WO2020156334A1 - 金属材料保温装置及保温方法 - Google Patents

金属材料保温装置及保温方法 Download PDF

Info

Publication number
WO2020156334A1
WO2020156334A1 PCT/CN2020/073302 CN2020073302W WO2020156334A1 WO 2020156334 A1 WO2020156334 A1 WO 2020156334A1 CN 2020073302 W CN2020073302 W CN 2020073302W WO 2020156334 A1 WO2020156334 A1 WO 2020156334A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat preservation
cover
metal material
upper cover
hollow cavity
Prior art date
Application number
PCT/CN2020/073302
Other languages
English (en)
French (fr)
Inventor
周建安
王宝
成日金
张华�
倪红卫
王怡
Original Assignee
武汉科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910095671.3A external-priority patent/CN109877281A/zh
Priority claimed from CN201910095663.9A external-priority patent/CN109852772A/zh
Priority claimed from CN201920459176.1U external-priority patent/CN210773359U/zh
Application filed by 武汉科技大学 filed Critical 武汉科技大学
Publication of WO2020156334A1 publication Critical patent/WO2020156334A1/zh
Priority to AU2021103881A priority Critical patent/AU2021103881A4/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum

Definitions

  • the invention relates to the technical field of metallurgy, and in particular to a metal material heat preservation device and a heat preservation method suitable for the metal material heat preservation device.
  • the condensation time of liquid metal is long, and the heat dissipation performance of the ingot mold directly affects the crystallization of molten steel, the segregation of components, shrinkage holes, cracks and other defects. For example, it takes more than thirty hours for a 100-ton steel ingot, which causes the low melting point, low density elements or inclusions in the molten metal to be enriched at the solidification front.
  • the mold design of the steel ingot has a decisive influence on the temperature field distribution of the steel ingot, and directly affects the distribution of shrinkage cavity and loose defects inside the steel ingot.
  • cooling methods such as air cooling, water cooling, and air cooling are generally adopted to accelerate the heat dissipation during solidification.
  • the method is When casting steel ingot molds, pipes are cast, and the pipes are used to pass water, blast or air to accelerate the cooling of the steel ingot molds.
  • these methods have poor cooling effect and high production costs.
  • the thermal stress on the steel ingot mold increases sharply. Greatly reduce the life span.
  • the purpose of the present invention is to provide a metal material heat preservation device that improves the mechanical properties of metal materials and a heat preservation method suitable for the metal material heat preservation device.
  • the present invention provides a metal material heat preservation device, including a box body and an upper cover;
  • the box body includes an inner liner for holding metal materials, a shell sleeved on the outer periphery of the inner liner, and A vacuum cavity provided between the inner liner and the outer shell;
  • the upper cover includes an outer cover, an inner cover connected to the outer cover, and an upper cover formed between the outer cover and the inner cover
  • the cover has a hollow cavity; the upper cover and the box are connected in a sealed manner to form a first sealed space containing metal materials and a second sealed space surrounding the first sealed space.
  • the vacuum chamber has a hollow cavity in the box formed between the inner liner and the shell; the shell is provided with a shell suction port and a first suction port arranged in the shell suction port.
  • a trachea one end of the first suction pipe is connected to the hollow cavity of the box, and the other end is closed by a valve;
  • the outer cover is provided with an outer cover suction port and a second outer cover provided in the outer cover suction port
  • An air extraction tube one end of the second air extraction tube is communicated with the hollow cavity of the upper cover, and the other end is closed by a valve.
  • the bottom surface of the inner cover is in sealed connection with the upper end surface of the inner liner to form the first sealed space; the bottom surface of the outer cover is in sealed connection with the upper end surface of the housing to form the first sealed space. 2. Seal the space.
  • the outer edge of the inner cover is provided with a first step surface, and the corresponding position of the upper surface of the inner liner is provided with a second step surface that matches with the first step surface; the outer edge of the outer cover A third step surface is provided, and a corresponding position on the upper surface of the housing is provided with a fourth step surface matching the third step surface.
  • the outer cover is fixedly connected to the bottom end of the inner cover, and the outer shell is fixedly connected to the top end of the inner liner; the bottom of the upper cover is provided with a positioning block protruding toward the box body , The corresponding position of the upper end surface of the box body is provided with a positioning groove for accommodating the positioning block.
  • the inner lining is provided with at least one supporting leg extending from the bottom wall of the inner lining toward the outer shell and contacting the outer shell.
  • At least one of the supporting feet is arranged at the center of the inner lining or evenly distributed at the edge of the inner lining.
  • the vacuum cavity is formed by splicing several small vacuum cavities; the small vacuum cavity is attached to and fixedly mounted on the housing; the small vacuum cavity includes a peripheral wall, respectively on an upper end surface and a lower end surface The upper cover and the lower cover connected with the surrounding walls, and a closed cavity surrounded by the upper cover, the lower cover and the surrounding walls.
  • a suction hole is provided on the peripheral wall of the single small vacuum chamber.
  • the outer cover and the inner cover are both arranged in a flat plate shape; or the outer cover and the inner cover are both arranged in an arc shape.
  • the present invention also provides a heat preservation method, which is suitable for the metal material heat preservation device described in any of the foregoing technical schemes.
  • the heat preservation method includes the following steps: The metal material is put into the metal material heat preservation device, the upper cover is closed with the box body, and the metal material is adjusted by controlling the vacuum degree in the hollow cavity of the box body and/or the hollow cavity of the upper cover The cooling rate.
  • the pressure in the hollow cavity of the box body and/or the hollow cavity of the upper cover ranges from 1 ⁇ 10 -3 to 1 ⁇ 10 5 Pa.
  • the metal material is one or more of steel, copper or aluminum.
  • the present invention also provides a heat preservation method, which is suitable for the metal material heat preservation device described in any one of the foregoing technical solutions.
  • the heat preservation method includes the following steps: controlling the hollow cavity of the box body
  • the cooling medium in the channel and/or the hollow cavity channel of the upper cover adjusts the cooling rate of the metal material.
  • the metal material heat preservation device is a molten metal solidification device for cooling and solidifying molten metal.
  • the cooling medium includes but is not limited to water or compressed gas.
  • the cooling medium is water, and its flow rate ranges from 1 to 30 t/h.
  • the cooling medium is compressed gas, and the flow rate of the compressed gas ranges from 50 to 1000 L/min.
  • the molten metal is one or more of molten aluminum, molten copper or molten steel.
  • the metal material heat preservation device of the present invention is provided with a hollow cavity channel in the box body and a hollow cavity channel in the upper cover in the box body, so that when the upper cover and the box body cover are combined, a ring is formed in the first sealed space.
  • the second sealed space improves the thermal insulation performance of the metal material contained in the first sealed space.
  • the metal material heat preservation device of the present invention divides the vacuum chamber into several small vacuum chambers; makes a small vacuum chamber and evacuates, and then transports the small vacuum chamber to the production site to be fixedly installed in the device On the outer shell, the labor intensity of the installation of the vacuum insulation layer is greatly reduced.
  • the heat preservation method of the present invention can adjust the cooling rate of metal materials by controlling/adjusting the degree of vacuum in the second sealed space, which can adapt to the slow cooling requirements of metal materials in different environments, without the need for heat preservation pits, so that the metal materials are slowly cooled in the process
  • the heat transfer uniformity of the temperature field is higher, which helps to avoid the risk of segregation, cracking and abnormal deformation of metal materials during high temperature quenching, and to improve the mechanical properties of metal materials.
  • the heat preservation method of the present invention adjusts the cooling rate of the molten metal contained in the first sealed space by controlling/adjusting the cooling medium in the second sealed space to cool and crystallize the molten metal, thereby reducing the center segregation and center looseness of the metal ingot And other defects to improve the quality of metal ingots.
  • Fig. 1 is a schematic structural view of the first embodiment of the metal material heat preservation device of the present invention.
  • Figure 2 is an exploded view of Figure 1.
  • Fig. 3 is a schematic structural view of a second embodiment of the metal material heat preservation device of the present invention.
  • Fig. 4 is a partial enlarged view of area I in Fig. 3.
  • Fig. 5 is a schematic structural view of a third embodiment of the metal material heat preservation device of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the small vacuum chamber in FIG. 5.
  • 100a-Metal material thermal insulation device 10a-Box body; 11a-Inner lining; 111a-Second step surface; 112a-Support foot; 12a-Shell; 121a-Shell exhaust port; 122a-First exhaust pipe; 123a-Fourth Step surface; 13a-the hollow cavity of the box; 14a-universal roller; 20a-upper cover; 21a-outer cover; 211a-outer cover exhaust port; 212a-second exhaust pipe; 213a-third step surface; 22a- Inner cover; 221a-the first step surface; 23a-the hollow cavity of the upper cover;
  • 100b-Metal liquid solidification device 10b-Box body; 11b-Ingot mold; 12b-Shell; 121b-Shell exhaust port; 122b-First exhaust pipe; 13b-Box hollow cavity; 14b-Connecting plate; 141b-Position Groove; 20b-heat preservation cover; 21b-outer cover; 211b-outer cover suction port; 212b-second suction pipe; 22b-inner cover; 23b-bottom plate; 231b-positioning block; 24b-upper cover hollow cavity;
  • 100c-Metal material insulation device 10c-Box body; 11c-Inner lining; 12c-Shell; 20c-Top cover; 5c-Vacuum chamber; 51c-Small vacuum chamber; 511c- Peripheral wall; 512c-Closed cavity; 513c -Upper cover; 514c-Lower cover; 515c-Air extraction hole.
  • the present invention provides a metal material heat preservation device 100a, which includes a box body 10a and an upper cover 20a sealed on the box body 10a.
  • the box body 10a includes an inner liner 11a for containing metal materials, an outer shell 12a sleeved on the outer circumference of the inner liner 11a, and a box hollow cavity 13a formed between the inner liner 11a and the outer shell 12a.
  • the housing 12a is provided with a housing suction port 121a and a first suction pipe 122a arranged in the housing suction port 121a.
  • One end of the first suction pipe 122a is in communication with the hollow channel 13a of the box, and the other end is closed by a valve.
  • the upper cover 20a includes an outer cover 21a, an inner cover 22a connected to the outer cover 21a, and an upper cover hollow cavity 23a formed between the outer cover 21a and the inner cover 22a.
  • the outer cover 21a is provided with an outer cover suction port 211a and a second suction pipe 212a arranged in the outer cover suction port 211a.
  • One end of the second suction pipe 212a is communicated with the hollow cavity 23a of the upper cover, and the other end is closed by a valve. In this way, when the upper cover 20a is closed on the box body 10a, the first sealed space containing the metal material and the second sealed space surrounding the first sealed space are formed in the inner liner 11a.
  • Both the outer cover 21a and the inner cover 22a are provided in a flat plate shape, and the inner cover 22a is clamped inside the outer cover 21a to form a hollow cavity 23a in the upper cover.
  • the outer edge of the inner cover 22a is provided with a first step surface 221a
  • the corresponding position of the upper surface of the inner liner 11a is provided with a second step surface 111a that matches the first step surface 221a.
  • the surface of the inner cover 22a facing the inner liner 11a is provided with a step surface that is recessed inward
  • the inner liner 11a is provided with a step surface protruding outward. The two match each other to realize the bottom surface of the inner cover 22a and the inner liner.
  • the upper end surface of 11a is hermetically connected to form a first sealed space.
  • the outer edge of the outer cover 21a is provided with a third step surface 213a, and the corresponding position of the upper surface of the housing 12a is provided with a fourth step surface 123a matching the third step surface 213a.
  • the surface of the outer cover 21a facing the housing 12a is provided with a stepped surface that is recessed inward, and the housing 12a is provided with a stepped surface protruding outwards. The two cooperate with each other to realize the bottom surface of the outer cover 21a and the upper surface of the housing 12a.
  • the end faces are connected in a sealed manner to form a second sealed space.
  • the positions and protruding directions of the first stepped surface 221a, the second stepped surface 111a, the third stepped surface 213a, and the fourth stepped surface 123a are not limited to this, and only need to ensure that the corresponding two Seal and buckle between.
  • the number of the outer cover suction opening 211a and the outer casing suction opening 121a can be set to two or more according to the product design requirements, which is not specifically limited; the number of the first suction pipe 122a and the second suction pipe 212a is based on The number of suction ports can be set accordingly.
  • the inner lining 11a is provided with three supporting feet 112a extending from the bottom wall of the inner lining 11a toward the outer shell 12a and contacting the outer shell 12a; preferably, the three supporting feet 112a are evenly distributed on the bottom wall of the inner lining 11a.
  • This arrangement can support and strengthen the inner liner 11a, prevent the hollow channel 13a of the box body from breaking when the inner liner 11a sinks, and prolong the service life of the metal material heat preservation device 100a.
  • a supporting foot can also be provided at the center of the inner liner 11a.
  • the thickness of the hollow channel 13a in the box body and the hollow channel 23a in the upper cover ranges from 10 to 80 mm.
  • the thickness of the two can be the same or different, which is not specifically limited.
  • a universal roller 14a is provided at the bottom of the box body 10a.
  • the movement of the metal material heat preservation device 100a is convenient, and it is suitable for the slow cooling requirements of metal materials in different positions, which increases the convenience, expands the scope of use, and saves manpower.
  • One end is connected to connect the vacuum pump with the other end of the first suction pipe 122a; then the vacuum pump is used to evacuate the hollow channel 13a of the box body so that the pressure inside the hollow channel 13a of the box body ranges from 1 ⁇ 10 -3 ⁇ 1 ⁇ 10 5 Pa; then close the first suction pipe 122a; connect the second suction pipe 212a to the suction port 211a of the outer cover, connect the vacuum pump with the second suction pipe 212a, and vacuum the upper cover hollow cavity 23a through the vacuum pump , The pressure inside the hollow cavity 23a in the upper cover ranges from 1 ⁇ 10 -3 to 1 ⁇ 10 5 Pa, and then the second exhaust pipe 212a is closed.
  • the present invention also provides a heat preservation method for the metal material heat preservation device.
  • the heat preservation method involves putting the metal material that needs to be slowly cooled after heat treatment into the metal material heat preservation device 100a, and the upper cover 20a and the box body 10a are covered.
  • the cooling rate of the metal material can be adjusted by controlling the vacuum degree in the cavity channel 13a in the box body and the cavity channel 23a in the upper cover.
  • the range of the vacuum degree of the cavity channel 13a in the box and the cavity channel 23a in the upper cover ranges from 5 to 1000 Pa.
  • the metal material is one or more of steel, copper or aluminum. Please refer to the following embodiment 1 to embodiment 11 for details.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 50 mm.
  • the cross section that needs to be slowly cooled is a round billet with a diameter of 500mm and a material of 40Cr hot billet. Put it into the inner lining 11a of the metal material heat preservation device 100a, and fasten the upper cover 20a with the box body 10a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 98.1%; the elongation rate is 10.1%, and the heat preservation pit is used for slow cooling.
  • the elongation rate is 3.7%, and the elongation rate of this example is increased by 173%.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 10 mm.
  • the cross-section that needs to be slowly cooled is a round billet with a diameter of 500mm and a material of 40Cr hot billet, and put it into the inner lining 11a of the metal material heat preservation device 100a, buckle the upper cover 20a with the box body 10a, and
  • the casing suction port 121a communicates with one end of the first suction pipe 122a, connects the vacuum pump with the other end of the first suction pipe 122a, and then evacuates the box hollow cavity 13a to 5 Pa through the vacuum pump, and then closes the first suction pipe 122a Connect the second suction pipe 212a to the outer cover suction port 211a, connect the vacuum pump with the second suction pipe 212a, and vacuum the upper cover hollow cavity 23a to 5Pa by the vacuum pump, and then close the second suction pipe 212a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 98.9%; the elongation rate is 10.5%, and the heat preservation pit is used for slow cooling.
  • the elongation rate is 4.1%, and the elongation rate of this example is increased by 149%.
  • the thickness of the hollow cavity (the box hollow cavity 13a, the upper cover hollow cavity 23a) of the metal material heat preservation device 100a is 80 mm.
  • the cross-section that needs to be slowly cooled is a round billet with a diameter of 500mm and a material of 40Cr hot billet, and put it into the inner lining 11a of the metal material heat preservation device 100a, buckle the upper cover 20a with the box body 10a, and
  • the casing suction port 121a is connected with one end of the first suction pipe 122a, and the vacuum pump is connected with the other end of the first suction pipe 122a, and then the hollow cavity 13a of the box is evacuated to 100 Pa by the vacuum pump, and then the first suction pipe 122a is closed ;
  • Connect the second suction pipe 212a to the outer cover suction port 211a connect the vacuum pump with the second suction pipe 212a, vacuum the upper cover hollow cavity 23a to 100Pa by the vacuum pump, and then close the second suction pipe 212a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 97.2%; the elongation rate is 9.8%, and the heat preservation pit is used for slow cooling.
  • the elongation rate is 3.5%, and the elongation rate of this embodiment is increased by 180%.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 50 mm.
  • the material that needs to be slowly cooled is Q345, and the height-to-diameter ratio is 200mm*200mm hot square billet, put it into the inner lining 11a of the metal material heat preservation device 100a, buckle the upper cover 20a with the box body 10a, and attach the shell
  • the suction port 121a communicates with one end of the first suction pipe 122a, connects the vacuum pump to the other end of the first suction pipe 122a, and then vacuums the box hollow cavity 13a to 200 Pa through the vacuum pump, and then closes the first suction pipe 122a; Connect the second suction pipe 212a to the outer cover suction port 211a, connect the vacuum pump with the second suction pipe 212a, and vacuum the upper cover hollow cavity 23a to 200 Pa by the vacuum pump, and then close the second suction pipe 212a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 96.8%; the elongation rate is 9.9%, and the heat preservation pit is used for slow cooling.
  • the elongation rate is 3.8%, and the elongation rate of this example is increased by 161%.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 10 mm.
  • the material that needs to be slowly cooled is Q345, and the height-to-diameter ratio is 200mm*200mm hot square billet, put it into the inner lining 11a of the metal material heat preservation device 100a, buckle the upper cover 20a with the box body 10a, and attach the shell
  • the suction port 121a is communicated with one end of the first suction pipe 122a, the vacuum pump is connected with the other end of the first suction pipe 122a, and then the cavity 13a in the box is vacuumed to 100 Pa by the vacuum pump, and then the first suction pipe 122a is closed; Connect the second suction pipe 212a to the outer cover suction port 211a, connect the vacuum pump with the second suction pipe 212a, and vacuum the upper cover hollow cavity 23a to 100 Pa by the vacuum pump, and then close the second suction pipe 212a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 96.5%; the elongation rate is 9.6%, and after the heat preservation pit is slowly cooled The elongation rate is 3.5%, and the elongation rate of this example is increased by 174%.
  • the thickness of the hollow cavity (the box hollow cavity 13a, the upper cover hollow cavity 23a) of the metal material heat preservation device 100a is 80 mm.
  • the material that needs to be slowly cooled is Q345, and the height-to-diameter ratio is 200mm*200mm hot square billet, put it into the inner lining 11a of the metal material heat preservation device 100a, buckle the upper cover 20a with the box body 10a, and attach the shell
  • the suction port 121a is communicated with one end of the first suction pipe 122a, the vacuum pump is connected with the other end of the first suction pipe 122a, and then the hollow cavity 13a of the box is vacuumed to 500 Pa by the vacuum pump, and then the first suction pipe 122a is closed; Connect the second suction pipe 212a to the outer cover suction port 211a, connect the vacuum pump with the second suction pipe 212a, and vacuum the upper cover hollow cavity 23a to 500 Pa by the vacuum pump, and then close the second suction pipe 212a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 97.1%; the elongation rate is 9.0%, and after the heat preservation pit is slowly cooled The elongation rate is 3.7%, and the elongation rate of this example is increased by 143%.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 50 mm.
  • the hot slab with a length of 10000mm, a width of 1000mm and a thickness of 150mm, which needs to be slowly cooled after heat treatment, and the material is Q235 into the inner lining 11a of the metal material heat preservation device 100a, and the upper cover 20a is buckled with the box body 10a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 95.5%; the elongation rate is 8.9%, and the heat preservation pit is used for slow cooling.
  • the elongation rate is 3.5%, and the elongation rate of this embodiment is increased by 154%.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 10 mm.
  • the slab that needs to be slowly cooled is 10000mm in length, 1000mm in width, and 150mm in thickness, and the hot slab made of Q235 is placed in the inner lining 11a of the metal material insulation device 100a, and the upper cover 20a is fastened with the box body 10a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 96.3%; the elongation rate is 9.0%, and the heat preservation pit is used for slow cooling.
  • the elongation rate is 3.7%, and the elongation rate of this example is increased by 143%.
  • the thickness of the hollow cavity (the box hollow cavity 13a, the upper cover hollow cavity 23a) of the metal material heat preservation device 100a is 80 mm.
  • the slab that needs to be slowly cooled is 10000mm in length, 1000mm in width, and 150mm in thickness, and the hot slab made of Q235 is placed in the inner lining 11a of the metal material insulation device 100a, and the upper cover 20a is fastened with the box body 10a.
  • the center looseness and center segregation of the billet are all controlled below 1.5 level, and the proportion of the evaluation level ⁇ 1.0 level reaches 94.6%; the elongation rate is 8.5%, and the heat preservation pit is slowly cooled.
  • the elongation rate is 3.6%, and the elongation rate of this example is increased by 136%.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 50 mm.
  • the metal copper material that needs to be slowly cooled after the heat treatment into the inner lining 11a of the metal material heat preservation device 100a buckle the upper cover 20a with the box body 10a, and connect the casing exhaust port 121a to one end of the first exhaust pipe 122a
  • Connect the vacuum pump to the other end of the first suction pipe 122a and then use the vacuum pump to vacuumize the cavity 13a of the box to 100 Pa, and then close the first suction pipe 122a; connect the second suction pipe 212a to the suction port of the outer cover
  • the vacuum pump is connected to the second suction pipe 212a, the hollow cavity 23a in the upper cover is evacuated to 100 Pa by the vacuum pump, and then the second suction pipe 212a is closed.
  • the thickness of the hollow channel (the box hollow channel 13a, the upper cover hollow channel 23a) of the metal material heat preservation device 100a is 50 mm.
  • the metal aluminum material that needs to be slowly cooled after the heat treatment into the inner lining 11a of the metal material heat preservation device 100a buckle the upper cover 20a with the box body 10a, and connect the shell exhaust port 121a to one end of the first exhaust pipe 122a
  • Connect the vacuum pump to the other end of the first suction pipe 122a and then use the vacuum pump to vacuum the cavity 13a of the box to 50 Pa, and then close the first suction pipe 122a; connect the second suction pipe 212a to the suction port of the outer cover
  • the vacuum pump is connected to the second suction pipe 212a, the hollow cavity 23a in the upper cover is evacuated to 50 Pa by the vacuum pump, and then the second suction pipe 212a is closed.
  • the metal material heat preservation device 100a of this embodiment adjusts the temperature reduction rate of the metal material by adjusting the vacuum in the second sealed space, avoids the risk of segregation, cracking and abnormal deformation of the metal material during high temperature quenching, and improves the mechanical properties of the metal material.
  • the segregation is small and the hardness distribution is uniform; it can adapt to the slow cooling requirements of different metal materials, so that the temperature field heat transfer uniformity in the slow cooling process of the metal materials is higher, which is beneficial to eliminate the dendrite segregation of the metal materials and improve the quality of the metal materials; It can be applied to the slow cooling requirements of all tonnage metal materials, with a wide range of applications, simple and easy process, reliable and safe, low investment and maintenance costs; simple structure, reasonable design, convenient movement, no need for heat preservation pits, and can meet slow cooling metal materials
  • the environmental temperature is required, and the environmental temperature of the metal material is simple to control. After the slow cooling, the metal material has higher performance in all aspects, which improves the quality of subsequent product processing; convenient storage, saving space and cost.
  • the metal material heat preservation device is a molten metal solidification device 100b, which is used for cooling and solidifying the molten metal.
  • the molten metal solidification device 100b includes a box body 10b and a heat preservation cover 20b adapted to the box body 10b.
  • the heat preservation cover 20b includes an inner cover 22b and an outer cover 21b.
  • the outer cover 21b and the inner cover 22b are both arranged in an arc shape, and the two are sealed and connected by a bottom plate 23b, and an upper cover hollow cavity 24b is formed between the outer cover 21b and the inner cover 22b.
  • the outer cover 21b is also provided with an outer cover suction port 211b and a second suction pipe 212b arranged in the outer cover suction port 211b.
  • One end of the second suction pipe 212b is in communication with the upper cover hollow cavity 24b, and the other end is closed by a valve.
  • the bottom of the bottom plate 23b is provided with a positioning block 231b protruding toward the box body 10b.
  • the box body 10b includes an ingot mold 11b for containing molten metal and a shell 12b sleeved on the outer periphery of the ingot mold 11b.
  • the top end of the ingot mold 11b and the shell 12b is sealed and connected by a connecting plate 14b to form a hollow cavity channel 13b between the ingot mold 11b and the shell 12b.
  • the housing 12b is provided with a housing suction port 121b and a first suction pipe 122b arranged in the housing suction port 121b.
  • One end of the first suction pipe 122b is in communication with the hollow channel 13b of the box, and the other end is closed by a valve.
  • box body 10b and the heat preservation cover 20b can also be sealed and connected in other ways, and should not be limited to this.
  • the present invention also provides a heat preservation method.
  • the heat preservation method involves putting the molten metal into the molten metal solidification device 100b, closing the heat preservation cover 20b and the box body 10b, and controlling the hollow channel 13b of the box body and the hollow cavity of the upper cover.
  • the cooling medium in the channel 24b adjusts the cooling rate of the metal material.
  • the cooling medium includes but is not limited to water or compressed gas.
  • the cooling medium is water, and its flow rate ranges from 1 to 30 t/h.
  • the cooling medium is compressed gas, and the flow rate of the compressed gas ranges from 50 to 1000 L/min.
  • the molten metal is one or more of molten aluminum, molten copper or molten steel.
  • the thickness of the box hollow channel 13b and the upper cover hollow channel 24b is 40 mm.
  • the defects such as center segregation and center porosity of the steel ingots of this example are all controlled below 1.0, the 1.5 grade rating ratio is reduced from 8.33% to 0, and the 1.0 grade rating ratio is reduced from 50% to 33.5%.
  • the 0.5 grade rating ratio increased from 41.76% to 66.5%, the deformation of the steel ingot was 0.065mm, the tensile strength was 350MPa, the yield strength was 375MPa, the elongation was 0.72%, and the quality of the steel ingot was improved.
  • the thickness of the box hollow channel 13b and the upper cover hollow channel 24b is 5 mm.
  • the hollow cavity 13b of the body is evacuated, and the hollow cavity 24b of the upper cover is evacuated through the connection of the second air extraction pipe 212b and the air outlet 211b of the outer cover.
  • the vacuum degree of the hollow cavity 13b of the box body and the hollow cavity 24b of the upper cover is evacuated to Turn off the valve after 0.1Pa, take off the heat preservation cover 20b after keeping it for 20h, demould, and lift out the steel ingot.
  • the level of defects such as center segregation and center porosity of the steel ingots of this example are all controlled below level 1.5, the rating ratio of 2.0 grade is reduced from 5.6% to 0, and the ratio of grade 1.5 is reduced from 25% to 4.2%.
  • the ratio of grade 1.0 is reduced from 50% to 33.33%, and the ratio of grade 0.5 is increased from 19.4% to 62.47%.
  • the deformation of the steel ingot is 0.068mm, the tensile strength is 346MPa, the yield strength is 372MPa, the elongation is 0.76%, and the quality of the steel ingot Be improved.
  • the thickness of the box hollow channel 13b and the upper cover hollow channel 24b is 60 mm.
  • the hollow cavity 13b is evacuated, and the upper lid hollow cavity 24b is evacuated through the connection of the second exhaust pipe 212b with the outer cover air outlet 211b.
  • the vacuum degree of the box hollow cavity 13b and the upper lid hollow cavity 24b reaches 1000Pa Afterwards, close the valve, take off the insulation cover 20b after keeping it for 10 hours, demould, and lift out the steel ingot.
  • the defects such as center segregation and center porosity of the steel ingots of this example are all controlled below level 1.5, the rating ratio of 2.0 grade is reduced from 6.4% to 0, and the ratio of grade 1.5 is reduced from 25% to 5.6%.
  • the ratio of grade 1.0 is reduced from 50% to 35.8%, and the ratio of grade 0.5 is increased from 18.6% to 58.6%.
  • the deformation of the steel ingot is 0.075mm, the tensile strength is 342MPa, the yield strength is 365MPa, the elongation is 0.75%, and the quality of the steel ingot Be improved.
  • the difference between this embodiment and the embodiment 12 is that the Q345B steel grade octagonal steel ingot is cast with a unit weight of 15 tons, and the heat preservation method is as follows: Q345B steel grade octagonal steel liquid is injected into the first sealed space of the ingot mold 11b and heat preservation
  • the cover 20b is buckled with the ingot mold 11b, and is connected to the housing suction port 121b through the first suction pipe 122b, and the second suction pipe 212b is connected to the outer cover suction port 211b.
  • the cooling water valve is opened to the box hollow cavity 13b and the upper cover hollow Water is passed through the cavity 24b for cooling, and the cooling water flow is 1-30t/h.
  • the heat preservation cover 20b is removed, the mold is demolded, and the steel ingot is lifted.
  • the level of defects such as center segregation and center porosity of the steel ingots of this example are all controlled below level 1.5, the rating ratio of 2.0 grade is reduced from 7.5% to 0, and the ratio of grade 1.5 is reduced from 25% to 7.2%.
  • the ratio of grade 1.0 is reduced from 50% to 45.9%, and the ratio of grade 0.5 is increased from 17.5% to 46.9%.
  • the deformation of the steel ingot is 0.15mm, the tensile strength is 320MPa, the yield strength is 340MPa, the elongation is 1.15%, and the quality of the steel ingot Be improved.
  • the difference between this embodiment and the embodiment 12 is that the Q345B steel grade octagonal steel ingot is cast with a unit weight of 15 tons, and the heat preservation method is as follows: Q345B steel grade octagonal steel liquid is injected into the first sealed space of the ingot mold 11b and heat preservation The lid 20b is buckled with the ingot mold 11b, and compressed air is injected into the box hollow cavity 13b and the upper lid hollow cavity 24b through the first air extraction pipe 122b and the second air extraction pipe 212b, and the compressed air flow rate is controlled at 100-1000L/min After keeping for 10 hours, remove the heat preservation cover 20b, demould, and lift out the steel ingot.
  • the level of defects such as center segregation and center porosity of the steel ingots of this example are all controlled below level 1.5, the proportion of the evaluation level ⁇ 1.0 level reaches 91.1%, the deformation of the steel ingot is 0.095mm, and the tensile strength is 335MPa , The yield strength is 342MPa, the elongation is 0.96%, and the quality of the steel ingot is improved.
  • the difference between this embodiment and the embodiment 12 is that the Q345B steel grade octagonal steel ingot is cast with a unit weight of 15 tons, and the heat preservation method is as follows: Q345B steel grade octagonal steel liquid is injected into the first sealed space of the ingot mold 11b and heat preservation The lid 20b is buckled with the ingot mold 11b, and compressed helium is injected into the box hollow cavity 13b and the upper lid hollow cavity 24b through the first exhaust pipe 122b and the second exhaust pipe 212b, and the compressed helium flow is controlled at 50 ⁇ 100L/min, after holding for 10 hours, remove the heat preservation cover 20b, demold, and lift out the steel ingot.
  • the level of defects such as center segregation and center porosity of the steel ingots of this example are all controlled below 1.5, and the proportion of the evaluation level ⁇ 1.0 reaches 94.3%, the deformation of the steel ingot is 0.083mm, and the tensile strength is 362MPa , The yield strength is 359MPa, the elongation is 0.81%, and the quality of the steel ingot is improved.
  • the thickness of the box hollow channel 13b and the upper cover hollow channel 24b is 40 mm.
  • the molten metal for casting is molten aluminum, and its heat preservation method is as follows:
  • the levels of defects such as center segregation and center porosity of the aluminum ingot of this embodiment are all controlled below 1.5, and the ratio of the evaluation level ⁇ 1.0 level reaches 98.6%, and the quality of the aluminum ingot is improved.
  • this embodiment is different in that the molten aluminum is injected into the first sealed space of the ingot mold 11b, and the heat preservation cover 20b is buckled with the ingot mold, and the first exhaust pipe 122b is connected to the housing exhaust port 121b.
  • the second air extraction pipe 212b is connected to the air extraction port 211b of the outer cover, and the cooling water valve is opened to pass water into the box cavity 13b and the upper cover cavity 24b for cooling.
  • the cooling water flow rate is 1-30t/h. After 20h, remove the heat preservation cover 20b, demould, and lift out the aluminum ingot.
  • the levels of defects such as center segregation and center porosity of the aluminum ingots of this embodiment are all controlled below level 1.5, and the ratio of the evaluation level ⁇ 1.0 level reaches 90.2%, and the quality of the aluminum ingots is improved.
  • this embodiment is different in that the molten aluminum is injected into the first sealed space of the ingot mold 11b and the heat preservation cover 20b is buckled with the ingot mold, and then passes through the first exhaust pipe 122b and the second exhaust
  • the air pipe 212b respectively injects compressed air into the box hollow channel 13b and the upper cover hollow channel 24b, and the compressed air flow is controlled at 100-150L/min. After keeping for 20 hours, the heat preservation cover 20b is removed, demoulded, and the aluminum ingot is lifted.
  • the levels of defects such as center segregation and center porosity of the aluminum ingot of this embodiment are all controlled below 1.5, and the ratio of the evaluation level ⁇ 1.0 level reaches 90.6%, and the quality of the aluminum ingot is improved.
  • this embodiment is different in that the molten aluminum is injected into the first sealed space of the ingot mold 11b and the heat preservation cover 20b is buckled with the ingot mold, and then the suction port of the vacuum pump is passed through the first suction port in turn.
  • the air pipe 122b is connected with the casing air outlet 121b to vacuum the box hollow cavity 13b, and the upper cover hollow cavity 24b is vacuumed through the second air pipe 212b and the outer cover air outlet 211b.
  • the levels of defects such as center segregation and center porosity of the aluminum ingot of this embodiment are all controlled below level 1.5, and the ratio of the evaluation level ⁇ 1.0 level reaches 90.7%, and the quality of the aluminum ingot is improved.
  • the thickness of the box hollow channel 13b and the upper cover hollow channel 24b is 40 mm.
  • the molten metal for casting is molten copper
  • the heat preservation method is as follows: inject the molten copper into the first sealed space of the ingot mold 11b and buckle the heat preservation cover 20b with the ingot mold, and then the suction port of the vacuum pump passes through the first suction pipe 122b and The casing exhaust port 121b is connected to the box hollow channel 13b, and the second exhaust pipe 212b is connected with the outer cover exhaust port 211b to vacuum the upper cover hollow channel 24b.
  • the box hollow cavity channel 13b and the upper cover hollow cavity After the vacuum degree of the channel 24b is pumped to 0.1-100 Pa, the valve is closed, and after keeping for 20 hours, the heat preservation cover 20b is removed, the mold is demolded, and the copper ingot is lifted.
  • the levels of defects such as center segregation and center porosity of the copper ingot in this embodiment are all controlled below 1.5, and the ratio of the evaluation level ⁇ 1.0 is 97.8%, and the quality of the copper ingot is improved.
  • this embodiment is different in that the copper liquid is injected into the first sealed space of the ingot mold 11b and the heat-preserving cover 20b is buckled with the ingot mold through the first exhaust pipe 122b and the housing exhaust port 121b
  • the second air extraction pipe 212b is connected to the air extraction port 211b of the outer cover, and the cooling water valve is opened to pass water into the box cavity 13b and the upper cover cavity 24b for cooling.
  • the cooling water flow rate is 1-30t/h. After 10 hours, remove the thermal insulation cover 20b, demould, and lift out the aluminum ingot.
  • the levels of defects such as center segregation and center porosity of the aluminum ingots of the present embodiment are all controlled below 1.5, and the ratio of the evaluation level ⁇ 1.0 level reaches 92.5%, and the quality of the copper ingots is improved.
  • this embodiment is different in that the copper liquid is injected into the first sealed space of the ingot mold 11b and the heat preservation cover 20b is buckled with the ingot mold through the first exhaust pipe 122b and the second exhaust pipe 212b respectively injects compressed helium into the box hollow channel 13b and the upper cover hollow channel 24b, the compressed helium flow is controlled at 50-100L/min, after holding for 10h, the heat preservation cover 20b is removed, demoulded, and the steel ingot is lifted.
  • the levels of defects such as center segregation and center porosity of the aluminum ingots of the present embodiment are all controlled below level 1.5, and the proportion of evaluation levels ⁇ 1.0 level reaches 93.4%, and the quality of copper ingots is improved.
  • the difference of this embodiment is that the copper liquid is injected into the first sealed space of the ingot mold 11b and the heat preservation cover 20b is buckled with the ingot mold, and then the vacuum pump suction port is passed through the first suction port in turn.
  • the air pipe 122b is connected with the casing air outlet 121b to vacuum the box hollow cavity 13b, and the upper cover hollow cavity 24b is vacuumed through the second air pipe 212b and the outer cover air outlet 211b.
  • the levels of defects such as center segregation and center porosity of the copper ingots of this embodiment are all controlled below level 1.5, and the ratio of the evaluation level ⁇ 1.0 level reaches 91.7%, and the quality of the copper ingots is improved.
  • the molten metal solidification device 100b of this embodiment improves the heat preservation performance of the first sealed space by providing the second sealed space outside the first sealed space, and can reduce the temperature difference between the inner and outer surfaces of the ingot mold 11b, so that the ingot mold 11b is in the metal
  • the thermal stress experienced during the liquid cooling process is greatly reduced, which is beneficial to prolong the service life of the ingot mold 11b; by adjusting/controlling the cooling medium in the second sealed space, adjusting/controlling the cooling rate of the molten metal in the first sealed space makes The molten metal is cooled and crystallized, thereby reducing defects such as center segregation and center looseness of the metal ingot, and improving the quality of the metal ingot; also by changing the cooling medium to adjust the cooling rate, it can adapt to different liquid metal solidification needs, so that the temperature field transfers during the solidification process of the molten metal.
  • liquid metal solidification device 100b and heat preservation method are suitable for the preparation of metal ingots of all tonnages, with a wide range of applications, and can be applied to carbon steel, carbon steel under vacuum and non-vacuum conditions.
  • the preparation of alloy steel and non-ferrous metals is simple and easy to implement, reliable and safe, and low investment and maintenance costs.
  • a metal material heat preservation device 100c includes a box body 10c and an upper cover 20c that is sealed and closed on the box body 10c.
  • the box body 10c includes an inner liner 11c for containing metal materials, an outer shell 12c sleeved on the outer periphery of the inner liner 11c, and a vacuum cavity 5c arranged between the inner liner 11c and the outer shell 12c.
  • the vacuum chamber 5c is formed by splicing several small vacuum chambers 51c.
  • the single small vacuum chamber 51c includes a peripheral wall 511c, an upper cover 513c and a lower cover 514c connected to the peripheral wall 511c at the upper end surface and the lower end surface respectively, and the upper cover 513c, the lower cover 514c and the surrounding A closed cavity 512c surrounded by a peripheral wall 511c.
  • a suction hole 515c is machined on the peripheral wall 511c of the single small vacuum chamber 51c, which is used to connect a vacuum pipe to form a vacuum chamber.
  • a plurality of small vacuum chambers 51c are attached to and fixedly mounted on the shell 12c, that is, between the inner liner 11c and the shell 12c is formed a box hollow cavity (not labeled) formed by splicing a plurality of closed cavities 512c.
  • the vacuum chamber 5c is formed with a thermal insulation layer around the outer periphery of the lining 11c to achieve the thermal insulation effect.
  • the structure of the upper cover 20c of the metal material heat preservation device 100c and the sealing connection relationship between the upper cover 20c and the box body 10c are basically the same as those in the first embodiment, and will not be repeated here.
  • the use process of the metal material heat preservation device 100c is described below:
  • the vacuum chamber 5c is made according to the outer dimensions of the outer shell 12c and the inner lining 11c; the vacuum chamber 5c is divided into a number of small vacuum chambers 51c; the suction hole 515c of the small vacuum chamber 51c is connected to the vacuum pump pipeline to vacuum to 0.1 ⁇ 1000Pa , And then seal the air extraction hole 515c; transport the evacuated small vacuum cavity 51c to the production site to be welded on the housing 12c, and finally splice to form the vacuum cavity 5c.
  • the vacuum degree of a single small vacuum chamber 51c can be set according to the needs of use, and then the small vacuum chamber 51c that has been manufactured can be transported to the production site to be fixedly installed on the housing 12c, which greatly reduces the installation strength of the vacuum insulation layer.
  • the operation is simple and easy to use.
  • the thickness of the closed cavity 512c is 20 mm, that is, the thickness of the hollow channel in the box is 20 mm; this thickness can ensure that the vacuum cavity 5c has sufficient strength and heat preservation performance.
  • the thickness can also be set to other values as required, which is not specifically limited.
  • the metal material heat preservation device 100c of this embodiment divides the vacuum chamber 5c into several small vacuum chambers 51c; makes a small vacuum chamber and evacuates, and then transports the small vacuum chamber 51c to the production site for fixing It is installed on the casing 12c of the device, which greatly reduces the labor intensity of installation of the vacuum insulation layer and increases the scope of use.
  • the metal material heat preservation device of the present invention is provided with box hollow channels 13a, 13b in the box body 10a, 10b, and upper cover hollow channels 23a, 24b in the upper cover, so as to realize the upper cover and the box.
  • a second sealed space surrounding the first sealed space is formed, which improves the thermal insulation performance of the metal material contained in the first sealed space; further, by dividing the vacuum chamber into several small vacuum chambers
  • the body is assembled according to needs, which reduces the labor intensity of installation of the vacuum insulation layer;
  • the insulation method of the present invention the cooling rate of the metal material can be adjusted by controlling/adjusting the vacuum degree in the second sealed space, which can adapt to the metal material in different environments
  • the slow cooling requirement of the metal material does not require a heat preservation pit, so that the heat transfer uniformity of the temperature field during the slow cooling process of the metal material is higher, which is beneficial to avoid the risk of segregation, cracking and abnormal deformation of the metal material at high temperature quenching, and improves the mechanical properties of the metal material;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

一种金属材料保温装置(110a),包括箱体(10a)和上盖(20a)。箱体(10a)包括用于盛放金属材料的内衬(11a)、外壳(12a)以及真空腔体(13a)。上盖(20a)包括外盖(21a)、内盖(22a)以及形成于外盖(21a)与内盖(22a)之间的上盖中空腔道(23a)。上盖(20a)与箱体(10a)密封连接,以形成收容金属材料的第一密封空间和环设于第一密封空间周侧的第二密封空间,提高了对第一密封空间内盛放的金属材料的保温性能。使用该保温装置的保温方法为:通过控制/调节第二密封空间内的真空度可调整金属材料的降温速率,提高了金属材料的机械性能;通过将真空腔体分割成若干个小真空腔体,根据需要进行组装,降低了真空保温层的安装劳动强度;通过控制/调节第二密封空间内的冷却介质调节盛放在第一密封空间内的金属液的冷却速率,提高金属锭质量。

Description

金属材料保温装置及保温方法 技术领域
本发明涉及冶金技术领域,尤其涉及一种金属材料保温装置及适用于该金属材料保温装置的保温方法。
背景技术
近年来,随着我国电力工业,核工业和石油化学工业的迅猛发展,对大型锻件的需求量越来越大,同时也对大型锻件的品质要求越来越高。
目前,国内钢铁冶金、有色金属和机械铸造业领域生产铸锭大多数是把液态金属浇铸到钢锭模中得到大小不同的各种铸锭。传统方法缺点明显:液态金属冷凝时间长,钢锭模散热性能直接影响钢水的结晶、成分的偏析、缩孔、裂纹等缺陷。例如百吨级钢锭需要三十几个小时,致使金属液中低熔点、低密度元素或夹杂物在凝固前沿富集,同时由于热溶质对流等的影响,使钢锭不同区域化学成分不均匀,造成宏观偏析和微观偏析;钢锭的模具设计对钢锭的温度场分布有决定性的影响,直接影响钢锭内部的缩孔疏松缺陷的分布。
现有技术中,为了消除钢锭内部缩孔疏松、抑制钢锭偏析、裂纹等缺陷,提高钢锭的成坯率,一般采用风冷、水冷、气冷等冷却方式加快凝固过程的散热,其方法是在铸造钢锭模时铸入管道,使用时管道通水、鼓风或者通气,用于加速钢锭模的冷却,但是这些方法冷却效果不好,并且其制作成本很高,同时钢锭模所受热应力激增,大大降低了寿命。
另外,轧钢厂从连铸下线的堆垛板坯,有些钢种需要考虑温度缓慢下降,有时由于周边温度下降较快,导致板坯边部冷却较快,影响后续的产品加工质量,对于附近没有保温坑的连铸厂,需要缓冷的金属材料的环境温度控制 相对不稳定、导致金属材料缓冷后性能较差。
有鉴于此,有必要设计一种改进的金属材料保温装置及适用于该金属材料保温装置的保温方法,以解决上述问题。
发明内容
本发明的目的在于提供一种提高金属材料的机械性能的金属材料保温装置及适用于该金属材料保温装置的保温方法。
为实现上述发明目的,本发明提供了一种金属材料保温装置,包括箱体和上盖;所述箱体包括用于盛放金属材料的内衬、套设于所述内衬外周的外壳以及设于所述内衬与所述外壳之间的真空腔体;所述上盖包括外盖、与所述外盖连接的内盖以及形成于所述外盖与所述内盖之间的上盖中空腔道;所述上盖与所述箱体密封连接,以形成收容金属材料的第一密封空间和环设于所述第一密封空间周侧的第二密封空间。
优选地,所述真空腔体具有形成于所述内衬与所述外壳之间的箱体中空腔道;所述外壳上设有外壳抽气口和设置于所述外壳抽气口内的第一抽气管,所述第一抽气管的一端与所述箱体中空腔道连通,另一端用阀门封闭;所述外盖上设有外盖抽气口和设置于所述外盖抽气口内的第二抽气管,所述第二抽气管的一端与所述上盖中空腔道连通,另一端用阀门封闭。
优选地,所述内盖的底面与所述内衬的上端面密封连接,以形成所述第一密封空间;所述外盖的底面与所述外壳的上端面密封连接,以形成所述第二密封空间。
优选地,所述内盖的外沿设置有第一台阶面,所述内衬的上表面的对应位置设有与所述第一台阶面配合的第二台阶面;所述外盖的外沿设置有第三台阶面,所述外壳的上表面的对应位置设有与所述第三台阶面配合的第四台阶面。
优选地,所述外盖与所述内盖的底端固定连接,所述外壳与所述内衬的顶端固定连接;所述上盖的底部设有向所述箱体方向突伸的定位块,所述箱 体的上端面的对应位置设有收容所述定位块的定位凹槽。
优选地,所述内衬上设有自所述内衬的底壁向所述外壳方向延伸并与所述外壳接触的至少一根支撑脚。
优选地,至少一根所述支撑脚设置于所述内衬的中心位置或者均匀分布于所述内衬的边缘位置。
优选地,所述真空腔体由若干个小真空腔体拼接而成;所述小真空腔体贴合并固定安装在所述外壳上;所述小真空腔体包括周壁、分别在上端面与下端面连接四周的周壁的上封盖与下封盖以及由所述上封盖、下封盖与四周的周壁围成的密闭腔体。
优选地,单个所述小真空腔体的周壁上设置有抽气孔。
优选地,所述外盖与所述内盖均呈平板状设置;或者所述外盖与所述内盖均呈弧状设置。
为实现上述发明目的,本发明还提供了一种保温方法,适用于前述技术方案中任一技术方案所述的金属材料保温装置,所述保温方法包括如下步骤:将经过热处理后需要缓冷的金属材料放入所述金属材料保温装置中,将所述上盖与所述箱体盖合,通过控制所述箱体中空腔道和/或所述上盖中空腔道内的真空度调节金属材料的冷却速率。
优选地,所述箱体中空腔道和/或所述上盖中空腔道内的压力的取值范围为1×10 -3~1×10 5Pa。
优选地,所述金属材料为钢、铜或铝中的一种或多种。
为实现上述发明目的,本发明还提供了一种保温方法,适用于前述技术方案中任一技术方案所述的金属材料保温装置,所述保温方法包括如下步骤:通过控制所述箱体中空腔道和/或所述上盖中空腔道内的冷却介质调节金属材料的冷却速率。
优选地,所述金属材料保温装置为金属液凝固装置,用于金属液的冷却凝固。
优选地,所述冷却介质包括但不限于为水或压缩气体。
优选地,所述冷却介质为水,其流量取值范围为1~30t/h。
优选地,所述冷却介质为压缩气体,所述压缩气体的流量取值范围为50~1000L/min。
优选地,所述金属液为铝液、铜液或钢液中的一种或多种。
本发明的有益效果是:
1.本发明的金属材料保温装置通过在箱体中设置箱体中空腔道、在上盖中设置上盖中空腔道,实现上盖与箱体盖合时形成环设于第一密封空间的第二密封空间,提高了对第一密封空间内盛放的金属材料的保温性能。
2.本发明的金属材料保温装置通过将真空腔体分割成若干个小真空腔体;制成小的真空腔体并抽真空,再将小的真空腔体运输至生产现场固定安装在装置的外壳上,大大降低了真空保温层的安装劳动强度。
3.本发明的保温方法通过控制/调节第二密封空间内的真空度可调整金属材料的降温速率,可适应不同环境下金属材料的缓冷需求,无需保温坑,使金属材料缓冷过程中温度场传热均匀度更高,有利于避免金属材料高温淬火发生偏析、开裂和异常变形风险,提高金属材料的机械性能。
4.本发明的保温方法通过控制/调节第二密封空间内的冷却介质调节盛放在第一密封空间内的金属液的冷却速率使金属液冷却结晶,从而减轻金属锭的中心偏析、中心疏松等缺陷,提高金属锭质量。
附图说明
图1为本发明金属材料保温装置的第一种实施方式的结构示意图。
图2为图1的分解图。
图3为本发明金属材料保温装置的第二种实施方式的结构示意图。
图4为图3中区域I的局部放大图。
图5为本发明金属材料保温装置的第三种实施方式的结构示意图。
图6为图5中小真空腔体的结构示意图。
附图标记
100a-金属材料保温装置;10a-箱体;11a-内衬;111a-第二台阶面;112a-支撑脚;12a-外壳;121a-外壳抽气口;122a-第一抽气管;123a-第四台阶面;13a-箱体中空腔道;14a-万向滚轮;20a-上盖;21a-外盖;211a-外盖抽气口;212a-第二抽气管;213a-第三台阶面;22a-内盖;221a-第一台阶面;23a-上盖中空腔道;
100b-金属液凝固装置;10b-箱体;11b-锭模;12b-外壳;121b-外壳抽气口;122b-第一抽气管;13b-箱体中空腔道;14b-连接板;141b-定位凹槽;20b-保温盖;21b-外盖;211b-外盖抽气口;212b-第二抽气管;22b-内盖;23b-底板;231b-定位块;24b-上盖中空腔道;
100c-金属材料保温装置;10c-箱体;11c-内衬;12c-外壳;20c-上盖;5c-真空腔体;51c-小真空腔体;511c-周壁;512c-密闭腔体;513c-上封盖;514c-下封盖;515c-抽气孔。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
在第一种实施方式中,请参阅图1至图2所示,本发明提供了一种金属材料保温装置100a,包括箱体10a和密封盖合在箱体10a上方的上盖20a。箱体10a包括用于盛放金属材料的内衬11a、套设于内衬11a外周的外壳12a 以及形成于内衬11a与外壳12a之间的箱体中空腔道13a。外壳12a上设有外壳抽气口121a和设置于外壳抽气口121a内的第一抽气管122a。第一抽气管122a的一端与箱体中空腔道13a连通,另一端用阀门封闭。
上盖20a包括外盖21a、与外盖21a连接的内盖22a以及形成于外盖21a与内盖22a之间的上盖中空腔道23a。外盖21a上设有外盖抽气口211a和设置于外盖抽气口211a内的第二抽气管212a。第二抽气管212a的一端与上盖中空腔道23a连通,另一端用阀门封闭。如此,上盖20a盖合在箱体10a上时,在内衬11a内形成收容金属材料的第一密封空间和环设于第一密封空间周侧的第二密封空间。
外盖21a与内盖22a均呈平板状设置,内盖22a卡置于外盖21a内侧,形成上盖中空腔道23a。特别地,内盖22a的外沿设置有第一台阶面221a,内衬11a的上表面的对应位置设有与第一台阶面221a配合的第二台阶面111a。具体来讲,内盖22a朝向内衬11a的表面设有向内凹陷的台阶面,内衬11a上设有向外凸出的台阶面,二者相互匹配,实现内盖22a的底面与内衬11a的上端面密封连接,以形成第一密封空间。
外盖21a的外沿设置有第三台阶面213a,外壳12a的上表面的对应位置设有与第三台阶面213a配合的第四台阶面123a。具体来讲,外盖21a朝向外壳12a的表面设有向内凹陷的台阶面,外壳12a上设有向外凸出的台阶面,二者相互配合,实现外盖21a的底面与外壳12a的上端面密封连接,以形成第二密封空间。
需要说明的是,第一台阶面221a、第二台阶面111a、第三台阶面213a以及第四台阶面123a的位置及突伸方向并不以此为限,只需保证相对应的二者之间密封扣合即可。
还需要说明的是,外盖抽气口211a与外壳抽气口121a的数量可以根据产品设计需要设置为两个或者多个,具体不予限制;第一抽气管122a与第二抽气管212a的数量根据抽气口的数量对应设置即可。
特别地,内衬11a上设有自内衬11a的底壁向外壳12a方向延伸并与外 壳12a接触的三根支撑脚112a;优选地,三根支撑脚112a均匀分布于内衬11a的底壁。如此设置,可以对内衬11a起到支撑和加固作用,防止内衬11a下沉时使箱体中空腔道13a断裂,延长了该金属材料保温装置100a的使用寿命。当然,也可以在内衬11a的中心位置设置一根支撑脚。
箱体中空腔道13a、上盖中空腔道23a的厚度的取值范围为10~80mm。二者的厚度可以相同,也可以不同,具体不予限制。
优选地,箱体10a的底部设有万向滚轮14a。如此,方便金属材料保温装置100a的移动,适用于不同位置的金属材料的缓冷需求,增加了便利性,扩大了使用范围,同时可节省人力。
下面对该金属材料保温装置100a的使用原理进行说明:
当金属材料经过热处理后需要缓冷时,将其放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通;然后通过真空泵对箱体中空腔道13a抽真空,使箱体中空腔道13a内部的压力的取值范围为1×10 -3~1×10 5Pa;然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空,使上盖中空腔道23a内部的压力的取值范围为1×10 -3~1×10 5Pa,然后将第二抽气管212a封闭即可。
本发明还提供了一种用于该金属材料保温装置的保温方法,该保温方法通过将经过热处理后需要缓冷的金属材料放入金属材料保温装置100a中,将上盖20a与箱体10a盖合,通过控制箱体中空腔道13a、上盖中空腔道23a内的真空度调节金属材料的冷却速率。
其中,箱体中空腔道13a、上盖中空腔道23a的真空度的取值范围为5~1000Pa。金属材料为钢、铜或铝中的一种或多种。具体请参见下述实施例1至实施例11。
实施例1
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上 盖中空腔道23a)的厚度为50mm。
经过热处理后需要缓冷的横截面为圆坯,直径为500mm,材质为40Cr热坯,将其放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为50Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为50Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到98.1%;延伸率为10.1%,而采用保温坑缓冷后延伸率为3.7%,本实施例的延伸率提高173%。
实施例2
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为10mm。
将经过热处理后需要缓冷的横截面为圆坯,直径为500mm,材质为40Cr热坯,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为5Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为5Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到98.9%;延伸率为10.5%,而采用保温坑缓冷后延伸率为4.1%,本实施例的延伸率提高149%。
实施例3
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为80mm。
将经过热处理后需要缓冷的横截面为圆坯,直径为500mm,材质为40Cr热坯,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为100Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为100Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到97.2%;延伸率为9.8%,而采用保温坑缓冷后延伸率为3.5%,本实施例的延伸率提高180%。
实施例4
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为50mm。
将经过热处理后需要缓冷的材质为Q345,高径比为200mm*200mm热方坯,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为200Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为200Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到96.8%;延伸率为9.9%,而采用保温坑缓冷后延伸率为3.8%,本实施例的延伸率提高161%。
实施例5
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为10mm。
将经过热处理后需要缓冷的材质为Q345,高径比为200mm*200mm热 方坯,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为100Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为100Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到96.5%;延伸率为9.6%,而采用保温坑缓冷后延伸率为3.5%,本实施例的延伸率提高174%。
实施例6
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为80mm。
将经过热处理后需要缓冷的材质为Q345,高径比为200mm*200mm热方坯,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为500Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为500Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到97.1%;延伸率为9.0%,而采用保温坑缓冷后延伸率为3.7%,本实施例的延伸率提高143%。
实施例7
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为50mm。
将经过热处理后需要缓冷的板坯长10000mm,宽1000mm,厚150mm,材质为Q235的热板坯放入金属材料保温装置100a的内衬11a中,将上盖20a 与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为800Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为800Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到95.5%;延伸率为8.9%,而采用保温坑缓冷后延伸率为3.5%,本实施例的延伸率提高154%。
实施例8
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为10mm。
将经过热处理后需要缓冷的板坯长10000mm,宽1000mm,厚150mm,材质为Q235的热板坯放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为500Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为500Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到96.3%;延伸率为9.0%,而采用保温坑缓冷后延伸率为3.7%,本实施例的延伸率提高143%。
实施例9
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为80mm。
将经过热处理后需要缓冷的板坯长10000mm,宽1000mm,厚150mm,材质为Q235的热板坯放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将 真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为1000Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为1000Pa,然后将第二抽气管212a封闭。
经测试,本实施例热坯缓冷后,坯料的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到94.6%;延伸率为8.5%,而采用保温坑缓冷后延伸率为3.6%,本实施例的延伸率提高136%。
实施例10
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为50mm。
将经过热处理后需要缓冷的金属铜材,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为100Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连通,通过真空泵对上盖中空腔道23a抽真空为100Pa,然后将第二抽气管212a封闭。
经测试,本实施例铜材缓冷后,铜材的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到98.6%。
实施例11
本实施例中金属材料保温装置100a的中空腔道(箱体中空腔道13a、上盖中空腔道23a)的厚度为50mm。
将经过热处理后需要缓冷的金属铝材,放入金属材料保温装置100a的内衬11a中,将上盖20a与箱体10a扣合,并将外壳抽气口121a与第一抽气管122a的一端连通,将真空泵与第一抽气管122a的另一端连通,然后通过真空泵对箱体中空腔道13a抽真空为50Pa,然后将第一抽气管122a封闭;将第二抽气管212a连接在外盖抽气口211a上,将真空泵与第二抽气管212a连 通,通过真空泵对上盖中空腔道23a抽真空为50Pa,然后将第二抽气管212a封闭。
经测试,本实施例铝材缓冷后,铝材的中心疏松、中心偏析全部控制在1.5级以下,评判级别≤1.0级的比例达到99.2%。
可见,本实施方式的金属材料保温装置100a通过调节第二密封空间内的真空度以调整金属材料的降温速率,避免了金属材料高温淬火发生偏析、开裂和异常变形风险,提高金属材料的机械性能,且偏析小、硬度分布均匀;可适应不同金属材料的缓冷需求,使金属材料缓冷过程中温度场传热均匀度更高,有利于消除金属材料的枝晶偏析,提高金属材料质量;可适用于所有吨位金属材料的缓冷需求,运用范围广,且工艺简便易行,可靠安全,投资及维护成本低;结构简单、设计合理,移动方便,无需保温坑,能满足缓冷金属材料对环境温度要求,且金属材料环境温度控制简单,缓冷后金属材料各方面性能更高,提高了后续产品加工质量;收纳方便,节约场地和成本。
在第二种实施方式中,请参阅图3至图4所示,金属材料保温装置为金属液凝固装置100b,用于金属液的冷却凝固。该金属液凝固装置100b包括箱体10b及与箱体10b相适配的保温盖20b。保温盖20b包括内盖22b和外盖21b。外盖21b与内盖22b均呈弧状设置,且二者之间通过底板23b密封连接,在外盖21b与内盖22b之间形成上盖中空腔道24b。外盖21b上还设有外盖抽气口211b、设置于外盖抽气口211b内的第二抽气管212b。第二抽气管212b的一端与上盖中空腔道24b连通,另一端用阀门封闭。特别地,底板23b的底部设有向箱体10b方向突伸的定位块231b。
箱体10b包括盛放金属液的锭模11b及套设于锭模11b外周的外壳12b。锭模11b与外壳12b的顶端通过连接板14b密封连接,形成锭模11b与外壳12b之间的箱体中空腔道13b。外壳12b上设有外壳抽气口121b和设置于外壳抽气口121b内的第一抽气管122b。第一抽气管122b的一端与箱体中空腔道13b连通,另一端用阀门封闭。特别地,连接板14b的上端面与锭模11b及外壳12b的上端面之间具有高度差,形成了与定位块231b的位置相互对应 的定位凹槽141b。如此,当保温盖20b与箱体10b盖合时,定位块231b卡置于定位凹槽141b内,且二者的侧壁相互抵接,实现稳固连接,在锭模11b内形成盛放金属液的第一密封空间和环设于第一密封空间周侧的第二密封空间。
同样需要说明的是,箱体10b与保温盖20b之间也可以采用其他方式密封连接,不应以此为限。
本发明还提供了一种保温方法,该保温方法通过将金属液放入金属液凝固装置100b中,将保温盖20b与箱体10b盖合,通过控制箱体中空腔道13b和上盖中空腔道24b内的冷却介质调节金属材料的冷却速率。
其中,冷却介质包括但不限于为水或压缩气体。
优选地,冷却介质为水,其流量取值范围为1~30t/h。
优选地,冷却介质为压缩气体,压缩气体的流量取值范围为50~1000L/min。
优选地,金属液为铝液、铜液或钢液中的一种或多种。
下面结合实施例12至实施例25对该保温方法进行举例说明:
实施例12
本实施例中箱体中空腔道13b与上盖中空腔道24b的厚度为40mm。
浇铸单重15吨Q345B钢种八角钢锭,保温方法如下:
将Q345B钢种八角钢液注入金属液凝固装置的锭模11b的第一密封空间中并将保温盖20b与锭模11b扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体中空腔道13b与上盖中空腔道24b的真空度抽至100Pa后关掉阀门,保持15h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例钢锭的中心偏析、中心疏松等缺陷的级别全部控制在1.0级以下,1.5级评级比例由8.33%减至0,1.0级评级比例由50%减至33.5%,0.5级评级比例由41.76%增至66.5%,钢锭的变形量0.065mm, 抗拉强度为350MPa,屈服强度为375MPa,延伸率为0.72%,钢锭质量得到提高。
实施例13
本实施例中箱体中空腔道13b与上盖中空腔道24b的厚度为5mm。
浇铸单重15吨Q345B钢种八角钢锭,保温方法如下:
将Q345B钢种八角钢液注入锭模11b的第一密封空间中并将保温盖20b与锭模11b扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体中空腔道13b与上盖中空腔道24b的真空度抽至0.1Pa后关掉阀门,保持20h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例钢锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,2.0级评级比例由5.6%减至0,1.5级评级比例由25%减至4.2%,1.0级评级比例由50%减至33.33%,0.5级评级比例由19.4%增至62.47%,钢锭的变形量0.068mm,抗拉强度为346MPa,屈服强度为372MPa,延伸率为0.76%,钢锭质量得到提高。
实施例14
本实施例中箱体中空腔道13b与上盖中空腔道24b的厚度为60mm。
浇铸单重15吨Q345B钢种八角钢锭,保温方法如下:
将Q345B钢种八角钢液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体中空腔道13b与上盖中空腔道24b的真空度抽至1000Pa后关掉阀门,保持10h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例钢锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,2.0级评级比例由6.4%减至0,1.5级评级比例由25% 减至5.6%,1.0级评级比例由50%减至35.8%,0.5级评级比例由18.6%增至58.6%,钢锭的变形量0.075mm,抗拉强度为342MPa,屈服强度为365MPa,延伸率为0.75%,钢锭质量得到提高。
实施例15
本实施例与实施例12相比,不同之处在于,浇铸单重15吨Q345B钢种八角钢锭,保温方法如下:将Q345B钢种八角钢液注入锭模11b的第一密封空间中并将保温盖20b与锭模11b扣合,通过第一抽气管122b与外壳抽气口121b连接、第二抽气管212b与外盖抽气口211b连接,打开冷却水阀门向箱体中空腔道13b与上盖中空腔道24b内通水进行冷却,冷却水流量为1~30t/h,保持10h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例钢锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,2.0级评级比例由7.5%减至0,1.5级评级比例由25%减至7.2%,1.0级评级比例由50%减至45.9%,0.5级评级比例由17.5%增至46.9%,钢锭的变形量0.15mm,抗拉强度为320MPa,屈服强度为340MPa,延伸率为1.15%,钢锭质量得到提高。
实施例16
本实施例与实施例12相比,不同之处在于,浇铸单重15吨Q345B钢种八角钢锭,保温方法如下:将Q345B钢种八角钢液注入锭模11b的第一密封空间中并将保温盖20b与锭模11b扣合,通过第一抽气管122b与第二抽气管212b分别向箱体中空腔道13b与上盖中空腔道24b注入压缩空气,压缩气体流量控制在100~1000L/min,保持10h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例钢锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到91.1%,钢锭的变形量0.095mm,抗拉强度为335MPa,屈服强度为342MPa,延伸率为0.96%,钢锭质量得到提高。
实施例17
本实施例与实施例12相比,不同之处在于,浇铸单重15吨Q345B钢种 八角钢锭,保温方法如下:将Q345B钢种八角钢液注入锭模11b的第一密封空间中并将保温盖20b与锭模11b扣合,通过第一抽气管122b与第二抽气管212b分别向箱体中空腔道13b与上盖中空腔道24b注入注入压缩氦气,压缩氦气流量控制在50~100L/min,保持10h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例钢锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到94.3%,钢锭的变形量0.083mm,抗拉强度为362MPa,屈服强度为359MPa,延伸率为0.81%,钢锭质量得到提高。
实施例18
本实施例中箱体中空腔道13b与上盖中空腔道24b的厚度为40mm。
浇铸金属液为铝液,其保温方法如下:
将铝液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体中空腔道13b与上盖中空腔道24b的真空度抽至0.1~100Pa后关掉阀门,保持20h后摘掉保温盖20b,脱模,吊出铝锭。
与常规浇铸相比,本实施例铝锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到98.6%,铝锭质量得到提高。
实施例19
本实施例与实施例18相比,不同之处在于,将铝液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,通过第一抽气管122b与外壳抽气口121b连接、第二抽气管212b与外盖抽气口211b连接,打开冷却水阀门向箱体中空腔道13b与上盖中空腔道24b内通水进行冷却,冷却水流量为1~30t/h,保持20h后摘掉保温盖20b,脱模,吊出铝锭。
与常规浇铸相比,本实施例铝锭的中心偏析、中心疏松等缺陷的级别全 部控制在1.5级以下,评判级别≤1.0级的比例达到90.2%,铝锭质量得到提高。
实施例20
本实施例与实施例18相比,不同之处在于,将铝液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,然后通过第一抽气管122b与第二抽气管212b分别向箱体中空腔道13b与上盖中空腔道24b注入压缩空气,压缩空气流量控制在100~150L/min,保持20h后摘掉保温盖20b,脱模,吊出铝锭。
与常规浇铸相比,本实施例铝锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到90.6%,铝锭质量得到提高。
实施例21
本实施例与实施例18相比,不同之处在于,将铝液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体中空腔道13b与上盖中空腔道24b的真空度抽至100~1000Pa后关掉阀门,保持20h后摘掉保温盖20b,脱模,吊出铝锭。
与常规浇铸相比,本实施例铝锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到90.7%,铝锭质量得到提高。
实施例22
本实施例中箱体中空腔道13b与上盖中空腔道24b的厚度为40mm。
浇铸金属液为铜液,其保温方法如下:将铜液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体中空腔 道13b与上盖中空腔道24b的真空度抽至0.1~100Pa后关掉阀门,保持20h后摘掉保温盖20b,脱模,吊出铜锭。
与常规浇铸相比,本实施例铜锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到97.8%,铜锭质量得到提高。
实施例23
本实施例与实施例22相比,不同之处在于,将铜液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,通过第一抽气管122b与外壳抽气口121b连接、第二抽气管212b与外盖抽气口211b连接,打开冷却水阀门向箱体中空腔道13b与上盖中空腔道24b内通水进行冷却,冷却水流量为1~30t/h,保持10h后摘掉保温盖20b,脱模,吊出铝锭。
与常规浇铸相比,本实施例铝锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到92.5%,铜锭质量得到提高。
实施例24
本实施例与实施例22相比,不同之处在于,将铜液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,通过第一抽气管122b与第二抽气管212b分别向箱体中空腔道13b与上盖中空腔道24b注入压缩氦气,压缩氦气流量控制在50~100L/min,保持10h后摘掉保温盖20b,脱模,吊出钢锭。
与常规浇铸相比,本实施例铝锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到93.4%,铜锭质量得到提高。
实施例25
本实施例与实施例22相比,不同之处在于,将铜液注入锭模11b的第一密封空间中并将保温盖20b与锭模扣合,然后将真空泵吸气口依次通过第一抽气管122b与外壳抽气口121b连接对箱体中空腔道13b抽真空、通过第二抽气管212b与外盖抽气口211b连接对上盖中空腔道24b抽真空,当箱体 中空腔道13b与上盖中空腔道24b的真空度抽至100~1000Pa后关掉阀门,保持20h后摘掉保温盖20b,脱模,吊出铜锭。
与常规浇铸相比,本实施例铜锭的中心偏析、中心疏松等缺陷的级别全部控制在1.5级以下,评判级别≤1.0级的比例达到91.7%,铜锭质量得到提高。
可见,本实施方式的金属液凝固装置100b通过在第一密封空间外围设置第二密封空间,提高了第一密封空间的保温性能,可以降低锭模11b内外表面温度差,使锭模11b在金属液冷却过程中所受的热应力大大降低,有利于延长锭模11b的使用寿命;通过调节/控制第二密封空间内的冷却介质,调节/控制第一密封空间内的金属液的冷却速率使金属液冷却结晶,从而减轻金属锭的中心偏析、中心疏松等缺陷,提高金属锭质量;还通过改变冷却介质调整降温速率,可适应不同的金属液凝固需求,使金属液凝固过程中温度场传热均匀度更高,有利于消除金属锭的枝晶偏析;该金属液凝固装置100b及保温方法适用于所有吨位金属锭的制备,运用范围广,可适用于真空和非真空条件下碳钢、合金钢以及有色金属的制备,且工艺简便易行,可靠安全,投资及维护成本低。
在第三种实施方式中,请参阅图5至图6所示,一种金属材料保温装置100c,包括箱体10c和密封盖合在箱体10c上方的上盖20c。箱体10c包括用于盛放金属材料的内衬11c、套设于内衬11c外周的外壳12c以及设置于内衬11c与外壳12c之间的真空腔体5c。
真空腔体5c由若干个小真空腔体51c拼接而成。单个所述小真空腔体51c包括周壁511c、分别在上端面与下端面连接四周的周壁511c的上封盖513c与下封盖514c以及由所述上封盖513c、下封盖514c与四周的周壁511c围成的密闭腔体512c。单个所述小真空腔体51c的周壁511c上加工有抽气孔515c,用于接抽真空管,以形成真空室。若干个小真空腔体51c贴合并固定安装在外壳12c上,即,在内衬11c与外壳12c之间形成有由若干个密闭腔体512c拼接形成的箱体中空腔道(未标号)。如此设置,真空腔体5c内 形成有环设于内衬11c外周的保温层,达到保温效果。
该金属材料保温装置100c的上盖20c的结构以及上盖20c与箱体10c的密封连接关系与第一种实施方式中的基本相同,在此不再赘述。
下面对该金属材料保温装置100c的使用过程进行说明:
按照外壳12c与内衬11c的外形尺寸制作真空腔体5c;将真空腔体5c分割成若干小真空腔体51c;将小真空腔体51c的抽气孔515c接真空泵管路抽真空至0.1~1000Pa,然后对抽气孔515c做封闭处理;将抽好真空的小真空腔体51c运输至生产现场焊接在外壳12c上,最后拼接形成真空腔体5c。如此设置,可以根据使用需要设置单个小真空腔体51c的真空度,然后将已经制作完成的小真空腔体51c运输至生产现场固定安装在外壳12c上,大大降低了真空保温层的安装强度,操作简单、使用方便。
在本实施方式中,密闭腔体512c的厚度为20mm,即箱体中空腔道的厚度为20mm;此厚度能够保证真空腔体5c具有足够的强度及保温性能。当然,本领域技术人员应当理解,该厚度也可以根据需要设置为其他值,具体不予限制。
进一步的,本领域技术人员应该理解,还可以在箱体中空腔道内充填保温材料,以进一步提高保温效果。
可见,本实施方式的金属材料保温装置100c通过将真空腔体5c分割成若干个小真空腔体51c;制成小的真空腔体并抽真空,再将小真空腔体51c运输至生产现场固定安装在装置的外壳12c上,大大降低了真空保温层的安装劳动强度,增加了使用范围。
综上所述,本发明的金属材料保温装置通过在箱体10a、10b中设置箱体中空腔道13a、13b、在上盖中设置上盖中空腔道23a、24b,以实现上盖与箱体盖合时形成环设于第一密封空间的第二密封空间,提高了对第一密封空间内盛放的金属材料的保温性能;进一步的,通过将真空腔体分割成若干个小真空腔体,根据需要进行组装,降低了真空保温层的安装劳动强度;本发明的保温方法:通过控制/调节第二密封空间内的真空度可调整金属材料的降温 速率,可适应不同环境下金属材料的缓冷需求,无需保温坑,使金属材料缓冷过程中温度场传热均匀度更高,有利于避免金属材料高温淬火发生偏析、开裂和异常变形风险,提高金属材料的机械性能;本发明的保温方法:还可以通过控制/调节第二密封空间内的冷却介质调节盛放在第一密封空间内的金属液的冷却速率使金属液冷却结晶,从而减轻金属锭的中心偏析、中心疏松等缺陷,提高金属锭质量。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (18)

  1. 一种金属材料保温装置,包括箱体和上盖;其特征在于:所述箱体包括用于盛放金属材料的内衬、套设于所述内衬外周的外壳以及设于所述内衬与所述外壳之间的真空腔体;所述上盖包括外盖、与所述外盖连接的内盖以及形成于所述外盖与所述内盖之间的上盖中空腔道;所述上盖与所述箱体密封连接,以形成收容金属材料的第一密封空间和环设于所述第一密封空间周侧的第二密封空间。
  2. 根据权利要求1所述的金属材料保温装置,其特征在于:所述真空腔体具有形成于所述内衬与所述外壳之间的箱体中空腔道;所述外壳上设有外壳抽气口和设置于所述外壳抽气口内的第一抽气管,所述第一抽气管的一端与所述箱体中空腔道连通,另一端用阀门封闭;所述外盖上设有外盖抽气口和设置于所述外盖抽气口内的第二抽气管,所述第二抽气管的一端与所述上盖中空腔道连通,另一端用阀门封闭。
  3. 根据权利要求2所述的金属材料保温装置,其特征在于:所述内盖的底面与所述内衬的上端面密封连接,以形成所述第一密封空间;所述外盖的底面与所述外壳的上端面密封连接,以形成所述第二密封空间。
  4. 根据权利要求3所述的金属材料保温装置,其特征在于:所述内盖的外沿设置有第一台阶面,所述内衬的上表面的对应位置设有与所述第一台阶面配合的第二台阶面;所述外盖的外沿设置有第三台阶面,所述外壳的上表面的对应位置设有与所述第三台阶面配合的第四台阶面。
  5. 根据权利要求1所述的金属材料保温装置,其特征在于:所述外盖与所述内盖的底端固定连接,所述外壳与所述内衬的顶端固定连接;所述上盖的底部设有向所述箱体方向突伸的定位块,所述箱体的上端面的对应位置设有收容所述定位块的定位凹槽。
  6. 根据权利要求1所述的金属材料保温装置,其特征在于:所述内衬上设有自所述内衬的底壁向所述外壳方向延伸并与所述外壳接触的至少一根支撑脚。
  7. 根据权利要求6所述的金属材料保温装置,其特征在于:至少一根所述支撑脚设置于所述内衬的中心位置或者均匀分布于所述内衬的边缘位置。
  8. 根据权利要求1所述的金属材料保温装置,其特征在于:所述真空腔体由若干个小真空腔体拼接而成;所述小真空腔体贴合并固定安装在所述外壳上;所述小真空腔体包括周壁、分别在上端面与下端面连接四周的周壁的上封盖与下封盖以及由所述上封盖、下封盖与四周的周壁围成的密闭腔体。
  9. 根据权利要求8所述的金属材料保温装置,其特征在于:单个所述小真空腔体的周壁上设置有抽气孔。
  10. 根据权利要求1所述的金属材料保温装置,其特征在于:所述外盖与所述内盖均呈平板状设置;或者所述外盖与所述内盖均呈弧状设置。
  11. 一种保温方法,适用于权利要求1所述的金属材料保温装置,其特征在于:所述保温方法包括如下步骤:将经过热处理后需要缓冷的金属材料放入所述金属材料保温装置中,将所述上盖与所述箱体盖合,通过控制所述箱体中空腔道和/或所述上盖中空腔道内的真空度调节金属材料的冷却速率。
  12. 根据权利要求11所述的保温方法,其特征在于:所述箱体中空腔道和/或所述上盖中空腔道内的压力的取值范围为1×10 -3~1×10 5Pa。
  13. 一种保温方法,适用于权利要求1所述的金属材料保温装置,其特征在于:所述保温方法包括如下步骤:通过控制所述箱体中空腔道和/或所述上盖中空腔道内的冷却介质调节金属材料的冷却速率。
  14. 根据权利要求13所述的保温方法,其特征在于:所述金属材料保温装置为金属液凝固装置,用于金属液的冷却凝固。
  15. 根据权利要求13所述的保温方法,其特征在于:所述冷却介质包括但不限于为水或压缩气体。
  16. 根据权利要求15所述的保温方法,其特征在于:所述冷却介质为水,其流量取值范围为1~30t/h。
  17. 根据权利要求15所述的保温方法,其特征在于:所述冷却介质为压缩 气体,所述压缩气体的流量取值范围为50~1000L/min。
  18. 根据权利要求14所述的保温方法,其特征在于:所述金属液为铝液、铜液或钢液中的一种或多种。
PCT/CN2020/073302 2019-01-31 2020-01-20 金属材料保温装置及保温方法 WO2020156334A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021103881A AU2021103881A4 (en) 2019-01-31 2021-07-05 Thermal Insulation Device and Method for Metal Materials

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910095671.3 2019-01-31
CN201910095671.3A CN109877281A (zh) 2019-01-31 2019-01-31 一种金属液凝固装置及其保温方法
CN201910095663.9 2019-01-31
CN201910095663.9A CN109852772A (zh) 2019-01-31 2019-01-31 一种金属材料保温装置及其保温方法
CN201920459176.1U CN210773359U (zh) 2019-04-08 2019-04-08 一种带有真空保温层的冶金炉
CN201920459176.1 2019-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021103881A Division AU2021103881A4 (en) 2019-01-31 2021-07-05 Thermal Insulation Device and Method for Metal Materials

Publications (1)

Publication Number Publication Date
WO2020156334A1 true WO2020156334A1 (zh) 2020-08-06

Family

ID=71840061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073302 WO2020156334A1 (zh) 2019-01-31 2020-01-20 金属材料保温装置及保温方法

Country Status (1)

Country Link
WO (1) WO2020156334A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2035450U (zh) * 1988-08-04 1989-04-05 李华 井式炉真空室式隔热装置
CN1394982A (zh) * 2002-06-20 2003-02-05 烟台海德机床厂 真空井式无罐离子渗碳多用炉
US20060174837A1 (en) * 2005-02-10 2006-08-10 Canon Kabushiki Kaisha Container and Exposure Apparatus Having the Same
CN201485492U (zh) * 2009-05-15 2010-05-26 南昌大学 电渣精炼坩埚炉与感应加热保温炉组成的双级精炼装置
US20140116081A1 (en) * 2012-10-26 2014-05-01 Michael Charles Ritchie Self-contained evaporative air conditioner system
CN204325430U (zh) * 2014-12-12 2015-05-13 大连爱信金属制品有限公司 一种冷却速度可控的低压气冷真空退火炉
CN204333071U (zh) * 2014-12-23 2015-05-13 比亚迪股份有限公司 用于电池的外壳组件及具有它的电池
CN107850379A (zh) * 2015-08-03 2018-03-27 Lg电子株式会社 真空绝热体及冰箱
CN207184840U (zh) * 2017-08-29 2018-04-03 江苏雄义环保自动化设备有限公司 一种热集中的云母加热器
CN109852772A (zh) * 2019-01-31 2019-06-07 武汉科技大学 一种金属材料保温装置及其保温方法
CN109877281A (zh) * 2019-01-31 2019-06-14 武汉科技大学 一种金属液凝固装置及其保温方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2035450U (zh) * 1988-08-04 1989-04-05 李华 井式炉真空室式隔热装置
CN1394982A (zh) * 2002-06-20 2003-02-05 烟台海德机床厂 真空井式无罐离子渗碳多用炉
US20060174837A1 (en) * 2005-02-10 2006-08-10 Canon Kabushiki Kaisha Container and Exposure Apparatus Having the Same
CN201485492U (zh) * 2009-05-15 2010-05-26 南昌大学 电渣精炼坩埚炉与感应加热保温炉组成的双级精炼装置
US20140116081A1 (en) * 2012-10-26 2014-05-01 Michael Charles Ritchie Self-contained evaporative air conditioner system
CN204325430U (zh) * 2014-12-12 2015-05-13 大连爱信金属制品有限公司 一种冷却速度可控的低压气冷真空退火炉
CN204333071U (zh) * 2014-12-23 2015-05-13 比亚迪股份有限公司 用于电池的外壳组件及具有它的电池
CN107850379A (zh) * 2015-08-03 2018-03-27 Lg电子株式会社 真空绝热体及冰箱
CN207184840U (zh) * 2017-08-29 2018-04-03 江苏雄义环保自动化设备有限公司 一种热集中的云母加热器
CN109852772A (zh) * 2019-01-31 2019-06-07 武汉科技大学 一种金属材料保温装置及其保温方法
CN109877281A (zh) * 2019-01-31 2019-06-14 武汉科技大学 一种金属液凝固装置及其保温方法

Similar Documents

Publication Publication Date Title
WO2022048591A1 (zh) 铝棒浇铸成型设备及其加工工艺
CN102814465B (zh) 一种球墨铸铁铸型及采用该铸型的无冒口铸造方法
US10888921B2 (en) Multi-position parallel pressurized casting device and method for large aluminum alloy castings
CN102151820B (zh) 一种带有真空外壳的冶金包装置
CN104785757A (zh) 一种多芯还原多包共浇复合浇铸大型钢锭的方法及装置
KR900007986B1 (ko) 유저중공(有底中空)주물의 고정주조용 주형
CN201283426Y (zh) 一种真空感应熔炼炉
WO2020156334A1 (zh) 金属材料保温装置及保温方法
CN117161357B (zh) 一种压凝液锻连续挤压成型系统及其成型工艺
CN109877281A (zh) 一种金属液凝固装置及其保温方法
CN113290232B (zh) 一种大尺寸复杂非晶合金构件逆重力充填成形方法
RU2488460C2 (ru) Устройство, относящееся к оборудованию для непрерывного или полунепрерывного литья металла
AU2021103881A4 (en) Thermal Insulation Device and Method for Metal Materials
CN105798232A (zh) 消失模铸件的模具及其铸造方法
CN115592096A (zh) 一种多炉加压浇铸生产碳氮协同超高氮钢装置及方法
CN111136227A (zh) 一种消除钢锭带状组织的冷却工艺
CN215467932U (zh) 阀体铸件一体铸造成型模
CN107052266B (zh) 复杂薄壁铸铁件铸造方法
US11383294B2 (en) Side mold and low-pressure hub casting mold
CN105834401B (zh) 增压器叶轮一管多模真空调压铸造新方法和专用装置
CN114477734A (zh) 一种石英坩埚水冷模
CN213195541U (zh) 一种具有新型水冷结构的铝合金车轮用模具
CN210587109U (zh) 一种铝及铝合金低压半连续铸造结晶器冷却系统
CN211413584U (zh) 一种真空感应熔炼炉用水冷铜模具
CN207922848U (zh) 一种生产高温合金的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748621

Country of ref document: EP

Kind code of ref document: A1