップS202)。次に、取得した診断用音データについて、周波数解析部42により周波数解析を行って周波数スペクトルを取得する(ステップS204)。
FIG. 8 is a flowchart showing an outline of the diagnostic method according to the embodiment.
As shown in FIG. 8, in the diagnostic method according to the embodiment, first, the sound from the rolling mill 1 is output by the diagnostic acoustic sensor 35 while the motor 2 (drive unit) is operating at the specified value N. The sound data acquisition unit 40 detects and acquires diagnostic sound data including the sound (step S202). Next, the frequency analysis unit 42 performs frequency analysis on the acquired diagnostic sound data to acquire a frequency spectrum (step S204).
 そして、診断用音データについての周波数解析結果(周波数スペクトル)における、診断対象部位(例えばギア4)のピーク周波数(固有振動数)の成分の振幅に基づいて、音の発生源(即ち診断対象部位)の異常判定を行う(ステップS206~S208)。ここで、診断対象部位のピーク周波数(固有振動数)は、上述のピーク周波数特定ステップ(ステップS108)及び音源情報取得ステップ(ステップS114)で特定されたものである。 Then, based on the amplitude of the peak frequency (natural frequency) component of the diagnosis target part (eg, gear 4) in the frequency analysis result (frequency spectrum) of the diagnostic sound data, the sound generation source (that is, the diagnosis target part). The abnormality determination of) is performed (steps S206 to S208). Here, the peak frequency (natural frequency) of the diagnosis target part is specified in the peak frequency specifying step (step S108) and the sound source information acquiring step (step S114).
 より具体的には、ステップS206では、診断用音データの周波数解析結果における、診断対象であるギア4についての上述のピーク周波数(固有振動数)f1での振幅を取得する。なお、診断対象部位(ギア4)に対応するピーク周波数(固有振動数)の情報は、記憶部37から取得するようにしてもよい。そして、このように取得した振幅Iと、閾値Ithとを比較する。この閾値は、モータ2の回転数の規定値Nに対応した適切な値が設定される。 More specifically, in step S206, the amplitude at the above-mentioned peak frequency (natural frequency) f1 of the gear 4 to be diagnosed in the frequency analysis result of the diagnostic sound data is acquired. The information on the peak frequency (natural frequency) corresponding to the diagnosis target part (gear 4) may be acquired from the storage unit 37. Then, the amplitude I thus obtained is compared with the threshold value Ith. This threshold value is set to an appropriate value corresponding to the specified value N of the rotation speed of the motor 2.
 そして、振幅Iが閾値Ith未満である場合には(ステップS206のNO)、ギア4に異常があるとは判断されずに診断方法のフローを終了する。一方、振幅Iが閾値Ith以上である場合には(ステップS206のYES)、ギア4に異常又は異常の予兆があると判定する。この場合、ギア4の異常又は異常の予兆が検知されたことを表示部38に表示したり、あるいは、スピーカ等により警報を鳴動させるようになっていてもよい。 If the amplitude I is less than the threshold value Ith (NO in step S206), it is not determined that the gear 4 is abnormal, and the flow of the diagnostic method is ended. On the other hand, when the amplitude I is equal to or larger than the threshold value Ith (YES in step S206), it is determined that the gear 4 has an abnormality or a sign of abnormality. In this case, the fact that the abnormality of the gear 4 or the sign of the abnormality is detected may be displayed on the display unit 38, or an alarm may be sounded by a speaker or the like.
 振幅Iの閾値Ithは、モータ2(駆動部)の回転数に応じて異なる値を設定してもよい。モータ2の回転数により、当該ピーク周波数成分での音の振幅は異なるため、このように、モータ2(駆動部)の回転数に応じた適切な閾値を設定することで、診断対象部位の異常判定をより適切に行うことができる。 The threshold value Ith of the amplitude I may be set to a different value depending on the rotation speed of the motor 2 (driving unit). Since the amplitude of the sound at the peak frequency component varies depending on the rotation speed of the motor 2, by setting an appropriate threshold value according to the rotation speed of the motor 2 (driving unit) in this way, the abnormality of the diagnosis target site is detected. The determination can be made more appropriately.
 以下、幾つかの実施形態に係る診断装置及び診断方法について概要を記載する。 The following is a summary of diagnostic devices and diagnostic methods according to some embodiments.
(1)本発明の少なくとも一実施形態に係る診断装置は、
 駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置を診断するための診断装置であって、
 それぞれ異なる位置に設けられ、前記機械装置から発生する音をそれぞれ検知するための複数の音響センサと、
 前記駆動部の回転数が異なる複数の回転数条件の各々において前記複数の音響センサの各々で検知された音をそれぞれ含む複数の音データを取得するように構成された音データ取得部と、
 前記複数の回転数条件ごとに取得した前記複数の音データをそれぞれ周波数解析するように構成された周波数解析部と、
 前記周波数解析部による周波数解析結果に基づいて、前記複数の音データに共通するピーク周波数が存在する1以上の回転数条件及び前記ピーク周波数を特定するピーク周波数特定部と、
 前記1以上の回転数条件の各々について、前記複数の音響センサのうち、前記ピーク周波数に対応する前記音データの振幅が最も大きい一の音響センサの前記機械装置に対する設置位置に基づいて、前記機械装置のうち、前記ピーク周波数に対応する固有振動数の音の発生源に関する情報を得る音源情報取得部と、
を備える。
(1) The diagnostic device according to at least one embodiment of the present invention is
A diagnostic device for diagnosing a mechanical device including a drive part and a driven part rotationally driven by the drive part,
A plurality of acoustic sensors provided at different positions, respectively for detecting sounds generated from the mechanical device,
A sound data acquisition unit configured to acquire a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different,
A frequency analysis unit configured to perform frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions,
A peak frequency specifying unit that specifies the peak frequency and at least one rotation speed condition in which a peak frequency common to the plurality of sound data exists, based on a frequency analysis result by the frequency analyzing unit;
For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of acoustic sensors with respect to the mechanical device. Of the device, a sound source information acquisition unit that obtains information about a source of sound having a natural frequency corresponding to the peak frequency,
Equipped with.
 上記(1)の構成では、異なる位置に設けられた複数の音響センサにより、複数の回転数条件の各々で取得された複数音データの各々について周波数解析を行うことで、各音データについて、振幅が極大となるピーク周波数を把握することができる。そして、各音データの周波数解析結果に基づいて、複数の音データに共通するピーク周波数が存在する回転数条件を特定するとともに、当該ピーク周波数を特定することができる。ここで、ある回転数条件において、複数の音響センサで取得された複数の音データに存在する共通のピーク周波数は、機械装置の固有振動数と一致する可能性があるため、機械装置の固有振動数を特定することができる。
 また、上述のように特定された回転数条件において、各音響センサで取得した音データのうち、上述のように特定されたピーク周波数(すなわち、機械装置の固有振動数に一致する可能性がある周波数)での音の振幅が最も大きい一の音響センサは、複数の音響センサのうち、機械装置における上述のピーク周波数の音の発生源に最も近い位置に設置されたものであると推定することができる。よって、上述の一の音響センサの設置位置に基づいて、機械装置の固有振動数に対応する音の発生源に関する情報(例えば、音の発生源の機械装置における位置や部位等)を取得することができる。
 よって、上記(1)の構成によれば、複数の音響センサを含む簡素な構成で、機械装置の固有振動数を特定することができるとともに、該機械装置において該固有振動数を有する位置又は部位を示す情報を取得することができる。
In the configuration of the above (1), by performing frequency analysis on each of the multiple sound data acquired under each of the multiple rotation speed conditions by using the multiple acoustic sensors provided at different positions, the amplitude of each sound data is increased. It is possible to grasp the peak frequency at which is the maximum. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency. Here, under a certain rotation speed condition, a common peak frequency existing in a plurality of sound data acquired by a plurality of acoustic sensors may match the natural frequency of the mechanical device. The number can be specified.
Further, under the rotation speed condition specified as described above, among the sound data acquired by each acoustic sensor, the peak frequency specified as described above (that is, the natural frequency of the mechanical device may match. It is assumed that the one acoustic sensor with the largest sound amplitude at the frequency) is the one that is installed closest to the sound source of the above-mentioned peak frequency in the mechanical device among the plurality of acoustic sensors. You can Therefore, based on the installation position of the above-mentioned one acoustic sensor, to obtain information about the sound source corresponding to the natural frequency of the mechanical device (for example, the position or part of the sound source in the mechanical device). You can
Therefore, according to the configuration of (1) above, the natural frequency of the mechanical device can be specified with a simple configuration including a plurality of acoustic sensors, and the position or site having the natural frequency in the mechanical device can be specified. It is possible to obtain information indicating.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記診断装置は、
 前記複数の音データの前記周波数解析結果について、前記回転数条件に依らず周波数が共通の成分を除去するように構成された第1除去部をさらに備え、
 前記音源情報取得部は、前記第1除去部により除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得るように構成される。
(2) In some embodiments, in the configuration of (1) above,
The diagnostic device is
The frequency analysis result of the plurality of sound data further comprises a first removing unit configured to remove a component having a common frequency regardless of the rotation speed condition,
The sound source information acquisition unit is configured to exclude the frequency component removed by the first removal unit from the peak frequency and obtain information about the sound source.
 異なる回転数条件の下で取得された複数の音データにおいて、同一の周波数に振幅のピークが現れる場合、その周波数は、駆動部の回転数に依らずに生じる背景音に由来するものであると推定することができる。この点、上記(2)の構成によれば、複数の回転数条件下で複数の音響センサで取得した複数の音データの周波数解析結果について、回転数条件に依らず周波数が共通の成分を除去し、音の発生源に関する情報を得る際に、複数の音データの周波数解析結果における共通のピーク周波数から、背景音に関連する上述の周波数成分を除外する。よって、複数の音データの周波数解析結果に基づいて、機械装置の固有振動数を精度良好に特定することができる。 In a plurality of sound data acquired under different rotation speed conditions, when the peak of the amplitude appears at the same frequency, the frequency is derived from the background sound that occurs regardless of the rotation speed of the drive unit. Can be estimated. In this respect, according to the configuration of the above (2), in the frequency analysis result of a plurality of sound data acquired by a plurality of acoustic sensors under a plurality of rotation speed conditions, a component having a common frequency is removed regardless of the rotation speed condition. However, when obtaining the information about the sound source, the above-mentioned frequency component related to the background sound is excluded from the common peak frequency in the frequency analysis results of the plurality of sound data. Therefore, the natural frequency of the mechanical device can be accurately specified based on the frequency analysis results of the plurality of sound data.
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記診断装置は、
 前記複数の音データの前記周波数解析結果について、前記駆動部の回転数に周波数が比例する成分を除去するように構成された第2除去部をさらに備え、
 前記音源情報取得部は、前記第2除去部により除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得るように構成される。
(3) In some embodiments, in the configuration of (1) or (2) above,
The diagnostic device is
A second removing unit configured to remove a component whose frequency is proportional to the rotation speed of the driving unit, from the frequency analysis result of the plurality of sound data;
The sound source information acquisition unit is configured to exclude the frequency component removed by the second removal unit from the peak frequency and obtain information about the sound source.
 異なる回転数条件の下で取得された複数の音データにおいて、駆動部の回転数に比例する周波数成分のピークが現れる場合、その周波数は、駆動部の運動の大きさに起因する音であり、機械装置の固有振動数とは関連しないものであると推定することができる。この点、上記(3)の構成によれば、複数の回転数条件下で複数の音響センサで取得した複数の音データの周波数解析結果について、駆動部の回転数に周波数が比例する成分を除去し、音の発生源に関する情報を得る際に、複数の音データの周波数解析結果における共通のピーク周波数から、機械装置の固有振動数に関連しない上述の周波数成分を除外する。よって、複数の音データの周波数解析結果に基づいて、機械装置の固有振動数を精度良好に特定することができる。 In a plurality of sound data acquired under different rotation speed conditions, when a peak of a frequency component proportional to the rotation speed of the drive unit appears, the frequency is a sound due to the magnitude of motion of the drive unit, It can be estimated that it is not related to the natural frequency of the mechanical device. In this respect, according to the configuration of (3), the component whose frequency is proportional to the rotation speed of the drive unit is removed from the frequency analysis result of the plurality of sound data acquired by the plurality of acoustic sensors under the plurality of rotation speed conditions. However, when obtaining the information about the sound source, the above-mentioned frequency components not related to the natural frequency of the mechanical device are excluded from the common peak frequency in the frequency analysis result of the plurality of sound data. Therefore, the natural frequency of the mechanical device can be accurately specified based on the frequency analysis results of the plurality of sound data.
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記診断装置は、
 前記ピーク周波数特定部によって特定された前記回転数条件に対応する前記ピーク周波数と、前記音源情報取得部によって特定された前記音の発生源に関する情報と、が関連付けられた情報を記憶するための記憶部をさらに備える。
(4) In some embodiments, in any of the configurations of (1) to (3) above,
The diagnostic device is
A memory for storing information in which the peak frequency corresponding to the rotation speed condition specified by the peak frequency specifying unit and the information regarding the sound source specified by the sound source information acquiring unit are associated with each other. Further comprises a section.
 上記(4)の構成によれば、上述のように特定された回転数条件に対応するピーク周波数(すなわち、機械装置の固有振動数である可能性がある周波数)と、上述のように特定された音の発生源に関する情報と、が関連付けられた情報を記憶できるので、記憶された情報に基づき機械装置の診断することが可能となり、機械装置の診断が容易となる。 According to the configuration of (4), the peak frequency corresponding to the rotation speed condition specified as described above (that is, the frequency that may be the natural frequency of the mechanical device) and the peak frequency specified as described above. Since the information relating to the source of the generated sound can be stored, the mechanical device can be diagnosed based on the stored information, and the mechanical device can be easily diagnosed.
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記診断装置は、
 前記駆動部の回転数が規定値での運転中に、診断用音響センサで検知された音に基づき取得された診断用音データを周波数解析するように構成された周波数解析部と、
 前記周波数解析部による前記診断用音データについての周波数解析結果における、前記ピーク周波数の成分の振幅に基づいて、前記音の発生源の異常判定を行うように構成された診断部と、を備える。
(5) In some embodiments, in any of the configurations of (1) to (4) above,
The diagnostic device is
During operation of the rotation speed of the drive unit at a specified value, a frequency analysis unit configured to perform frequency analysis of diagnostic sound data acquired based on the sound detected by the diagnostic acoustic sensor,
And a diagnostic unit configured to make an abnormality determination of the sound source based on the amplitude of the component of the peak frequency in the frequency analysis result of the diagnostic sound data by the frequency analysis unit.
 機械装置の固有振動数の音の振幅は、駆動部の回転数に応じて変化する。この点、上記(5)の構成によれば、駆動部が特定の回転数(規定値)で運転されているときに診断用音データを取得するようにしたので、該診断用音データの周波数解析結果における上述のピーク周波数(上記(1)の構成で特定されるピーク周波数)の成分の振幅に基づいて、当該ピーク周波数の音の発生源の異常判定を適切に行うことができる。 The amplitude of the sound of the natural frequency of the mechanical device changes according to the rotation speed of the drive unit. In this respect, according to the configuration of the above (5), since the diagnostic sound data is acquired when the drive unit is driven at a specific rotation speed (specified value), the frequency of the diagnostic sound data is increased. Based on the amplitude of the component of the above-mentioned peak frequency (the peak frequency specified by the configuration of (1) above) in the analysis result, it is possible to appropriately determine the abnormality of the sound source of the peak frequency.
(6)幾つかの実施形態では、上記(5)の構成において、
 前記診断部は、前記診断用音データについての前記周波数解析結果において、前記ピーク周波数の成分の振幅が閾値以上であるとき、前記音の発生源に異常が生じたと判定するように構成される。
(6) In some embodiments, in the configuration of (5) above,
The diagnosis unit is configured to determine that an abnormality has occurred in the sound generation source when the amplitude of the peak frequency component is equal to or larger than a threshold in the frequency analysis result of the diagnosis sound data.
 上記(6)の構成によれば、上述の診断用音データの周波数解析結果における上述のピーク周波数の成分の振幅と、閾値との比較により、当該ピーク周波数の音の発生源の異常判定を適切に行うことができる。なお、上述の閾値は、例えば、上述の(1)の構成により特定されたピーク周波数(機械装置の固有振動数)について、駆動部の回転数を規定値に設定して予め取得した振幅に基づいて決定することができる。 According to the configuration of (6) above, by comparing the amplitude of the component of the peak frequency in the frequency analysis result of the diagnostic sound data with the threshold value, it is possible to appropriately determine the abnormality of the sound source of the peak frequency. Can be done. The above-mentioned threshold value is based on, for example, the amplitude obtained in advance by setting the rotation speed of the drive unit to a specified value for the peak frequency (natural frequency of the mechanical device) specified by the configuration of (1) above. Can be decided.
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
 前記機械装置は、
  前記駆動部としてのモータと、
  前記モータによって回転駆動される前記被駆動部としてのギア又はスピンドルと、
  前記ギア又は前記スピンドルにより駆動される圧延ロールと、
を含む圧延装置である。
(7) In some embodiments, in any of the configurations (1) to (6) above,
The mechanical device is
A motor as the drive unit,
A gear or a spindle as the driven portion that is rotationally driven by the motor,
A rolling roll driven by the gear or the spindle,
It is a rolling mill including.
 上記(7)の構成によれば、駆動部としてのモータと、被駆動部としてのギア又はスピンドルと、該ギア又はスピンドルにより駆動される圧延ロールと、を含む圧延装置の固有振動数を特定することができるとともに、該圧延装置において該固有振動数を有する位置又は部位を示す情報を取得することができる。 According to the above configuration (7), the natural frequency of the rolling mill including the motor as the driving unit, the gear or the spindle as the driven unit, and the rolling roll driven by the gear or the spindle is specified. In addition, it is possible to obtain information indicating the position or site having the natural frequency in the rolling device.
(8)幾つかの実施形態では、上記(7)の構成において、
 前記複数の音響センサは、前記モータに対応して設けられる第1音響センサと、前記ギア又は前記スピンドルに対応して設けられる第2音響センサと、を含む。
(8) In some embodiments, in the configuration of (7) above,
The plurality of acoustic sensors include a first acoustic sensor provided corresponding to the motor and a second acoustic sensor provided corresponding to the gear or the spindle.
 上記(8)の構成によれば、モータに対応して設けられる第1音響センサと、ギア又はスピンドルに対応して設けられる第2音響センサとを用いて音データを取得するようにしたので、圧延装置におけるモータ、及び、ギア又はスピンドルについて、固有振動数を特定することができる。 According to the above configuration (8), the sound data is acquired using the first acoustic sensor provided corresponding to the motor and the second acoustic sensor provided corresponding to the gear or the spindle. The natural frequency can be specified for the motor and the gear or spindle in the rolling mill.
(9)本発明の少なくとも一実施形態に係る設備は、
 駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置と、
 前記機械装置を診断するように構成された上記(1)乃至(8)の何れか一項に記載の診断装置と、
を備える。
(9) The equipment according to at least one embodiment of the present invention,
A mechanical device including a drive unit and a driven unit that is rotationally driven by the drive unit;
The diagnostic device according to any one of (1) to (8), which is configured to diagnose the mechanical device,
Equipped with.
 上記(9)の構成では、異なる位置に設けられた複数の音響センサにより、複数の回転数条件の各々で取得された複数音データの各々について周波数解析を行うことで、各音データについて、振幅が極大となるピーク周波数を把握することができる。そして、各音データの周波数解析結果に基づいて、複数の音データに共通するピーク周波数が存在する回転数条件を特定するとともに、当該ピーク周波数を特定することができる。ここで、ある回転数条件において、複数の音響センサで取得された複数の音データに存在する共通のピーク周波数は、機械装置の固有振動数と一致する可能性があるため、機械装置の固有振動数を特定することができる。
 また、上述のように特定された回転数条件において、各音響センサで取得した音データのうち、上述のように特定されたピーク周波数(すなわち、機械装置の固有振動数に一致する可能性がある周波数)での音の振幅が最も大きい一の音響センサは、複数の音響センサのうち、機械装置における上述のピーク周波数の音の発生源に最も近い位置に設置されたものであると推定することができる。よって、上述の一の音響センサの設置位置に基づいて、機械装置の固有振動数に対応する音の発生源に関する情報(例えば、音の発生源の機械装置における位置や部位等)を取得することができる。
 よって、上記(9)の構成によれば、複数の音響センサを含む簡素な構成で、機械装置の固有振動数を特定することができるとともに、該機械装置において該固有振動数を有する位置又は部位を示す情報を取得することができる。
In the configuration of the above (9), by performing frequency analysis on each of the multiple sound data acquired under each of the multiple rotation speed conditions by the multiple acoustic sensors provided at different positions, the amplitude of each sound data is increased. It is possible to grasp the peak frequency at which is the maximum. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency. Here, under a certain rotation speed condition, a common peak frequency existing in a plurality of sound data acquired by a plurality of acoustic sensors may match the natural frequency of the mechanical device. The number can be specified.
Further, under the rotation speed condition specified as described above, among the sound data acquired by each acoustic sensor, the peak frequency specified as described above (that is, the natural frequency of the mechanical device may match. It is assumed that the one acoustic sensor with the largest sound amplitude at the frequency) is the one that is installed closest to the sound source of the above-mentioned peak frequency in the mechanical device among the plurality of acoustic sensors. You can Therefore, based on the installation position of the above-mentioned one acoustic sensor, to obtain information about the sound source corresponding to the natural frequency of the mechanical device (for example, the position or part of the sound source in the mechanical device). You can
Therefore, according to the above configuration (9), the natural frequency of the mechanical device can be specified with a simple structure including a plurality of acoustic sensors, and the position or site having the natural frequency in the mechanical device can be specified. It is possible to obtain information indicating.
(10)本発明の少なくとも一実施形態に係る診断方法は、
 駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置を診断するための診断方法であって、
 それぞれ異なる位置に設置された複数の音響センサにより前記機械装置から発生する音をそれぞれ検知する音検知ステップと、
 前記駆動部の回転数が異なる複数の回転数条件の各々において前記複数の音響センサの各々で検知された音をそれぞれ含む複数の音データを取得する音データ取得ステップと、
 前記複数の回転数条件ごとに取得した前記複数の音データをそれぞれ周波数解析するステップと、
 前記周波数解析の結果に基づいて、前記複数の音データに共通するピーク周波数が存在する1以上の回転数条件及び前記ピーク周波数を特定するピーク周波数特定ステップと、
 前記1以上の回転数条件の各々について、前記複数の音響センサのうち、前記ピーク周波数に対応する前記音データの振幅が最も大きい一の音響センサの前記機械装置に対する設置位置に基づいて、前記機械装置のうち、前記ピーク周波数に対応する固有振動数の音の発生源に関する情報を得る音源情報取得ステップと、
を備える。
(10) The diagnostic method according to at least one embodiment of the present invention comprises:
A diagnostic method for diagnosing a mechanical device including a drive unit and a driven unit that is rotationally driven by the drive unit,
A sound detection step of detecting a sound generated from the mechanical device by a plurality of acoustic sensors respectively installed at different positions,
A sound data acquisition step of acquiring a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different,
A step of frequency-analyzing each of the plurality of sound data acquired for each of the plurality of rotation speed conditions;
A peak frequency specifying step of specifying one or more rotation speed conditions in which a peak frequency common to the plurality of sound data exists and the peak frequency based on a result of the frequency analysis;
For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of acoustic sensors with respect to the mechanical device. Of the device, a sound source information acquisition step of obtaining information about a source of sound of a natural frequency corresponding to the peak frequency,
Equipped with.
 上記(10)の方法では、異なる位置に設けられた複数の音響センサにより、複数の回転数条件の各々で取得された複数音データの各々について周波数解析を行うことで、各音データについて、振幅が極大となるピーク周波数を把握することができる。そして、各音データの周波数解析結果に基づいて、複数の音データに共通するピーク周波数が存在する回転数条件を特定するとともに、当該ピーク周波数を特定することができる。ここで、ある回転数条件において、複数の音響センサで取得された複数の音データに存在する共通のピーク周波数は、機械装置の固有振動数と一致する可能性があるため、機械装置の固有振動数を特定することができる。
 また、上述のように特定された回転数条件において、各音響センサで取得した音データのうち、上述のように特定されたピーク周波数(すなわち、機械装置の固有振動数に一致する可能性がある周波数)での音の振幅が最も大きい一の音響センサは、複数の音響センサのうち、機械装置における上述のピーク周波数の音の発生源に最も近い位置に設置されたものであると推定することができる。よって、上述の一の音響センサの設置位置に基づいて、機械装置の固有振動数に対応する音の発生源に関する情報(例えば、音の発生源の機械装置における位置や部位等)を取得することができる。
 よって、上記(10)の方法によれば、複数の音響センサを含む簡素な構成で、機械装置の固有振動数を特定することができるとともに、該機械装置において該固有振動数を有する位置又は部位を示す情報を取得することができる。
In the above method (10), by performing frequency analysis on each of the multiple sound data acquired under each of the multiple rotation speed conditions by using the multiple acoustic sensors provided at different positions, the amplitude of each sound data is increased. It is possible to grasp the peak frequency at which is the maximum. Then, based on the frequency analysis result of each sound data, it is possible to specify the rotation frequency condition in which the peak frequency common to the plurality of sound data exists and to specify the peak frequency. Here, under a certain rotation speed condition, a common peak frequency existing in a plurality of sound data acquired by a plurality of acoustic sensors may match the natural frequency of the mechanical device. The number can be specified.
Further, under the rotation speed condition specified as described above, among the sound data acquired by each acoustic sensor, the peak frequency specified as described above (that is, the natural frequency of the mechanical device may match. It is assumed that the one acoustic sensor with the largest sound amplitude at the frequency) is the one that is installed closest to the sound source of the above-mentioned peak frequency in the mechanical device among the plurality of acoustic sensors. You can Therefore, based on the installation position of the above-mentioned one acoustic sensor, to obtain information about the sound source corresponding to the natural frequency of the mechanical device (for example, the position or part of the sound source in the mechanical device). You can
Therefore, according to the above method (10), the natural frequency of the mechanical device can be specified with a simple configuration including a plurality of acoustic sensors, and the position or site having the natural frequency in the mechanical device can be specified. It is possible to obtain information indicating.
(11)幾つかの実施形態では、上記(10)の方法は、
 前記複数の音データの前記周波数解析の結果について、前記回転数条件に依らず周波数が共通の成分を除去する第1除去ステップをさらに備え、
 前記音源情報取得ステップでは、前記第1除去ステップで除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得る。
(11) In some embodiments, the method of (10) above comprises
The result of the frequency analysis of the plurality of sound data further comprises a first removing step of removing a component having a common frequency regardless of the rotation speed condition,
In the sound source information acquisition step, the frequency component removed in the first removal step is excluded from the peak frequency to obtain information about the sound source.
 上記(11)の方法によれば、複数の回転数条件下で複数の音響センサで取得した複数の音データの周波数解析結果について、回転数条件に依らず周波数が共通の成分を除去し、音の発生源に関する情報を得る際に、複数の音データの周波数解析結果における共通のピーク周波数から、背景音に関連する上述の周波数成分を除外する。よって、複数の音データの周波数解析結果に基づいて、機械装置の固有振動数を精度良好に特定することができる。 According to the method of (11), the frequency analysis result of the plurality of sound data acquired by the plurality of acoustic sensors under the plurality of rotation speed conditions removes the component having the common frequency regardless of the rotation speed condition, When obtaining the information about the source of the above, the above-mentioned frequency component related to the background sound is excluded from the common peak frequency in the frequency analysis result of the plurality of sound data. Therefore, the natural frequency of the mechanical device can be accurately specified based on the frequency analysis results of the plurality of sound data.
(12)幾つかの実施形態では、上記(10)又は(11)の方法は、
 前記複数の音データの前記周波数解析の結果について、前記駆動部の回転数に周波数が比例する成分を除去する第2除去ステップをさらに備え、
 前記音源情報取得ステップでは、前記第2除去ステップにより除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得る。
(12) In some embodiments, the method of (10) or (11) above comprises
Further comprising a second removal step of removing a component whose frequency is proportional to the rotation speed of the drive unit, from the result of the frequency analysis of the plurality of sound data,
In the sound source information acquisition step, the frequency component removed in the second removal step is excluded from the peak frequency to obtain information about the sound source.
 上記(12)の方法によれば、複数の回転数条件下で複数の音響センサで取得した複数の音データの周波数解析結果について、駆動部の回転数に周波数が比例する成分を除去し、音の発生源に関する情報を得る際に、複数の音データの周波数解析結果における共通のピーク周波数から、機械装置の固有振動数に関連しない上述の周波数成分を除外する。よって、複数の音データの周波数解析結果に基づいて、機械装置の固有振動数を精度良好に特定することができる。 According to the above method (12), the frequency analysis result of the plurality of sound data acquired by the plurality of acoustic sensors under the plurality of rotation speed conditions is removed by removing the component whose frequency is proportional to the rotation speed of the drive unit. When obtaining the information about the source of the above, the above-mentioned frequency components not related to the natural frequency of the mechanical device are excluded from the common peak frequency in the frequency analysis result of the plurality of sound data. Therefore, the natural frequency of the mechanical device can be accurately specified based on the frequency analysis results of the plurality of sound data.
(13)幾つかの実施形態では、上記(10)乃至(12)の何れか方法は、
 前記ピーク周波数特定ステップで特定された前記回転数条件に対応する前記ピーク周波数と、前記音源情報取得ステップで取得された前記音の発生源に関する情報と、が関連付けられた情報を記憶部に記憶させるステップをさらに備える。
(13) In some embodiments, any one of the above methods (10) to (12)
The storage section stores information in which the peak frequency corresponding to the rotation speed condition specified in the peak frequency specifying step and the information regarding the sound source acquired in the sound source information acquiring step are associated with each other. The method further includes steps.
 上記(13)の方法によれば、上述のように特定された回転数条件に対応するピーク周波数(すなわち、機械装置の固有振動数である可能性がある周波数)と、上述のように特定された音の発生源に関する情報と、が関連付けられた情報を記憶できるので、記憶された情報に基づき機械装置の診断することが可能となり、機械装置の診断が容易となる。 According to the above method (13), the peak frequency (that is, the frequency that may be the natural frequency of the mechanical device) corresponding to the rotation speed condition specified as described above and the peak frequency specified as described above are specified. Since the information relating to the source of the generated sound can be stored, the mechanical device can be diagnosed based on the stored information, and the mechanical device can be easily diagnosed.
(14)幾つかの実施形態では、上記(10)乃至(13)の何れかの方法は、
 前記駆動部の回転数が規定値での運転中に、診断用音響センサで前記機械装置からの音を検知し、該音を含む診断用音データを取得するステップと、
 前記診断用音データについて周波数解析するステップと、
 前記診断用音データについての周波数解析結果における、前記ピーク周波数の成分の振幅に基づいて、前記音の発生源の異常判定を行う診断ステップをさらに備える。
(14) In some embodiments, the method according to any one of (10) to (13) above,
A step of detecting a sound from the mechanical device with a diagnostic acoustic sensor during operation of the rotation speed of the drive unit at a specified value, and obtaining diagnostic sound data including the sound;
Frequency-analyzing the diagnostic sound data,
The method further includes a diagnostic step of performing abnormality determination of the sound generation source based on the amplitude of the peak frequency component in the frequency analysis result of the diagnostic sound data.
 上記(14)の方法によれば、駆動部が特定の回転数(規定値)で運転されているときに診断用音データを取得するようにしたので、該診断用音データの周波数解析結果における上述のピーク周波数(上記(10)の方法で特定されるピーク周波数)の成分の振幅に基づいて、当該ピーク周波数の音の発生源の異常判定を適切に行うことができる。なお、駆動部の回転数は圧延状況に応じて異なる値を設定してもよいので、特定されるピーク周波数の成分の振幅もそれぞれの回転数に応じて変化する。 According to the above method (14), the diagnostic sound data is acquired when the drive unit is driven at a specific rotation speed (specified value). Therefore, in the frequency analysis result of the diagnostic sound data, Based on the amplitude of the component of the above-mentioned peak frequency (the peak frequency specified by the method (10) above), it is possible to appropriately determine the abnormality of the sound source of the peak frequency. Since the rotation speed of the drive unit may be set to a different value depending on the rolling condition, the amplitude of the specified peak frequency component also changes according to each rotation speed.
(15)幾つかの実施形態では、上記(14)の方法において、
 前記診断ステップでは、前記診断用音データについての前記周波数解析結果において、前記ピーク周波数の成分の振幅が閾値以上であるとき、前記音の発生源に異常が生じたと判定する。
(15) In some embodiments, in the method of (14) above,
In the diagnosis step, when the amplitude of the peak frequency component is equal to or larger than a threshold in the frequency analysis result of the diagnostic sound data, it is determined that an abnormality has occurred in the sound generation source.
 上記(15)の方法によれば、上述の診断用音データの周波数解析結果における上述のピーク周波数の成分の振幅と、閾値との比較により、当該ピーク周波数の音の発生源の異常判定を適切に行うことができる。なお、上述の閾値は、例えば、上述の(9)の方法により特定されたピーク周波数(機械装置の固有振動数)について、駆動部の回転数を規定値に設定して予め取得した振幅に基づいて決定することができる。 According to the method (15), the abnormality determination of the sound source of the peak frequency sound is appropriately performed by comparing the amplitude of the peak frequency component in the frequency analysis result of the diagnostic sound data with the threshold value. Can be done. The above-mentioned threshold value is based on, for example, the amplitude obtained in advance by setting the rotation speed of the drive unit to a specified value for the peak frequency (natural frequency of the mechanical device) specified by the method (9) described above. Can be decided.
(16)幾つかの実施形態では、上記(10)乃至(15)の何れかの方法において、
 前記機械装置は、
  前記駆動部としてのモータと、
  前記モータによって回転駆動される前記被駆動部としてのギア又はスピンドルと、
  前記ギア又は前記スピンドルにより駆動される圧延ロールと、
を含む圧延装置である。
(16) In some embodiments, in any one of the methods (10) to (15) above,
The mechanical device is
A motor as the drive unit,
A gear or a spindle as the driven portion that is rotationally driven by the motor,
A rolling roll driven by the gear or the spindle,
It is a rolling mill including.
 上記(16)の方法によれば、駆動部としてのモータと、被駆動部としてのギア又はスピンドルと、該ギア又はスピンドルにより駆動される圧延ロールと、を含む圧延装置の固有振動数を特定することができるとともに、該圧延装置において該固有振動数を有する位置又は部位を示す情報を取得することができる。 According to the above method (16), the natural frequency of the rolling mill including the motor as the driving unit, the gear or the spindle as the driven unit, and the rolling roll driven by the gear or the spindle is specified. In addition, it is possible to obtain information indicating the position or site having the natural frequency in the rolling device.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes modified forms of the above-described embodiments and combinations of these forms as appropriate.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In the present specification, expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric", or "coaxial". Not only strictly represents such an arrangement, but also represents a relative displacement or a state in which the components are relatively displaced with an angle or distance such that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous" that indicate that they are in the same state are not limited to a state in which they are exactly equal. It also represents the existing state.
In addition, in the present specification, expressions representing shapes such as a quadrangle and a cylinder are not limited to shapes such as a quadrangle and a cylinder in a geometrically strict sense, and are within a range in which the same effect can be obtained. A shape including an uneven portion and a chamfered portion is also shown.
Further, in this specification, the expressions “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
1    圧延装置
2    モータ
3    動力伝達部
4    ギア
6    スピンドル
8    圧延ロール
9    金属帯板
12A,12B ワークロール
14A,14B 中間ロール
16A,16B バックアップロール
30   診断装置
32   第1音響センサ
34A,34B 第2音響センサ
35   診断用音響センサ
36   処理部
37   記憶部
38   表示部
40   音データ取得部
42   周波数解析部
44   第1除去部
46   第2除去部
48   ピーク周波数特定部
50   音源情報取得部
54   診断部
DESCRIPTION OF SYMBOLS 1 Rolling apparatus 2 Motor 3 Power transmission part 4 Gear 6 Spindle 8 Rolling roll 9 Metal strips 12A, 12B Work rolls 14A, 14B Intermediate rolls 16A, 16B Backup roll 30 Diagnostic device 32 1st acoustic sensor 34A, 34B 2nd acoustic sensor 35 diagnostic acoustic sensor 36 processing unit 37 storage unit 38 display unit 40 sound data acquisition unit 42 frequency analysis unit 44 first removal unit 46 second removal unit 48 peak frequency identification unit 50 sound source information acquisition unit 54 diagnostic unit

Claims (15)

  1.  駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置を診断するための診断装置であって、
     それぞれ異なる位置に設けられ、前記機械装置から発生する音をそれぞれ検知するための複数の音響センサと、
     前記駆動部の回転数が異なる複数の回転数条件の各々において前記複数の音響センサの各々で検知された音をそれぞれ含む複数の音データを取得するように構成された音データ取得部と、
     前記複数の回転数条件ごとに取得した前記複数の音データをそれぞれ周波数解析するように構成された周波数解析部と、
     前記周波数解析部による周波数解析結果に基づいて、前記複数の音データに共通するピーク周波数が存在する1以上の回転数条件及び前記ピーク周波数を特定するピーク周波数特定部と、
     前記1以上の回転数条件の各々について、前記複数の音響センサのうち、前記ピーク周波数に対応する前記音データの振幅が最も大きい一の音響センサの前記機械装置に対する設置位置に基づいて、前記機械装置のうち、前記ピーク周波数に対応する固有振動数の音の発生源に関する情報を得る音源情報取得部と、
    を備える診断装置。
    A diagnostic device for diagnosing a mechanical device including a drive part and a driven part rotationally driven by the drive part,
    A plurality of acoustic sensors provided at different positions, respectively for detecting sounds generated from the mechanical device,
    A sound data acquisition unit configured to acquire a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different,
    A frequency analysis unit configured to perform frequency analysis on each of the plurality of sound data acquired for each of the plurality of rotation speed conditions,
    A peak frequency specifying unit that specifies the peak frequency and at least one rotation speed condition in which a peak frequency common to the plurality of sound data exists, based on a frequency analysis result by the frequency analyzing unit;
    For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of acoustic sensors with respect to the mechanical device. Of the device, a sound source information acquisition unit that obtains information about a source of sound having a natural frequency corresponding to the peak frequency,
    A diagnostic device including.
  2.  前記複数の音データの前記周波数解析結果について、前記回転数条件に依らず周波数が共通の成分を除去するように構成された第1除去部をさらに備え、
     前記音源情報取得部は、前記第1除去部により除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得るように構成された
    請求項1に記載の診断装置。
    The frequency analysis result of the plurality of sound data further comprises a first removing unit configured to remove a component having a common frequency regardless of the rotation speed condition,
    The diagnostic device according to claim 1, wherein the sound source information acquisition unit is configured to exclude the frequency component removed by the first removal unit from the peak frequency and obtain information about the sound source.
  3.  前記複数の音データの前記周波数解析結果について、前記駆動部の回転数に周波数が比例する成分を除去するように構成された第2除去部をさらに備え、
     前記音源情報取得部は、前記第2除去部により除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得るように構成された
    請求項1又は2に記載の診断装置。
    A second removing unit configured to remove a component whose frequency is proportional to the rotation speed of the driving unit, from the frequency analysis result of the plurality of sound data;
    The diagnosis according to claim 1 or 2, wherein the sound source information acquisition unit is configured to exclude the frequency component removed by the second removal unit from the peak frequency and obtain information about the sound source. apparatus.
  4.  前記ピーク周波数特定部によって特定された前記回転数条件に対応する前記ピーク周波数と、前記音源情報取得部によって特定された前記音の発生源に関する情報と、が関連付けられた情報を記憶するための記憶部をさらに備える
    請求項1乃至3の何れか一項に記載の診断装置。
    A memory for storing information in which the peak frequency corresponding to the rotation speed condition specified by the peak frequency specifying unit and the information regarding the sound source specified by the sound source information acquiring unit are associated with each other. The diagnostic device according to claim 1, further comprising a unit.
  5.  前記駆動部の回転数が規定値での運転中に、診断用音響センサで検知された音に基づき取得された診断用音データを周波数解析するように構成された周波数解析部と、
     前記周波数解析部による前記診断用音データについての周波数解析結果における、前記ピーク周波数の成分の振幅に基づいて、前記音の発生源の異常判定を行うように構成された診断部と、を備える
    請求項1乃至4の何れか一項に記載の診断装置。
    During operation of the rotation speed of the drive unit at a specified value, a frequency analysis unit configured to perform frequency analysis of diagnostic sound data acquired based on the sound detected by the diagnostic acoustic sensor,
    A diagnostic unit configured to determine an abnormality in the sound source based on the amplitude of the component of the peak frequency in the frequency analysis result of the diagnostic sound data by the frequency analysis unit. Item 5. The diagnostic device according to any one of items 1 to 4.
  6.  前記診断部は、前記診断用音データについての前記周波数解析結果において、前記ピーク周波数の成分の振幅が閾値以上であるとき、前記音の発生源に異常が生じたと判定するように構成された
    請求項5に記載の診断装置。
    In the frequency analysis result of the diagnostic sound data, the diagnosis unit is configured to determine that an abnormality has occurred in the sound source when the amplitude of the peak frequency component is equal to or greater than a threshold value. Item 6. The diagnostic device according to item 5.
  7.  前記機械装置は、
      前記駆動部としてのモータと、
      前記モータによって回転駆動される前記被駆動部としてのギア又はスピンドルと、
      前記ギア又は前記スピンドルにより駆動される圧延ロールと、
    を含む圧延装置である
    請求項1乃至6の何れか一項に記載の診断装置。
    The mechanical device is
    A motor as the drive unit,
    A gear or a spindle as the driven portion that is rotationally driven by the motor,
    A rolling roll driven by the gear or the spindle,
    The diagnostic device according to any one of claims 1 to 6, which is a rolling mill including a.
  8.  前記複数の音響センサは、前記モータに対応して設けられる第1音響センサと、前記ギア又は前記スピンドルに対応して設けられる第2音響センサと、を含む
    請求項7に記載の診断装置。
    The diagnostic device according to claim 7, wherein the plurality of acoustic sensors include a first acoustic sensor provided corresponding to the motor and a second acoustic sensor provided corresponding to the gear or the spindle.
  9.  駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置と、
     前記機械装置を診断するように構成された請求項1乃至8の何れか一項に記載の診断装置と、
    を備える設備。
    A mechanical device including a drive unit and a driven unit that is rotationally driven by the drive unit;
    The diagnostic device according to claim 1, wherein the diagnostic device is configured to diagnose the mechanical device.
    Equipment equipped with.
  10.  駆動部と、前記駆動部によって回転駆動される被駆動部と、を含む機械装置を診断するための診断方法であって、
     それぞれ異なる位置に設置された複数の音響センサにより前記機械装置から発生する音をそれぞれ検知する音検知ステップと、
     前記駆動部の回転数が異なる複数の回転数条件の各々において前記複数の音響センサの各々で検知された音をそれぞれ含む複数の音データを取得する音データ取得ステップと、
     前記複数の回転数条件ごとに取得した前記複数の音データをそれぞれ周波数解析するステップと、
     前記周波数解析の結果に基づいて、前記複数の音データに共通するピーク周波数が存在する1以上の回転数条件及び前記ピーク周波数を特定するピーク周波数特定ステップと、
     前記1以上の回転数条件の各々について、前記複数の音響センサのうち、前記ピーク周波数に対応する前記音データの振幅が最も大きい一の音響センサの前記機械装置に対する設置位置に基づいて、前記機械装置のうち、前記ピーク周波数に対応する固有振動数の音の発生源に関する情報を得る音源情報取得ステップと、
    を備える診断方法。
    A diagnostic method for diagnosing a mechanical device including a drive unit and a driven unit that is rotationally driven by the drive unit,
    A sound detection step of detecting a sound generated from the mechanical device by a plurality of acoustic sensors respectively installed at different positions,
    A sound data acquisition step of acquiring a plurality of sound data respectively including sounds detected by each of the plurality of acoustic sensors in each of a plurality of rotation speed conditions in which the rotation speed of the drive unit is different,
    A step of frequency-analyzing each of the plurality of sound data acquired for each of the plurality of rotation speed conditions;
    A peak frequency specifying step of specifying one or more rotation speed conditions in which a peak frequency common to the plurality of sound data exists and the peak frequency based on a result of the frequency analysis;
    For each of the one or more rotation speed conditions, the machine based on the installation position of the one acoustic sensor having the largest amplitude of the sound data corresponding to the peak frequency among the plurality of acoustic sensors with respect to the mechanical device. Of the device, a sound source information acquisition step of obtaining information about a source of sound of a natural frequency corresponding to the peak frequency,
    A diagnostic method comprising.
  11.  前記複数の音データの前記周波数解析の結果について、前記回転数条件に依らず周波数が共通の成分を除去する第1除去ステップをさらに備え、
     前記音源情報取得ステップでは、前記第1除去ステップで除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得る
    請求項10に記載の診断方法。
    The result of the frequency analysis of the plurality of sound data further comprises a first removing step of removing a component having a common frequency regardless of the rotation speed condition,
    The diagnostic method according to claim 10, wherein in the sound source information acquisition step, the frequency component removed in the first removal step is excluded from the peak frequency to obtain information about the sound source.
  12.  前記複数の音データの前記周波数解析の結果について、前記駆動部の回転数に周波数が比例する成分を除去する第2除去ステップをさらに備え、
     前記音源情報取得ステップでは、前記第2除去ステップにより除去される周波数成分を前記ピーク周波数から除外して、前記音の発生源に関する情報を得る
    請求項10又は11に記載の診断方法。
    Further comprising a second removal step of removing a component whose frequency is proportional to the rotation speed of the drive unit, from the result of the frequency analysis of the plurality of sound data,
    The diagnostic method according to claim 10 or 11, wherein in the sound source information acquisition step, the frequency component removed in the second removal step is excluded from the peak frequency to obtain information about the sound source.
  13.  前記ピーク周波数特定ステップで特定された前記回転数条件に対応する前記ピーク周波数と、前記音源情報取得ステップで取得された前記音の発生源に関する情報と、が関連付けられた情報を記憶部に記憶させるステップをさらに備える
    請求項10乃至12の何れか一項に記載の診断方法。
    The storage section stores information in which the peak frequency corresponding to the rotation speed condition specified in the peak frequency specifying step and the information regarding the sound source acquired in the sound source information acquiring step are associated with each other. The diagnostic method according to claim 10, further comprising a step.
  14.  前記駆動部の回転数が規定値での運転中に、診断用音響センサで前記機械装置からの音を検知し、該音を含む診断用音データを取得するステップと、
     前記診断用音データについて周波数解析するステップと、
     前記診断用音データについての周波数解析結果における、前記ピーク周波数の成分の振幅に基づいて、前記音の発生源の異常判定を行う診断ステップをさらに備える
    請求項10乃至13の何れか一項に記載の診断方法。
    A step of detecting a sound from the mechanical device with a diagnostic acoustic sensor during operation of the rotation speed of the drive unit at a specified value, and obtaining diagnostic sound data including the sound;
    Frequency-analyzing the diagnostic sound data,
    14. The diagnostic step according to claim 10, further comprising a diagnostic step of performing an abnormality determination of a sound generation source based on an amplitude of a component of the peak frequency in a frequency analysis result of the diagnostic sound data. Diagnostic method.
  15.  前記診断ステップでは、前記診断用音データについての前記周波数解析結果において、前記ピーク周波数の成分の振幅が閾値以上であるとき、前記音の発生源に異常が生じたと判定する
    請求項14に記載の診断方法。
    The said diagnostic step WHEREIN: When the amplitude of the component of the said peak frequency is more than a threshold value in the said frequency analysis result about the said diagnostic sound data, it determines with the abnormality having generate|occur|produced the said sound source. Diagnostic method.
PCT/JP2019/002883 2019-01-29 2019-01-29 Diagnostic device, equipment comprising same, and diagnostic method WO2020157818A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020568907A JP7077426B2 (en) 2019-01-29 2019-01-29 Diagnostic device and equipment equipped with it and diagnostic method
PCT/JP2019/002883 WO2020157818A1 (en) 2019-01-29 2019-01-29 Diagnostic device, equipment comprising same, and diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002883 WO2020157818A1 (en) 2019-01-29 2019-01-29 Diagnostic device, equipment comprising same, and diagnostic method

Publications (1)

Publication Number Publication Date
WO2020157818A1 true WO2020157818A1 (en) 2020-08-06

Family

ID=71842419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002883 WO2020157818A1 (en) 2019-01-29 2019-01-29 Diagnostic device, equipment comprising same, and diagnostic method

Country Status (2)

Country Link
JP (1) JP7077426B2 (en)
WO (1) WO2020157818A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283645A (en) * 1991-03-13 1992-10-08 Hitachi Ltd Method and apparatus for diagnosing abnormal sound of rotary machine and manufacturing line of rotary machine
JPH10288547A (en) * 1997-04-14 1998-10-27 Shinko Electric Co Ltd Abnormal sound monitor device
JPH1183618A (en) * 1997-09-04 1999-03-26 Toshiba Corp Acoustic monitoring device
JP2005337846A (en) * 2004-05-26 2005-12-08 Kobe Steel Ltd Tension measuring method of belt-like plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385749B2 (en) * 1994-10-18 2003-03-10 日本鋼管株式会社 Method and apparatus for detecting abnormality of container under pressure
JPH11118592A (en) * 1997-10-15 1999-04-30 Hitachi Ltd Equipment abnormality diagnosis device and plant device mounting the same
JP3598266B2 (en) 2000-10-30 2004-12-08 日立エンジニアリング株式会社 Device abnormality diagnosis method and device
JP3693644B2 (en) 2002-11-29 2005-09-07 東芝プラントシステム株式会社 Equipment operating state acoustic monitoring method and equipment operating state acoustic monitoring apparatus
JP2004206583A (en) 2002-12-26 2004-07-22 Nisshin Flour Milling Inc Learning type abnormality notification device and its method
JP4443247B2 (en) 2004-01-28 2010-03-31 株式会社日立製作所 Status monitoring system and status monitoring method
GB0525936D0 (en) 2005-12-21 2006-02-01 Rolls Royce Plc Methods of analysing apparatus
JP6061693B2 (en) 2013-01-18 2017-01-18 株式会社日立パワーソリューションズ Abnormality diagnosis apparatus and abnormality diagnosis method using the same
JP6646164B2 (en) 2016-11-25 2020-02-14 株式会社日立製作所 Power converter
JP6699763B2 (en) 2017-02-07 2020-05-27 富士通株式会社 Generation program, abnormality determination device, and generation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283645A (en) * 1991-03-13 1992-10-08 Hitachi Ltd Method and apparatus for diagnosing abnormal sound of rotary machine and manufacturing line of rotary machine
JPH10288547A (en) * 1997-04-14 1998-10-27 Shinko Electric Co Ltd Abnormal sound monitor device
JPH1183618A (en) * 1997-09-04 1999-03-26 Toshiba Corp Acoustic monitoring device
JP2005337846A (en) * 2004-05-26 2005-12-08 Kobe Steel Ltd Tension measuring method of belt-like plate

Also Published As

Publication number Publication date
JP7077426B2 (en) 2022-05-30
JPWO2020157818A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
EP2570879B1 (en) Condition monitoring system and method
TWI474023B (en) Diagnosis method for diagnosing fault in operation of a motor fault and diagnosis device using the same
Picot et al. Statistic-based spectral indicator for bearing fault detection in permanent-magnet synchronous machines using the stator current
WO2002073150A9 (en) System and method for analyzing vibration signals
JP2001304954A (en) Fault diagnosis method and device
JP2008292288A (en) Bearing diagnostic device for reduction gear
WO2008117765A1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
WO2016039085A1 (en) Rotary machine malfunction diagnosis device, rotary machine malfunction diagnosis method, and rotary machine
CN113092114B (en) Bearing fault diagnosis method, device and storage medium
JP5958932B2 (en) Dynamic equipment condition monitoring system, method and program
JP3875981B2 (en) Anomaly diagnosis method and apparatus for rolling bearing
JPWO2004068078A1 (en) State determination method, state prediction method and apparatus
JP3759881B2 (en) Process diagnosis monitoring system
WO2020157818A1 (en) Diagnostic device, equipment comprising same, and diagnostic method
JP6497919B2 (en) Diagnosis method and diagnosis system for equipment including rotating body and its bearing
WO2019220542A1 (en) Rolling equipment diagnosis device and diagnosis method
JP3876976B2 (en) Evaluation apparatus and evaluation method
KR101482511B1 (en) Diagnosis System and Method of Bearing Defect by Phase Lag and Data Dispersion Shape Factor
JP2004093357A (en) Evaluation method and evaluation device
JP6348934B2 (en) Abnormality diagnosis system and abnormality diagnosis method
JP7261325B2 (en) Monitoring device, abnormality diagnosis device, monitoring method and abnormality diagnosis method
JP2005037293A (en) Method of diagnosing abnormality
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JP4209793B2 (en) Abnormality diagnosis method based on acoustic signal and program used for executing the method
JP3776343B2 (en) Abnormality monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912393

Country of ref document: EP

Kind code of ref document: A1