WO2020156438A1 - 一种车辆安全检查系统及检查方法 - Google Patents

一种车辆安全检查系统及检查方法 Download PDF

Info

Publication number
WO2020156438A1
WO2020156438A1 PCT/CN2020/073801 CN2020073801W WO2020156438A1 WO 2020156438 A1 WO2020156438 A1 WO 2020156438A1 CN 2020073801 W CN2020073801 W CN 2020073801W WO 2020156438 A1 WO2020156438 A1 WO 2020156438A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
accelerator
sensor
dose
safety inspection
Prior art date
Application number
PCT/CN2020/073801
Other languages
English (en)
French (fr)
Inventor
李巨轩
许艳伟
喻卫丰
马媛
胡煜
宗春光
孙尚民
Original Assignee
同方威视技术股份有限公司
同方威视科技(北京)有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 同方威视科技(北京)有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to PL438662A priority Critical patent/PL438662A1/pl
Publication of WO2020156438A1 publication Critical patent/WO2020156438A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Definitions

  • the present disclosure relates to the field of safety inspection, and in particular to a vehicle safety inspection system and inspection method.
  • the X-ray-based inspection system known to the inventor can inspect and image the substances contained in it without damaging the surface of the article, and because of its high energy, good penetration effect, safe transportation and no subsequent pollution.
  • high-dose X-rays are likely to cause damage to the human body, and some items to be inspected, such as vehicles passing through the passage to be inspected under the condition of the driver or staff operating, need to ensure the safety of the personnel on the vehicle and carry out corresponding measures. avoid.
  • a vehicle safety inspection system including: a scanning device, the scanning device including an accelerator and a detector, and is configured to scan and image a vehicle; a first sensor disposed on the accelerator The direction of the vehicle is configured to detect whether a vehicle passes by; a second sensor is disposed between the accelerator and the first sensor and is configured to detect whether a vehicle passes by; and a controller is configured to detect whether a vehicle passes by When the first sensor detects that the vehicle is passing by, the accelerator is warmed up, and when the second sensor detects that the vehicle is passing, the accelerator is controlled to emit the first dose to meet the safety conditions of radiation protection for people on the vehicle , Perform a safety inspection on the vehicle.
  • the controller is further configured to: when controlling the accelerator to emit the beam at the first dose, control the beam output frequency of the accelerator to correspond to the driving speed of the vehicle.
  • the controller is further configured to control the beam output frequency of the accelerator to remain unchanged when the amount of change in the traveling speed of the vehicle is within a set range.
  • the deformed part of the vehicle imaging is corrected according to the speed of the vehicle.
  • the vehicle safety inspection system further includes: a third sensor, which is provided in the vehicle direction of the accelerator, and is configured to determine the type of the vehicle compartment.
  • the third sensor includes at least one of a wheelbase sensor and an image sensor
  • the wheelbase sensor is configured to determine the type of the vehicle compartment by collecting the wheelbase of the vehicle compartment.
  • the image sensor is configured to determine the type of the vehicle compartment by collecting image information of the vehicle compartment.
  • the controller is further configured to: based on the judgment result of the third sensor, when the vehicle that can be scanned normally passes through the accelerator, control the accelerator so as not to be protected from persons on the vehicle.
  • the second dose restricted by the safety conditions of radiation protection is emitted, and the vehicle is inspected for safety.
  • the controller is further configured to: when controlling the accelerator to emit the beam at the second dose, control the beam output frequency of the accelerator to correspond to the driving speed of the vehicle, and according to the vehicle The change in the driving speed of the accelerator can adjust the beam frequency of the accelerator in real time to improve the imaging quality of the vehicle.
  • the cars that can be scanned normally include: freight cars on the vehicle that are not adjacent to passenger cars or locomotives.
  • the accelerator is preheated to a temperature at which the accelerator does not exhibit a dose ramping phenomenon at the highest scanning frequency.
  • a vehicle inspection method based on the vehicle safety inspection system described in any of the preceding embodiments, including: when the vehicle passes a first sensor, the accelerator enters a low frequency preheating Mode; and when the vehicle passes through the second sensor, the accelerator is made to emit beams at a first dose to perform a safety inspection on the vehicle; wherein, the first dose is set to be that the beam dose of the accelerator meets the requirements
  • the safety conditions for radiation protection of personnel on the vehicle are described.
  • the vehicle inspection method includes: judging the type of the vehicle compartment, and when the vehicle that can be scanned normally passes the accelerator, controlling the accelerator to emit beams with a second dose to perform treatment on the vehicle. Safety inspection; wherein the second dose is configured such that the beam dose of the accelerator is not restricted by the radiation protection safety conditions of the personnel on the vehicle.
  • FIG. 1 is a schematic structural diagram of an arrangement scheme of a vehicle safety inspection system provided by some embodiments of the disclosure
  • FIG. 2 is a schematic cross-sectional view of a vehicle safety inspection system provided by some embodiments of the present disclosure along the traveling direction of the vehicle;
  • FIG. 3 is a schematic diagram of a similar triangle principle that the beam frequency of the vehicle safety inspection system provided by some embodiments of the disclosure corresponds to the vehicle speed;
  • FIG. 4 is a schematic diagram of the connection state of the controller in the vehicle safety inspection system provided by some embodiments of the disclosure.
  • the relevant X-ray vehicle safety inspection system known to the inventor in order to ensure the radiation safety of the personnel on the vehicle, adopts the scheme of avoiding the locomotive and the adjacent freight cars of the locomotive for scanning inspection. At the same time, in order to avoid the problem of slow acceleration of the accelerator dose in the scanned image due to the fast speed of the vehicle, the scheme of preheating the accelerator before beam emergence is adopted to improve the dose stability when the accelerator beam emerges, thereby improving the image quality.
  • the specific steps are as follows: when the vehicle is a certain distance from the main beam, the accelerator is preheated with high voltage and magnetic trigger frequency; when the vehicle approaches the beam centerline, for example, when entering the scanning channel, control the accelerator’s preheating magnetic trigger frequency to drop To a certain range to ensure the radiation safety of the locomotive driver; when the locomotive and an adjacent car pass the beam centerline, the normal magnetic trigger frequency of the accelerator is restored, and the accelerator is controlled to start beam scanning.
  • the embodiments of the present disclosure provide a vehicle safety inspection system, which can check the passenger compartments in the vehicle (such as the locomotive and passenger car in the train, and the freight car adjacent to the locomotive and passenger car) under the premise of ensuring the safety of personnel on the vehicle. ) To scan.
  • the vehicles described in the present disclosure may include rail trains, trolley trains, multi-carriage trucks, or multiple cars that travel in sequence. Only the vehicles to be inspected are used for carrying people or goods and can pass through the inspection area in sequence OK. Therefore, the vehicle safety inspection system provided by the present disclosure can be set in different inspection areas according to different objects to be inspected. For example, for tracked trains, the vehicle safety inspection system can be set on both sides of the track; for trackless trains and multi-carriage trucks, the vehicle safety inspection system can be set on the traveling route of the vehicle; and for multiple vehicles in turn For driving cars, the vehicle safety inspection system can be installed in the passing areas of the vehicles, including high-speed toll stations, customs clearance inspection areas, etc.
  • Fig. 1 is a schematic structural diagram of a vehicle safety inspection system arrangement scheme provided by some embodiments of the present disclosure.
  • a vehicle safety inspection system including: a scanning device, the scanning device It includes an accelerator 110 and a detector 120, and is configured to scan and image the vehicle; the first sensor S0 or X0 is set at the vehicle coming from the accelerator 110 and is configured to detect whether a vehicle passes by; the second sensor S1 or X1 is set between the accelerator 110 and the first sensor S0 or X0, and is configured to detect whether a vehicle passes by; and the controller is configured to detect a vehicle passing by the first sensor S0 or X0 ,
  • the accelerator 110 is warmed up, and when the second sensor S1 or X1 detects that the vehicle is passing by, the accelerator 110 is controlled to emit the first dose to meet the safety conditions for radiation protection of the personnel on the vehicle.
  • the vehicle undergoes a safety inspection.
  • the accelerator is beamed with the first dose that can meet the radiation protection safety conditions of the personnel on the vehicle, so that the passenger compartment in the vehicle (such as the locomotive in the train) can be treated on the premise of ensuring the safety of the personnel on the vehicle.
  • the vehicle detection system including the accelerator 110 and the detector 120, is generally arranged on both sides of the train track to radiate the vehicles passing through the center plane of the beam from the accelerator 110. Imaging.
  • the traveling direction of the train on the track is forward or reverse. Therefore, in order to save the arrangement of sensors in the vehicle detection system as much as possible, as shown in Fig. 1, the sensors will take the accelerator 110 and the detector 120 as the axis along the The orbits are arranged symmetrically, that is, S0 and X0 are arranged symmetrically in the figure, and S1 and X1 are arranged symmetrically in the figure. Therefore, for simplification, the following description takes the part to the left of the beam centerline AA' in the figure, and the part to the right of the beam centerline AA' in the figure can be derived from the symmetry.
  • the vehicle safety inspection system takes the accelerator 110 and the detector 120 as the core, uses the accelerator 110 to emit radiation and is received by the detector 120, and then processes and images to observe the inside of the article. Since the internal condition of the article can be inspected without damaging the surface of the article, the vehicle safety inspection system described above can be effectively applied to the inspection process of the vehicle.
  • the detection rays can be generated by accelerating electrons hitting the target, and for a vehicle in a driving state, the detection rays need to radiate the vehicle at a certain frequency. Then the vehicle is imaged through the radiation detection results at multiple times. Therefore, the parameters that may affect the radiation dose of X-rays include the frequency of the radiation emitted by the accelerator 110, the voltage applied by the accelerator 110 to accelerate the electrons by the electromagnetic field, and the current of the electron source to generate electrons.
  • the vehicle safety inspection system provided by the embodiment of the present disclosure inspects the vehicle compartment, it is necessary to strictly control the beam dose of the accelerator 110 to meet the radiation protection safety conditions of personnel, for example, in ANSI/IIPS-N43.17 -It is stipulated in 2009 that the single dose received by the driver cannot exceed 0.25 ⁇ Sv. Therefore, although the beam dose does not correspond to the dose received by the driver, generally speaking, it is necessary to control the beam dose of the accelerator 110 not to exceed the above-mentioned regulations in order to ensure the driver's radiation protection safety.
  • the embodiment of the present disclosure sets the first sensor S0 or X0.
  • a laser sensor or a proximity switch can be selected to detect whether a vehicle passes by, and when the vehicle passes by the first sensor S0 or X0, The accelerator 110 is warmed up. Because the beam of the accelerator requires two conditions, one is a microwave magnetic field for accelerating electrons; the other is that the electron source is applied with a high voltage to generate electrons that are accelerated by the microwave magnetic field to generate X-rays.
  • the preheating of the accelerator means that the accelerator tube is used to establish an acceleration field in advance through microwaves.
  • the electron source emits electrons
  • the electrons can be accelerated and the target can be used to generate X-rays.
  • the higher the frequency of the microwave the stronger the energy of the accelerator tube to accelerate electrons. Since the electron source does not generate electrons before the high voltage is applied to the accelerator tube, there are still a small amount of free floating electrons in the accelerator tube, which can still be accelerated by the microwave magnetic field in the preheating state to generate a small amount of radiation.
  • the microwave frequency for preheating the accelerator should not be too high, so as not to generate radiation doses that exceed radiation safety requirements due to acceleration of free-floating electrons.
  • the microwave frequency for preheating the accelerator should not be too low or even absent, so as to avoid a slow rise in the dose due to the time required for the microwave to establish a magnetic field in the normal beam state (the slow rise in dose refers to:
  • the beam dose of the accelerator 110 will gradually increase from zero, which will cause a deviation in the detection and imaging of the object).
  • the accelerator 110 When the accelerator 110 is warmed up due to the detection result of the first sensor S0 or X0, and affected by the detection result of the second sensor S1 or X1, the accelerator 110 will emit a beam at the first dose and scan and image the vehicle. As mentioned above, affected by the safety conditions of personnel radiation protection, the first dose will be strictly controlled so as not to affect the safety of the personnel on the vehicle.
  • the embodiments of the present disclosure can perform safety inspections on passenger compartments, avoid the possibility of hiding dangerous goods in such compartments, effectively eliminate dead spots in vehicle safety inspections, and improve the overall safety inspection. Sexuality and thoroughness.
  • FIG. 2 is a schematic cross-sectional schematic diagram of the vehicle safety inspection system provided by some embodiments of the present disclosure along the vehicle traveling direction
  • FIG. 3 is a schematic diagram of a similar triangle principle that the beam frequency of the vehicle safety inspection system provided by some embodiments of the disclosure corresponds to the vehicle speed
  • 4 is a schematic diagram of the connection state of the controller in the vehicle safety inspection system provided by some embodiments of the disclosure. As shown in FIGS. 2, 3, and 4, in some embodiments, the controller is further configured to: when controlling the accelerator 110 to emit the beam at the first dose, control the beam output frequency of the accelerator 110 Corresponds to the traveling speed of the vehicle.
  • the distance between the target point of the accelerator 110 and the centerline of the vehicle is a
  • the distance between the target point of the accelerator 110 and the detector 120 is b
  • the vehicle speed is v
  • the cross-sectional width of the detector 120 is d
  • the beam frequency of the accelerator 110 is
  • the oversampling parameter is K
  • the distance a from the target point of the accelerator 110 to the center line of the vehicle, the distance b from the target point of the accelerator 110 to the detector 120, the cross-sectional width d of the detector 120, and the oversampling parameter K are fixed relative to the same vehicle safety inspection system.
  • the speed v of the vehicle and the beam frequency f of the accelerator 110 have a one-to-one correspondence, that is, the speed of the vehicle is proportional to the beam frequency of the accelerator 110.
  • the beam frequency of the accelerator 110 needs to be controlled to increase accordingly.
  • the vehicle detection system provided by the embodiment of the present disclosure can control and adjust the beam frequency of the accelerator 110 through the cooperation of a speed sensor and an automatic frequency control (AFC) device. That is, when the vehicle speed changes, the beam frequency of the accelerator 110 is adjusted accordingly to improve the quality of radiation imaging and the effect of safety inspection.
  • AFC automatic frequency control
  • the controller is further configured to control the beam output frequency of the accelerator 110 to remain unchanged when the amount of change in the traveling speed of the vehicle is within a set range.
  • the beam frequency of the accelerator 110 should correspond to the driving speed of the vehicle, but because the first dose is much lower than the normal beam dose of the accelerator 110 (usually the first dose is less than the accelerator 110 10% of the normal beam dose), the accelerator 110 at the first dose beam will be far away from its rated power. Therefore, in order to make the beam output dose of the accelerator 110 as stable as possible, the vehicle detection system provided by the embodiment of the present disclosure makes the beam output frequency of the accelerator 110 when the variation of the driving speed of the vehicle is within the set range No change, in order to avoid the influence of the lower beam dose on the stability of the accelerator 110 as much as possible.
  • the setting range of the amount of change in the vehicle speed can be calibrated according to the first dose and the model and type of the accelerator 110, and is subject to no significant impact on the quality of the radiation imaging. For example, it may be selected that when the amount of change in the vehicle speed is within 5% of the maximum speed of the vehicle, the beam output frequency of the accelerator 110 is not adjusted.
  • the setting range of the amount of change in the traveling speed of the vehicle may also be set to a fixed numerical range, such as ⁇ 15km/h.
  • the deformed part of the vehicle imaging is corrected according to the speed of the vehicle.
  • the beam frequency of the accelerator 110 remains inconvenient, which makes the vehicle provided by the embodiment of the present disclosure
  • the radiation imaging of the security inspection system is prone to deformation.
  • the geometric correction of the deformed part of the radiation imaging image can be performed through an algorithm according to the speed of the vehicle or other influencing factors.
  • the vehicle safety inspection system further includes: a third sensor S2 or X2, which is provided in the direction of the vehicle of the accelerator 110, configured to determine the type of the vehicle compartment.
  • the third sensor S2 or X2 can be set to multiple or multiple groups to improve the accuracy of judging the type of vehicle compartment.
  • the third sensor S2 or X2 includes at least one of a wheelbase sensor and an image sensor, the wheelbase sensor is configured to determine the type of the vehicle compartment by collecting the wheelbase of the vehicle compartment, the image sensor It is configured to determine the type of the vehicle compartment by collecting image information of the vehicle compartment.
  • the image sensor may include a first camera 131, a second camera 132, a third camera 133, and a fourth camera 134, which are respectively arranged on both sides of the entrance direction track of the vehicle safety inspection system and two sides of the exit direction track.
  • the wheelbase sensor may be correspondingly arranged at the position of the first sensor S0 or X0, for example, may be arranged in or beside the track of the vehicle, so as to determine the model parameters of the vehicle according to the wheelbase of the vehicle. Function parameter.
  • the controller is further configured to: based on the judgment result of the third sensor S2 or X2, when the vehicle that can be scanned normally passes the accelerator 110, the controller 110 is controlled so as not to The second dose limited by the radiation protection safety conditions of the personnel on the vehicle is emitted, and the vehicle is inspected for safety.
  • the second dose can be set It is the beam dose of the accelerator 110 in the rated working state, so that the accelerator 110 can work in a stable beam output interval, and the radiation imaging quality for vehicle safety detection is improved.
  • the controller is further configured to: when controlling the accelerator 110 to emit the beam at the second dose, control the beam output frequency of the accelerator 110 to correspond to the driving speed of the vehicle, and according to the According to the change of the driving speed of the vehicle, the beam output frequency of the accelerator 110 is adjusted in real time to improve the imaging quality of the vehicle.
  • the beam frequency of the accelerator 110 can be adjusted according to the speed of the vehicle to ensure that when the speed of the vehicle changes, the accelerator 110 can Make corresponding adjustments to avoid problems such as geometric deformation of the radiation imaging of the vehicle safety inspection.
  • the cars that can be scanned normally include: freight cars on the vehicle that are not adjacent to passenger cars or locomotives.
  • the range of cars that can be scanned normally according to the above criteria is only trucks, and trucks adjacent to locomotives or passenger cars are excluded, so as to further avoid the generation of radiation doses that exceed the safety conditions of radiation protection to the cars on the vehicles where people move. Health requirements for people on the vehicle.
  • the accelerator 110 is warmed up until the accelerator 110 does not present a dose at the highest scanning frequency.
  • the temperature of the slow rise phenomenon is the temperature of the slow rise phenomenon.
  • the distance between the first sensor S0 or X0 and the second sensor S1 or X1 is L+N, and the distance is set to satisfy that the vehicle is running at the maximum speed. 110 can still be warmed up normally, and when the vehicle passes the beam center, the beam will be beamed at the beam frequency corresponding to the speed of the vehicle.
  • the traveling speed of a general vehicle is 100km/h to 300km/h
  • the warm-up time of the accelerator 110 is usually 6 to 8 seconds.
  • the first sensor S0 or X0 and the second sensor S1 or X1 can be combined.
  • the distance between L+N is correspondingly set not less than 666m (300km/h*8s).
  • the distance L+N between the first sensor S0 or X0 and the second sensor S1 or X1 can also be determined according to the type of vehicle or the traveling speed of the track set by the vehicle safety inspection system.
  • the vehicle safety inspection system provided by the embodiment of the present disclosure also includes a first protective wall 171 and a second protective wall 172, which are arranged on both sides of the vehicle track to block or absorb radiation rays and protect both sides of the track. Safety of personnel.
  • a first area laser sensor 161, a second area laser sensor 162, a third area laser sensor 163, and a fourth area laser sensor are correspondingly provided on the inner side of the first protective wall 171 and the second protective wall 172.
  • the fifth area laser sensor 165 and the sixth area laser sensor 166 are used for real-time speed measurement of vehicles passing through the vehicle detection system, and enable the controller to monitor the accelerator based on the measurement results of the multiple laser sensors.
  • the 110 beam frequency is precisely controlled.
  • a first entrance light curtain 141, a second entrance light curtain 142, a first exit light curtain 151 and The second exit light curtain 152 further monitors the vehicle entering the vehicle safety inspection system, so as to avoid the health hazard to the persons on the vehicles that may pass through due to the scanning and calibration of the air.
  • a vehicle inspection method based on the vehicle safety inspection system described in any one of the preceding embodiments, including: when the vehicle passes the first sensor S0 or X0, the accelerator 110 Enter the low-frequency warm-up mode; and when the vehicle passes the second sensor S1 or X1, make the accelerator 110 emit a beam at a first dose to perform a safety inspection on the vehicle; wherein the first dose is set to The beam dose of the accelerator 110 meets the radiation protection safety conditions of the personnel on the vehicle.
  • the vehicle inspection method includes: determining the type of the vehicle compartment, and when the vehicle that can be scanned normally passes the accelerator 110, controlling the accelerator 110 to emit beams with a second dose, The vehicle undergoes a safety inspection; wherein the second dose is configured such that the beam dose of the accelerator 110 is not restricted by the radiation protection safety conditions of the personnel on the vehicle.
  • the embodiment of the present disclosure uses the first dose that can meet the radiation protection safety conditions of the vehicle personnel to make the accelerator 110 beam, so as to ensure the safety of the vehicle personnel on the premise of the passenger compartment of the vehicle. Scanning (locomotives, passenger cars, and trucks adjacent to the locomotives and passenger cars) avoids the risk of smuggling and hiding dangerous goods on passenger compartments.
  • the present disclosure also improves the reliability of the system by simplifying the control scheme for the beam frequency of the accelerator 110 and the beam dose of the accelerator 110, and avoids the frequent high-low-high frequency control conversion of the accelerator 110 by the relevant vehicle safety inspection system, which affects the accelerator. 110 work stability.
  • the accelerator 110 in the embodiment of the present disclosure is always within the radiation protection safety range before the beam is emitted normally, which avoids the false alarm of the light curtain signal during the high-low-high conversion process of the accelerator 110 beam. Frequent preheating poses the risk of excessive radiation dose to the locomotive driver.

Landscapes

  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

本公开提供了一种车辆安全检查系统,包括:扫描设备,所述扫描设备包括加速器(110)和探测器(120),并被配置为对车辆进行扫描成像;第一传感器(S0),设置于所述加速器(110)的车辆来向,被配置为检测是否有车辆经过;第二传感器(S1),设置于所述加速器(110)与所述第一传感器(S0)之间,被配置为检测是否有车辆经过;以及控制器,被配置为在所述第一传感器(S0)检测到车辆经过时,使所述加速器(110)预热,并在所述第二传感器(S1)检测到车辆经过时,控制所述加速器(110)以满足所述车辆上人员辐射防护安全条件的第一剂量出束,对所述车辆进行安全检查。

Description

一种车辆安全检查系统及检查方法
相关申请的交叉引用
本申请是以CN申请号为CN201910108229.X,申请日为2019年02月03日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及安全检查领域,尤其涉及一种车辆安全检查系统及检查方法。
背景技术
随着国际货物贸易往来日益频繁,国际安全问题日益严峻,安全检查系统越来越多地出现在各种货物集散地以及交通枢纽,例如各国的海关、机场、码头、车站等。
发明人知晓的基于X射线的检查系统,能够在不破坏物品表面的情况下,对其中包含的物质进行检查并实时成像,并且由于其能量高、穿透效果好、运输安全且无后续污染而受到各种安检场所的青睐。但是高剂量的X射线容易对人体造成损害,而部分待检测物品,例如车辆是以驾驶人员或工作人员操作的情况下通过待检测通道,此时就需要确保车辆上人员的安全,进行相应的避让。
发明内容
在本公开的一个方面,提供一种车辆安全检查系统,包括:扫描设备,所述扫描设备包括加速器和探测器,并被配置为对车辆进行扫描成像;第一传感器,设置于所述加速器的车辆来向,被配置为检测是否有车辆经过;第二传感器,设置于所述加速器与所述第一传感器之间,被配置为检测是否有车辆经过;以及控制器,被配置为在所述第一传感器检测到车辆经过时,使所述加速器预热,并在所述第二传感器检测到车辆经过时,控制所述加速器以满足所述车辆上人员辐射防护安全条件的第一剂量出束,对所述车辆进行安全检查。
在一些实施例中,所述控制器被进一步配置为:在控制所述加速器以第一剂量出束时,控制所述加速器的出束频率与所述车辆的行驶速度对应。
在一些实施例中,所述控制器被进一步配置为:在所述车辆的行驶速度变化量在设定范围之内时,控制所述加速器的出束频率不变。
在一些实施例中,在所述加速器的出束频率不变的情况下,根据所述车辆的速度对所述车辆成像的变形部分进行校正。
在一些实施例中,所述车辆安全检查系统进一步包括:第三传感器,设置于所述加速器的车辆来向,被配置为判断所述车辆车厢的种类。
在一些实施例中,所述第三传感器包括轴距传感器和图像传感器中的至少一个,所述轴距传感器被配置为通过采集所述车辆车厢的轴距,判断所述车辆车厢的种类,所述图像传感器被配置为通过采集所述车辆车厢的图像信息,判断所述车辆车厢的种类。
在一些实施例中,所述控制器被进一步配置为:基于所述第三传感器的判断结果,在所述车辆可正常扫描的车厢经过加速器时,控制所述加速器以不受所述车辆上人员的辐射防护安全条件限制的第二剂量出束,对所述车辆进行安全检查。
在一些实施例中,所述控制器被进一步配置为:在控制所述加速器以第二剂量出束时,控制所述加速器的出束频率与所述车辆的行驶速度对应,并根据所述车辆的行驶速度的变化,实时地调整所述加速器的出束频率,以提高车辆成像质量。
在一些实施例中,所述可正常扫描的车厢包括:所述车辆上不与客车或机车相邻的货车车厢。
在一些实施例中,在车辆从所述第一传感器到所述第二传感器的过程中,使所述加速器被预热至所述加速器在最高扫描频率下不出现剂量缓升现象的温度。
在本公开的另一个方面,提供一种基于前文任一实施例所述的车辆安全检查系统的车辆检查方法,包括:在所述车辆经过第一传感器的时候,使所述加速器进入低频预热模式;以及在所述车辆经过第二传感器的时候,使所述加速器以第一剂量出束,对车辆进行安全检查;其中,所述第一剂量被设置为所述加速器的出束剂量满足所述车辆上人员的辐射防护安全条件。
在一些实施例中,所述车辆检查方法包括:判断所述车辆车厢的种类,在所述车辆可正常扫描的车厢经过所述加速器时,控制所述加速器以第二剂量出束,对车辆进行安全检查;其中,所述第二剂量被配置为所述加速器的出束剂量不受所述车辆上人员的辐射防护安全条件限制。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公 开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开一些实施例所提供的车辆安全检查系统布置方案结构示意图;
图2为本公开一些实施例所提供的车辆安全检查系统沿车辆行驶方向截面示意图;
图3为本公开一些实施例所提供的车辆安全检查系统出束频率与车辆速度对应相似三角形原理示意图;
图4为本公开一些实施例所提供的车辆安全检查系统中控制器的连接状态示意图。
各附图标记分别代表:
110-加速器,120-探测器,131-第一相机,132-第二相机,133-第三相机,134-第四相机,141-第一入口光幕,142-第二入口光幕,151-第一出口光幕,152-第二出口光幕,161-第一区域激光传感器,162-第二区域激光传感器,163-第三区域激光传感器,164-第四区域激光传感器,165-第五区域激光传感器,166-第六区域激光传感器,171-第一防护墙,172-第二防护墙,AA’-束流中心线,S0或X0-第一传感器,S1或X1-第二传感器,S2或X2-第三传感器。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一 项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人知晓的相关的X射线车辆安全检查系统,为保证车辆上人员的辐射安全,采用对机车及机车相邻货车车厢避让的方案进行扫描检查。同时为了避免由于车辆速度快而在扫描图像中产生加速器剂量缓升问题,采用出束前提前预热加速器的方案,提高加速器出束时的剂量稳定性,从而提高图像质量。具体步骤如下:在车辆距离主束一定距离时,对加速器进行提前加高压及加磁触发频率预热;当车辆接近束流中心线,例如进入扫描通道时,控制加速器的预热磁触发频率下降到一定范围,以保证机车司机辐射安全;当机车及相邻1节车厢通过束流中心线时,恢复加速器的正常磁触发频率,并控制加速器开始出束扫描。
然而这种对机车及机车相邻车辆车厢避让的方案,难以检查到机车及机车相邻车辆车厢夹带走私物、危险品的情况,使得安全检查留有隐患;并且,加速器预热频率所采取的高频-低频-高频转换对加速器的自动频率控制(Automatic Frequency Control,AFC)电机要求较高,特别在车辆高速行驶时,还可能会出现AFC电机调节滞后而导致加速器剂量缓升现象,从而影响图像质量;此外,上述步骤对于控制系统的要求较高,需要多套传感器与控制单元,不但控制系统复杂、成本高,还容易出现传感器信号误报而使加速器高频预热,并对车辆上人员造成超标剂量的辐射。
有鉴于此,本公开实施例提供一种车辆安全检查系统,能够在保证车辆上人员安全的前提下,对车辆中的有人车厢(例如列车中的机车、客车以及与机车、客车相邻的货车)进行扫描。
本公开所述的车辆,可以包括轨道列车、无轨列车、多厢体货车、或多辆依次行驶的汽车,只需待检测的车辆以载人或载货为用途,并能顺次通过检查区域即可。由此,本公开所提供的车辆安全检查系统依据待检查对象的不同,可以被相应地设置在不同的检查区域。例如对于有轨列车而言,车辆安全检察系统可以被设置在轨道两侧;对于无轨列车、多厢体货车而言,车辆安全检查系统可以被设置在车辆的行驶路线上;而对于多辆依次行驶的汽车,车辆安全检察系统则可以被设置在车辆的通过区域,包括高速收费站、海关过关检查区域等。
以下结合附图,以对有轨列车进行安全检查作为本公开车辆检测系统的具体场景,对本公开的详细技术方案进行说明:
图1为本公开一些实施例所提供的车辆安全检查系统布置方案结构示意图,如图1所示,在本公开的一个方面,提供一种车辆安全检查系统,包括:扫描设备,所述 扫描设备包括加速器110和探测器120,并且被配置为对车辆进行扫描成像;第一传感器S0或X0,设置于所述加速器110的车辆来向,被配置为检测是否有车辆经过;第二传感器S1或X1,设置于所述加速器110与所述第一传感器S0或X0之间,被配置为检测是否有车辆经过;以及控制器,被配置为在所述第一传感器S0或X0检测到车辆经过时,使所述加速器110预热,并在所述第二传感器S1或X1检测到车辆经过时,控制所述加速器110以满足所述车辆上人员辐射防护安全条件的第一剂量出束,对所述车辆进行安全检查。
本公开实施例以能够满足车辆上人员的辐射防护安全条件的第一剂量使所述加速器出束,从而能够在保证车辆上人员安全的前提下,对车辆中的有人车厢(例如列车中的机车、客车以及与机车、客车相邻的货车)进行扫描。
需要说明的是,对于车辆的安全检查而言,其中车辆检测系统,包括加速器110与探测器120,一般设置于列车轨道的两侧,以对经过所述加速器110出束中心面的车辆进行辐射成像。然而列车在轨道上的行驶方向为正向或反向,因此为了尽可能地节省车辆检测系统中传感器的布置,如图1所示,传感器将以加速器110及探测器120为轴,沿所述轨道对称布置,即图中S0与X0对称设置,图中S1与X1对称设置。因此为了简化,以下以图中出束中心线AA’以左的部分进行说明,图中出束中心线AA’以右的部分可由对称性相应得出。
所述车辆安全检查系统以加速器110和探测器120为核心,利用加速器110发射射线并由探测器120接收,随后进行处理成像以观察物品内部的情况。由于能够在不破坏物品表面的前提下探查物品的内部情况,上述车辆安全检查系统能够有效应用于对车辆的检查过程中。
其中,对于以X射线为探测射线的车辆安全检查系统而言,探测射线可通过加速电子撞击靶材生成,并且对于处于行驶状态的车辆而言,需要探测射线以一定的频率对车辆进行辐射,再通过多个时刻的辐射探测结果对车辆进行成像。因此,对X射线的辐射剂量可能产生影响的参数包括了加速器110发射射线的频率、加速器110利用电磁场为电子加速时所加的电压,以及电子源生成电子的电流等参数。
然而,由于X射线被发现是对生物体有害的,可使生物细胞受到抑制、破坏甚至坏死,致使机体发生不同程度的生理、病理和生化等方面的改变。因此,在本公开实施例所提供的车辆安全检查系统对车辆的车厢进行检查的过程中,需要严格控制加速器110的出束剂量符合人员的辐射防护安全条件,例如在ANSI/IIPS-N43.17-2009中 规定,驾驶员单次接收的剂量不能超过0.25μSv。因此,虽然出束剂量并不对应于驾驶员所接收的剂量,但是一般而言需要至少控制加速器110的出束剂量不超过上述规定,才能保证驾驶员的辐射防护安全。
基于辐射防护安全要求,本公开实施例设置第一传感器S0或X0,例如可以选择激光传感器或接近开关,用于检测是否有车辆经过,并在车辆经过所述第一传感器S0或X0时,使所述加速器110预热。由于所述加速器的出束需要两个条件,一是用来加速电子的微波磁场;二是电子源加高压产生电子被微波磁场加速打靶产生X射线。
因此对所述加速器进行的预热是指:提前给加速管通过微波建立加速场,一旦电子源发出电子,就能加速电子并打靶产生X射线。其中,微波的频率越高,加速管加速电子的能量越强。由于电子源在加速管没有加高压之前不会产生电子,但是加速管中仍然有少量自由飘浮的电子,还是能够被处于预热状态的微波磁场加速打靶而产生少量的射线。
基于此,对加速器预热的微波频率不能太高,以免由于加速自由漂浮的电子而产生超过辐射安全要求的射线剂量。相应的,对加速器预热的微波频率也不能太低甚至没有,以免在正常出束状态下,由于微波建立磁场所需的时间而出现剂量缓升(所述剂量缓升是指:当同时调整微波频率与电子枪电流时,加速器110的出束剂量将从零开始缓慢渐升,使得对物品的探测成像出现偏差)的现象。
当所述加速器110由于第一传感器S0或X0的检测结果而得到预热后,受第二传感器S1或X1检测结果的影响,加速器110将以第一剂量出束,并对车辆进行扫描成像。如上文所述,受人员辐射防护安全条件的影响,所述第一剂量将被严格控制于不影响车辆上人员的安全为准。与相关的车辆安全检查系统相对比,本公开实施例可以对有人员存在的车厢进行安全检查,避免在这类车厢中藏匿危险物品的可能,有效消除车辆安全检查的死角,提高安全检查的全面性与彻底性。
图2为本公开一些实施例所提供的车辆安全检查系统沿车辆行驶方向截面示意图,图3为本公开一些实施例所提供的车辆安全检查系统出束频率与车辆速度对应相似三角形原理示意图,图4为本公开一些实施例所提供的车辆安全检查系统中控制器的连接状态示意图。如图2、图3、图4所示,在一些实施例中,所述控制器被进一步配置为:在控制所述加速器110以第一剂量出束时,控制所述加速器110的出束频率与所述车辆的行驶速度对应。
具体而言,当加速器110的靶点到车辆中心线距离为a,加速器110的靶点到探 测器120的距离为b,车辆车速为v,探测器120截面宽度为d,加速器110出束频率为f,过采样参数为K时,根据相似三角形原理,将有:
a/b=Kv/fd
一般而言,加速器110的靶点到车辆中心线距离a、加速器110靶点到探测器120的距离b、探测器120截面宽度d和过采样参数K相对于同一个车辆安全检查系统是固定的参数,此时,车辆的速度v与加速器110的出束频率f就有了一一对应的关系,即车辆的速度与加速器110的出束频率呈正比。对应于车辆检查的情景而言,当车辆速度越快时,为了保证能够继续沿行驶方向,以相同的距离间隔对车辆进行辐射成像,需要控制加速器110的出束频率随之增加。
本公开实施例所提供的车辆检测系统可以通过速度传感器与自动频率控制(automatic frenquency control-AFC)装置相配合进行对加速器110出束频率的控制与调节。即在车辆速度发生变化的时候,相应调节加速器110的出束频率,以提高辐射成像的质量与安全检查的效果。
在一些实施例中,所述控制器被进一步配置为:在所述车辆的行驶速度变化量在设定范围之内时,控制所述加速器110的出束频率不变。
虽然为了提高辐射成像的效果,加速器110的出束频率应当与车辆的行驶速度相对应,但是由于所述第一剂量远低于加速器110的正常出束剂量(通常而言第一剂量不足加速器110正常出束剂量的10%),处于第一剂量出束的加速器110将远离其额定功率。因此,为了使所述加速器110的出束剂量尽可能稳定,本公开实施例所提供的车辆检测系统在车辆的行驶速度变化量在设定范围之内时,使所述加速器110的出束频率不变,以尽可能规避较低的出束剂量对于加速器110稳定性的影响。
此时,车辆行驶速度变化量的设定范围可依据所述第一剂量以及所述加速器110的型号与种类进行标定,并以不对辐射成像的质量产生较大的影响为准。例如,可以选取车辆速度变化量处于车辆行驶最高速度的5%以内时,不对加速器110的出束频率进行调整。当然,所述车辆行驶速度变化量的设定范围也可以设定为固定的数值范围,例如±15km/h。
在一些实施例中,在所述加速器110的出束频率不变的情况下,根据所述车辆的速度对所述车辆成像的变形部分进行校正。
由于以第一剂量出束的剂量远低于加速器110出束剂量的正常值,并且在车辆速度变化不大的情况下,加速器110的出束频率保持不便,使得本公开实施例所提供的 车辆安全检查系统在这种情况下的辐射成像容易出现变形等情况。此时,为了降低变形部分对安全检测的判断结果产生的不利影响,可以根据所述车辆的速度或其他影响因素,通过算法对辐射成像的图像变形部分进行几何校正。
如图1所示,在一些实施例中,所述车辆安全检查系统进一步包括:第三传感器S2或X2,设置于所述加速器110的车辆来向,被配置为判断所述车辆车厢的种类。所述第三传感器S2或X2可以设置为多个或多组,以提高对车辆车厢的种类判断的准确性。
所述第三传感器S2或X2包括轴距传感器和图像传感器中的至少一个,所述轴距传感器被配置为通过采集所述车辆车厢的轴距,判断所述车辆车厢的种类,所述图像传感器被配置为通过采集所述车辆车厢的图像信息,判断所述车辆车厢的种类。
其中所述图像传感器可以包括第一相机131、第二相机132、第三相机133以及第四相机134,分别设置在所述车辆安全检查系统的进口方向轨道的两侧,以及出口方向轨道的两侧,并相应地位于所述加速器110的车辆来向,以尽可能得到车辆多角度的图像信息,并提前得出车辆车厢种类的检测结果。而所述轴距传感器可以相应地布置于所述第一传感器S0或X0的位置,例如可以设置于车辆的轨道内或轨道旁,以根据所述车辆的轴距判断所述车辆的型号参数与功能参数。
在一些实施例中,所述控制器被进一步配置为:基于所述第三传感器S2或X2的判断结果,在所述车辆可正常扫描的车厢经过加速器110时,控制所述加速器110以不受所述车辆上人员的辐射防护安全条件限制的第二剂量出束,对所述车辆进行安全检查。
对于可正常扫描的车厢(无人员活动的车厢)而言,当所述加速器110的出束剂量不再受所述车辆上人员的辐射防护安全条件的限制时,所述第二剂量可以设定为加速器110在额定工作状态下的出束剂量,以使所述加速器110能够工作在稳定的出束区间,提高对车辆安全检测的辐射成像质量。
在一些实施例中,所述控制器被进一步配置为:在控制所述加速器110以第二剂量出束时,控制所述加速器110的出束频率与所述车辆的行驶速度对应,并根据所述车辆的行驶速度的变化,实时地调整所述加速器110的出束频率,以提高车辆成像质量。
由于以第二剂量进行出束时,所述加速器110的工作状态比较稳定,因此可以根据车辆的行驶速度对加速器110的出束频率进行调节,以保证车辆行驶速度发生变化 的时候,加速器110能够做相应的调整,从而避免对车辆安全检查的辐射成像出现几何变形等问题。
在一些实施例中,所述可正常扫描的车厢包括:所述车辆上不与客车或机车相邻的货车车厢。
以上述标准筛选的可正常扫描的车厢范围仅为货车,并且排除掉了与机车或客车相邻的货车,从而进一步避免对车辆上由人员活动的车厢产生超过辐射防护安全条件的辐射剂量,保证车辆上人员的健康要求。
在一些实施例中,在车辆从所述第一传感器S0或X0到所述第二传感器S1或X1的过程中,使所述加速器110预热至所述加速器110在最高扫描频率下不出现剂量缓升现象的温度。
如图1所示,所述第一传感器S0或X0到所述第二传感器S1或X1之间的距离为L+N,该距离被设定为满足车辆在最高速度行驶状态下,所述加速器110依旧能够正常预热,并在车辆通过出束中心时,以车辆行驶速度所对应的出束频率进行出束。例如,一般车辆的行驶速度为100km/h~300km/h,而加速器110的预热时间通常为6~8秒,此时可以将所述第一传感器S0或X0与第二传感器S1或X1之间的距离L+N相应地设置为不小于666m(300km/h*8s)。当然,所述第一传感器S0或X0与第二传感器S1或X1之间的距离L+N也可以根据车辆的型号种类或者车辆安全检查系统所设置的轨道的行驶速度确定。
本公开实施例所提供的车辆安全检查系统还包括了第一防护墙171与第二防护墙172,设置于所述车辆轨道的两侧,用以对辐射射线进行阻挡或吸收,保护轨道两侧人员的安全。
此外,在所述第一防护墙171以及第二防护墙172的内侧,还相应的设置了第一区域激光传感器161、第二区域激光传感器162、第三区域激光传感器163、第四区域激光传感器164、第五区域激光传感器165和第六区域激光传感器166,用以对通过所述车辆检测系统的车辆进行实时的速度测量,并使控制器能够根据上述多个激光传感器的测量结果,对加速器110的出束频率进行精准控制。
在所述第一防护墙171以及第二防护墙172所构成的检查通道的入口与出口,还相应的设置有第一入口光幕141、第二入口光幕142、第一出口光幕151以及第二出口光幕152,进一步对车辆进入所述车辆安全检查系统进行监控,避免由于对空气进行扫描标定对可能通过的车辆上人员造成健康危害。
在本公开的另一个方面,提供一种基于前文任一实施例所述的车辆安全检查系统的车辆检查方法,包括:在所述车辆经过第一传感器S0或X0的时候,使所述加速器110进入低频预热模式;以及在所述车辆经过第二传感器S1或X1的时候,使所述加速器110以第一剂量出束,对车辆进行安全检查;其中,所述第一剂量被设置为所述加速器110的出束剂量满足所述车辆上人员的辐射防护安全条件。
在一些实施例中,所述车辆检查方法包括:判断所述车辆车厢的种类,在所述车辆可正常扫描的车厢经过所述加速器110时,控制所述加速器110以第二剂量出束,对车辆进行安全检查;其中,所述第二剂量被配置为所述加速器110的出束剂量不受所述车辆上人员的辐射防护安全条件限制。
基于上述技术方案,本公开实施例以能够满足车辆上人员的辐射防护安全条件的第一剂量使所述加速器110出束,从而能够在保证车辆上人员安全的前提下,对车辆中的有人车厢(机车、客车以及与机车、客车相邻的货车)进行扫描,避免了有人员活动的车厢上走私以及藏匿危险物品的风险。
本公开还通过简化加速器110出束频率以及加速器110出束剂量的控制方案,提高了系统的可靠性,避免相关车辆安全检查系统频繁对加速器110实行高-低-高频率控制转换,而影响加速器110工作的稳定性。
此外,本公开实施例中的加速器110在正常出束前始终在辐射防护安全范围内,避免了加速器110出束频率高-低-高转换的过程中,由于光幕信号出现误报,导致高频预热,对机车司机存在辐射剂量超标的风险。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (12)

  1. 一种车辆安全检查系统,包括:
    扫描设备,所述扫描设备包括加速器(110)和探测器(120),并被配置为对车辆进行扫描成像;
    第一传感器(S0),设置于所述加速器(110)的车辆来向,被配置为检测是否有车辆经过;
    第二传感器(S1),设置于所述加速器(110)与所述第一传感器(S0)之间,被配置为检测是否有车辆经过;以及
    控制器,被配置为在所述第一传感器(S0)检测到车辆经过时,使所述加速器(110)预热,并在所述第二传感器(S1)检测到车辆经过时,控制所述加速器(110)以满足所述车辆上人员辐射防护安全条件的第一剂量出束,对所述车辆进行安全检查。
  2. 根据权利要求1所述的车辆安全检查系统,其中,所述控制器被进一步配置为:
    在控制所述加速器(110)以第一剂量出束时,控制所述加速器(110)的出束频率与所述车辆的行驶速度对应。
  3. 根据权利要求2所述的车辆安全检查系统,其中,所述控制器被进一步配置为:
    在所述车辆的行驶速度变化量在设定范围之内时,控制所述加速器(110)的出束频率不变。
  4. 根据权利要求3所述的车辆安全检查系统,其中,在所述加速器(110)的出束频率不变的情况下,根据所述车辆的速度对所述车辆成像的变形部分进行校正。
  5. 根据权利要求1所述的车辆安全检查系统,其特征在于,所述车辆安全检查系统进一步还包括:
    第三传感器(S2),设置于所述加速器(110)的车辆来向,被配置为判断所述车辆车厢的种类。
  6. 根据权利要求5所述的车辆安全检查系统,其中,所述第三传感器(S2)包括 轴距传感器和图像传感器中的至少一个,所述轴距传感器被配置为通过采集所述车辆车厢的轴距,判断所述车辆车厢的种类,所述图像传感器被配置为通过采集所述车辆车厢的图像信息,判断所述车辆车厢的种类。
  7. 根据权利要求5所述的车辆安全检查系统,其中,所述控制器被进一步配置为:基于所述第三传感器(S2)的判断结果,在所述车辆可正常扫描的车厢经过加速器(110)时,控制所述加速器(110)以不受所述车辆上人员的辐射防护安全条件限制的第二剂量出束,对所述车辆进行安全检查。
  8. 根据权利要求7所述的车辆安全检查系统,其中,所述控制器被进一步配置为:
    在控制所述加速器(110)以第二剂量出束时,控制所述加速器(110)的出束频率与所述车辆的行驶速度对应,并根据所述车辆的行驶速度的变化,实时地调整所述加速器(110)的出束频率,以提高车辆成像质量。
  9. 根据权利要求7所述的车辆安全检查系统,其中,所述可正常扫描的车厢包括:所述车辆上不与客车或机车相邻的货车车厢。
  10. 根据权利要求1所述的车辆安全检查系统,其中所述控制器被配置为在车辆从所述第一传感器(S0)到所述第二传感器(S1)的过程中,使所述加速器(110)预热至所述加速器(110)在最高扫描频率下不出现剂量缓升现象的温度。
  11. 一种基于权1~10任一所述的车辆安全检查系统的车辆检查方法,包括:
    在所述车辆经过第一传感器(S0)的时候,使所述加速器(110)进入低频预热模式;以及
    在所述车辆经过第二传感器(S1)的时候,使所述加速器(110)以第一剂量出束,对车辆进行安全检查;
    其中,所述第一剂量被设置为所述加速器(110)的出束剂量满足所述车辆上人员的辐射防护安全条件。
  12. 根据权利要求11所述的车辆检查方法,还包括:
    判断所述车辆车厢的种类,在所述车辆可正常扫描的车厢经过所述加速器(110)时,控制所述加速器(110)以第二剂量出束,对车辆进行安全检查;
    其中,所述第二剂量被配置为所述加速器(110)的出束剂量不受所述车辆上人员的辐射防护安全条件限制。
PCT/CN2020/073801 2019-02-03 2020-01-22 一种车辆安全检查系统及检查方法 WO2020156438A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL438662A PL438662A1 (pl) 2019-02-03 2020-01-22 Układ do kontroli bezpieczeństwa pojazdu oraz sposób przeprowadzania kontroli

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108229.X 2019-02-03
CN201910108229.XA CN109682842B (zh) 2019-02-03 2019-02-03 一种列车检查系统及检查方法

Publications (1)

Publication Number Publication Date
WO2020156438A1 true WO2020156438A1 (zh) 2020-08-06

Family

ID=66195574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073801 WO2020156438A1 (zh) 2019-02-03 2020-01-22 一种车辆安全检查系统及检查方法

Country Status (3)

Country Link
CN (1) CN109682842B (zh)
PL (1) PL438662A1 (zh)
WO (1) WO2020156438A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167506A (zh) * 2020-09-11 2022-03-11 同方威视技术股份有限公司 安全检查系统及方法
CN114690256A (zh) * 2020-12-31 2022-07-01 同方威视技术股份有限公司 车辆检查方法、装置、系统和计算机可读存储介质
CN114764072A (zh) * 2020-12-31 2022-07-19 同方威视科技(北京)有限公司 车辆检查系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682842B (zh) * 2019-02-03 2024-03-26 同方威视技术股份有限公司 一种列车检查系统及检查方法
CN113740355B (zh) * 2020-05-29 2023-06-20 清华大学 一种射线检测机器人的边界防护方法及系统
CN113495009B (zh) * 2021-05-24 2022-11-04 柳州龙燊汽车部件有限公司 一种车厢配套制造的质量检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202896596U (zh) * 2012-09-26 2013-04-24 同方威视技术股份有限公司 具有改进的辐射防护的列车安全检查系统
CN106054271A (zh) * 2016-07-22 2016-10-26 同方威视技术股份有限公司 安全检查方法和系统
CN109682842A (zh) * 2019-02-03 2019-04-26 同方威视技术股份有限公司 一种列车检查系统及检查方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162205B (zh) * 2006-10-13 2010-09-01 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
CN103661487A (zh) * 2012-09-26 2014-03-26 同方威视技术股份有限公司 具有改进的辐射防护的列车安全检查系统及方法
CN105445809B (zh) * 2014-08-19 2018-09-11 清华大学 对移动目标进行检查的设备及方法
CN106018445B (zh) * 2016-07-22 2019-04-05 同方威视技术股份有限公司 控制扫描加速器出束的方法和系统及安全检查系统
CN106249307B (zh) * 2016-07-22 2018-12-28 同方威视技术股份有限公司 安全检查方法和系统
CN209673680U (zh) * 2019-02-03 2019-11-22 同方威视技术股份有限公司 一种列车检查系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202896596U (zh) * 2012-09-26 2013-04-24 同方威视技术股份有限公司 具有改进的辐射防护的列车安全检查系统
CN106054271A (zh) * 2016-07-22 2016-10-26 同方威视技术股份有限公司 安全检查方法和系统
CN109682842A (zh) * 2019-02-03 2019-04-26 同方威视技术股份有限公司 一种列车检查系统及检查方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167506A (zh) * 2020-09-11 2022-03-11 同方威视技术股份有限公司 安全检查系统及方法
CN114167506B (zh) * 2020-09-11 2023-10-13 同方威视技术股份有限公司 安全检查系统及方法
CN114690256A (zh) * 2020-12-31 2022-07-01 同方威视技术股份有限公司 车辆检查方法、装置、系统和计算机可读存储介质
CN114764072A (zh) * 2020-12-31 2022-07-19 同方威视科技(北京)有限公司 车辆检查系统

Also Published As

Publication number Publication date
CN109682842A (zh) 2019-04-26
PL438662A1 (pl) 2022-04-25
CN109682842B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2020156438A1 (zh) 一种车辆安全检查系统及检查方法
JP4621652B2 (ja) 移動目標の高速イメージング検査設備及び方法
RU2396512C2 (ru) Способ и система проверки движущегося объекта путем радиационного формирования изображения
WO2016074365A1 (zh) 一种连续通过式辐射扫描系统和方法
US6031890A (en) Monitoring installation for containers and trucks
CN104459813B (zh) 车载式快速检查系统
CN101162209B (zh) 对移动目标进行快速成像检查的设备及方法
US6233050B1 (en) Apparatus and process for measuring the unroundness and diameter of railway wheels
NL2024027B1 (en) Security inspection apparatus and security inspection method
US20160054470A1 (en) Vehicle inspection system
EP3273275B1 (en) Method and system for security inspection
US9783366B2 (en) Vehicle dragging system and vehicle inspection system
CN109977748A (zh) 一种多融合技术的列车障碍物检测方法
CN105966419A (zh) 一种铁路隧道限界检测车
Pinchuk et al. Improved rolling system of railway stock on brake shoe
CN207528943U (zh) 绿色通道车辆安全检测系统
CN209673680U (zh) 一种列车检查系统
US20060030977A1 (en) Obstacle warning system for railborne vehicles
EA036519B1 (ru) Система для управления испусканием луча в сканирующем ускорителе
US11822040B2 (en) Security scanning inspection system and method
KR102462252B1 (ko) 컨테이너 화물 검사 장치
CN205989740U (zh) 一种铁路隧道限界检测车
US20190196052A1 (en) Imaging Device for Use in Vehicle Security Check and Method Therefor
CN112798629A (zh) 一种用于货物或车辆的x射线检查装置
GB2610515A (en) Directional-deviation correction device and method for mobile-type radiation inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748985

Country of ref document: EP

Kind code of ref document: A1