WO2020155898A1 - 一种供电系统 - Google Patents

一种供电系统 Download PDF

Info

Publication number
WO2020155898A1
WO2020155898A1 PCT/CN2019/125895 CN2019125895W WO2020155898A1 WO 2020155898 A1 WO2020155898 A1 WO 2020155898A1 CN 2019125895 W CN2019125895 W CN 2019125895W WO 2020155898 A1 WO2020155898 A1 WO 2020155898A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
module
supply module
switch
Prior art date
Application number
PCT/CN2019/125895
Other languages
English (en)
French (fr)
Inventor
王博
Original Assignee
普联技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普联技术有限公司 filed Critical 普联技术有限公司
Publication of WO2020155898A1 publication Critical patent/WO2020155898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present invention relates to the technical field of power supply, in particular to a power supply system.
  • a POE switch is a device that transmits data signals to some IP terminals based on Ethernet, and can also supply power to these IP terminals.
  • the power supply inside the POE switch is limited.
  • the POE switch In order to meet the power supply requirements of the IP terminal, the POE switch usually needs to be connected to an external power supply to provide the required power to the IP terminal, for example, to access the EPS power supply.
  • the power supply inside the POE switch stops supplying power to the IP terminal, and all IP terminals connected to the POE switch are powered by the EPS power supply, that is, the IP terminal is only powered by the power supply module of the POE switch Power supply or only by EPS power supply.
  • the prior art power supply solution supplies power to the power supply module of the POE switch or the output of the EPS power supply.
  • the power requirement is high; and after the EPS power supply is connected to the POE switch, only the EPS power supply supplies power to the IP terminal, which fails to effectively use the power supply module of the POE switch.
  • the technical problem to be solved by the embodiments of the present invention is to provide a power supply system that can meet the power supply requirements of powered devices, effectively utilize the electric energy of the power supply module, and reduce the requirements on the output power of the power supply module and the extended power supply module.
  • an embodiment of the present invention provides a power supply system
  • the power supply system includes a power supply module and an extended power supply module; the rated output voltage of the power supply module is greater than the rated output voltage of the extended power supply module;
  • the power supply module supports a constant voltage power supply mode and a constant power power supply mode;
  • the power supply module is used to supply power to the power receiving device connected to the power supply module;
  • the extended power supply module is used for supplying power to the powered device together with the power supply power module when the output voltage of the power supply power module is the same as the rated output voltage of the extended power supply module.
  • the power supply module is specifically used for:
  • the constant power power supply mode is adopted to supply power to the power receiving device.
  • the power supply module and the extended power module are connected by a current sharing bus.
  • the power supply system further includes a first switch module; the first terminal of the first switch module is connected to the output terminal of the power supply module, and the second terminal of the first switch module is used to connect to the The input terminal of the powered device;
  • the first switch module is used to prevent backflow of the current of the power receiving device.
  • the first switch module includes a first diode
  • the anode of the first diode is connected to the output terminal of the power supply module, and the cathode of the first diode is used to connect to the input terminal of the power receiving device; or,
  • the first switch module includes a first MOS tube; the first MOS tube is an N-channel MOS tube or a P-channel MOS tube; or,
  • the first switch module includes a first triode; the first triode is a PNP type triode or an NPN type triode.
  • the first switch module includes a first switch unit and a first control unit
  • the first end of the first switch unit is connected to the output end of the power supply module, and the second end of the first switch unit is used to connect to the input end of the power receiving device;
  • the control terminal of the first control unit is connected with the control terminal of the first switch unit, the first terminal of the first control unit is connected with the first terminal of the first switch unit, and the first control unit The second end of is connected to the second end of the first switch unit;
  • the first control unit is configured to control the on-off state of the first switch unit according to the output state of the power supply module and the input state of the power receiving device.
  • the first switch unit includes a second triode, a second MOS transistor or a first relay.
  • the power supply system further includes a second switch module; the first end of the second switch module is connected to the output end of the extended power supply module, and the second end of the second switch module is used to connect to the The input terminal of the powered device;
  • the second switch module is used to prevent backflow of the current of the power receiving device.
  • the second switch module includes a second diode
  • the anode of the second diode is connected to the output terminal of the extended power supply module, and the cathode of the second diode is used to connect to the input terminal of the power supply module; or,
  • the second switch module includes a third MOS tube; the third MOS tube is an N-channel MOS tube or a P-channel MOS tube; or,
  • the second switch module includes a third triode; the third triode is a PNP type triode or an NPN type triode.
  • the second switch module includes a second switch unit and a second control unit
  • the first end of the second switch unit is connected to the output end of the extended power supply module, and the second end of the second switch unit is used to connect to the input end of the power receiving device;
  • the control terminal of the second control unit is connected with the control terminal of the second switch unit, the first terminal of the second control unit is connected with the first terminal of the second switch unit, and the second control unit The second end of is connected to the second end of the second switch unit;
  • the second control unit is configured to control the on-off state of the second switch unit according to the output state of the expansion power module and the input state of the power supply module.
  • the power supply module when the power supply module can meet the power supply requirements of the power receiving device, the power supply module gives priority to the power supply of the power receiving device;
  • the extended power supply module and the power supply module jointly supply power to the powered equipment, so as to make full use of the power supply module, and the extended power supply module and the power supply module can jointly supply power to the powered equipment, reducing the impact
  • the output power requirements of the power supply module and the extended power supply module at the same time, the power supply system provided in the embodiment of the present invention does not require additional control operations during the process of supplying power to the powered device, and the power supply system itself automatically implements the corresponding power supply process, which reduces User's operation process of the power supply system.
  • FIG. 1 is a structural block diagram of a power supply system according to Embodiment 1 of the present invention.
  • Embodiment 2 is a structural block diagram of a power supply system provided by Embodiment 2 of the present invention.
  • FIG. 3 is a structural block diagram of a power supply system according to Embodiment 3 of the present invention.
  • Embodiment 4 is a structural block diagram of a power supply system provided by Embodiment 4 of the present invention.
  • Fig. 5 is a structural block diagram of a power supply system according to Embodiment 5 of the present invention.
  • FIG. 1 is a structural block diagram of a power supply system according to Embodiment 1 of the present invention.
  • the power supply system includes a power supply module 1 and an extended power supply module 2.
  • the rated output voltage of the power supply module 1 is greater than the rated output voltage of the extended power supply module 2.
  • the power supply module 1 supports a constant voltage power supply mode and a constant power power supply mode;
  • the power supply module 1 is used to supply power to the power receiving device 3 connected to the power supply module 1;
  • the extended power supply module 2 is used to supply power to the power receiving device 3 together with the power supply module 1 when the output voltage of the power supply module 1 is the same as the rated output voltage of the extended power supply module 2.
  • the power supply module and the extended power supply module are not a cascade structure, but a parallel structure. Since the power supply module is a power supply module that supports the constant voltage power supply mode and the constant power power supply mode, the output voltage of the power supply module is not fixed, and the output voltage of the extended power supply module is the rated output voltage. When the output voltage of the power supply module is the rated output voltage, because the rated output voltage of the power supply module is greater than the rated output voltage of the expansion power module, the expansion power module cannot output current.
  • the power supply module supplies power to the powered device;
  • the expansion power module can output current.
  • the expansion power module and the power supply module jointly supply power to the powered device.
  • the powered device is connected to the power supply module, and the powered device draws the required current from the power supply module to obtain the required electrical energy.
  • the power supply module is first in the constant voltage power supply mode and supplies power to the powered device at the rated output voltage.
  • the extended power module cannot output current; as the current drawn by the powered device increases, the output current of the power supply module increases accordingly.
  • the power supply module is powered by a constant voltage In this mode, the power supply requirements of the powered device connected to the power supply can be met, and the power supply module will always only supply power to the powered device; if the power supply module is in the constant voltage power supply mode, the maximum output current still cannot meet the access
  • the power supply module will automatically switch to the constant power power supply mode for the power supply requirements of the power receiving device.
  • the output current of the power supply module also increases, and the output voltage corresponds to that
  • the extended power supply module can output current, and the current drawn by the powered device to the power supply module no longer increases.
  • the power modules jointly supply power to the powered device, and the power supply requirements of the powered device are all satisfied.
  • the power supply module when the power supply module can meet the power supply demand of the power receiving device, the power supply module gives priority to the power supply of the power receiving device; when the power supply module cannot meet the power supply demand of the power receiving device, the extension The power supply module and the power supply module work together to supply power to the powered device to fully utilize the power supply module, and the extended power supply module and the power supply module can supply power to the powered device together, reducing the output to the power supply module and the extended power supply module Power requirements; at the same time, the power supply system provided by the embodiments of the present invention does not require additional control operations during the process of supplying power to the powered device, and the power supply system itself automatically implements the corresponding power supply process, reducing the user's operation flow of the power supply system.
  • the power supply module supports the constant voltage power supply mode and the constant current power supply mode, which can be realized by the existing technology, so the technical means for realizing the power supply module to support the constant voltage power supply mode and the constant current power supply mode are not described here.
  • Those skilled in the art can use ready-made power supply modules that support the constant voltage power supply mode and the constant current power supply mode, or can customize the design according to actual applications.
  • the extended power supply module may include one or more power supply units to provide power for the extended power supply module.
  • the power supply module is a power supply module set inside the POE switch, and the extended power supply module is an EPS power supply module; at this time, the power supply module and the extended power supply module are less coupled and have strong compatibility.
  • the power supply module 1 is specifically used for:
  • the constant power power supply mode is adopted to supply power to the power receiving device 3.
  • the power supply module when the power of the powered device is less than the rated power of the power supply module, it means that the power supply module can meet the power supply requirements of the powered device, and the power supply module only supplies power to the powered device in the constant voltage power supply mode. ;
  • the power supply module adopts the constant power power supply mode to supply power to the powered device. Provide the maximum output power to the powered device and make full use of the power supply module.
  • the part that exceeds the maximum output power of the power supply module will be provided by the extended power supply module.
  • the power supply module and the extended power supply module jointly supply power to the powered device. The power supply requirements of the powered equipment are all satisfied.
  • FIG. 2 is a structural block diagram of a power supply system provided in Embodiment 2 of the present invention.
  • the power supply module 1 is a power supply module located inside the POE switch
  • the extended power supply module 2 is an EPS power supply module
  • the extended power supply module 2 It consists of a power supply unit 201 and a power supply unit 202.
  • the power supply module 1 is a power supply module located inside the POE switch
  • the POE switch has a port to connect the power receiving device
  • the power receiving device does not have a separate port for connecting the EPS power module, so the extended power module can be indirectly connected to the power receiving device through the combination circuit and the conversion circuit, that is, the power and power supply provided by the extended power module to the power receiving device
  • the electrical energy provided by the module is integrated as the power supply of the system to supply power to the powered equipment.
  • FIG. 2 takes the structural block diagram shown in FIG. 2 as an example to further illustrate the power supply process of the power supply system provided by the embodiment of the present invention:
  • the rated output power of the power supply module 1 of the two POE switches is 400W
  • the rated output power of the power supply 201 and the power supply 202 are both 300W.
  • the power receiving device PD a11 , PD a12 ?? PD a1n ( n ⁇ 1 ) of the power supply module 1 of the POE switch A1 is connected to the POE switch A1 port, the total power is 200W, and the POE switch A2 is connected to the POE switch
  • the total power of the powered devices PD a21 , PD a22 ... PD a2m (m ⁇ 1) of the A2 power supply module 1 is 100W.
  • the total power of the powered devices PD a11 to PD a1n is less than 400W
  • the total power of the powered devices PD a21 to PD a2m is less than 400W
  • the powered devices PD a11 to PD a1n are all powered by the power supply module of the POE switch A1.
  • the devices PD a21 to PD a2m are all powered by the power supply module of the POE switch A2, and the EPS power system does not supply power to any powered device 3.
  • the power receiving device of the power supply module 1 of the POE switch A2 is connected to the port of the POE switch A2
  • the total power of PD a21 to PD a2m is 500W.
  • the POE switch A1 power supply module 1 provides 400W of power to the powered devices PD a11 to PD a1n
  • the EPS power system provides 300W of power to the powered devices PD a11 to PD a1n
  • the POE switch A2 power supply module 1 provides The electric devices PD a21 to PD a2m provide 400W of power
  • the EPS power system provides 100W of power to the powered devices PD a21 to PD a2m .
  • the power receiving device PD a21 of the power supply module of the POE switch A1 is connected to the port of the POE switch A1
  • the total power to PD a2m is 800W.
  • the power supply requirements of the powered devices PD a11 to PD a1n are all met by the power supply module of the POE switch A1, and the power supply module of the POE switch A1 provides 300W power to the powered devices PD a11 to PD a1n , and the EPS power system does not powered device PD PD A11 to A1N power; POE power supply module switch A2 to the power receiving device PD 1 to PD A21 provides A2M 400W power, EPS power supply to the power receiving device A21 to the PD PD 400W power a2m.
  • the power supply module 1 and the extended power module 2 are connected by a current sharing bus.
  • the power supply module and the extended power supply module are connected by a current-sharing bus.
  • the power supply module and the extended power supply module can output current according to a preset ratio.
  • the expansion power module may include more than one power supply unit. The damage of a certain power supply unit may cause the power supply system to fail to supply power normally.
  • the power supply module and the expansion power module are connected by a current sharing bus, which can avoid the transitional power consumption of a certain power supply unit of the expansion power module, and a certain power supply unit has no power supply function without load.
  • the current sharing bus connection is adopted to improve the life of the power supply. , Thereby improving the reliability of the power supply system.
  • FIG. 3 is a structural block diagram of a power supply system according to Embodiment 3 of the present invention.
  • the power supply system further includes a first switch module 4; the first terminal of the first switch module 4 is connected to the output terminal of the power supply module 1, and the second terminal of the first switch module is used for Connected to the input end of the powered device;
  • the first switch module 4 is used to prevent the current from the power receiving device 3 from backflowing.
  • the first switch module 4 prevents the current from the power receiving device 3 from backflowing, which can prevent the power supply system from being damaged and improve the reliability of the power supply system.
  • FIG. 4 is a structural block diagram of a power supply system according to Embodiment 4 of the present invention.
  • the first switch module 4 includes a first diode D1;
  • the anode of the first diode D1 is connected to the output terminal of the power supply module 1, and the cathode of the first diode D1 is used to connect to the input terminal of the power receiving device 3; or,
  • the first switch module 4 includes a first MOS tube; the first MOS tube is an N-channel MOS tube or a P-channel MOS tube; or,
  • the first switch module 4 includes a first triode; the first triode is a PNP type triode or an NPN type triode.
  • the unidirectional conduction characteristic of the diode or the conduction condition of the MOS tube and the triode can be used to realize the function of preventing the current from backflow of the power receiving device.
  • FIG. 5 is a structural block diagram of a power supply system according to Embodiment 5 of the present invention.
  • the first switch module 4 includes a first switch unit 401 and a first control unit 402;
  • the first end of the first switch unit 401 is connected to the output end of the power supply module 1, and the second end of the first switch unit 401 is used to connect to the input end of the power receiving device 3;
  • the control terminal of the first control unit 402 is connected with the control terminal of the first switch unit 401, the first terminal of the first control unit 402 is connected with the first terminal of the first switch unit 401, and the The second end of the first control unit 402 is connected to the second end of the first switch unit 401;
  • the first control unit 402 is configured to control the on-off state of the first switch unit 401 according to the output state of the power supply module 1 and the input state of the power receiving device 3.
  • the output state of the power supply module may be the size or direction of the output voltage, output current, or output power of the power supply module
  • the input state of the powered device may be the input voltage
  • the state of the magnitude or direction of parameters such as input current or input power. It only needs to be in a state that can reflect the current parameters of no current receiving equipment.
  • the first control unit 402 includes a first control chip.
  • the first control unit when it includes the first control chip, it can output a control signal to control the on-off state of the first switch unit.
  • the first switch unit 401 includes a second triode, a second MOS transistor or a first relay.
  • the second triode, the second MOS transistor, or the first relay can be used to control the on-off state of the first switch unit by controlling the control terminal of the first switch unit by the first control unit.
  • the control terminal of the first switch unit is the base of the second triode or the gate of the second MOS transistor.
  • the first switch unit includes the second triode, the first terminal of the first switch unit is the second triode.
  • the collector or emitter of the pole tube depends on the type of transistor used in the specific implementation, as long as it can prevent the current of the powered device from flowing back into the power supply module;
  • the first switch unit includes the second MOS tube, Whether the first terminal of the first switch unit is the source or drain of the second MOS tube depends on the type of MOS tube used in the specific implementation, as long as it can prevent the current of the power receiving device from flowing back into the power supply module;
  • the first switch unit includes the first relay, since the relay is a switching device well known in the art, the type of relay is different, and the connection mode is different.
  • the specific connection mode of the first relay is not limited here, as long as it can prevent
  • the current of the power receiving device can be fed back into the power supply module; for example, when the first relay is an electromagnetic relay, the two static contacts of the first relay are respectively connected to the output terminal of the power supply module and the input terminal of the power receiving device.
  • the control terminal of the relay is a port that controls the on-off state of the coil control circuit of the first relay.
  • the power supply system further includes a second switch module 5; the first end of the second switch module 5 is connected to the output end of the extended power supply module 3, and the second switch module The second end of 5 is used to connect the input end of the power receiving device 3;
  • the second switch module 5 is used to prevent backflow of the current of the power receiving device 3.
  • the use of the second switch module 5 to prevent the current from the power receiving device 3 from backflowing can prevent damage to the power supply system and improve the reliability of the power supply system.
  • the second switch module 5 includes a second diode D2;
  • the anode of the second diode D2 is connected to the output terminal of the extended power supply module 2, and the cathode of the second diode D2 is used to connect to the input terminal of the power supply module 1; or,
  • the second switch module includes a third MOS tube; the third MOS tube is an N-channel MOS tube or a P-channel MOS tube; or,
  • the second switch module includes a third triode; the third triode is a PNP type triode or an NPN type triode.
  • the unidirectional conduction characteristic of the diode or the conduction condition of the MOS tube and the triode can be used to realize the function of preventing the current from backflow of the power receiving device.
  • the second switch module 5 includes a second switch unit 501 and a second control unit 502;
  • the first end of the second switch unit 501 is connected to the output end of the extended power supply module 2, and the second end of the second switch unit 501 is used to connect to the input end of the power receiving device 3;
  • the control end of the second control unit 502 is connected to the control end of the second switch unit 501, the first end of the second control unit 502 is connected to the first end of the second switch unit 501, and the The second end of the second control unit 502 is connected to the second end of the second switch unit 501;
  • the second control unit 502 is configured to control the on-off state of the second switch unit 501 according to the output state of the extended power supply module 2 and the input state of the power supply module 1.
  • the output status of the extended power supply module may be the output voltage, output current, or output power of the extended power supply module.
  • the input status of the power supply module may be the input voltage, output current, or output power of the extended power supply module.
  • the state of the magnitude or direction of parameters such as input current or input power. As long as it can reflect the state of the parameters of the existing non-current backflow input extension power supply module.
  • the first switch module includes a first switch unit and a first control unit to prevent current backflow of the powered device.
  • the principle of entering the function of the power supply module is similar, so I will not repeat it here.
  • the second control unit 502 includes a second control chip.
  • the second control unit when it includes a second control chip, it can output a control signal to control the on-off state of the second switch unit 501.
  • the second switch unit 501 includes a fourth triode, a fourth MOS transistor, or a second relay.
  • the second switch unit includes a fourth triode, a fourth MOS tube or a second relay to achieve the function of preventing current backflow of the powered device
  • the first switch unit includes a second triode, a second MOS tube or a first
  • the principle of the relay to realize the function of preventing the current of the powered device from flowing back into the power supply module is similar, so I will not repeat it here.
  • the power supply module when the power supply module can meet the power supply requirements of the power receiving device, the power supply module will give priority to the power supply of the power receiving device; when the power supply module cannot meet the power supply requirements of the power receiving device When power supply is required, the extended power supply module and the power supply module jointly supply power to the powered device.
  • the technical solution of the embodiment of the present invention can meet the power supply requirements of the power receiving equipment, effectively utilize the electric energy of the power supply module, and the extended power supply module and the power supply module can supply power to the power receiving equipment together, reducing the need for the power supply module and the extended power supply module.
  • the power supply system provided in the embodiments of the present invention does not require additional control operations during the process of supplying power to the powered device, and the power supply system itself automatically implements the corresponding power supply process, reducing the user's operation process of the power supply system .

Abstract

本发明公开了一种供电系统,所述供电系统包括供电电源模块和扩展电源模块;所述供电电源模块的额定输出电压大于所述扩展电源模块的额定输出电压;所述供电电源模块支持恒压供电模式和恒功率供电模式;所述供电电源模块用于向接入所述供电电源模块的受电设备供电;所述扩展电源模块用于当所述供电电源模块的输出电压与所述扩展电源模块的额定输出电压相同时,与所述供电电源模块共同向所述受电设备供电。本发明能够满足受电设备的供电需求,有效利用供电电源模块的电能,降低对供电电源模块和扩展电源模块的输出功率的要求。

Description

一种供电系统 技术领域
本发明涉及供电技术领域,尤其涉及一种供电系统。
背景技术
POE交换机是一种基于以太网为一些IP终端传输数据信号,同时还能为这些IP终端供电的设备。POE交换机内部的电源有限,为满足IP终端的供电需求,通常POE交换机还需要接入外部电源以向IP终端提供所需的电能,例如接入EPS电源。
在现有技术中,EPS电源接入POE交换机后,POE交换机内部的电源就停止向IP终端供电,与POE交换机连接的IP终端全部由EPS电源供电,即IP终端仅由POE交换机的供电电源模块供电或者仅由EPS电源供电。
然而,多个IP终端可以通过POE交换机的多个IP端口同时与POE交换机连接,若要满足全部IP终端的供电需求,现有技术的供电方案对POE交换机的供电电源模块供电或者EPS电源的输出功率要求高;且EPS电源接入POE交换机后,仅由EPS电源向IP终端供电,未能有效利用POE交换机的供电电源模块。
发明内容
本发明实施例所要解决的技术问题在于,提供一种供电系统,能够满足受电设备的供电需求,有效利用供电电源模块的电能,降低对供电电源模块和扩展电源模块的输出功率的要求。
为了解决上述技术问题,本发明实施例提供了一种供电系统,所述供电系统包括供电电源模块和扩展电源模块;所述供电电源模块的额定输出电压大于所述扩展电源模块的额定输出电压;所述供电电源模块支持恒压供电模式和恒功率供电模式;
所述供电电源模块用于向接入所述供电电源模块的受电设备供电;
所述扩展电源模块用于当所述供电电源模块的输出电压与所述扩展电源模块的额定输出电压相同时,与所述供电电源模块共同向所述受电设备供电。
进一步的,所述供电电源模块具体用于:
当所述受电设备的功率小于所述供电电源模块的额定功率时,采用所述恒压供电模式向所述受电设备供电;
当所述受电设备的功率不小于所述供电电源模块的额定功率时,采用所述恒功率供电模式向所述受电设备供电。
进一步的,所述供电电源模块与所述扩展电源模块之间通过均流母线连接。
进一步的,所述供电系统还包括第一开关模块;所述第一开关模块的第一端与所述供电电源模块的输出端连接,所述第一开关模块的第二端用于连接所述受电设备的输入端;
所述第一开关模块用于防止所述受电设备的电流倒灌。
进一步的,所述第一开关模块包括第一二极管;
所述第一二极管的阳极与所述供电电源模块的输出端连接,所述第一二极管的阴极用于与所述受电设备的输入端连接;或,
所述第一开关模块包括第一MOS管;所述第一MOS管为N沟道MOS管或P沟道MOS管;或,
所述第一开关模块包括第一三极管;所述第一三极管为PNP型三极管或NPN型三极管。
进一步的,所述第一开关模块包括第一开关单元和第一控制单元;
所述第一开关单元的第一端与所述供电电源模块的输出端连接,所述第一开关单元的第二端用于与所述受电设备的输入端连接;
所述第一控制单元的控制端与所述第一开关单元的控制端连接,所述第一控制单元的第一端与所述第一开关单元的第一端连接,所述第一控制单元的第二端 与所述第一开关单元的第二端连接;
所述第一控制单元用于根据所述供电电源模块的输出状态和所述受电设备的输入状态控制所述第一开关单元的通断状态。
进一步的,所述第一开关单元包括第二三极管、第二MOS管或第一继电器。
进一步的,所述供电系统还包括第二开关模块;所述第二开关模块的第一端与所述扩展电源模块的输出端连接,所述第二开关模块的第二端用于连接所述受电设备的输入端;
所述第二开关模块用于防止所述受电设备的电流倒灌。
进一步的,所述第二开关模块包括第二二极管;
所述第二二极管的阳极与所述扩展电源模块的输出端连接,所述第二二极管的阴极用于与所述供电电源模块的输入端连接;或,
所述第二开关模块包括第三MOS管;所述第三MOS管为N沟道MOS管或P沟道MOS管;或,
所述第二开关模块包括第三三极管;所述第三三极管为PNP型三极管或NPN型三极管。
进一步的,所述第二开关模块包括第二开关单元和第二控制单元;
所述第二开关单元的第一端与所述扩展电源模块的输出端连接,所述第二开关单元的第二端用于与所述受电设备的输入端连接;
所述第二控制单元的控制端与所述第二开关单元的控制端连接,所述第二控制单元的第一端与所述第二开关单元的第一端连接,所述第二控制单元的第二端与所述第二开关单元的第二端连接;
所述第二控制单元用于根据所述扩展电源模块的输出状态和所述供电电源模块的输入状态控制所述第二开关单元的通断状态。
与现有技术相比,本发明实施例提供的一种供电系统,在供电电源模块能满足受电设备的供电需求时,优先由供电电源模块向受电设备供电;在供电电源模 块不能满足受电设备的供电需求时,由扩展电源模块和供电电源模块共同向受电设备供电,实现对供电电源模块的充分利用,且扩展电源模块和供电电源模块能共同向受电设备供电,降低了对供电电源模块和扩展电源模块的输出功率的要求;同时,本发明实施例提供的供电系统向受电设备供电的过程中无需额外的控制操作,由供电系统本身自发实现相应的供电过程,减少了用户对供电系统的操作流程。
附图说明
图1是本发明实施例1提供的一种供电系统的结构框图;
图2是本发明实施例2提供的一种供电系统的结构框图;
图3是本发明实施例3提供的一种供电系统的结构框图;
图4是本发明实施例4提供的一种供电系统的结构框图;
图5是本发明实施例5提供的一种供电系统的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,是本发明实施例1提供的一种供电系统的结构框图。具体的,本发明实施例提供了一种供电系统,所述供电系统包括供电电源模块1和扩展电源模块2;所述供电电源模块1的额定输出电压大于所述扩展电源模块2的额定输出电压;所述供电电源模块1支持恒压供电模式和恒功率供电模式;
所述供电电源模块1用于向接入所述供电电源模块1的受电设备3供电;
所述扩展电源模块2用于当所述供电电源模块1的输出电压与所述扩展电源模块2的额定输出电压相同时,与所述供电电源模块1共同向所述受电设备3供 电。
需要说明的是,供电电源模块与扩展电源模块连接受电设备时,从整体上看,供电电源模块与扩展电源模块不是级联结构,是并联结构。由于供电电源模块是支持恒压供电模式和恒功率供电模式的电源模块,供电电源模块的输出电压并不固定,而扩展电源模块的输出电压是额定输出电压。当供电电源模块的输出电压为额定输出电压时,由于供电电源模块的额定输出电压大于扩展电源模块的额定输出电压,扩展电源模块无法输出电流,此时仅由供电电源模块向受电设备供电;当供电电源模块的输出电压与扩展电源模块的额定输出电压相同时,扩展电源模块可以输出电流,此时扩展电源模块与供电电源模块共同向受电设备供电。
具体的,受电设备接入供电电源模块,受电设备向供电电源模块汲取所需电流以获取所需电能,供电电源模块先处于恒压供电模式,并以额定输出电压向受电设备供电,向受电设备的输出一定的电流,此时扩展电源模块无法输出电流;随着受电设备汲取的电流的增大,供电电源模块的输出电流也相应增大,若供电电源模块在恒压供电模式时就能满足接入供电电源的受电设备的供电需求,将一直是仅由供电电源模块向受电设备供电;若供电电源模块在恒压供电模式时,输出最大电流仍不能满足接入供电电源的受电设备的供电需求,供电电源模块将自动切换至恒功率供电模式,此时随着受电设备汲取的电流的增大,供电电源模块的输出电流也相应增大,输出电压相应减小,当供电电源模块的输出电压减小到与扩展电源模块的额定输出电压相同时,扩展电源模块可以输出电流,受电设备向供电电源模块汲取的电流不再增加,扩展电源模块与供电电源模块共同向受电设备供电,受电设备的供电需求全部被满足。
本发明实施例提供的供电系统,在供电电源模块能满足受电设备的供电需求时,优先由供电电源模块向受电设备供电;在供电电源模块不能满足受电设备的供电需求时,由扩展电源模块和供电电源模块共同向受电设备供电,实现对供电电源模块的充分利用,且扩展电源模块和供电电源模块能共同向受电设备供电, 降低了对供电电源模块和扩展电源模块的输出功率的要求;同时,本发明实施例提供的供电系统向受电设备供电的过程中无需额外的控制操作,由供电系统本身自发实现相应的供电过程,减少了用户对供电系统的操作流程。
需要说明的是,供电电源模块支持恒压供电模式和恒流供电模式,是现有技术能够实现的,故在此不对实现供电电源模块支持恒压供电模式和恒流供电模式的技术手段进行说明,本领域技术人员可以采用现成的支持恒压供电模式和恒流供电模式的供电电源模块,也可以根据实际应用自定义设计。
可选的,接入同一个供电电源模块的受电设备可以是一个或多个,具体的,多个受电设备可通过不同的端口连接供电电源模块。扩展电源模块可包括一个或多个电源单元共同提供扩展电源模块的电能。
可选的,供电电源模块是设于POE交换机内部的电源模块,扩展电源模块是EPS电源模块;此时,供电电源模块和扩展电源模块的耦合性小,具有较强的兼容性。
进一步的,所述供电电源模块1具体用于:
当所述受电设备3的功率小于所述供电电源模块1的额定功率时,采用所述恒压供电模式向所述受电设备供电;
当所述受电设备3的功率不小于所述供电电源模块1的额定功率时,采用所述恒功率供电模式向所述受电设备3供电。
具体的,当受电设备的功率小于所述供电电源模块的额定功率时,意味着供电电源模块能满足受电设备的供电需求,仅由供电电源模块在恒压供电模式下向受电设备供电;当受电设备的功率不小于供电电源模块的额定功率时,意味着供电电源模块无法满足受电设备的全部供电需求,此时,供电电源模块采用恒功率供电模式向受电设备供电,以向受电设备提供最大的输出功率,充分利用供电电源模块,同时,超出供电电源模块的最大输出功率的部分将由扩展电源模块提供,此时供电电源模块和扩展电源模块共同向受电设备供电,受电设备的供电需求全 部被满足。
请参阅图2,是本发明实施例2提供的一种供电系统的结构框图,假设供电电源模块1是设于POE交换机内部的电源模块,扩展电源模块2是EPS电源模块,且扩展电源模块2由电源单元201和电源单元202组成,有2个供电电源模块1与扩展电源模块2连接,由于在供电电源模块1是设于POE交换机内部的电源模块时,POE交换机有连接受电设备的端口,一般而言受电设备不另外设置连接EPS电源模块的端口,故扩展电源模块可通过合路电路、转换电路间接与受电设备连接,即扩展电源模块向受电设备提供的电能与供电电源模块提供的电能整合后作为系统供电电能向受电设备供电。
下面以图2所示的结构框图为例进一步说明本发明实施例提供的供电系统的供电过程:
假设两个POE交换机供电电源模块1额定输出功率均为400W,电源201和电源202的额定输出功率均为300W。
若通过POE交换机A1的端口接入POE交换机A1供电电源模块1的受电设备PD a11、PD a12……PD a1n(n≥1)的总功率为200W,通过POE交换机A2的端口接入POE交换机A2供电电源模块1的受电设备PD a21、PD a22……PD a2m(m≥1)的总功率为100W。由于受电设备PD a11至PD a1n的总功率小于400W,受电设备PD a21至PD a2m的总功率小于400W,受电设备PD a11至PD a1n全部仅由POE交换机A1供电电源模块供电,受电设备PD a21至PD a2m全部仅由POE交换机A2供电电源模块供电,EPS电源系统不向任何受电设备3供电。
若通过POE交换机A1的端口接入POE交换机A1供电电源模块1的受电设备PD a11至PD a1n的总功率为700W,通过POE交换机A2的端口接入POE交换机A2供电电源模块1的受电设备PD a21至PD a2m的总功率为500W。则此时POE交换机A1供电电源模块1向受电设备PD a11至PD a1n提供400W的功率,EPS电源系统向受电设备PD a11至PD a1n提供300W的功率;POE交换机A2供电电源模 块1向受电设备PD a21至PD a2m提供400W的功率,EPS电源系统向受电设备PD a21至PD a2m提供100W的功率。
若通过POE交换机A1的端口接入POE交换机A1供电电源模块的受电设备PD a11至PD a1n的总功率为300W,通过POE交换机A2的端口接入POE交换机A1供电电源模块的受电设备PD a21至PD a2m的总功率为800W。则此时受电设备PD a11至PD a1n的供电需求全部由POE交换机A1供电电源模块满足,POE交换机A1供电电源模块向受电设备PD a11至PD a1n提供300W的功率,EPS电源系统不向受电设备PD a11至PD a1n供电;POE交换机A2供电电源模块1向受电设备PD a21至PD a2m提供400W的功率,EPS电源系统向受电设备PD a21至PD a2m提供400W的功率。
进一步的,所述供电电源模块1与所述扩展电源模块2之间通过均流母线连接。
具体的,供电电源模块与扩展电源模块之间通过均流母线连接,可以在供电电源模块和扩展电源模块共同向受电设备供电时,让供电电源模块和扩展电源模块按照预设比例输出电流,防止各电源的输出功率不平衡;而且为了避免一个电源损坏,直接影响供电系统的供电过程,扩展电源模块内部可能包括一个以上的电源单元,某个电源单元的损坏可能导致供电系统无法正常供电,供电电源模块与扩展电源模块之间通过均流母线连接,能够避免扩展电源模块的某个电源单元过渡消耗电能,某个电源单元空载不起供电作用,采用均流母线连接,提高电源的寿命,进而提高供电系统的可靠性。
请参阅图3,是本发明实施例3提供的一种供电系统的结构框图。进一步的,所述供电系统还包括第一开关模块4;所述第一开关模块4的第一端与所述供电电源模块1的输出端连接,所述第一开关模块的第二端用于连接所述受电设备的输入端;
所述第一开关模块4用于防止所述受电设备3的电流倒灌。
具体的,通过第一开关模块4防止受电设备3的电流倒灌,可以防止供电系统损坏,提高供电系统的可靠性。
请参阅图4,是本发明实施例4提供的一种供电系统的结构框图。进一步的,所述第一开关模块4包括第一二极管D1;
所述第一二极管D1的阳极与所述供电电源模块1的输出端连接,所述第一二极管D1的阴极用于与所述受电设备3的输入端连接;或,
所述第一开关模块4包括第一MOS管;所述第一MOS管为N沟道MOS管或P沟道MOS管;或,
所述第一开关模块4包括第一三极管;所述第一三极管为PNP型三极管或NPN型三极管。
具体的,利用二极管的单向导通特性或者MOS管、三极管的导通条件可以实现防止受电设备的电流倒灌的功能。
请参阅图5,是本发明实施例5提供的一种供电系统的结构框图。进一步的,所述第一开关模块4包括第一开关单元401和第一控制单元402;
所述第一开关单元401的第一端与所述供电电源模块1的输出端连接,所述第一开关单元401的第二端用于与所述受电设备3的输入端连接;
所述第一控制单元402的控制端与所述第一开关单元401的控制端连接,所述第一控制单元402的第一端与所述第一开关单元401的第一端连接,所述第一控制单元402的第二端与所述第一开关单元401的第二端连接;
所述第一控制单元402用于根据所述供电电源模块1的输出状态和所述受电设备3的输入状态控制所述第一开关单元401的通断状态。
需要说明的是,供电电源模块的输出状态可能是供电电源模块的输出电压、输出电流或输出功率等参数的大小或方向的状态,受电设备的输入状态可能是输入受电设备的输入电压、输入电流或输入功率等参数的大小或方向的状态。只要是能体现有无受电设备的电流倒灌的参数的状态即可。
可选的,所述第一控制单元402包括第一控制芯片。
具体的,第一控制单元包括第一控制芯片时,可以输出控制信号,对第一开关单元的通断状态进行控制。
进一步的,所述第一开关单元401包括第二三极管、第二MOS管或第一继电器。
具体的,采用第二三极管、第二MOS管或第一继电器可以实现通过第一控制单元控制第一开关单元的控制端来控制第一开关单元的通断状态。第一开关单元的控制端为第二三极管的基极或第二MOS管的栅极,当第一开关单元包括第二三极管时,第一开关单元的第一端是第二三极管的集电极还是发射极,视具体实施时采用的三极管的类型而定,只要能实现防止受电设备的电流倒灌进入供电电源模块即可;当第一开关单元包括第二MOS管时,第一开关单元的第一端是第二MOS管的源极还是漏极,视具体实施时采用的MOS管的类型而定,只要能实现防止受电设备的电流倒灌进入供电电源模块即可;当第一开关单元包括第一继电器时,由于继电器作为开关器件是本领域技术熟知的,继电器的类型不同,连接方式也不同,故在此不对第一继电器的具体连接方式进行限定,只要能防止受电设备的电流倒灌输入供电电源模块即可;例如第一继电器为电磁继电器时,第一继电器的两个静触点分别与供电电源模块的输出端、受电设备的输入端连接,第一继电器的控制端为控制第一继电器的线圈控制电路的通断状态的端口。
如图3所示,进一步的,所述供电系统还包括第二开关模块5;所述第二开关模块5的第一端与所述扩展电源模块3的输出端连接,所述第二开关模块5的第二端用于连接所述受电设备3的输入端;
所述第二开关模块5用于防止所述受电设备3的电流倒灌。
具体的,采用第二开关模块5防止受电设备3的电流倒灌,可以防止供电系统损坏,提高供电系统的可靠性。
如图4所示,进一步的,所述第二开关模块5包括第二二极管D2;
所述第二二极管D2的阳极与所述扩展电源模块2的输出端连接,所述第二二极管D2的阴极用于与所述供电电源模块1的输入端连接;或,
所述第二开关模块包括第三MOS管;所述第三MOS管为N沟道MOS管或P沟道MOS管;或,
所述第二开关模块包括第三三极管;所述第三三极管为PNP型三极管或NPN型三极管。
具体的,利用二极管的单向导通特性或者MOS管、三极管的导通条件可以实现防止受电设备的电流倒灌的功能。
如图5所示,进一步的,所述第二开关模块5包括第二开关单元501和第二控制单元502;
所述第二开关单元501的第一端与所述扩展电源模块2的输出端连接,所述第二开关单元501的第二端用于与所述受电设备3的输入端连接;
所述第二控制单元502的控制端与所述第二开关单元501的控制端连接,所述第二控制单元502的第一端与所述第二开关单元501的第一端连接,所述第二控制单元502的第二端与所述第二开关单元501的第二端连接;
所述第二控制单元502用于根据所述扩展电源模块2的输出状态和所述供电电源模块1的输入状态控制所述第二开关单元501的通断状态。
需要说明的是,扩展电源模块的输出状态可能是扩展电源模块的输出电压、输出电流或输出功率等参数的大小或方向等状态,供电电源模块的输入状态可能是输入供电电源模块的输入电压、输入电流或输入功率等参数的大小或方向的状态。只要是能体现有无电流倒灌输入扩展电源模块的参数的状态即可。
由于第二开关模块包括第二开关单元和第二控制单元来实现防止受电设备的电流倒灌的功能与第一开关模块包括第一开关单元和第一控制单元来实现防止受电设备的电流倒灌进入供电电源模块的功能的原理相似,故在此不再赘述。
可选的,所述第二控制单元502包括第二控制芯片。
具体的,第二控制单元包括第二控制芯片时,可以输出控制信号,对第二开关单元501的通断状态进行控制。
可选的,所述第二开关单元501包括第四三极管、第四MOS管或第二继电器。
由于第二开关单元包括第四三极管、第四MOS管或第二继电器来实现防止受电设备的电流倒灌的功能与第一开关单元包括第二三极管、第二MOS管或第一继电器来实现防止受电设备的电流倒灌进入供电电源模块的功能的原理相似,故在此不再赘述。
具体实施时,本发明实施例提供的一种供电系统,在供电电源模块能满足受电设备的供电需求时,优先由供电电源模块向受电设备供电;在供电电源模块不能满足受电设备的供电需求时,由扩展电源模块和供电电源模块共同向受电设备供电。
本发明实施例的技术方案能够满足受电设备的供电需求,有效利用供电电源模块的电能,且扩展电源模块和供电电源模块能共同向受电设备供电,降低了对供电电源模块和扩展电源模块的输出功率的要求;同时,本发明实施例提供的供电系统向受电设备供电的过程中无需额外的控制操作,由供电系统本身自发实现相应的供电过程,减少了用户对供电系统的操作流程。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种供电系统,其特征在于,所述供电系统包括供电电源模块和扩展电源模块;所述供电电源模块的额定输出电压大于所述扩展电源模块的额定输出电压;所述供电电源模块支持恒压供电模式和恒功率供电模式;
    所述供电电源模块用于向接入所述供电电源模块的受电设备供电;
    所述扩展电源模块用于当所述供电电源模块的输出电压与所述扩展电源模块的额定输出电压相同时,与所述供电电源模块共同向所述受电设备供电。
  2. 如权利要求1所述的供电系统,其特征在于,所述供电电源模块具体用于:
    当所述受电设备的功率小于所述供电电源模块的额定功率时,采用所述恒压供电模式向所述受电设备供电;
    当所述受电设备的功率不小于所述供电电源模块的额定功率时,采用所述恒功率供电模式向所述受电设备供电。
  3. 如权利要求1所述的供电系统,其特征在于,所述供电电源模块与所述扩展电源模块之间通过均流母线连接。
  4. 如权利要求1所述的供电系统,其特征在于,所述供电系统还包括第一开关模块;所述第一开关模块的第一端与所述供电电源模块的输出端连接,所述第一开关模块的第二端用于连接所述受电设备的输入端;
    所述第一开关模块用于防止所述受电设备的电流倒灌。
  5. 如权利要求4所述的供电系统,其特征在于,所述第一开关模块包括第一二极管;所述第一二极管的阳极与所述供电电源模块的输出端连接,所述第一二极管的阴极用于与所述受电设备的输入端连接;或,
    所述第一开关模块包括第一MOS管;所述第一MOS管为N沟道MOS管或P沟道MOS管;或,
    所述第一开关模块包括第一三极管;所述第一三极管为PNP型三极管或NPN型三极管。
  6. 如权利要求4所述的供电系统,其特征在于,所述第一开关模块包括第一开关单元和第一控制单元;
    所述第一开关单元的第一端与所述供电电源模块的输出端连接,所述第一开关单元的第二端用于与所述受电设备的输入端连接;
    所述第一控制单元的控制端与所述第一开关单元的控制端连接,所述第一控制单元的第一端与所述第一开关单元的第一端连接,所述第一控制单元的第二端与所述第一开关单元的第二端连接;
    所述第一控制单元用于根据所述供电电源模块的输出状态和所述受电设备的输入状态控制所述第一开关单元的通断状态。
  7. 如权利要求6所述的供电系统,其特征在于,所述第一开关单元包括第二三极管、第二MOS管或第一继电器。
  8. 如权利要求1所述的供电系统,其特征在于,所述供电系统还包括第二 开关模块;所述第二开关模块的第一端与所述扩展电源模块的输出端连接,所述第二开关模块的第二端用于连接所述受电设备的输入端;
    所述第二开关模块用于防止所述受电设备的电流倒灌。
  9. 如权利要求8所述的供电系统,其特征在于,所述第二开关模块包括第二二极管;
    所述第二二极管的阳极与所述扩展电源模块的输出端连接,所述第二二极管的阴极用于与所述供电电源模块的输入端连接;或,
    所述第二开关模块包括第三MOS管;所述第三MOS管为N沟道MOS管或P沟道MOS管;或,
    所述第二开关模块包括第三三极管;所述第三三极管为PNP型三极管或NPN型三极管。
  10. 如权利要求8所述的供电系统,其特征在于,所述第二开关模块包括第二开关单元和第二控制单元;
    所述第二开关单元的第一端与所述扩展电源模块的输出端连接,所述第二开关单元的第二端用于与所述受电设备的输入端连接;
    所述第二控制单元的控制端与所述第二开关单元的控制端连接,所述第二控制单元的第一端与所述第二开关单元的第一端连接,所述第二控制单元的第二端与所述第二开关单元的第二端连接;
    所述第二控制单元用于根据所述扩展电源模块的输出状态和所述供电电源模块的输入状态控制所述第二开关单元的通断状态。
PCT/CN2019/125895 2019-01-31 2019-12-17 一种供电系统 WO2020155898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910102851.X 2019-01-31
CN201910102851.XA CN109660364B (zh) 2019-01-31 2019-01-31 一种供电系统

Publications (1)

Publication Number Publication Date
WO2020155898A1 true WO2020155898A1 (zh) 2020-08-06

Family

ID=66121217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125895 WO2020155898A1 (zh) 2019-01-31 2019-12-17 一种供电系统

Country Status (2)

Country Link
CN (1) CN109660364B (zh)
WO (1) WO2020155898A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660364B (zh) * 2019-01-31 2020-08-18 普联技术有限公司 一种供电系统
CN113497486B (zh) * 2020-03-20 2024-01-30 华为技术有限公司 电源合路电路、诊断方法、装置及系统
CN117148910B (zh) * 2023-10-31 2024-01-09 深圳和润达科技有限公司 恒流恒压供电电路的智能控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080151457A1 (en) * 2006-12-22 2008-06-26 Silicon Laboratories, Inc. Voltage protection circuit for power supply device and method therefor
CN102123034A (zh) * 2011-02-28 2011-07-13 中兴通讯股份有限公司 利用poe系统进行高低压选择供电的方法及装置
CN103199694A (zh) * 2013-03-27 2013-07-10 北京工业大学 一种具有自动均流功能的开关电源
CN109660364A (zh) * 2019-01-31 2019-04-19 普联技术有限公司 一种供电系统
CN209497471U (zh) * 2019-01-31 2019-10-15 普联技术有限公司 一种供电系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469642B (zh) * 2007-12-29 2012-05-09 比亚迪股份有限公司 一种混合动力汽车启动系统及其控制方法
US9843294B2 (en) * 2015-07-01 2017-12-12 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
CN107786345A (zh) * 2016-08-26 2018-03-09 北京安拓伟业科技发展有限公司 大功率长距离标准poe分离器、poe系统及poe系统控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080151457A1 (en) * 2006-12-22 2008-06-26 Silicon Laboratories, Inc. Voltage protection circuit for power supply device and method therefor
CN102123034A (zh) * 2011-02-28 2011-07-13 中兴通讯股份有限公司 利用poe系统进行高低压选择供电的方法及装置
CN103199694A (zh) * 2013-03-27 2013-07-10 北京工业大学 一种具有自动均流功能的开关电源
CN109660364A (zh) * 2019-01-31 2019-04-19 普联技术有限公司 一种供电系统
CN209497471U (zh) * 2019-01-31 2019-10-15 普联技术有限公司 一种供电系统

Also Published As

Publication number Publication date
CN109660364A (zh) 2019-04-19
CN109660364B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2020155898A1 (zh) 一种供电系统
JP6389512B2 (ja) 低消費電力待機回路デバイス、エアーコンディショナー及びエアーコンディショナーの制御方法
CN111656104B (zh) 空调室外机及空调
US7763993B2 (en) DC UPS with auto-ranging backup voltage capability
CN112202571B (zh) 一种poe电源传输装置、poe交换机及poe系统
CN102231598A (zh) 一种电源电路
WO2023071495A1 (zh) 星载电源开关机使能及欠压锁定电路
CN107906697B (zh) 空调器
CN209497471U (zh) 一种供电系统
CN111313374A (zh) 一种应用于电动自行车bms的电池系统欠压保护电路和方法
WO2017133238A1 (zh) 一种大功率电能的无线传输方法和电路
WO2024055869A1 (zh) 一种电流补偿电路、准谐振电源及充电装置
US20200244052A1 (en) Power supply cabinet
JP2010220436A (ja) 携帯式電源供給装置
CN111365826A (zh) 供电系统和空调器
CN107733413B (zh) 一种预装电池系统的智能开关电路和智能终端
WO2023093059A1 (zh) 供电电路及其控制方法
CN115549035A (zh) 一种电源保护系统以及飞行器
CN207234379U (zh) 一种充电机可控外供电短路保护电路
CN214412327U (zh) 一种多路放电回路的通断控制电路以及储能设备
CN211606183U (zh) 一种互为备份的双电源供电冗余热备份电路及电源
CN211925953U (zh) 低功耗控制系统和空调器
CN109104086B (zh) 一种具有功率因数修正功能的直流对直流转换器
CN113936941A (zh) 一种开关装置及配电系统
CN219247704U (zh) 具有输入反接保护的dcdc电路系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912374

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19912374

Country of ref document: EP

Kind code of ref document: A1