WO2017133238A1 - 一种大功率电能的无线传输方法和电路 - Google Patents

一种大功率电能的无线传输方法和电路 Download PDF

Info

Publication number
WO2017133238A1
WO2017133238A1 PCT/CN2016/097769 CN2016097769W WO2017133238A1 WO 2017133238 A1 WO2017133238 A1 WO 2017133238A1 CN 2016097769 W CN2016097769 W CN 2016097769W WO 2017133238 A1 WO2017133238 A1 WO 2017133238A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
transmitting
control system
module
power
Prior art date
Application number
PCT/CN2016/097769
Other languages
English (en)
French (fr)
Inventor
施京京
Original Assignee
施京京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施京京 filed Critical 施京京
Publication of WO2017133238A1 publication Critical patent/WO2017133238A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention belongs to the field of wireless charging technology, and in particular to a wireless transmission method and circuit for high-power electric energy.
  • wireless charging or wireless energy transmission technology mainly focuses on low-power charging, such as charging a smart phone or a smart watch.
  • the common transmission output power is generally 5W and 10W, generally not exceeding 15W.
  • wireless charging technology more and more high-power devices such as electric vehicles and computers need to use wireless charging technology.
  • the present invention provides a wireless transmission method and circuit for high-power electric energy.
  • the method and the circuit can realize transmission of high-power electric energy, and the structure is simple, stable and reliable, and the The high efficiency of the small power transmission of the unit module enables high efficiency of high power transmission.
  • the present invention solves the above technical problems by the following technical solutions.
  • a wireless transmission method for high-power electric energy the original high-power electric energy is split into several primary electric energy, and several primary electric energy are transmitted through the wireless electromagnetic energy mode to obtain a plurality of secondary electric energy, and several secondary electric energy Combine the high power required for the output.
  • a wireless transmission circuit for high-power electric energy comprising a transmitting portion and a receiving portion, wherein the transmitting portion comprises an transmitting module formed by connecting a plurality of transmitting unit modules by any one of series connection, parallel connection, or serial-to-parallel connection.
  • the array of arrays has a power input terminal, each of the transmitting unit modules includes at least one transmitting coil, and a plurality of transmitting coils form an array of transmitting coils of the transmitting portion, and the receiving portion comprises a plurality of receiving unit modules connected in series a receiving module array formed by any one of parallel connection or serial-to-parallel connection, the receiving module array has a power output end, and each receiving unit module includes At least one receiving coil, the plurality of receiving coils constituting a receiving coil array, the transmitting coil array and the receiving coil array having a corresponding spatial position array structure, wherein the transmitting portion and the receiving portion pass each other through a plurality of transmitting coils and a plurality of receiving coils Coupling is the same as working to transmit electromagnetic energy.
  • the transmitting portion further includes an emission control system.
  • the emission control system is disposed in the transmitting unit module, and the transmitting control system is connected to each of the transmitting unit modules through the data bus to realize electromagnetic energy of each transmitting unit module.
  • the programmable output, the emission control system is either a standard logic circuit or a programmable logic circuit or a single chip microcomputer.
  • the emission control system is integrated in the transmitting unit module
  • Each of the firing unit modules is capable of programmable output of electromagnetic energy.
  • the receiving portion further includes a receiving control system.
  • the receiving control system is disposed in the receiving unit module, and each receiving unit module is connected through the data bus to realize the current voltage of each receiving unit module.
  • the programming output, the receiving control system is any one of a standard logic circuit, a programmable logic circuit or a single chip microcomputer.
  • the receiving control system is integrated in the receiving unit module, and each receiving unit module can realize programmable output of current and voltage.
  • the receiving portion is provided with an output total switch, and the output is always provided with any one of a MOS tube or an IGBT, and the total switch is Connected to the receiving control system, when the receiving control system detects that all the receiving unit modules are working properly through the data bus, the hiccup is always closed and externally output.
  • the output ends of the mutually parallel branches are connected in series with a unidirectional conductive diode or MOS tube, and each receiving unit module is connected in series with each other.
  • a diode or MOS transistor for bypass current is connected in parallel on one side of the group.
  • the data bus is generally I2C or GPIO, and the automotive standard LIN bus is adopted in the automotive field, and the SPI bus is used in an application scenario where speed is particularly required.
  • the transmitting module array and the receiving module array of the present invention both use the existing standardized wireless charging scheme as the basis of the transceiver unit module, and add some functional circuit components required for the unit to form an array.
  • the functional circuit includes data bus interface conversion, voltage limiting, current limiting and power programmable output. These are the standard solutions for the transceiver unit module. They can be any of the Qi standard, the PMA standard, the A4 WP standard, and the iNPOFi technology. One, with the development of technology, it is also possible to introduce new standards. It is currently preferred to use the QI standard of the Wireless Charging Alliance WPC as the basis of the unit, by serially, parallel or serially combining these wireless transceiver modules with identical specifications. Mixing, forming a transmitting module array and a receiving module array, and configuring corresponding high-power wireless charging circuits according to required power of various devices;
  • the bypass current function is realized by paralleling a diode or an M OS tube to the side of the receiving unit module connected in series, and when a single module in the series branch fails.
  • the entire series branch can still work normally, which improves the reliability of the circuit;
  • an additional transceiver unit module needs to be added to the series branch or the parallel branch.
  • a transceiver unit module can transmit 10W power, and the serial branch total The output requirement is 60W, then 8 transceiver units can be used.
  • the transceiver unit module of the serial branch is not working at full load, if the receipt is received
  • the element array topology is serial and parallel, and the receiving control system commands the other series branches to reduce the voltage through the data bus to ensure that the output voltages of the respective series branches are similar, and no power interference occurs between them.
  • DCs should be connected. /DC conversion constant voltage or constant current circuit, automatically adapt to the output voltage variation of the receiving series branch
  • the receiving part is provided with any one of the output of the MOS tube or the IGBT, and the receiving control system detects the working state of all the receiving unit modules, and satisfies the condition of the power output condition.
  • the total output power is relatively small, the total output power is relatively small.
  • the total output power is relatively large, and the IGBT is used as the total control to improve the stability and reliability of the wireless charging circuit.
  • the emission control system is simpler than the receiving control system. Whether it is a failure of the transmitting unit or a failure of the receiving unit, the final effect is that the receiving unit cannot output power normally, and the receiving control system coordinates the output energy of each receiving unit module. That is, the output energy of the transmitting unit module is indirectly coordinated.
  • the equalization of each unit of the whole system depends on the receiving control system, so the receiving control system is more complicated. In general, the management of the transmitting unit by the transmitting control system is mainly limited. Pressure limit flow and status reporting;
  • Programmable output means that the transceiver control system can detect and change the voltage and current outputted by each of the transmitting and receiving units through the data bus, thereby controlling the magnitude of electromagnetic energy transmitted by each unit to achieve the energy of the receiving unit array. The reasonableness of the merger;
  • each transceiver unit module For most general application scenarios, the voltage and current output by each transceiver unit module are the same, that is, the power of each transceiver unit module in the array is the same, and the array distributes the high power equally. Low power, one transmitter module is equipped with one transmitting coil for most application scenarios, and one receiving unit module is equipped with one receiving coil;
  • the receiving unit module should be capable of programmable output voltage and current, so that when the individual receiving unit module or the transmitting unit module in the series branch fails, Adjust the output voltage and current of the receiving unit module to ensure that the voltage of each series branch is similar. Because multiple series branches are concentrated by Schottky diodes, the voltage difference of the series branches cannot exceed 2 times. Schottky diodes are positive. To the voltage drop, estimate 2*0.3V, otherwise the diode is cut off and the energy cannot be concentrated. This mechanism implements the command of the sixth series to reduce the voltage of the other series branch, and can also command the series branch of the faulty unit to raise the voltage.
  • the output power of the unit module is constant, and the output current of the series branch is reduced by this mechanism to ensure the normal operation of the normal transceiver unit in the series branch; [0028] 12.
  • the transmission control system is connected to the data bus of the transmitting unit module, and the receiving control system is connected to the data bus of the receiving unit module, which is two different data buses, respectively controlling the transceiver module array, and communicating through the coupling coil. Channels or other communication methods enable communication and work together.
  • Embodiment 1 is a schematic structural view of a transmitting portion of Embodiment 1.
  • Embodiment 2 is a schematic structural diagram of a receiving portion of Embodiment 1.
  • Embodiment 3 is a schematic structural diagram of a receiving portion of Embodiment 2.
  • Embodiment 4 is a schematic structural view of Embodiment 3.
  • Embodiment 5 is a schematic diagram of Embodiment 4.
  • Embodiment 6 is a schematic diagram of Embodiment 5.
  • Embodiment 1 as shown in FIG. 1 to FIG. 2, comprising a transmitting portion and a receiving portion, wherein the transmitting portion comprises 15 transmitting unit modules, wherein 5 of the series form a series segment, and then the three series segments are connected in parallel to form a transmitting module.
  • each transmitting unit module includes a transmitting coil
  • 15 transmitting coils constitute a transmitting coil array
  • the receiving portion has the same receiving module array as the transmitting module array structure
  • the receiving module array has a power output end.
  • Each receiving unit module includes a receiving coil
  • 15 receiving coils form an array of receiving coils.
  • the transmitting coil array and the receiving coil array have a corresponding spatial position array structure, and the transmitting portion and the receiving portion pass 15 transmissions.
  • the coil and the 15 receiving coils are coupled to each other to transmit electromagnetic energy.
  • the transmitting part further includes an emission control system, and the emission control system is disposed outside the transmitting unit module.
  • the transmitting part is integrated on the transmitting part circuit board, and the transmitting control system is connected to each transmitting unit module through the data bus, The average output of the electromagnetic energy of each of the transmitting unit modules is realized, and the emission control system is any one of a standard logic circuit or a programmable logic circuit or a single chip microcomputer.
  • the receiving part further includes a receiving control system, and the receiving control system is disposed outside the receiving unit module.
  • the receiving part is integrated on the receiving part circuit board, and each receiving unit module is connected through the data bus.
  • the receiving control system is any one of a standard logic circuit, a programmable logic circuit or a single chip microcomputer.
  • Embodiment 2 as shown in FIG. 3, the structure of the transmitting portion is the same as that of the first embodiment, and is not described herein. The difference is that in the receiving module array, the positive poles of the three serial segments are each and one The diodes are connected in series D1, D2 and D3 for single-phase single-circuit. In the series section, each receiving unit module is connected with a diode in parallel with D11 ⁇ D35 to realize the function of bypass current. The receiving part has an output total.
  • the MOS tube is closed, and its working process is described as follows:
  • the receiving control system detects that each receiving unit module is working normally, and the MOS is always turned on, and the external power supply is started.
  • the receiving unit module when the receiving control system detects that the receiving unit module is abnormal, the receiving unit module can be operated as follows: For the consumer electronics, there is no standby transceiver unit module, and the receiving unit module is restarted to enable Normal work, if it still can't work normally, the system is faulty and can't work. For high-reliability applications, such as cars, there must be spare transceiver unit modules. When some transceiver module is faulty, start the standby unit, the system still Can work normally, and prompt the user, there is a transceiver unit failure, need to be repaired or replaced.
  • a diode can be connected in parallel with each receiving unit module side.
  • the anode of the diode is connected to the cathode of the parallel unit, and the anode of the diode is connected to the anode of the parallel unit.
  • the diode bypasses it, and does not affect the entire series branch. The receiving unit works.
  • each series segment can achieve very precise control of voltage and current output control, the above diode or MOS tube is not added, such as when detecting power interference, quickly reduce the corresponding The output voltage or boosted power of the series unit that produces electrical energy interference is disturbed by the output voltage of the series unit.
  • Embodiment 3 a radio energy transmission circuit for IPAD 10W 5V2A charging power, as shown in FIG. 4, the transmitting part and the receiving part respectively adopt two transmitting unit modules and two receiving unit modules in parallel, each of the figures
  • the wireless charging solution can be realized for the IPAD 10W 5V2A.
  • each transceiver unit module does its own voltage limiting and current limiting, and each receiving unit module directly aggregates the output.
  • the technical standard of the 5W transceiver unit module adopts the wireless charging alliance WPC 1.1.2 version Qi standard
  • the transmitting unit module includes the IDT company P9038-RNDGI chip
  • the receiving unit module includes Ai Dixie (IDT) P9025AC-RNBGI chip and core source (MPS) MP5010SDQ chip, in which P9038-RNDGI chip and P9025AC-RNBGI chip function is to complete 5W radio energy transmission
  • MP5010SDQ is programmable current limiting device, through which it is guaranteed P9025AC output current is not more than 1A.
  • the above three chips, servo resistors and transceiver coils form a transceiver unit module.
  • the two receiver unit modules are connected in series with the Schottky diodes, and then connected in parallel.
  • Embodiment 4 is a radio energy transmission circuit for a TYPE-C, a notebook computer or a smart sweeping robot.
  • the transmitting portion is a fully parallel structure of 10 transmitting unit modules, and the receiving portion thereof is 5 receiving unit modules are connected in series to form a series segment, and then the two connected series segments are connected in parallel to form a receiving module array, and each receiving unit module in the series segment is connected in parallel with a bypass diode (D1 ⁇ D10);
  • the positive poles of the two series sections are each connected in series with a diode for unidirectional conduction (D21 and D22); each receiving unit module is connected to the AND gate through another diode (D11 ⁇ D20) to supply power to the AND gate;
  • a power input management module and a DC/DC conversion circuit are provided, the purpose of which is to compare the transmitting unit modules Multi-turn transmission line length, in order to reduce line loss, first high voltage transmission, and then converted by DC/DC conversion circuit, power is supplied to each transmitting unit
  • 10 parallel transmitting unit modules share two DC/DC converter circuit
  • the receiving part also sets a DC/DC conversion circuit before the output to convert to the corresponding current and voltage to adapt to the demand of 100W or less such as TYPE-C, laptop or smart sweeping robot. power.
  • a transceiver unit module can output 10W energy, 10V1A, 10W transceiver unit module technology standard adopts wireless charging alliance WPC 1.2 version Qi standard, the integrated circuit used in the transceiver unit circuit is, the transmitting unit module selects Ai Dixie (IDT) company P9240, receiving unit module selects Eddie (IDT) P9220 and core source (MPS) MP5010, MPS5010 chip is programmable current limiting device, through which P9220 output current is not more than 1.2A, the above The three chips, the servo resistors and capacitors, and the transmitting and receiving coils together form a transceiver unit module.
  • IDTT Ai Dixie
  • MPS core source MP5010
  • MPS5010 chip is programmable current limiting device, through which P9220 output current is not more than 1.2A, the above
  • the three chips, the servo resistors and capacitors, and the transmitting and receiving coils together form a transceiver unit module.
  • Each receiving unit module outputs a "state" signal through the S line in the figure, and is connected through a two-stage "AND gate". When all the receiving unit modules are working normally, the total ⁇ Turn off the power and supply power.
  • Diodes D1-D10 function is: Bypassing the receiving unit module after it is not working properly.
  • the function of the diode D11-D20 is: As long as one receiving unit module can work normally, the power supply can be given to the "AND”, and the "V" line in the figure is the power supply line.
  • the function of the diode D21-D22 is: one-way conduction, preventing crosstalk of two series circuits in parallel.
  • the output of the receiving portion of this embodiment is always MOSFET.
  • the total input power of the circuit is 120W
  • the total output power is 100W
  • the transmission efficiency is about 80 ⁇ 3 ⁇ 4.
  • Embodiment 5 is a radio energy transmission circuit for an electric vehicle.
  • the transmitting portion and the receiving portion of the wireless transmission circuit are respectively connected in series by 10 transceiver unit modules, and then 10 The series segments are connected in parallel to form a rectangular array of 10*10, and each of the transmitting unit modules and the receiving unit module can output 10W energy, that is, 10V1A, and the technical standard adopts the wireless charging alliance WPC 1.2 version Qi standard, the transmitting unit module
  • the group includes IDT_P9240 chip, AC/DC converter circuit, data bus interface conversion circuit, servo material resistance capacitor and transmitting coil, etc.; the transmitter unit module adds data bus interface conversion circuit (not shown in Figure 6),
  • I2C to GPIO
  • I2C to LIN etc. Wait.
  • the receiving unit module includes the IDT_P9220 chip, the core source (MPS) MP5010 chip, the Intersil ZL6105 chip, the data bus interface conversion circuit, the servo material resistance capacitor and the receiving coil, etc. Receive control system control.
  • IDT_P9220 function is to output 10W power
  • MP5010S function is to make P9220 output current strictly limited to 1.2A
  • ZL6105 is I2C interface digital power supply
  • after MP5010S strictly limit current protection channel ZL6105, ZL6105 can directly convert 10W electric energy to 5.5V under the control of I2C, SMBus or PMBus
  • the ZL6105 can effectively control the series branch of the faulty receiving unit module.
  • the voltage drop current, or the faulty receiving unit module, the series branch circuit reduces the voltage up current, and the receiving unit module also needs to increase the bus interface conversion circuit to ensure the effective control of the receiving unit by the receiving control system.
  • this requires specific analysis of specific issues. It is possible that I2C will switch to GPIO, and it is possible that I2C will be transferred to LIN and so on.
  • the receiving module array and the transmitting module array can additionally add some spare transceiver unit modules in addition to the required power, and each transceiver unit module adopts a mature low-power wireless charging scheme, and the overall performance is stable and reliable.
  • the efficiency of transmitting 10W in the low-power wireless charging scheme can reach 83%.
  • the transmission is relatively large, and the efficiency is slightly worse than that of each unit, which is estimated to be above 80%.
  • each transceiver unit will be more efficient, and the overall efficiency will be higher, enabling high power efficiency on high power transmission.
  • a each of the transmitting unit modules are connected to the transmitting control system through a data bus (transmitting bus), the transmitting bus uses a car standard LIN bus, or an I2C bus; the transmitting control system controls each launch through the transmitting bus
  • the balanced output of the unit module can report the faulty firing unit module.
  • each receiving unit module is connected to the receiving control system through a data bus (receiving bus), the receiving control system is installed inside the electric vehicle, the receiving bus adopts the automobile standard LIN bus and GPIO, and the receiving control system passes the LIN
  • the bus communicates with each receiving unit module, and the receiving control system controls each MOS and IGBT through the GPIO, the GPIO Refers to the general-purpose input and output, it can be the GPIO part of the bus, or it can be converted by the LIN bus.
  • the MOS tube (Ml, 1-M10, 10) is connected in parallel with each receiving unit module (ie, the source and the drain of the MOS tube are connected to the positive and negative terminals of the receiving control system, and the gate connection of the MOS tube is received.
  • Control system its function is: The receiving control system detects the corresponding receiving unit module, after it does not work normally, the control MO S is in the on state, bypassing the corresponding receiving unit module, without affecting other receiving units Work; After the corresponding receiving unit module works normally, the MOS is in the off state, and the corresponding receiving unit module supplies power externally.
  • the reason that the normal operation is not received may be caused by the sequence of power-on, or may be a fault, and the receiving control system may report the failure of the corresponding receiving unit.
  • the current technical condition is to detect the power output of the receiving unit, and only report the fault of the transceiver unit, and it is impossible to report whether the receiving unit is faulty or the transmitting unit is faulty.
  • the MOS tube (M1 ⁇ M10) is disposed in the positive pole of the 10 series segments, and is connected in series with the receiving unit module in the series section, and the function thereof is: preventing power interference between the series segments connected in parallel;
  • the receiving control system detects the power interference ⁇ , breaks the series unit group that generates the interference power, restores the connection after the power interference disappears, or reduces the output voltage of the receiving unit in the series section corresponding to the power generation interference or the boosted power is disturbed in the series segment The output voltage of the receiving unit.
  • the diode D (1, 1) - D (10, 10) function is: As long as one receiving unit module can supply power normally, the receiving control system can be powered, in an "or" relationship.
  • the output of this circuit is mainly due to the high power, and is realized by IGBT.
  • IGBT Input-to-Gemastructure
  • the receiving control system can fight IGBT, external power supply
  • the transmitting and receiving control portion can detect and report the specific receiving or transmitting unit failure, and the maintenance and replacement.
  • j for the current transceiver unit module is 10W, 100 transceiver unit module arrays, of which 20
  • % is spare and can provide 800W of power.
  • the power of the transceiver unit can be increased or a combination of more transceiver units can be used to make more power transmission.
  • the input end of the transmitting module array is provided with a power input management module, and the transmitting module array is connected to the alternating current through the power input management module, which is 220V alternating current in China, and 110V alternating current in some countries, so the transmitting unit is needed
  • An AC/DC conversion module is connected in front of the input end of the module to convert the alternating current into direct current.
  • each transmitting unit has an AC/DC conversion module, but the actual operation may be based on specific conditions.
  • a plurality of transmitting units share one AC/DC conversion module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种大功率电能的无线传输方法和电路,该方法为:将原始的大功率电能拆分成若干个初级电能,若干个初级电能同时通过无线电磁能方式传输获得若干个次级电能,若干个次级电能汇合并输出所需的大功率电能,实现该方法的电路,包括发射部分和接收部分,发射部分包括由若干个发射单元模组通过串联、并联或者串并混联中的任一种连接方式构成的发射模组阵列,接收部分包括由若干个接收单元模组串联、并联或者串并混联中的任一种连接方式构成的接收模组阵列,所述发射部分和接收部分通过若干个发射线圈和若干个接收线圈互相耦合同时工作传输电磁能,通过该方法和电路可以实现大功率电能的传输,结构简单,稳定可靠。

Description

说明书 发明名称:一种大功率电能的无线传输方法和电路 技术领域
[0001] 本发明属于无线充电技术领域, 具体地说是指一种大功率电能的无线传输方法 和电路。
背景技术
[0002] 目前, 无线充电或者无线电能传输技术在商业上的成功应用主要集中在小功率 的充电, 如对智能手机或智能手表的充电, 常见传输输出功率一般在 5W和 10W , 一般不超过 15W。 而随着无线充电技术的发展, 末来越来越多大功率的设备如 电动车、 电脑也需要利用无线充电技术, 而目前尚没有一个稳定成熟的方案来 实现大功率电能的无线传输。
技术问题
[0003] 本发明为了克服现有技术之不足, 提出了一种大功率电能的无线传输方法和电 路, 通过该方法和电路可以实现大功率电能的传输, 结构简单, 稳定可靠, 禾 1J 用单个单元模组小功率传输的高效率特性从而实现大功率传输的高效率。
问题的解决方案
技术解决方案
[0004] 本发明是通过下述技术方案来解决上述技术问题的。
[0005] 一种大功率电能的无线传输方法, 将原始的大功率电能拆分成若干个初级电能 , 若干个初级电能同吋通过无线电磁能方式传输获得若干个次级电能, 若干个 次级电能汇合并输出所需的大功率电能。
[0006] 一种大功率电能的无线传输电路, 包括发射部分和接收部分, 发射部分包括由 若干个发射单元模组通过串联、 并联或者串并混联中的任一种连接方式构成的 发射模组阵列, 发射模组阵列具有一电源输入端, 每个发射单元模组都包括至 少一个发射线圈, 若干个发射线圈构成了发射部分的发射线圈阵列, 接收部分 包括由若干个接收单元模组串联、 并联或者串并混联中的任一种连接方式构成 的接收模组阵列, 接收模组阵列具有一电源输出端, 每个接收单元模组均包括 至少一个接收线圈, 若干个接收线圈构成了接收线圈阵列, 所述发射线圈阵列 和接收线圈阵列具有对应的空间位置阵列结构, 所述发射部分和接收部分通过 若干个发射线圈和若干个接收线圈互相耦合同吋工作传输电磁能。
[0007] 作为本发明的无线传输电路的一种改进, 发射部分还包括发射控制系统。
[0008] 作为本发明的无线传输电路的一种改进, 发射控制系统设置在发射单元模组以 夕卜, 发射控制系统通过数据总线连接各个发射单元模组, 以实现各个发射单元 模组电磁能量的可编程输出, 发射控制系统为标准逻辑电路或可编程逻辑电路 或单片机中的任一种。
[0009] 作为本发明的无线传输电路的一种改进, 发射控制系统集成在发射单元模组中
, 每个发射单元模组能够实现电磁能量的可编程输出。
[0010] 作为本发明的无线传输电路的一种改进, 接收部分还包括接收控制系统。
[0011] 作为本发明的无线传输电路的一种改进, 接收控制系统设置在接收单元模组以 夕卜, 通过数据总线连接各个接收单元模组, 以实现各个接收单元模组的电流电 压的可编程输出, 接收控制系统为标准逻辑电路、 可编程逻辑电路或单片机中 的任一种。
[0012] 作为本发明的无线传输电路的一种改进, 接收控制系统集成在接收单元模组, 每个接收单元模组能够实现电流电压的可编程输出。
[0013] 作为本发明的无线传输电路的一种改进, 接收部分设有一输出总幵关, 所述输 出总幵关设有 MOS管或者 IGBT中的任一项总幵关, 所述总幵关与接收控制系统 连接, 当接收控制系统通过数据总线检测到所有接收单元模组工作正常后, 打 幵总幵关, 对外输出。
[0014] 作为本发明的无线传输电路的一种改进, 接收模组阵列内, 互相并联的支路的 输出端串联一单向导电的二极管或者 MOS管后汇聚, 互相串联的每个接收单元 模组一侧并联一个用于实现旁路电流的二极管或者 MOS管。
[0015] 作为本发明的无线传输电路的一种改进, 数据总线一般为 I2C或 GPIO, 在汽车 领域上会采用汽车标准 LIN总线, 在对速度有特别要求的应用场景会采用 SPI 总线。
发明的有益效果 有益效果
[0016] 现对本发明的技术特征的相应有益效果作如下说明:
[0017] 一、 本发明所述的发射模组阵列和接收模组阵列均选用现有的标准化的无线充 电方案作为收发单元模组的基础, 增加一些为单元组成阵列需要的功能电路构 成, 这些功能电路包括数据总线接口转换, 限压, 限流和功率的可编程输出等 , 这些作为收发单元模组基础的标准化的方案, 可以是 Qi标准、 PMA标准、 A4 WP标准、 iNPOFi技术中的任何一种, 随着科技的发展还有可能引入新的标准, 目前优选采用无线充电联盟 WPC的 QI标准作为单元的基础, 通过对这些规格完 全一致的无线收发单元模组进行串联、 并联或串并混联, 构成发射模组阵列和 接收模组阵列, 并且可以根据各种设备的所需功率, 配置相应的大功率无线充 电电路;
[0018] 二、 当无线传输电能功率较大吋, 需要较多数量的无线收发单元模组构成模组 阵列吋, 可在发射部分和接收部分分别设置发射控制系统和接收控制系统, 对 收发两方的单元模组阵列进行均衡控制, 实现无线传输电路的稳定可靠;
[0019] 三、 当无线传输所需组合的收发单元数量不多, 且可靠性要求不是太高吋, 则 不必在收发两方设置控制系统, 直接对收发标准单元模组进行并联或串联, 或 者只对接收单元状态信号做 "与"运算, 控制总幵关, 此种结构较为简单;
[0020] 四、 在接收模组阵列中, 通过在互相并联的支路输出端设置二极管或 MOS管, 利用二极管或 MOS管的单向导电性, 可以避免多个互相并联的支路之间相互影 响;
[0021] 五、 在接收模组阵列中, 通过对互相串联的接收单元模组一侧并联二极管或 M OS管, 实现旁路电流的功能, 当串联支路中某一单模组发生故障吋, 整个串联 支路仍可以正常工作, 提高了电路的可靠性;
[0022] 六、 对于可靠性要求较高的应用场景, 需要在串联支路或者并联支路上额外增 加备用的收发单元模组, 如一个收发单元模组能够传输 10W功率的电能, 串联支 路总输出要求为 60W, 则可以采用 8个收发单元, 当其中 1-2个收发单元故障吋, 整个系统仍可以正常工作, 并将有故障的单元模组上报给接收控制系统, 在无 故障单元情况下, 这个串联支路上的收发单元模组不是满负荷工作, 若接收单 元阵列拓扑为串并混联, 接收控制系统通过数据总线, 命令其他串联支路降电 压, 以保证各个串联支路输出电压相近, 之间不会产生电能干扰, 接收总输出 后应接有 DC/DC转换恒压或恒流电路, 自动适应接收串联支路的输出电压变化
[0023] 七、 接收部分设有 MOS管或者 IGBT中的任一项输出总幵关, 接收控制系统在 检测所有接收单元模组的工作状态, 在满足电能输出条件的情况下, 打幵总幵 关对负载供电, 在总输出功率比较小吋, 一般用 MOS做总幵关, 在总输出功率 比较大吋, 用 IGBT做总幵关, 提高了无线充电电路的稳定性和可靠性;
[0024] 八、 发射控制系统要比接收控制系统简单, 不管是发射单元故障还是接收单元 故障, 最终影响都是接收单元无法正常输出电能, 接收控制系统协调好每个接 收单元模组的输出能量, 就是间接协调了发射单元模组的输出能量, 整个系统 的各个单元的均衡依靠接收控制系统, 所以接收控制系统会比较复杂, 一般情 况下, 发射控制系统对发射单元模组的管理主要是限压限流和状态上报;
[0025] 九、 可编程输出是指, 收发控制系统可以通过数据总线对每个发收单元输出的 电压和电流检测和改变, 从而控制每个单元传输电磁能的大小, 以达到接收单 元阵列能量汇合吋的合理性;
[0026] 十、 对于大多数一般应用场景, 每个收发单元模组输出的电压和电流是一样的 , 即阵列中每个收发单元模组的功率一样的, 阵列是将大功率是平均分配成小 功率, 对于大多数应用场景一个发射单元模组配备一个发射线圈, 一个接收单 元模组配备一个接收线圈;
[0027] 十一、 对于可靠性要求较高的应用场景, 接收单元模组要能够可编程的输出电 压和电流, 这样当串联支路中个别接收单元模组或发射单元模组出现故障, 通 过调整接收单元模组输出电压和电流, 以保证每个串联支路的电压相近, 因为 多个串联支路用肖特基二极管方式汇聚吋, 串联支路电压差不能超过 2倍肖特基 二极管正向压降, 估计 2*0.3V, 否则二极管截止, 无法能量汇聚, 这个机制实 现上述第六条所述的命令其他串联支路降电压, 也可以命令有故障单元的串联 支路升电压, 由于单元模组输出功率是一定的, 要通过这个机制实现这个串联 支路的减小输出电流, 以保证这个串联支路中的正常收发单元的正常工作; [0028] 十二、 发射控制系统连接发射单元模组的数据总线, 接收控制系统连接接收单 元模组的数据总线, 是两条不同的数据总线, 分别控制收发模组阵列, 通过耦 合线圈的通讯通道或其他通讯方式实现通讯, 配合工作。
对附图的简要说明
附图说明
[0029] 图 1为实施例一的发射部分的结构示意图。
[0030] 图 2为实施例一的接收部分的结构示意图。
[0031] 图 3为实施例二的接收部分的结构示意图。
[0032] 图 4为实施例三的结构示意图。
[0033] 图 5为实施例四的原理图。
[0034] 图 6为实施例五的原理图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0035] 下面结合附图给出本发明较佳实施例, 以详细说明本发明的技术方案。
[0036] 实施例一, 如图 1至图 2, 包括发射部分和接收部分, 发射部分包括 15个发射单 元模组, 其中 5个构成串联段, 再由 3个该串联段并联构成发射模组阵列, 每个 发射单元模组都包括一个发射线圈, 15个发射线圈构成了发射线圈阵列, 接收 部分具有与发射模组阵列结构相同的接收模组阵列, 接收模组阵列具有一电源 输出端, 每个接收单元模组均包括一个接收线圈, 15个接收线圈构成了接收线 圈阵列, 所述发射线圈阵列和接收线圈阵列具有对应的空间位置阵列结构, 所 述发射部分和接收部分通过 15个发射线圈和 15个接收线圈互相耦合同吋工作传 输电磁能。
[0037] 发射部分还包括发射控制系统, 发射控制系统设置在发射单元模组以外, 本实 施例中, 可集成在发射部分电路板上, 发射控制系统通过数据总线连接各个发 射单元模组, 以实现各个发射单元模组电磁能量的平均输出, 发射控制系统为 标准逻辑电路或可编程逻辑电路或单片机中的任一种。
[0038] 接收部分还包括接收控制系统, 接收控制系统设置在接收单元模组以外, 本实 施例中, 可集成在接收部分电路板上, 通过数据总线连接各个接收单元模组, 以实现各个接收单元模组的电流电压的平均输出, 接收控制系统为标准逻辑电 路、 可编程逻辑电路或单片机中的任一种。
[0039] 实施例二, 如图 3所示, 其发射部分结构与实施例一相同, 在此不做赘述, 不 同之处在于, 其接收模组阵列中, 3个串联段的正极各自与一个二极管串联 D1 、 D2、 D3, 用于单向单电, 在其串联段内, 每个接收单元模组均与一个二极管 并联 D11~D35, 实现旁路电流的功能, 接收部分具有一输出总幵关 MOS管, 其 工作过程描述如下:
[0040] a, 接收控制系统检测各个接收单元模组工作正常, 打幵 MOS总幵关, 幵始对 外供电。
[0041] b, 当接收控制系统检测到接收单元模组异常吋, 可以这样操作接收单元模组 : 对于消费类电子, 没有备用的收发单元模组, 将接收单元模组重新启动, 使 其能正常工作, 若还是无法正常工作, 系统故障, 无法工作; 对于高可靠应用 , 如汽车, 必须设有备用的收发单元模组, 当某些收发单元模组有故障吋, 启 动备用单元, 系统仍可以正常工作, 且提示用户, 有收发单元故障, 需要维修 或更换。
[0042] c,接收模组阵列中, 可能出现有些接收单元组件已经幵始工作, 有些没有工作 , 此吋要保证已经工作的接收单元模组必须旁路绕过还没有工作的单元模组, 直接向总幵关处供电, 为实现此目的, 本实施例中可以在每个接收单元模组一 侧并联二极管,
Dl l , D12, D13 , D14, D15 , D21 , D22, D23 , D24, D25 , D31 , D32, D33
, D34, D35, 二极管的正极连接与其并联单元的负极, 二极管负级连接与其并 联单元的正极, 当某个接收单元模组不能正常工作吋, 二极管将其旁路, 不影 响整个串联支路其它接收单元工作。
[0043] d, 接收模组阵列中, 可能出现互相串联的接收单元模组电压不能完全一致的 情形, 目前的技术条件可以通过接收控制系统使其输出电压很接近, 但精度不 够, 当上述串联段互相并联吋可能产生电能干扰, 为避免这种情形, 本实施例 在串联汇聚处加二极管 D1,D2,D3, 作用是单向导电, 同理, 也可以将 Dl, D2, D3替换成 MOS管, 当接收控制系统检测到电压电流异常吋, 暂吋关闭相应的支 路, 实现反方向电流阻断功能。
[0044] e, 随着科技的发展, 各个串联段可以实现可控制的非常精准的电压和电流输 出控制吋, 上述的二极管或 MOS管都不用加, 如当检测到电能干扰吋, 迅速降 低相应产生电能干扰的串联单元的输出电压或提升电能被干扰串联单元的输出 电压。
[0045] 实施例三, 用于 IPAD 10W 5V2A充电功率的无线电能传输电路, 如图 4, 发射 部分和接收部分分别采用两个发射单元模组和两个接收单元模组并联, 图中的 每个无线收发单元包括一对互相耦合的发射单元模组和接收电源模组, 每个无 线收发单元实际最大输出 5.3V*1A=5.3W, 由于肖特基二极管 0.3V压降, 两路汇 聚后实际输出为 5V*2A=10W, 本实施例可以实现给 IPAD 10W 5V2A实现无线 充电解决方案, 对于这种发射单元模组和接收电源模组阵列很少的且是消费类 电子不需要高可靠性要求的解决方案, 不需要总幵关, 也不需要专门外置收发 控制系统, 各个收发单元模组自己做好限压限流, 各个接收单元模组直接汇聚 输出。
[0046] 实施例三中, 5W收发单元模组技术标准采用无线充电联盟 WPC 1.1.2版 Qi标准 , 发射单元模组包括艾迪悌 (IDT) 公司 P9038-RNDGI芯片, 接收单元模组包括 艾迪悌 (IDT) 的 P9025AC-RNBGI芯片和芯源 (MPS) 的 MP5010SDQ芯片, 其中 P9038-RNDGI芯片和 P9025AC-RNBGI芯片功能是完成 5W无线电能的传输 , MP5010SDQ是可编程电流限制器件, 通过它保证 P9025AC输出电流不大于 1A, 上述 3个芯片、 伺服料电阻电容和收发线圈等一起构成收发单元模组, 两个 接收单元模组各自与肖特基二极管串联后, 再并联进行汇聚输出。
[0047] 实施例四是用于 TYPE-C、 笔记本电脑或智能扫地机器人的无线电能传输电路 , 如图 5所示, 其发射部分为 10个发射单元模组的全并联结构, 其接收部分为 5 个接收单元模组串联构成串联段, 再将 2个所述的串联段进行并联构成接收模组 阵列, 串联段内每个接收单元模组均与一个旁路二极管 (D1~D10) 并联; 2个 串联段的正极各自串联一个用于单向导电的二极管 (D21和 D22) ; 每个接收单 元模组通过另一个二极管 (D11~D20) 连接至与门, 对与门供电; 发射部分还 设有电源输入管理模块和 DC/DC转换电路, 其目的在于, 当发射单元模组比较 多吋传输线路长, 为减少线路损耗, 先高电压传输, 再经 DC/DC变换电路变换 后, 给各发射单元模组供电, 本实施例中, 10个并联的发射单元模组共用两个 D C/DC变换电路, 接收部分在输出端之前同样设置一个 DC/DC变换电路, 以转换 成相应的电流电压来适配 TYPE-C、 笔记本电脑或智能扫地机器人之类的 100W左 右或以内的需求功率。
[0048] 本电路的功能说明如下:
[0049] a. 每个收发单元模组为可输出 10W能量, 10V1A, 10W收发单元模组技术标 准采用无线充电联盟 WPC 1.2版 Qi标准, 收发单元电路所用集成电路是, 发射单 元模组选用艾迪悌 (IDT) 公司 P9240, 接收单元模组选用艾迪悌 (IDT) P9220 和芯源 (MPS) MP5010, MPS5010芯片是可编程电流限制器件, 通过它保证 P9220输出电流不大于 1.2A, 上述的 3个芯片、 伺服料电阻电容, 收发线圈等一 起构成收发单元模组。
[0050] b . 每个接收单元模组均通过图中的 S线输出一个"状态"信号, 通过两级"与门" 连接总幵关, 当所有接收单元模组都正常工作吋, 总幵关打幵, 向外供电。
[0051] c 二极管 D1-D10功能是: 在接收单元模组没有正常工作吋, 将其旁路。
[0052] d, 二极管 D11-D20功能是: 只要有一路接收单元模组可以正常工作, 就可以 给"与门"供电, 为"或"的关系, 图中的 "V"线为供电线。
[0053] e, 二极管 D21-D22功能是: 单向导电, 防止两个串联电路在并联吋串扰。
[0054] f, 本实施例的接收部分的输出总幵关采用 MOS管。
[0055] g, 本电路总输入功率 120W,总输出功率 100W,传输效率约为 80<¾。
[0056] 实施例五是用于电动汽车的无线电能传输电路, 如图 6所示, 该无线传输电路 的发射部分和接收部分均由 10个收发单元模组串联构成串联段后, 再由 10个所 述的串联段并联构成 10*10的矩形阵列, 每个发射单元模组和接收单元模组配合 可输出 10W能量, 即 10V1A, 技术标准采用无线充电联盟 WPC 1.2版 Qi标准, 发 射单元模组包括艾迪悌公司 IDT_P9240芯片、 AC/DC变换电路、 数据总线接口转 换电路, 伺服料电阻电容和发射线圈等; 发射单元模组增加数据总线接口转换 电路 (图 6中未示出) , 是为了保证发射控制系统对发射单元模组的有效控制, 不过这个需要具体问题具体分析, 有可能 I2C转 GPIO,也有可能 I2C转 LIN等 等。
[0057] 接收单元模组包括艾迪悌公司的 IDT_P9220芯片、 芯源 (MPS) MP5010芯片 、 英特矽尔 (Intersil) ZL6105芯片、 数据总线接口转换电路、 伺服料电阻电容 和接收线圈等, 受接收控制系统控制。
[0058] IDT_P9220功能是输出 10W电能, MP5010S的功能是使 P9220输出电流严格限 制在 1.2A以内, ZL6105是 I2C接口数字电源, IDT_P9220输出的 10W 10V1A的电 能量, 经 MP5010S严格限制电流保护通道后进入 ZL6105 , ZL6105可以在 I2C、 SMBus或 PMBus控制下, 将 10W电能量直接转换为 5.5V
1.8A模式, 或 3.3V3A等模式, 当接收单元模组出现故障吋, 会造成构成的串联 支路电压变化, 产生电能干扰吋, ZL6105可以有效控制有故障的接收单元模组 构成的串联支路升电压降电流, 或无故障的接收单元模组构成的串联支路降电 压升电流, 接收单元模组还需要增加总线的接口转换电路, 以保证接收控制系 统对接收单元模组的有效控制, 不过这个需要具体问题具体分析, 有可能 I2C 转 GPIO,有可能 I2C转 LIN等等。
[0059] 实施例五中, 接收模组阵列和发射模组阵列可以在需求功率以外额外增加一些 备用的收发单元模组, 各个收发单元模组采用成熟的小功率无线充电方案, 整 体性能稳定可靠; 目前在小功率无线充电方案传输 10W的效率可以达到 83%, 用本发明方案, 采用比较大型的阵列方式传输, 效率会比各单元稍差, 估计在 8 0%以上。 随着技术的发展, 各收发单元效率会更高, 整体效率也会更高, 能够 在大功率传输上实现小功率的高效率。
[0060] 现对该电路的结构和特征在如下说明:
[0061] a.每个发射单元模组都通过数据总线 (发射总线) 与发射控制系统连接, 发射 总线用汽车标准的 LIN总线, 也可以是 I2C总线; 发射控制系统通过发射总线 控制每个发射单元模组的均衡输出, 并可以上报故障发射单元模组。
[0062] b, 每个接收单元模组都通过数据总线 (接收总线) 与接收控制系统连接, 接 收控制系统装在电动汽车内部, 接收总线采用汽车标准的 LIN总线和 GPIO, 接 收控制系统通过 LIN总线与每个接收单元模组通讯, 接收控制系统通过 GPIO 控制各个 MOS和 IGBT, 所述的 GPIO 是指通用输入输出, 它可以是总线中带有 GPIO部分, 也可以是由 LIN总线转换 出来的。
[0063] c, MOS管 (Ml, 1-M10 , 10)与每个接收单元模组并联 (即将 MOS管的源极 和漏极与接收控制系统正负极连接, MOS管的栅极连接接收控制系统) , 其功 能是: 接收控制系统检测相应的接收单元模组, 在其没有正常工作吋, 控制 MO S处于导通状态, 将相应的接收单元模组旁路, 从而不影响其他接收单元工作; 在相应的接收单元模组正常工作吋, MOS处于截止状态, 相应的接收单元模组 对外供电。
[0064] d, 没有接收正常工作的原因可能是上电的先后顺序造成, 也可能是故障,接收 控制系统可以上报相应接收单元故障。 目前的技术条件是检测接收单元电能输 出情况, 只能上报收发单元故障, 无法上报具体是接收单元故障还是发射单元 故障。
[0065] e, MOS管(M1~M10)设置在 10个串联段的正极, 与串联段内的接收单元模组 为串联连接, 其功能是: 防止互相并联的串联段之间电能干扰; 当接收控制系 统检测到电能干扰吋, 断幵产生干扰电能的串联单元组, 电能干扰消失后恢复 连接, 或者降低相应产生电能干扰的串联段中的接收单元的输出电压或提升电 能被干扰串联段中的接收单元的输出电压。
[0066] f, 二极管 D ( 1, 1 ) -D ( 10,10) 功能是: 只要有一路接收单元模组可以正常 供电, 就可以给接收控制系统供电, 为"或"的关系。
[0067] g, 这个电路中的输出总幵关因功率较大, 采用 IGBT实现, 对于汽车的高可 靠应用场景, 需要设有足够多的备用收发单元, 如: 只要有 80%收发单元可以正 常工作, 就能满足输出的电能需求, 接收控制系统就可以打幵 IGBT , 对外供电
[0068] h, 对于故障收发单元, 发射和接收控制部分可以检测且上报是具体是那个接 收或发射单元故障, 及吋维修更换。
[0069] i, 当某个收发单元故障吋, 其所在串联段输出电压会下降, 接收控制系统通 过接收控制总线, 控制其他串联支路降电压或者控制有故障单元的串联段中的 正常工作单元升电压并且要减小该支路电流输出, 以保证各个串联支路输出电 压相当, 各个串联段之间不会电能干扰, 顺利汇聚电能。
[0070] j, 对于目前的收发单元模组为 10W的情况, 100个收发单元模组阵列, 其中 20
%为备用, 可以提供 800W电能。 随着科技的发展, 收发单元功率提升或组合更 多收发单元阵列, 可以做更大功率的电能传输。
[0071] k,发射模组阵列的输入端设置有电源输入管理模块, 发射模组阵列通过电源输 入管理模块接交流电, 在中国为 220V交流电, 在某些国家为 110V交流电, 因此 需要在发射单元模组的输入端前串联一个 AC/DC转换模块, 用于将交流电转换 成直流电, 如图 6所示, 是每个发射单元都有一个 AC/DC转换模块, 但实际操作 中根据具体情况可以多个发射单元公用一个 AC/DC转换模块。
[0072] 虽然以上描述了本发明的具体实施方式, 但是本领域的技术人员应当理解, 这 些仅是举例说明, 本发明的保护范围是由所附权利要求书限定的。 本领域的技 术人员在不背离本发明的原理和实质的前提下, 可以对这些实施方式做出多种 变更或修改, 但这些变更和修改均落入本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种大功率电能的无线传输方法, 其特征在于, 将原始的大功率电能 拆分成若干个初级电能, 若干个初级电能同吋通过无线电磁能方式传 输获得若干个次级电能, 若干个次级电能汇合并输出所需的大功率电 能。
[权利要求 2] —种大功率电能的无线传输电路, 其特征在于, 包括发射部分和接收 部分, 发射部分包括由若干个发射单元模组通过串联、 并联或者串并 混联中的任一种连接方式构成的发射模组阵列, 发射模组阵列具有一 电源输入端, 每个发射单元模组都包括至少一个发射线圈, 若干个发 射线圈构成了发射线圈阵列, 接收部分包括由若干个接收单元模组串 联、 并联或者串并混联中的任一种连接方式构成的接收模组阵列, 接 收模组阵列具有一电源输出端, 每个接收单元模组均包括至少一个接 收线圈, 若干个接收线圈构成了接收线圈阵列, 所述发射线圈阵列和 接收线圈阵列具有对应的空间位置阵列结构, 所述发射部分和接收部 分通过若干个发射线圈和若干个接收线圈互相耦合同吋工作传输电磁 能。
[权利要求 3] 根据权利要求 2所述的大功率电能的无线传输电路, 其特征在于, 接 收部分还包括接收控制系统。
[权利要求 4] 根据权利要求 3所述的大功率电能的无线传输电路, 其特征在于, 接 收控制系统设置在接收单元模组以外, 通过数据总线连接各个接收单 元模组, 以实现各个接收单元模组电流电压的可编程输出, 接收控制 系统为标准逻辑电路、 可编程逻辑电路或单片机中的任一种。
[权利要求 5] 根据权利要求 3所述的大功率电能的无线传输电路, 其特征在于, 接 收控制系统集成在接收单元模组, 每个接收单元模组能够实现电流电 压的可编程输出。
[权利要求 6] 根据权利要求 2所述的大功率电能的无线传输电路, 其特征在于, 发 射部分还包括发射控制系统。
[权利要求 7] 根据权利要求 6所述的大功率电能的无线传输电路, 其特征在于, 发 射控制系统设置在发射单元模组以外, 发射控制系统通过数据总线连 接各个发射单元模组, 以实现各个发射单元模组电磁能量的可编程输 出, 发射控制系统为标准逻辑电路、 可编程逻辑电路或单片机中的任 一种。
[权利要求 8] 根据权利要求 6所述的大功率电能的无线传输电路, 其特征在于, 发 射控制系统集成在发射单元模组中, 每个发射单元模组能够实现电磁 能量的可编程输出。
[权利要求 9] 根据权利要求 3~8中任一项所述的大功率电能的无线传输电路, 其特 征在于, 接收部分具有一输出总幵关, 所述输出总幵关设有 MOS管 或者 IGBT中的任一项总幵关, 所述总幵关与接收控制系统连接, 当 接收控制系统通过数据总线检测到所有接收单元模组工作正常后, 打 幵总幵关, 对外输出。
[权利要求 10] 根据权利要求 2~8中任一项所述的大功率电能的无线传输电路, 其特 征在于, 接收模组阵列内, 互相并联的多个支路的输出端各串联一单 向导电的二极管或者 MOS管后汇聚, 互相串联的每个接收单元模组 一侧并联一个用于实现旁路电流的二极管或者 MOS管。
PCT/CN2016/097769 2016-02-01 2016-09-01 一种大功率电能的无线传输方法和电路 WO2017133238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610069221.3A CN105515223B (zh) 2016-02-01 2016-02-01 一种大功率电能的无线传输方法和电路
CN201610069221.3 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017133238A1 true WO2017133238A1 (zh) 2017-08-10

Family

ID=55722972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097769 WO2017133238A1 (zh) 2016-02-01 2016-09-01 一种大功率电能的无线传输方法和电路

Country Status (2)

Country Link
CN (1) CN105515223B (zh)
WO (1) WO2017133238A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608184A (zh) * 2021-08-04 2021-11-05 上海无线电设备研究所 一种相控阵天线发射自检方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515223B (zh) * 2016-02-01 2018-05-22 施京京 一种大功率电能的无线传输方法和电路
CN109995098B (zh) * 2017-12-29 2021-11-19 华为技术有限公司 无线充电接收装置、无线充电方法及设备
CN112803560A (zh) * 2019-11-14 2021-05-14 Oppo广东移动通信有限公司 无线充电装置、待充电设备、充电系统及方法、存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284065A (ja) * 2009-06-08 2010-12-16 Nec Tokin Corp 電力・信号伝送モジュール、非接触充電モジュールならびに非接触充電および信号伝送システム
CN102611213A (zh) * 2012-03-31 2012-07-25 刘开磊 面向多终端的无线供电系统及方法
CN103155059A (zh) * 2010-09-23 2013-06-12 鲍尔拜普罗克西有限公司 非接触电能传输系统
CN104578450A (zh) * 2013-10-29 2015-04-29 松下电器产业株式会社 无线送电装置及无线电力传输系统
CN105071549A (zh) * 2015-07-14 2015-11-18 合肥华信电动科技发展有限公司 一种城市垃圾清运车电源管理系统
CN105245036A (zh) * 2015-09-15 2016-01-13 华南理工大学 一种基于多发射单元的无线电磁波能量采集的方法和装置
CN204992795U (zh) * 2015-09-15 2016-01-20 华南理工大学 一种基于多天线接收的无线电磁波能量采集装置
CN105515223A (zh) * 2016-02-01 2016-04-20 施京京 一种大功率电能的无线传输方法和电路
CN205335986U (zh) * 2016-02-01 2016-06-22 施京京 一种大功率电能的无线传输电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742121A (zh) * 2010-01-21 2012-10-17 夏普株式会社 非接触式供电装置
KR20130024757A (ko) * 2011-08-29 2013-03-08 주식회사 케이더파워 이종 충전 방식을 가진 무선 충전 시스템
CN104143861A (zh) * 2013-05-09 2014-11-12 泰科电子(上海)有限公司 非接触式供电电路
CN104184221A (zh) * 2014-09-02 2014-12-03 四川汇源光通信有限公司 一种高压输电线路地线取能装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284065A (ja) * 2009-06-08 2010-12-16 Nec Tokin Corp 電力・信号伝送モジュール、非接触充電モジュールならびに非接触充電および信号伝送システム
CN103155059A (zh) * 2010-09-23 2013-06-12 鲍尔拜普罗克西有限公司 非接触电能传输系统
CN102611213A (zh) * 2012-03-31 2012-07-25 刘开磊 面向多终端的无线供电系统及方法
CN104578450A (zh) * 2013-10-29 2015-04-29 松下电器产业株式会社 无线送电装置及无线电力传输系统
CN105071549A (zh) * 2015-07-14 2015-11-18 合肥华信电动科技发展有限公司 一种城市垃圾清运车电源管理系统
CN105245036A (zh) * 2015-09-15 2016-01-13 华南理工大学 一种基于多发射单元的无线电磁波能量采集的方法和装置
CN204992795U (zh) * 2015-09-15 2016-01-20 华南理工大学 一种基于多天线接收的无线电磁波能量采集装置
CN105515223A (zh) * 2016-02-01 2016-04-20 施京京 一种大功率电能的无线传输方法和电路
CN205335986U (zh) * 2016-02-01 2016-06-22 施京京 一种大功率电能的无线传输电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608184A (zh) * 2021-08-04 2021-11-05 上海无线电设备研究所 一种相控阵天线发射自检方法
CN113608184B (zh) * 2021-08-04 2023-09-22 上海无线电设备研究所 一种相控阵天线发射自检方法

Also Published As

Publication number Publication date
CN105515223A (zh) 2016-04-20
CN105515223B (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
US8698354B2 (en) System and method for bidirectional DC-AC power conversion
US11539212B2 (en) Photovoltaic power generation system and photovoltaic power transmission method
US11041889B2 (en) Method for estimating load current of power supply, and USB-type converter
US20160036323A1 (en) Three port dc-dc converter
WO2017133238A1 (zh) 一种大功率电能的无线传输方法和电路
WO2011120311A1 (zh) 太阳能光发电系统、控制装置及控制方法
CN102007677A (zh) 双向dc/dc变换器和电力调节器
JP5807649B2 (ja) 電力変換装置及び電力変換方法
EP3506457B1 (en) Charging power system with low standby power consumption and method of controlling the same
CN105141134A (zh) 一种开关电源和控制该开关电源的方法
CN111342665B (zh) 一种隔离型双向dc-dc变换器及其控制方法
WO2018028561A1 (zh) 一种充电系统及充电控制方法
CN205335986U (zh) 一种大功率电能的无线传输电路
WO2022156269A1 (zh) 一种配电系统及服务器系统
CN105827109A (zh) 一种冗余直流变换电路及其控制方法
WO2006136100A1 (en) Power supplying device and power supplying method
TW201924180A (zh) 兩個dc/dc調節器在充電台或充電站的電力電子裝置中之使用
CN111555614A (zh) 汽车双电源系统的交错dc-dc变换器及其控制方法
CN204290428U (zh) 一种集成电机驱动和电池充电功能模块
CN100502218C (zh) 电源切换电路及使用其的电源供应系统
CN211127568U (zh) 一种dc-dc电能传输系统
WO2021104373A1 (zh) 一种多电池切换控制电路、装置、系统及控制方法
WO2021097763A1 (zh) 整流器、逆变器及无线充电设备
CN110021986B (zh) 一种无线充电系统及无线充电装置
CN111146932A (zh) 一种dc-dc电能传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889049

Country of ref document: EP

Kind code of ref document: A1